]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/ctree.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_key *ins_key,
31 struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root, struct extent_buffer *dst,
34 struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 struct extent_buffer *dst_buf,
38 struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root, struct btrfs_path *path,
43 struct btrfs_key *cpu_key, u32 *data_size,
44 u32 total_data, u32 total_size, int nr);
45
46
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 struct btrfs_path *path;
50 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51 if (path)
52 path->reada = 1;
53 return path;
54 }
55
56 /*
57 * set all locked nodes in the path to blocking locks. This should
58 * be done before scheduling
59 */
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
61 {
62 int i;
63 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64 if (p->nodes[i] && p->locks[i])
65 btrfs_set_lock_blocking(p->nodes[i]);
66 }
67 }
68
69 /*
70 * reset all the locked nodes in the patch to spinning locks.
71 *
72 * held is used to keep lockdep happy, when lockdep is enabled
73 * we set held to a blocking lock before we go around and
74 * retake all the spinlocks in the path. You can safely use NULL
75 * for held
76 */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 struct extent_buffer *held)
79 {
80 int i;
81
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 /* lockdep really cares that we take all of these spinlocks
84 * in the right order. If any of the locks in the path are not
85 * currently blocking, it is going to complain. So, make really
86 * really sure by forcing the path to blocking before we clear
87 * the path blocking.
88 */
89 if (held)
90 btrfs_set_lock_blocking(held);
91 btrfs_set_path_blocking(p);
92 #endif
93
94 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95 if (p->nodes[i] && p->locks[i])
96 btrfs_clear_lock_blocking(p->nodes[i]);
97 }
98
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 if (held)
101 btrfs_clear_lock_blocking(held);
102 #endif
103 }
104
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108 btrfs_release_path(NULL, p);
109 kmem_cache_free(btrfs_path_cachep, p);
110 }
111
112 /*
113 * path release drops references on the extent buffers in the path
114 * and it drops any locks held by this path
115 *
116 * It is safe to call this on paths that no locks or extent buffers held.
117 */
118 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
119 {
120 int i;
121
122 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
123 p->slots[i] = 0;
124 if (!p->nodes[i])
125 continue;
126 if (p->locks[i]) {
127 btrfs_tree_unlock(p->nodes[i]);
128 p->locks[i] = 0;
129 }
130 free_extent_buffer(p->nodes[i]);
131 p->nodes[i] = NULL;
132 }
133 }
134
135 /*
136 * safely gets a reference on the root node of a tree. A lock
137 * is not taken, so a concurrent writer may put a different node
138 * at the root of the tree. See btrfs_lock_root_node for the
139 * looping required.
140 *
141 * The extent buffer returned by this has a reference taken, so
142 * it won't disappear. It may stop being the root of the tree
143 * at any time because there are no locks held.
144 */
145 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
146 {
147 struct extent_buffer *eb;
148 spin_lock(&root->node_lock);
149 eb = root->node;
150 extent_buffer_get(eb);
151 spin_unlock(&root->node_lock);
152 return eb;
153 }
154
155 /* loop around taking references on and locking the root node of the
156 * tree until you end up with a lock on the root. A locked buffer
157 * is returned, with a reference held.
158 */
159 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
160 {
161 struct extent_buffer *eb;
162
163 while (1) {
164 eb = btrfs_root_node(root);
165 btrfs_tree_lock(eb);
166
167 spin_lock(&root->node_lock);
168 if (eb == root->node) {
169 spin_unlock(&root->node_lock);
170 break;
171 }
172 spin_unlock(&root->node_lock);
173
174 btrfs_tree_unlock(eb);
175 free_extent_buffer(eb);
176 }
177 return eb;
178 }
179
180 /* cowonly root (everything not a reference counted cow subvolume), just get
181 * put onto a simple dirty list. transaction.c walks this to make sure they
182 * get properly updated on disk.
183 */
184 static void add_root_to_dirty_list(struct btrfs_root *root)
185 {
186 if (root->track_dirty && list_empty(&root->dirty_list)) {
187 list_add(&root->dirty_list,
188 &root->fs_info->dirty_cowonly_roots);
189 }
190 }
191
192 /*
193 * used by snapshot creation to make a copy of a root for a tree with
194 * a given objectid. The buffer with the new root node is returned in
195 * cow_ret, and this func returns zero on success or a negative error code.
196 */
197 int btrfs_copy_root(struct btrfs_trans_handle *trans,
198 struct btrfs_root *root,
199 struct extent_buffer *buf,
200 struct extent_buffer **cow_ret, u64 new_root_objectid)
201 {
202 struct extent_buffer *cow;
203 u32 nritems;
204 int ret = 0;
205 int level;
206 struct btrfs_disk_key disk_key;
207
208 WARN_ON(root->ref_cows && trans->transid !=
209 root->fs_info->running_transaction->transid);
210 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
211
212 level = btrfs_header_level(buf);
213 nritems = btrfs_header_nritems(buf);
214 if (level == 0)
215 btrfs_item_key(buf, &disk_key, 0);
216 else
217 btrfs_node_key(buf, &disk_key, 0);
218
219 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
220 new_root_objectid, &disk_key, level,
221 buf->start, 0);
222 if (IS_ERR(cow))
223 return PTR_ERR(cow);
224
225 copy_extent_buffer(cow, buf, 0, 0, cow->len);
226 btrfs_set_header_bytenr(cow, cow->start);
227 btrfs_set_header_generation(cow, trans->transid);
228 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 BTRFS_HEADER_FLAG_RELOC);
231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233 else
234 btrfs_set_header_owner(cow, new_root_objectid);
235
236 write_extent_buffer(cow, root->fs_info->fsid,
237 (unsigned long)btrfs_header_fsid(cow),
238 BTRFS_FSID_SIZE);
239
240 WARN_ON(btrfs_header_generation(buf) > trans->transid);
241 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
242 ret = btrfs_inc_ref(trans, root, cow, 1);
243 else
244 ret = btrfs_inc_ref(trans, root, cow, 0);
245
246 if (ret)
247 return ret;
248
249 btrfs_mark_buffer_dirty(cow);
250 *cow_ret = cow;
251 return 0;
252 }
253
254 /*
255 * check if the tree block can be shared by multiple trees
256 */
257 int btrfs_block_can_be_shared(struct btrfs_root *root,
258 struct extent_buffer *buf)
259 {
260 /*
261 * Tree blocks not in refernece counted trees and tree roots
262 * are never shared. If a block was allocated after the last
263 * snapshot and the block was not allocated by tree relocation,
264 * we know the block is not shared.
265 */
266 if (root->ref_cows &&
267 buf != root->node && buf != root->commit_root &&
268 (btrfs_header_generation(buf) <=
269 btrfs_root_last_snapshot(&root->root_item) ||
270 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
271 return 1;
272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
273 if (root->ref_cows &&
274 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
275 return 1;
276 #endif
277 return 0;
278 }
279
280 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
281 struct btrfs_root *root,
282 struct extent_buffer *buf,
283 struct extent_buffer *cow)
284 {
285 u64 refs;
286 u64 owner;
287 u64 flags;
288 u64 new_flags = 0;
289 int ret;
290
291 /*
292 * Backrefs update rules:
293 *
294 * Always use full backrefs for extent pointers in tree block
295 * allocated by tree relocation.
296 *
297 * If a shared tree block is no longer referenced by its owner
298 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
299 * use full backrefs for extent pointers in tree block.
300 *
301 * If a tree block is been relocating
302 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
303 * use full backrefs for extent pointers in tree block.
304 * The reason for this is some operations (such as drop tree)
305 * are only allowed for blocks use full backrefs.
306 */
307
308 if (btrfs_block_can_be_shared(root, buf)) {
309 ret = btrfs_lookup_extent_info(trans, root, buf->start,
310 buf->len, &refs, &flags);
311 BUG_ON(ret);
312 BUG_ON(refs == 0);
313 } else {
314 refs = 1;
315 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
316 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
317 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
318 else
319 flags = 0;
320 }
321
322 owner = btrfs_header_owner(buf);
323 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
324 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
325
326 if (refs > 1) {
327 if ((owner == root->root_key.objectid ||
328 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
329 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
330 ret = btrfs_inc_ref(trans, root, buf, 1);
331 BUG_ON(ret);
332
333 if (root->root_key.objectid ==
334 BTRFS_TREE_RELOC_OBJECTID) {
335 ret = btrfs_dec_ref(trans, root, buf, 0);
336 BUG_ON(ret);
337 ret = btrfs_inc_ref(trans, root, cow, 1);
338 BUG_ON(ret);
339 }
340 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
341 } else {
342
343 if (root->root_key.objectid ==
344 BTRFS_TREE_RELOC_OBJECTID)
345 ret = btrfs_inc_ref(trans, root, cow, 1);
346 else
347 ret = btrfs_inc_ref(trans, root, cow, 0);
348 BUG_ON(ret);
349 }
350 if (new_flags != 0) {
351 ret = btrfs_set_disk_extent_flags(trans, root,
352 buf->start,
353 buf->len,
354 new_flags, 0);
355 BUG_ON(ret);
356 }
357 } else {
358 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
359 if (root->root_key.objectid ==
360 BTRFS_TREE_RELOC_OBJECTID)
361 ret = btrfs_inc_ref(trans, root, cow, 1);
362 else
363 ret = btrfs_inc_ref(trans, root, cow, 0);
364 BUG_ON(ret);
365 ret = btrfs_dec_ref(trans, root, buf, 1);
366 BUG_ON(ret);
367 }
368 clean_tree_block(trans, root, buf);
369 }
370 return 0;
371 }
372
373 /*
374 * does the dirty work in cow of a single block. The parent block (if
375 * supplied) is updated to point to the new cow copy. The new buffer is marked
376 * dirty and returned locked. If you modify the block it needs to be marked
377 * dirty again.
378 *
379 * search_start -- an allocation hint for the new block
380 *
381 * empty_size -- a hint that you plan on doing more cow. This is the size in
382 * bytes the allocator should try to find free next to the block it returns.
383 * This is just a hint and may be ignored by the allocator.
384 */
385 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct extent_buffer *buf,
388 struct extent_buffer *parent, int parent_slot,
389 struct extent_buffer **cow_ret,
390 u64 search_start, u64 empty_size)
391 {
392 struct btrfs_disk_key disk_key;
393 struct extent_buffer *cow;
394 int level;
395 int unlock_orig = 0;
396 u64 parent_start;
397
398 if (*cow_ret == buf)
399 unlock_orig = 1;
400
401 btrfs_assert_tree_locked(buf);
402
403 WARN_ON(root->ref_cows && trans->transid !=
404 root->fs_info->running_transaction->transid);
405 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
406
407 level = btrfs_header_level(buf);
408
409 if (level == 0)
410 btrfs_item_key(buf, &disk_key, 0);
411 else
412 btrfs_node_key(buf, &disk_key, 0);
413
414 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
415 if (parent)
416 parent_start = parent->start;
417 else
418 parent_start = 0;
419 } else
420 parent_start = 0;
421
422 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
423 root->root_key.objectid, &disk_key,
424 level, search_start, empty_size);
425 if (IS_ERR(cow))
426 return PTR_ERR(cow);
427
428 /* cow is set to blocking by btrfs_init_new_buffer */
429
430 copy_extent_buffer(cow, buf, 0, 0, cow->len);
431 btrfs_set_header_bytenr(cow, cow->start);
432 btrfs_set_header_generation(cow, trans->transid);
433 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
434 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
435 BTRFS_HEADER_FLAG_RELOC);
436 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
437 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
438 else
439 btrfs_set_header_owner(cow, root->root_key.objectid);
440
441 write_extent_buffer(cow, root->fs_info->fsid,
442 (unsigned long)btrfs_header_fsid(cow),
443 BTRFS_FSID_SIZE);
444
445 update_ref_for_cow(trans, root, buf, cow);
446
447 if (buf == root->node) {
448 WARN_ON(parent && parent != buf);
449 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
450 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
451 parent_start = buf->start;
452 else
453 parent_start = 0;
454
455 spin_lock(&root->node_lock);
456 root->node = cow;
457 extent_buffer_get(cow);
458 spin_unlock(&root->node_lock);
459
460 btrfs_free_tree_block(trans, root, buf->start, buf->len,
461 parent_start, root->root_key.objectid, level);
462 free_extent_buffer(buf);
463 add_root_to_dirty_list(root);
464 } else {
465 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
466 parent_start = parent->start;
467 else
468 parent_start = 0;
469
470 WARN_ON(trans->transid != btrfs_header_generation(parent));
471 btrfs_set_node_blockptr(parent, parent_slot,
472 cow->start);
473 btrfs_set_node_ptr_generation(parent, parent_slot,
474 trans->transid);
475 btrfs_mark_buffer_dirty(parent);
476 btrfs_free_tree_block(trans, root, buf->start, buf->len,
477 parent_start, root->root_key.objectid, level);
478 }
479 if (unlock_orig)
480 btrfs_tree_unlock(buf);
481 free_extent_buffer(buf);
482 btrfs_mark_buffer_dirty(cow);
483 *cow_ret = cow;
484 return 0;
485 }
486
487 static inline int should_cow_block(struct btrfs_trans_handle *trans,
488 struct btrfs_root *root,
489 struct extent_buffer *buf)
490 {
491 if (btrfs_header_generation(buf) == trans->transid &&
492 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
493 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
494 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
495 return 0;
496 return 1;
497 }
498
499 /*
500 * cows a single block, see __btrfs_cow_block for the real work.
501 * This version of it has extra checks so that a block isn't cow'd more than
502 * once per transaction, as long as it hasn't been written yet
503 */
504 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
505 struct btrfs_root *root, struct extent_buffer *buf,
506 struct extent_buffer *parent, int parent_slot,
507 struct extent_buffer **cow_ret)
508 {
509 u64 search_start;
510 int ret;
511
512 if (trans->transaction != root->fs_info->running_transaction) {
513 printk(KERN_CRIT "trans %llu running %llu\n",
514 (unsigned long long)trans->transid,
515 (unsigned long long)
516 root->fs_info->running_transaction->transid);
517 WARN_ON(1);
518 }
519 if (trans->transid != root->fs_info->generation) {
520 printk(KERN_CRIT "trans %llu running %llu\n",
521 (unsigned long long)trans->transid,
522 (unsigned long long)root->fs_info->generation);
523 WARN_ON(1);
524 }
525
526 if (!should_cow_block(trans, root, buf)) {
527 *cow_ret = buf;
528 return 0;
529 }
530
531 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
532
533 if (parent)
534 btrfs_set_lock_blocking(parent);
535 btrfs_set_lock_blocking(buf);
536
537 ret = __btrfs_cow_block(trans, root, buf, parent,
538 parent_slot, cow_ret, search_start, 0);
539 return ret;
540 }
541
542 /*
543 * helper function for defrag to decide if two blocks pointed to by a
544 * node are actually close by
545 */
546 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
547 {
548 if (blocknr < other && other - (blocknr + blocksize) < 32768)
549 return 1;
550 if (blocknr > other && blocknr - (other + blocksize) < 32768)
551 return 1;
552 return 0;
553 }
554
555 /*
556 * compare two keys in a memcmp fashion
557 */
558 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
559 {
560 struct btrfs_key k1;
561
562 btrfs_disk_key_to_cpu(&k1, disk);
563
564 return btrfs_comp_cpu_keys(&k1, k2);
565 }
566
567 /*
568 * same as comp_keys only with two btrfs_key's
569 */
570 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
571 {
572 if (k1->objectid > k2->objectid)
573 return 1;
574 if (k1->objectid < k2->objectid)
575 return -1;
576 if (k1->type > k2->type)
577 return 1;
578 if (k1->type < k2->type)
579 return -1;
580 if (k1->offset > k2->offset)
581 return 1;
582 if (k1->offset < k2->offset)
583 return -1;
584 return 0;
585 }
586
587 /*
588 * this is used by the defrag code to go through all the
589 * leaves pointed to by a node and reallocate them so that
590 * disk order is close to key order
591 */
592 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
593 struct btrfs_root *root, struct extent_buffer *parent,
594 int start_slot, int cache_only, u64 *last_ret,
595 struct btrfs_key *progress)
596 {
597 struct extent_buffer *cur;
598 u64 blocknr;
599 u64 gen;
600 u64 search_start = *last_ret;
601 u64 last_block = 0;
602 u64 other;
603 u32 parent_nritems;
604 int end_slot;
605 int i;
606 int err = 0;
607 int parent_level;
608 int uptodate;
609 u32 blocksize;
610 int progress_passed = 0;
611 struct btrfs_disk_key disk_key;
612
613 parent_level = btrfs_header_level(parent);
614 if (cache_only && parent_level != 1)
615 return 0;
616
617 if (trans->transaction != root->fs_info->running_transaction)
618 WARN_ON(1);
619 if (trans->transid != root->fs_info->generation)
620 WARN_ON(1);
621
622 parent_nritems = btrfs_header_nritems(parent);
623 blocksize = btrfs_level_size(root, parent_level - 1);
624 end_slot = parent_nritems;
625
626 if (parent_nritems == 1)
627 return 0;
628
629 btrfs_set_lock_blocking(parent);
630
631 for (i = start_slot; i < end_slot; i++) {
632 int close = 1;
633
634 if (!parent->map_token) {
635 map_extent_buffer(parent,
636 btrfs_node_key_ptr_offset(i),
637 sizeof(struct btrfs_key_ptr),
638 &parent->map_token, &parent->kaddr,
639 &parent->map_start, &parent->map_len,
640 KM_USER1);
641 }
642 btrfs_node_key(parent, &disk_key, i);
643 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
644 continue;
645
646 progress_passed = 1;
647 blocknr = btrfs_node_blockptr(parent, i);
648 gen = btrfs_node_ptr_generation(parent, i);
649 if (last_block == 0)
650 last_block = blocknr;
651
652 if (i > 0) {
653 other = btrfs_node_blockptr(parent, i - 1);
654 close = close_blocks(blocknr, other, blocksize);
655 }
656 if (!close && i < end_slot - 2) {
657 other = btrfs_node_blockptr(parent, i + 1);
658 close = close_blocks(blocknr, other, blocksize);
659 }
660 if (close) {
661 last_block = blocknr;
662 continue;
663 }
664 if (parent->map_token) {
665 unmap_extent_buffer(parent, parent->map_token,
666 KM_USER1);
667 parent->map_token = NULL;
668 }
669
670 cur = btrfs_find_tree_block(root, blocknr, blocksize);
671 if (cur)
672 uptodate = btrfs_buffer_uptodate(cur, gen);
673 else
674 uptodate = 0;
675 if (!cur || !uptodate) {
676 if (cache_only) {
677 free_extent_buffer(cur);
678 continue;
679 }
680 if (!cur) {
681 cur = read_tree_block(root, blocknr,
682 blocksize, gen);
683 } else if (!uptodate) {
684 btrfs_read_buffer(cur, gen);
685 }
686 }
687 if (search_start == 0)
688 search_start = last_block;
689
690 btrfs_tree_lock(cur);
691 btrfs_set_lock_blocking(cur);
692 err = __btrfs_cow_block(trans, root, cur, parent, i,
693 &cur, search_start,
694 min(16 * blocksize,
695 (end_slot - i) * blocksize));
696 if (err) {
697 btrfs_tree_unlock(cur);
698 free_extent_buffer(cur);
699 break;
700 }
701 search_start = cur->start;
702 last_block = cur->start;
703 *last_ret = search_start;
704 btrfs_tree_unlock(cur);
705 free_extent_buffer(cur);
706 }
707 if (parent->map_token) {
708 unmap_extent_buffer(parent, parent->map_token,
709 KM_USER1);
710 parent->map_token = NULL;
711 }
712 return err;
713 }
714
715 /*
716 * The leaf data grows from end-to-front in the node.
