]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ctree.c
Btrfs: always put insert_ptr modifications into the tree mod log
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot,
42 int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 u32 blocksize, u64 parent_transid,
47 u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 u64 bytenr, u32 blocksize,
50 u64 time_seq);
51
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54 struct btrfs_path *path;
55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56 return path;
57 }
58
59 /*
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
62 */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65 int i;
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 if (!p->nodes[i] || !p->locks[i])
68 continue;
69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 if (p->locks[i] == BTRFS_READ_LOCK)
71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74 }
75 }
76
77 /*
78 * reset all the locked nodes in the patch to spinning locks.
79 *
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
83 * for held
84 */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 struct extent_buffer *held, int held_rw)
87 {
88 int i;
89
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
95 * the path blocking.
96 */
97 if (held) {
98 btrfs_set_lock_blocking_rw(held, held_rw);
99 if (held_rw == BTRFS_WRITE_LOCK)
100 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 else if (held_rw == BTRFS_READ_LOCK)
102 held_rw = BTRFS_READ_LOCK_BLOCKING;
103 }
104 btrfs_set_path_blocking(p);
105 #endif
106
107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 if (p->nodes[i] && p->locks[i]) {
109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 p->locks[i] = BTRFS_WRITE_LOCK;
112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 p->locks[i] = BTRFS_READ_LOCK;
114 }
115 }
116
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 if (held)
119 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126 if (!p)
127 return;
128 btrfs_release_path(p);
129 kmem_cache_free(btrfs_path_cachep, p);
130 }
131
132 /*
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
135 *
136 * It is safe to call this on paths that no locks or extent buffers held.
137 */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140 int i;
141
142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143 p->slots[i] = 0;
144 if (!p->nodes[i])
145 continue;
146 if (p->locks[i]) {
147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 p->locks[i] = 0;
149 }
150 free_extent_buffer(p->nodes[i]);
151 p->nodes[i] = NULL;
152 }
153 }
154
155 /*
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
159 * looping required.
160 *
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
164 */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167 struct extent_buffer *eb;
168
169 while (1) {
170 rcu_read_lock();
171 eb = rcu_dereference(root->node);
172
173 /*
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
178 */
179 if (atomic_inc_not_zero(&eb->refs)) {
180 rcu_read_unlock();
181 break;
182 }
183 rcu_read_unlock();
184 synchronize_rcu();
185 }
186 return eb;
187 }
188
189 /* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
192 */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195 struct extent_buffer *eb;
196
197 while (1) {
198 eb = btrfs_root_node(root);
199 btrfs_tree_lock(eb);
200 if (eb == root->node)
201 break;
202 btrfs_tree_unlock(eb);
203 free_extent_buffer(eb);
204 }
205 return eb;
206 }
207
208 /* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
211 */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214 struct extent_buffer *eb;
215
216 while (1) {
217 eb = btrfs_root_node(root);
218 btrfs_tree_read_lock(eb);
219 if (eb == root->node)
220 break;
221 btrfs_tree_read_unlock(eb);
222 free_extent_buffer(eb);
223 }
224 return eb;
225 }
226
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
230 */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233 spin_lock(&root->fs_info->trans_lock);
234 if (root->track_dirty && list_empty(&root->dirty_list)) {
235 list_add(&root->dirty_list,
236 &root->fs_info->dirty_cowonly_roots);
237 }
238 spin_unlock(&root->fs_info->trans_lock);
239 }
240
241 /*
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
245 */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root,
248 struct extent_buffer *buf,
249 struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251 struct extent_buffer *cow;
252 int ret = 0;
253 int level;
254 struct btrfs_disk_key disk_key;
255
256 WARN_ON(root->ref_cows && trans->transid !=
257 root->fs_info->running_transaction->transid);
258 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260 level = btrfs_header_level(buf);
261 if (level == 0)
262 btrfs_item_key(buf, &disk_key, 0);
263 else
264 btrfs_node_key(buf, &disk_key, 0);
265
266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 new_root_objectid, &disk_key, level,
268 buf->start, 0);
269 if (IS_ERR(cow))
270 return PTR_ERR(cow);
271
272 copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 btrfs_set_header_bytenr(cow, cow->start);
274 btrfs_set_header_generation(cow, trans->transid);
275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 BTRFS_HEADER_FLAG_RELOC);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 else
281 btrfs_set_header_owner(cow, new_root_objectid);
282
283 write_extent_buffer(cow, root->fs_info->fsid,
284 (unsigned long)btrfs_header_fsid(cow),
285 BTRFS_FSID_SIZE);
286
287 WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290 else
291 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292
293 if (ret)
294 return ret;
295
296 btrfs_mark_buffer_dirty(cow);
297 *cow_ret = cow;
298 return 0;
299 }
300
301 enum mod_log_op {
302 MOD_LOG_KEY_REPLACE,
303 MOD_LOG_KEY_ADD,
304 MOD_LOG_KEY_REMOVE,
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 MOD_LOG_MOVE_KEYS,
308 MOD_LOG_ROOT_REPLACE,
309 };
310
311 struct tree_mod_move {
312 int dst_slot;
313 int nr_items;
314 };
315
316 struct tree_mod_root {
317 u64 logical;
318 u8 level;
319 };
320
321 struct tree_mod_elem {
322 struct rb_node node;
323 u64 index; /* shifted logical */
324 struct seq_list elem;
325 enum mod_log_op op;
326
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 int slot;
329
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 u64 generation;
332
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key;
335 u64 blockptr;
336
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move;
339
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root;
342 };
343
344 static inline void
345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
346 {
347 elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
349 }
350
351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
353 {
354 elem->flags = 1;
355 spin_lock(&fs_info->tree_mod_seq_lock);
356 __get_tree_mod_seq(fs_info, elem);
357 spin_unlock(&fs_info->tree_mod_seq_lock);
358 }
359
360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361 struct seq_list *elem)
362 {
363 struct rb_root *tm_root;
364 struct rb_node *node;
365 struct rb_node *next;
366 struct seq_list *cur_elem;
367 struct tree_mod_elem *tm;
368 u64 min_seq = (u64)-1;
369 u64 seq_putting = elem->seq;
370
371 if (!seq_putting)
372 return;
373
374 BUG_ON(!(elem->flags & 1));
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 list_del(&elem->list);
377
378 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380 if (seq_putting > cur_elem->seq) {
381 /*
382 * blocker with lower sequence number exists, we
383 * cannot remove anything from the log
384 */
385 goto out;
386 }
387 min_seq = cur_elem->seq;
388 }
389 }
390
391 /*
392 * anything that's lower than the lowest existing (read: blocked)
393 * sequence number can be removed from the tree.
394 */
395 write_lock(&fs_info->tree_mod_log_lock);
396 tm_root = &fs_info->tree_mod_log;
397 for (node = rb_first(tm_root); node; node = next) {
398 next = rb_next(node);
399 tm = container_of(node, struct tree_mod_elem, node);
400 if (tm->elem.seq > min_seq)
401 continue;
402 rb_erase(node, tm_root);
403 list_del(&tm->elem.list);
404 kfree(tm);
405 }
406 write_unlock(&fs_info->tree_mod_log_lock);
407 out:
408 spin_unlock(&fs_info->tree_mod_seq_lock);
409 }
410
411 /*
412 * key order of the log:
413 * index -> sequence
414 *
415 * the index is the shifted logical of the *new* root node for root replace
416 * operations, or the shifted logical of the affected block for all other
417 * operations.
418 */
419 static noinline int
420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
421 {
422 struct rb_root *tm_root;
423 struct rb_node **new;
424 struct rb_node *parent = NULL;
425 struct tree_mod_elem *cur;
426 int ret = 0;
427
428 BUG_ON(!tm || !tm->elem.seq);
429
430 write_lock(&fs_info->tree_mod_log_lock);
431 tm_root = &fs_info->tree_mod_log;
432 new = &tm_root->rb_node;
433 while (*new) {
434 cur = container_of(*new, struct tree_mod_elem, node);
435 parent = *new;
436 if (cur->index < tm->index)
437 new = &((*new)->rb_left);
438 else if (cur->index > tm->index)
439 new = &((*new)->rb_right);
440 else if (cur->elem.seq < tm->elem.seq)
441 new = &((*new)->rb_left);
442 else if (cur->elem.seq > tm->elem.seq)
443 new = &((*new)->rb_right);
444 else {
445 kfree(tm);
446 ret = -EEXIST;
447 goto unlock;
448 }
449 }
450
451 rb_link_node(&tm->node, parent, new);
452 rb_insert_color(&tm->node, tm_root);
453 unlock:
454 write_unlock(&fs_info->tree_mod_log_lock);
455 return ret;
456 }
457
458 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
459 struct extent_buffer *eb) {
460 smp_mb();
461 if (list_empty(&(fs_info)->tree_mod_seq_list))
462 return 1;
463 if (!eb)
464 return 0;
465 if (btrfs_header_level(eb) == 0)
466 return 1;
467 return 0;
468 }
469
470 /*
471 * This allocates memory and gets a tree modification sequence number when
472 * needed.
473 *
474 * Returns 0 when no sequence number is needed, < 0 on error.
475 * Returns 1 when a sequence number was added. In this case,
476 * fs_info->tree_mod_seq_lock was acquired and must be released by the caller
477 * after inserting into the rb tree.
478 */
479 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
480 struct tree_mod_elem **tm_ret)
481 {
482 struct tree_mod_elem *tm;
483 int seq;
484
485 if (tree_mod_dont_log(fs_info, NULL))
486 return 0;
487
488 tm = *tm_ret = kzalloc(sizeof(*tm), flags);
489 if (!tm)
490 return -ENOMEM;
491
492 tm->elem.flags = 0;
493 spin_lock(&fs_info->tree_mod_seq_lock);
494 if (list_empty(&fs_info->tree_mod_seq_list)) {
495 /*
496 * someone emptied the list while we were waiting for the lock.
497 * we must not add to the list, because no blocker exists. items
498 * are removed from the list only when the existing blocker is
499 * removed from the list.
