2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
24 #include "transaction.h"
25 #include "print-tree.h"
28 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
29 *root
, struct btrfs_path
*path
, int level
);
30 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
31 *root
, struct btrfs_key
*ins_key
,
32 struct btrfs_path
*path
, int data_size
, int extend
);
33 static int push_node_left(struct btrfs_trans_handle
*trans
,
34 struct btrfs_root
*root
, struct extent_buffer
*dst
,
35 struct extent_buffer
*src
, int empty
);
36 static int balance_node_right(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 struct extent_buffer
*dst_buf
,
39 struct extent_buffer
*src_buf
);
40 static void del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
41 struct btrfs_path
*path
, int level
, int slot
);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
43 struct extent_buffer
*eb
);
44 struct extent_buffer
*read_old_tree_block(struct btrfs_root
*root
, u64 bytenr
,
45 u32 blocksize
, u64 parent_transid
,
47 struct extent_buffer
*btrfs_find_old_tree_block(struct btrfs_root
*root
,
48 u64 bytenr
, u32 blocksize
,
51 struct btrfs_path
*btrfs_alloc_path(void)
53 struct btrfs_path
*path
;
54 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
62 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
65 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
66 if (!p
->nodes
[i
] || !p
->locks
[i
])
68 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
69 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
70 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
71 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
72 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
77 * reset all the locked nodes in the patch to spinning locks.
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
84 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
85 struct extent_buffer
*held
, int held_rw
)
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
97 btrfs_set_lock_blocking_rw(held
, held_rw
);
98 if (held_rw
== BTRFS_WRITE_LOCK
)
99 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
100 else if (held_rw
== BTRFS_READ_LOCK
)
101 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
103 btrfs_set_path_blocking(p
);
106 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
107 if (p
->nodes
[i
] && p
->locks
[i
]) {
108 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
109 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
110 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
111 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
112 p
->locks
[i
] = BTRFS_READ_LOCK
;
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 btrfs_clear_lock_blocking_rw(held
, held_rw
);
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path
*p
)
127 btrfs_release_path(p
);
128 kmem_cache_free(btrfs_path_cachep
, p
);
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
135 * It is safe to call this on paths that no locks or extent buffers held.
137 noinline
void btrfs_release_path(struct btrfs_path
*p
)
141 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
146 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
149 free_extent_buffer(p
->nodes
[i
]);
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
164 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
166 struct extent_buffer
*eb
;
170 eb
= rcu_dereference(root
->node
);
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
178 if (atomic_inc_not_zero(&eb
->refs
)) {
188 /* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
192 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
194 struct extent_buffer
*eb
;
197 eb
= btrfs_root_node(root
);
199 if (eb
== root
->node
)
201 btrfs_tree_unlock(eb
);
202 free_extent_buffer(eb
);
207 /* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
211 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
213 struct extent_buffer
*eb
;
216 eb
= btrfs_root_node(root
);
217 btrfs_tree_read_lock(eb
);
218 if (eb
== root
->node
)
220 btrfs_tree_read_unlock(eb
);
221 free_extent_buffer(eb
);
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
230 static void add_root_to_dirty_list(struct btrfs_root
*root
)
232 spin_lock(&root
->fs_info
->trans_lock
);
233 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
234 list_add(&root
->dirty_list
,
235 &root
->fs_info
->dirty_cowonly_roots
);
237 spin_unlock(&root
->fs_info
->trans_lock
);
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
245 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
246 struct btrfs_root
*root
,
247 struct extent_buffer
*buf
,
248 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
250 struct extent_buffer
*cow
;
253 struct btrfs_disk_key disk_key
;
255 WARN_ON(root
->ref_cows
&& trans
->transid
!=
256 root
->fs_info
->running_transaction
->transid
);
257 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
259 level
= btrfs_header_level(buf
);
261 btrfs_item_key(buf
, &disk_key
, 0);
263 btrfs_node_key(buf
, &disk_key
, 0);
265 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, 0,
266 new_root_objectid
, &disk_key
, level
,
271 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
272 btrfs_set_header_bytenr(cow
, cow
->start
);
273 btrfs_set_header_generation(cow
, trans
->transid
);
274 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
275 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
276 BTRFS_HEADER_FLAG_RELOC
);
277 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
278 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
280 btrfs_set_header_owner(cow
, new_root_objectid
);
282 write_extent_buffer(cow
, root
->fs_info
->fsid
,
283 (unsigned long)btrfs_header_fsid(cow
),
286 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
287 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
288 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
290 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
295 btrfs_mark_buffer_dirty(cow
);
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
307 MOD_LOG_ROOT_REPLACE
,
310 struct tree_mod_move
{
315 struct tree_mod_root
{
320 struct tree_mod_elem
{
322 u64 index
; /* shifted logical */
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key
;
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move
;
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root
;
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
345 read_lock(&fs_info
->tree_mod_log_lock
);
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
350 read_unlock(&fs_info
->tree_mod_log_lock
);
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
355 write_lock(&fs_info
->tree_mod_log_lock
);
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
360 write_unlock(&fs_info
->tree_mod_log_lock
);
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
371 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
372 struct seq_list
*elem
)
376 tree_mod_log_write_lock(fs_info
);
377 spin_lock(&fs_info
->tree_mod_seq_lock
);
379 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
380 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
382 seq
= btrfs_inc_tree_mod_seq(fs_info
);
383 spin_unlock(&fs_info
->tree_mod_seq_lock
);
384 tree_mod_log_write_unlock(fs_info
);
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
390 struct seq_list
*elem
)
392 struct rb_root
*tm_root
;
393 struct rb_node
*node
;
394 struct rb_node
*next
;
395 struct seq_list
*cur_elem
;
396 struct tree_mod_elem
*tm
;
397 u64 min_seq
= (u64
)-1;
398 u64 seq_putting
= elem
->seq
;
403 spin_lock(&fs_info
->tree_mod_seq_lock
);
404 list_del(&elem
->list
);
407 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
408 if (cur_elem
->seq
< min_seq
) {
409 if (seq_putting
> cur_elem
->seq
) {
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
414 spin_unlock(&fs_info
->tree_mod_seq_lock
);
417 min_seq
= cur_elem
->seq
;
420 spin_unlock(&fs_info
->tree_mod_seq_lock
);
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
426 tree_mod_log_write_lock(fs_info
);
427 tm_root
= &fs_info
->tree_mod_log
;
428 for (node
= rb_first(tm_root
); node
; node
= next
) {
429 next
= rb_next(node
);
430 tm
= container_of(node
, struct tree_mod_elem
, node
);
431 if (tm
->seq
> min_seq
)
433 rb_erase(node
, tm_root
);
436 tree_mod_log_write_unlock(fs_info
);
440 * key order of the log:
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
448 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
450 struct rb_root
*tm_root
;
451 struct rb_node
**new;
452 struct rb_node
*parent
= NULL
;
453 struct tree_mod_elem
*cur
;
455 BUG_ON(!tm
|| !tm
->seq
);
457 tm_root
= &fs_info
->tree_mod_log
;
458 new = &tm_root
->rb_node
;
460 cur
= container_of(*new, struct tree_mod_elem
, node
);
462 if (cur
->index
< tm
->index
)
463 new = &((*new)->rb_left
);
464 else if (cur
->index
> tm
->index
)
465 new = &((*new)->rb_right
);
466 else if (cur
->seq
< tm
->seq
)
467 new = &((*new)->rb_left
);
468 else if (cur
->seq
> tm
->seq
)
469 new = &((*new)->rb_right
);
476 rb_link_node(&tm
->node
, parent
, new);
477 rb_insert_color(&tm
->node
, tm_root
);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
488 struct extent_buffer
*eb
) {
490 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
492 if (eb
&& btrfs_header_level(eb
) == 0)
495 tree_mod_log_write_lock(fs_info
);
496 if (list_empty(&fs_info
->tree_mod_seq_list
)) {
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
501 tree_mod_log_write_unlock(fs_info
);
509 * This allocates memory and gets a tree modification sequence number.
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
514 static inline int tree_mod_alloc(struct btrfs_fs_info
*fs_info
, gfp_t flags
,
515 struct tree_mod_elem
**tm_ret
)
517 struct tree_mod_elem
*tm
;
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
523 tm
= *tm_ret
= kzalloc(sizeof(*tm
), GFP_ATOMIC
);
527 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
532 __tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
533 struct extent_buffer
*eb
, int slot
,
534 enum mod_log_op op
, gfp_t flags
)
537 struct tree_mod_elem
*tm
;
539 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
543 tm
->index
= eb
->start
>> PAGE_CACHE_SHIFT
;
544 if (op
!= MOD_LOG_KEY_ADD
) {
545 btrfs_node_key(eb
, &tm
->key
, slot
);
546 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
550 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
552 return __tree_mod_log_insert(fs_info
, tm
);
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info
*fs_info
,
557 struct extent_buffer
*eb
, int slot
,
558 enum mod_log_op op
, gfp_t flags
)
562 if (tree_mod_dont_log(fs_info
, eb
))
565 ret
= __tree_mod_log_insert_key(fs_info
, eb
, slot
, op
, flags
);
567 tree_mod_log_write_unlock(fs_info
);
572 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
573 int slot
, enum mod_log_op op
)
575 return tree_mod_log_insert_key_mask(fs_info
, eb
, slot
, op
, GFP_NOFS
);
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info
*fs_info
,
580 struct extent_buffer
*eb
, int slot
,
583 return __tree_mod_log_insert_key(fs_info
, eb
, slot
, op
, GFP_NOFS
);
587 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
588 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
589 int nr_items
, gfp_t flags
)
591 struct tree_mod_elem
*tm
;
595 if (tree_mod_dont_log(fs_info
, eb
))
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
603 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
604 ret
= tree_mod_log_insert_key_locked(fs_info
, eb
, i
+ dst_slot
,
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING
);
609 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
613 tm
->index
= eb
->start
>> PAGE_CACHE_SHIFT
;
615 tm
->move
.dst_slot
= dst_slot
;
616 tm
->move
.nr_items
= nr_items
;
617 tm
->op
= MOD_LOG_MOVE_KEYS
;
619 ret
= __tree_mod_log_insert(fs_info
, tm
);
621 tree_mod_log_write_unlock(fs_info
);
626 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
632 if (btrfs_header_level(eb
) == 0)
635 nritems
= btrfs_header_nritems(eb
);
636 for (i
= nritems
- 1; i
>= 0; i
--) {
637 ret
= tree_mod_log_insert_key_locked(fs_info
, eb
, i
,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING
);
644 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
645 struct extent_buffer
*old_root
,
646 struct extent_buffer
*new_root
, gfp_t flags
)
648 struct tree_mod_elem
*tm
;
651 if (tree_mod_dont_log(fs_info
, NULL
))
654 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
658 tm
->index
= new_root
->start
>> PAGE_CACHE_SHIFT
;
659 tm
->old_root
.logical
= old_root
->start
;
660 tm
->old_root
.level
= btrfs_header_level(old_root
);
661 tm
->generation
= btrfs_header_generation(old_root
);
662 tm
->op
= MOD_LOG_ROOT_REPLACE
;
664 ret
= __tree_mod_log_insert(fs_info
, tm
);
666 tree_mod_log_write_unlock(fs_info
);
670 static struct tree_mod_elem
*
671 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
674 struct rb_root
*tm_root
;
675 struct rb_node
*node
;
676 struct tree_mod_elem
*cur
= NULL
;
677 struct tree_mod_elem
*found
= NULL
;
678 u64 index
= start
>> PAGE_CACHE_SHIFT
;
680 tree_mod_log_read_lock(fs_info
);
681 tm_root
= &fs_info
->tree_mod_log
;
682 node
= tm_root
->rb_node
;
684 cur
= container_of(node
, struct tree_mod_elem
, node
);
685 if (cur
->index
< index
) {
686 node
= node
->rb_left
;
687 } else if (cur
->index
> index
) {
688 node
= node
->rb_right
;
689 } else if (cur
->seq
< min_seq
) {
690 node
= node
->rb_left
;
691 } else if (!smallest
) {
692 /* we want the node with the highest seq */
694 BUG_ON(found
->seq
> cur
->seq
);
696 node
= node
->rb_left
;
697 } else if (cur
->seq
> min_seq
) {
698 /* we want the node with the smallest seq */
700 BUG_ON(found
->seq
< cur
->seq
);
702 node
= node
->rb_right
;
708 tree_mod_log_read_unlock(fs_info
);
714 * this returns the element from the log with the smallest time sequence
715 * value that's in the log (the oldest log item). any element with a time
716 * sequence lower than min_seq will be ignored.
718 static struct tree_mod_elem
*
719 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
722 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
726 * this returns the element from the log with the largest time sequence
727 * value that's in the log (the most recent log item). any element with
728 * a time sequence lower than min_seq will be ignored.
730 static struct tree_mod_elem
*
731 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
733 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
737 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
738 struct extent_buffer
*src
, unsigned long dst_offset
,
739 unsigned long src_offset
, int nr_items
)
744 if (tree_mod_dont_log(fs_info
, NULL
))
747 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0) {
748 tree_mod_log_write_unlock(fs_info
);
752 for (i
= 0; i
< nr_items
; i
++) {
753 ret
= tree_mod_log_insert_key_locked(fs_info
, src
,
757 ret
= tree_mod_log_insert_key_locked(fs_info
, dst
,
763 tree_mod_log_write_unlock(fs_info
);
767 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
768 int dst_offset
, int src_offset
, int nr_items
)
771 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
777 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
778 struct extent_buffer
*eb
, int slot
, int atomic
)
782 ret
= tree_mod_log_insert_key_mask(fs_info
, eb
, slot
,
784 atomic
? GFP_ATOMIC
: GFP_NOFS
);
789 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
791 if (tree_mod_dont_log(fs_info
, eb
))
794 __tree_mod_log_free_eb(fs_info
, eb
);
796 tree_mod_log_write_unlock(fs_info
);
800 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
801 struct extent_buffer
*new_root_node
)
804 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
805 new_root_node
, GFP_NOFS
);
810 * check if the tree block can be shared by multiple trees
812 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
813 struct extent_buffer
*buf
)
816 * Tree blocks not in refernece counted trees and tree roots
817 * are never shared. If a block was allocated after the last
818 * snapshot and the block was not allocated by tree relocation,
819 * we know the block is not shared.
821 if (root
->ref_cows
&&
822 buf
!= root
->node
&& buf
!= root
->commit_root
&&
823 (btrfs_header_generation(buf
) <=
824 btrfs_root_last_snapshot(&root
->root_item
) ||
825 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 if (root
->ref_cows
&&
829 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
835 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
836 struct btrfs_root
*root
,
837 struct extent_buffer
*buf
,
838 struct extent_buffer
*cow
,
848 * Backrefs update rules:
850 * Always use full backrefs for extent pointers in tree block
851 * allocated by tree relocation.
853 * If a shared tree block is no longer referenced by its owner
854 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855 * use full backrefs for extent pointers in tree block.
857 * If a tree block is been relocating
858 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859 * use full backrefs for extent pointers in tree block.
860 * The reason for this is some operations (such as drop tree)
861 * are only allowed for blocks use full backrefs.
864 if (btrfs_block_can_be_shared(root
, buf
)) {
865 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
866 buf
->len
, &refs
, &flags
);
871 btrfs_std_error(root
->fs_info
, ret
);
876 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
877 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
878 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
883 owner
= btrfs_header_owner(buf
);
884 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
885 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
888 if ((owner
== root
->root_key
.objectid
||
889 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
890 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
891 ret
= btrfs_inc_ref(trans
, root
, buf
, 1, 1);
892 BUG_ON(ret
); /* -ENOMEM */
894 if (root
->root_key
.objectid
==
895 BTRFS_TREE_RELOC_OBJECTID
) {
896 ret
= btrfs_dec_ref(trans
, root
, buf
, 0, 1);
897 BUG_ON(ret
); /* -ENOMEM */
898 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
899 BUG_ON(ret
); /* -ENOMEM */
901 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
904 if (root
->root_key
.objectid
==
905 BTRFS_TREE_RELOC_OBJECTID
)
906 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
908 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
909 BUG_ON(ret
); /* -ENOMEM */
911 if (new_flags
!= 0) {
912 ret
= btrfs_set_disk_extent_flags(trans
, root
,
920 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
921 if (root
->root_key
.objectid
==
922 BTRFS_TREE_RELOC_OBJECTID
)
923 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
925 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
926 BUG_ON(ret
); /* -ENOMEM */
927 ret
= btrfs_dec_ref(trans
, root
, buf
, 1, 1);
928 BUG_ON(ret
); /* -ENOMEM */
930 tree_mod_log_free_eb(root
->fs_info
, buf
);
931 clean_tree_block(trans
, root
, buf
);
938 * does the dirty work in cow of a single block. The parent block (if
939 * supplied) is updated to point to the new cow copy. The new buffer is marked
940 * dirty and returned locked. If you modify the block it needs to be marked
943 * search_start -- an allocation hint for the new block
945 * empty_size -- a hint that you plan on doing more cow. This is the size in
946 * bytes the allocator should try to find free next to the block it returns.
