]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/ctree.c
Btrfs: hunting slab corruption
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7 *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9 *root, struct btrfs_path *path, int data_size);
10 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
11 *root, struct buffer_head *dst, struct buffer_head
12 *src);
13 static int balance_node_right(struct btrfs_trans_handle *trans, struct
14 btrfs_root *root, struct buffer_head *dst_buf,
15 struct buffer_head *src_buf);
16 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
17 struct btrfs_path *path, int level, int slot);
18
19 inline void btrfs_init_path(struct btrfs_path *p)
20 {
21 memset(p, 0, sizeof(*p));
22 }
23
24 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
25 {
26 int i;
27 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
28 if (!p->nodes[i])
29 break;
30 btrfs_block_release(root, p->nodes[i]);
31 }
32 memset(p, 0, sizeof(*p));
33 }
34
35 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
36 *root, struct buffer_head *buf, struct buffer_head
37 *parent, int parent_slot, struct buffer_head
38 **cow_ret)
39 {
40 struct buffer_head *cow;
41 struct btrfs_node *cow_node;
42
43 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
44 trans->transid) {
45 *cow_ret = buf;
46 return 0;
47 }
48 cow = btrfs_alloc_free_block(trans, root);
49 cow_node = btrfs_buffer_node(cow);
50 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
51 btrfs_set_header_blocknr(&cow_node->header, cow->b_blocknr);
52 btrfs_set_header_generation(&cow_node->header, trans->transid);
53 *cow_ret = cow;
54 mark_buffer_dirty(cow);
55 btrfs_inc_ref(trans, root, buf);
56 if (buf == root->node) {
57 root->node = cow;
58 get_bh(cow);
59 if (buf != root->commit_root)
60 btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
61 btrfs_block_release(root, buf);
62 } else {
63 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
64 cow->b_blocknr);
65 mark_buffer_dirty(parent);
66 btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
67 }
68 btrfs_block_release(root, buf);
69 return 0;
70 }
71
72 /*
73 * The leaf data grows from end-to-front in the node.
74 * this returns the address of the start of the last item,
75 * which is the stop of the leaf data stack
76 */
77 static inline unsigned int leaf_data_end(struct btrfs_root *root,
78 struct btrfs_leaf *leaf)
79 {
80 u32 nr = btrfs_header_nritems(&leaf->header);
81 if (nr == 0)
82 return BTRFS_LEAF_DATA_SIZE(root);
83 return btrfs_item_offset(leaf->items + nr - 1);
84 }
85
86 /*
87 * The space between the end of the leaf items and
88 * the start of the leaf data. IOW, how much room
89 * the leaf has left for both items and data
90 */
91 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
92 {
93 int data_end = leaf_data_end(root, leaf);
94 int nritems = btrfs_header_nritems(&leaf->header);
95 char *items_end = (char *)(leaf->items + nritems + 1);
96 return (char *)(btrfs_leaf_data(leaf) + data_end) - (char *)items_end;
97 }
98
99 /*
100 * compare two keys in a memcmp fashion
101 */
102 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
103 {
104 struct btrfs_key k1;
105
106 btrfs_disk_key_to_cpu(&k1, disk);
107
108 if (k1.objectid > k2->objectid)
109 return 1;
110 if (k1.objectid < k2->objectid)
111 return -1;
112 if (k1.offset > k2->offset)
113 return 1;
114 if (k1.offset < k2->offset)
115 return -1;
116 if (k1.flags > k2->flags)
117 return 1;
118 if (k1.flags < k2->flags)
119 return -1;
120 return 0;
121 }
122
123 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
124 int level)
125 {
126 int i;
127 struct btrfs_node *parent = NULL;
128 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
129 int parent_slot;
130 u32 nritems = btrfs_header_nritems(&node->header);
131
132 if (path->nodes[level + 1])
133 parent = btrfs_buffer_node(path->nodes[level + 1]);
134 parent_slot = path->slots[level + 1];
135 BUG_ON(nritems == 0);
136 if (parent) {
137 struct btrfs_disk_key *parent_key;
138 parent_key = &parent->ptrs[parent_slot].key;
139 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
140 sizeof(struct btrfs_disk_key)));
141 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
142 btrfs_header_blocknr(&node->header));
143 }
144 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
145 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
146 struct btrfs_key cpukey;
147 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
148 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
149 }
150 return 0;
151 }
152
153 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
154 int level)
155 {
156 int i;
157 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
158 struct btrfs_node *parent = NULL;
159 int parent_slot;
160 u32 nritems = btrfs_header_nritems(&leaf->header);
161
162 if (path->nodes[level + 1])
163 parent = btrfs_buffer_node(path->nodes[level + 1]);
164 parent_slot = path->slots[level + 1];
165 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
166
167 if (nritems == 0)
168 return 0;
169
170 if (parent) {
171 struct btrfs_disk_key *parent_key;
172 parent_key = &parent->ptrs[parent_slot].key;
173 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
174 sizeof(struct btrfs_disk_key)));
175 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
176 btrfs_header_blocknr(&leaf->header));
177 }
178 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
179 struct btrfs_key cpukey;
180 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
181 BUG_ON(comp_keys(&leaf->items[i].key,
182 &cpukey) >= 0);
183 BUG_ON(btrfs_item_offset(leaf->items + i) !=
184 btrfs_item_end(leaf->items + i + 1));
185 if (i == 0) {
186 BUG_ON(btrfs_item_offset(leaf->items + i) +
187 btrfs_item_size(leaf->items + i) !=
188 BTRFS_LEAF_DATA_SIZE(root));
189 }
190 }
191 return 0;
192 }
193
194 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
195 int level)
196 {
197 if (level == 0)
198 return check_leaf(root, path, level);
199 return check_node(root, path, level);
200 }
201
202 /*
203 * search for key in the array p. items p are item_size apart
204 * and there are 'max' items in p
205 * the slot in the array is returned via slot, and it points to
206 * the place where you would insert key if it is not found in
207 * the array.