500 */
501 kfree(tm);
502 seq = 0;
503 spin_unlock(&fs_info->tree_mod_seq_lock);
504 } else {
505 __get_tree_mod_seq(fs_info, &tm->elem);
506 seq = tm->elem.seq;
507 }
508
509 return seq;
510 }
511
512 static noinline int
513 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
514 struct extent_buffer *eb, int slot,
515 enum mod_log_op op, gfp_t flags)
516 {
517 struct tree_mod_elem *tm;
518 int ret;
519
520 ret = tree_mod_alloc(fs_info, flags, &tm);
521 if (ret <= 0)
522 return ret;
523
524 tm->index = eb->start >> PAGE_CACHE_SHIFT;
525 if (op != MOD_LOG_KEY_ADD) {
526 btrfs_node_key(eb, &tm->key, slot);
527 tm->blockptr = btrfs_node_blockptr(eb, slot);
528 }
529 tm->op = op;
530 tm->slot = slot;
531 tm->generation = btrfs_node_ptr_generation(eb, slot);
532
533 ret = __tree_mod_log_insert(fs_info, tm);
534 spin_unlock(&fs_info->tree_mod_seq_lock);
535 return ret;
536 }
537
538 static noinline int
539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
540 int slot, enum mod_log_op op)
541 {
542 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
543 }
544
545 static noinline int
546 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
547 struct extent_buffer *eb, int dst_slot, int src_slot,
548 int nr_items, gfp_t flags)
549 {
550 struct tree_mod_elem *tm;
551 int ret;
552 int i;
553
554 if (tree_mod_dont_log(fs_info, eb))
555 return 0;
556
557 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
558 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
559 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
560 BUG_ON(ret < 0);
561 }
562
563 ret = tree_mod_alloc(fs_info, flags, &tm);
564 if (ret <= 0)
565 return ret;
566
567 tm->index = eb->start >> PAGE_CACHE_SHIFT;
568 tm->slot = src_slot;
569 tm->move.dst_slot = dst_slot;
570 tm->move.nr_items = nr_items;
571 tm->op = MOD_LOG_MOVE_KEYS;
572
573 ret = __tree_mod_log_insert(fs_info, tm);
574 spin_unlock(&fs_info->tree_mod_seq_lock);
575 return ret;
576 }
577
578 static noinline int
579 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *old_root,
581 struct extent_buffer *new_root, gfp_t flags)
582 {
583 struct tree_mod_elem *tm;
584 int ret;
585
586 ret = tree_mod_alloc(fs_info, flags, &tm);
587 if (ret <= 0)
588 return ret;
589
590 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
591 tm->old_root.logical = old_root->start;
592 tm->old_root.level = btrfs_header_level(old_root);
593 tm->generation = btrfs_header_generation(old_root);
594 tm->op = MOD_LOG_ROOT_REPLACE;
595
596 ret = __tree_mod_log_insert(fs_info, tm);
597 spin_unlock(&fs_info->tree_mod_seq_lock);
598 return ret;
599 }
600
601 static struct tree_mod_elem *
602 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
603 int smallest)
604 {
605 struct rb_root *tm_root;
606 struct rb_node *node;
607 struct tree_mod_elem *cur = NULL;
608 struct tree_mod_elem *found = NULL;
609 u64 index = start >> PAGE_CACHE_SHIFT;
610
611 read_lock(&fs_info->tree_mod_log_lock);
612 tm_root = &fs_info->tree_mod_log;
613 node = tm_root->rb_node;
614 while (node) {
615 cur = container_of(node, struct tree_mod_elem, node);
616 if (cur->index < index) {
617 node = node->rb_left;
618 } else if (cur->index > index) {
619 node = node->rb_right;
620 } else if (cur->elem.seq < min_seq) {
621 node = node->rb_left;
622 } else if (!smallest) {
623 /* we want the node with the highest seq */
624 if (found)
625 BUG_ON(found->elem.seq > cur->elem.seq);
626 found = cur;
627 node = node->rb_left;
628 } else if (cur->elem.seq > min_seq) {
629 /* we want the node with the smallest seq */
630 if (found)
631 BUG_ON(found->elem.seq < cur->elem.seq);
632 found = cur;
633 node = node->rb_right;
634 } else {
635 found = cur;
636 break;
637 }
638 }
639 read_unlock(&fs_info->tree_mod_log_lock);
640
641 return found;
642 }
643
644 /*
645 * this returns the element from the log with the smallest time sequence
646 * value that's in the log (the oldest log item). any element with a time
647 * sequence lower than min_seq will be ignored.
648 */
649 static struct tree_mod_elem *
650 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
651 u64 min_seq)
652 {
653 return __tree_mod_log_search(fs_info, start, min_seq, 1);
654 }
655
656 /*
657 * this returns the element from the log with the largest time sequence
658 * value that's in the log (the most recent log item). any element with
659 * a time sequence lower than min_seq will be ignored.
660 */
661 static struct tree_mod_elem *
662 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
663 {
664 return __tree_mod_log_search(fs_info, start, min_seq, 0);
665 }
666
667 static inline void
668 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
669 struct extent_buffer *src, unsigned long dst_offset,
670 unsigned long src_offset, int nr_items)
671 {
672 int ret;
673 int i;
674
675 if (tree_mod_dont_log(fs_info, NULL))
676 return;
677
678 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
679 return;
680
681 /* speed this up by single seq for all operations? */
682 for (i = 0; i < nr_items; i++) {
683 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
684 MOD_LOG_KEY_REMOVE);
685 BUG_ON(ret < 0);
686 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
687 MOD_LOG_KEY_ADD);
688 BUG_ON(ret < 0);
689 }
690 }
691
692 static inline void
693 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
694 int dst_offset, int src_offset, int nr_items)
695 {
696 int ret;
697 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
698 nr_items, GFP_NOFS);
699 BUG_ON(ret < 0);
700 }
701
702 static inline void
703 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
704 struct extent_buffer *eb,
705 struct btrfs_disk_key *disk_key, int slot, int atomic)
706 {
707 int ret;
708
709 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
710 MOD_LOG_KEY_REPLACE,
711 atomic ? GFP_ATOMIC : GFP_NOFS);
712 BUG_ON(ret < 0);
713 }
714
715 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
716 struct extent_buffer *eb)
717 {
718 int i;
719 int ret;
720 u32 nritems;
721
722 if (tree_mod_dont_log(fs_info, eb))
723 return;
724
725 nritems = btrfs_header_nritems(eb);
726 for (i = nritems - 1; i >= 0; i--) {
727 ret = tree_mod_log_insert_key(fs_info, eb, i,
728 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
729 BUG_ON(ret < 0);
730 }
731 }
732
733 static inline void
734 tree_mod_log_set_root_pointer(struct btrfs_root *root,
735 struct extent_buffer *new_root_node)
736 {
737 int ret;
738 tree_mod_log_free_eb(root->fs_info, root->node);
739 ret = tree_mod_log_insert_root(root->fs_info, root->node,
740 new_root_node, GFP_NOFS);
741 BUG_ON(ret < 0);
742 }
743
744 /*
745 * check if the tree block can be shared by multiple trees
746 */
747 int btrfs_block_can_be_shared(struct btrfs_root *root,
748 struct extent_buffer *buf)
749 {
750 /*
751 * Tree blocks not in refernece counted trees and tree roots
752 * are never shared. If a block was allocated after the last
753 * snapshot and the block was not allocated by tree relocation,
754 * we know the block is not shared.
755 */
756 if (root->ref_cows &&
757 buf != root->node && buf != root->commit_root &&
758 (btrfs_header_generation(buf) <=
759 btrfs_root_last_snapshot(&root->root_item) ||
760 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
761 return 1;
762 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
763 if (root->ref_cows &&
764 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
765 return 1;
766 #endif
767 return 0;
768 }
769
770 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
771 struct btrfs_root *root,
772 struct extent_buffer *buf,
773 struct extent_buffer *cow,
774 int *last_ref)
775 {
776 u64 refs;
777 u64 owner;
778 u64 flags;
779 u64 new_flags = 0;
780 int ret;
781
782 /*
783 * Backrefs update rules:
784 *
785 * Always use full backrefs for extent pointers in tree block
786 * allocated by tree relocation.
787 *
788 * If a shared tree block is no longer referenced by its owner
789 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
790 * use full backrefs for extent pointers in tree block.
791 *
792 * If a tree block is been relocating
793 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
794 * use full backrefs for extent pointers in tree block.
795 * The reason for this is some operations (such as drop tree)
796 * are only allowed for blocks use full backrefs.
797 */
798
799 if (btrfs_block_can_be_shared(root, buf)) {
800 ret = btrfs_lookup_extent_info(trans, root, buf->start,
801 buf->len, &refs, &flags);
802 if (ret)
803 return ret;
804 if (refs == 0) {
805 ret = -EROFS;
806 btrfs_std_error(root->fs_info, ret);
807 return ret;
808 }
809 } else {
810 refs = 1;
811 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
812 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
813 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
814 else
815 flags = 0;
816 }
817
818 owner = btrfs_header_owner(buf);
819 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
820 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
821
822 if (refs > 1) {
823 if ((owner == root->root_key.objectid ||
824 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
825 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
826 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
827 BUG_ON(ret); /* -ENOMEM */
828
829 if (root->root_key.objectid ==
830 BTRFS_TREE_RELOC_OBJECTID) {
831 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
832 BUG_ON(ret); /* -ENOMEM */
833 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
834 BUG_ON(ret); /* -ENOMEM */
835 }
836 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
837 } else {
838
839 if (root->root_key.objectid ==
840 BTRFS_TREE_RELOC_OBJECTID)
841 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
842 else
843 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
844 BUG_ON(ret); /* -ENOMEM */
845 }
846 if (new_flags != 0) {
847 ret = btrfs_set_disk_extent_flags(trans, root,
848 buf->start,
849 buf->len,
850 new_flags, 0);
851 if (ret)
852 return ret;
853 }
854 } else {
855 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
856 if (root->root_key.objectid ==
857 BTRFS_TREE_RELOC_OBJECTID)
858 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
859 else
860 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
861 BUG_ON(ret); /* -ENOMEM */
862 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
863 BUG_ON(ret); /* -ENOMEM */
864 }
865 /*
866 * don't log freeing in case we're freeing the root node, this
867 * is done by tree_mod_log_set_root_pointer later
868 */
869 if (buf != root->node && btrfs_header_level(buf) != 0)
870 tree_mod_log_free_eb(root->fs_info, buf);
871 clean_tree_block(trans, root, buf);
872 *last_ref = 1;
873 }
874 return 0;
875 }
876
877 /*
878 * does the dirty work in cow of a single block. The parent block (if
879 * supplied) is updated to point to the new cow copy. The new buffer is marked
880 * dirty and returned locked. If you modify the block it needs to be marked
881 * dirty again.