947 * This is just a hint and may be ignored by the allocator.
949 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
950 struct btrfs_root
*root
,
951 struct extent_buffer
*buf
,
952 struct extent_buffer
*parent
, int parent_slot
,
953 struct extent_buffer
**cow_ret
,
954 u64 search_start
, u64 empty_size
)
956 struct btrfs_disk_key disk_key
;
957 struct extent_buffer
*cow
;
966 btrfs_assert_tree_locked(buf
);
968 WARN_ON(root
->ref_cows
&& trans
->transid
!=
969 root
->fs_info
->running_transaction
->transid
);
970 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
972 level
= btrfs_header_level(buf
);
975 btrfs_item_key(buf
, &disk_key
, 0);
977 btrfs_node_key(buf
, &disk_key
, 0);
979 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
981 parent_start
= parent
->start
;
987 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, parent_start
,
988 root
->root_key
.objectid
, &disk_key
,
989 level
, search_start
, empty_size
);
993 /* cow is set to blocking by btrfs_init_new_buffer */
995 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
996 btrfs_set_header_bytenr(cow
, cow
->start
);
997 btrfs_set_header_generation(cow
, trans
->transid
);
998 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
999 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1000 BTRFS_HEADER_FLAG_RELOC
);
1001 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1002 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1004 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1006 write_extent_buffer(cow
, root
->fs_info
->fsid
,
1007 (unsigned long)btrfs_header_fsid(cow
),
1010 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1012 btrfs_abort_transaction(trans
, root
, ret
);
1017 btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1019 if (buf
== root
->node
) {
1020 WARN_ON(parent
&& parent
!= buf
);
1021 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1022 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1023 parent_start
= buf
->start
;
1027 extent_buffer_get(cow
);
1028 tree_mod_log_set_root_pointer(root
, cow
);
1029 rcu_assign_pointer(root
->node
, cow
);
1031 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1033 free_extent_buffer(buf
);
1034 add_root_to_dirty_list(root
);
1036 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1037 parent_start
= parent
->start
;
1041 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1042 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1043 MOD_LOG_KEY_REPLACE
);
1044 btrfs_set_node_blockptr(parent
, parent_slot
,
1046 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1048 btrfs_mark_buffer_dirty(parent
);
1049 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1053 btrfs_tree_unlock(buf
);
1054 free_extent_buffer_stale(buf
);
1055 btrfs_mark_buffer_dirty(cow
);
1061 * returns the logical address of the oldest predecessor of the given root.
1062 * entries older than time_seq are ignored.
1064 static struct tree_mod_elem
*
1065 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1066 struct btrfs_root
*root
, u64 time_seq
)
1068 struct tree_mod_elem
*tm
;
1069 struct tree_mod_elem
*found
= NULL
;
1070 u64 root_logical
= root
->node
->start
;
1077 * the very last operation that's logged for a root is the replacement
1078 * operation (if it is replaced at all). this has the index of the *new*
1079 * root, making it the very first operation that's logged for this root.
1082 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1087 * if there are no tree operation for the oldest root, we simply
1088 * return it. this should only happen if that (old) root is at
1095 * if there's an operation that's not a root replacement, we
1096 * found the oldest version of our root. normally, we'll find a
1097 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1099 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1103 root_logical
= tm
->old_root
.logical
;
1104 BUG_ON(root_logical
== root
->node
->start
);
1108 /* if there's no old root to return, return what we found instead */
1116 * tm is a pointer to the first operation to rewind within eb. then, all
1117 * previous operations will be rewinded (until we reach something older than
1121 __tree_mod_log_rewind(struct extent_buffer
*eb
, u64 time_seq
,
1122 struct tree_mod_elem
*first_tm
)
1125 struct rb_node
*next
;
1126 struct tree_mod_elem
*tm
= first_tm
;
1127 unsigned long o_dst
;
1128 unsigned long o_src
;
1129 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1131 n
= btrfs_header_nritems(eb
);
1132 while (tm
&& tm
->seq
>= time_seq
) {
1134 * all the operations are recorded with the operator used for
1135 * the modification. as we're going backwards, we do the
1136 * opposite of each operation here.
1139 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1140 BUG_ON(tm
->slot
< n
);
1141 case MOD_LOG_KEY_REMOVE
:
1143 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1144 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1145 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1146 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1149 case MOD_LOG_KEY_REPLACE
:
1150 BUG_ON(tm
->slot
>= n
);
1151 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1152 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1153 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1156 case MOD_LOG_KEY_ADD
:
1157 /* if a move operation is needed it's in the log */
1160 case MOD_LOG_MOVE_KEYS
:
1161 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1162 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1163 memmove_extent_buffer(eb
, o_dst
, o_src
,
1164 tm
->move
.nr_items
* p_size
);
1166 case MOD_LOG_ROOT_REPLACE
:
1168 * this operation is special. for roots, this must be
1169 * handled explicitly before rewinding.
1170 * for non-roots, this operation may exist if the node
1171 * was a root: root A -> child B; then A gets empty and
1172 * B is promoted to the new root. in the mod log, we'll
1173 * have a root-replace operation for B, a tree block
1174 * that is no root. we simply ignore that operation.
1178 next
= rb_next(&tm
->node
);
1181 tm
= container_of(next
, struct tree_mod_elem
, node
);
1182 if (tm
->index
!= first_tm
->index
)
1185 btrfs_set_header_nritems(eb
, n
);
1188 static struct extent_buffer
*
1189 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1192 struct extent_buffer
*eb_rewin
;
1193 struct tree_mod_elem
*tm
;
1198 if (btrfs_header_level(eb
) == 0)
1201 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1205 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1206 BUG_ON(tm
->slot
!= 0);
1207 eb_rewin
= alloc_dummy_extent_buffer(eb
->start
,
1208 fs_info
->tree_root
->nodesize
);
1210 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1211 btrfs_set_header_backref_rev(eb_rewin
,
1212 btrfs_header_backref_rev(eb
));
1213 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1214 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1216 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1220 extent_buffer_get(eb_rewin
);
1221 free_extent_buffer(eb
);
1223 __tree_mod_log_rewind(eb_rewin
, time_seq
, tm
);
1224 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1225 BTRFS_NODEPTRS_PER_BLOCK(fs_info
->fs_root
));
1231 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1232 * value. If there are no changes, the current root->root_node is returned. If
1233 * anything changed in between, there's a fresh buffer allocated on which the
1234 * rewind operations are done. In any case, the returned buffer is read locked.
1235 * Returns NULL on error (with no locks held).
1237 static inline struct extent_buffer
*
1238 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1240 struct tree_mod_elem
*tm
;
1241 struct extent_buffer
*eb
;
1242 struct extent_buffer
*old
;
1243 struct tree_mod_root
*old_root
= NULL
;
1244 u64 old_generation
= 0;
1248 eb
= btrfs_read_lock_root_node(root
);
1249 tm
= __tree_mod_log_oldest_root(root
->fs_info
, root
, time_seq
);
1253 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1254 old_root
= &tm
->old_root
;
1255 old_generation
= tm
->generation
;
1256 logical
= old_root
->logical
;
1258 logical
= root
->node
->start
;
1261 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1262 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1263 btrfs_tree_read_unlock(root
->node
);
1264 free_extent_buffer(root
->node
);
1265 blocksize
= btrfs_level_size(root
, old_root
->level
);
1266 old
= read_tree_block(root
, logical
, blocksize
, 0);
1268 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1272 eb
= btrfs_clone_extent_buffer(old
);
1273 free_extent_buffer(old
);
1275 } else if (old_root
) {
1276 btrfs_tree_read_unlock(root
->node
);
1277 free_extent_buffer(root
->node
);
1278 eb
= alloc_dummy_extent_buffer(logical
, root
->nodesize
);
1280 eb
= btrfs_clone_extent_buffer(root
->node
);
1281 btrfs_tree_read_unlock(root
->node
);
1282 free_extent_buffer(root
->node
);
1287 extent_buffer_get(eb
);
1288 btrfs_tree_read_lock(eb
);
1290 btrfs_set_header_bytenr(eb
, eb
->start
);
1291 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1292 btrfs_set_header_owner(eb
, root
->root_key
.objectid
);
1293 btrfs_set_header_level(eb
, old_root
->level
);
1294 btrfs_set_header_generation(eb
, old_generation
);
1297 __tree_mod_log_rewind(eb
, time_seq
, tm
);
1299 WARN_ON(btrfs_header_level(eb
) != 0);
1300 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(root
));
1305 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1307 struct tree_mod_elem
*tm
;
1310 tm
= __tree_mod_log_oldest_root(root
->fs_info
, root
, time_seq
);
1311 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1312 level
= tm
->old_root
.level
;
1315 level
= btrfs_header_level(root
->node
);
1322 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1323 struct btrfs_root
*root
,
1324 struct extent_buffer
*buf
)
1326 /* ensure we can see the force_cow */
1330 * We do not need to cow a block if
1331 * 1) this block is not created or changed in this transaction;
1332 * 2) this block does not belong to TREE_RELOC tree;
1333 * 3) the root is not forced COW.
1335 * What is forced COW:
1336 * when we create snapshot during commiting the transaction,
1337 * after we've finished coping src root, we must COW the shared
1338 * block to ensure the metadata consistency.
1340 if (btrfs_header_generation(buf
) == trans
->transid
&&
1341 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1342 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1343 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1350 * cows a single block, see __btrfs_cow_block for the real work.
1351 * This version of it has extra checks so that a block isn't cow'd more than
1352 * once per transaction, as long as it hasn't been written yet
1354 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1355 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1356 struct extent_buffer
*parent
, int parent_slot
,
1357 struct extent_buffer
**cow_ret
)
1362 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1363 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1364 (unsigned long long)trans
->transid
,
1365 (unsigned long long)
1366 root
->fs_info
->running_transaction
->transid
);
1368 if (trans
->transid
!= root
->fs_info
->generation
)
1369 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1370 (unsigned long long)trans
->transid
,
1371 (unsigned long long)root
->fs_info
->generation
);
1373 if (!should_cow_block(trans
, root
, buf
)) {
1378 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
1381 btrfs_set_lock_blocking(parent
);
1382 btrfs_set_lock_blocking(buf
);
1384 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1385 parent_slot
, cow_ret
, search_start
, 0);
1387 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1393 * helper function for defrag to decide if two blocks pointed to by a
1394 * node are actually close by
1396 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1398 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1400 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1406 * compare two keys in a memcmp fashion
1408 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1410 struct btrfs_key k1
;
1412 btrfs_disk_key_to_cpu(&k1
, disk
);
1414 return btrfs_comp_cpu_keys(&k1
, k2
);
1418 * same as comp_keys only with two btrfs_key's
1420 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1422 if (k1
->objectid
> k2
->objectid
)
1424 if (k1
->objectid
< k2
->objectid
)
1426 if (k1
->type
> k2
->type
)
1428 if (k1
->type
< k2
->type
)
1430 if (k1
->offset
> k2
->offset
)
1432 if (k1
->offset
< k2
->offset
)
1438 * this is used by the defrag code to go through all the
1439 * leaves pointed to by a node and reallocate them so that
1440 * disk order is close to key order
1442 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1443 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1444 int start_slot
, int cache_only
, u64
*last_ret
,
1445 struct btrfs_key
*progress
)
1447 struct extent_buffer
*cur
;
1450 u64 search_start
= *last_ret
;
1460 int progress_passed
= 0;
1461 struct btrfs_disk_key disk_key
;
1463 parent_level
= btrfs_header_level(parent
);
1464 if (cache_only
&& parent_level
!= 1)
1467 WARN_ON(trans
->transaction
!= root
->fs_info
->running_transaction
);
1468 WARN_ON(trans
->transid
!= root
->fs_info
->generation
);
1470 parent_nritems
= btrfs_header_nritems(parent
);
1471 blocksize
= btrfs_level_size(root
, parent_level
- 1);
1472 end_slot
= parent_nritems
;
1474 if (parent_nritems
== 1)
1477 btrfs_set_lock_blocking(parent
);
1479 for (i
= start_slot
; i
< end_slot
; i
++) {
1482 btrfs_node_key(parent
, &disk_key
, i
);
1483 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1486 progress_passed
= 1;
1487 blocknr
= btrfs_node_blockptr(parent
, i
);
1488 gen
= btrfs_node_ptr_generation(parent
, i
);
1489 if (last_block
== 0)
1490 last_block
= blocknr
;
1493 other
= btrfs_node_blockptr(parent
, i
- 1);
1494 close
= close_blocks(blocknr
, other
, blocksize
);
1496 if (!close
&& i
< end_slot
- 2) {
1497 other
= btrfs_node_blockptr(parent
, i
+ 1);
1498 close
= close_blocks(blocknr
, other
, blocksize
);
1501 last_block
= blocknr
;
1505 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1507 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1510 if (!cur
|| !uptodate
) {
1512 free_extent_buffer(cur
);
1516 cur
= read_tree_block(root
, blocknr
,
1520 } else if (!uptodate
) {
1521 err
= btrfs_read_buffer(cur
, gen
);
1523 free_extent_buffer(cur
);
1528 if (search_start
== 0)
1529 search_start
= last_block
;
1531 btrfs_tree_lock(cur
);
1532 btrfs_set_lock_blocking(cur
);
1533 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1536 (end_slot
- i
) * blocksize
));
1538 btrfs_tree_unlock(cur
);
1539 free_extent_buffer(cur
);
1542 search_start
= cur
->start
;
1543 last_block
= cur
->start
;
1544 *last_ret
= search_start
;
1545 btrfs_tree_unlock(cur
);
1546 free_extent_buffer(cur
);
1552 * The leaf data grows from end-to-front in the node.
1553 * this returns the address of the start of the last item,
1554 * which is the stop of the leaf data stack
1556 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
1557 struct extent_buffer
*leaf
)
1559 u32 nr
= btrfs_header_nritems(leaf
);
1561 return BTRFS_LEAF_DATA_SIZE(root
);
1562 return btrfs_item_offset_nr(leaf
, nr
- 1);
1567 * search for key in the extent_buffer. The items start at offset p,
1568 * and they are item_size apart. There are 'max' items in p.
1570 * the slot in the array is returned via slot, and it points to
1571 * the place where you would insert key if it is not found in
1574 * slot may point to max if the key is bigger than all of the keys
1576 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1578 int item_size
, struct btrfs_key
*key
,
1585 struct btrfs_disk_key
*tmp
= NULL
;
1586 struct btrfs_disk_key unaligned
;
1587 unsigned long offset
;
1589 unsigned long map_start
= 0;
1590 unsigned long map_len
= 0;
1593 while (low
< high
) {
1594 mid
= (low
+ high
) / 2;
1595 offset
= p
+ mid
* item_size
;
1597 if (!kaddr
|| offset
< map_start
||
1598 (offset
+ sizeof(struct btrfs_disk_key
)) >
1599 map_start
+ map_len
) {
1601 err
= map_private_extent_buffer(eb
, offset
,
1602 sizeof(struct btrfs_disk_key
),
1603 &kaddr
, &map_start
, &map_len
);
1606 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1609 read_extent_buffer(eb
, &unaligned
,
1610 offset
, sizeof(unaligned
));
1615 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1618 ret
= comp_keys(tmp
, key
);
1634 * simple bin_search frontend that does the right thing for
1637 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1638 int level
, int *slot
)
1641 return generic_bin_search(eb
,
1642 offsetof(struct btrfs_leaf
, items
),
1643 sizeof(struct btrfs_item
),
1644 key
, btrfs_header_nritems(eb
),
1647 return generic_bin_search(eb
,
1648 offsetof(struct btrfs_node
, ptrs
),
1649 sizeof(struct btrfs_key_ptr
),
1650 key
, btrfs_header_nritems(eb
),
1654 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1655 int level
, int *slot
)
1657 return bin_search(eb
, key
, level
, slot
);
1660 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1662 spin_lock(&root
->accounting_lock
);
1663 btrfs_set_root_used(&root
->root_item
,
1664 btrfs_root_used(&root
->root_item
) + size
);
1665 spin_unlock(&root
->accounting_lock
);
1668 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1670 spin_lock(&root
->accounting_lock
);
1671 btrfs_set_root_used(&root
->root_item
,
1672 btrfs_root_used(&root
->root_item
) - size
);
1673 spin_unlock(&root
->accounting_lock
);
1676 /* given a node and slot number, this reads the blocks it points to. The
1677 * extent buffer is returned with a reference taken (but unlocked).