208 *
209 * slot may point to max if the key is bigger than all of the keys
210 */
211 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
212 int max, int *slot)
213 {
214 int low = 0;
215 int high = max;
216 int mid;
217 int ret;
218 struct btrfs_disk_key *tmp;
219
220 while(low < high) {
221 mid = (low + high) / 2;
222 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
223 ret = comp_keys(tmp, key);
224
225 if (ret < 0)
226 low = mid + 1;
227 else if (ret > 0)
228 high = mid;
229 else {
230 *slot = mid;
231 return 0;
232 }
233 }
234 *slot = low;
235 return 1;
236 }
237
238 /*
239 * simple bin_search frontend that does the right thing for
240 * leaves vs nodes
241 */
242 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
243 {
244 if (btrfs_is_leaf(c)) {
245 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
246 return generic_bin_search((void *)l->items,
247 sizeof(struct btrfs_item),
248 key, btrfs_header_nritems(&c->header),
249 slot);
250 } else {
251 return generic_bin_search((void *)c->ptrs,
252 sizeof(struct btrfs_key_ptr),
253 key, btrfs_header_nritems(&c->header),
254 slot);
255 }
256 return -1;
257 }
258
259 static struct buffer_head *read_node_slot(struct btrfs_root *root,
260 struct buffer_head *parent_buf,
261 int slot)
262 {
263 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
264 if (slot < 0)
265 return NULL;
266 if (slot >= btrfs_header_nritems(&node->header))
267 return NULL;
268 return read_tree_block(root, btrfs_node_blockptr(node, slot));
269 }
270
271 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
272 *root, struct btrfs_path *path, int level)
273 {
274 struct buffer_head *right_buf;
275 struct buffer_head *mid_buf;
276 struct buffer_head *left_buf;
277 struct buffer_head *parent_buf = NULL;
278 struct btrfs_node *right = NULL;
279 struct btrfs_node *mid;
280 struct btrfs_node *left = NULL;
281 struct btrfs_node *parent = NULL;
282 int ret = 0;
283 int wret;
284 int pslot;
285 int orig_slot = path->slots[level];
286 u64 orig_ptr;
287
288 if (level == 0)
289 return 0;
290
291 mid_buf = path->nodes[level];
292 mid = btrfs_buffer_node(mid_buf);
293 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
294
295 if (level < BTRFS_MAX_LEVEL - 1)
296 parent_buf = path->nodes[level + 1];
297 pslot = path->slots[level + 1];
298
299 /*
300 * deal with the case where there is only one pointer in the root
301 * by promoting the node below to a root
302 */
303 if (!parent_buf) {
304 struct buffer_head *child;
305 u64 blocknr = mid_buf->b_blocknr;
306
307 if (btrfs_header_nritems(&mid->header) != 1)
308 return 0;
309
310 /* promote the child to a root */
311 child = read_node_slot(root, mid_buf, 0);
312 BUG_ON(!child);
313 root->node = child;
314 path->nodes[level] = NULL;
315 /* once for the path */
316 btrfs_block_release(root, mid_buf);
317 /* once for the root ptr */
318 btrfs_block_release(root, mid_buf);
319 clean_tree_block(trans, root, mid_buf);
320 return btrfs_free_extent(trans, root, blocknr, 1, 1);
321 }
322 parent = btrfs_buffer_node(parent_buf);
323
324 if (btrfs_header_nritems(&mid->header) >
325 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
326 return 0;
327
328 left_buf = read_node_slot(root, parent_buf, pslot - 1);
329 right_buf = read_node_slot(root, parent_buf, pslot + 1);
330
331 /* first, try to make some room in the middle buffer */
332 if (left_buf) {
333 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
334 &left_buf);
335 left = btrfs_buffer_node(left_buf);
336 orig_slot += btrfs_header_nritems(&left->header);
337 wret = push_node_left(trans, root, left_buf, mid_buf);
338 if (wret < 0)
339 ret = wret;
340 }
341
342 /*
343 * then try to empty the right most buffer into the middle
344 */
345 if (right_buf) {
346 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
347 &right_buf);
348 right = btrfs_buffer_node(right_buf);
349 wret = push_node_left(trans, root, mid_buf, right_buf);
350 if (wret < 0)
351 ret = wret;
352 if (btrfs_header_nritems(&right->header) == 0) {
353 u64 blocknr = right_buf->b_blocknr;
354 btrfs_block_release(root, right_buf);
355 clean_tree_block(trans, root, right_buf);
356 right_buf = NULL;
357 right = NULL;
358 wret = del_ptr(trans, root, path, level + 1, pslot +
359 1);
360 if (wret)
361 ret = wret;
362 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
363 if (wret)
364 ret = wret;
365 } else {
366 memcpy(&parent->ptrs[pslot + 1].key,
367 &right->ptrs[0].key,
368 sizeof(struct btrfs_disk_key));
369 mark_buffer_dirty(parent_buf);
370 }
371 }
372 if (btrfs_header_nritems(&mid->header) == 1) {
373 /*
374 * we're not allowed to leave a node with one item in the
375 * tree during a delete. A deletion from lower in the tree
376 * could try to delete the only pointer in this node.
377 * So, pull some keys from the left.