717 * this returns the address of the start of the last item,
718 * which is the stop of the leaf data stack
719 */
720 static inline unsigned int leaf_data_end(struct btrfs_root *root,
721 struct extent_buffer *leaf)
722 {
723 u32 nr = btrfs_header_nritems(leaf);
724 if (nr == 0)
725 return BTRFS_LEAF_DATA_SIZE(root);
726 return btrfs_item_offset_nr(leaf, nr - 1);
727 }
728
729 /*
730 * extra debugging checks to make sure all the items in a key are
731 * well formed and in the proper order
732 */
733 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
734 int level)
735 {
736 struct extent_buffer *parent = NULL;
737 struct extent_buffer *node = path->nodes[level];
738 struct btrfs_disk_key parent_key;
739 struct btrfs_disk_key node_key;
740 int parent_slot;
741 int slot;
742 struct btrfs_key cpukey;
743 u32 nritems = btrfs_header_nritems(node);
744
745 if (path->nodes[level + 1])
746 parent = path->nodes[level + 1];
747
748 slot = path->slots[level];
749 BUG_ON(nritems == 0);
750 if (parent) {
751 parent_slot = path->slots[level + 1];
752 btrfs_node_key(parent, &parent_key, parent_slot);
753 btrfs_node_key(node, &node_key, 0);
754 BUG_ON(memcmp(&parent_key, &node_key,
755 sizeof(struct btrfs_disk_key)));
756 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
757 btrfs_header_bytenr(node));
758 }
759 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
760 if (slot != 0) {
761 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
762 btrfs_node_key(node, &node_key, slot);
763 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
764 }
765 if (slot < nritems - 1) {
766 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
767 btrfs_node_key(node, &node_key, slot);
768 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
769 }
770 return 0;
771 }
772
773 /*
774 * extra checking to make sure all the items in a leaf are
775 * well formed and in the proper order
776 */
777 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
778 int level)
779 {
780 struct extent_buffer *leaf = path->nodes[level];
781 struct extent_buffer *parent = NULL;
782 int parent_slot;
783 struct btrfs_key cpukey;
784 struct btrfs_disk_key parent_key;
785 struct btrfs_disk_key leaf_key;
786 int slot = path->slots[0];
787
788 u32 nritems = btrfs_header_nritems(leaf);
789
790 if (path->nodes[level + 1])
791 parent = path->nodes[level + 1];
792
793 if (nritems == 0)
794 return 0;
795
796 if (parent) {
797 parent_slot = path->slots[level + 1];
798 btrfs_node_key(parent, &parent_key, parent_slot);
799 btrfs_item_key(leaf, &leaf_key, 0);
800
801 BUG_ON(memcmp(&parent_key, &leaf_key,
802 sizeof(struct btrfs_disk_key)));
803 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
804 btrfs_header_bytenr(leaf));
805 }
806 if (slot != 0 && slot < nritems - 1) {
807 btrfs_item_key(leaf, &leaf_key, slot);
808 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
809 if (comp_keys(&leaf_key, &cpukey) <= 0) {
810 btrfs_print_leaf(root, leaf);
811 printk(KERN_CRIT "slot %d offset bad key\n", slot);
812 BUG_ON(1);
813 }
814 if (btrfs_item_offset_nr(leaf, slot - 1) !=
815 btrfs_item_end_nr(leaf, slot)) {
816 btrfs_print_leaf(root, leaf);
817 printk(KERN_CRIT "slot %d offset bad\n", slot);
818 BUG_ON(1);
819 }
820 }
821 if (slot < nritems - 1) {
822 btrfs_item_key(leaf, &leaf_key, slot);
823 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
824 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
825 if (btrfs_item_offset_nr(leaf, slot) !=
826 btrfs_item_end_nr(leaf, slot + 1)) {
827 btrfs_print_leaf(root, leaf);
828 printk(KERN_CRIT "slot %d offset bad\n", slot);
829 BUG_ON(1);
830 }
831 }
832 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
833 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
834 return 0;
835 }
836
837 static noinline int check_block(struct btrfs_root *root,
838 struct btrfs_path *path, int level)
839 {
840 return 0;
841 if (level == 0)
842 return check_leaf(root, path, level);
843 return check_node(root, path, level);
844 }
845
846 /*
847 * search for key in the extent_buffer. The items start at offset p,
848 * and they are item_size apart. There are 'max' items in p.
849 *
850 * the slot in the array is returned via slot, and it points to
851 * the place where you would insert key if it is not found in
852 * the array.
853 *
854 * slot may point to max if the key is bigger than all of the keys
855 */
856 static noinline int generic_bin_search(struct extent_buffer *eb,
857 unsigned long p,
858 int item_size, struct btrfs_key *key,
859 int max, int *slot)
860 {
861 int low = 0;
862 int high = max;
863 int mid;
864 int ret;
865 struct btrfs_disk_key *tmp = NULL;
866 struct btrfs_disk_key unaligned;
867 unsigned long offset;
868 char *map_token = NULL;
869 char *kaddr = NULL;
870 unsigned long map_start = 0;
871 unsigned long map_len = 0;
872 int err;
873
874 while (low < high) {
875 mid = (low + high) / 2;
876 offset = p + mid * item_size;
877
878 if (!map_token || offset < map_start ||
879 (offset + sizeof(struct btrfs_disk_key)) >
880 map_start + map_len) {
881 if (map_token) {
882 unmap_extent_buffer(eb, map_token, KM_USER0);
883 map_token = NULL;
884 }
885
886 err = map_private_extent_buffer(eb, offset,
887 sizeof(struct btrfs_disk_key),
888 &map_token, &kaddr,
889 &map_start, &map_len, KM_USER0);
890
891 if (!err) {
892 tmp = (struct btrfs_disk_key *)(kaddr + offset -
893 map_start);
894 } else {
895 read_extent_buffer(eb, &unaligned,
896 offset, sizeof(unaligned));
897 tmp = &unaligned;
898 }
899
900 } else {
901 tmp = (struct btrfs_disk_key *)(kaddr + offset -
902 map_start);
903 }
904 ret = comp_keys(tmp, key);
905
906 if (ret < 0)
907 low = mid + 1;
908 else if (ret > 0)
909 high = mid;
910 else {
911 *slot = mid;
912 if (map_token)
913 unmap_extent_buffer(eb, map_token, KM_USER0);
914 return 0;
915 }
916 }
917 *slot = low;
918 if (map_token)
919 unmap_extent_buffer(eb, map_token, KM_USER0);
920 return 1;
921 }
922
923 /*
924 * simple bin_search frontend that does the right thing for
925 * leaves vs nodes
926 */
927 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
928 int level, int *slot)
929 {
930 if (level == 0) {
931 return generic_bin_search(eb,
932 offsetof(struct btrfs_leaf, items),
933 sizeof(struct btrfs_item),
934 key, btrfs_header_nritems(eb),
935 slot);
936 } else {
937 return generic_bin_search(eb,
938 offsetof(struct btrfs_node, ptrs),
939 sizeof(struct btrfs_key_ptr),
940 key, btrfs_header_nritems(eb),
941 slot);
942 }
943 return -1;
944 }
945
946 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
947 int level, int *slot)
948 {
949 return bin_search(eb, key, level, slot);
950 }
951
952 /* given a node and slot number, this reads the blocks it points to. The
953 * extent buffer is returned with a reference taken (but unlocked).
954 * NULL is returned on error.
955 */
956 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
957 struct extent_buffer *parent, int slot)
958 {
959 int level = btrfs_header_level(parent);
960 if (slot < 0)
961 return NULL;
962 if (slot >= btrfs_header_nritems(parent))
963 return NULL;
964
965 BUG_ON(level == 0);
966
967 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
968 btrfs_level_size(root, level - 1),
969 btrfs_node_ptr_generation(parent, slot));
970 }
971
972 /*
973 * node level balancing, used to make sure nodes are in proper order for
974 * item deletion. We balance from the top down, so we have to make sure
975 * that a deletion won't leave an node completely empty later on.
976 */
977 static noinline int balance_level(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct btrfs_path *path, int level)
980 {
981 struct extent_buffer *right = NULL;
982 struct extent_buffer *mid;
983 struct extent_buffer *left = NULL;
984 struct extent_buffer *parent = NULL;
985 int ret = 0;
986 int wret;
987 int pslot;
988 int orig_slot = path->slots[level];
989 int err_on_enospc = 0;
990 u64 orig_ptr;
991
992 if (level == 0)
993 return 0;
994
995 mid = path->nodes[level];
996
997 WARN_ON(!path->locks[level]);
998 WARN_ON(btrfs_header_generation(mid) != trans->transid);
999
1000 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1001
1002 if (level < BTRFS_MAX_LEVEL - 1)
1003 parent = path->nodes[level + 1];
1004 pslot = path->slots[level + 1];
1005
1006 /*
1007 * deal with the case where there is only one pointer in the root
1008 * by promoting the node below to a root
1009 */
1010 if (!parent) {
1011 struct extent_buffer *child;
1012
1013 if (btrfs_header_nritems(mid) != 1)
1014 return 0;
1015
1016 /* promote the child to a root */
1017 child = read_node_slot(root, mid, 0);
1018 BUG_ON(!child);
1019 btrfs_tree_lock(child);
1020 btrfs_set_lock_blocking(child);
1021 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1022 BUG_ON(ret);
1023
1024 spin_lock(&root->node_lock);
1025 root->node = child;
1026 spin_unlock(&root->node_lock);
1027
1028 add_root_to_dirty_list(root);
1029 btrfs_tree_unlock(child);
1030
1031 path->locks[level] = 0;
1032 path->nodes[level] = NULL;
1033 clean_tree_block(trans, root, mid);
1034 btrfs_tree_unlock(mid);
1035 /* once for the path */
1036 free_extent_buffer(mid);
1037 ret = btrfs_free_tree_block(trans, root, mid->start, mid->len,
1038 0, root->root_key.objectid, level);
1039 /* once for the root ptr */
1040 free_extent_buffer(mid);
1041 return ret;
1042 }
1043 if (btrfs_header_nritems(mid) >
1044 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1045 return 0;
1046
1047 if (btrfs_header_nritems(mid) < 2)
1048 err_on_enospc = 1;
1049
1050 left = read_node_slot(root, parent, pslot - 1);
1051 if (left) {
1052 btrfs_tree_lock(left);
1053 btrfs_set_lock_blocking(left);
1054 wret = btrfs_cow_block(trans, root, left,
1055 parent, pslot - 1, &left);
1056 if (wret) {
1057 ret = wret;
1058 goto enospc;
1059 }
1060 }
1061 right = read_node_slot(root, parent, pslot + 1);
1062 if (right) {
1063 btrfs_tree_lock(right);
1064 btrfs_set_lock_blocking(right);
1065 wret = btrfs_cow_block(trans, root, right,
1066 parent, pslot + 1, &right);
1067 if (wret) {
1068 ret = wret;
1069 goto enospc;
1070 }
1071 }
1072
1073 /* first, try to make some room in the middle buffer */
1074 if (left) {
1075 orig_slot += btrfs_header_nritems(left);
1076 wret = push_node_left(trans, root, left, mid, 1);
1077 if (wret < 0)
1078 ret = wret;
1079 if (btrfs_header_nritems(mid) < 2)
1080 err_on_enospc = 1;
1081 }
1082
1083 /*
1084 * then try to empty the right most buffer into the middle
1085 */
1086 if (right) {
1087 wret = push_node_left(trans, root, mid, right, 1);
1088 if (wret < 0 && wret != -ENOSPC)
1089 ret = wret;
1090 if (btrfs_header_nritems(right) == 0) {
1091 u64 bytenr = right->start;
1092 u32 blocksize = right->len;
1093
1094 clean_tree_block(trans, root, right);
1095 btrfs_tree_unlock(right);
1096 free_extent_buffer(right);
1097 right = NULL;
1098 wret = del_ptr(trans, root, path, level + 1, pslot +
1099 1);
1100 if (wret)
1101 ret = wret;
1102 wret = btrfs_free_tree_block(trans, root,
1103 bytenr, blocksize, 0,
1104 root->root_key.objectid,
1105 level);
1106 if (wret)
1107 ret = wret;
1108 } else {
1109 struct btrfs_disk_key right_key;
1110 btrfs_node_key(right, &right_key, 0);
1111 btrfs_set_node_key(parent, &right_key, pslot + 1);
1112 btrfs_mark_buffer_dirty(parent);
1113 }
1114 }
1115 if (btrfs_header_nritems(mid) == 1) {
1116 /*
1117 * we're not allowed to leave a node with one item in the
1118 * tree during a delete. A deletion from lower in the tree
1119 * could try to delete the only pointer in this node.
1120 * So, pull some keys from the left.