882 *
883 * search_start -- an allocation hint for the new block
884 *
885 * empty_size -- a hint that you plan on doing more cow. This is the size in
886 * bytes the allocator should try to find free next to the block it returns.
887 * This is just a hint and may be ignored by the allocator.
888 */
889 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
890 struct btrfs_root *root,
891 struct extent_buffer *buf,
892 struct extent_buffer *parent, int parent_slot,
893 struct extent_buffer **cow_ret,
894 u64 search_start, u64 empty_size)
895 {
896 struct btrfs_disk_key disk_key;
897 struct extent_buffer *cow;
898 int level, ret;
899 int last_ref = 0;
900 int unlock_orig = 0;
901 u64 parent_start;
902
903 if (*cow_ret == buf)
904 unlock_orig = 1;
905
906 btrfs_assert_tree_locked(buf);
907
908 WARN_ON(root->ref_cows && trans->transid !=
909 root->fs_info->running_transaction->transid);
910 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
911
912 level = btrfs_header_level(buf);
913
914 if (level == 0)
915 btrfs_item_key(buf, &disk_key, 0);
916 else
917 btrfs_node_key(buf, &disk_key, 0);
918
919 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
920 if (parent)
921 parent_start = parent->start;
922 else
923 parent_start = 0;
924 } else
925 parent_start = 0;
926
927 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
928 root->root_key.objectid, &disk_key,
929 level, search_start, empty_size);
930 if (IS_ERR(cow))
931 return PTR_ERR(cow);
932
933 /* cow is set to blocking by btrfs_init_new_buffer */
934
935 copy_extent_buffer(cow, buf, 0, 0, cow->len);
936 btrfs_set_header_bytenr(cow, cow->start);
937 btrfs_set_header_generation(cow, trans->transid);
938 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
939 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
940 BTRFS_HEADER_FLAG_RELOC);
941 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
942 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
943 else
944 btrfs_set_header_owner(cow, root->root_key.objectid);
945
946 write_extent_buffer(cow, root->fs_info->fsid,
947 (unsigned long)btrfs_header_fsid(cow),
948 BTRFS_FSID_SIZE);
949
950 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
951 if (ret) {
952 btrfs_abort_transaction(trans, root, ret);
953 return ret;
954 }
955
956 if (root->ref_cows)
957 btrfs_reloc_cow_block(trans, root, buf, cow);
958
959 if (buf == root->node) {
960 WARN_ON(parent && parent != buf);
961 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
962 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
963 parent_start = buf->start;
964 else
965 parent_start = 0;
966
967 extent_buffer_get(cow);
968 tree_mod_log_set_root_pointer(root, cow);
969 rcu_assign_pointer(root->node, cow);
970
971 btrfs_free_tree_block(trans, root, buf, parent_start,
972 last_ref);
973 free_extent_buffer(buf);
974 add_root_to_dirty_list(root);
975 } else {
976 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
977 parent_start = parent->start;
978 else
979 parent_start = 0;
980
981 WARN_ON(trans->transid != btrfs_header_generation(parent));
982 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
983 MOD_LOG_KEY_REPLACE);
984 btrfs_set_node_blockptr(parent, parent_slot,
985 cow->start);
986 btrfs_set_node_ptr_generation(parent, parent_slot,
987 trans->transid);
988 btrfs_mark_buffer_dirty(parent);
989 btrfs_free_tree_block(trans, root, buf, parent_start,
990 last_ref);
991 }
992 if (unlock_orig)
993 btrfs_tree_unlock(buf);
994 free_extent_buffer_stale(buf);
995 btrfs_mark_buffer_dirty(cow);
996 *cow_ret = cow;
997 return 0;
998 }
999
1000 /*
1001 * returns the logical address of the oldest predecessor of the given root.
1002 * entries older than time_seq are ignored.
1003 */
1004 static struct tree_mod_elem *
1005 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1006 struct btrfs_root *root, u64 time_seq)
1007 {
1008 struct tree_mod_elem *tm;
1009 struct tree_mod_elem *found = NULL;
1010 u64 root_logical = root->node->start;
1011 int looped = 0;
1012
1013 if (!time_seq)
1014 return 0;
1015
1016 /*
1017 * the very last operation that's logged for a root is the replacement
1018 * operation (if it is replaced at all). this has the index of the *new*
1019 * root, making it the very first operation that's logged for this root.
1020 */
1021 while (1) {
1022 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1023 time_seq);
1024 if (!looped && !tm)
1025 return 0;
1026 /*
1027 * if there are no tree operation for the oldest root, we simply
1028 * return it. this should only happen if that (old) root is at
1029 * level 0.
1030 */
1031 if (!tm)
1032 break;
1033
1034 /*
1035 * if there's an operation that's not a root replacement, we
1036 * found the oldest version of our root. normally, we'll find a
1037 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1038 */
1039 if (tm->op != MOD_LOG_ROOT_REPLACE)
1040 break;
1041
1042 found = tm;
1043 root_logical = tm->old_root.logical;
1044 BUG_ON(root_logical == root->node->start);
1045 looped = 1;
1046 }
1047
1048 /* if there's no old root to return, return what we found instead */
1049 if (!found)
1050 found = tm;
1051
1052 return found;
1053 }
1054
1055 /*
1056 * tm is a pointer to the first operation to rewind within eb. then, all
1057 * previous operations will be rewinded (until we reach something older than
1058 * time_seq).
1059 */
1060 static void
1061 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1062 struct tree_mod_elem *first_tm)
1063 {
1064 u32 n;
1065 struct rb_node *next;
1066 struct tree_mod_elem *tm = first_tm;
1067 unsigned long o_dst;
1068 unsigned long o_src;
1069 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1070
1071 n = btrfs_header_nritems(eb);
1072 while (tm && tm->elem.seq >= time_seq) {
1073 /*
1074 * all the operations are recorded with the operator used for
1075 * the modification. as we're going backwards, we do the
1076 * opposite of each operation here.
1077 */
1078 switch (tm->op) {
1079 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1080 BUG_ON(tm->slot < n);
1081 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1082 case MOD_LOG_KEY_REMOVE:
1083 btrfs_set_node_key(eb, &tm->key, tm->slot);
1084 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1085 btrfs_set_node_ptr_generation(eb, tm->slot,
1086 tm->generation);
1087 n++;
1088 break;
1089 case MOD_LOG_KEY_REPLACE:
1090 BUG_ON(tm->slot >= n);
1091 btrfs_set_node_key(eb, &tm->key, tm->slot);
1092 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1093 btrfs_set_node_ptr_generation(eb, tm->slot,
1094 tm->generation);
1095 break;
1096 case MOD_LOG_KEY_ADD:
1097 if (tm->slot != n - 1) {
1098 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1099 o_src = btrfs_node_key_ptr_offset(tm->slot + 1);
1100 memmove_extent_buffer(eb, o_dst, o_src, p_size);
1101 }
1102 n--;
1103 break;
1104 case MOD_LOG_MOVE_KEYS:
1105 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1106 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1107 memmove_extent_buffer(eb, o_dst, o_src,
1108 tm->move.nr_items * p_size);
1109 break;
1110 case MOD_LOG_ROOT_REPLACE:
1111 /*
1112 * this operation is special. for roots, this must be
1113 * handled explicitly before rewinding.
1114 * for non-roots, this operation may exist if the node
1115 * was a root: root A -> child B; then A gets empty and
1116 * B is promoted to the new root. in the mod log, we'll
1117 * have a root-replace operation for B, a tree block
1118 * that is no root. we simply ignore that operation.
1119 */
1120 break;
1121 }
1122 next = rb_next(&tm->node);
1123 if (!next)
1124 break;
1125 tm = container_of(next, struct tree_mod_elem, node);
1126 if (tm->index != first_tm->index)
1127 break;
1128 }
1129 btrfs_set_header_nritems(eb, n);
1130 }
1131
1132 static struct extent_buffer *
1133 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1134 u64 time_seq)
1135 {
1136 struct extent_buffer *eb_rewin;
1137 struct tree_mod_elem *tm;
1138
1139 if (!time_seq)
1140 return eb;
1141
1142 if (btrfs_header_level(eb) == 0)
1143 return eb;
1144
1145 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1146 if (!tm)
1147 return eb;
1148
1149 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1150 BUG_ON(tm->slot != 0);
1151 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1152 fs_info->tree_root->nodesize);
1153 BUG_ON(!eb_rewin);
1154 btrfs_set_header_bytenr(eb_rewin, eb->start);
1155 btrfs_set_header_backref_rev(eb_rewin,
1156 btrfs_header_backref_rev(eb));
1157 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1158 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1159 } else {
1160 eb_rewin = btrfs_clone_extent_buffer(eb);
1161 BUG_ON(!eb_rewin);
1162 }
1163
1164 extent_buffer_get(eb_rewin);
1165 free_extent_buffer(eb);
1166
1167 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1168
1169 return eb_rewin;
1170 }
1171
1172 /*
1173 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1174 * value. If there are no changes, the current root->root_node is returned. If
1175 * anything changed in between, there's a fresh buffer allocated on which the
1176 * rewind operations are done. In any case, the returned buffer is read locked.
1177 * Returns NULL on error (with no locks held).