1678 * NULL is returned on error.
1680 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1681 struct extent_buffer
*parent
, int slot
)
1683 int level
= btrfs_header_level(parent
);
1686 if (slot
>= btrfs_header_nritems(parent
))
1691 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1692 btrfs_level_size(root
, level
- 1),
1693 btrfs_node_ptr_generation(parent
, slot
));
1697 * node level balancing, used to make sure nodes are in proper order for
1698 * item deletion. We balance from the top down, so we have to make sure
1699 * that a deletion won't leave an node completely empty later on.
1701 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1702 struct btrfs_root
*root
,
1703 struct btrfs_path
*path
, int level
)
1705 struct extent_buffer
*right
= NULL
;
1706 struct extent_buffer
*mid
;
1707 struct extent_buffer
*left
= NULL
;
1708 struct extent_buffer
*parent
= NULL
;
1712 int orig_slot
= path
->slots
[level
];
1718 mid
= path
->nodes
[level
];
1720 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1721 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1722 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1724 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1726 if (level
< BTRFS_MAX_LEVEL
- 1) {
1727 parent
= path
->nodes
[level
+ 1];
1728 pslot
= path
->slots
[level
+ 1];
1732 * deal with the case where there is only one pointer in the root
1733 * by promoting the node below to a root
1736 struct extent_buffer
*child
;
1738 if (btrfs_header_nritems(mid
) != 1)
1741 /* promote the child to a root */
1742 child
= read_node_slot(root
, mid
, 0);
1745 btrfs_std_error(root
->fs_info
, ret
);
1749 btrfs_tree_lock(child
);
1750 btrfs_set_lock_blocking(child
);
1751 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1753 btrfs_tree_unlock(child
);
1754 free_extent_buffer(child
);
1758 tree_mod_log_free_eb(root
->fs_info
, root
->node
);
1759 tree_mod_log_set_root_pointer(root
, child
);
1760 rcu_assign_pointer(root
->node
, child
);
1762 add_root_to_dirty_list(root
);
1763 btrfs_tree_unlock(child
);
1765 path
->locks
[level
] = 0;
1766 path
->nodes
[level
] = NULL
;
1767 clean_tree_block(trans
, root
, mid
);
1768 btrfs_tree_unlock(mid
);
1769 /* once for the path */
1770 free_extent_buffer(mid
);
1772 root_sub_used(root
, mid
->len
);
1773 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1774 /* once for the root ptr */
1775 free_extent_buffer_stale(mid
);
1778 if (btrfs_header_nritems(mid
) >
1779 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1782 left
= read_node_slot(root
, parent
, pslot
- 1);
1784 btrfs_tree_lock(left
);
1785 btrfs_set_lock_blocking(left
);
1786 wret
= btrfs_cow_block(trans
, root
, left
,
1787 parent
, pslot
- 1, &left
);
1793 right
= read_node_slot(root
, parent
, pslot
+ 1);
1795 btrfs_tree_lock(right
);
1796 btrfs_set_lock_blocking(right
);
1797 wret
= btrfs_cow_block(trans
, root
, right
,
1798 parent
, pslot
+ 1, &right
);
1805 /* first, try to make some room in the middle buffer */
1807 orig_slot
+= btrfs_header_nritems(left
);
1808 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1814 * then try to empty the right most buffer into the middle
1817 wret
= push_node_left(trans
, root
, mid
, right
, 1);
1818 if (wret
< 0 && wret
!= -ENOSPC
)
1820 if (btrfs_header_nritems(right
) == 0) {
1821 clean_tree_block(trans
, root
, right
);
1822 btrfs_tree_unlock(right
);
1823 del_ptr(trans
, root
, path
, level
+ 1, pslot
+ 1);
1824 root_sub_used(root
, right
->len
);
1825 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1826 free_extent_buffer_stale(right
);
1829 struct btrfs_disk_key right_key
;
1830 btrfs_node_key(right
, &right_key
, 0);
1831 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1833 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1834 btrfs_mark_buffer_dirty(parent
);
1837 if (btrfs_header_nritems(mid
) == 1) {
1839 * we're not allowed to leave a node with one item in the
1840 * tree during a delete. A deletion from lower in the tree
1841 * could try to delete the only pointer in this node.
1842 * So, pull some keys from the left.
1843 * There has to be a left pointer at this point because
1844 * otherwise we would have pulled some pointers from the
1849 btrfs_std_error(root
->fs_info
, ret
);
1852 wret
= balance_node_right(trans
, root
, mid
, left
);
1858 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1864 if (btrfs_header_nritems(mid
) == 0) {
1865 clean_tree_block(trans
, root
, mid
);
1866 btrfs_tree_unlock(mid
);
1867 del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1868 root_sub_used(root
, mid
->len
);
1869 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1870 free_extent_buffer_stale(mid
);
1873 /* update the parent key to reflect our changes */
1874 struct btrfs_disk_key mid_key
;
1875 btrfs_node_key(mid
, &mid_key
, 0);
1876 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1878 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1879 btrfs_mark_buffer_dirty(parent
);
1882 /* update the path */
1884 if (btrfs_header_nritems(left
) > orig_slot
) {
1885 extent_buffer_get(left
);
1886 /* left was locked after cow */
1887 path
->nodes
[level
] = left
;
1888 path
->slots
[level
+ 1] -= 1;
1889 path
->slots
[level
] = orig_slot
;
1891 btrfs_tree_unlock(mid
);
1892 free_extent_buffer(mid
);
1895 orig_slot
-= btrfs_header_nritems(left
);
1896 path
->slots
[level
] = orig_slot
;
1899 /* double check we haven't messed things up */
1901 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1905 btrfs_tree_unlock(right
);
1906 free_extent_buffer(right
);
1909 if (path
->nodes
[level
] != left
)
1910 btrfs_tree_unlock(left
);
1911 free_extent_buffer(left
);
1916 /* Node balancing for insertion. Here we only split or push nodes around
1917 * when they are completely full. This is also done top down, so we
1918 * have to be pessimistic.
1920 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1921 struct btrfs_root
*root
,
1922 struct btrfs_path
*path
, int level
)
1924 struct extent_buffer
*right
= NULL
;
1925 struct extent_buffer
*mid
;
1926 struct extent_buffer
*left
= NULL
;
1927 struct extent_buffer
*parent
= NULL
;
1931 int orig_slot
= path
->slots
[level
];
1936 mid
= path
->nodes
[level
];
1937 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1939 if (level
< BTRFS_MAX_LEVEL
- 1) {
1940 parent
= path
->nodes
[level
+ 1];
1941 pslot
= path
->slots
[level
+ 1];
1947 left
= read_node_slot(root
, parent
, pslot
- 1);
1949 /* first, try to make some room in the middle buffer */
1953 btrfs_tree_lock(left
);
1954 btrfs_set_lock_blocking(left
);
1956 left_nr
= btrfs_header_nritems(left
);
1957 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1960 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1965 wret
= push_node_left(trans
, root
,
1972 struct btrfs_disk_key disk_key
;
1973 orig_slot
+= left_nr
;
1974 btrfs_node_key(mid
, &disk_key
, 0);
1975 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1977 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1978 btrfs_mark_buffer_dirty(parent
);
1979 if (btrfs_header_nritems(left
) > orig_slot
) {
1980 path
->nodes
[level
] = left
;
1981 path
->slots
[level
+ 1] -= 1;
1982 path
->slots
[level
] = orig_slot
;
1983 btrfs_tree_unlock(mid
);
1984 free_extent_buffer(mid
);
1987 btrfs_header_nritems(left
);
1988 path
->slots
[level
] = orig_slot
;
1989 btrfs_tree_unlock(left
);
1990 free_extent_buffer(left
);
1994 btrfs_tree_unlock(left
);
1995 free_extent_buffer(left
);
1997 right
= read_node_slot(root
, parent
, pslot
+ 1);
2000 * then try to empty the right most buffer into the middle
2005 btrfs_tree_lock(right
);
2006 btrfs_set_lock_blocking(right
);
2008 right_nr
= btrfs_header_nritems(right
);
2009 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2012 ret
= btrfs_cow_block(trans
, root
, right
,
2018 wret
= balance_node_right(trans
, root
,
2025 struct btrfs_disk_key disk_key
;
2027 btrfs_node_key(right
, &disk_key
, 0);
2028 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2030 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2031 btrfs_mark_buffer_dirty(parent
);
2033 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2034 path
->nodes
[level
] = right
;
2035 path
->slots
[level
+ 1] += 1;
2036 path
->slots
[level
] = orig_slot
-
2037 btrfs_header_nritems(mid
);
2038 btrfs_tree_unlock(mid
);
2039 free_extent_buffer(mid
);
2041 btrfs_tree_unlock(right
);
2042 free_extent_buffer(right
);
2046 btrfs_tree_unlock(right
);
2047 free_extent_buffer(right
);
2053 * readahead one full node of leaves, finding things that are close
2054 * to the block in 'slot', and triggering ra on them.
2056 static void reada_for_search(struct btrfs_root
*root
,
2057 struct btrfs_path
*path
,
2058 int level
, int slot
, u64 objectid
)
2060 struct extent_buffer
*node
;
2061 struct btrfs_disk_key disk_key
;
2067 int direction
= path
->reada
;
2068 struct extent_buffer
*eb
;
2076 if (!path
->nodes
[level
])
2079 node
= path
->nodes
[level
];
2081 search
= btrfs_node_blockptr(node
, slot
);
2082 blocksize
= btrfs_level_size(root
, level
- 1);
2083 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
2085 free_extent_buffer(eb
);
2091 nritems
= btrfs_header_nritems(node
);
2095 if (direction
< 0) {
2099 } else if (direction
> 0) {
2104 if (path
->reada
< 0 && objectid
) {
2105 btrfs_node_key(node
, &disk_key
, nr
);
2106 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2109 search
= btrfs_node_blockptr(node
, nr
);
2110 if ((search
<= target
&& target
- search
<= 65536) ||
2111 (search
> target
&& search
- target
<= 65536)) {
2112 gen
= btrfs_node_ptr_generation(node
, nr
);
2113 readahead_tree_block(root
, search
, blocksize
, gen
);
2117 if ((nread
> 65536 || nscan
> 32))
2123 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2126 static noinline
int reada_for_balance(struct btrfs_root
*root
,
2127 struct btrfs_path
*path
, int level
)
2131 struct extent_buffer
*parent
;
2132 struct extent_buffer
*eb
;
2139 parent
= path
->nodes
[level
+ 1];
2143 nritems
= btrfs_header_nritems(parent
);
2144 slot
= path
->slots
[level
+ 1];
2145 blocksize
= btrfs_level_size(root
, level
);
2148 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2149 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2150 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
2152 * if we get -eagain from btrfs_buffer_uptodate, we
2153 * don't want to return eagain here. That will loop
2156 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2158 free_extent_buffer(eb
);
2160 if (slot
+ 1 < nritems
) {
2161 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2162 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2163 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
2164 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2166 free_extent_buffer(eb
);
2168 if (block1
|| block2
) {
2171 /* release the whole path */
2172 btrfs_release_path(path
);
2174 /* read the blocks */
2176 readahead_tree_block(root
, block1
, blocksize
, 0);
2178 readahead_tree_block(root
, block2
, blocksize
, 0);
2181 eb
= read_tree_block(root
, block1
, blocksize
, 0);
2182 free_extent_buffer(eb
);
2185 eb
= read_tree_block(root
, block2
, blocksize
, 0);
2186 free_extent_buffer(eb
);
2194 * when we walk down the tree, it is usually safe to unlock the higher layers
2195 * in the tree. The exceptions are when our path goes through slot 0, because
2196 * operations on the tree might require changing key pointers higher up in the
2199 * callers might also have set path->keep_locks, which tells this code to keep
2200 * the lock if the path points to the last slot in the block. This is part of
2201 * walking through the tree, and selecting the next slot in the higher block.
2203 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2204 * if lowest_unlock is 1, level 0 won't be unlocked
2206 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2207 int lowest_unlock
, int min_write_lock_level
,
2208 int *write_lock_level
)
2211 int skip_level
= level
;
2213 struct extent_buffer
*t
;
2215 if (path
->really_keep_locks
)
2218 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2219 if (!path
->nodes
[i
])
2221 if (!path
->locks
[i
])
2223 if (!no_skips
&& path
->slots
[i
] == 0) {
2227 if (!no_skips
&& path
->keep_locks
) {
2230 nritems
= btrfs_header_nritems(t
);
2231 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2236 if (skip_level
< i
&& i
>= lowest_unlock
)
2240 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2241 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2243 if (write_lock_level
&&
2244 i
> min_write_lock_level
&&
2245 i
<= *write_lock_level
) {
2246 *write_lock_level
= i
- 1;
2253 * This releases any locks held in the path starting at level and
2254 * going all the way up to the root.
2256 * btrfs_search_slot will keep the lock held on higher nodes in a few
2257 * corner cases, such as COW of the block at slot zero in the node. This
2258 * ignores those rules, and it should only be called when there are no
2259 * more updates to be done higher up in the tree.
2261 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2265 if (path
->keep_locks
|| path
->really_keep_locks
)
2268 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2269 if (!path
->nodes
[i
])
2271 if (!path
->locks
[i
])
2273 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2279 * helper function for btrfs_search_slot. The goal is to find a block
2280 * in cache without setting the path to blocking. If we find the block
2281 * we return zero and the path is unchanged.
2283 * If we can't find the block, we set the path blocking and do some
2284 * reada. -EAGAIN is returned and the search must be repeated.
2287 read_block_for_search(struct btrfs_trans_handle
*trans
,
2288 struct btrfs_root
*root
, struct btrfs_path
*p
,
2289 struct extent_buffer
**eb_ret
, int level
, int slot
,
2290 struct btrfs_key
*key
, u64 time_seq
)
2295 struct extent_buffer
*b
= *eb_ret
;
2296 struct extent_buffer
*tmp
;
2299 blocknr
= btrfs_node_blockptr(b
, slot
);
2300 gen
= btrfs_node_ptr_generation(b
, slot
);
2301 blocksize
= btrfs_level_size(root
, level
- 1);
2303 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
2305 /* first we do an atomic uptodate check */
2306 if (btrfs_buffer_uptodate(tmp
, 0, 1) > 0) {
2307 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2309 * we found an up to date block without
2316 /* the pages were up to date, but we failed
2317 * the generation number check. Do a full
2318 * read for the generation number that is correct.
2319 * We must do this without dropping locks so
2320 * we can trust our generation number
2322 free_extent_buffer(tmp
);
2323 btrfs_set_path_blocking(p
);
2325 /* now we're allowed to do a blocking uptodate check */
2326 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
2327 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
, 0) > 0) {
2331 free_extent_buffer(tmp
);
2332 btrfs_release_path(p
);
2338 * reduce lock contention at high levels
2339 * of the btree by dropping locks before
2340 * we read. Don't release the lock on the current
2341 * level because we need to walk this node to figure
2342 * out which blocks to read.