1121 * There has to be a left pointer at this point because
1122 * otherwise we would have pulled some pointers from the
1123 * right
1124 */
1125 BUG_ON(!left);
1126 wret = balance_node_right(trans, root, mid, left);
1127 if (wret < 0) {
1128 ret = wret;
1129 goto enospc;
1130 }
1131 if (wret == 1) {
1132 wret = push_node_left(trans, root, left, mid, 1);
1133 if (wret < 0)
1134 ret = wret;
1135 }
1136 BUG_ON(wret == 1);
1137 }
1138 if (btrfs_header_nritems(mid) == 0) {
1139 /* we've managed to empty the middle node, drop it */
1140 u64 bytenr = mid->start;
1141 u32 blocksize = mid->len;
1142
1143 clean_tree_block(trans, root, mid);
1144 btrfs_tree_unlock(mid);
1145 free_extent_buffer(mid);
1146 mid = NULL;
1147 wret = del_ptr(trans, root, path, level + 1, pslot);
1148 if (wret)
1149 ret = wret;
1150 wret = btrfs_free_tree_block(trans, root, bytenr, blocksize,
1151 0, root->root_key.objectid, level);
1152 if (wret)
1153 ret = wret;
1154 } else {
1155 /* update the parent key to reflect our changes */
1156 struct btrfs_disk_key mid_key;
1157 btrfs_node_key(mid, &mid_key, 0);
1158 btrfs_set_node_key(parent, &mid_key, pslot);
1159 btrfs_mark_buffer_dirty(parent);
1160 }
1161
1162 /* update the path */
1163 if (left) {
1164 if (btrfs_header_nritems(left) > orig_slot) {
1165 extent_buffer_get(left);
1166 /* left was locked after cow */
1167 path->nodes[level] = left;
1168 path->slots[level + 1] -= 1;
1169 path->slots[level] = orig_slot;
1170 if (mid) {
1171 btrfs_tree_unlock(mid);
1172 free_extent_buffer(mid);
1173 }
1174 } else {
1175 orig_slot -= btrfs_header_nritems(left);
1176 path->slots[level] = orig_slot;
1177 }
1178 }
1179 /* double check we haven't messed things up */
1180 check_block(root, path, level);
1181 if (orig_ptr !=
1182 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1183 BUG();
1184 enospc:
1185 if (right) {
1186 btrfs_tree_unlock(right);
1187 free_extent_buffer(right);
1188 }
1189 if (left) {
1190 if (path->nodes[level] != left)
1191 btrfs_tree_unlock(left);
1192 free_extent_buffer(left);
1193 }
1194 return ret;
1195 }
1196
1197 /* Node balancing for insertion. Here we only split or push nodes around
1198 * when they are completely full. This is also done top down, so we
1199 * have to be pessimistic.
1200 */
1201 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1202 struct btrfs_root *root,
1203 struct btrfs_path *path, int level)
1204 {
1205 struct extent_buffer *right = NULL;
1206 struct extent_buffer *mid;
1207 struct extent_buffer *left = NULL;
1208 struct extent_buffer *parent = NULL;
1209 int ret = 0;
1210 int wret;
1211 int pslot;
1212 int orig_slot = path->slots[level];
1213 u64 orig_ptr;
1214
1215 if (level == 0)
1216 return 1;
1217
1218 mid = path->nodes[level];
1219 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1220 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1221
1222 if (level < BTRFS_MAX_LEVEL - 1)
1223 parent = path->nodes[level + 1];
1224 pslot = path->slots[level + 1];
1225
1226 if (!parent)
1227 return 1;
1228
1229 left = read_node_slot(root, parent, pslot - 1);
1230
1231 /* first, try to make some room in the middle buffer */
1232 if (left) {
1233 u32 left_nr;
1234
1235 btrfs_tree_lock(left);
1236 btrfs_set_lock_blocking(left);
1237
1238 left_nr = btrfs_header_nritems(left);
1239 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1240 wret = 1;
1241 } else {
1242 ret = btrfs_cow_block(trans, root, left, parent,
1243 pslot - 1, &left);
1244 if (ret)
1245 wret = 1;
1246 else {
1247 wret = push_node_left(trans, root,
1248 left, mid, 0);
1249 }
1250 }
1251 if (wret < 0)
1252 ret = wret;
1253 if (wret == 0) {
1254 struct btrfs_disk_key disk_key;
1255 orig_slot += left_nr;
1256 btrfs_node_key(mid, &disk_key, 0);
1257 btrfs_set_node_key(parent, &disk_key, pslot);
1258 btrfs_mark_buffer_dirty(parent);
1259 if (btrfs_header_nritems(left) > orig_slot) {
1260 path->nodes[level] = left;
1261 path->slots[level + 1] -= 1;
1262 path->slots[level] = orig_slot;
1263 btrfs_tree_unlock(mid);
1264 free_extent_buffer(mid);
1265 } else {
1266 orig_slot -=
1267 btrfs_header_nritems(left);
1268 path->slots[level] = orig_slot;
1269 btrfs_tree_unlock(left);
1270 free_extent_buffer(left);
1271 }
1272 return 0;
1273 }
1274 btrfs_tree_unlock(left);
1275 free_extent_buffer(left);
1276 }
1277 right = read_node_slot(root, parent, pslot + 1);
1278
1279 /*
1280 * then try to empty the right most buffer into the middle
1281 */
1282 if (right) {
1283 u32 right_nr;
1284
1285 btrfs_tree_lock(right);
1286 btrfs_set_lock_blocking(right);
1287
1288 right_nr = btrfs_header_nritems(right);
1289 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1290 wret = 1;
1291 } else {
1292 ret = btrfs_cow_block(trans, root, right,
1293 parent, pslot + 1,
1294 &right);
1295 if (ret)
1296 wret = 1;
1297 else {
1298 wret = balance_node_right(trans, root,
1299 right, mid);
1300 }
1301 }
1302 if (wret < 0)
1303 ret = wret;
1304 if (wret == 0) {
1305 struct btrfs_disk_key disk_key;
1306
1307 btrfs_node_key(right, &disk_key, 0);
1308 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1309 btrfs_mark_buffer_dirty(parent);
1310
1311 if (btrfs_header_nritems(mid) <= orig_slot) {
1312 path->nodes[level] = right;
1313 path->slots[level + 1] += 1;
1314 path->slots[level] = orig_slot -
1315 btrfs_header_nritems(mid);
1316 btrfs_tree_unlock(mid);
1317 free_extent_buffer(mid);
1318 } else {
1319 btrfs_tree_unlock(right);
1320 free_extent_buffer(right);
1321 }
1322 return 0;
1323 }
1324 btrfs_tree_unlock(right);
1325 free_extent_buffer(right);
1326 }
1327 return 1;
1328 }
1329
1330 /*
1331 * readahead one full node of leaves, finding things that are close
1332 * to the block in 'slot', and triggering ra on them.
1333 */
1334 static void reada_for_search(struct btrfs_root *root,
1335 struct btrfs_path *path,
1336 int level, int slot, u64 objectid)
1337 {
1338 struct extent_buffer *node;
1339 struct btrfs_disk_key disk_key;
1340 u32 nritems;
1341 u64 search;
1342 u64 target;
1343 u64 nread = 0;
1344 int direction = path->reada;
1345 struct extent_buffer *eb;
1346 u32 nr;
1347 u32 blocksize;
1348 u32 nscan = 0;
1349
1350 if (level != 1)
1351 return;
1352
1353 if (!path->nodes[level])
1354 return;
1355
1356 node = path->nodes[level];
1357
1358 search = btrfs_node_blockptr(node, slot);
1359 blocksize = btrfs_level_size(root, level - 1);
1360 eb = btrfs_find_tree_block(root, search, blocksize);
1361 if (eb) {
1362 free_extent_buffer(eb);
1363 return;
1364 }
1365
1366 target = search;
1367
1368 nritems = btrfs_header_nritems(node);
1369 nr = slot;
1370 while (1) {
1371 if (direction < 0) {
1372 if (nr == 0)
1373 break;
1374 nr--;
1375 } else if (direction > 0) {
1376 nr++;
1377 if (nr >= nritems)
1378 break;
1379 }
1380 if (path->reada < 0 && objectid) {
1381 btrfs_node_key(node, &disk_key, nr);
1382 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1383 break;
1384 }
1385 search = btrfs_node_blockptr(node, nr);
1386 if ((search <= target && target - search <= 65536) ||
1387 (search > target && search - target <= 65536)) {
1388 readahead_tree_block(root, search, blocksize,
1389 btrfs_node_ptr_generation(node, nr));
1390 nread += blocksize;
1391 }
1392 nscan++;
1393 if ((nread > 65536 || nscan > 32))
1394 break;
1395 }
1396 }
1397
1398 /*
1399 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1400 * cache
1401 */
1402 static noinline int reada_for_balance(struct btrfs_root *root,
1403 struct btrfs_path *path, int level)
1404 {
1405 int slot;
1406 int nritems;
1407 struct extent_buffer *parent;
1408 struct extent_buffer *eb;
1409 u64 gen;
1410 u64 block1 = 0;
1411 u64 block2 = 0;
1412 int ret = 0;
1413 int blocksize;
1414
1415 parent = path->nodes[level + 1];
1416 if (!parent)
1417 return 0;
1418
1419 nritems = btrfs_header_nritems(parent);
1420 slot = path->slots[level + 1];
1421 blocksize = btrfs_level_size(root, level);
1422
1423 if (slot > 0) {
1424 block1 = btrfs_node_blockptr(parent, slot - 1);
1425 gen = btrfs_node_ptr_generation(parent, slot - 1);
1426 eb = btrfs_find_tree_block(root, block1, blocksize);
1427 if (eb && btrfs_buffer_uptodate(eb, gen))
1428 block1 = 0;
1429 free_extent_buffer(eb);
1430 }
1431 if (slot + 1 < nritems) {
1432 block2 = btrfs_node_blockptr(parent, slot + 1);
1433 gen = btrfs_node_ptr_generation(parent, slot + 1);
1434 eb = btrfs_find_tree_block(root, block2, blocksize);
1435 if (eb && btrfs_buffer_uptodate(eb, gen))
1436 block2 = 0;
1437 free_extent_buffer(eb);
1438 }
1439 if (block1 || block2) {
1440 ret = -EAGAIN;
1441
1442 /* release the whole path */
1443 btrfs_release_path(root, path);
1444
1445 /* read the blocks */
1446 if (block1)
1447 readahead_tree_block(root, block1, blocksize, 0);
1448 if (block2)
1449 readahead_tree_block(root, block2, blocksize, 0);
1450
1451 if (block1) {
1452 eb = read_tree_block(root, block1, blocksize, 0);
1453 free_extent_buffer(eb);
1454 }
1455 if (block2) {
1456 eb = read_tree_block(root, block2, blocksize, 0);
1457 free_extent_buffer(eb);
1458 }
1459 }
1460 return ret;
1461 }
1462
1463
1464 /*
1465 * when we walk down the tree, it is usually safe to unlock the higher layers
1466 * in the tree. The exceptions are when our path goes through slot 0, because
1467 * operations on the tree might require changing key pointers higher up in the
1468 * tree.
1469 *
1470 * callers might also have set path->keep_locks, which tells this code to keep
1471 * the lock if the path points to the last slot in the block. This is part of
1472 * walking through the tree, and selecting the next slot in the higher block.
1473 *
1474 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1475 * if lowest_unlock is 1, level 0 won't be unlocked
1476 */
1477 static noinline void unlock_up(struct btrfs_path *path, int level,
1478 int lowest_unlock)
1479 {
1480 int i;
1481 int skip_level = level;
1482 int no_skips = 0;
1483 struct extent_buffer *t;
1484
1485 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1486 if (!path->nodes[i])
1487 break;
1488 if (!path->locks[i])
1489 break;
1490 if (!no_skips && path->slots[i] == 0) {
1491 skip_level = i + 1;
1492 continue;
1493 }
1494 if (!no_skips && path->keep_locks) {
1495 u32 nritems;
1496 t = path->nodes[i];
1497 nritems = btrfs_header_nritems(t);
1498 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1499 skip_level = i + 1;
1500 continue;
1501 }
1502 }
1503 if (skip_level < i && i >= lowest_unlock)
1504 no_skips = 1;
1505
1506 t = path->nodes[i];
1507 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1508 btrfs_tree_unlock(t);
1509 path->locks[i] = 0;
1510 }
1511 }
1512 }
1513
1514 /*
1515 * This releases any locks held in the path starting at level and
1516 * going all the way up to the root.
1517 *
1518 * btrfs_search_slot will keep the lock held on higher nodes in a few
1519 * corner cases, such as COW of the block at slot zero in the node. This
1520 * ignores those rules, and it should only be called when there are no
1521 * more updates to be done higher up in the tree.
1522 */
1523 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1524 {
1525 int i;
1526
1527 if (path->keep_locks)
1528 return;
1529
1530 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1531 if (!path->nodes[i])
1532 continue;
1533 if (!path->locks[i])
1534 continue;
1535 btrfs_tree_unlock(path->nodes[i]);
1536 path->locks[i] = 0;
1537 }
1538 }
1539
1540 /*
1541 * helper function for btrfs_search_slot. The goal is to find a block
1542 * in cache without setting the path to blocking. If we find the block
1543 * we return zero and the path is unchanged.
1544 *
1545 * If we can't find the block, we set the path blocking and do some
1546 * reada. -EAGAIN is returned and the search must be repeated.
1547 */
1548 static int
1549 read_block_for_search(struct btrfs_trans_handle *trans,
1550 struct btrfs_root *root, struct btrfs_path *p,
1551 struct extent_buffer **eb_ret, int level, int slot,
1552 struct btrfs_key *key)
1553 {
1554 u64 blocknr;
1555 u64 gen;
1556 u32 blocksize;
1557 struct extent_buffer *b = *eb_ret;
1558 struct extent_buffer *tmp;
1559 int ret;
1560
1561 blocknr = btrfs_node_blockptr(b, slot);
1562 gen = btrfs_node_ptr_generation(b, slot);
1563 blocksize = btrfs_level_size(root, level - 1);
1564
1565 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1566 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1567 /*
1568 * we found an up to date block without sleeping, return
1569 * right away
1570 */
1571 *eb_ret = tmp;
1572 return 0;
1573 }
1574
1575 /*
1576 * reduce lock contention at high levels
1577 * of the btree by dropping locks before
1578 * we read. Don't release the lock on the current
1579 * level because we need to walk this node to figure
1580 * out which blocks to read.
1581 */
1582 btrfs_unlock_up_safe(p, level + 1);
1583 btrfs_set_path_blocking(p);
1584
1585 if (tmp)
1586 free_extent_buffer(tmp);
1587 if (p->reada)
1588 reada_for_search(root, p, level, slot, key->objectid);
1589
1590 btrfs_release_path(NULL, p);
1591
1592 ret = -EAGAIN;
1593 tmp = read_tree_block(root, blocknr, blocksize, gen);
1594 if (tmp) {
1595 /*
1596 * If the read above didn't mark this buffer up to date,
1597 * it will never end up being up to date. Set ret to EIO now
1598 * and give up so that our caller doesn't loop forever
1599 * on our EAGAINs.
1600 */
1601 if (!btrfs_buffer_uptodate(tmp, 0))
1602 ret = -EIO;
1603 free_extent_buffer(tmp);
1604 }
1605 return ret;
1606 }
1607
1608 /*
1609 * helper function for btrfs_search_slot. This does all of the checks
1610 * for node-level blocks and does any balancing required based on
1611 * the ins_len.
1612 *
1613 * If no extra work was required, zero is returned. If we had to
1614 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1615 * start over
1616 */
1617 static int
1618 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1619 struct btrfs_root *root, struct btrfs_path *p,
1620 struct extent_buffer *b, int level, int ins_len)
1621 {
1622 int ret;
1623 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1624 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1625 int sret;
1626
1627 sret = reada_for_balance(root, p, level);
1628 if (sret)
1629 goto again;
1630
1631 btrfs_set_path_blocking(p);
1632 sret = split_node(trans, root, p, level);
1633 btrfs_clear_path_blocking(p, NULL);
1634
1635 BUG_ON(sret > 0);
1636 if (sret) {
1637 ret = sret;
1638 goto done;
1639 }
1640 b = p->nodes[level];
1641 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1642 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1643 int sret;
1644
1645 sret = reada_for_balance(root, p, level);
1646 if (sret)
1647 goto again;
1648
1649 btrfs_set_path_blocking(p);
1650 sret = balance_level(trans, root, p, level);
1651 btrfs_clear_path_blocking(p, NULL);
1652
1653 if (sret) {
1654 ret = sret;
1655 goto done;
1656 }
1657 b = p->nodes[level];
1658 if (!b) {
1659 btrfs_release_path(NULL, p);
1660 goto again;
1661 }
1662 BUG_ON(btrfs_header_nritems(b) == 1);
1663 }
1664 return 0;
1665
1666 again:
1667 ret = -EAGAIN;
1668 done:
1669 return ret;
1670 }
1671
1672 /*
1673 * look for key in the tree. path is filled in with nodes along the way
1674 * if key is found, we return zero and you can find the item in the leaf
1675 * level of the path (level 0)
1676 *
1677 * If the key isn't found, the path points to the slot where it should
1678 * be inserted, and 1 is returned. If there are other errors during the
1679 * search a negative error number is returned.