1178 */
1179 static inline struct extent_buffer *
1180 get_old_root(struct btrfs_root *root, u64 time_seq)
1181 {
1182 struct tree_mod_elem *tm;
1183 struct extent_buffer *eb;
1184 struct tree_mod_root *old_root = NULL;
1185 u64 old_generation = 0;
1186 u64 logical;
1187
1188 eb = btrfs_read_lock_root_node(root);
1189 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1190 if (!tm)
1191 return root->node;
1192
1193 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1194 old_root = &tm->old_root;
1195 old_generation = tm->generation;
1196 logical = old_root->logical;
1197 } else {
1198 logical = root->node->start;
1199 }
1200
1201 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1202 if (old_root)
1203 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1204 else
1205 eb = btrfs_clone_extent_buffer(root->node);
1206 btrfs_tree_read_unlock(root->node);
1207 free_extent_buffer(root->node);
1208 if (!eb)
1209 return NULL;
1210 btrfs_tree_read_lock(eb);
1211 if (old_root) {
1212 btrfs_set_header_bytenr(eb, eb->start);
1213 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1214 btrfs_set_header_owner(eb, root->root_key.objectid);
1215 btrfs_set_header_level(eb, old_root->level);
1216 btrfs_set_header_generation(eb, old_generation);
1217 }
1218 if (tm)
1219 __tree_mod_log_rewind(eb, time_seq, tm);
1220 else
1221 WARN_ON(btrfs_header_level(eb) != 0);
1222 extent_buffer_get(eb);
1223
1224 return eb;
1225 }
1226
1227 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1228 struct btrfs_root *root,
1229 struct extent_buffer *buf)
1230 {
1231 /* ensure we can see the force_cow */
1232 smp_rmb();
1233
1234 /*
1235 * We do not need to cow a block if
1236 * 1) this block is not created or changed in this transaction;
1237 * 2) this block does not belong to TREE_RELOC tree;
1238 * 3) the root is not forced COW.
1239 *
1240 * What is forced COW:
1241 * when we create snapshot during commiting the transaction,
1242 * after we've finished coping src root, we must COW the shared
1243 * block to ensure the metadata consistency.
1244 */
1245 if (btrfs_header_generation(buf) == trans->transid &&
1246 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1247 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1248 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1249 !root->force_cow)
1250 return 0;
1251 return 1;
1252 }
1253
1254 /*
1255 * cows a single block, see __btrfs_cow_block for the real work.
1256 * This version of it has extra checks so that a block isn't cow'd more than
1257 * once per transaction, as long as it hasn't been written yet
1258 */
1259 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1260 struct btrfs_root *root, struct extent_buffer *buf,
1261 struct extent_buffer *parent, int parent_slot,
1262 struct extent_buffer **cow_ret)
1263 {
1264 u64 search_start;
1265 int ret;
1266
1267 if (trans->transaction != root->fs_info->running_transaction) {
1268 printk(KERN_CRIT "trans %llu running %llu\n",
1269 (unsigned long long)trans->transid,
1270 (unsigned long long)
1271 root->fs_info->running_transaction->transid);
1272 WARN_ON(1);
1273 }
1274 if (trans->transid != root->fs_info->generation) {
1275 printk(KERN_CRIT "trans %llu running %llu\n",
1276 (unsigned long long)trans->transid,
1277 (unsigned long long)root->fs_info->generation);
1278 WARN_ON(1);
1279 }
1280
1281 if (!should_cow_block(trans, root, buf)) {
1282 *cow_ret = buf;
1283 return 0;
1284 }
1285
1286 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1287
1288 if (parent)
1289 btrfs_set_lock_blocking(parent);
1290 btrfs_set_lock_blocking(buf);
1291
1292 ret = __btrfs_cow_block(trans, root, buf, parent,
1293 parent_slot, cow_ret, search_start, 0);
1294
1295 trace_btrfs_cow_block(root, buf, *cow_ret);
1296
1297 return ret;
1298 }
1299
1300 /*
1301 * helper function for defrag to decide if two blocks pointed to by a
1302 * node are actually close by
1303 */
1304 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1305 {
1306 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1307 return 1;
1308 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1309 return 1;
1310 return 0;
1311 }
1312
1313 /*
1314 * compare two keys in a memcmp fashion
1315 */
1316 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1317 {
1318 struct btrfs_key k1;
1319
1320 btrfs_disk_key_to_cpu(&k1, disk);
1321
1322 return btrfs_comp_cpu_keys(&k1, k2);
1323 }
1324
1325 /*
1326 * same as comp_keys only with two btrfs_key's
1327 */
1328 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1329 {
1330 if (k1->objectid > k2->objectid)
1331 return 1;
1332 if (k1->objectid < k2->objectid)
1333 return -1;
1334 if (k1->type > k2->type)
1335 return 1;
1336 if (k1->type < k2->type)
1337 return -1;
1338 if (k1->offset > k2->offset)
1339 return 1;
1340 if (k1->offset < k2->offset)
1341 return -1;
1342 return 0;
1343 }
1344
1345 /*
1346 * this is used by the defrag code to go through all the
1347 * leaves pointed to by a node and reallocate them so that
1348 * disk order is close to key order
1349 */
1350 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root, struct extent_buffer *parent,
1352 int start_slot, int cache_only, u64 *last_ret,
1353 struct btrfs_key *progress)
1354 {
1355 struct extent_buffer *cur;
1356 u64 blocknr;
1357 u64 gen;
1358 u64 search_start = *last_ret;
1359 u64 last_block = 0;
1360 u64 other;
1361 u32 parent_nritems;
1362 int end_slot;
1363 int i;
1364 int err = 0;
1365 int parent_level;
1366 int uptodate;
1367 u32 blocksize;
1368 int progress_passed = 0;
1369 struct btrfs_disk_key disk_key;
1370
1371 parent_level = btrfs_header_level(parent);
1372 if (cache_only && parent_level != 1)
1373 return 0;
1374
1375 if (trans->transaction != root->fs_info->running_transaction)
1376 WARN_ON(1);
1377 if (trans->transid != root->fs_info->generation)
1378 WARN_ON(1);
1379
1380 parent_nritems = btrfs_header_nritems(parent);
1381 blocksize = btrfs_level_size(root, parent_level - 1);
1382 end_slot = parent_nritems;
1383
1384 if (parent_nritems == 1)
1385 return 0;
1386
1387 btrfs_set_lock_blocking(parent);
1388
1389 for (i = start_slot; i < end_slot; i++) {
1390 int close = 1;
1391
1392 btrfs_node_key(parent, &disk_key, i);
1393 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1394 continue;
1395
1396 progress_passed = 1;
1397 blocknr = btrfs_node_blockptr(parent, i);
1398 gen = btrfs_node_ptr_generation(parent, i);
1399 if (last_block == 0)
1400 last_block = blocknr;
1401
1402 if (i > 0) {
1403 other = btrfs_node_blockptr(parent, i - 1);
1404 close = close_blocks(blocknr, other, blocksize);
1405 }
1406 if (!close && i < end_slot - 2) {
1407 other = btrfs_node_blockptr(parent, i + 1);
1408 close = close_blocks(blocknr, other, blocksize);
1409 }
1410 if (close) {
1411 last_block = blocknr;
1412 continue;
1413 }
1414
1415 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1416 if (cur)
1417 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1418 else
1419 uptodate = 0;
1420 if (!cur || !uptodate) {
1421 if (cache_only) {
1422 free_extent_buffer(cur);
1423 continue;
1424 }
1425 if (!cur) {
1426 cur = read_tree_block(root, blocknr,
1427 blocksize, gen);
1428 if (!cur)
1429 return -EIO;
1430 } else if (!uptodate) {
1431 err = btrfs_read_buffer(cur, gen);
1432 if (err) {
1433 free_extent_buffer(cur);
1434 return err;
1435 }
1436 }
1437 }
1438 if (search_start == 0)
1439 search_start = last_block;
1440
1441 btrfs_tree_lock(cur);
1442 btrfs_set_lock_blocking(cur);
1443 err = __btrfs_cow_block(trans, root, cur, parent, i,
1444 &cur, search_start,
1445 min(16 * blocksize,
1446 (end_slot - i) * blocksize));
1447 if (err) {
1448 btrfs_tree_unlock(cur);
1449 free_extent_buffer(cur);
1450 break;
1451 }
1452 search_start = cur->start;
1453 last_block = cur->start;
1454 *last_ret = search_start;
1455 btrfs_tree_unlock(cur);
1456 free_extent_buffer(cur);
1457 }
1458 return err;
1459 }
1460
1461 /*
1462 * The leaf data grows from end-to-front in the node.
1463 * this returns the address of the start of the last item,
1464 * which is the stop of the leaf data stack
1465 */
1466 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1467 struct extent_buffer *leaf)
1468 {
1469 u32 nr = btrfs_header_nritems(leaf);
1470 if (nr == 0)
1471 return BTRFS_LEAF_DATA_SIZE(root);
1472 return btrfs_item_offset_nr(leaf, nr - 1);
1473 }
1474
1475
1476 /*
1477 * search for key in the extent_buffer. The items start at offset p,
1478 * and they are item_size apart. There are 'max' items in p.
1479 *
1480 * the slot in the array is returned via slot, and it points to
1481 * the place where you would insert key if it is not found in
1482 * the array.
1483 *
1484 * slot may point to max if the key is bigger than all of the keys
1485 */
1486 static noinline int generic_bin_search(struct extent_buffer *eb,
1487 unsigned long p,
1488 int item_size, struct btrfs_key *key,
1489 int max, int *slot)
1490 {
1491 int low = 0;
1492 int high = max;
1493 int mid;
1494 int ret;
1495 struct btrfs_disk_key *tmp = NULL;
1496 struct btrfs_disk_key unaligned;
1497 unsigned long offset;
1498 char *kaddr = NULL;
1499 unsigned long map_start = 0;
1500 unsigned long map_len = 0;
1501 int err;
1502
1503 while (low < high) {
1504 mid = (low + high) / 2;
1505 offset = p + mid * item_size;
1506
1507 if (!kaddr || offset < map_start ||
1508 (offset + sizeof(struct btrfs_disk_key)) >
1509 map_start + map_len) {
1510
1511 err = map_private_extent_buffer(eb, offset,
1512 sizeof(struct btrfs_disk_key),
1513 &kaddr, &map_start, &map_len);
1514
1515 if (!err) {
1516 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1517 map_start);
1518 } else {
1519 read_extent_buffer(eb, &unaligned,
1520 offset, sizeof(unaligned));
1521 tmp = &unaligned;
1522 }
1523
1524 } else {
1525 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1526 map_start);
1527 }
1528 ret = comp_keys(tmp, key);
1529
1530 if (ret < 0)
1531 low = mid + 1;
1532 else if (ret > 0)
1533 high = mid;
1534 else {
1535 *slot = mid;
1536 return 0;
1537 }
1538 }
1539 *slot = low;
1540 return 1;
1541 }
1542
1543 /*
1544 * simple bin_search frontend that does the right thing for
1545 * leaves vs nodes
1546 */
1547 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1548 int level, int *slot)
1549 {
1550 if (level == 0)
1551 return generic_bin_search(eb,
1552 offsetof(struct btrfs_leaf, items),
1553 sizeof(struct btrfs_item),
1554 key, btrfs_header_nritems(eb),
1555 slot);
1556 else
1557 return generic_bin_search(eb,
1558 offsetof(struct btrfs_node, ptrs),
1559 sizeof(struct btrfs_key_ptr),
1560 key, btrfs_header_nritems(eb),
1561 slot);
1562 }
1563
1564 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1565 int level, int *slot)
1566 {
1567 return bin_search(eb, key, level, slot);
1568 }
1569
1570 static void root_add_used(struct btrfs_root *root, u32 size)
1571 {
1572 spin_lock(&root->accounting_lock);
1573 btrfs_set_root_used(&root->root_item,
1574 btrfs_root_used(&root->root_item) + size);
1575 spin_unlock(&root->accounting_lock);
1576 }
1577
1578 static void root_sub_used(struct btrfs_root *root, u32 size)
1579 {
1580 spin_lock(&root->accounting_lock);
1581 btrfs_set_root_used(&root->root_item,
1582 btrfs_root_used(&root->root_item) - size);
1583 spin_unlock(&root->accounting_lock);
1584 }
1585
1586 /* given a node and slot number, this reads the blocks it points to. The
1587 * extent buffer is returned with a reference taken (but unlocked).