2344 btrfs_unlock_up_safe(p
, level
+ 1);
2345 btrfs_set_path_blocking(p
);
2347 free_extent_buffer(tmp
);
2349 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2351 btrfs_release_path(p
);
2354 tmp
= read_tree_block(root
, blocknr
, blocksize
, 0);
2357 * If the read above didn't mark this buffer up to date,
2358 * it will never end up being up to date. Set ret to EIO now
2359 * and give up so that our caller doesn't loop forever
2362 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2364 free_extent_buffer(tmp
);
2370 * helper function for btrfs_search_slot. This does all of the checks
2371 * for node-level blocks and does any balancing required based on
2374 * If no extra work was required, zero is returned. If we had to
2375 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2379 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2380 struct btrfs_root
*root
, struct btrfs_path
*p
,
2381 struct extent_buffer
*b
, int level
, int ins_len
,
2382 int *write_lock_level
)
2385 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2386 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2389 if (*write_lock_level
< level
+ 1) {
2390 *write_lock_level
= level
+ 1;
2391 btrfs_release_path(p
);
2395 sret
= reada_for_balance(root
, p
, level
);
2399 btrfs_set_path_blocking(p
);
2400 sret
= split_node(trans
, root
, p
, level
);
2401 btrfs_clear_path_blocking(p
, NULL
, 0);
2408 b
= p
->nodes
[level
];
2409 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2410 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2413 if (*write_lock_level
< level
+ 1) {
2414 *write_lock_level
= level
+ 1;
2415 btrfs_release_path(p
);
2419 sret
= reada_for_balance(root
, p
, level
);
2423 btrfs_set_path_blocking(p
);
2424 sret
= balance_level(trans
, root
, p
, level
);
2425 btrfs_clear_path_blocking(p
, NULL
, 0);
2431 b
= p
->nodes
[level
];
2433 btrfs_release_path(p
);
2436 BUG_ON(btrfs_header_nritems(b
) == 1);
2447 * look for key in the tree. path is filled in with nodes along the way
2448 * if key is found, we return zero and you can find the item in the leaf
2449 * level of the path (level 0)
2451 * If the key isn't found, the path points to the slot where it should
2452 * be inserted, and 1 is returned. If there are other errors during the
2453 * search a negative error number is returned.
2455 * if ins_len > 0, nodes and leaves will be split as we walk down the
2456 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2459 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2460 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2463 struct extent_buffer
*b
;
2468 int lowest_unlock
= 1;
2470 /* everything at write_lock_level or lower must be write locked */
2471 int write_lock_level
= 0;
2472 u8 lowest_level
= 0;
2473 int min_write_lock_level
;
2475 lowest_level
= p
->lowest_level
;
2476 WARN_ON(lowest_level
&& ins_len
> 0);
2477 WARN_ON(p
->nodes
[0] != NULL
);
2482 /* when we are removing items, we might have to go up to level
2483 * two as we update tree pointers Make sure we keep write
2484 * for those levels as well
2486 write_lock_level
= 2;
2487 } else if (ins_len
> 0) {
2489 * for inserting items, make sure we have a write lock on
2490 * level 1 so we can update keys
2492 write_lock_level
= 1;
2496 write_lock_level
= -1;
2498 if (cow
&& (p
->really_keep_locks
|| p
->keep_locks
|| p
->lowest_level
))
2499 write_lock_level
= BTRFS_MAX_LEVEL
;
2501 min_write_lock_level
= write_lock_level
;
2505 * we try very hard to do read locks on the root
2507 root_lock
= BTRFS_READ_LOCK
;
2509 if (p
->search_commit_root
) {
2511 * the commit roots are read only
2512 * so we always do read locks
2514 b
= root
->commit_root
;
2515 extent_buffer_get(b
);
2516 level
= btrfs_header_level(b
);
2517 if (!p
->skip_locking
)
2518 btrfs_tree_read_lock(b
);
2520 if (p
->skip_locking
) {
2521 b
= btrfs_root_node(root
);
2522 level
= btrfs_header_level(b
);
2524 /* we don't know the level of the root node
2525 * until we actually have it read locked
2527 b
= btrfs_read_lock_root_node(root
);
2528 level
= btrfs_header_level(b
);
2529 if (level
<= write_lock_level
) {
2530 /* whoops, must trade for write lock */
2531 btrfs_tree_read_unlock(b
);
2532 free_extent_buffer(b
);
2533 b
= btrfs_lock_root_node(root
);
2534 root_lock
= BTRFS_WRITE_LOCK
;
2536 /* the level might have changed, check again */
2537 level
= btrfs_header_level(b
);
2541 p
->nodes
[level
] = b
;
2542 if (!p
->skip_locking
)
2543 p
->locks
[level
] = root_lock
;
2546 level
= btrfs_header_level(b
);
2549 * setup the path here so we can release it under lock
2550 * contention with the cow code
2554 * if we don't really need to cow this block
2555 * then we don't want to set the path blocking,
2556 * so we test it here
2558 if (!should_cow_block(trans
, root
, b
))
2561 btrfs_set_path_blocking(p
);
2564 * must have write locks on this node and the
2567 if (level
> write_lock_level
||
2568 (level
+ 1 > write_lock_level
&&
2569 level
+ 1 < BTRFS_MAX_LEVEL
&&
2570 p
->nodes
[level
+ 1])) {
2571 write_lock_level
= level
+ 1;
2572 btrfs_release_path(p
);
2576 err
= btrfs_cow_block(trans
, root
, b
,
2577 p
->nodes
[level
+ 1],
2578 p
->slots
[level
+ 1], &b
);
2585 BUG_ON(!cow
&& ins_len
);
2587 p
->nodes
[level
] = b
;
2588 btrfs_clear_path_blocking(p
, NULL
, 0);
2591 * we have a lock on b and as long as we aren't changing
2592 * the tree, there is no way to for the items in b to change.
2593 * It is safe to drop the lock on our parent before we
2594 * go through the expensive btree search on b.
2596 * If cow is true, then we might be changing slot zero,
2597 * which may require changing the parent. So, we can't
2598 * drop the lock until after we know which slot we're
2602 btrfs_unlock_up_safe(p
, level
+ 1);
2604 ret
= bin_search(b
, key
, level
, &slot
);
2608 if (ret
&& slot
> 0) {
2612 p
->slots
[level
] = slot
;
2613 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2614 ins_len
, &write_lock_level
);
2621 b
= p
->nodes
[level
];
2622 slot
= p
->slots
[level
];
2625 * slot 0 is special, if we change the key
2626 * we have to update the parent pointer
2627 * which means we must have a write lock
2630 if (slot
== 0 && cow
&&
2631 write_lock_level
< level
+ 1) {
2632 write_lock_level
= level
+ 1;
2633 btrfs_release_path(p
);
2637 unlock_up(p
, level
, lowest_unlock
,
2638 min_write_lock_level
, &write_lock_level
);
2640 if (level
== lowest_level
) {
2646 err
= read_block_for_search(trans
, root
, p
,
2647 &b
, level
, slot
, key
, 0);
2655 if (!p
->skip_locking
) {
2656 level
= btrfs_header_level(b
);
2657 if (level
<= write_lock_level
) {
2658 err
= btrfs_try_tree_write_lock(b
);
2660 btrfs_set_path_blocking(p
);
2662 btrfs_clear_path_blocking(p
, b
,
2665 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2667 err
= btrfs_try_tree_read_lock(b
);
2669 btrfs_set_path_blocking(p
);
2670 btrfs_tree_read_lock(b
);
2671 btrfs_clear_path_blocking(p
, b
,
2674 p
->locks
[level
] = BTRFS_READ_LOCK
;
2676 p
->nodes
[level
] = b
;
2679 p
->slots
[level
] = slot
;
2681 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2682 if (write_lock_level
< 1) {
2683 write_lock_level
= 1;
2684 btrfs_release_path(p
);
2688 btrfs_set_path_blocking(p
);
2689 err
= split_leaf(trans
, root
, key
,
2690 p
, ins_len
, ret
== 0);
2691 btrfs_clear_path_blocking(p
, NULL
, 0);
2699 if (!p
->search_for_split
)
2700 unlock_up(p
, level
, lowest_unlock
,
2701 min_write_lock_level
, &write_lock_level
);
2708 * we don't really know what they plan on doing with the path
2709 * from here on, so for now just mark it as blocking
2711 if (!p
->leave_spinning
)
2712 btrfs_set_path_blocking(p
);
2714 btrfs_release_path(p
);
2719 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2720 * current state of the tree together with the operations recorded in the tree
2721 * modification log to search for the key in a previous version of this tree, as
2722 * denoted by the time_seq parameter.
2724 * Naturally, there is no support for insert, delete or cow operations.
2726 * The resulting path and return value will be set up as if we called
2727 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2729 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2730 struct btrfs_path
*p
, u64 time_seq
)
2732 struct extent_buffer
*b
;
2737 int lowest_unlock
= 1;
2738 u8 lowest_level
= 0;
2740 lowest_level
= p
->lowest_level
;
2741 WARN_ON(p
->nodes
[0] != NULL
);
2743 if (p
->search_commit_root
) {
2745 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2749 b
= get_old_root(root
, time_seq
);
2750 level
= btrfs_header_level(b
);
2751 p
->locks
[level
] = BTRFS_READ_LOCK
;
2754 level
= btrfs_header_level(b
);
2755 p
->nodes
[level
] = b
;
2756 btrfs_clear_path_blocking(p
, NULL
, 0);
2759 * we have a lock on b and as long as we aren't changing
2760 * the tree, there is no way to for the items in b to change.
2761 * It is safe to drop the lock on our parent before we
2762 * go through the expensive btree search on b.
2764 btrfs_unlock_up_safe(p
, level
+ 1);
2766 ret
= bin_search(b
, key
, level
, &slot
);
2770 if (ret
&& slot
> 0) {
2774 p
->slots
[level
] = slot
;
2775 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2777 if (level
== lowest_level
) {
2783 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
2784 slot
, key
, time_seq
);
2792 level
= btrfs_header_level(b
);
2793 err
= btrfs_try_tree_read_lock(b
);
2795 btrfs_set_path_blocking(p
);
2796 btrfs_tree_read_lock(b
);
2797 btrfs_clear_path_blocking(p
, b
,
2800 p
->locks
[level
] = BTRFS_READ_LOCK
;
2801 p
->nodes
[level
] = b
;
2802 b
= tree_mod_log_rewind(root
->fs_info
, b
, time_seq
);
2803 if (b
!= p
->nodes
[level
]) {
2804 btrfs_tree_unlock_rw(p
->nodes
[level
],
2806 p
->locks
[level
] = 0;
2807 p
->nodes
[level
] = b
;
2810 p
->slots
[level
] = slot
;
2811 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2817 if (!p
->leave_spinning
)
2818 btrfs_set_path_blocking(p
);
2820 btrfs_release_path(p
);
2826 * helper to use instead of search slot if no exact match is needed but
2827 * instead the next or previous item should be returned.
2828 * When find_higher is true, the next higher item is returned, the next lower
2830 * When return_any and find_higher are both true, and no higher item is found,
2831 * return the next lower instead.
2832 * When return_any is true and find_higher is false, and no lower item is found,
2833 * return the next higher instead.
2834 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2837 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
2838 struct btrfs_key
*key
, struct btrfs_path
*p
,
2839 int find_higher
, int return_any
)
2842 struct extent_buffer
*leaf
;
2845 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2849 * a return value of 1 means the path is at the position where the
2850 * item should be inserted. Normally this is the next bigger item,
2851 * but in case the previous item is the last in a leaf, path points
2852 * to the first free slot in the previous leaf, i.e. at an invalid
2858 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2859 ret
= btrfs_next_leaf(root
, p
);
2865 * no higher item found, return the next
2870 btrfs_release_path(p
);
2874 if (p
->slots
[0] == 0) {
2875 ret
= btrfs_prev_leaf(root
, p
);
2879 p
->slots
[0] = btrfs_header_nritems(leaf
) - 1;
2885 * no lower item found, return the next
2890 btrfs_release_path(p
);
2900 * adjust the pointers going up the tree, starting at level
2901 * making sure the right key of each node is points to 'key'.
2902 * This is used after shifting pointers to the left, so it stops
2903 * fixing up pointers when a given leaf/node is not in slot 0 of the
2907 static void fixup_low_keys(struct btrfs_trans_handle
*trans
,
2908 struct btrfs_root
*root
, struct btrfs_path
*path
,
2909 struct btrfs_disk_key
*key
, int level
)
2912 struct extent_buffer
*t
;
2914 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2915 int tslot
= path
->slots
[i
];
2916 if (!path
->nodes
[i
])
2919 tree_mod_log_set_node_key(root
->fs_info
, t
, tslot
, 1);
2920 btrfs_set_node_key(t
, key
, tslot
);
2921 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
2930 * This function isn't completely safe. It's the caller's responsibility
2931 * that the new key won't break the order
2933 void btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
2934 struct btrfs_root
*root
, struct btrfs_path
*path
,
2935 struct btrfs_key
*new_key
)
2937 struct btrfs_disk_key disk_key
;
2938 struct extent_buffer
*eb
;
2941 eb
= path
->nodes
[0];
2942 slot
= path
->slots
[0];
2944 btrfs_item_key(eb
, &disk_key
, slot
- 1);
2945 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
2947 if (slot
< btrfs_header_nritems(eb
) - 1) {
2948 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
2949 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
2952 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
2953 btrfs_set_item_key(eb
, &disk_key
, slot
);
2954 btrfs_mark_buffer_dirty(eb
);
2956 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2960 * try to push data from one node into the next node left in the
2963 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2964 * error, and > 0 if there was no room in the left hand block.
2966 static int push_node_left(struct btrfs_trans_handle
*trans
,
2967 struct btrfs_root
*root
, struct extent_buffer
*dst
,
2968 struct extent_buffer
*src
, int empty
)
2975 src_nritems
= btrfs_header_nritems(src
);
2976 dst_nritems
= btrfs_header_nritems(dst
);
2977 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2978 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2979 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2981 if (!empty
&& src_nritems
<= 8)
2984 if (push_items
<= 0)
2988 push_items
= min(src_nritems
, push_items
);
2989 if (push_items
< src_nritems
) {
2990 /* leave at least 8 pointers in the node if
2991 * we aren't going to empty it
2993 if (src_nritems
- push_items
< 8) {
2994 if (push_items
<= 8)
3000 push_items
= min(src_nritems
- 8, push_items
);
3002 tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
3004 copy_extent_buffer(dst
, src
,
3005 btrfs_node_key_ptr_offset(dst_nritems
),
3006 btrfs_node_key_ptr_offset(0),
3007 push_items
* sizeof(struct btrfs_key_ptr
));
3009 if (push_items
< src_nritems
) {
3011 * don't call tree_mod_log_eb_move here, key removal was already
3012 * fully logged by tree_mod_log_eb_copy above.
3014 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3015 btrfs_node_key_ptr_offset(push_items
),
3016 (src_nritems
- push_items
) *
3017 sizeof(struct btrfs_key_ptr
));
3019 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3020 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3021 btrfs_mark_buffer_dirty(src
);
3022 btrfs_mark_buffer_dirty(dst
);
3028 * try to push data from one node into the next node right in the
3031 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3032 * error, and > 0 if there was no room in the right hand block.
3034 * this will only push up to 1/2 the contents of the left node over
3036 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3037 struct btrfs_root
*root
,
3038 struct extent_buffer
*dst
,
3039 struct extent_buffer
*src
)
3047 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3048 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3050 src_nritems
= btrfs_header_nritems(src
);
3051 dst_nritems
= btrfs_header_nritems(dst
);
3052 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3053 if (push_items
<= 0)
3056 if (src_nritems
< 4)
3059 max_push
= src_nritems
/ 2 + 1;
3060 /* don't try to empty the node */
3061 if (max_push
>= src_nritems
)
3064 if (max_push
< push_items
)
3065 push_items
= max_push
;
3067 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3068 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3069 btrfs_node_key_ptr_offset(0),
3071 sizeof(struct btrfs_key_ptr
));
3073 tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3074 src_nritems
- push_items
, push_items
);
3075 copy_extent_buffer(dst
, src
,
3076 btrfs_node_key_ptr_offset(0),
3077 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3078 push_items
* sizeof(struct btrfs_key_ptr
));
3080 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3081 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3083 btrfs_mark_buffer_dirty(src
);
3084 btrfs_mark_buffer_dirty(dst
);
3090 * helper function to insert a new root level in the tree.