378 * There has to be a left pointer at this point because
379 * otherwise we would have pulled some pointers from the
380 * right
381 */
382 BUG_ON(!left_buf);
383 wret = balance_node_right(trans, root, mid_buf, left_buf);
384 if (wret < 0)
385 ret = wret;
386 BUG_ON(wret == 1);
387 }
388 if (btrfs_header_nritems(&mid->header) == 0) {
389 /* we've managed to empty the middle node, drop it */
390 u64 blocknr = mid_buf->b_blocknr;
391 btrfs_block_release(root, mid_buf);
392 clean_tree_block(trans, root, mid_buf);
393 mid_buf = NULL;
394 mid = NULL;
395 wret = del_ptr(trans, root, path, level + 1, pslot);
396 if (wret)
397 ret = wret;
398 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
399 if (wret)
400 ret = wret;
401 } else {
402 /* update the parent key to reflect our changes */
403 memcpy(&parent->ptrs[pslot].key, &mid->ptrs[0].key,
404 sizeof(struct btrfs_disk_key));
405 mark_buffer_dirty(parent_buf);
406 }
407
408 /* update the path */
409 if (left_buf) {
410 if (btrfs_header_nritems(&left->header) > orig_slot) {
411 get_bh(left_buf);
412 path->nodes[level] = left_buf;
413 path->slots[level + 1] -= 1;
414 path->slots[level] = orig_slot;
415 if (mid_buf)
416 btrfs_block_release(root, mid_buf);
417 } else {
418 orig_slot -= btrfs_header_nritems(&left->header);
419 path->slots[level] = orig_slot;
420 }
421 }
422 /* double check we haven't messed things up */
423 check_block(root, path, level);
424 if (orig_ptr !=
425 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
426 path->slots[level]))
427 BUG();
428
429 if (right_buf)
430 btrfs_block_release(root, right_buf);
431 if (left_buf)
432 btrfs_block_release(root, left_buf);
433 return ret;
434 }
435
436 /*
437 * look for key in the tree. path is filled in with nodes along the way
438 * if key is found, we return zero and you can find the item in the leaf
439 * level of the path (level 0)
440 *
441 * If the key isn't found, the path points to the slot where it should
442 * be inserted, and 1 is returned. If there are other errors during the
443 * search a negative error number is returned.
444 *
445 * if ins_len > 0, nodes and leaves will be split as we walk down the
446 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
447 * possible)
448 */
449 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
450 *root, struct btrfs_key *key, struct btrfs_path *p, int
451 ins_len, int cow)
452 {
453 struct buffer_head *b;
454 struct buffer_head *cow_buf;
455 struct btrfs_node *c;
456 int slot;
457 int ret;
458 int level;
459
460 WARN_ON(p->nodes[0] != NULL);
461 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
462 again:
463 b = root->node;
464 get_bh(b);
465 while (b) {
466 c = btrfs_buffer_node(b);
467 level = btrfs_header_level(&c->header);
468 if (cow) {
469 int wret;
470 wret = btrfs_cow_block(trans, root, b,
471 p->nodes[level + 1],
472 p->slots[level + 1],
473 &cow_buf);
474 b = cow_buf;
475 }
476 BUG_ON(!cow && ins_len);
477 c = btrfs_buffer_node(b);
478 p->nodes[level] = b;
479 ret = check_block(root, p, level);
480 if (ret)
481 return -1;
482 ret = bin_search(c, key, &slot);
483 if (!btrfs_is_leaf(c)) {
484 if (ret && slot > 0)
485 slot -= 1;
486 p->slots[level] = slot;
487 if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
488 BTRFS_NODEPTRS_PER_BLOCK(root)) {
489 int sret = split_node(trans, root, p, level);
490 BUG_ON(sret > 0);
491 if (sret)
492 return sret;
493 b = p->nodes[level];
494 c = btrfs_buffer_node(b);
495 slot = p->slots[level];
496 } else if (ins_len < 0) {
497 int sret = balance_level(trans, root, p,
498 level);
499 if (sret)
500 return sret;
501 b = p->nodes[level];
502 if (!b)
503 goto again;
504 c = btrfs_buffer_node(b);
505 slot = p->slots[level];
506 BUG_ON(btrfs_header_nritems(&c->header) == 1);
507 }
508 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
509 } else {
510 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
511 p->slots[level] = slot;
512 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
513 sizeof(struct btrfs_item) + ins_len) {
514 int sret = split_leaf(trans, root, p, ins_len);
515 BUG_ON(sret > 0);
516 if (sret)
517 return sret;
518 }
519 return ret;
520 }
521 }
522 return 1;
523 }
524
525 /*
526 * adjust the pointers going up the tree, starting at level
527 * making sure the right key of each node is points to 'key'.
528 * This is used after shifting pointers to the left, so it stops
529 * fixing up pointers when a given leaf/node is not in slot 0 of the
530 * higher levels
531 *
532 * If this fails to write a tree block, it returns -1, but continues
533 * fixing up the blocks in ram so the tree is consistent.
534 */
535 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
536 *root, struct btrfs_path *path, struct btrfs_disk_key
537 *key, int level)
538 {
539 int i;
540 int ret = 0;
541 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
542 struct btrfs_node *t;
543 int tslot = path->slots[i];
544 if (!path->nodes[i])
545 break;
546 t = btrfs_buffer_node(path->nodes[i]);
547 memcpy(&t->ptrs[tslot].key, key, sizeof(*key));
548 mark_buffer_dirty(path->nodes[i]);
549 if (tslot != 0)
550 break;
551 }
552 return ret;
553 }
554
555 /*
556 * try to push data from one node into the next node left in the
557 * tree.
558 *
559 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
560 * error, and > 0 if there was no room in the left hand block.
561 */
562 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
563 *root, struct buffer_head *dst_buf, struct
564 buffer_head *src_buf)
565 {
566 struct btrfs_node *src = btrfs_buffer_node(src_buf);
567 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
568 int push_items = 0;
569 int src_nritems;
570 int dst_nritems;
571 int ret = 0;
572
573 src_nritems = btrfs_header_nritems(&src->header);
574 dst_nritems = btrfs_header_nritems(&dst->header);
575 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
576 if (push_items <= 0) {
577 return 1;
578 }
579
580 if (src_nritems < push_items)
581 push_items = src_nritems;
582
583 memcpy(dst->ptrs + dst_nritems, src->ptrs,
584 push_items * sizeof(struct btrfs_key_ptr));
585 if (push_items < src_nritems) {
586 memmove(src->ptrs, src->ptrs + push_items,
587 (src_nritems - push_items) *
588 sizeof(struct btrfs_key_ptr));
589 }
590 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
591 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
592 mark_buffer_dirty(src_buf);
593 mark_buffer_dirty(dst_buf);
594 return ret;
595 }
596
597 /*
598 * try to push data from one node into the next node right in the
599 * tree.