1588 * NULL is returned on error.
1589 */
1590 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1591 struct extent_buffer *parent, int slot)
1592 {
1593 int level = btrfs_header_level(parent);
1594 if (slot < 0)
1595 return NULL;
1596 if (slot >= btrfs_header_nritems(parent))
1597 return NULL;
1598
1599 BUG_ON(level == 0);
1600
1601 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1602 btrfs_level_size(root, level - 1),
1603 btrfs_node_ptr_generation(parent, slot));
1604 }
1605
1606 /*
1607 * node level balancing, used to make sure nodes are in proper order for
1608 * item deletion. We balance from the top down, so we have to make sure
1609 * that a deletion won't leave an node completely empty later on.
1610 */
1611 static noinline int balance_level(struct btrfs_trans_handle *trans,
1612 struct btrfs_root *root,
1613 struct btrfs_path *path, int level)
1614 {
1615 struct extent_buffer *right = NULL;
1616 struct extent_buffer *mid;
1617 struct extent_buffer *left = NULL;
1618 struct extent_buffer *parent = NULL;
1619 int ret = 0;
1620 int wret;
1621 int pslot;
1622 int orig_slot = path->slots[level];
1623 u64 orig_ptr;
1624
1625 if (level == 0)
1626 return 0;
1627
1628 mid = path->nodes[level];
1629
1630 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1631 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1632 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1633
1634 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1635
1636 if (level < BTRFS_MAX_LEVEL - 1) {
1637 parent = path->nodes[level + 1];
1638 pslot = path->slots[level + 1];
1639 }
1640
1641 /*
1642 * deal with the case where there is only one pointer in the root
1643 * by promoting the node below to a root
1644 */
1645 if (!parent) {
1646 struct extent_buffer *child;
1647
1648 if (btrfs_header_nritems(mid) != 1)
1649 return 0;
1650
1651 /* promote the child to a root */
1652 child = read_node_slot(root, mid, 0);
1653 if (!child) {
1654 ret = -EROFS;
1655 btrfs_std_error(root->fs_info, ret);
1656 goto enospc;
1657 }
1658
1659 btrfs_tree_lock(child);
1660 btrfs_set_lock_blocking(child);
1661 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1662 if (ret) {
1663 btrfs_tree_unlock(child);
1664 free_extent_buffer(child);
1665 goto enospc;
1666 }
1667
1668 tree_mod_log_set_root_pointer(root, child);
1669 rcu_assign_pointer(root->node, child);
1670
1671 add_root_to_dirty_list(root);
1672 btrfs_tree_unlock(child);
1673
1674 path->locks[level] = 0;
1675 path->nodes[level] = NULL;
1676 clean_tree_block(trans, root, mid);
1677 btrfs_tree_unlock(mid);
1678 /* once for the path */
1679 free_extent_buffer(mid);
1680
1681 root_sub_used(root, mid->len);
1682 btrfs_free_tree_block(trans, root, mid, 0, 1);
1683 /* once for the root ptr */
1684 free_extent_buffer_stale(mid);
1685 return 0;
1686 }
1687 if (btrfs_header_nritems(mid) >
1688 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1689 return 0;
1690
1691 left = read_node_slot(root, parent, pslot - 1);
1692 if (left) {
1693 btrfs_tree_lock(left);
1694 btrfs_set_lock_blocking(left);
1695 wret = btrfs_cow_block(trans, root, left,
1696 parent, pslot - 1, &left);
1697 if (wret) {
1698 ret = wret;
1699 goto enospc;
1700 }
1701 }
1702 right = read_node_slot(root, parent, pslot + 1);
1703 if (right) {
1704 btrfs_tree_lock(right);
1705 btrfs_set_lock_blocking(right);
1706 wret = btrfs_cow_block(trans, root, right,
1707 parent, pslot + 1, &right);
1708 if (wret) {
1709 ret = wret;
1710 goto enospc;
1711 }
1712 }
1713
1714 /* first, try to make some room in the middle buffer */
1715 if (left) {
1716 orig_slot += btrfs_header_nritems(left);
1717 wret = push_node_left(trans, root, left, mid, 1);
1718 if (wret < 0)
1719 ret = wret;
1720 }
1721
1722 /*
1723 * then try to empty the right most buffer into the middle
1724 */
1725 if (right) {
1726 wret = push_node_left(trans, root, mid, right, 1);
1727 if (wret < 0 && wret != -ENOSPC)
1728 ret = wret;
1729 if (btrfs_header_nritems(right) == 0) {
1730 clean_tree_block(trans, root, right);
1731 btrfs_tree_unlock(right);
1732 del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1733 root_sub_used(root, right->len);
1734 btrfs_free_tree_block(trans, root, right, 0, 1);
1735 free_extent_buffer_stale(right);
1736 right = NULL;
1737 } else {
1738 struct btrfs_disk_key right_key;
1739 btrfs_node_key(right, &right_key, 0);
1740 tree_mod_log_set_node_key(root->fs_info, parent,
1741 &right_key, pslot + 1, 0);
1742 btrfs_set_node_key(parent, &right_key, pslot + 1);
1743 btrfs_mark_buffer_dirty(parent);
1744 }
1745 }
1746 if (btrfs_header_nritems(mid) == 1) {
1747 /*
1748 * we're not allowed to leave a node with one item in the
1749 * tree during a delete. A deletion from lower in the tree
1750 * could try to delete the only pointer in this node.
1751 * So, pull some keys from the left.
1752 * There has to be a left pointer at this point because
1753 * otherwise we would have pulled some pointers from the
1754 * right
1755 */
1756 if (!left) {
1757 ret = -EROFS;
1758 btrfs_std_error(root->fs_info, ret);
1759 goto enospc;
1760 }
1761 wret = balance_node_right(trans, root, mid, left);
1762 if (wret < 0) {
1763 ret = wret;
1764 goto enospc;
1765 }
1766 if (wret == 1) {
1767 wret = push_node_left(trans, root, left, mid, 1);
1768 if (wret < 0)
1769 ret = wret;
1770 }
1771 BUG_ON(wret == 1);
1772 }
1773 if (btrfs_header_nritems(mid) == 0) {
1774 clean_tree_block(trans, root, mid);
1775 btrfs_tree_unlock(mid);
1776 del_ptr(trans, root, path, level + 1, pslot, 1);
1777 root_sub_used(root, mid->len);
1778 btrfs_free_tree_block(trans, root, mid, 0, 1);
1779 free_extent_buffer_stale(mid);
1780 mid = NULL;
1781 } else {
1782 /* update the parent key to reflect our changes */
1783 struct btrfs_disk_key mid_key;
1784 btrfs_node_key(mid, &mid_key, 0);
1785 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1786 pslot, 0);
1787 btrfs_set_node_key(parent, &mid_key, pslot);
1788 btrfs_mark_buffer_dirty(parent);
1789 }
1790
1791 /* update the path */
1792 if (left) {
1793 if (btrfs_header_nritems(left) > orig_slot) {
1794 extent_buffer_get(left);
1795 /* left was locked after cow */
1796 path->nodes[level] = left;
1797 path->slots[level + 1] -= 1;
1798 path->slots[level] = orig_slot;
1799 if (mid) {
1800 btrfs_tree_unlock(mid);
1801 free_extent_buffer(mid);
1802 }
1803 } else {
1804 orig_slot -= btrfs_header_nritems(left);
1805 path->slots[level] = orig_slot;
1806 }
1807 }
1808 /* double check we haven't messed things up */
1809 if (orig_ptr !=
1810 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1811 BUG();
1812 enospc:
1813 if (right) {
1814 btrfs_tree_unlock(right);
1815 free_extent_buffer(right);
1816 }
1817 if (left) {
1818 if (path->nodes[level] != left)
1819 btrfs_tree_unlock(left);
1820 free_extent_buffer(left);
1821 }
1822 return ret;
1823 }
1824
1825 /* Node balancing for insertion. Here we only split or push nodes around
1826 * when they are completely full. This is also done top down, so we
1827 * have to be pessimistic.