3091 * A new node is allocated, and a single item is inserted to
3092 * point to the existing root
3094 * returns zero on success or < 0 on failure.
3096 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3097 struct btrfs_root
*root
,
3098 struct btrfs_path
*path
, int level
)
3101 struct extent_buffer
*lower
;
3102 struct extent_buffer
*c
;
3103 struct extent_buffer
*old
;
3104 struct btrfs_disk_key lower_key
;
3106 BUG_ON(path
->nodes
[level
]);
3107 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3109 lower
= path
->nodes
[level
-1];
3111 btrfs_item_key(lower
, &lower_key
, 0);
3113 btrfs_node_key(lower
, &lower_key
, 0);
3115 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
3116 root
->root_key
.objectid
, &lower_key
,
3117 level
, root
->node
->start
, 0);
3121 root_add_used(root
, root
->nodesize
);
3123 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3124 btrfs_set_header_nritems(c
, 1);
3125 btrfs_set_header_level(c
, level
);
3126 btrfs_set_header_bytenr(c
, c
->start
);
3127 btrfs_set_header_generation(c
, trans
->transid
);
3128 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3129 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3131 write_extent_buffer(c
, root
->fs_info
->fsid
,
3132 (unsigned long)btrfs_header_fsid(c
),
3135 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3136 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
3139 btrfs_set_node_key(c
, &lower_key
, 0);
3140 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3141 lower_gen
= btrfs_header_generation(lower
);
3142 WARN_ON(lower_gen
!= trans
->transid
);
3144 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3146 btrfs_mark_buffer_dirty(c
);
3149 tree_mod_log_set_root_pointer(root
, c
);
3150 rcu_assign_pointer(root
->node
, c
);
3152 /* the super has an extra ref to root->node */
3153 free_extent_buffer(old
);
3155 add_root_to_dirty_list(root
);
3156 extent_buffer_get(c
);
3157 path
->nodes
[level
] = c
;
3158 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
3159 path
->slots
[level
] = 0;
3164 * worker function to insert a single pointer in a node.
3165 * the node should have enough room for the pointer already
3167 * slot and level indicate where you want the key to go, and
3168 * blocknr is the block the key points to.
3170 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3171 struct btrfs_root
*root
, struct btrfs_path
*path
,
3172 struct btrfs_disk_key
*key
, u64 bytenr
,
3173 int slot
, int level
)
3175 struct extent_buffer
*lower
;
3179 BUG_ON(!path
->nodes
[level
]);
3180 btrfs_assert_tree_locked(path
->nodes
[level
]);
3181 lower
= path
->nodes
[level
];
3182 nritems
= btrfs_header_nritems(lower
);
3183 BUG_ON(slot
> nritems
);
3184 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3185 if (slot
!= nritems
) {
3187 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3188 slot
, nritems
- slot
);
3189 memmove_extent_buffer(lower
,
3190 btrfs_node_key_ptr_offset(slot
+ 1),
3191 btrfs_node_key_ptr_offset(slot
),
3192 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3195 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3199 btrfs_set_node_key(lower
, key
, slot
);
3200 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3201 WARN_ON(trans
->transid
== 0);
3202 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3203 btrfs_set_header_nritems(lower
, nritems
+ 1);
3204 btrfs_mark_buffer_dirty(lower
);
3208 * split the node at the specified level in path in two.
3209 * The path is corrected to point to the appropriate node after the split
3211 * Before splitting this tries to make some room in the node by pushing
3212 * left and right, if either one works, it returns right away.
3214 * returns 0 on success and < 0 on failure
3216 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3217 struct btrfs_root
*root
,
3218 struct btrfs_path
*path
, int level
)
3220 struct extent_buffer
*c
;
3221 struct extent_buffer
*split
;
3222 struct btrfs_disk_key disk_key
;
3227 c
= path
->nodes
[level
];
3228 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3229 if (c
== root
->node
) {
3230 /* trying to split the root, lets make a new one */
3231 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3235 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3236 c
= path
->nodes
[level
];
3237 if (!ret
&& btrfs_header_nritems(c
) <
3238 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3244 c_nritems
= btrfs_header_nritems(c
);
3245 mid
= (c_nritems
+ 1) / 2;
3246 btrfs_node_key(c
, &disk_key
, mid
);
3248 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
3249 root
->root_key
.objectid
,
3250 &disk_key
, level
, c
->start
, 0);
3252 return PTR_ERR(split
);
3254 root_add_used(root
, root
->nodesize
);
3256 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3257 btrfs_set_header_level(split
, btrfs_header_level(c
));
3258 btrfs_set_header_bytenr(split
, split
->start
);
3259 btrfs_set_header_generation(split
, trans
->transid
);
3260 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3261 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3262 write_extent_buffer(split
, root
->fs_info
->fsid
,
3263 (unsigned long)btrfs_header_fsid(split
),
3265 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3266 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
3269 tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0, mid
, c_nritems
- mid
);
3270 copy_extent_buffer(split
, c
,
3271 btrfs_node_key_ptr_offset(0),
3272 btrfs_node_key_ptr_offset(mid
),
3273 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3274 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3275 btrfs_set_header_nritems(c
, mid
);
3278 btrfs_mark_buffer_dirty(c
);
3279 btrfs_mark_buffer_dirty(split
);
3281 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3282 path
->slots
[level
+ 1] + 1, level
+ 1);
3284 if (path
->slots
[level
] >= mid
) {
3285 path
->slots
[level
] -= mid
;
3286 btrfs_tree_unlock(c
);
3287 free_extent_buffer(c
);
3288 path
->nodes
[level
] = split
;
3289 path
->slots
[level
+ 1] += 1;
3291 btrfs_tree_unlock(split
);
3292 free_extent_buffer(split
);
3298 * how many bytes are required to store the items in a leaf. start
3299 * and nr indicate which items in the leaf to check. This totals up the
3300 * space used both by the item structs and the item data
3302 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3304 struct btrfs_item
*start_item
;
3305 struct btrfs_item
*end_item
;
3306 struct btrfs_map_token token
;
3308 int nritems
= btrfs_header_nritems(l
);
3309 int end
= min(nritems
, start
+ nr
) - 1;
3313 btrfs_init_map_token(&token
);
3314 start_item
= btrfs_item_nr(l
, start
);
3315 end_item
= btrfs_item_nr(l
, end
);
3316 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3317 btrfs_token_item_size(l
, start_item
, &token
);
3318 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3319 data_len
+= sizeof(struct btrfs_item
) * nr
;
3320 WARN_ON(data_len
< 0);
3325 * The space between the end of the leaf items and
3326 * the start of the leaf data. IOW, how much room
3327 * the leaf has left for both items and data
3329 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3330 struct extent_buffer
*leaf
)
3332 int nritems
= btrfs_header_nritems(leaf
);
3334 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3336 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
3337 "used %d nritems %d\n",
3338 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3339 leaf_space_used(leaf
, 0, nritems
), nritems
);
3345 * min slot controls the lowest index we're willing to push to the
3346 * right. We'll push up to and including min_slot, but no lower
3348 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3349 struct btrfs_root
*root
,
3350 struct btrfs_path
*path
,
3351 int data_size
, int empty
,
3352 struct extent_buffer
*right
,
3353 int free_space
, u32 left_nritems
,
3356 struct extent_buffer
*left
= path
->nodes
[0];
3357 struct extent_buffer
*upper
= path
->nodes
[1];
3358 struct btrfs_map_token token
;
3359 struct btrfs_disk_key disk_key
;
3364 struct btrfs_item
*item
;
3370 btrfs_init_map_token(&token
);
3375 nr
= max_t(u32
, 1, min_slot
);
3377 if (path
->slots
[0] >= left_nritems
)
3378 push_space
+= data_size
;
3380 slot
= path
->slots
[1];
3381 i
= left_nritems
- 1;
3383 item
= btrfs_item_nr(left
, i
);
3385 if (!empty
&& push_items
> 0) {
3386 if (path
->slots
[0] > i
)
3388 if (path
->slots
[0] == i
) {
3389 int space
= btrfs_leaf_free_space(root
, left
);
3390 if (space
+ push_space
* 2 > free_space
)
3395 if (path
->slots
[0] == i
)
3396 push_space
+= data_size
;
3398 this_item_size
= btrfs_item_size(left
, item
);
3399 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3403 push_space
+= this_item_size
+ sizeof(*item
);
3409 if (push_items
== 0)
3412 WARN_ON(!empty
&& push_items
== left_nritems
);
3414 /* push left to right */
3415 right_nritems
= btrfs_header_nritems(right
);
3417 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3418 push_space
-= leaf_data_end(root
, left
);
3420 /* make room in the right data area */
3421 data_end
= leaf_data_end(root
, right
);
3422 memmove_extent_buffer(right
,
3423 btrfs_leaf_data(right
) + data_end
- push_space
,
3424 btrfs_leaf_data(right
) + data_end
,
3425 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3427 /* copy from the left data area */
3428 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3429 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3430 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3433 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3434 btrfs_item_nr_offset(0),
3435 right_nritems
* sizeof(struct btrfs_item
));
3437 /* copy the items from left to right */
3438 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3439 btrfs_item_nr_offset(left_nritems
- push_items
),
3440 push_items
* sizeof(struct btrfs_item
));
3442 /* update the item pointers */
3443 right_nritems
+= push_items
;
3444 btrfs_set_header_nritems(right
, right_nritems
);
3445 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3446 for (i
= 0; i
< right_nritems
; i
++) {
3447 item
= btrfs_item_nr(right
, i
);
3448 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3449 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3452 left_nritems
-= push_items
;
3453 btrfs_set_header_nritems(left
, left_nritems
);
3456 btrfs_mark_buffer_dirty(left
);
3458 clean_tree_block(trans
, root
, left
);
3460 btrfs_mark_buffer_dirty(right
);
3462 btrfs_item_key(right
, &disk_key
, 0);
3463 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3464 btrfs_mark_buffer_dirty(upper
);
3466 /* then fixup the leaf pointer in the path */
3467 if (path
->slots
[0] >= left_nritems
) {
3468 path
->slots
[0] -= left_nritems
;
3469 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3470 clean_tree_block(trans
, root
, path
->nodes
[0]);
3471 btrfs_tree_unlock(path
->nodes
[0]);
3472 free_extent_buffer(path
->nodes
[0]);
3473 path
->nodes
[0] = right
;
3474 path
->slots
[1] += 1;
3476 btrfs_tree_unlock(right
);
3477 free_extent_buffer(right
);
3482 btrfs_tree_unlock(right
);
3483 free_extent_buffer(right
);
3488 * push some data in the path leaf to the right, trying to free up at
3489 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3491 * returns 1 if the push failed because the other node didn't have enough
3492 * room, 0 if everything worked out and < 0 if there were major errors.
3494 * this will push starting from min_slot to the end of the leaf. It won't
3495 * push any slot lower than min_slot
3497 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3498 *root
, struct btrfs_path
*path
,
3499 int min_data_size
, int data_size
,
3500 int empty
, u32 min_slot
)
3502 struct extent_buffer
*left
= path
->nodes
[0];
3503 struct extent_buffer
*right
;
3504 struct extent_buffer
*upper
;
3510 if (!path
->nodes
[1])
3513 slot
= path
->slots
[1];
3514 upper
= path
->nodes
[1];
3515 if (slot
>= btrfs_header_nritems(upper
) - 1)
3518 btrfs_assert_tree_locked(path
->nodes
[1]);
3520 right
= read_node_slot(root
, upper
, slot
+ 1);
3524 btrfs_tree_lock(right
);
3525 btrfs_set_lock_blocking(right
);
3527 free_space
= btrfs_leaf_free_space(root
, right
);
3528 if (free_space
< data_size
)
3531 /* cow and double check */
3532 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3537 free_space
= btrfs_leaf_free_space(root
, right
);
3538 if (free_space
< data_size
)
3541 left_nritems
= btrfs_header_nritems(left
);
3542 if (left_nritems
== 0)
3545 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3546 right
, free_space
, left_nritems
, min_slot
);
3548 btrfs_tree_unlock(right
);
3549 free_extent_buffer(right
);
3554 * push some data in the path leaf to the left, trying to free up at
3555 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3557 * max_slot can put a limit on how far into the leaf we'll push items. The
3558 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3561 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3562 struct btrfs_root
*root
,
3563 struct btrfs_path
*path
, int data_size
,
3564 int empty
, struct extent_buffer
*left
,
3565 int free_space
, u32 right_nritems
,
3568 struct btrfs_disk_key disk_key
;
3569 struct extent_buffer
*right
= path
->nodes
[0];
3573 struct btrfs_item
*item
;
3574 u32 old_left_nritems
;
3578 u32 old_left_item_size
;
3579 struct btrfs_map_token token
;
3581 btrfs_init_map_token(&token
);
3584 nr
= min(right_nritems
, max_slot
);
3586 nr
= min(right_nritems
- 1, max_slot
);
3588 for (i
= 0; i
< nr
; i
++) {
3589 item
= btrfs_item_nr(right
, i
);
3591 if (!empty
&& push_items
> 0) {
3592 if (path
->slots
[0] < i
)
3594 if (path
->slots
[0] == i
) {
3595 int space
= btrfs_leaf_free_space(root
, right
);
3596 if (space
+ push_space
* 2 > free_space
)
3601 if (path
->slots
[0] == i
)
3602 push_space
+= data_size
;
3604 this_item_size
= btrfs_item_size(right
, item
);
3605 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3609 push_space
+= this_item_size
+ sizeof(*item
);
3612 if (push_items
== 0) {
3616 if (!empty
&& push_items
== btrfs_header_nritems(right
))
3619 /* push data from right to left */
3620 copy_extent_buffer(left
, right
,
3621 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3622 btrfs_item_nr_offset(0),
3623 push_items
* sizeof(struct btrfs_item
));
3625 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3626 btrfs_item_offset_nr(right
, push_items
- 1);
3628 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3629 leaf_data_end(root
, left
) - push_space
,
3630 btrfs_leaf_data(right
) +
3631 btrfs_item_offset_nr(right
, push_items
- 1),
3633 old_left_nritems
= btrfs_header_nritems(left
);
3634 BUG_ON(old_left_nritems
<= 0);
3636 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3637 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3640 item
= btrfs_item_nr(left
, i
);
3642 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3643 btrfs_set_token_item_offset(left
, item
,
3644 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3647 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3649 /* fixup right node */
3650 if (push_items
> right_nritems
)
3651 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3654 if (push_items
< right_nritems
) {
3655 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3656 leaf_data_end(root
, right
);
3657 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3658 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3659 btrfs_leaf_data(right
) +
3660 leaf_data_end(root
, right
), push_space
);
3662 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3663 btrfs_item_nr_offset(push_items
),
3664 (btrfs_header_nritems(right
) - push_items
) *
3665 sizeof(struct btrfs_item
));
3667 right_nritems
-= push_items
;
3668 btrfs_set_header_nritems(right
, right_nritems
);
3669 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3670 for (i
= 0; i
< right_nritems
; i
++) {
3671 item
= btrfs_item_nr(right
, i
);
3673 push_space
= push_space
- btrfs_token_item_size(right
,
3675 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3678 btrfs_mark_buffer_dirty(left
);
3680 btrfs_mark_buffer_dirty(right
);
3682 clean_tree_block(trans
, root
, right
);
3684 btrfs_item_key(right
, &disk_key
, 0);
3685 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3687 /* then fixup the leaf pointer in the path */
3688 if (path
->slots
[0] < push_items
) {
3689 path
->slots
[0] += old_left_nritems
;
3690 btrfs_tree_unlock(path
->nodes
[0]);
3691 free_extent_buffer(path
->nodes
[0]);
3692 path
->nodes
[0] = left
;
3693 path
->slots
[1] -= 1;
3695 btrfs_tree_unlock(left
);
3696 free_extent_buffer(left
);
3697 path
->slots
[0] -= push_items
;
3699 BUG_ON(path
->slots
[0] < 0);
3702 btrfs_tree_unlock(left
);
3703 free_extent_buffer(left
);
3708 * push some data in the path leaf to the left, trying to free up at
3709 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3711 * max_slot can put a limit on how far into the leaf we'll push items. The
3712 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3715 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3716 *root
, struct btrfs_path
*path
, int min_data_size
,
3717 int data_size
, int empty
, u32 max_slot
)
3719 struct extent_buffer
*right
= path
->nodes
[0];
3720 struct extent_buffer
*left
;
3726 slot
= path
->slots
[1];
3729 if (!path
->nodes
[1])
3732 right_nritems
= btrfs_header_nritems(right
);
3733 if (right_nritems
== 0)
3736 btrfs_assert_tree_locked(path
->nodes
[1]);
3738 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
3742 btrfs_tree_lock(left
);
3743 btrfs_set_lock_blocking(left
);
3745 free_space
= btrfs_leaf_free_space(root
, left
);
3746 if (free_space
< data_size
) {
3751 /* cow and double check */
3752 ret
= btrfs_cow_block(trans
, root
, left
,
3753 path
->nodes
[1], slot
- 1, &left
);
3755 /* we hit -ENOSPC, but it isn't fatal here */
3761 free_space
= btrfs_leaf_free_space(root
, left
);
3762 if (free_space
< data_size
) {
3767 return __push_leaf_left(trans
, root
, path
, min_data_size
,
3768 empty
, left
, free_space
, right_nritems
,
3771 btrfs_tree_unlock(left
);
3772 free_extent_buffer(left
);
3777 * split the path's leaf in two, making sure there is at least data_size
3778 * available for the resulting leaf level of the path.