1680 *
1681 * if ins_len > 0, nodes and leaves will be split as we walk down the
1682 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1683 * possible)
1684 */
1685 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1686 *root, struct btrfs_key *key, struct btrfs_path *p, int
1687 ins_len, int cow)
1688 {
1689 struct extent_buffer *b;
1690 int slot;
1691 int ret;
1692 int err;
1693 int level;
1694 int lowest_unlock = 1;
1695 u8 lowest_level = 0;
1696
1697 lowest_level = p->lowest_level;
1698 WARN_ON(lowest_level && ins_len > 0);
1699 WARN_ON(p->nodes[0] != NULL);
1700
1701 if (ins_len < 0)
1702 lowest_unlock = 2;
1703
1704 again:
1705 if (p->search_commit_root) {
1706 b = root->commit_root;
1707 extent_buffer_get(b);
1708 if (!p->skip_locking)
1709 btrfs_tree_lock(b);
1710 } else {
1711 if (p->skip_locking)
1712 b = btrfs_root_node(root);
1713 else
1714 b = btrfs_lock_root_node(root);
1715 }
1716
1717 while (b) {
1718 level = btrfs_header_level(b);
1719
1720 /*
1721 * setup the path here so we can release it under lock
1722 * contention with the cow code
1723 */
1724 p->nodes[level] = b;
1725 if (!p->skip_locking)
1726 p->locks[level] = 1;
1727
1728 if (cow) {
1729 /*
1730 * if we don't really need to cow this block
1731 * then we don't want to set the path blocking,
1732 * so we test it here
1733 */
1734 if (!should_cow_block(trans, root, b))
1735 goto cow_done;
1736
1737 btrfs_set_path_blocking(p);
1738
1739 err = btrfs_cow_block(trans, root, b,
1740 p->nodes[level + 1],
1741 p->slots[level + 1], &b);
1742 if (err) {
1743 free_extent_buffer(b);
1744 ret = err;
1745 goto done;
1746 }
1747 }
1748 cow_done:
1749 BUG_ON(!cow && ins_len);
1750 if (level != btrfs_header_level(b))
1751 WARN_ON(1);
1752 level = btrfs_header_level(b);
1753
1754 p->nodes[level] = b;
1755 if (!p->skip_locking)
1756 p->locks[level] = 1;
1757
1758 btrfs_clear_path_blocking(p, NULL);
1759
1760 /*
1761 * we have a lock on b and as long as we aren't changing
1762 * the tree, there is no way to for the items in b to change.
1763 * It is safe to drop the lock on our parent before we
1764 * go through the expensive btree search on b.
1765 *
1766 * If cow is true, then we might be changing slot zero,
1767 * which may require changing the parent. So, we can't
1768 * drop the lock until after we know which slot we're
1769 * operating on.
1770 */
1771 if (!cow)
1772 btrfs_unlock_up_safe(p, level + 1);
1773
1774 ret = check_block(root, p, level);
1775 if (ret) {
1776 ret = -1;
1777 goto done;
1778 }
1779
1780 ret = bin_search(b, key, level, &slot);
1781
1782 if (level != 0) {
1783 int dec = 0;
1784 if (ret && slot > 0) {
1785 dec = 1;
1786 slot -= 1;
1787 }
1788 p->slots[level] = slot;
1789 err = setup_nodes_for_search(trans, root, p, b, level,
1790 ins_len);
1791 if (err == -EAGAIN)
1792 goto again;
1793 if (err) {
1794 ret = err;
1795 goto done;
1796 }
1797 b = p->nodes[level];
1798 slot = p->slots[level];
1799
1800 unlock_up(p, level, lowest_unlock);
1801
1802 if (level == lowest_level) {
1803 if (dec)
1804 p->slots[level]++;
1805 goto done;
1806 }
1807
1808 err = read_block_for_search(trans, root, p,
1809 &b, level, slot, key);
1810 if (err == -EAGAIN)
1811 goto again;
1812 if (err) {
1813 ret = err;
1814 goto done;
1815 }
1816
1817 if (!p->skip_locking) {
1818 btrfs_clear_path_blocking(p, NULL);
1819 err = btrfs_try_spin_lock(b);
1820
1821 if (!err) {
1822 btrfs_set_path_blocking(p);
1823 btrfs_tree_lock(b);
1824 btrfs_clear_path_blocking(p, b);
1825 }
1826 }
1827 } else {
1828 p->slots[level] = slot;
1829 if (ins_len > 0 &&
1830 btrfs_leaf_free_space(root, b) < ins_len) {
1831 btrfs_set_path_blocking(p);
1832 err = split_leaf(trans, root, key,
1833 p, ins_len, ret == 0);
1834 btrfs_clear_path_blocking(p, NULL);
1835
1836 BUG_ON(err > 0);
1837 if (err) {
1838 ret = err;
1839 goto done;
1840 }
1841 }
1842 if (!p->search_for_split)
1843 unlock_up(p, level, lowest_unlock);
1844 goto done;
1845 }
1846 }
1847 ret = 1;
1848 done:
1849 /*
1850 * we don't really know what they plan on doing with the path
1851 * from here on, so for now just mark it as blocking
1852 */
1853 if (!p->leave_spinning)
1854 btrfs_set_path_blocking(p);
1855 if (ret < 0)
1856 btrfs_release_path(root, p);
1857 return ret;
1858 }
1859
1860 /*
1861 * adjust the pointers going up the tree, starting at level
1862 * making sure the right key of each node is points to 'key'.
1863 * This is used after shifting pointers to the left, so it stops
1864 * fixing up pointers when a given leaf/node is not in slot 0 of the
1865 * higher levels
1866 *
1867 * If this fails to write a tree block, it returns -1, but continues
1868 * fixing up the blocks in ram so the tree is consistent.
1869 */
1870 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root, struct btrfs_path *path,
1872 struct btrfs_disk_key *key, int level)
1873 {
1874 int i;
1875 int ret = 0;
1876 struct extent_buffer *t;
1877
1878 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1879 int tslot = path->slots[i];
1880 if (!path->nodes[i])
1881 break;
1882 t = path->nodes[i];
1883 btrfs_set_node_key(t, key, tslot);
1884 btrfs_mark_buffer_dirty(path->nodes[i]);
1885 if (tslot != 0)
1886 break;
1887 }
1888 return ret;
1889 }
1890
1891 /*
1892 * update item key.
1893 *
1894 * This function isn't completely safe. It's the caller's responsibility
1895 * that the new key won't break the order
1896 */
1897 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root, struct btrfs_path *path,
1899 struct btrfs_key *new_key)
1900 {
1901 struct btrfs_disk_key disk_key;
1902 struct extent_buffer *eb;
1903 int slot;
1904
1905 eb = path->nodes[0];
1906 slot = path->slots[0];
1907 if (slot > 0) {
1908 btrfs_item_key(eb, &disk_key, slot - 1);
1909 if (comp_keys(&disk_key, new_key) >= 0)
1910 return -1;
1911 }
1912 if (slot < btrfs_header_nritems(eb) - 1) {
1913 btrfs_item_key(eb, &disk_key, slot + 1);
1914 if (comp_keys(&disk_key, new_key) <= 0)
1915 return -1;
1916 }
1917
1918 btrfs_cpu_key_to_disk(&disk_key, new_key);
1919 btrfs_set_item_key(eb, &disk_key, slot);
1920 btrfs_mark_buffer_dirty(eb);
1921 if (slot == 0)
1922 fixup_low_keys(trans, root, path, &disk_key, 1);
1923 return 0;
1924 }
1925
1926 /*
1927 * try to push data from one node into the next node left in the
1928 * tree.
1929 *
1930 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931 * error, and > 0 if there was no room in the left hand block.
1932 */
1933 static int push_node_left(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root, struct extent_buffer *dst,
1935 struct extent_buffer *src, int empty)
1936 {
1937 int push_items = 0;
1938 int src_nritems;
1939 int dst_nritems;
1940 int ret = 0;
1941
1942 src_nritems = btrfs_header_nritems(src);
1943 dst_nritems = btrfs_header_nritems(dst);
1944 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1945 WARN_ON(btrfs_header_generation(src) != trans->transid);
1946 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1947
1948 if (!empty && src_nritems <= 8)
1949 return 1;
1950
1951 if (push_items <= 0)
1952 return 1;
1953
1954 if (empty) {
1955 push_items = min(src_nritems, push_items);
1956 if (push_items < src_nritems) {
1957 /* leave at least 8 pointers in the node if
1958 * we aren't going to empty it
1959 */
1960 if (src_nritems - push_items < 8) {
1961 if (push_items <= 8)
1962 return 1;
1963 push_items -= 8;
1964 }
1965 }
1966 } else
1967 push_items = min(src_nritems - 8, push_items);
1968
1969 copy_extent_buffer(dst, src,
1970 btrfs_node_key_ptr_offset(dst_nritems),
1971 btrfs_node_key_ptr_offset(0),
1972 push_items * sizeof(struct btrfs_key_ptr));
1973
1974 if (push_items < src_nritems) {
1975 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1976 btrfs_node_key_ptr_offset(push_items),
1977 (src_nritems - push_items) *
1978 sizeof(struct btrfs_key_ptr));
1979 }
1980 btrfs_set_header_nritems(src, src_nritems - push_items);
1981 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1982 btrfs_mark_buffer_dirty(src);
1983 btrfs_mark_buffer_dirty(dst);
1984
1985 return ret;
1986 }
1987
1988 /*
1989 * try to push data from one node into the next node right in the
1990 * tree.
1991 *
1992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993 * error, and > 0 if there was no room in the right hand block.
1994 *
1995 * this will only push up to 1/2 the contents of the left node over
1996 */
1997 static int balance_node_right(struct btrfs_trans_handle *trans,
1998 struct btrfs_root *root,
1999 struct extent_buffer *dst,
2000 struct extent_buffer *src)
2001 {
2002 int push_items = 0;
2003 int max_push;
2004 int src_nritems;
2005 int dst_nritems;
2006 int ret = 0;
2007
2008 WARN_ON(btrfs_header_generation(src) != trans->transid);
2009 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2010
2011 src_nritems = btrfs_header_nritems(src);
2012 dst_nritems = btrfs_header_nritems(dst);
2013 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2014 if (push_items <= 0)
2015 return 1;
2016
2017 if (src_nritems < 4)
2018 return 1;
2019
2020 max_push = src_nritems / 2 + 1;
2021 /* don't try to empty the node */
2022 if (max_push >= src_nritems)
2023 return 1;
2024
2025 if (max_push < push_items)
2026 push_items = max_push;
2027
2028 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2029 btrfs_node_key_ptr_offset(0),
2030 (dst_nritems) *
2031 sizeof(struct btrfs_key_ptr));
2032
2033 copy_extent_buffer(dst, src,
2034 btrfs_node_key_ptr_offset(0),
2035 btrfs_node_key_ptr_offset(src_nritems - push_items),
2036 push_items * sizeof(struct btrfs_key_ptr));
2037
2038 btrfs_set_header_nritems(src, src_nritems - push_items);
2039 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2040
2041 btrfs_mark_buffer_dirty(src);
2042 btrfs_mark_buffer_dirty(dst);
2043
2044 return ret;
2045 }
2046
2047 /*
2048 * helper function to insert a new root level in the tree.
2049 * A new node is allocated, and a single item is inserted to
2050 * point to the existing root
2051 *
2052 * returns zero on success or < 0 on failure.
2053 */
2054 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2055 struct btrfs_root *root,
2056 struct btrfs_path *path, int level)
2057 {
2058 u64 lower_gen;
2059 struct extent_buffer *lower;
2060 struct extent_buffer *c;
2061 struct extent_buffer *old;
2062 struct btrfs_disk_key lower_key;
2063
2064 BUG_ON(path->nodes[level]);
2065 BUG_ON(path->nodes[level-1] != root->node);
2066
2067 lower = path->nodes[level-1];
2068 if (level == 1)
2069 btrfs_item_key(lower, &lower_key, 0);
2070 else
2071 btrfs_node_key(lower, &lower_key, 0);
2072
2073 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2074 root->root_key.objectid, &lower_key,
2075 level, root->node->start, 0);
2076 if (IS_ERR(c))
2077 return PTR_ERR(c);
2078
2079 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2080 btrfs_set_header_nritems(c, 1);
2081 btrfs_set_header_level(c, level);
2082 btrfs_set_header_bytenr(c, c->start);
2083 btrfs_set_header_generation(c, trans->transid);
2084 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2085 btrfs_set_header_owner(c, root->root_key.objectid);
2086
2087 write_extent_buffer(c, root->fs_info->fsid,
2088 (unsigned long)btrfs_header_fsid(c),
2089 BTRFS_FSID_SIZE);
2090
2091 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2092 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2093 BTRFS_UUID_SIZE);
2094
2095 btrfs_set_node_key(c, &lower_key, 0);
2096 btrfs_set_node_blockptr(c, 0, lower->start);
2097 lower_gen = btrfs_header_generation(lower);
2098 WARN_ON(lower_gen != trans->transid);
2099
2100 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2101
2102 btrfs_mark_buffer_dirty(c);
2103
2104 spin_lock(&root->node_lock);
2105 old = root->node;
2106 root->node = c;
2107 spin_unlock(&root->node_lock);
2108
2109 /* the super has an extra ref to root->node */
2110 free_extent_buffer(old);
2111
2112 add_root_to_dirty_list(root);
2113 extent_buffer_get(c);
2114 path->nodes[level] = c;
2115 path->locks[level] = 1;
2116 path->slots[level] = 0;
2117 return 0;
2118 }
2119
2120 /*
2121 * worker function to insert a single pointer in a node.
2122 * the node should have enough room for the pointer already
2123 *
2124 * slot and level indicate where you want the key to go, and
2125 * blocknr is the block the key points to.
2126 *
2127 * returns zero on success and < 0 on any error
2128 */
2129 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2130 *root, struct btrfs_path *path, struct btrfs_disk_key
2131 *key, u64 bytenr, int slot, int level)
2132 {
2133 struct extent_buffer *lower;
2134 int nritems;
2135
2136 BUG_ON(!path->nodes[level]);
2137 lower = path->nodes[level];
2138 nritems = btrfs_header_nritems(lower);
2139 BUG_ON(slot > nritems);
2140 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2141 BUG();
2142 if (slot != nritems) {
2143 memmove_extent_buffer(lower,
2144 btrfs_node_key_ptr_offset(slot + 1),
2145 btrfs_node_key_ptr_offset(slot),
2146 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2147 }
2148 btrfs_set_node_key(lower, key, slot);
2149 btrfs_set_node_blockptr(lower, slot, bytenr);
2150 WARN_ON(trans->transid == 0);
2151 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2152 btrfs_set_header_nritems(lower, nritems + 1);
2153 btrfs_mark_buffer_dirty(lower);
2154 return 0;
2155 }
2156
2157 /*
2158 * split the node at the specified level in path in two.
2159 * The path is corrected to point to the appropriate node after the split
2160 *
2161 * Before splitting this tries to make some room in the node by pushing
2162 * left and right, if either one works, it returns right away.