1828 */
1829 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 struct btrfs_path *path, int level)
1832 {
1833 struct extent_buffer *right = NULL;
1834 struct extent_buffer *mid;
1835 struct extent_buffer *left = NULL;
1836 struct extent_buffer *parent = NULL;
1837 int ret = 0;
1838 int wret;
1839 int pslot;
1840 int orig_slot = path->slots[level];
1841
1842 if (level == 0)
1843 return 1;
1844
1845 mid = path->nodes[level];
1846 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1847
1848 if (level < BTRFS_MAX_LEVEL - 1) {
1849 parent = path->nodes[level + 1];
1850 pslot = path->slots[level + 1];
1851 }
1852
1853 if (!parent)
1854 return 1;
1855
1856 left = read_node_slot(root, parent, pslot - 1);
1857
1858 /* first, try to make some room in the middle buffer */
1859 if (left) {
1860 u32 left_nr;
1861
1862 btrfs_tree_lock(left);
1863 btrfs_set_lock_blocking(left);
1864
1865 left_nr = btrfs_header_nritems(left);
1866 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1867 wret = 1;
1868 } else {
1869 ret = btrfs_cow_block(trans, root, left, parent,
1870 pslot - 1, &left);
1871 if (ret)
1872 wret = 1;
1873 else {
1874 wret = push_node_left(trans, root,
1875 left, mid, 0);
1876 }
1877 }
1878 if (wret < 0)
1879 ret = wret;
1880 if (wret == 0) {
1881 struct btrfs_disk_key disk_key;
1882 orig_slot += left_nr;
1883 btrfs_node_key(mid, &disk_key, 0);
1884 tree_mod_log_set_node_key(root->fs_info, parent,
1885 &disk_key, pslot, 0);
1886 btrfs_set_node_key(parent, &disk_key, pslot);
1887 btrfs_mark_buffer_dirty(parent);
1888 if (btrfs_header_nritems(left) > orig_slot) {
1889 path->nodes[level] = left;
1890 path->slots[level + 1] -= 1;
1891 path->slots[level] = orig_slot;
1892 btrfs_tree_unlock(mid);
1893 free_extent_buffer(mid);
1894 } else {
1895 orig_slot -=
1896 btrfs_header_nritems(left);
1897 path->slots[level] = orig_slot;
1898 btrfs_tree_unlock(left);
1899 free_extent_buffer(left);
1900 }
1901 return 0;
1902 }
1903 btrfs_tree_unlock(left);
1904 free_extent_buffer(left);
1905 }
1906 right = read_node_slot(root, parent, pslot + 1);
1907
1908 /*
1909 * then try to empty the right most buffer into the middle
1910 */
1911 if (right) {
1912 u32 right_nr;
1913
1914 btrfs_tree_lock(right);
1915 btrfs_set_lock_blocking(right);
1916
1917 right_nr = btrfs_header_nritems(right);
1918 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1919 wret = 1;
1920 } else {
1921 ret = btrfs_cow_block(trans, root, right,
1922 parent, pslot + 1,
1923 &right);
1924 if (ret)
1925 wret = 1;
1926 else {
1927 wret = balance_node_right(trans, root,
1928 right, mid);
1929 }
1930 }
1931 if (wret < 0)
1932 ret = wret;
1933 if (wret == 0) {
1934 struct btrfs_disk_key disk_key;
1935
1936 btrfs_node_key(right, &disk_key, 0);
1937 tree_mod_log_set_node_key(root->fs_info, parent,
1938 &disk_key, pslot + 1, 0);
1939 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1940 btrfs_mark_buffer_dirty(parent);
1941
1942 if (btrfs_header_nritems(mid) <= orig_slot) {
1943 path->nodes[level] = right;
1944 path->slots[level + 1] += 1;
1945 path->slots[level] = orig_slot -
1946 btrfs_header_nritems(mid);
1947 btrfs_tree_unlock(mid);
1948 free_extent_buffer(mid);
1949 } else {
1950 btrfs_tree_unlock(right);
1951 free_extent_buffer(right);
1952 }
1953 return 0;
1954 }
1955 btrfs_tree_unlock(right);
1956 free_extent_buffer(right);
1957 }
1958 return 1;
1959 }
1960
1961 /*
1962 * readahead one full node of leaves, finding things that are close
1963 * to the block in 'slot', and triggering ra on them.
1964 */
1965 static void reada_for_search(struct btrfs_root *root,
1966 struct btrfs_path *path,
1967 int level, int slot, u64 objectid)
1968 {
1969 struct extent_buffer *node;
1970 struct btrfs_disk_key disk_key;
1971 u32 nritems;
1972 u64 search;
1973 u64 target;
1974 u64 nread = 0;
1975 u64 gen;
1976 int direction = path->reada;
1977 struct extent_buffer *eb;
1978 u32 nr;
1979 u32 blocksize;
1980 u32 nscan = 0;
1981
1982 if (level != 1)
1983 return;
1984
1985 if (!path->nodes[level])
1986 return;
1987
1988 node = path->nodes[level];
1989
1990 search = btrfs_node_blockptr(node, slot);
1991 blocksize = btrfs_level_size(root, level - 1);
1992 eb = btrfs_find_tree_block(root, search, blocksize);
1993 if (eb) {
1994 free_extent_buffer(eb);
1995 return;
1996 }
1997
1998 target = search;
1999
2000 nritems = btrfs_header_nritems(node);
2001 nr = slot;
2002
2003 while (1) {
2004 if (direction < 0) {
2005 if (nr == 0)
2006 break;
2007 nr--;
2008 } else if (direction > 0) {
2009 nr++;
2010 if (nr >= nritems)
2011 break;
2012 }
2013 if (path->reada < 0 && objectid) {
2014 btrfs_node_key(node, &disk_key, nr);
2015 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2016 break;
2017 }
2018 search = btrfs_node_blockptr(node, nr);
2019 if ((search <= target && target - search <= 65536) ||
2020 (search > target && search - target <= 65536)) {
2021 gen = btrfs_node_ptr_generation(node, nr);
2022 readahead_tree_block(root, search, blocksize, gen);
2023 nread += blocksize;
2024 }
2025 nscan++;
2026 if ((nread > 65536 || nscan > 32))
2027 break;
2028 }
2029 }
2030
2031 /*
2032 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2033 * cache
2034 */
2035 static noinline int reada_for_balance(struct btrfs_root *root,
2036 struct btrfs_path *path, int level)
2037 {
2038 int slot;
2039 int nritems;
2040 struct extent_buffer *parent;
2041 struct extent_buffer *eb;
2042 u64 gen;
2043 u64 block1 = 0;
2044 u64 block2 = 0;
2045 int ret = 0;
2046 int blocksize;
2047
2048 parent = path->nodes[level + 1];
2049 if (!parent)
2050 return 0;
2051
2052 nritems = btrfs_header_nritems(parent);
2053 slot = path->slots[level + 1];
2054 blocksize = btrfs_level_size(root, level);
2055
2056 if (slot > 0) {
2057 block1 = btrfs_node_blockptr(parent, slot - 1);
2058 gen = btrfs_node_ptr_generation(parent, slot - 1);
2059 eb = btrfs_find_tree_block(root, block1, blocksize);
2060 /*
2061 * if we get -eagain from btrfs_buffer_uptodate, we
2062 * don't want to return eagain here. That will loop
2063 * forever
2064 */
2065 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2066 block1 = 0;
2067 free_extent_buffer(eb);
2068 }
2069 if (slot + 1 < nritems) {
2070 block2 = btrfs_node_blockptr(parent, slot + 1);
2071 gen = btrfs_node_ptr_generation(parent, slot + 1);
2072 eb = btrfs_find_tree_block(root, block2, blocksize);
2073 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2074 block2 = 0;
2075 free_extent_buffer(eb);
2076 }
2077 if (block1 || block2) {
2078 ret = -EAGAIN;
2079
2080 /* release the whole path */
2081 btrfs_release_path(path);
2082
2083 /* read the blocks */
2084 if (block1)
2085 readahead_tree_block(root, block1, blocksize, 0);
2086 if (block2)
2087 readahead_tree_block(root, block2, blocksize, 0);
2088
2089 if (block1) {
2090 eb = read_tree_block(root, block1, blocksize, 0);
2091 free_extent_buffer(eb);
2092 }
2093 if (block2) {
2094 eb = read_tree_block(root, block2, blocksize, 0);
2095 free_extent_buffer(eb);
2096 }
2097 }
2098 return ret;
2099 }
2100
2101
2102 /*
2103 * when we walk down the tree, it is usually safe to unlock the higher layers
2104 * in the tree. The exceptions are when our path goes through slot 0, because
2105 * operations on the tree might require changing key pointers higher up in the
2106 * tree.
2107 *
2108 * callers might also have set path->keep_locks, which tells this code to keep
2109 * the lock if the path points to the last slot in the block. This is part of
2110 * walking through the tree, and selecting the next slot in the higher block.
2111 *
2112 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2113 * if lowest_unlock is 1, level 0 won't be unlocked
2114 */
2115 static noinline void unlock_up(struct btrfs_path *path, int level,
2116 int lowest_unlock, int min_write_lock_level,
2117 int *write_lock_level)
2118 {
2119 int i;
2120 int skip_level = level;
2121 int no_skips = 0;
2122 struct extent_buffer *t;
2123
2124 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2125 if (!path->nodes[i])
2126 break;
2127 if (!path->locks[i])
2128 break;
2129 if (!no_skips && path->slots[i] == 0) {
2130 skip_level = i + 1;
2131 continue;
2132 }
2133 if (!no_skips && path->keep_locks) {
2134 u32 nritems;
2135 t = path->nodes[i];
2136 nritems = btrfs_header_nritems(t);
2137 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2138 skip_level = i + 1;
2139 continue;
2140 }
2141 }
2142 if (skip_level < i && i >= lowest_unlock)
2143 no_skips = 1;
2144
2145 t = path->nodes[i];
2146 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2147 btrfs_tree_unlock_rw(t, path->locks[i]);
2148 path->locks[i] = 0;
2149 if (write_lock_level &&
2150 i > min_write_lock_level &&
2151 i <= *write_lock_level) {
2152 *write_lock_level = i - 1;
2153 }
2154 }
2155 }
2156 }
2157
2158 /*
2159 * This releases any locks held in the path starting at level and
2160 * going all the way up to the root.
2161 *
2162 * btrfs_search_slot will keep the lock held on higher nodes in a few
2163 * corner cases, such as COW of the block at slot zero in the node. This
2164 * ignores those rules, and it should only be called when there are no
2165 * more updates to be done higher up in the tree.
2166 */
2167 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2168 {
2169 int i;
2170
2171 if (path->keep_locks)
2172 return;
2173
2174 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2175 if (!path->nodes[i])
2176 continue;
2177 if (!path->locks[i])
2178 continue;
2179 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2180 path->locks[i] = 0;
2181 }
2182 }
2183
2184 /*
2185 * helper function for btrfs_search_slot. The goal is to find a block
2186 * in cache without setting the path to blocking. If we find the block
2187 * we return zero and the path is unchanged.
2188 *
2189 * If we can't find the block, we set the path blocking and do some
2190 * reada. -EAGAIN is returned and the search must be repeated.