3780 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
3781 struct btrfs_root
*root
,
3782 struct btrfs_path
*path
,
3783 struct extent_buffer
*l
,
3784 struct extent_buffer
*right
,
3785 int slot
, int mid
, int nritems
)
3790 struct btrfs_disk_key disk_key
;
3791 struct btrfs_map_token token
;
3793 btrfs_init_map_token(&token
);
3795 nritems
= nritems
- mid
;
3796 btrfs_set_header_nritems(right
, nritems
);
3797 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
3799 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
3800 btrfs_item_nr_offset(mid
),
3801 nritems
* sizeof(struct btrfs_item
));
3803 copy_extent_buffer(right
, l
,
3804 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
3805 data_copy_size
, btrfs_leaf_data(l
) +
3806 leaf_data_end(root
, l
), data_copy_size
);
3808 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
3809 btrfs_item_end_nr(l
, mid
);
3811 for (i
= 0; i
< nritems
; i
++) {
3812 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
3815 ioff
= btrfs_token_item_offset(right
, item
, &token
);
3816 btrfs_set_token_item_offset(right
, item
,
3817 ioff
+ rt_data_off
, &token
);
3820 btrfs_set_header_nritems(l
, mid
);
3821 btrfs_item_key(right
, &disk_key
, 0);
3822 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
3823 path
->slots
[1] + 1, 1);
3825 btrfs_mark_buffer_dirty(right
);
3826 btrfs_mark_buffer_dirty(l
);
3827 BUG_ON(path
->slots
[0] != slot
);
3830 btrfs_tree_unlock(path
->nodes
[0]);
3831 free_extent_buffer(path
->nodes
[0]);
3832 path
->nodes
[0] = right
;
3833 path
->slots
[0] -= mid
;
3834 path
->slots
[1] += 1;
3836 btrfs_tree_unlock(right
);
3837 free_extent_buffer(right
);
3840 BUG_ON(path
->slots
[0] < 0);
3844 * double splits happen when we need to insert a big item in the middle
3845 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3846 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3849 * We avoid this by trying to push the items on either side of our target
3850 * into the adjacent leaves. If all goes well we can avoid the double split
3853 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
3854 struct btrfs_root
*root
,
3855 struct btrfs_path
*path
,
3863 slot
= path
->slots
[0];
3866 * try to push all the items after our slot into the
3869 ret
= push_leaf_right(trans
, root
, path
, 1, data_size
, 0, slot
);
3876 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3878 * our goal is to get our slot at the start or end of a leaf. If
3879 * we've done so we're done
3881 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
3884 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
3887 /* try to push all the items before our slot into the next leaf */
3888 slot
= path
->slots
[0];
3889 ret
= push_leaf_left(trans
, root
, path
, 1, data_size
, 0, slot
);
3902 * split the path's leaf in two, making sure there is at least data_size
3903 * available for the resulting leaf level of the path.
3905 * returns 0 if all went well and < 0 on failure.
3907 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
3908 struct btrfs_root
*root
,
3909 struct btrfs_key
*ins_key
,
3910 struct btrfs_path
*path
, int data_size
,
3913 struct btrfs_disk_key disk_key
;
3914 struct extent_buffer
*l
;
3918 struct extent_buffer
*right
;
3922 int num_doubles
= 0;
3923 int tried_avoid_double
= 0;
3926 slot
= path
->slots
[0];
3927 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
3928 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
3931 /* first try to make some room by pushing left and right */
3933 wret
= push_leaf_right(trans
, root
, path
, data_size
,
3938 wret
= push_leaf_left(trans
, root
, path
, data_size
,
3939 data_size
, 0, (u32
)-1);
3945 /* did the pushes work? */
3946 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
3950 if (!path
->nodes
[1]) {
3951 ret
= insert_new_root(trans
, root
, path
, 1);
3958 slot
= path
->slots
[0];
3959 nritems
= btrfs_header_nritems(l
);
3960 mid
= (nritems
+ 1) / 2;
3964 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
3965 BTRFS_LEAF_DATA_SIZE(root
)) {
3966 if (slot
>= nritems
) {
3970 if (mid
!= nritems
&&
3971 leaf_space_used(l
, mid
, nritems
- mid
) +
3972 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3973 if (data_size
&& !tried_avoid_double
)
3974 goto push_for_double
;
3980 if (leaf_space_used(l
, 0, mid
) + data_size
>
3981 BTRFS_LEAF_DATA_SIZE(root
)) {
3982 if (!extend
&& data_size
&& slot
== 0) {
3984 } else if ((extend
|| !data_size
) && slot
== 0) {
3988 if (mid
!= nritems
&&
3989 leaf_space_used(l
, mid
, nritems
- mid
) +
3990 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3991 if (data_size
&& !tried_avoid_double
)
3992 goto push_for_double
;
4000 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4002 btrfs_item_key(l
, &disk_key
, mid
);
4004 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
4005 root
->root_key
.objectid
,
4006 &disk_key
, 0, l
->start
, 0);
4008 return PTR_ERR(right
);
4010 root_add_used(root
, root
->leafsize
);
4012 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
4013 btrfs_set_header_bytenr(right
, right
->start
);
4014 btrfs_set_header_generation(right
, trans
->transid
);
4015 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4016 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4017 btrfs_set_header_level(right
, 0);
4018 write_extent_buffer(right
, root
->fs_info
->fsid
,
4019 (unsigned long)btrfs_header_fsid(right
),
4022 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
4023 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
4028 btrfs_set_header_nritems(right
, 0);
4029 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4030 path
->slots
[1] + 1, 1);
4031 btrfs_tree_unlock(path
->nodes
[0]);
4032 free_extent_buffer(path
->nodes
[0]);
4033 path
->nodes
[0] = right
;
4035 path
->slots
[1] += 1;
4037 btrfs_set_header_nritems(right
, 0);
4038 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4040 btrfs_tree_unlock(path
->nodes
[0]);
4041 free_extent_buffer(path
->nodes
[0]);
4042 path
->nodes
[0] = right
;
4044 if (path
->slots
[1] == 0)
4045 fixup_low_keys(trans
, root
, path
,
4048 btrfs_mark_buffer_dirty(right
);
4052 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4055 BUG_ON(num_doubles
!= 0);
4063 push_for_double_split(trans
, root
, path
, data_size
);
4064 tried_avoid_double
= 1;
4065 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4070 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4071 struct btrfs_root
*root
,
4072 struct btrfs_path
*path
, int ins_len
)
4074 struct btrfs_key key
;
4075 struct extent_buffer
*leaf
;
4076 struct btrfs_file_extent_item
*fi
;
4081 leaf
= path
->nodes
[0];
4082 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4084 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4085 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4087 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4090 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4091 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4092 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4093 struct btrfs_file_extent_item
);
4094 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4096 btrfs_release_path(path
);
4098 path
->keep_locks
= 1;
4099 path
->search_for_split
= 1;
4100 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4101 path
->search_for_split
= 0;
4106 leaf
= path
->nodes
[0];
4107 /* if our item isn't there or got smaller, return now */
4108 if (ret
> 0 || item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4111 /* the leaf has changed, it now has room. return now */
4112 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4115 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4116 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4117 struct btrfs_file_extent_item
);
4118 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4122 btrfs_set_path_blocking(path
);
4123 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4127 path
->keep_locks
= 0;
4128 btrfs_unlock_up_safe(path
, 1);
4131 path
->keep_locks
= 0;
4135 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4136 struct btrfs_root
*root
,
4137 struct btrfs_path
*path
,
4138 struct btrfs_key
*new_key
,
4139 unsigned long split_offset
)
4141 struct extent_buffer
*leaf
;
4142 struct btrfs_item
*item
;
4143 struct btrfs_item
*new_item
;
4149 struct btrfs_disk_key disk_key
;
4151 leaf
= path
->nodes
[0];
4152 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4154 btrfs_set_path_blocking(path
);
4156 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
4157 orig_offset
= btrfs_item_offset(leaf
, item
);
4158 item_size
= btrfs_item_size(leaf
, item
);
4160 buf
= kmalloc(item_size
, GFP_NOFS
);
4164 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4165 path
->slots
[0]), item_size
);
4167 slot
= path
->slots
[0] + 1;
4168 nritems
= btrfs_header_nritems(leaf
);
4169 if (slot
!= nritems
) {
4170 /* shift the items */
4171 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4172 btrfs_item_nr_offset(slot
),
4173 (nritems
- slot
) * sizeof(struct btrfs_item
));
4176 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4177 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4179 new_item
= btrfs_item_nr(leaf
, slot
);
4181 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4182 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4184 btrfs_set_item_offset(leaf
, item
,
4185 orig_offset
+ item_size
- split_offset
);
4186 btrfs_set_item_size(leaf
, item
, split_offset
);
4188 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4190 /* write the data for the start of the original item */
4191 write_extent_buffer(leaf
, buf
,
4192 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4195 /* write the data for the new item */
4196 write_extent_buffer(leaf
, buf
+ split_offset
,
4197 btrfs_item_ptr_offset(leaf
, slot
),
4198 item_size
- split_offset
);
4199 btrfs_mark_buffer_dirty(leaf
);
4201 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4207 * This function splits a single item into two items,
4208 * giving 'new_key' to the new item and splitting the
4209 * old one at split_offset (from the start of the item).
4211 * The path may be released by this operation. After
4212 * the split, the path is pointing to the old item. The
4213 * new item is going to be in the same node as the old one.
4215 * Note, the item being split must be smaller enough to live alone on
4216 * a tree block with room for one extra struct btrfs_item
4218 * This allows us to split the item in place, keeping a lock on the
4219 * leaf the entire time.
4221 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4222 struct btrfs_root
*root
,
4223 struct btrfs_path
*path
,
4224 struct btrfs_key
*new_key
,
4225 unsigned long split_offset
)
4228 ret
= setup_leaf_for_split(trans
, root
, path
,
4229 sizeof(struct btrfs_item
));
4233 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4238 * This function duplicate a item, giving 'new_key' to the new item.
4239 * It guarantees both items live in the same tree leaf and the new item
4240 * is contiguous with the original item.
4242 * This allows us to split file extent in place, keeping a lock on the
4243 * leaf the entire time.
4245 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4246 struct btrfs_root
*root
,
4247 struct btrfs_path
*path
,
4248 struct btrfs_key
*new_key
)
4250 struct extent_buffer
*leaf
;
4254 leaf
= path
->nodes
[0];
4255 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4256 ret
= setup_leaf_for_split(trans
, root
, path
,
4257 item_size
+ sizeof(struct btrfs_item
));
4262 setup_items_for_insert(trans
, root
, path
, new_key
, &item_size
,
4263 item_size
, item_size
+
4264 sizeof(struct btrfs_item
), 1);
4265 leaf
= path
->nodes
[0];
4266 memcpy_extent_buffer(leaf
,
4267 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4268 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4274 * make the item pointed to by the path smaller. new_size indicates
4275 * how small to make it, and from_end tells us if we just chop bytes
4276 * off the end of the item or if we shift the item to chop bytes off
4279 void btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
4280 struct btrfs_root
*root
,
4281 struct btrfs_path
*path
,
4282 u32 new_size
, int from_end
)
4285 struct extent_buffer
*leaf
;
4286 struct btrfs_item
*item
;
4288 unsigned int data_end
;
4289 unsigned int old_data_start
;
4290 unsigned int old_size
;
4291 unsigned int size_diff
;
4293 struct btrfs_map_token token
;
4295 btrfs_init_map_token(&token
);
4297 leaf
= path
->nodes
[0];
4298 slot
= path
->slots
[0];
4300 old_size
= btrfs_item_size_nr(leaf
, slot
);
4301 if (old_size
== new_size
)
4304 nritems
= btrfs_header_nritems(leaf
);
4305 data_end
= leaf_data_end(root
, leaf
);
4307 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4309 size_diff
= old_size
- new_size
;
4312 BUG_ON(slot
>= nritems
);
4315 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4317 /* first correct the data pointers */
4318 for (i
= slot
; i
< nritems
; i
++) {
4320 item
= btrfs_item_nr(leaf
, i
);
4322 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4323 btrfs_set_token_item_offset(leaf
, item
,
4324 ioff
+ size_diff
, &token
);
4327 /* shift the data */
4329 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4330 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4331 data_end
, old_data_start
+ new_size
- data_end
);
4333 struct btrfs_disk_key disk_key
;
4336 btrfs_item_key(leaf
, &disk_key
, slot
);
4338 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4340 struct btrfs_file_extent_item
*fi
;
4342 fi
= btrfs_item_ptr(leaf
, slot
,
4343 struct btrfs_file_extent_item
);
4344 fi
= (struct btrfs_file_extent_item
*)(
4345 (unsigned long)fi
- size_diff
);
4347 if (btrfs_file_extent_type(leaf
, fi
) ==
4348 BTRFS_FILE_EXTENT_INLINE
) {
4349 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4350 memmove_extent_buffer(leaf
, ptr
,
4352 offsetof(struct btrfs_file_extent_item
,
4357 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4358 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4359 data_end
, old_data_start
- data_end
);
4361 offset
= btrfs_disk_key_offset(&disk_key
);
4362 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4363 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4365 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4368 item
= btrfs_item_nr(leaf
, slot
);
4369 btrfs_set_item_size(leaf
, item
, new_size
);
4370 btrfs_mark_buffer_dirty(leaf
);
4372 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4373 btrfs_print_leaf(root
, leaf
);
4379 * make the item pointed to by the path bigger, data_size is the new size.