600 *
601 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
602 * error, and > 0 if there was no room in the right hand block.
603 *
604 * this will only push up to 1/2 the contents of the left node over
605 */
606 static int balance_node_right(struct btrfs_trans_handle *trans, struct
607 btrfs_root *root, struct buffer_head *dst_buf,
608 struct buffer_head *src_buf)
609 {
610 struct btrfs_node *src = btrfs_buffer_node(src_buf);
611 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
612 int push_items = 0;
613 int max_push;
614 int src_nritems;
615 int dst_nritems;
616 int ret = 0;
617
618 src_nritems = btrfs_header_nritems(&src->header);
619 dst_nritems = btrfs_header_nritems(&dst->header);
620 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
621 if (push_items <= 0) {
622 return 1;
623 }
624
625 max_push = src_nritems / 2 + 1;
626 /* don't try to empty the node */
627 if (max_push > src_nritems)
628 return 1;
629 if (max_push < push_items)
630 push_items = max_push;
631
632 memmove(dst->ptrs + push_items, dst->ptrs,
633 dst_nritems * sizeof(struct btrfs_key_ptr));
634 memcpy(dst->ptrs, src->ptrs + src_nritems - push_items,
635 push_items * sizeof(struct btrfs_key_ptr));
636
637 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
638 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
639
640 mark_buffer_dirty(src_buf);
641 mark_buffer_dirty(dst_buf);
642 return ret;
643 }
644
645 /*
646 * helper function to insert a new root level in the tree.
647 * A new node is allocated, and a single item is inserted to
648 * point to the existing root
649 *
650 * returns zero on success or < 0 on failure.
651 */
652 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
653 *root, struct btrfs_path *path, int level)
654 {
655 struct buffer_head *t;
656 struct btrfs_node *lower;
657 struct btrfs_node *c;
658 struct btrfs_disk_key *lower_key;
659
660 BUG_ON(path->nodes[level]);
661 BUG_ON(path->nodes[level-1] != root->node);
662
663 t = btrfs_alloc_free_block(trans, root);
664 c = btrfs_buffer_node(t);
665 memset(c, 0, root->blocksize);
666 btrfs_set_header_nritems(&c->header, 1);
667 btrfs_set_header_level(&c->header, level);
668 btrfs_set_header_blocknr(&c->header, t->b_blocknr);
669 btrfs_set_header_generation(&c->header, trans->transid);
670 btrfs_set_header_parentid(&c->header,
671 btrfs_header_parentid(btrfs_buffer_header(root->node)));
672 lower = btrfs_buffer_node(path->nodes[level-1]);
673 if (btrfs_is_leaf(lower))
674 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
675 else
676 lower_key = &lower->ptrs[0].key;
677 memcpy(&c->ptrs[0].key, lower_key, sizeof(struct btrfs_disk_key));
678 btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->b_blocknr);
679
680 mark_buffer_dirty(t);
681
682 /* the super has an extra ref to root->node */
683 btrfs_block_release(root, root->node);
684 root->node = t;
685 get_bh(t);
686 path->nodes[level] = t;
687 path->slots[level] = 0;
688 return 0;
689 }
690
691 /*
692 * worker function to insert a single pointer in a node.
693 * the node should have enough room for the pointer already
694 *
695 * slot and level indicate where you want the key to go, and
696 * blocknr is the block the key points to.
697 *
698 * returns zero on success and < 0 on any error
699 */
700 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
701 *root, struct btrfs_path *path, struct btrfs_disk_key
702 *key, u64 blocknr, int slot, int level)
703 {
704 struct btrfs_node *lower;
705 int nritems;
706
707 BUG_ON(!path->nodes[level]);
708 lower = btrfs_buffer_node(path->nodes[level]);
709 nritems = btrfs_header_nritems(&lower->header);
710 if (slot > nritems)
711 BUG();
712 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
713 BUG();
714 if (slot != nritems) {
715 memmove(lower->ptrs + slot + 1, lower->ptrs + slot,
716 (nritems - slot) * sizeof(struct btrfs_key_ptr));
717 }
718 memcpy(&lower->ptrs[slot].key, key, sizeof(struct btrfs_disk_key));
719 btrfs_set_node_blockptr(lower, slot, blocknr);
720 btrfs_set_header_nritems(&lower->header, nritems + 1);
721 mark_buffer_dirty(path->nodes[level]);
722 return 0;
723 }
724
725 /*
726 * split the node at the specified level in path in two.
727 * The path is corrected to point to the appropriate node after the split
728 *
729 * Before splitting this tries to make some room in the node by pushing
730 * left and right, if either one works, it returns right away.