2191 */
2192 static int
2193 read_block_for_search(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root, struct btrfs_path *p,
2195 struct extent_buffer **eb_ret, int level, int slot,
2196 struct btrfs_key *key, u64 time_seq)
2197 {
2198 u64 blocknr;
2199 u64 gen;
2200 u32 blocksize;
2201 struct extent_buffer *b = *eb_ret;
2202 struct extent_buffer *tmp;
2203 int ret;
2204
2205 blocknr = btrfs_node_blockptr(b, slot);
2206 gen = btrfs_node_ptr_generation(b, slot);
2207 blocksize = btrfs_level_size(root, level - 1);
2208
2209 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2210 if (tmp) {
2211 /* first we do an atomic uptodate check */
2212 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2213 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2214 /*
2215 * we found an up to date block without
2216 * sleeping, return
2217 * right away
2218 */
2219 *eb_ret = tmp;
2220 return 0;
2221 }
2222 /* the pages were up to date, but we failed
2223 * the generation number check. Do a full
2224 * read for the generation number that is correct.
2225 * We must do this without dropping locks so
2226 * we can trust our generation number
2227 */
2228 free_extent_buffer(tmp);
2229 btrfs_set_path_blocking(p);
2230
2231 /* now we're allowed to do a blocking uptodate check */
2232 tmp = read_tree_block(root, blocknr, blocksize, gen);
2233 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2234 *eb_ret = tmp;
2235 return 0;
2236 }
2237 free_extent_buffer(tmp);
2238 btrfs_release_path(p);
2239 return -EIO;
2240 }
2241 }
2242
2243 /*
2244 * reduce lock contention at high levels
2245 * of the btree by dropping locks before
2246 * we read. Don't release the lock on the current
2247 * level because we need to walk this node to figure
2248 * out which blocks to read.
2249 */
2250 btrfs_unlock_up_safe(p, level + 1);
2251 btrfs_set_path_blocking(p);
2252
2253 free_extent_buffer(tmp);
2254 if (p->reada)
2255 reada_for_search(root, p, level, slot, key->objectid);
2256
2257 btrfs_release_path(p);
2258
2259 ret = -EAGAIN;
2260 tmp = read_tree_block(root, blocknr, blocksize, 0);
2261 if (tmp) {
2262 /*
2263 * If the read above didn't mark this buffer up to date,
2264 * it will never end up being up to date. Set ret to EIO now
2265 * and give up so that our caller doesn't loop forever
2266 * on our EAGAINs.
2267 */
2268 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2269 ret = -EIO;
2270 free_extent_buffer(tmp);
2271 }
2272 return ret;
2273 }
2274
2275 /*
2276 * helper function for btrfs_search_slot. This does all of the checks
2277 * for node-level blocks and does any balancing required based on
2278 * the ins_len.
2279 *
2280 * If no extra work was required, zero is returned. If we had to
2281 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2282 * start over
2283 */
2284 static int
2285 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2286 struct btrfs_root *root, struct btrfs_path *p,
2287 struct extent_buffer *b, int level, int ins_len,
2288 int *write_lock_level)
2289 {
2290 int ret;
2291 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2292 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2293 int sret;
2294
2295 if (*write_lock_level < level + 1) {
2296 *write_lock_level = level + 1;
2297 btrfs_release_path(p);
2298 goto again;
2299 }
2300
2301 sret = reada_for_balance(root, p, level);
2302 if (sret)
2303 goto again;
2304
2305 btrfs_set_path_blocking(p);
2306 sret = split_node(trans, root, p, level);
2307 btrfs_clear_path_blocking(p, NULL, 0);
2308
2309 BUG_ON(sret > 0);
2310 if (sret) {
2311 ret = sret;
2312 goto done;
2313 }
2314 b = p->nodes[level];
2315 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2316 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2317 int sret;
2318
2319 if (*write_lock_level < level + 1) {
2320 *write_lock_level = level + 1;
2321 btrfs_release_path(p);
2322 goto again;
2323 }
2324
2325 sret = reada_for_balance(root, p, level);
2326 if (sret)
2327 goto again;
2328
2329 btrfs_set_path_blocking(p);
2330 sret = balance_level(trans, root, p, level);
2331 btrfs_clear_path_blocking(p, NULL, 0);
2332
2333 if (sret) {
2334 ret = sret;
2335 goto done;
2336 }
2337 b = p->nodes[level];
2338 if (!b) {
2339 btrfs_release_path(p);
2340 goto again;
2341 }
2342 BUG_ON(btrfs_header_nritems(b) == 1);
2343 }
2344 return 0;
2345
2346 again:
2347 ret = -EAGAIN;
2348 done:
2349 return ret;
2350 }
2351
2352 /*
2353 * look for key in the tree. path is filled in with nodes along the way
2354 * if key is found, we return zero and you can find the item in the leaf
2355 * level of the path (level 0)
2356 *
2357 * If the key isn't found, the path points to the slot where it should
2358 * be inserted, and 1 is returned. If there are other errors during the
2359 * search a negative error number is returned.
2360 *
2361 * if ins_len > 0, nodes and leaves will be split as we walk down the
2362 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2363 * possible)
2364 */
2365 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2366 *root, struct btrfs_key *key, struct btrfs_path *p, int
2367 ins_len, int cow)
2368 {
2369 struct extent_buffer *b;
2370 int slot;
2371 int ret;
2372 int err;
2373 int level;
2374 int lowest_unlock = 1;
2375 int root_lock;
2376 /* everything at write_lock_level or lower must be write locked */
2377 int write_lock_level = 0;
2378 u8 lowest_level = 0;
2379 int min_write_lock_level;
2380
2381 lowest_level = p->lowest_level;
2382 WARN_ON(lowest_level && ins_len > 0);
2383 WARN_ON(p->nodes[0] != NULL);
2384
2385 if (ins_len < 0) {
2386 lowest_unlock = 2;
2387
2388 /* when we are removing items, we might have to go up to level
2389 * two as we update tree pointers Make sure we keep write
2390 * for those levels as well
2391 */
2392 write_lock_level = 2;
2393 } else if (ins_len > 0) {
2394 /*
2395 * for inserting items, make sure we have a write lock on
2396 * level 1 so we can update keys
2397 */
2398 write_lock_level = 1;
2399 }
2400
2401 if (!cow)
2402 write_lock_level = -1;
2403
2404 if (cow && (p->keep_locks || p->lowest_level))
2405 write_lock_level = BTRFS_MAX_LEVEL;
2406
2407 min_write_lock_level = write_lock_level;
2408
2409 again:
2410 /*
2411 * we try very hard to do read locks on the root
2412 */
2413 root_lock = BTRFS_READ_LOCK;
2414 level = 0;
2415 if (p->search_commit_root) {
2416 /*
2417 * the commit roots are read only
2418 * so we always do read locks
2419 */
2420 b = root->commit_root;
2421 extent_buffer_get(b);
2422 level = btrfs_header_level(b);
2423 if (!p->skip_locking)
2424 btrfs_tree_read_lock(b);
2425 } else {
2426 if (p->skip_locking) {
2427 b = btrfs_root_node(root);
2428 level = btrfs_header_level(b);
2429 } else {
2430 /* we don't know the level of the root node
2431 * until we actually have it read locked
2432 */
2433 b = btrfs_read_lock_root_node(root);
2434 level = btrfs_header_level(b);
2435 if (level <= write_lock_level) {
2436 /* whoops, must trade for write lock */
2437 btrfs_tree_read_unlock(b);
2438 free_extent_buffer(b);
2439 b = btrfs_lock_root_node(root);
2440 root_lock = BTRFS_WRITE_LOCK;
2441
2442 /* the level might have changed, check again */
2443 level = btrfs_header_level(b);
2444 }
2445 }
2446 }
2447 p->nodes[level] = b;
2448 if (!p->skip_locking)
2449 p->locks[level] = root_lock;
2450
2451 while (b) {
2452 level = btrfs_header_level(b);
2453
2454 /*
2455 * setup the path here so we can release it under lock
2456 * contention with the cow code
2457 */
2458 if (cow) {
2459 /*
2460 * if we don't really need to cow this block
2461 * then we don't want to set the path blocking,
2462 * so we test it here
2463 */
2464 if (!should_cow_block(trans, root, b))
2465 goto cow_done;
2466
2467 btrfs_set_path_blocking(p);
2468
2469 /*
2470 * must have write locks on this node and the
2471 * parent
2472 */
2473 if (level + 1 > write_lock_level) {
2474 write_lock_level = level + 1;
2475 btrfs_release_path(p);
2476 goto again;
2477 }
2478
2479 err = btrfs_cow_block(trans, root, b,
2480 p->nodes[level + 1],
2481 p->slots[level + 1], &b);
2482 if (err) {
2483 ret = err;
2484 goto done;
2485 }
2486 }
2487 cow_done:
2488 BUG_ON(!cow && ins_len);
2489
2490 p->nodes[level] = b;
2491 btrfs_clear_path_blocking(p, NULL, 0);
2492
2493 /*
2494 * we have a lock on b and as long as we aren't changing
2495 * the tree, there is no way to for the items in b to change.
2496 * It is safe to drop the lock on our parent before we
2497 * go through the expensive btree search on b.
2498 *
2499 * If cow is true, then we might be changing slot zero,
2500 * which may require changing the parent. So, we can't
2501 * drop the lock until after we know which slot we're
2502 * operating on.