4381 void btrfs_extend_item(struct btrfs_trans_handle
*trans
,
4382 struct btrfs_root
*root
, struct btrfs_path
*path
,
4386 struct extent_buffer
*leaf
;
4387 struct btrfs_item
*item
;
4389 unsigned int data_end
;
4390 unsigned int old_data
;
4391 unsigned int old_size
;
4393 struct btrfs_map_token token
;
4395 btrfs_init_map_token(&token
);
4397 leaf
= path
->nodes
[0];
4399 nritems
= btrfs_header_nritems(leaf
);
4400 data_end
= leaf_data_end(root
, leaf
);
4402 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4403 btrfs_print_leaf(root
, leaf
);
4406 slot
= path
->slots
[0];
4407 old_data
= btrfs_item_end_nr(leaf
, slot
);
4410 if (slot
>= nritems
) {
4411 btrfs_print_leaf(root
, leaf
);
4412 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
4418 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4420 /* first correct the data pointers */
4421 for (i
= slot
; i
< nritems
; i
++) {
4423 item
= btrfs_item_nr(leaf
, i
);
4425 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4426 btrfs_set_token_item_offset(leaf
, item
,
4427 ioff
- data_size
, &token
);
4430 /* shift the data */
4431 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4432 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4433 data_end
, old_data
- data_end
);
4435 data_end
= old_data
;
4436 old_size
= btrfs_item_size_nr(leaf
, slot
);
4437 item
= btrfs_item_nr(leaf
, slot
);
4438 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4439 btrfs_mark_buffer_dirty(leaf
);
4441 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4442 btrfs_print_leaf(root
, leaf
);
4448 * this is a helper for btrfs_insert_empty_items, the main goal here is
4449 * to save stack depth by doing the bulk of the work in a function
4450 * that doesn't call btrfs_search_slot
4452 void setup_items_for_insert(struct btrfs_trans_handle
*trans
,
4453 struct btrfs_root
*root
, struct btrfs_path
*path
,
4454 struct btrfs_key
*cpu_key
, u32
*data_size
,
4455 u32 total_data
, u32 total_size
, int nr
)
4457 struct btrfs_item
*item
;
4460 unsigned int data_end
;
4461 struct btrfs_disk_key disk_key
;
4462 struct extent_buffer
*leaf
;
4464 struct btrfs_map_token token
;
4466 btrfs_init_map_token(&token
);
4468 leaf
= path
->nodes
[0];
4469 slot
= path
->slots
[0];
4471 nritems
= btrfs_header_nritems(leaf
);
4472 data_end
= leaf_data_end(root
, leaf
);
4474 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4475 btrfs_print_leaf(root
, leaf
);
4476 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
4477 total_size
, btrfs_leaf_free_space(root
, leaf
));
4481 if (slot
!= nritems
) {
4482 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4484 if (old_data
< data_end
) {
4485 btrfs_print_leaf(root
, leaf
);
4486 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
4487 slot
, old_data
, data_end
);
4491 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4493 /* first correct the data pointers */
4494 for (i
= slot
; i
< nritems
; i
++) {
4497 item
= btrfs_item_nr(leaf
, i
);
4498 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4499 btrfs_set_token_item_offset(leaf
, item
,
4500 ioff
- total_data
, &token
);
4502 /* shift the items */
4503 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4504 btrfs_item_nr_offset(slot
),
4505 (nritems
- slot
) * sizeof(struct btrfs_item
));
4507 /* shift the data */
4508 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4509 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4510 data_end
, old_data
- data_end
);
4511 data_end
= old_data
;
4514 /* setup the item for the new data */
4515 for (i
= 0; i
< nr
; i
++) {
4516 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4517 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4518 item
= btrfs_item_nr(leaf
, slot
+ i
);
4519 btrfs_set_token_item_offset(leaf
, item
,
4520 data_end
- data_size
[i
], &token
);
4521 data_end
-= data_size
[i
];
4522 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4525 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4528 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4529 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4531 btrfs_unlock_up_safe(path
, 1);
4532 btrfs_mark_buffer_dirty(leaf
);
4534 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4535 btrfs_print_leaf(root
, leaf
);
4541 * Given a key and some data, insert items into the tree.
4542 * This does all the path init required, making room in the tree if needed.
4544 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4545 struct btrfs_root
*root
,
4546 struct btrfs_path
*path
,
4547 struct btrfs_key
*cpu_key
, u32
*data_size
,
4556 for (i
= 0; i
< nr
; i
++)
4557 total_data
+= data_size
[i
];
4559 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4560 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4566 slot
= path
->slots
[0];
4569 setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
4570 total_data
, total_size
, nr
);
4575 * Given a key and some data, insert an item into the tree.
4576 * This does all the path init required, making room in the tree if needed.
4578 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4579 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4583 struct btrfs_path
*path
;
4584 struct extent_buffer
*leaf
;
4587 path
= btrfs_alloc_path();
4590 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4592 leaf
= path
->nodes
[0];
4593 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4594 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4595 btrfs_mark_buffer_dirty(leaf
);
4597 btrfs_free_path(path
);
4602 * delete the pointer from a given node.
4604 * the tree should have been previously balanced so the deletion does not
4607 static void del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4608 struct btrfs_path
*path
, int level
, int slot
)
4610 struct extent_buffer
*parent
= path
->nodes
[level
];
4615 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4616 MOD_LOG_KEY_REMOVE
);
4620 nritems
= btrfs_header_nritems(parent
);
4621 if (slot
!= nritems
- 1) {
4623 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4624 slot
+ 1, nritems
- slot
- 1);
4625 memmove_extent_buffer(parent
,
4626 btrfs_node_key_ptr_offset(slot
),
4627 btrfs_node_key_ptr_offset(slot
+ 1),
4628 sizeof(struct btrfs_key_ptr
) *
4629 (nritems
- slot
- 1));
4633 btrfs_set_header_nritems(parent
, nritems
);
4634 if (nritems
== 0 && parent
== root
->node
) {
4635 BUG_ON(btrfs_header_level(root
->node
) != 1);
4636 /* just turn the root into a leaf and break */
4637 btrfs_set_header_level(root
->node
, 0);
4638 } else if (slot
== 0) {
4639 struct btrfs_disk_key disk_key
;
4641 btrfs_node_key(parent
, &disk_key
, 0);
4642 fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
4644 btrfs_mark_buffer_dirty(parent
);
4648 * a helper function to delete the leaf pointed to by path->slots[1] and
4651 * This deletes the pointer in path->nodes[1] and frees the leaf
4652 * block extent. zero is returned if it all worked out, < 0 otherwise.
4654 * The path must have already been setup for deleting the leaf, including
4655 * all the proper balancing. path->nodes[1] must be locked.
4657 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4658 struct btrfs_root
*root
,
4659 struct btrfs_path
*path
,
4660 struct extent_buffer
*leaf
)
4662 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4663 del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
4666 * btrfs_free_extent is expensive, we want to make sure we
4667 * aren't holding any locks when we call it
4669 btrfs_unlock_up_safe(path
, 0);
4671 root_sub_used(root
, leaf
->len
);
4673 extent_buffer_get(leaf
);
4674 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4675 free_extent_buffer_stale(leaf
);
4678 * delete the item at the leaf level in path. If that empties
4679 * the leaf, remove it from the tree
4681 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4682 struct btrfs_path
*path
, int slot
, int nr
)
4684 struct extent_buffer
*leaf
;
4685 struct btrfs_item
*item
;
4692 struct btrfs_map_token token
;
4694 btrfs_init_map_token(&token
);
4696 leaf
= path
->nodes
[0];
4697 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4699 for (i
= 0; i
< nr
; i
++)
4700 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4702 nritems
= btrfs_header_nritems(leaf
);
4704 if (slot
+ nr
!= nritems
) {
4705 int data_end
= leaf_data_end(root
, leaf
);
4707 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4709 btrfs_leaf_data(leaf
) + data_end
,
4710 last_off
- data_end
);
4712 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4715 item
= btrfs_item_nr(leaf
, i
);
4716 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4717 btrfs_set_token_item_offset(leaf
, item
,
4718 ioff
+ dsize
, &token
);
4721 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4722 btrfs_item_nr_offset(slot
+ nr
),
4723 sizeof(struct btrfs_item
) *
4724 (nritems
- slot
- nr
));
4726 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4729 /* delete the leaf if we've emptied it */
4731 if (leaf
== root
->node
) {
4732 btrfs_set_header_level(leaf
, 0);
4734 btrfs_set_path_blocking(path
);
4735 clean_tree_block(trans
, root
, leaf
);
4736 btrfs_del_leaf(trans
, root
, path
, leaf
);
4739 int used
= leaf_space_used(leaf
, 0, nritems
);
4741 struct btrfs_disk_key disk_key
;
4743 btrfs_item_key(leaf
, &disk_key
, 0);
4744 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4747 /* delete the leaf if it is mostly empty */
4748 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
4749 /* push_leaf_left fixes the path.
4750 * make sure the path still points to our leaf
4751 * for possible call to del_ptr below
4753 slot
= path
->slots
[1];
4754 extent_buffer_get(leaf
);
4756 btrfs_set_path_blocking(path
);
4757 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
4759 if (wret
< 0 && wret
!= -ENOSPC
)
4762 if (path
->nodes
[0] == leaf
&&
4763 btrfs_header_nritems(leaf
)) {
4764 wret
= push_leaf_right(trans
, root
, path
, 1,
4766 if (wret
< 0 && wret
!= -ENOSPC
)
4770 if (btrfs_header_nritems(leaf
) == 0) {
4771 path
->slots
[1] = slot
;
4772 btrfs_del_leaf(trans
, root
, path
, leaf
);
4773 free_extent_buffer(leaf
);
4776 /* if we're still in the path, make sure
4777 * we're dirty. Otherwise, one of the
4778 * push_leaf functions must have already
4779 * dirtied this buffer
4781 if (path
->nodes
[0] == leaf
)
4782 btrfs_mark_buffer_dirty(leaf
);
4783 free_extent_buffer(leaf
);
4786 btrfs_mark_buffer_dirty(leaf
);
4793 * search the tree again to find a leaf with lesser keys
4794 * returns 0 if it found something or 1 if there are no lesser leaves.
4795 * returns < 0 on io errors.
4797 * This may release the path, and so you may lose any locks held at the
4800 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4802 struct btrfs_key key
;
4803 struct btrfs_disk_key found_key
;
4806 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
4810 else if (key
.type
> 0)
4812 else if (key
.objectid
> 0)
4817 btrfs_release_path(path
);
4818 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4821 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
4822 ret
= comp_keys(&found_key
, &key
);
4829 * A helper function to walk down the tree starting at min_key, and looking
4830 * for nodes or leaves that are either in cache or have a minimum
4831 * transaction id. This is used by the btree defrag code, and tree logging
4833 * This does not cow, but it does stuff the starting key it finds back
4834 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4835 * key and get a writable path.
4837 * This does lock as it descends, and path->keep_locks should be set
4838 * to 1 by the caller.
4840 * This honors path->lowest_level to prevent descent past a given level
4843 * min_trans indicates the oldest transaction that you are interested
4844 * in walking through. Any nodes or leaves older than min_trans are
4845 * skipped over (without reading them).
4847 * returns zero if something useful was found, < 0 on error and 1 if there
4848 * was nothing in the tree that matched the search criteria.
4850 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
4851 struct btrfs_key
*max_key
,
4852 struct btrfs_path
*path
, int cache_only
,
4855 struct extent_buffer
*cur
;
4856 struct btrfs_key found_key
;
4863 WARN_ON(!path
->keep_locks
);
4865 cur
= btrfs_read_lock_root_node(root
);
4866 level
= btrfs_header_level(cur
);
4867 WARN_ON(path
->nodes
[level
]);
4868 path
->nodes
[level
] = cur
;
4869 path
->locks
[level
] = BTRFS_READ_LOCK
;
4871 if (btrfs_header_generation(cur
) < min_trans
) {
4876 nritems
= btrfs_header_nritems(cur
);
4877 level
= btrfs_header_level(cur
);
4878 sret
= bin_search(cur
, min_key
, level
, &slot
);
4880 /* at the lowest level, we're done, setup the path and exit */
4881 if (level
== path
->lowest_level
) {
4882 if (slot
>= nritems
)
4885 path
->slots
[level
] = slot
;
4886 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
4889 if (sret
&& slot
> 0)
4892 * check this node pointer against the cache_only and
4893 * min_trans parameters. If it isn't in cache or is too
4894 * old, skip to the next one.
4896 while (slot
< nritems
) {
4899 struct extent_buffer
*tmp
;
4900 struct btrfs_disk_key disk_key
;
4902 blockptr
= btrfs_node_blockptr(cur
, slot
);
4903 gen
= btrfs_node_ptr_generation(cur
, slot
);
4904 if (gen
< min_trans
) {
4912 btrfs_node_key(cur
, &disk_key
, slot
);
4913 if (comp_keys(&disk_key
, max_key
) >= 0) {
4919 tmp
= btrfs_find_tree_block(root
, blockptr
,
4920 btrfs_level_size(root
, level
- 1));
4922 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
4923 free_extent_buffer(tmp
);
4927 free_extent_buffer(tmp
);
4932 * we didn't find a candidate key in this node, walk forward
4933 * and find another one
4935 if (slot
>= nritems
) {
4936 path
->slots
[level
] = slot
;
4937 btrfs_set_path_blocking(path
);
4938 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4939 cache_only
, min_trans
);
4941 btrfs_release_path(path
);
4947 /* save our key for returning back */
4948 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4949 path
->slots
[level
] = slot
;
4950 if (level
== path
->lowest_level
) {
4952 unlock_up(path
, level
, 1, 0, NULL
);
4955 btrfs_set_path_blocking(path
);
4956 cur
= read_node_slot(root
, cur
, slot
);
4957 BUG_ON(!cur
); /* -ENOMEM */
4959 btrfs_tree_read_lock(cur
);
4961 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
4962 path
->nodes
[level
- 1] = cur
;
4963 unlock_up(path
, level
, 1, 0, NULL
);
4964 btrfs_clear_path_blocking(path
, NULL
, 0);
4968 memcpy(min_key
, &found_key
, sizeof(found_key
));
4969 btrfs_set_path_blocking(path
);
4973 static void tree_move_down(struct btrfs_root
*root
,
4974 struct btrfs_path
*path
,
4975 int *level
, int root_level
)
4977 BUG_ON(*level
== 0);
4978 path
->nodes
[*level
- 1] = read_node_slot(root
, path
->nodes
[*level
],
4979 path
->slots
[*level
]);
4980 path
->slots
[*level
- 1] = 0;
4984 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
4985 struct btrfs_path
*path
,
4986 int *level
, int root_level
)
4990 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
4992 path
->slots
[*level
]++;
4994 while (path
->slots
[*level
] >= nritems
) {
4995 if (*level
== root_level
)
4999 path
->slots
[*level
] = 0;
5000 free_extent_buffer(path
->nodes
[*level
]);
5001 path
->nodes
[*level
] = NULL
;
5003 path
->slots
[*level
]++;
5005 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5012 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5015 static int tree_advance(struct btrfs_root
*root
,
5016 struct btrfs_path
*path
,
5017 int *level
, int root_level
,
5019 struct btrfs_key
*key
)
5023 if (*level
== 0 || !allow_down
) {
5024 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
5026 tree_move_down(root
, path
, level
, root_level
);
5031 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5032 path
->slots
[*level
]);
5034 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5035 path
->slots
[*level
]);
5040 static int tree_compare_item(struct btrfs_root
*left_root
,
5041 struct btrfs_path
*left_path
,
5042 struct btrfs_path
*right_path
,
5047 unsigned long off1
, off2
;
5049 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5050 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5054 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5055 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5056 right_path
->slots
[0]);
5058 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5060 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5067 #define ADVANCE_ONLY_NEXT -1
5070 * This function compares two trees and calls the provided callback for
5071 * every changed/new/deleted item it finds.
5072 * If shared tree blocks are encountered, whole subtrees are skipped, making
5073 * the compare pretty fast on snapshotted subvolumes.
5075 * This currently works on commit roots only. As commit roots are read only,
5076 * we don't do any locking. The commit roots are protected with transactions.
5077 * Transactions are ended and rejoined when a commit is tried in between.
5079 * This function checks for modifications done to the trees while comparing.
5080 * If it detects a change, it aborts immediately.