2163 *
2164 * returns 0 on success and < 0 on failure
2165 */
2166 static noinline int split_node(struct btrfs_trans_handle *trans,
2167 struct btrfs_root *root,
2168 struct btrfs_path *path, int level)
2169 {
2170 struct extent_buffer *c;
2171 struct extent_buffer *split;
2172 struct btrfs_disk_key disk_key;
2173 int mid;
2174 int ret;
2175 int wret;
2176 u32 c_nritems;
2177
2178 c = path->nodes[level];
2179 WARN_ON(btrfs_header_generation(c) != trans->transid);
2180 if (c == root->node) {
2181 /* trying to split the root, lets make a new one */
2182 ret = insert_new_root(trans, root, path, level + 1);
2183 if (ret)
2184 return ret;
2185 } else {
2186 ret = push_nodes_for_insert(trans, root, path, level);
2187 c = path->nodes[level];
2188 if (!ret && btrfs_header_nritems(c) <
2189 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2190 return 0;
2191 if (ret < 0)
2192 return ret;
2193 }
2194
2195 c_nritems = btrfs_header_nritems(c);
2196 mid = (c_nritems + 1) / 2;
2197 btrfs_node_key(c, &disk_key, mid);
2198
2199 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2200 root->root_key.objectid,
2201 &disk_key, level, c->start, 0);
2202 if (IS_ERR(split))
2203 return PTR_ERR(split);
2204
2205 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2206 btrfs_set_header_level(split, btrfs_header_level(c));
2207 btrfs_set_header_bytenr(split, split->start);
2208 btrfs_set_header_generation(split, trans->transid);
2209 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2210 btrfs_set_header_owner(split, root->root_key.objectid);
2211 write_extent_buffer(split, root->fs_info->fsid,
2212 (unsigned long)btrfs_header_fsid(split),
2213 BTRFS_FSID_SIZE);
2214 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2215 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2216 BTRFS_UUID_SIZE);
2217
2218
2219 copy_extent_buffer(split, c,
2220 btrfs_node_key_ptr_offset(0),
2221 btrfs_node_key_ptr_offset(mid),
2222 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2223 btrfs_set_header_nritems(split, c_nritems - mid);
2224 btrfs_set_header_nritems(c, mid);
2225 ret = 0;
2226
2227 btrfs_mark_buffer_dirty(c);
2228 btrfs_mark_buffer_dirty(split);
2229
2230 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2231 path->slots[level + 1] + 1,
2232 level + 1);
2233 if (wret)
2234 ret = wret;
2235
2236 if (path->slots[level] >= mid) {
2237 path->slots[level] -= mid;
2238 btrfs_tree_unlock(c);
2239 free_extent_buffer(c);
2240 path->nodes[level] = split;
2241 path->slots[level + 1] += 1;
2242 } else {
2243 btrfs_tree_unlock(split);
2244 free_extent_buffer(split);
2245 }
2246 return ret;
2247 }
2248
2249 /*
2250 * how many bytes are required to store the items in a leaf. start
2251 * and nr indicate which items in the leaf to check. This totals up the
2252 * space used both by the item structs and the item data
2253 */
2254 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2255 {
2256 int data_len;
2257 int nritems = btrfs_header_nritems(l);
2258 int end = min(nritems, start + nr) - 1;
2259
2260 if (!nr)
2261 return 0;
2262 data_len = btrfs_item_end_nr(l, start);
2263 data_len = data_len - btrfs_item_offset_nr(l, end);
2264 data_len += sizeof(struct btrfs_item) * nr;
2265 WARN_ON(data_len < 0);
2266 return data_len;
2267 }
2268
2269 /*
2270 * The space between the end of the leaf items and
2271 * the start of the leaf data. IOW, how much room
2272 * the leaf has left for both items and data
2273 */
2274 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2275 struct extent_buffer *leaf)
2276 {
2277 int nritems = btrfs_header_nritems(leaf);
2278 int ret;
2279 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2280 if (ret < 0) {
2281 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2282 "used %d nritems %d\n",
2283 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2284 leaf_space_used(leaf, 0, nritems), nritems);
2285 }
2286 return ret;
2287 }
2288
2289 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2290 struct btrfs_root *root,
2291 struct btrfs_path *path,
2292 int data_size, int empty,
2293 struct extent_buffer *right,
2294 int free_space, u32 left_nritems)
2295 {
2296 struct extent_buffer *left = path->nodes[0];
2297 struct extent_buffer *upper = path->nodes[1];
2298 struct btrfs_disk_key disk_key;
2299 int slot;
2300 u32 i;
2301 int push_space = 0;
2302 int push_items = 0;
2303 struct btrfs_item *item;
2304 u32 nr;
2305 u32 right_nritems;
2306 u32 data_end;
2307 u32 this_item_size;
2308
2309 if (empty)
2310 nr = 0;
2311 else
2312 nr = 1;
2313
2314 if (path->slots[0] >= left_nritems)
2315 push_space += data_size;
2316
2317 slot = path->slots[1];
2318 i = left_nritems - 1;
2319 while (i >= nr) {
2320 item = btrfs_item_nr(left, i);
2321
2322 if (!empty && push_items > 0) {
2323 if (path->slots[0] > i)
2324 break;
2325 if (path->slots[0] == i) {
2326 int space = btrfs_leaf_free_space(root, left);
2327 if (space + push_space * 2 > free_space)
2328 break;
2329 }
2330 }
2331
2332 if (path->slots[0] == i)
2333 push_space += data_size;
2334
2335 if (!left->map_token) {
2336 map_extent_buffer(left, (unsigned long)item,
2337 sizeof(struct btrfs_item),
2338 &left->map_token, &left->kaddr,
2339 &left->map_start, &left->map_len,
2340 KM_USER1);
2341 }
2342
2343 this_item_size = btrfs_item_size(left, item);
2344 if (this_item_size + sizeof(*item) + push_space > free_space)
2345 break;
2346
2347 push_items++;
2348 push_space += this_item_size + sizeof(*item);
2349 if (i == 0)
2350 break;
2351 i--;
2352 }
2353 if (left->map_token) {
2354 unmap_extent_buffer(left, left->map_token, KM_USER1);
2355 left->map_token = NULL;
2356 }
2357
2358 if (push_items == 0)
2359 goto out_unlock;
2360
2361 if (!empty && push_items == left_nritems)
2362 WARN_ON(1);
2363
2364 /* push left to right */
2365 right_nritems = btrfs_header_nritems(right);
2366
2367 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2368 push_space -= leaf_data_end(root, left);
2369
2370 /* make room in the right data area */
2371 data_end = leaf_data_end(root, right);
2372 memmove_extent_buffer(right,
2373 btrfs_leaf_data(right) + data_end - push_space,
2374 btrfs_leaf_data(right) + data_end,
2375 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2376
2377 /* copy from the left data area */
2378 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2379 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2380 btrfs_leaf_data(left) + leaf_data_end(root, left),
2381 push_space);
2382
2383 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2384 btrfs_item_nr_offset(0),
2385 right_nritems * sizeof(struct btrfs_item));
2386
2387 /* copy the items from left to right */
2388 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2389 btrfs_item_nr_offset(left_nritems - push_items),
2390 push_items * sizeof(struct btrfs_item));
2391
2392 /* update the item pointers */
2393 right_nritems += push_items;
2394 btrfs_set_header_nritems(right, right_nritems);
2395 push_space = BTRFS_LEAF_DATA_SIZE(root);
2396 for (i = 0; i < right_nritems; i++) {
2397 item = btrfs_item_nr(right, i);
2398 if (!right->map_token) {
2399 map_extent_buffer(right, (unsigned long)item,
2400 sizeof(struct btrfs_item),
2401 &right->map_token, &right->kaddr,
2402 &right->map_start, &right->map_len,
2403 KM_USER1);
2404 }
2405 push_space -= btrfs_item_size(right, item);
2406 btrfs_set_item_offset(right, item, push_space);
2407 }
2408
2409 if (right->map_token) {
2410 unmap_extent_buffer(right, right->map_token, KM_USER1);
2411 right->map_token = NULL;
2412 }
2413 left_nritems -= push_items;
2414 btrfs_set_header_nritems(left, left_nritems);
2415
2416 if (left_nritems)
2417 btrfs_mark_buffer_dirty(left);
2418 btrfs_mark_buffer_dirty(right);
2419
2420 btrfs_item_key(right, &disk_key, 0);
2421 btrfs_set_node_key(upper, &disk_key, slot + 1);
2422 btrfs_mark_buffer_dirty(upper);
2423
2424 /* then fixup the leaf pointer in the path */
2425 if (path->slots[0] >= left_nritems) {
2426 path->slots[0] -= left_nritems;
2427 if (btrfs_header_nritems(path->nodes[0]) == 0)
2428 clean_tree_block(trans, root, path->nodes[0]);
2429 btrfs_tree_unlock(path->nodes[0]);
2430 free_extent_buffer(path->nodes[0]);
2431 path->nodes[0] = right;
2432 path->slots[1] += 1;
2433 } else {
2434 btrfs_tree_unlock(right);
2435 free_extent_buffer(right);
2436 }
2437 return 0;
2438
2439 out_unlock:
2440 btrfs_tree_unlock(right);
2441 free_extent_buffer(right);
2442 return 1;
2443 }
2444
2445 /*
2446 * push some data in the path leaf to the right, trying to free up at
2447 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2448 *
2449 * returns 1 if the push failed because the other node didn't have enough
2450 * room, 0 if everything worked out and < 0 if there were major errors.
2451 */
2452 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2453 *root, struct btrfs_path *path, int data_size,
2454 int empty)
2455 {
2456 struct extent_buffer *left = path->nodes[0];
2457 struct extent_buffer *right;
2458 struct extent_buffer *upper;
2459 int slot;
2460 int free_space;
2461 u32 left_nritems;
2462 int ret;
2463
2464 if (!path->nodes[1])
2465 return 1;
2466
2467 slot = path->slots[1];
2468 upper = path->nodes[1];
2469 if (slot >= btrfs_header_nritems(upper) - 1)
2470 return 1;
2471
2472 btrfs_assert_tree_locked(path->nodes[1]);
2473
2474 right = read_node_slot(root, upper, slot + 1);
2475 btrfs_tree_lock(right);
2476 btrfs_set_lock_blocking(right);
2477
2478 free_space = btrfs_leaf_free_space(root, right);
2479 if (free_space < data_size)
2480 goto out_unlock;
2481
2482 /* cow and double check */
2483 ret = btrfs_cow_block(trans, root, right, upper,
2484 slot + 1, &right);
2485 if (ret)
2486 goto out_unlock;
2487
2488 free_space = btrfs_leaf_free_space(root, right);
2489 if (free_space < data_size)
2490 goto out_unlock;
2491
2492 left_nritems = btrfs_header_nritems(left);
2493 if (left_nritems == 0)
2494 goto out_unlock;
2495
2496 return __push_leaf_right(trans, root, path, data_size, empty,
2497 right, free_space, left_nritems);
2498 out_unlock:
2499 btrfs_tree_unlock(right);
2500 free_extent_buffer(right);
2501 return 1;
2502 }
2503
2504 /*
2505 * push some data in the path leaf to the left, trying to free up at
2506 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2507 */
2508 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2509 struct btrfs_root *root,
2510 struct btrfs_path *path, int data_size,
2511 int empty, struct extent_buffer *left,
2512 int free_space, int right_nritems)
2513 {
2514 struct btrfs_disk_key disk_key;
2515 struct extent_buffer *right = path->nodes[0];
2516 int slot;
2517 int i;
2518 int push_space = 0;
2519 int push_items = 0;
2520 struct btrfs_item *item;
2521 u32 old_left_nritems;
2522 u32 nr;
2523 int ret = 0;
2524 int wret;
2525 u32 this_item_size;
2526 u32 old_left_item_size;
2527
2528 slot = path->slots[1];
2529
2530 if (empty)
2531 nr = right_nritems;
2532 else
2533 nr = right_nritems - 1;
2534
2535 for (i = 0; i < nr; i++) {
2536 item = btrfs_item_nr(right, i);
2537 if (!right->map_token) {
2538 map_extent_buffer(right, (unsigned long)item,
2539 sizeof(struct btrfs_item),
2540 &right->map_token, &right->kaddr,
2541 &right->map_start, &right->map_len,
2542 KM_USER1);
2543 }
2544
2545 if (!empty && push_items > 0) {
2546 if (path->slots[0] < i)
2547 break;
2548 if (path->slots[0] == i) {
2549 int space = btrfs_leaf_free_space(root, right);
2550 if (space + push_space * 2 > free_space)
2551 break;
2552 }
2553 }
2554
2555 if (path->slots[0] == i)
2556 push_space += data_size;
2557
2558 this_item_size = btrfs_item_size(right, item);
2559 if (this_item_size + sizeof(*item) + push_space > free_space)
2560 break;
2561
2562 push_items++;
2563 push_space += this_item_size + sizeof(*item);
2564 }
2565
2566 if (right->map_token) {
2567 unmap_extent_buffer(right, right->map_token, KM_USER1);
2568 right->map_token = NULL;
2569 }
2570
2571 if (push_items == 0) {
2572 ret = 1;
2573 goto out;
2574 }
2575 if (!empty && push_items == btrfs_header_nritems(right))
2576 WARN_ON(1);
2577
2578 /* push data from right to left */
2579 copy_extent_buffer(left, right,
2580 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2581 btrfs_item_nr_offset(0),
2582 push_items * sizeof(struct btrfs_item));
2583
2584 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2585 btrfs_item_offset_nr(right, push_items - 1);
2586
2587 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2588 leaf_data_end(root, left) - push_space,
2589 btrfs_leaf_data(right) +
2590 btrfs_item_offset_nr(right, push_items - 1),
2591 push_space);
2592 old_left_nritems = btrfs_header_nritems(left);
2593 BUG_ON(old_left_nritems <= 0);
2594
2595 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2596 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2597 u32 ioff;
2598
2599 item = btrfs_item_nr(left, i);
2600 if (!left->map_token) {
2601 map_extent_buffer(left, (unsigned long)item,
2602 sizeof(struct btrfs_item),
2603 &left->map_token, &left->kaddr,
2604 &left->map_start, &left->map_len,
2605 KM_USER1);
2606 }
2607
2608 ioff = btrfs_item_offset(left, item);
2609 btrfs_set_item_offset(left, item,
2610 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2611 }
2612 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2613 if (left->map_token) {
2614 unmap_extent_buffer(left, left->map_token, KM_USER1);
2615 left->map_token = NULL;
2616 }
2617
2618 /* fixup right node */
2619 if (push_items > right_nritems) {
2620 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2621 right_nritems);
2622 WARN_ON(1);
2623 }
2624
2625 if (push_items < right_nritems) {
2626 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2627 leaf_data_end(root, right);
2628 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2629 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2630 btrfs_leaf_data(right) +
2631 leaf_data_end(root, right), push_space);
2632
2633 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2634 btrfs_item_nr_offset(push_items),
2635 (btrfs_header_nritems(right) - push_items) *
2636 sizeof(struct btrfs_item));
2637 }
2638 right_nritems -= push_items;
2639 btrfs_set_header_nritems(right, right_nritems);
2640 push_space = BTRFS_LEAF_DATA_SIZE(root);
2641 for (i = 0; i < right_nritems; i++) {
2642 item = btrfs_item_nr(right, i);
2643
2644 if (!right->map_token) {
2645 map_extent_buffer(right, (unsigned long)item,
2646 sizeof(struct btrfs_item),
2647 &right->map_token, &right->kaddr,
2648 &right->map_start, &right->map_len,
2649 KM_USER1);
2650 }
2651
2652 push_space = push_space - btrfs_item_size(right, item);
2653 btrfs_set_item_offset(right, item, push_space);
2654 }
2655 if (right->map_token) {
2656 unmap_extent_buffer(right, right->map_token, KM_USER1);
2657 right->map_token = NULL;
2658 }
2659
2660 btrfs_mark_buffer_dirty(left);
2661 if (right_nritems)
2662 btrfs_mark_buffer_dirty(right);
2663
2664 btrfs_item_key(right, &disk_key, 0);
2665 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2666 if (wret)
2667 ret = wret;
2668
2669 /* then fixup the leaf pointer in the path */
2670 if (path->slots[0] < push_items) {
2671 path->slots[0] += old_left_nritems;
2672 if (btrfs_header_nritems(path->nodes[0]) == 0)
2673 clean_tree_block(trans, root, path->nodes[0]);
2674 btrfs_tree_unlock(path->nodes[0]);
2675 free_extent_buffer(path->nodes[0]);
2676 path->nodes[0] = left;
2677 path->slots[1] -= 1;
2678 } else {
2679 btrfs_tree_unlock(left);
2680 free_extent_buffer(left);
2681 path->slots[0] -= push_items;
2682 }
2683 BUG_ON(path->slots[0] < 0);
2684 return ret;
2685 out:
2686 btrfs_tree_unlock(left);
2687 free_extent_buffer(left);
2688 return ret;
2689 }
2690
2691 /*
2692 * push some data in the path leaf to the left, trying to free up at
2693 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2694 */
2695 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2696 *root, struct btrfs_path *path, int data_size,
2697 int empty)
2698 {
2699 struct extent_buffer *right = path->nodes[0];
2700 struct extent_buffer *left;
2701 int slot;
2702 int free_space;
2703 u32 right_nritems;
2704 int ret = 0;
2705
2706 slot = path->slots[1];
2707 if (slot == 0)
2708 return 1;
2709 if (!path->nodes[1])
2710 return 1;
2711
2712 right_nritems = btrfs_header_nritems(right);
2713 if (right_nritems == 0)
2714 return 1;
2715
2716 btrfs_assert_tree_locked(path->nodes[1]);
2717
2718 left = read_node_slot(root, path->nodes[1], slot - 1);
2719 btrfs_tree_lock(left);
2720 btrfs_set_lock_blocking(left);
2721
2722 free_space = btrfs_leaf_free_space(root, left);
2723 if (free_space < data_size) {
2724 ret = 1;
2725 goto out;
2726 }
2727
2728 /* cow and double check */
2729 ret = btrfs_cow_block(trans, root, left,
2730 path->nodes[1], slot - 1, &left);
2731 if (ret) {
2732 /* we hit -ENOSPC, but it isn't fatal here */
2733 ret = 1;
2734 goto out;
2735 }
2736
2737 free_space = btrfs_leaf_free_space(root, left);
2738 if (free_space < data_size) {
2739 ret = 1;
2740 goto out;
2741 }
2742
2743 return __push_leaf_left(trans, root, path, data_size,
2744 empty, left, free_space, right_nritems);
2745 out:
2746 btrfs_tree_unlock(left);
2747 free_extent_buffer(left);
2748 return ret;
2749 }
2750
2751 /*
2752 * split the path's leaf in two, making sure there is at least data_size
2753 * available for the resulting leaf level of the path.
2754 *
2755 * returns 0 if all went well and < 0 on failure.