731 *
732 * returns 0 on success and < 0 on failure
733 */
734 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
735 *root, struct btrfs_path *path, int level)
736 {
737 struct buffer_head *t;
738 struct btrfs_node *c;
739 struct buffer_head *split_buffer;
740 struct btrfs_node *split;
741 int mid;
742 int ret;
743 int wret;
744 u32 c_nritems;
745
746 t = path->nodes[level];
747 c = btrfs_buffer_node(t);
748 if (t == root->node) {
749 /* trying to split the root, lets make a new one */
750 ret = insert_new_root(trans, root, path, level + 1);
751 if (ret)
752 return ret;
753 }
754 c_nritems = btrfs_header_nritems(&c->header);
755 split_buffer = btrfs_alloc_free_block(trans, root);
756 split = btrfs_buffer_node(split_buffer);
757 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
758 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
759 btrfs_set_header_blocknr(&split->header, split_buffer->b_blocknr);
760 btrfs_set_header_generation(&split->header, trans->transid);
761 btrfs_set_header_parentid(&split->header,
762 btrfs_header_parentid(btrfs_buffer_header(root->node)));
763 mid = (c_nritems + 1) / 2;
764 memcpy(split->ptrs, c->ptrs + mid,
765 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
766 btrfs_set_header_nritems(&split->header, c_nritems - mid);
767 btrfs_set_header_nritems(&c->header, mid);
768 ret = 0;
769
770 mark_buffer_dirty(t);
771 mark_buffer_dirty(split_buffer);
772 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
773 split_buffer->b_blocknr, path->slots[level + 1] + 1,
774 level + 1);
775 if (wret)
776 ret = wret;
777
778 if (path->slots[level] >= mid) {
779 path->slots[level] -= mid;
780 btrfs_block_release(root, t);
781 path->nodes[level] = split_buffer;
782 path->slots[level + 1] += 1;
783 } else {
784 btrfs_block_release(root, split_buffer);
785 }
786 return ret;
787 }
788
789 /*
790 * how many bytes are required to store the items in a leaf. start
791 * and nr indicate which items in the leaf to check. This totals up the
792 * space used both by the item structs and the item data
793 */
794 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
795 {
796 int data_len;
797 int end = start + nr - 1;
798
799 if (!nr)
800 return 0;
801 data_len = btrfs_item_end(l->items + start);
802 data_len = data_len - btrfs_item_offset(l->items + end);
803 data_len += sizeof(struct btrfs_item) * nr;
804 return data_len;
805 }
806
807 /*
808 * push some data in the path leaf to the right, trying to free up at
809 * least data_size bytes. returns zero if the push worked, nonzero otherwise
810 *
811 * returns 1 if the push failed because the other node didn't have enough
812 * room, 0 if everything worked out and < 0 if there were major errors.
813 */
814 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
815 *root, struct btrfs_path *path, int data_size)
816 {
817 struct buffer_head *left_buf = path->nodes[0];
818 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
819 struct btrfs_leaf *right;
820 struct buffer_head *right_buf;
821 struct buffer_head *upper;
822 struct btrfs_node *upper_node;
823 int slot;
824 int i;
825 int free_space;
826 int push_space = 0;
827 int push_items = 0;
828 struct btrfs_item *item;
829 u32 left_nritems;
830 u32 right_nritems;
831
832 slot = path->slots[1];
833 if (!path->nodes[1]) {
834 return 1;
835 }
836 upper = path->nodes[1];
837 upper_node = btrfs_buffer_node(upper);
838 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
839 return 1;
840 }
841 right_buf = read_tree_block(root,
842 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
843 right = btrfs_buffer_leaf(right_buf);
844 free_space = btrfs_leaf_free_space(root, right);
845 if (free_space < data_size + sizeof(struct btrfs_item)) {
846 btrfs_block_release(root, right_buf);
847 return 1;
848 }
849 /* cow and double check */
850 btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
851 right = btrfs_buffer_leaf(right_buf);
852 free_space = btrfs_leaf_free_space(root, right);
853 if (free_space < data_size + sizeof(struct btrfs_item)) {
854 btrfs_block_release(root, right_buf);
855 return 1;
856 }
857
858 left_nritems = btrfs_header_nritems(&left->header);
859 for (i = left_nritems - 1; i >= 0; i--) {
860 item = left->items + i;
861 if (path->slots[0] == i)
862 push_space += data_size + sizeof(*item);
863 if (btrfs_item_size(item) + sizeof(*item) + push_space >
864 free_space)
865 break;
866 push_items++;
867 push_space += btrfs_item_size(item) + sizeof(*item);
868 }
869 if (push_items == 0) {
870 btrfs_block_release(root, right_buf);
871 return 1;
872 }
873 right_nritems = btrfs_header_nritems(&right->header);
874 /* push left to right */
875 push_space = btrfs_item_end(left->items + left_nritems - push_items);
876 push_space -= leaf_data_end(root, left);
877 /* make room in the right data area */
878 memmove(btrfs_leaf_data(right) + leaf_data_end(root, right) -
879 push_space, btrfs_leaf_data(right) + leaf_data_end(root, right),
880 BTRFS_LEAF_DATA_SIZE(root) - leaf_data_end(root, right));
881 /* copy from the left data area */
882 memcpy(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - push_space,
883 btrfs_leaf_data(left) + leaf_data_end(root, left), push_space);
884 memmove(right->items + push_items, right->items,
885 right_nritems * sizeof(struct btrfs_item));
886 /* copy the items from left to right */
887 memcpy(right->items, left->items + left_nritems - push_items,
888 push_items * sizeof(struct btrfs_item));
889
890 /* update the item pointers */
891 right_nritems += push_items;
892 btrfs_set_header_nritems(&right->header, right_nritems);
893 push_space = BTRFS_LEAF_DATA_SIZE(root);
894 for (i = 0; i < right_nritems; i++) {
895 btrfs_set_item_offset(right->items + i, push_space -
896 btrfs_item_size(right->items + i));