5082 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5083 struct btrfs_root
*right_root
,
5084 btrfs_changed_cb_t changed_cb
, void *ctx
)
5088 struct btrfs_trans_handle
*trans
= NULL
;
5089 struct btrfs_path
*left_path
= NULL
;
5090 struct btrfs_path
*right_path
= NULL
;
5091 struct btrfs_key left_key
;
5092 struct btrfs_key right_key
;
5093 char *tmp_buf
= NULL
;
5094 int left_root_level
;
5095 int right_root_level
;
5098 int left_end_reached
;
5099 int right_end_reached
;
5104 u64 left_start_ctransid
;
5105 u64 right_start_ctransid
;
5108 left_path
= btrfs_alloc_path();
5113 right_path
= btrfs_alloc_path();
5119 tmp_buf
= kmalloc(left_root
->leafsize
, GFP_NOFS
);
5125 left_path
->search_commit_root
= 1;
5126 left_path
->skip_locking
= 1;
5127 right_path
->search_commit_root
= 1;
5128 right_path
->skip_locking
= 1;
5130 spin_lock(&left_root
->root_item_lock
);
5131 left_start_ctransid
= btrfs_root_ctransid(&left_root
->root_item
);
5132 spin_unlock(&left_root
->root_item_lock
);
5134 spin_lock(&right_root
->root_item_lock
);
5135 right_start_ctransid
= btrfs_root_ctransid(&right_root
->root_item
);
5136 spin_unlock(&right_root
->root_item_lock
);
5138 trans
= btrfs_join_transaction(left_root
);
5139 if (IS_ERR(trans
)) {
5140 ret
= PTR_ERR(trans
);
5146 * Strategy: Go to the first items of both trees. Then do
5148 * If both trees are at level 0
5149 * Compare keys of current items
5150 * If left < right treat left item as new, advance left tree
5152 * If left > right treat right item as deleted, advance right tree
5154 * If left == right do deep compare of items, treat as changed if
5155 * needed, advance both trees and repeat
5156 * If both trees are at the same level but not at level 0
5157 * Compare keys of current nodes/leafs
5158 * If left < right advance left tree and repeat
5159 * If left > right advance right tree and repeat
5160 * If left == right compare blockptrs of the next nodes/leafs
5161 * If they match advance both trees but stay at the same level
5163 * If they don't match advance both trees while allowing to go
5165 * If tree levels are different
5166 * Advance the tree that needs it and repeat
5168 * Advancing a tree means:
5169 * If we are at level 0, try to go to the next slot. If that's not
5170 * possible, go one level up and repeat. Stop when we found a level
5171 * where we could go to the next slot. We may at this point be on a
5174 * If we are not at level 0 and not on shared tree blocks, go one
5177 * If we are not at level 0 and on shared tree blocks, go one slot to
5178 * the right if possible or go up and right.
5181 left_level
= btrfs_header_level(left_root
->commit_root
);
5182 left_root_level
= left_level
;
5183 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5184 extent_buffer_get(left_path
->nodes
[left_level
]);
5186 right_level
= btrfs_header_level(right_root
->commit_root
);
5187 right_root_level
= right_level
;
5188 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5189 extent_buffer_get(right_path
->nodes
[right_level
]);
5191 if (left_level
== 0)
5192 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5193 &left_key
, left_path
->slots
[left_level
]);
5195 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5196 &left_key
, left_path
->slots
[left_level
]);
5197 if (right_level
== 0)
5198 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5199 &right_key
, right_path
->slots
[right_level
]);
5201 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5202 &right_key
, right_path
->slots
[right_level
]);
5204 left_end_reached
= right_end_reached
= 0;
5205 advance_left
= advance_right
= 0;
5209 * We need to make sure the transaction does not get committed
5210 * while we do anything on commit roots. This means, we need to
5211 * join and leave transactions for every item that we process.
5213 if (trans
&& btrfs_should_end_transaction(trans
, left_root
)) {
5214 btrfs_release_path(left_path
);
5215 btrfs_release_path(right_path
);
5217 ret
= btrfs_end_transaction(trans
, left_root
);
5222 /* now rejoin the transaction */
5224 trans
= btrfs_join_transaction(left_root
);
5225 if (IS_ERR(trans
)) {
5226 ret
= PTR_ERR(trans
);
5231 spin_lock(&left_root
->root_item_lock
);
5232 ctransid
= btrfs_root_ctransid(&left_root
->root_item
);
5233 spin_unlock(&left_root
->root_item_lock
);
5234 if (ctransid
!= left_start_ctransid
)
5235 left_start_ctransid
= 0;
5237 spin_lock(&right_root
->root_item_lock
);
5238 ctransid
= btrfs_root_ctransid(&right_root
->root_item
);
5239 spin_unlock(&right_root
->root_item_lock
);
5240 if (ctransid
!= right_start_ctransid
)
5241 right_start_ctransid
= 0;
5243 if (!left_start_ctransid
|| !right_start_ctransid
) {
5244 WARN(1, KERN_WARNING
5245 "btrfs: btrfs_compare_tree detected "
5246 "a change in one of the trees while "
5247 "iterating. This is probably a "
5254 * the commit root may have changed, so start again
5257 left_path
->lowest_level
= left_level
;
5258 right_path
->lowest_level
= right_level
;
5259 ret
= btrfs_search_slot(NULL
, left_root
,
5260 &left_key
, left_path
, 0, 0);
5263 ret
= btrfs_search_slot(NULL
, right_root
,
5264 &right_key
, right_path
, 0, 0);
5269 if (advance_left
&& !left_end_reached
) {
5270 ret
= tree_advance(left_root
, left_path
, &left_level
,
5272 advance_left
!= ADVANCE_ONLY_NEXT
,
5275 left_end_reached
= ADVANCE
;
5278 if (advance_right
&& !right_end_reached
) {
5279 ret
= tree_advance(right_root
, right_path
, &right_level
,
5281 advance_right
!= ADVANCE_ONLY_NEXT
,
5284 right_end_reached
= ADVANCE
;
5288 if (left_end_reached
&& right_end_reached
) {
5291 } else if (left_end_reached
) {
5292 if (right_level
== 0) {
5293 ret
= changed_cb(left_root
, right_root
,
5294 left_path
, right_path
,
5296 BTRFS_COMPARE_TREE_DELETED
,
5301 advance_right
= ADVANCE
;
5303 } else if (right_end_reached
) {
5304 if (left_level
== 0) {
5305 ret
= changed_cb(left_root
, right_root
,
5306 left_path
, right_path
,
5308 BTRFS_COMPARE_TREE_NEW
,
5313 advance_left
= ADVANCE
;
5317 if (left_level
== 0 && right_level
== 0) {
5318 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5320 ret
= changed_cb(left_root
, right_root
,
5321 left_path
, right_path
,
5323 BTRFS_COMPARE_TREE_NEW
,
5327 advance_left
= ADVANCE
;
5328 } else if (cmp
> 0) {
5329 ret
= changed_cb(left_root
, right_root
,
5330 left_path
, right_path
,
5332 BTRFS_COMPARE_TREE_DELETED
,
5336 advance_right
= ADVANCE
;
5338 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5339 ret
= tree_compare_item(left_root
, left_path
,
5340 right_path
, tmp_buf
);
5342 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5343 ret
= changed_cb(left_root
, right_root
,
5344 left_path
, right_path
,
5346 BTRFS_COMPARE_TREE_CHANGED
,
5351 advance_left
= ADVANCE
;
5352 advance_right
= ADVANCE
;
5354 } else if (left_level
== right_level
) {
5355 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5357 advance_left
= ADVANCE
;
5358 } else if (cmp
> 0) {
5359 advance_right
= ADVANCE
;
5361 left_blockptr
= btrfs_node_blockptr(
5362 left_path
->nodes
[left_level
],
5363 left_path
->slots
[left_level
]);
5364 right_blockptr
= btrfs_node_blockptr(
5365 right_path
->nodes
[right_level
],
5366 right_path
->slots
[right_level
]);
5367 if (left_blockptr
== right_blockptr
) {
5369 * As we're on a shared block, don't
5370 * allow to go deeper.
5372 advance_left
= ADVANCE_ONLY_NEXT
;
5373 advance_right
= ADVANCE_ONLY_NEXT
;
5375 advance_left
= ADVANCE
;
5376 advance_right
= ADVANCE
;
5379 } else if (left_level
< right_level
) {
5380 advance_right
= ADVANCE
;
5382 advance_left
= ADVANCE
;
5387 btrfs_free_path(left_path
);
5388 btrfs_free_path(right_path
);
5393 ret
= btrfs_end_transaction(trans
, left_root
);
5395 btrfs_end_transaction(trans
, left_root
);
5402 * this is similar to btrfs_next_leaf, but does not try to preserve
5403 * and fixup the path. It looks for and returns the next key in the
5404 * tree based on the current path and the cache_only and min_trans
5407 * 0 is returned if another key is found, < 0 if there are any errors
5408 * and 1 is returned if there are no higher keys in the tree
5410 * path->keep_locks should be set to 1 on the search made before
5411 * calling this function.
5413 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5414 struct btrfs_key
*key
, int level
,
5415 int cache_only
, u64 min_trans
)
5418 struct extent_buffer
*c
;
5420 WARN_ON(!path
->keep_locks
);
5421 while (level
< BTRFS_MAX_LEVEL
) {
5422 if (!path
->nodes
[level
])
5425 slot
= path
->slots
[level
] + 1;
5426 c
= path
->nodes
[level
];
5428 if (slot
>= btrfs_header_nritems(c
)) {
5431 struct btrfs_key cur_key
;
5432 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5433 !path
->nodes
[level
+ 1])
5436 if (path
->locks
[level
+ 1]) {
5441 slot
= btrfs_header_nritems(c
) - 1;
5443 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5445 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5447 orig_lowest
= path
->lowest_level
;
5448 btrfs_release_path(path
);
5449 path
->lowest_level
= level
;
5450 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5452 path
->lowest_level
= orig_lowest
;
5456 c
= path
->nodes
[level
];
5457 slot
= path
->slots
[level
];
5464 btrfs_item_key_to_cpu(c
, key
, slot
);
5466 u64 blockptr
= btrfs_node_blockptr(c
, slot
);
5467 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5470 struct extent_buffer
*cur
;
5471 cur
= btrfs_find_tree_block(root
, blockptr
,
5472 btrfs_level_size(root
, level
- 1));
5474 btrfs_buffer_uptodate(cur
, gen
, 1) <= 0) {
5477 free_extent_buffer(cur
);
5480 free_extent_buffer(cur
);
5482 if (gen
< min_trans
) {
5486 btrfs_node_key_to_cpu(c
, key
, slot
);
5494 * search the tree again to find a leaf with greater keys
5495 * returns 0 if it found something or 1 if there are no greater leaves.
5496 * returns < 0 on io errors.
5498 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5500 return btrfs_next_old_leaf(root
, path
, 0);
5503 /* Release the path up to but not including the given level */
5504 static void btrfs_release_level(struct btrfs_path
*path
, int level
)
5508 for (i
= 0; i
< level
; i
++) {
5510 if (!path
->nodes
[i
])
5512 if (path
->locks
[i
]) {
5513 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
5516 free_extent_buffer(path
->nodes
[i
]);
5517 path
->nodes
[i
] = NULL
;
5522 * This function assumes 2 things
5524 * 1) You are using path->keep_locks
5525 * 2) You are not inserting items.
5527 * If either of these are not true do not use this function. If you need a next
5528 * leaf with either of these not being true then this function can be easily
5529 * adapted to do that, but at the moment these are the limitations.
5531 int btrfs_next_leaf_write(struct btrfs_trans_handle
*trans
,
5532 struct btrfs_root
*root
, struct btrfs_path
*path
,
5535 struct extent_buffer
*b
;
5536 struct btrfs_key key
;
5541 int write_lock_level
= BTRFS_MAX_LEVEL
;
5542 int ins_len
= del
? -1 : 0;
5544 WARN_ON(!(path
->keep_locks
|| path
->really_keep_locks
));
5546 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5547 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5549 while (path
->nodes
[level
]) {
5550 nritems
= btrfs_header_nritems(path
->nodes
[level
]);
5551 if (!(path
->locks
[level
] & BTRFS_WRITE_LOCK
)) {
5553 btrfs_release_path(path
);
5554 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
5562 if (path
->slots
[level
] >= nritems
- 1) {
5567 btrfs_release_level(path
, level
);
5571 if (!path
->nodes
[level
]) {
5576 path
->slots
[level
]++;
5577 b
= path
->nodes
[level
];
5580 level
= btrfs_header_level(b
);
5582 if (!should_cow_block(trans
, root
, b
))
5585 btrfs_set_path_blocking(path
);
5586 ret
= btrfs_cow_block(trans
, root
, b
,
5587 path
->nodes
[level
+ 1],
5588 path
->slots
[level
+ 1], &b
);
5592 path
->nodes
[level
] = b
;
5593 btrfs_clear_path_blocking(path
, NULL
, 0);
5595 ret
= setup_nodes_for_search(trans
, root
, path
, b
,
5603 b
= path
->nodes
[level
];
5604 slot
= path
->slots
[level
];
5606 ret
= read_block_for_search(trans
, root
, path
,
5607 &b
, level
, slot
, &key
, 0);
5612 level
= btrfs_header_level(b
);
5613 if (!btrfs_try_tree_write_lock(b
)) {
5614 btrfs_set_path_blocking(path
);
5616 btrfs_clear_path_blocking(path
, b
,
5619 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5620 path
->nodes
[level
] = b
;
5621 path
->slots
[level
] = 0;
5623 path
->slots
[level
] = 0;
5631 btrfs_release_path(path
);
5636 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5641 struct extent_buffer
*c
;
5642 struct extent_buffer
*next
;
5643 struct btrfs_key key
;
5646 int old_spinning
= path
->leave_spinning
;
5647 int next_rw_lock
= 0;
5649 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5653 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5658 btrfs_release_path(path
);
5660 path
->keep_locks
= 1;
5661 path
->leave_spinning
= 1;
5664 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5666 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5667 path
->keep_locks
= 0;
5672 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5674 * by releasing the path above we dropped all our locks. A balance
5675 * could have added more items next to the key that used to be
5676 * at the very end of the block. So, check again here and
5677 * advance the path if there are now more items available.
5679 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5686 while (level
< BTRFS_MAX_LEVEL
) {
5687 if (!path
->nodes
[level
]) {
5692 slot
= path
->slots
[level
] + 1;
5693 c
= path
->nodes
[level
];
5694 if (slot
>= btrfs_header_nritems(c
)) {
5696 if (level
== BTRFS_MAX_LEVEL
) {
5704 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5705 free_extent_buffer(next
);
5709 next_rw_lock
= path
->locks
[level
];
5710 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5716 btrfs_release_path(path
);
5720 if (!path
->skip_locking
) {
5721 ret
= btrfs_try_tree_read_lock(next
);
5722 if (!ret
&& time_seq
) {
5724 * If we don't get the lock, we may be racing
5725 * with push_leaf_left, holding that lock while
5726 * itself waiting for the leaf we've currently
5727 * locked. To solve this situation, we give up
5728 * on our lock and cycle.
5730 free_extent_buffer(next
);
5731 btrfs_release_path(path
);
5736 btrfs_set_path_blocking(path
);
5737 btrfs_tree_read_lock(next
);
5738 btrfs_clear_path_blocking(path
, next
,
5741 next_rw_lock
= BTRFS_READ_LOCK
;
5745 path
->slots
[level
] = slot
;
5748 c
= path
->nodes
[level
];
5749 if (path
->locks
[level
])
5750 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5752 free_extent_buffer(c
);
5753 path
->nodes
[level
] = next
;
5754 path
->slots
[level
] = 0;
5755 if (!path
->skip_locking
)
5756 path
->locks
[level
] = next_rw_lock
;
5760 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5766 btrfs_release_path(path
);
5770 if (!path
->skip_locking
) {
5771 ret
= btrfs_try_tree_read_lock(next
);
5773 btrfs_set_path_blocking(path
);
5774 btrfs_tree_read_lock(next
);
5775 btrfs_clear_path_blocking(path
, next
,
5778 next_rw_lock
= BTRFS_READ_LOCK
;
5783 unlock_up(path
, 0, 1, 0, NULL
);
5784 path
->leave_spinning
= old_spinning
;
5786 btrfs_set_path_blocking(path
);
5792 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5793 * searching until it gets past min_objectid or finds an item of 'type'
5795 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5797 int btrfs_previous_item(struct btrfs_root
*root
,
5798 struct btrfs_path
*path
, u64 min_objectid
,
5801 struct btrfs_key found_key
;
5802 struct extent_buffer
*leaf
;
5807 if (path
->slots
[0] == 0) {
5808 btrfs_set_path_blocking(path
);
5809 ret
= btrfs_prev_leaf(root
, path
);
5815 leaf
= path
->nodes
[0];
5816 nritems
= btrfs_header_nritems(leaf
);
5819 if (path
->slots
[0] == nritems
)
5822 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5823 if (found_key
.objectid
< min_objectid
)
5825 if (found_key
.type
== type
)
5827 if (found_key
.objectid
== min_objectid
&&
5828 found_key
.type
< type
)