2756 */
2757 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2758 struct btrfs_root *root,
2759 struct btrfs_path *path,
2760 struct extent_buffer *l,
2761 struct extent_buffer *right,
2762 int slot, int mid, int nritems)
2763 {
2764 int data_copy_size;
2765 int rt_data_off;
2766 int i;
2767 int ret = 0;
2768 int wret;
2769 struct btrfs_disk_key disk_key;
2770
2771 nritems = nritems - mid;
2772 btrfs_set_header_nritems(right, nritems);
2773 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2774
2775 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2776 btrfs_item_nr_offset(mid),
2777 nritems * sizeof(struct btrfs_item));
2778
2779 copy_extent_buffer(right, l,
2780 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2781 data_copy_size, btrfs_leaf_data(l) +
2782 leaf_data_end(root, l), data_copy_size);
2783
2784 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2785 btrfs_item_end_nr(l, mid);
2786
2787 for (i = 0; i < nritems; i++) {
2788 struct btrfs_item *item = btrfs_item_nr(right, i);
2789 u32 ioff;
2790
2791 if (!right->map_token) {
2792 map_extent_buffer(right, (unsigned long)item,
2793 sizeof(struct btrfs_item),
2794 &right->map_token, &right->kaddr,
2795 &right->map_start, &right->map_len,
2796 KM_USER1);
2797 }
2798
2799 ioff = btrfs_item_offset(right, item);
2800 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2801 }
2802
2803 if (right->map_token) {
2804 unmap_extent_buffer(right, right->map_token, KM_USER1);
2805 right->map_token = NULL;
2806 }
2807
2808 btrfs_set_header_nritems(l, mid);
2809 ret = 0;
2810 btrfs_item_key(right, &disk_key, 0);
2811 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2812 path->slots[1] + 1, 1);
2813 if (wret)
2814 ret = wret;
2815
2816 btrfs_mark_buffer_dirty(right);
2817 btrfs_mark_buffer_dirty(l);
2818 BUG_ON(path->slots[0] != slot);
2819
2820 if (mid <= slot) {
2821 btrfs_tree_unlock(path->nodes[0]);
2822 free_extent_buffer(path->nodes[0]);
2823 path->nodes[0] = right;
2824 path->slots[0] -= mid;
2825 path->slots[1] += 1;
2826 } else {
2827 btrfs_tree_unlock(right);
2828 free_extent_buffer(right);
2829 }
2830
2831 BUG_ON(path->slots[0] < 0);
2832
2833 return ret;
2834 }
2835
2836 /*
2837 * split the path's leaf in two, making sure there is at least data_size
2838 * available for the resulting leaf level of the path.
2839 *
2840 * returns 0 if all went well and < 0 on failure.
2841 */
2842 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2843 struct btrfs_root *root,
2844 struct btrfs_key *ins_key,
2845 struct btrfs_path *path, int data_size,
2846 int extend)
2847 {
2848 struct btrfs_disk_key disk_key;
2849 struct extent_buffer *l;
2850 u32 nritems;
2851 int mid;
2852 int slot;
2853 struct extent_buffer *right;
2854 int ret = 0;
2855 int wret;
2856 int split;
2857 int num_doubles = 0;
2858
2859 l = path->nodes[0];
2860 slot = path->slots[0];
2861 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2862 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2863 return -EOVERFLOW;
2864
2865 /* first try to make some room by pushing left and right */
2866 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2867 wret = push_leaf_right(trans, root, path, data_size, 0);
2868 if (wret < 0)
2869 return wret;
2870 if (wret) {
2871 wret = push_leaf_left(trans, root, path, data_size, 0);
2872 if (wret < 0)
2873 return wret;
2874 }
2875 l = path->nodes[0];
2876
2877 /* did the pushes work? */
2878 if (btrfs_leaf_free_space(root, l) >= data_size)
2879 return 0;
2880 }
2881
2882 if (!path->nodes[1]) {
2883 ret = insert_new_root(trans, root, path, 1);
2884 if (ret)
2885 return ret;
2886 }
2887 again:
2888 split = 1;
2889 l = path->nodes[0];
2890 slot = path->slots[0];
2891 nritems = btrfs_header_nritems(l);
2892 mid = (nritems + 1) / 2;
2893
2894 if (mid <= slot) {
2895 if (nritems == 1 ||
2896 leaf_space_used(l, mid, nritems - mid) + data_size >
2897 BTRFS_LEAF_DATA_SIZE(root)) {
2898 if (slot >= nritems) {
2899 split = 0;
2900 } else {
2901 mid = slot;
2902 if (mid != nritems &&
2903 leaf_space_used(l, mid, nritems - mid) +
2904 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2905 split = 2;
2906 }
2907 }
2908 }
2909 } else {
2910 if (leaf_space_used(l, 0, mid) + data_size >
2911 BTRFS_LEAF_DATA_SIZE(root)) {
2912 if (!extend && data_size && slot == 0) {
2913 split = 0;
2914 } else if ((extend || !data_size) && slot == 0) {
2915 mid = 1;
2916 } else {
2917 mid = slot;
2918 if (mid != nritems &&
2919 leaf_space_used(l, mid, nritems - mid) +
2920 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2921 split = 2 ;
2922 }
2923 }
2924 }
2925 }
2926
2927 if (split == 0)
2928 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2929 else
2930 btrfs_item_key(l, &disk_key, mid);
2931
2932 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2933 root->root_key.objectid,
2934 &disk_key, 0, l->start, 0);
2935 if (IS_ERR(right)) {
2936 BUG_ON(1);
2937 return PTR_ERR(right);
2938 }
2939
2940 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2941 btrfs_set_header_bytenr(right, right->start);
2942 btrfs_set_header_generation(right, trans->transid);
2943 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2944 btrfs_set_header_owner(right, root->root_key.objectid);
2945 btrfs_set_header_level(right, 0);
2946 write_extent_buffer(right, root->fs_info->fsid,
2947 (unsigned long)btrfs_header_fsid(right),
2948 BTRFS_FSID_SIZE);
2949
2950 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2951 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2952 BTRFS_UUID_SIZE);
2953
2954 if (split == 0) {
2955 if (mid <= slot) {
2956 btrfs_set_header_nritems(right, 0);
2957 wret = insert_ptr(trans, root, path,
2958 &disk_key, right->start,
2959 path->slots[1] + 1, 1);
2960 if (wret)
2961 ret = wret;
2962
2963 btrfs_tree_unlock(path->nodes[0]);
2964 free_extent_buffer(path->nodes[0]);
2965 path->nodes[0] = right;
2966 path->slots[0] = 0;
2967 path->slots[1] += 1;
2968 } else {
2969 btrfs_set_header_nritems(right, 0);
2970 wret = insert_ptr(trans, root, path,
2971 &disk_key,
2972 right->start,
2973 path->slots[1], 1);
2974 if (wret)
2975 ret = wret;
2976 btrfs_tree_unlock(path->nodes[0]);
2977 free_extent_buffer(path->nodes[0]);
2978 path->nodes[0] = right;
2979 path->slots[0] = 0;
2980 if (path->slots[1] == 0) {
2981 wret = fixup_low_keys(trans, root,
2982 path, &disk_key, 1);
2983 if (wret)
2984 ret = wret;
2985 }
2986 }
2987 btrfs_mark_buffer_dirty(right);
2988 return ret;
2989 }
2990
2991 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2992 BUG_ON(ret);
2993
2994 if (split == 2) {
2995 BUG_ON(num_doubles != 0);
2996 num_doubles++;
2997 goto again;
2998 }
2999
3000 return ret;
3001 }
3002
3003 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 struct btrfs_path *path, int ins_len)
3006 {
3007 struct btrfs_key key;
3008 struct extent_buffer *leaf;
3009 struct btrfs_file_extent_item *fi;
3010 u64 extent_len = 0;
3011 u32 item_size;
3012 int ret;
3013
3014 leaf = path->nodes[0];
3015 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3016
3017 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3018 key.type != BTRFS_EXTENT_CSUM_KEY);
3019
3020 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3021 return 0;
3022
3023 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3024 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3025 fi = btrfs_item_ptr(leaf, path->slots[0],
3026 struct btrfs_file_extent_item);
3027 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3028 }
3029 btrfs_release_path(root, path);
3030
3031 path->keep_locks = 1;
3032 path->search_for_split = 1;
3033 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3034 path->search_for_split = 0;
3035 if (ret < 0)
3036 goto err;
3037
3038 ret = -EAGAIN;
3039 leaf = path->nodes[0];
3040 /* if our item isn't there or got smaller, return now */
3041 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3042 goto err;
3043
3044 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3045 fi = btrfs_item_ptr(leaf, path->slots[0],
3046 struct btrfs_file_extent_item);
3047 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3048 goto err;
3049 }
3050
3051 btrfs_set_path_blocking(path);
3052 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3053 BUG_ON(ret);
3054
3055 path->keep_locks = 0;
3056 btrfs_unlock_up_safe(path, 1);
3057 return 0;
3058 err:
3059 path->keep_locks = 0;
3060 return ret;
3061 }
3062
3063 static noinline int split_item(struct btrfs_trans_handle *trans,
3064 struct btrfs_root *root,
3065 struct btrfs_path *path,
3066 struct btrfs_key *new_key,
3067 unsigned long split_offset)
3068 {
3069 struct extent_buffer *leaf;
3070 struct btrfs_item *item;
3071 struct btrfs_item *new_item;
3072 int slot;
3073 char *buf;
3074 u32 nritems;
3075 u32 item_size;
3076 u32 orig_offset;
3077 struct btrfs_disk_key disk_key;
3078
3079 leaf = path->nodes[0];
3080 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3081
3082 btrfs_set_path_blocking(path);
3083
3084 item = btrfs_item_nr(leaf, path->slots[0]);
3085 orig_offset = btrfs_item_offset(leaf, item);
3086 item_size = btrfs_item_size(leaf, item);
3087
3088 buf = kmalloc(item_size, GFP_NOFS);
3089 if (!buf)
3090 return -ENOMEM;
3091
3092 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3093 path->slots[0]), item_size);
3094
3095 slot = path->slots[0] + 1;
3096 nritems = btrfs_header_nritems(leaf);
3097 if (slot != nritems) {
3098 /* shift the items */
3099 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3100 btrfs_item_nr_offset(slot),
3101 (nritems - slot) * sizeof(struct btrfs_item));
3102 }
3103
3104 btrfs_cpu_key_to_disk(&disk_key, new_key);
3105 btrfs_set_item_key(leaf, &disk_key, slot);
3106
3107 new_item = btrfs_item_nr(leaf, slot);
3108
3109 btrfs_set_item_offset(leaf, new_item, orig_offset);
3110 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3111
3112 btrfs_set_item_offset(leaf, item,
3113 orig_offset + item_size - split_offset);
3114 btrfs_set_item_size(leaf, item, split_offset);
3115
3116 btrfs_set_header_nritems(leaf, nritems + 1);
3117
3118 /* write the data for the start of the original item */
3119 write_extent_buffer(leaf, buf,
3120 btrfs_item_ptr_offset(leaf, path->slots[0]),
3121 split_offset);
3122
3123 /* write the data for the new item */
3124 write_extent_buffer(leaf, buf + split_offset,
3125 btrfs_item_ptr_offset(leaf, slot),
3126 item_size - split_offset);
3127 btrfs_mark_buffer_dirty(leaf);
3128
3129 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3130 kfree(buf);
3131 return 0;
3132 }
3133
3134 /*
3135 * This function splits a single item into two items,
3136 * giving 'new_key' to the new item and splitting the
3137 * old one at split_offset (from the start of the item).
3138 *
3139 * The path may be released by this operation. After
3140 * the split, the path is pointing to the old item. The
3141 * new item is going to be in the same node as the old one.
3142 *
3143 * Note, the item being split must be smaller enough to live alone on
3144 * a tree block with room for one extra struct btrfs_item
3145 *
3146 * This allows us to split the item in place, keeping a lock on the
3147 * leaf the entire time.
3148 */
3149 int btrfs_split_item(struct btrfs_trans_handle *trans,
3150 struct btrfs_root *root,
3151 struct btrfs_path *path,
3152 struct btrfs_key *new_key,
3153 unsigned long split_offset)
3154 {
3155 int ret;
3156 ret = setup_leaf_for_split(trans, root, path,
3157 sizeof(struct btrfs_item));
3158 if (ret)
3159 return ret;
3160
3161 ret = split_item(trans, root, path, new_key, split_offset);
3162 return ret;
3163 }
3164
3165 /*
3166 * This function duplicate a item, giving 'new_key' to the new item.
3167 * It guarantees both items live in the same tree leaf and the new item
3168 * is contiguous with the original item.
3169 *
3170 * This allows us to split file extent in place, keeping a lock on the
3171 * leaf the entire time.
3172 */
3173 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3174 struct btrfs_root *root,
3175 struct btrfs_path *path,
3176 struct btrfs_key *new_key)
3177 {
3178 struct extent_buffer *leaf;
3179 int ret;
3180 u32 item_size;
3181
3182 leaf = path->nodes[0];
3183 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3184 ret = setup_leaf_for_split(trans, root, path,
3185 item_size + sizeof(struct btrfs_item));
3186 if (ret)
3187 return ret;
3188
3189 path->slots[0]++;
3190 ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3191 item_size, item_size +
3192 sizeof(struct btrfs_item), 1);
3193 BUG_ON(ret);
3194
3195 leaf = path->nodes[0];
3196 memcpy_extent_buffer(leaf,
3197 btrfs_item_ptr_offset(leaf, path->slots[0]),
3198 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3199 item_size);
3200 return 0;
3201 }
3202
3203 /*
3204 * make the item pointed to by the path smaller. new_size indicates
3205 * how small to make it, and from_end tells us if we just chop bytes
3206 * off the end of the item or if we shift the item to chop bytes off
3207 * the front.
3208 */
3209 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3210 struct btrfs_root *root,
3211 struct btrfs_path *path,
3212 u32 new_size, int from_end)
3213 {
3214 int ret = 0;
3215 int slot;
3216 int slot_orig;
3217 struct extent_buffer *leaf;
3218 struct btrfs_item *item;
3219 u32 nritems;
3220 unsigned int data_end;
3221 unsigned int old_data_start;
3222 unsigned int old_size;
3223 unsigned int size_diff;
3224 int i;
3225
3226 slot_orig = path->slots[0];
3227 leaf = path->nodes[0];
3228 slot = path->slots[0];
3229
3230 old_size = btrfs_item_size_nr(leaf, slot);
3231 if (old_size == new_size)
3232 return 0;
3233
3234 nritems = btrfs_header_nritems(leaf);
3235 data_end = leaf_data_end(root, leaf);
3236
3237 old_data_start = btrfs_item_offset_nr(leaf, slot);
3238
3239 size_diff = old_size - new_size;
3240
3241 BUG_ON(slot < 0);
3242 BUG_ON(slot >= nritems);
3243
3244 /*
3245 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3246 */
3247 /* first correct the data pointers */
3248 for (i = slot; i < nritems; i++) {
3249 u32 ioff;
3250 item = btrfs_item_nr(leaf, i);
3251
3252 if (!leaf->map_token) {
3253 map_extent_buffer(leaf, (unsigned long)item,
3254 sizeof(struct btrfs_item),
3255 &leaf->map_token, &leaf->kaddr,
3256 &leaf->map_start, &leaf->map_len,
3257 KM_USER1);
3258 }
3259
3260 ioff = btrfs_item_offset(leaf, item);
3261 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3262 }
3263
3264 if (leaf->map_token) {
3265 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3266 leaf->map_token = NULL;
3267 }
3268
3269 /* shift the data */
3270 if (from_end) {
3271 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3272 data_end + size_diff, btrfs_leaf_data(leaf) +
3273 data_end, old_data_start + new_size - data_end);
3274 } else {
3275 struct btrfs_disk_key disk_key;
3276 u64 offset;
3277
3278 btrfs_item_key(leaf, &disk_key, slot);
3279
3280 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3281 unsigned long ptr;
3282 struct btrfs_file_extent_item *fi;
3283
3284 fi = btrfs_item_ptr(leaf, slot,
3285 struct btrfs_file_extent_item);
3286 fi = (struct btrfs_file_extent_item *)(
3287 (unsigned long)fi - size_diff);
3288
3289 if (btrfs_file_extent_type(leaf, fi) ==
3290 BTRFS_FILE_EXTENT_INLINE) {
3291 ptr = btrfs_item_ptr_offset(leaf, slot);
3292 memmove_extent_buffer(leaf, ptr,
3293 (unsigned long)fi,
3294 offsetof(struct btrfs_file_extent_item,
3295 disk_bytenr));
3296 }
3297 }
3298
3299 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3300 data_end + size_diff, btrfs_leaf_data(leaf) +
3301 data_end, old_data_start - data_end);
3302
3303 offset = btrfs_disk_key_offset(&disk_key);
3304 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3305 btrfs_set_item_key(leaf, &disk_key, slot);
3306 if (slot == 0)
3307 fixup_low_keys(trans, root, path, &disk_key, 1);
3308 }
3309
3310 item = btrfs_item_nr(leaf, slot);
3311 btrfs_set_item_size(leaf, item, new_size);
3312 btrfs_mark_buffer_dirty(leaf);
3313
3314 ret = 0;
3315 if (btrfs_leaf_free_space(root, leaf) < 0) {
3316 btrfs_print_leaf(root, leaf);
3317 BUG();
3318 }
3319 return ret;
3320 }
3321
3322 /*
3323 * make the item pointed to by the path bigger, data_size is the new size.