897 push_space = btrfs_item_offset(right->items + i);
898 }
899 left_nritems -= push_items;
900 btrfs_set_header_nritems(&left->header, left_nritems);
901
902 mark_buffer_dirty(left_buf);
903 mark_buffer_dirty(right_buf);
904 memcpy(&upper_node->ptrs[slot + 1].key,
905 &right->items[0].key, sizeof(struct btrfs_disk_key));
906 mark_buffer_dirty(upper);
907
908 /* then fixup the leaf pointer in the path */
909 if (path->slots[0] >= left_nritems) {
910 path->slots[0] -= left_nritems;
911 btrfs_block_release(root, path->nodes[0]);
912 path->nodes[0] = right_buf;
913 path->slots[1] += 1;
914 } else {
915 btrfs_block_release(root, right_buf);
916 }
917 return 0;
918 }
919 /*
920 * push some data in the path leaf to the left, trying to free up at
921 * least data_size bytes. returns zero if the push worked, nonzero otherwise
922 */
923 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
924 *root, struct btrfs_path *path, int data_size)
925 {
926 struct buffer_head *right_buf = path->nodes[0];
927 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
928 struct buffer_head *t;
929 struct btrfs_leaf *left;
930 int slot;
931 int i;
932 int free_space;
933 int push_space = 0;
934 int push_items = 0;
935 struct btrfs_item *item;
936 u32 old_left_nritems;
937 int ret = 0;
938 int wret;
939
940 slot = path->slots[1];
941 if (slot == 0) {
942 return 1;
943 }
944 if (!path->nodes[1]) {
945 return 1;
946 }
947 t = read_tree_block(root,
948 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
949 left = btrfs_buffer_leaf(t);
950 free_space = btrfs_leaf_free_space(root, left);
951 if (free_space < data_size + sizeof(struct btrfs_item)) {
952 btrfs_block_release(root, t);
953 return 1;
954 }
955
956 /* cow and double check */
957 btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
958 left = btrfs_buffer_leaf(t);
959 free_space = btrfs_leaf_free_space(root, left);
960 if (free_space < data_size + sizeof(struct btrfs_item)) {
961 btrfs_block_release(root, t);
962 return 1;
963 }
964
965 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
966 item = right->items + i;
967 if (path->slots[0] == i)
968 push_space += data_size + sizeof(*item);
969 if (btrfs_item_size(item) + sizeof(*item) + push_space >
970 free_space)
971 break;
972 push_items++;
973 push_space += btrfs_item_size(item) + sizeof(*item);
974 }
975 if (push_items == 0) {
976 btrfs_block_release(root, t);
977 return 1;
978 }
979 /* push data from right to left */
980 memcpy(left->items + btrfs_header_nritems(&left->header),
981 right->items, push_items * sizeof(struct btrfs_item));
982 push_space = BTRFS_LEAF_DATA_SIZE(root) -
983 btrfs_item_offset(right->items + push_items -1);
984 memcpy(btrfs_leaf_data(left) + leaf_data_end(root, left) - push_space,
985 btrfs_leaf_data(right) +
986 btrfs_item_offset(right->items + push_items - 1),
987 push_space);
988 old_left_nritems = btrfs_header_nritems(&left->header);
989 BUG_ON(old_left_nritems < 0);
990
991 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
992 u32 ioff = btrfs_item_offset(left->items + i);
993 btrfs_set_item_offset(left->items + i, ioff -
994 (BTRFS_LEAF_DATA_SIZE(root) -
995 btrfs_item_offset(left->items +
996 old_left_nritems - 1)));
997 }
998 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
999
1000 /* fixup right node */
1001 push_space = btrfs_item_offset(right->items + push_items - 1) -
1002 leaf_data_end(root, right);
1003 memmove(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1004 push_space, btrfs_leaf_data(right) +
1005 leaf_data_end(root, right), push_space);
1006 memmove(right->items, right->items + push_items,
1007 (btrfs_header_nritems(&right->header) - push_items) *
1008 sizeof(struct btrfs_item));
1009 btrfs_set_header_nritems(&right->header,
1010 btrfs_header_nritems(&right->header) -
1011 push_items);
1012 push_space = BTRFS_LEAF_DATA_SIZE(root);
1013
1014 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1015 btrfs_set_item_offset(right->items + i, push_space -
1016 btrfs_item_size(right->items + i));
1017 push_space = btrfs_item_offset(right->items + i);
1018 }
1019
1020 mark_buffer_dirty(t);
1021 mark_buffer_dirty(right_buf);
1022
1023 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1024 if (wret)
1025 ret = wret;
1026
1027 /* then fixup the leaf pointer in the path */
1028 if (path->slots[0] < push_items) {
1029 path->slots[0] += old_left_nritems;
1030 btrfs_block_release(root, path->nodes[0]);
1031 path->nodes[0] = t;
1032 path->slots[1] -= 1;
1033 } else {
1034 btrfs_block_release(root, t);
1035 path->slots[0] -= push_items;
1036 }
1037 BUG_ON(path->slots[0] < 0);
1038 return ret;
1039 }
1040
1041 /*
1042 * split the path's leaf in two, making sure there is at least data_size
1043 * available for the resulting leaf level of the path.
1044 *
1045 * returns 0 if all went well and < 0 on failure.
1046 */
1047 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1048 *root, struct btrfs_path *path, int data_size)
1049 {
1050 struct buffer_head *l_buf;
1051 struct btrfs_leaf *l;
1052 u32 nritems;
1053 int mid;
1054 int slot;
1055 struct btrfs_leaf *right;
1056 struct buffer_head *right_buffer;
1057 int space_needed = data_size + sizeof(struct btrfs_item);
1058 int data_copy_size;
1059 int rt_data_off;
1060 int i;
1061 int ret;
1062 int wret;
1063
1064 /* first try to make some room by pushing left and right */
1065 wret = push_leaf_left(trans, root, path, data_size);
1066 if (wret < 0)
1067 return wret;
1068 if (wret) {
1069 wret = push_leaf_right(trans, root, path, data_size);
1070 if (wret < 0)
1071 return wret;
1072 }
1073 l_buf = path->nodes[0];
1074 l = btrfs_buffer_leaf(l_buf);
1075
1076 /* did the pushes work? */
1077 if (btrfs_leaf_free_space(root, l) >=
1078 sizeof(struct btrfs_item) + data_size)
1079 return 0;
1080