3324 */
3325 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root, struct btrfs_path *path,
3327 u32 data_size)
3328 {
3329 int ret = 0;
3330 int slot;
3331 int slot_orig;
3332 struct extent_buffer *leaf;
3333 struct btrfs_item *item;
3334 u32 nritems;
3335 unsigned int data_end;
3336 unsigned int old_data;
3337 unsigned int old_size;
3338 int i;
3339
3340 slot_orig = path->slots[0];
3341 leaf = path->nodes[0];
3342
3343 nritems = btrfs_header_nritems(leaf);
3344 data_end = leaf_data_end(root, leaf);
3345
3346 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3347 btrfs_print_leaf(root, leaf);
3348 BUG();
3349 }
3350 slot = path->slots[0];
3351 old_data = btrfs_item_end_nr(leaf, slot);
3352
3353 BUG_ON(slot < 0);
3354 if (slot >= nritems) {
3355 btrfs_print_leaf(root, leaf);
3356 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3357 slot, nritems);
3358 BUG_ON(1);
3359 }
3360
3361 /*
3362 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3363 */
3364 /* first correct the data pointers */
3365 for (i = slot; i < nritems; i++) {
3366 u32 ioff;
3367 item = btrfs_item_nr(leaf, i);
3368
3369 if (!leaf->map_token) {
3370 map_extent_buffer(leaf, (unsigned long)item,
3371 sizeof(struct btrfs_item),
3372 &leaf->map_token, &leaf->kaddr,
3373 &leaf->map_start, &leaf->map_len,
3374 KM_USER1);
3375 }
3376 ioff = btrfs_item_offset(leaf, item);
3377 btrfs_set_item_offset(leaf, item, ioff - data_size);
3378 }
3379
3380 if (leaf->map_token) {
3381 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3382 leaf->map_token = NULL;
3383 }
3384
3385 /* shift the data */
3386 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3387 data_end - data_size, btrfs_leaf_data(leaf) +
3388 data_end, old_data - data_end);
3389
3390 data_end = old_data;
3391 old_size = btrfs_item_size_nr(leaf, slot);
3392 item = btrfs_item_nr(leaf, slot);
3393 btrfs_set_item_size(leaf, item, old_size + data_size);
3394 btrfs_mark_buffer_dirty(leaf);
3395
3396 ret = 0;
3397 if (btrfs_leaf_free_space(root, leaf) < 0) {
3398 btrfs_print_leaf(root, leaf);
3399 BUG();
3400 }
3401 return ret;
3402 }
3403
3404 /*
3405 * Given a key and some data, insert items into the tree.
3406 * This does all the path init required, making room in the tree if needed.
3407 * Returns the number of keys that were inserted.
3408 */
3409 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3410 struct btrfs_root *root,
3411 struct btrfs_path *path,
3412 struct btrfs_key *cpu_key, u32 *data_size,
3413 int nr)
3414 {
3415 struct extent_buffer *leaf;
3416 struct btrfs_item *item;
3417 int ret = 0;
3418 int slot;
3419 int i;
3420 u32 nritems;
3421 u32 total_data = 0;
3422 u32 total_size = 0;
3423 unsigned int data_end;
3424 struct btrfs_disk_key disk_key;
3425 struct btrfs_key found_key;
3426
3427 for (i = 0; i < nr; i++) {
3428 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3429 BTRFS_LEAF_DATA_SIZE(root)) {
3430 break;
3431 nr = i;
3432 }
3433 total_data += data_size[i];
3434 total_size += data_size[i] + sizeof(struct btrfs_item);
3435 }
3436 BUG_ON(nr == 0);
3437
3438 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3439 if (ret == 0)
3440 return -EEXIST;
3441 if (ret < 0)
3442 goto out;
3443
3444 leaf = path->nodes[0];
3445
3446 nritems = btrfs_header_nritems(leaf);
3447 data_end = leaf_data_end(root, leaf);
3448
3449 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3450 for (i = nr; i >= 0; i--) {
3451 total_data -= data_size[i];
3452 total_size -= data_size[i] + sizeof(struct btrfs_item);
3453 if (total_size < btrfs_leaf_free_space(root, leaf))
3454 break;
3455 }
3456 nr = i;
3457 }
3458
3459 slot = path->slots[0];
3460 BUG_ON(slot < 0);
3461
3462 if (slot != nritems) {
3463 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3464
3465 item = btrfs_item_nr(leaf, slot);
3466 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3467
3468 /* figure out how many keys we can insert in here */
3469 total_data = data_size[0];
3470 for (i = 1; i < nr; i++) {
3471 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3472 break;
3473 total_data += data_size[i];
3474 }
3475 nr = i;
3476
3477 if (old_data < data_end) {
3478 btrfs_print_leaf(root, leaf);
3479 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3480 slot, old_data, data_end);
3481 BUG_ON(1);
3482 }
3483 /*
3484 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3485 */
3486 /* first correct the data pointers */
3487 WARN_ON(leaf->map_token);
3488 for (i = slot; i < nritems; i++) {
3489 u32 ioff;
3490
3491 item = btrfs_item_nr(leaf, i);
3492 if (!leaf->map_token) {
3493 map_extent_buffer(leaf, (unsigned long)item,
3494 sizeof(struct btrfs_item),
3495 &leaf->map_token, &leaf->kaddr,
3496 &leaf->map_start, &leaf->map_len,
3497 KM_USER1);
3498 }
3499
3500 ioff = btrfs_item_offset(leaf, item);
3501 btrfs_set_item_offset(leaf, item, ioff - total_data);
3502 }
3503 if (leaf->map_token) {
3504 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3505 leaf->map_token = NULL;
3506 }
3507
3508 /* shift the items */
3509 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3510 btrfs_item_nr_offset(slot),
3511 (nritems - slot) * sizeof(struct btrfs_item));
3512
3513 /* shift the data */
3514 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3515 data_end - total_data, btrfs_leaf_data(leaf) +
3516 data_end, old_data - data_end);
3517 data_end = old_data;
3518 } else {
3519 /*
3520 * this sucks but it has to be done, if we are inserting at
3521 * the end of the leaf only insert 1 of the items, since we
3522 * have no way of knowing whats on the next leaf and we'd have
3523 * to drop our current locks to figure it out
3524 */
3525 nr = 1;
3526 }
3527
3528 /* setup the item for the new data */
3529 for (i = 0; i < nr; i++) {
3530 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3531 btrfs_set_item_key(leaf, &disk_key, slot + i);
3532 item = btrfs_item_nr(leaf, slot + i);
3533 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3534 data_end -= data_size[i];
3535 btrfs_set_item_size(leaf, item, data_size[i]);
3536 }
3537 btrfs_set_header_nritems(leaf, nritems + nr);
3538 btrfs_mark_buffer_dirty(leaf);
3539
3540 ret = 0;
3541 if (slot == 0) {
3542 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3543 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3544 }
3545
3546 if (btrfs_leaf_free_space(root, leaf) < 0) {
3547 btrfs_print_leaf(root, leaf);
3548 BUG();
3549 }
3550 out:
3551 if (!ret)
3552 ret = nr;
3553 return ret;
3554 }
3555
3556 /*
3557 * this is a helper for btrfs_insert_empty_items, the main goal here is
3558 * to save stack depth by doing the bulk of the work in a function
3559 * that doesn't call btrfs_search_slot
3560 */
3561 static noinline_for_stack int
3562 setup_items_for_insert(struct btrfs_trans_handle *trans,
3563 struct btrfs_root *root, struct btrfs_path *path,
3564 struct btrfs_key *cpu_key, u32 *data_size,
3565 u32 total_data, u32 total_size, int nr)
3566 {
3567 struct btrfs_item *item;
3568 int i;
3569 u32 nritems;
3570 unsigned int data_end;
3571 struct btrfs_disk_key disk_key;
3572 int ret;
3573 struct extent_buffer *leaf;
3574 int slot;
3575
3576 leaf = path->nodes[0];
3577 slot = path->slots[0];
3578
3579 nritems = btrfs_header_nritems(leaf);
3580 data_end = leaf_data_end(root, leaf);
3581
3582 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3583 btrfs_print_leaf(root, leaf);
3584 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3585 total_size, btrfs_leaf_free_space(root, leaf));
3586 BUG();
3587 }
3588
3589 if (slot != nritems) {
3590 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3591
3592 if (old_data < data_end) {
3593 btrfs_print_leaf(root, leaf);
3594 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3595 slot, old_data, data_end);
3596 BUG_ON(1);
3597 }
3598 /*
3599 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3600 */
3601 /* first correct the data pointers */
3602 WARN_ON(leaf->map_token);
3603 for (i = slot; i < nritems; i++) {
3604 u32 ioff;
3605
3606 item = btrfs_item_nr(leaf, i);
3607 if (!leaf->map_token) {
3608 map_extent_buffer(leaf, (unsigned long)item,
3609 sizeof(struct btrfs_item),
3610 &leaf->map_token, &leaf->kaddr,
3611 &leaf->map_start, &leaf->map_len,
3612 KM_USER1);
3613 }
3614
3615 ioff = btrfs_item_offset(leaf, item);
3616 btrfs_set_item_offset(leaf, item, ioff - total_data);
3617 }
3618 if (leaf->map_token) {
3619 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3620 leaf->map_token = NULL;
3621 }
3622
3623 /* shift the items */
3624 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3625 btrfs_item_nr_offset(slot),
3626 (nritems - slot) * sizeof(struct btrfs_item));
3627
3628 /* shift the data */
3629 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3630 data_end - total_data, btrfs_leaf_data(leaf) +
3631 data_end, old_data - data_end);
3632 data_end = old_data;
3633 }
3634
3635 /* setup the item for the new data */
3636 for (i = 0; i < nr; i++) {
3637 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3638 btrfs_set_item_key(leaf, &disk_key, slot + i);
3639 item = btrfs_item_nr(leaf, slot + i);
3640 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3641 data_end -= data_size[i];
3642 btrfs_set_item_size(leaf, item, data_size[i]);
3643 }
3644
3645 btrfs_set_header_nritems(leaf, nritems + nr);
3646
3647 ret = 0;
3648 if (slot == 0) {
3649 struct btrfs_disk_key disk_key;
3650 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3651 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3652 }
3653 btrfs_unlock_up_safe(path, 1);
3654 btrfs_mark_buffer_dirty(leaf);
3655
3656 if (btrfs_leaf_free_space(root, leaf) < 0) {
3657 btrfs_print_leaf(root, leaf);
3658 BUG();
3659 }
3660 return ret;
3661 }
3662
3663 /*
3664 * Given a key and some data, insert items into the tree.
3665 * This does all the path init required, making room in the tree if needed.
3666 */
3667 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3668 struct btrfs_root *root,
3669 struct btrfs_path *path,
3670 struct btrfs_key *cpu_key, u32 *data_size,
3671 int nr)
3672 {
3673 struct extent_buffer *leaf;
3674 int ret = 0;
3675 int slot;
3676 int i;
3677 u32 total_size = 0;
3678 u32 total_data = 0;
3679
3680 for (i = 0; i < nr; i++)
3681 total_data += data_size[i];
3682
3683 total_size = total_data + (nr * sizeof(struct btrfs_item));
3684 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3685 if (ret == 0)
3686 return -EEXIST;
3687 if (ret < 0)
3688 goto out;
3689
3690 leaf = path->nodes[0];
3691 slot = path->slots[0];
3692 BUG_ON(slot < 0);
3693
3694 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3695 total_data, total_size, nr);
3696
3697 out:
3698 return ret;
3699 }
3700
3701 /*
3702 * Given a key and some data, insert an item into the tree.
3703 * This does all the path init required, making room in the tree if needed.
3704 */
3705 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3706 *root, struct btrfs_key *cpu_key, void *data, u32
3707 data_size)
3708 {
3709 int ret = 0;
3710 struct btrfs_path *path;
3711 struct extent_buffer *leaf;
3712 unsigned long ptr;
3713
3714 path = btrfs_alloc_path();
3715 BUG_ON(!path);
3716 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3717 if (!ret) {
3718 leaf = path->nodes[0];
3719 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3720 write_extent_buffer(leaf, data, ptr, data_size);
3721 btrfs_mark_buffer_dirty(leaf);
3722 }
3723 btrfs_free_path(path);
3724 return ret;
3725 }
3726
3727 /*
3728 * delete the pointer from a given node.
3729 *
3730 * the tree should have been previously balanced so the deletion does not
3731 * empty a node.
3732 */
3733 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3734 struct btrfs_path *path, int level, int slot)
3735 {
3736 struct extent_buffer *parent = path->nodes[level];
3737 u32 nritems;
3738 int ret = 0;
3739 int wret;
3740
3741 nritems = btrfs_header_nritems(parent);
3742 if (slot != nritems - 1) {
3743 memmove_extent_buffer(parent,
3744 btrfs_node_key_ptr_offset(slot),
3745 btrfs_node_key_ptr_offset(slot + 1),
3746 sizeof(struct btrfs_key_ptr) *
3747 (nritems - slot - 1));
3748 }
3749 nritems--;
3750 btrfs_set_header_nritems(parent, nritems);
3751 if (nritems == 0 && parent == root->node) {
3752 BUG_ON(btrfs_header_level(root->node) != 1);
3753 /* just turn the root into a leaf and break */
3754 btrfs_set_header_level(root->node, 0);
3755 } else if (slot == 0) {
3756 struct btrfs_disk_key disk_key;
3757
3758 btrfs_node_key(parent, &disk_key, 0);
3759 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3760 if (wret)
3761 ret = wret;
3762 }
3763 btrfs_mark_buffer_dirty(parent);
3764 return ret;
3765 }
3766
3767 /*
3768 * a helper function to delete the leaf pointed to by path->slots[1] and
3769 * path->nodes[1].
3770 *
3771 * This deletes the pointer in path->nodes[1] and frees the leaf
3772 * block extent. zero is returned if it all worked out, < 0 otherwise.
3773 *
3774 * The path must have already been setup for deleting the leaf, including
3775 * all the proper balancing. path->nodes[1] must be locked.
3776 */
3777 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3778 struct btrfs_root *root,
3779 struct btrfs_path *path,
3780 struct extent_buffer *leaf)
3781 {
3782 int ret;
3783
3784 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3785 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3786 if (ret)
3787 return ret;
3788
3789 /*
3790 * btrfs_free_extent is expensive, we want to make sure we
3791 * aren't holding any locks when we call it
3792 */
3793 btrfs_unlock_up_safe(path, 0);
3794
3795 ret = btrfs_free_tree_block(trans, root, leaf->start, leaf->len,
3796 0, root->root_key.objectid, 0);
3797 return ret;
3798 }
3799 /*
3800 * delete the item at the leaf level in path. If that empties
3801 * the leaf, remove it from the tree
3802 */
3803 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3804 struct btrfs_path *path, int slot, int nr)
3805 {
3806 struct extent_buffer *leaf;
3807 struct btrfs_item *item;
3808 int last_off;
3809 int dsize = 0;
3810 int ret = 0;
3811 int wret;
3812 int i;
3813 u32 nritems;
3814
3815 leaf = path->nodes[0];
3816 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3817
3818 for (i = 0; i < nr; i++)
3819 dsize += btrfs_item_size_nr(leaf, slot + i);
3820
3821 nritems = btrfs_header_nritems(leaf);
3822
3823 if (slot + nr != nritems) {
3824 int data_end = leaf_data_end(root, leaf);
3825
3826 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3827 data_end + dsize,
3828 btrfs_leaf_data(leaf) + data_end,
3829 last_off - data_end);
3830
3831 for (i = slot + nr; i < nritems; i++) {
3832 u32 ioff;
3833
3834 item = btrfs_item_nr(leaf, i);
3835 if (!leaf->map_token) {
3836 map_extent_buffer(leaf, (unsigned long)item,
3837 sizeof(struct btrfs_item),
3838 &leaf->map_token, &leaf->kaddr,
3839 &leaf->map_start, &leaf->map_len,
3840 KM_USER1);
3841 }
3842 ioff = btrfs_item_offset(leaf, item);
3843 btrfs_set_item_offset(leaf, item, ioff + dsize);
3844 }
3845
3846 if (leaf->map_token) {
3847 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3848 leaf->map_token = NULL;
3849 }
3850
3851 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3852 btrfs_item_nr_offset(slot + nr),
3853 sizeof(struct btrfs_item) *
3854 (nritems - slot - nr));
3855 }
3856 btrfs_set_header_nritems(leaf, nritems - nr);
3857 nritems -= nr;
3858
3859 /* delete the leaf if we've emptied it */
3860 if (nritems == 0) {
3861 if (leaf == root->node) {
3862 btrfs_set_header_level(leaf, 0);
3863 } else {
3864 ret = btrfs_del_leaf(trans, root, path, leaf);
3865 BUG_ON(ret);
3866 }
3867 } else {
3868 int used = leaf_space_used(leaf, 0, nritems);
3869 if (slot == 0) {
3870 struct btrfs_disk_key disk_key;
3871
3872 btrfs_item_key(leaf, &disk_key, 0);
3873 wret = fixup_low_keys(trans, root, path,
3874 &disk_key, 1);
3875 if (wret)
3876 ret = wret;
3877 }
3878
3879 /* delete the leaf if it is mostly empty */
3880 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3881 /* push_leaf_left fixes the path.