1081 if (!path->nodes[1]) {
1082 ret = insert_new_root(trans, root, path, 1);
1083 if (ret)
1084 return ret;
1085 }
1086 slot = path->slots[0];
1087 nritems = btrfs_header_nritems(&l->header);
1088 mid = (nritems + 1)/ 2;
1089 right_buffer = btrfs_alloc_free_block(trans, root);
1090 BUG_ON(!right_buffer);
1091 BUG_ON(mid == nritems);
1092 right = btrfs_buffer_leaf(right_buffer);
1093 memset(&right->header, 0, sizeof(right->header));
1094 if (mid <= slot) {
1095 /* FIXME, just alloc a new leaf here */
1096 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1097 BTRFS_LEAF_DATA_SIZE(root))
1098 BUG();
1099 } else {
1100 /* FIXME, just alloc a new leaf here */
1101 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1102 BTRFS_LEAF_DATA_SIZE(root))
1103 BUG();
1104 }
1105 btrfs_set_header_nritems(&right->header, nritems - mid);
1106 btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
1107 btrfs_set_header_generation(&right->header, trans->transid);
1108 btrfs_set_header_level(&right->header, 0);
1109 btrfs_set_header_parentid(&right->header,
1110 btrfs_header_parentid(btrfs_buffer_header(root->node)));
1111 data_copy_size = btrfs_item_end(l->items + mid) -
1112 leaf_data_end(root, l);
1113 memcpy(right->items, l->items + mid,
1114 (nritems - mid) * sizeof(struct btrfs_item));
1115 memcpy(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1116 data_copy_size, btrfs_leaf_data(l) +
1117 leaf_data_end(root, l), data_copy_size);
1118 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1119 btrfs_item_end(l->items + mid);
1120
1121 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1122 u32 ioff = btrfs_item_offset(right->items + i);
1123 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1124 }
1125
1126 btrfs_set_header_nritems(&l->header, mid);
1127 ret = 0;
1128 wret = insert_ptr(trans, root, path, &right->items[0].key,
1129 right_buffer->b_blocknr, path->slots[1] + 1, 1);
1130 if (wret)
1131 ret = wret;
1132 mark_buffer_dirty(right_buffer);
1133 mark_buffer_dirty(l_buf);
1134 BUG_ON(path->slots[0] != slot);
1135 if (mid <= slot) {
1136 btrfs_block_release(root, path->nodes[0]);
1137 path->nodes[0] = right_buffer;
1138 path->slots[0] -= mid;
1139 path->slots[1] += 1;
1140 } else
1141 btrfs_block_release(root, right_buffer);
1142 BUG_ON(path->slots[0] < 0);
1143 return ret;
1144 }
1145
1146 /*
1147 * Given a key and some data, insert an item into the tree.
1148 * This does all the path init required, making room in the tree if needed.
1149 */
1150 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1151 *root, struct btrfs_path *path, struct btrfs_key
1152 *cpu_key, u32 data_size)
1153 {
1154 int ret = 0;
1155 int slot;
1156 int slot_orig;
1157 struct btrfs_leaf *leaf;
1158 struct buffer_head *leaf_buf;
1159 u32 nritems;
1160 unsigned int data_end;
1161 struct btrfs_disk_key disk_key;
1162
1163 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1164
1165 /* create a root if there isn't one */
1166 if (!root->node)
1167 BUG();
1168 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1169 if (ret == 0) {
1170 return -EEXIST;
1171 }
1172 if (ret < 0)
1173 goto out;
1174
1175 slot_orig = path->slots[0];
1176 leaf_buf = path->nodes[0];
1177 leaf = btrfs_buffer_leaf(leaf_buf);
1178
1179 nritems = btrfs_header_nritems(&leaf->header);
1180 data_end = leaf_data_end(root, leaf);
1181
1182 if (btrfs_leaf_free_space(root, leaf) <
1183 sizeof(struct btrfs_item) + data_size)
1184 BUG();
1185
1186 slot = path->slots[0];
1187 BUG_ON(slot < 0);
1188 if (slot != nritems) {
1189 int i;
1190 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1191
1192 /*
1193 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1194 */
1195 /* first correct the data pointers */
1196 for (i = slot; i < nritems; i++) {
1197 u32 ioff = btrfs_item_offset(leaf->items + i);
1198 btrfs_set_item_offset(leaf->items + i,
1199 ioff - data_size);
1200 }
1201
1202 /* shift the items */
1203 memmove(leaf->items + slot + 1, leaf->items + slot,
1204 (nritems - slot) * sizeof(struct btrfs_item));
1205
1206 /* shift the data */
1207 memmove(btrfs_leaf_data(leaf) + data_end - data_size,
1208 btrfs_leaf_data(leaf) +
1209 data_end, old_data - data_end);
1210 data_end = old_data;
1211 }
1212 /* setup the item for the new data */
1213 memcpy(&leaf->items[slot].key, &disk_key,
1214 sizeof(struct btrfs_disk_key));
1215 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1216 btrfs_set_item_size(leaf->items + slot, data_size);
1217 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1218 mark_buffer_dirty(leaf_buf);
1219
1220 ret = 0;
1221 if (slot == 0)
1222 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1223
1224 if (btrfs_leaf_free_space(root, leaf) < 0)
1225 BUG();
1226 check_leaf(root, path, 0);
1227 out:
1228 return ret;
1229 }
1230
1231 /*
1232 * Given a key and some data, insert an item into the tree.
1233 * This does all the path init required, making room in the tree if needed.
1234 */
1235 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1236 *root, struct btrfs_key *cpu_key, void *data, u32
1237 data_size)
1238 {
1239 int ret = 0;
1240 struct btrfs_path path;
1241 u8 *ptr;
1242
1243 btrfs_init_path(&path);
1244 ret = btrfs_insert_empty_item(trans, root, &path, cpu_key, data_size);
1245 if (!ret) {
1246 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path.nodes[0]),
1247 path.slots[0], u8);
1248 memcpy(ptr, data, data_size);
1249 mark_buffer_dirty(path.nodes[0]);
1250 }
1251 btrfs_release_path(root, &path);
1252 return ret;
1253 }
1254
1255 /*
1256 * delete the pointer from a given node.
1257 *
1258 * If the delete empties a node, the node is removed from the tree,
1259 * continuing all the way the root if required. The root is converted into
1260 * a leaf if all the nodes are emptied.
1261 */
1262 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1263 struct btrfs_path *path, int level, int slot)
1264 {
1265 struct btrfs_node *node;
1266 struct buffer_head *parent = path->nodes[level];
1267 u32 nritems;
1268 int ret = 0;
1269 int wret;
1270
1271 node = btrfs_buffer_node(parent);
1272 nritems = btrfs_header_nritems(&node->header);
1273 if (slot != nritems -1) {
1274 memmove(node->ptrs + slot, node->ptrs + slot + 1,
1275 sizeof(struct btrfs_key_ptr) * (nritems - slot - 1));
1276 }
1277 nritems--;
1278 btrfs_set_header_nritems(&node->header, nritems);
1279 if (nritems == 0 && parent == root->node) {
1280 struct btrfs_header *header = btrfs_buffer_header(root->node);
1281 BUG_ON(btrfs_header_level(header) != 1);
1282 /* just turn the root into a leaf and break */
1283 btrfs_set_header_level(header, 0);
1284 } else if (slot == 0) {
1285 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1286 level + 1);
1287 if (wret)
1288 ret = wret;
1289 }
1290 mark_buffer_dirty(parent);
1291 return ret;
1292 }
1293
1294 /*
1295 * delete the item at the leaf level in path. If that empties
1296 * the leaf, remove it from the tree
1297 */
1298 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1299 struct btrfs_path *path)
1300 {
1301 int slot;
1302 struct btrfs_leaf *leaf;
1303 struct buffer_head *leaf_buf;
1304 int doff;
1305 int dsize;
1306 int ret = 0;
1307 int wret;
1308 u32 nritems;
1309
1310 leaf_buf = path->nodes[0];
1311 leaf = btrfs_buffer_leaf(leaf_buf);
1312 slot = path->slots[0];
1313 doff = btrfs_item_offset(leaf->items + slot);
1314 dsize = btrfs_item_size(leaf->items + slot);
1315 nritems = btrfs_header_nritems(&leaf->header);
1316
1317 if (slot != nritems - 1) {
1318 int i;
1319 int data_end = leaf_data_end(root, leaf);
1320 memmove(btrfs_leaf_data(leaf) + data_end + dsize,
1321 btrfs_leaf_data(leaf) + data_end,
1322 doff - data_end);
1323 for (i = slot + 1; i < nritems; i++) {
1324 u32 ioff = btrfs_item_offset(leaf->items + i);
1325 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1326 }
1327 memmove(leaf->items + slot, leaf->items + slot + 1,
1328 sizeof(struct btrfs_item) *
1329 (nritems - slot - 1));
1330 }
1331 btrfs_set_header_nritems(&leaf->header, nritems - 1);
1332 nritems--;
1333 /* delete the leaf if we've emptied it */
1334 if (nritems == 0) {
1335 if (leaf_buf == root->node) {
1336 btrfs_set_header_level(&leaf->header, 0);
1337 } else {
1338 clean_tree_block(trans, root, leaf_buf);
1339 wret = del_ptr(trans, root, path, 1, path->slots[1]);
1340 if (wret)
1341 ret = wret;
1342 wret = btrfs_free_extent(trans, root,
1343 leaf_buf->b_blocknr, 1, 1);
1344 if (wret)
1345 ret = wret;
1346 }
1347 } else {
1348 int used = leaf_space_used(leaf, 0, nritems);
1349 if (slot == 0) {
1350 wret = fixup_low_keys(trans, root, path,
1351 &leaf->items[0].key, 1);
1352 if (wret)
1353 ret = wret;
1354 }
1355
1356 /* delete the leaf if it is mostly empty */
1357 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1358 /* push_leaf_left fixes the path.
1359 * make sure the path still points to our leaf
1360 * for possible call to del_ptr below
1361 */
1362 slot = path->slots[1];
1363 get_bh(leaf_buf);
1364 wret = push_leaf_left(trans, root, path, 1);
1365 if (wret < 0)
1366 ret = wret;
1367 if (path->nodes[0] == leaf_buf &&
1368 btrfs_header_nritems(&leaf->header)) {
1369 wret = push_leaf_right(trans, root, path, 1);
1370 if (wret < 0)
1371 ret = wret;
1372 }
1373 if (btrfs_header_nritems(&leaf->header) == 0) {
1374 u64 blocknr = leaf_buf->b_blocknr;
1375 clean_tree_block(trans, root, leaf_buf);
1376 wret = del_ptr(trans, root, path, 1, slot);
1377 if (wret)
1378 ret = wret;
1379 btrfs_block_release(root, leaf_buf);
1380 wret = btrfs_free_extent(trans, root, blocknr,
1381 1, 1);
1382 if (wret)
1383 ret = wret;
1384 } else {
1385 mark_buffer_dirty(leaf_buf);
1386 btrfs_block_release(root, leaf_buf);
1387 }
1388 } else {
1389 mark_buffer_dirty(leaf_buf);
1390 }
1391 }
1392 return ret;
1393 }
1394
1395 /*
1396 * walk up the tree as far as required to find the next leaf.
1397 * returns 0 if it found something or 1 if there are no greater leaves.
1398 * returns < 0 on io errors.
1399 */
1400 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1401 {
1402 int slot;
1403 int level = 1;
1404 u64 blocknr;
1405 struct buffer_head *c;
1406 struct btrfs_node *c_node;
1407 struct buffer_head *next = NULL;
1408
1409 while(level < BTRFS_MAX_LEVEL) {
1410 if (!path->nodes[level])
1411 return 1;
1412 slot = path->slots[level] + 1;
1413 c = path->nodes[level];
1414 c_node = btrfs_buffer_node(c);
1415 if (slot >= btrfs_header_nritems(&c_node->header)) {
1416 level++;
1417 continue;
1418 }
1419 blocknr = btrfs_node_blockptr(c_node, slot);
1420 if (next)
1421 btrfs_block_release(root, next);
1422 next = read_tree_block(root, blocknr);
1423 break;
1424 }
1425 path->slots[level] = slot;
1426 while(1) {
1427 level--;
1428 c = path->nodes[level];
1429 btrfs_block_release(root, c);
1430 path->nodes[level] = next;
1431 path->slots[level] = 0;
1432 if (!level)
1433 break;
1434 next = read_tree_block(root,
1435 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1436 }
1437 return 0;
1438 }