3882 * make sure the path still points to our leaf
3883 * for possible call to del_ptr below
3884 */
3885 slot = path->slots[1];
3886 extent_buffer_get(leaf);
3887
3888 btrfs_set_path_blocking(path);
3889 wret = push_leaf_left(trans, root, path, 1, 1);
3890 if (wret < 0 && wret != -ENOSPC)
3891 ret = wret;
3892
3893 if (path->nodes[0] == leaf &&
3894 btrfs_header_nritems(leaf)) {
3895 wret = push_leaf_right(trans, root, path, 1, 1);
3896 if (wret < 0 && wret != -ENOSPC)
3897 ret = wret;
3898 }
3899
3900 if (btrfs_header_nritems(leaf) == 0) {
3901 path->slots[1] = slot;
3902 ret = btrfs_del_leaf(trans, root, path, leaf);
3903 BUG_ON(ret);
3904 free_extent_buffer(leaf);
3905 } else {
3906 /* if we're still in the path, make sure
3907 * we're dirty. Otherwise, one of the
3908 * push_leaf functions must have already
3909 * dirtied this buffer
3910 */
3911 if (path->nodes[0] == leaf)
3912 btrfs_mark_buffer_dirty(leaf);
3913 free_extent_buffer(leaf);
3914 }
3915 } else {
3916 btrfs_mark_buffer_dirty(leaf);
3917 }
3918 }
3919 return ret;
3920 }
3921
3922 /*
3923 * search the tree again to find a leaf with lesser keys
3924 * returns 0 if it found something or 1 if there are no lesser leaves.
3925 * returns < 0 on io errors.
3926 *
3927 * This may release the path, and so you may lose any locks held at the
3928 * time you call it.
3929 */
3930 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3931 {
3932 struct btrfs_key key;
3933 struct btrfs_disk_key found_key;
3934 int ret;
3935
3936 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3937
3938 if (key.offset > 0)
3939 key.offset--;
3940 else if (key.type > 0)
3941 key.type--;
3942 else if (key.objectid > 0)
3943 key.objectid--;
3944 else
3945 return 1;
3946
3947 btrfs_release_path(root, path);
3948 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3949 if (ret < 0)
3950 return ret;
3951 btrfs_item_key(path->nodes[0], &found_key, 0);
3952 ret = comp_keys(&found_key, &key);
3953 if (ret < 0)
3954 return 0;
3955 return 1;
3956 }
3957
3958 /*
3959 * A helper function to walk down the tree starting at min_key, and looking
3960 * for nodes or leaves that are either in cache or have a minimum
3961 * transaction id. This is used by the btree defrag code, and tree logging
3962 *
3963 * This does not cow, but it does stuff the starting key it finds back
3964 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3965 * key and get a writable path.
3966 *
3967 * This does lock as it descends, and path->keep_locks should be set
3968 * to 1 by the caller.
3969 *
3970 * This honors path->lowest_level to prevent descent past a given level
3971 * of the tree.
3972 *
3973 * min_trans indicates the oldest transaction that you are interested
3974 * in walking through. Any nodes or leaves older than min_trans are
3975 * skipped over (without reading them).
3976 *
3977 * returns zero if something useful was found, < 0 on error and 1 if there
3978 * was nothing in the tree that matched the search criteria.
3979 */
3980 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3981 struct btrfs_key *max_key,
3982 struct btrfs_path *path, int cache_only,
3983 u64 min_trans)
3984 {
3985 struct extent_buffer *cur;
3986 struct btrfs_key found_key;
3987 int slot;
3988 int sret;
3989 u32 nritems;
3990 int level;
3991 int ret = 1;
3992
3993 WARN_ON(!path->keep_locks);
3994 again:
3995 cur = btrfs_lock_root_node(root);
3996 level = btrfs_header_level(cur);
3997 WARN_ON(path->nodes[level]);
3998 path->nodes[level] = cur;
3999 path->locks[level] = 1;
4000
4001 if (btrfs_header_generation(cur) < min_trans) {
4002 ret = 1;
4003 goto out;
4004 }
4005 while (1) {
4006 nritems = btrfs_header_nritems(cur);
4007 level = btrfs_header_level(cur);
4008 sret = bin_search(cur, min_key, level, &slot);
4009
4010 /* at the lowest level, we're done, setup the path and exit */
4011 if (level == path->lowest_level) {
4012 if (slot >= nritems)
4013 goto find_next_key;
4014 ret = 0;
4015 path->slots[level] = slot;
4016 btrfs_item_key_to_cpu(cur, &found_key, slot);
4017 goto out;
4018 }
4019 if (sret && slot > 0)
4020 slot--;
4021 /*
4022 * check this node pointer against the cache_only and
4023 * min_trans parameters. If it isn't in cache or is too
4024 * old, skip to the next one.
4025 */
4026 while (slot < nritems) {
4027 u64 blockptr;
4028 u64 gen;
4029 struct extent_buffer *tmp;
4030 struct btrfs_disk_key disk_key;
4031
4032 blockptr = btrfs_node_blockptr(cur, slot);
4033 gen = btrfs_node_ptr_generation(cur, slot);
4034 if (gen < min_trans) {
4035 slot++;
4036 continue;
4037 }
4038 if (!cache_only)
4039 break;
4040
4041 if (max_key) {
4042 btrfs_node_key(cur, &disk_key, slot);
4043 if (comp_keys(&disk_key, max_key) >= 0) {
4044 ret = 1;
4045 goto out;
4046 }
4047 }
4048
4049 tmp = btrfs_find_tree_block(root, blockptr,
4050 btrfs_level_size(root, level - 1));
4051
4052 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4053 free_extent_buffer(tmp);
4054 break;
4055 }
4056 if (tmp)
4057 free_extent_buffer(tmp);
4058 slot++;
4059 }
4060 find_next_key:
4061 /*
4062 * we didn't find a candidate key in this node, walk forward
4063 * and find another one
4064 */
4065 if (slot >= nritems) {
4066 path->slots[level] = slot;
4067 btrfs_set_path_blocking(path);
4068 sret = btrfs_find_next_key(root, path, min_key, level,
4069 cache_only, min_trans);
4070 if (sret == 0) {
4071 btrfs_release_path(root, path);
4072 goto again;
4073 } else {
4074 goto out;
4075 }
4076 }
4077 /* save our key for returning back */
4078 btrfs_node_key_to_cpu(cur, &found_key, slot);
4079 path->slots[level] = slot;
4080 if (level == path->lowest_level) {
4081 ret = 0;
4082 unlock_up(path, level, 1);
4083 goto out;
4084 }
4085 btrfs_set_path_blocking(path);
4086 cur = read_node_slot(root, cur, slot);
4087
4088 btrfs_tree_lock(cur);
4089
4090 path->locks[level - 1] = 1;
4091 path->nodes[level - 1] = cur;
4092 unlock_up(path, level, 1);
4093 btrfs_clear_path_blocking(path, NULL);
4094 }
4095 out:
4096 if (ret == 0)
4097 memcpy(min_key, &found_key, sizeof(found_key));
4098 btrfs_set_path_blocking(path);
4099 return ret;
4100 }
4101
4102 /*
4103 * this is similar to btrfs_next_leaf, but does not try to preserve
4104 * and fixup the path. It looks for and returns the next key in the
4105 * tree based on the current path and the cache_only and min_trans
4106 * parameters.
4107 *
4108 * 0 is returned if another key is found, < 0 if there are any errors
4109 * and 1 is returned if there are no higher keys in the tree
4110 *
4111 * path->keep_locks should be set to 1 on the search made before
4112 * calling this function.
4113 */
4114 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4115 struct btrfs_key *key, int level,
4116 int cache_only, u64 min_trans)
4117 {
4118 int slot;
4119 struct extent_buffer *c;
4120
4121 WARN_ON(!path->keep_locks);
4122 while (level < BTRFS_MAX_LEVEL) {
4123 if (!path->nodes[level])
4124 return 1;
4125
4126 slot = path->slots[level] + 1;
4127 c = path->nodes[level];
4128 next:
4129 if (slot >= btrfs_header_nritems(c)) {
4130 int ret;
4131 int orig_lowest;
4132 struct btrfs_key cur_key;
4133 if (level + 1 >= BTRFS_MAX_LEVEL ||
4134 !path->nodes[level + 1])
4135 return 1;
4136
4137 if (path->locks[level + 1]) {
4138 level++;
4139 continue;
4140 }
4141
4142 slot = btrfs_header_nritems(c) - 1;
4143 if (level == 0)
4144 btrfs_item_key_to_cpu(c, &cur_key, slot);
4145 else
4146 btrfs_node_key_to_cpu(c, &cur_key, slot);
4147
4148 orig_lowest = path->lowest_level;
4149 btrfs_release_path(root, path);
4150 path->lowest_level = level;
4151 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4152 0, 0);
4153 path->lowest_level = orig_lowest;
4154 if (ret < 0)
4155 return ret;
4156
4157 c = path->nodes[level];
4158 slot = path->slots[level];
4159 if (ret == 0)
4160 slot++;
4161 goto next;
4162 }
4163
4164 if (level == 0)
4165 btrfs_item_key_to_cpu(c, key, slot);
4166 else {
4167 u64 blockptr = btrfs_node_blockptr(c, slot);
4168 u64 gen = btrfs_node_ptr_generation(c, slot);
4169
4170 if (cache_only) {
4171 struct extent_buffer *cur;
4172 cur = btrfs_find_tree_block(root, blockptr,
4173 btrfs_level_size(root, level - 1));
4174 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4175 slot++;
4176 if (cur)
4177 free_extent_buffer(cur);
4178 goto next;
4179 }
4180 free_extent_buffer(cur);
4181 }
4182 if (gen < min_trans) {
4183 slot++;
4184 goto next;
4185 }
4186 btrfs_node_key_to_cpu(c, key, slot);
4187 }
4188 return 0;
4189 }
4190 return 1;
4191 }
4192
4193 /*
4194 * search the tree again to find a leaf with greater keys
4195 * returns 0 if it found something or 1 if there are no greater leaves.
4196 * returns < 0 on io errors.
4197 */
4198 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4199 {
4200 int slot;
4201 int level;
4202 struct extent_buffer *c;
4203 struct extent_buffer *next;
4204 struct btrfs_key key;
4205 u32 nritems;
4206 int ret;
4207 int old_spinning = path->leave_spinning;
4208 int force_blocking = 0;
4209
4210 nritems = btrfs_header_nritems(path->nodes[0]);
4211 if (nritems == 0)
4212 return 1;
4213
4214 /*
4215 * we take the blocks in an order that upsets lockdep. Using
4216 * blocking mode is the only way around it.
4217 */
4218 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4219 force_blocking = 1;
4220 #endif
4221
4222 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4223 again:
4224 level = 1;
4225 next = NULL;
4226 btrfs_release_path(root, path);
4227
4228 path->keep_locks = 1;
4229
4230 if (!force_blocking)
4231 path->leave_spinning = 1;
4232
4233 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4234 path->keep_locks = 0;
4235
4236 if (ret < 0)
4237 return ret;
4238
4239 nritems = btrfs_header_nritems(path->nodes[0]);
4240 /*
4241 * by releasing the path above we dropped all our locks. A balance
4242 * could have added more items next to the key that used to be
4243 * at the very end of the block. So, check again here and
4244 * advance the path if there are now more items available.
4245 */
4246 if (nritems > 0 && path->slots[0] < nritems - 1) {
4247 if (ret == 0)
4248 path->slots[0]++;
4249 ret = 0;
4250 goto done;
4251 }
4252
4253 while (level < BTRFS_MAX_LEVEL) {
4254 if (!path->nodes[level]) {
4255 ret = 1;
4256 goto done;
4257 }
4258
4259 slot = path->slots[level] + 1;
4260 c = path->nodes[level];
4261 if (slot >= btrfs_header_nritems(c)) {
4262 level++;
4263 if (level == BTRFS_MAX_LEVEL) {
4264 ret = 1;
4265 goto done;
4266 }
4267 continue;
4268 }
4269
4270 if (next) {
4271 btrfs_tree_unlock(next);
4272 free_extent_buffer(next);
4273 }
4274
4275 next = c;
4276 ret = read_block_for_search(NULL, root, path, &next, level,
4277 slot, &key);
4278 if (ret == -EAGAIN)
4279 goto again;
4280
4281 if (ret < 0) {
4282 btrfs_release_path(root, path);
4283 goto done;
4284 }
4285
4286 if (!path->skip_locking) {
4287 ret = btrfs_try_spin_lock(next);
4288 if (!ret) {
4289 btrfs_set_path_blocking(path);
4290 btrfs_tree_lock(next);
4291 if (!force_blocking)
4292 btrfs_clear_path_blocking(path, next);
4293 }
4294 if (force_blocking)
4295 btrfs_set_lock_blocking(next);
4296 }
4297 break;
4298 }
4299 path->slots[level] = slot;
4300 while (1) {
4301 level--;
4302 c = path->nodes[level];
4303 if (path->locks[level])
4304 btrfs_tree_unlock(c);
4305
4306 free_extent_buffer(c);
4307 path->nodes[level] = next;
4308 path->slots[level] = 0;
4309 if (!path->skip_locking)
4310 path->locks[level] = 1;
4311
4312 if (!level)
4313 break;
4314
4315 ret = read_block_for_search(NULL, root, path, &next, level,
4316 0, &key);
4317 if (ret == -EAGAIN)
4318 goto again;
4319
4320 if (ret < 0) {
4321 btrfs_release_path(root, path);
4322 goto done;
4323 }
4324
4325 if (!path->skip_locking) {
4326 btrfs_assert_tree_locked(path->nodes[level]);
4327 ret = btrfs_try_spin_lock(next);
4328 if (!ret) {
4329 btrfs_set_path_blocking(path);
4330 btrfs_tree_lock(next);
4331 if (!force_blocking)
4332 btrfs_clear_path_blocking(path, next);
4333 }
4334 if (force_blocking)
4335 btrfs_set_lock_blocking(next);
4336 }
4337 }
4338 ret = 0;
4339 done:
4340 unlock_up(path, 0, 1);
4341 path->leave_spinning = old_spinning;
4342 if (!old_spinning)
4343 btrfs_set_path_blocking(path);
4344
4345 return ret;
4346 }
4347
4348 /*
4349 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4350 * searching until it gets past min_objectid or finds an item of 'type'
4351 *
4352 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4353 */
4354 int btrfs_previous_item(struct btrfs_root *root,
4355 struct btrfs_path *path, u64 min_objectid,
4356 int type)
4357 {
4358 struct btrfs_key found_key;
4359 struct extent_buffer *leaf;
4360 u32 nritems;
4361 int ret;
4362
4363 while (1) {
4364 if (path->slots[0] == 0) {
4365 btrfs_set_path_blocking(path);
4366 ret = btrfs_prev_leaf(root, path);
4367 if (ret != 0)
4368 return ret;
4369 } else {
4370 path->slots[0]--;
4371 }
4372 leaf = path->nodes[0];
4373 nritems = btrfs_header_nritems(leaf);
4374 if (nritems == 0)
4375 return 1;
4376 if (path->slots[0] == nritems)
4377 path->slots[0]--;
4378
4379 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4380 if (found_key.objectid < min_objectid)
4381 break;
4382 if (found_key.type == type)
4383 return 0;
4384 if (found_key.objectid == min_objectid &&
4385 found_key.type < type)
4386 break;
4387 }
4388 return 1;
4389 }