2503 */
2504 if (!cow)
2505 btrfs_unlock_up_safe(p, level + 1);
2506
2507 ret = bin_search(b, key, level, &slot);
2508
2509 if (level != 0) {
2510 int dec = 0;
2511 if (ret && slot > 0) {
2512 dec = 1;
2513 slot -= 1;
2514 }
2515 p->slots[level] = slot;
2516 err = setup_nodes_for_search(trans, root, p, b, level,
2517 ins_len, &write_lock_level);
2518 if (err == -EAGAIN)
2519 goto again;
2520 if (err) {
2521 ret = err;
2522 goto done;
2523 }
2524 b = p->nodes[level];
2525 slot = p->slots[level];
2526
2527 /*
2528 * slot 0 is special, if we change the key
2529 * we have to update the parent pointer
2530 * which means we must have a write lock
2531 * on the parent
2532 */
2533 if (slot == 0 && cow &&
2534 write_lock_level < level + 1) {
2535 write_lock_level = level + 1;
2536 btrfs_release_path(p);
2537 goto again;
2538 }
2539
2540 unlock_up(p, level, lowest_unlock,
2541 min_write_lock_level, &write_lock_level);
2542
2543 if (level == lowest_level) {
2544 if (dec)
2545 p->slots[level]++;
2546 goto done;
2547 }
2548
2549 err = read_block_for_search(trans, root, p,
2550 &b, level, slot, key, 0);
2551 if (err == -EAGAIN)
2552 goto again;
2553 if (err) {
2554 ret = err;
2555 goto done;
2556 }
2557
2558 if (!p->skip_locking) {
2559 level = btrfs_header_level(b);
2560 if (level <= write_lock_level) {
2561 err = btrfs_try_tree_write_lock(b);
2562 if (!err) {
2563 btrfs_set_path_blocking(p);
2564 btrfs_tree_lock(b);
2565 btrfs_clear_path_blocking(p, b,
2566 BTRFS_WRITE_LOCK);
2567 }
2568 p->locks[level] = BTRFS_WRITE_LOCK;
2569 } else {
2570 err = btrfs_try_tree_read_lock(b);
2571 if (!err) {
2572 btrfs_set_path_blocking(p);
2573 btrfs_tree_read_lock(b);
2574 btrfs_clear_path_blocking(p, b,
2575 BTRFS_READ_LOCK);
2576 }
2577 p->locks[level] = BTRFS_READ_LOCK;
2578 }
2579 p->nodes[level] = b;
2580 }
2581 } else {
2582 p->slots[level] = slot;
2583 if (ins_len > 0 &&
2584 btrfs_leaf_free_space(root, b) < ins_len) {
2585 if (write_lock_level < 1) {
2586 write_lock_level = 1;
2587 btrfs_release_path(p);
2588 goto again;
2589 }
2590
2591 btrfs_set_path_blocking(p);
2592 err = split_leaf(trans, root, key,
2593 p, ins_len, ret == 0);
2594 btrfs_clear_path_blocking(p, NULL, 0);
2595
2596 BUG_ON(err > 0);
2597 if (err) {
2598 ret = err;
2599 goto done;
2600 }
2601 }
2602 if (!p->search_for_split)
2603 unlock_up(p, level, lowest_unlock,
2604 min_write_lock_level, &write_lock_level);
2605 goto done;
2606 }
2607 }
2608 ret = 1;
2609 done:
2610 /*
2611 * we don't really know what they plan on doing with the path
2612 * from here on, so for now just mark it as blocking
2613 */
2614 if (!p->leave_spinning)
2615 btrfs_set_path_blocking(p);
2616 if (ret < 0)
2617 btrfs_release_path(p);
2618 return ret;
2619 }
2620
2621 /*
2622 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2623 * current state of the tree together with the operations recorded in the tree
2624 * modification log to search for the key in a previous version of this tree, as
2625 * denoted by the time_seq parameter.
2626 *
2627 * Naturally, there is no support for insert, delete or cow operations.
2628 *
2629 * The resulting path and return value will be set up as if we called
2630 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2631 */
2632 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2633 struct btrfs_path *p, u64 time_seq)
2634 {
2635 struct extent_buffer *b;
2636 int slot;
2637 int ret;
2638 int err;
2639 int level;
2640 int lowest_unlock = 1;
2641 u8 lowest_level = 0;
2642
2643 lowest_level = p->lowest_level;
2644 WARN_ON(p->nodes[0] != NULL);
2645
2646 if (p->search_commit_root) {
2647 BUG_ON(time_seq);
2648 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2649 }
2650
2651 again:
2652 b = get_old_root(root, time_seq);
2653 level = btrfs_header_level(b);
2654 p->locks[level] = BTRFS_READ_LOCK;
2655
2656 while (b) {
2657 level = btrfs_header_level(b);
2658 p->nodes[level] = b;
2659 btrfs_clear_path_blocking(p, NULL, 0);
2660
2661 /*
2662 * we have a lock on b and as long as we aren't changing
2663 * the tree, there is no way to for the items in b to change.
2664 * It is safe to drop the lock on our parent before we
2665 * go through the expensive btree search on b.
2666 */
2667 btrfs_unlock_up_safe(p, level + 1);
2668
2669 ret = bin_search(b, key, level, &slot);
2670
2671 if (level != 0) {
2672 int dec = 0;
2673 if (ret && slot > 0) {
2674 dec = 1;
2675 slot -= 1;
2676 }
2677 p->slots[level] = slot;
2678 unlock_up(p, level, lowest_unlock, 0, NULL);
2679
2680 if (level == lowest_level) {
2681 if (dec)
2682 p->slots[level]++;
2683 goto done;
2684 }
2685
2686 err = read_block_for_search(NULL, root, p, &b, level,
2687 slot, key, time_seq);
2688 if (err == -EAGAIN)
2689 goto again;
2690 if (err) {
2691 ret = err;
2692 goto done;
2693 }
2694
2695 level = btrfs_header_level(b);
2696 err = btrfs_try_tree_read_lock(b);
2697 if (!err) {
2698 btrfs_set_path_blocking(p);
2699 btrfs_tree_read_lock(b);
2700 btrfs_clear_path_blocking(p, b,
2701 BTRFS_READ_LOCK);
2702 }
2703 p->locks[level] = BTRFS_READ_LOCK;
2704 p->nodes[level] = b;
2705 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2706 if (b != p->nodes[level]) {
2707 btrfs_tree_unlock_rw(p->nodes[level],
2708 p->locks[level]);
2709 p->locks[level] = 0;
2710 p->nodes[level] = b;
2711 }
2712 } else {
2713 p->slots[level] = slot;
2714 unlock_up(p, level, lowest_unlock, 0, NULL);
2715 goto done;
2716 }
2717 }
2718 ret = 1;
2719 done:
2720 if (!p->leave_spinning)
2721 btrfs_set_path_blocking(p);
2722 if (ret < 0)
2723 btrfs_release_path(p);
2724
2725 return ret;
2726 }
2727
2728 /*
2729 * adjust the pointers going up the tree, starting at level
2730 * making sure the right key of each node is points to 'key'.
2731 * This is used after shifting pointers to the left, so it stops
2732 * fixing up pointers when a given leaf/node is not in slot 0 of the
2733 * higher levels
2734 *
2735 */
2736 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2737 struct btrfs_root *root, struct btrfs_path *path,
2738 struct btrfs_disk_key *key, int level)
2739 {
2740 int i;
2741 struct extent_buffer *t;
2742
2743 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2744 int tslot = path->slots[i];
2745 if (!path->nodes[i])
2746 break;
2747 t = path->nodes[i];
2748 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2749 btrfs_set_node_key(t, key, tslot);
2750 btrfs_mark_buffer_dirty(path->nodes[i]);
2751 if (tslot != 0)
2752 break;
2753 }
2754 }
2755
2756 /*
2757 * update item key.
2758 *
2759 * This function isn't completely safe. It's the caller's responsibility
2760 * that the new key won't break the order
2761 */
2762 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2763 struct btrfs_root *root, struct btrfs_path *path,
2764 struct btrfs_key *new_key)
2765 {
2766 struct btrfs_disk_key disk_key;
2767 struct extent_buffer *eb;
2768 int slot;
2769
2770 eb = path->nodes[0];
2771 slot = path->slots[0];
2772 if (slot > 0) {
2773 btrfs_item_key(eb, &disk_key, slot - 1);
2774 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2775 }
2776 if (slot < btrfs_header_nritems(eb) - 1) {
2777 btrfs_item_key(eb, &disk_key, slot + 1);
2778 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2779 }
2780
2781 btrfs_cpu_key_to_disk(&disk_key, new_key);
2782 btrfs_set_item_key(eb, &disk_key, slot);
2783 btrfs_mark_buffer_dirty(eb);
2784 if (slot == 0)
2785 fixup_low_keys(trans, root, path, &disk_key, 1);
2786 }
2787
2788 /*
2789 * try to push data from one node into the next node left in the
2790 * tree.
2791 *
2792 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2793 * error, and > 0 if there was no room in the left hand block.
2794 */
2795 static int push_node_left(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, struct extent_buffer *dst,
2797 struct extent_buffer *src, int empty)
2798 {
2799 int push_items = 0;
2800 int src_nritems;
2801 int dst_nritems;
2802 int ret = 0;
2803
2804 src_nritems = btrfs_header_nritems(src);
2805 dst_nritems = btrfs_header_nritems(dst);
2806 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2807 WARN_ON(btrfs_header_generation(src) != trans->transid);
2808 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2809
2810 if (!empty && src_nritems <= 8)
2811 return 1;
2812
2813 if (push_items <= 0)
2814 return 1;
2815
2816 if (empty) {
2817 push_items = min(src_nritems, push_items);
2818 if (push_items < src_nritems) {
2819 /* leave at least 8 pointers in the node if
2820 * we aren't going to empty it
2821 */
2822 if (src_nritems - push_items < 8) {
2823 if (push_items <= 8)
2824 return 1;
2825 push_items -= 8;
2826 }
2827 }
2828 } else
2829 push_items = min(src_nritems - 8, push_items);
2830
2831 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2832 push_items);
2833 copy_extent_buffer(dst, src,
2834 btrfs_node_key_ptr_offset(dst_nritems),
2835 btrfs_node_key_ptr_offset(0),
2836 push_items * sizeof(struct btrfs_key_ptr));
2837
2838 if (push_items < src_nritems) {
2839 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2840 src_nritems - push_items);
2841 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2842 btrfs_node_key_ptr_offset(push_items),
2843 (src_nritems - push_items) *
2844 sizeof(struct btrfs_key_ptr));
2845 }
2846 btrfs_set_header_nritems(src, src_nritems - push_items);
2847 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2848 btrfs_mark_buffer_dirty(src);
2849 btrfs_mark_buffer_dirty(dst);
2850
2851 return ret;
2852 }
2853
2854 /*
2855 * try to push data from one node into the next node right in the
2856 * tree.
2857 *
2858 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2859 * error, and > 0 if there was no room in the right hand block.
2860 *
2861 * this will only push up to 1/2 the contents of the left node over
2862 */
2863 static int balance_node_right(struct btrfs_trans_handle *trans,
2864 struct btrfs_root *root,
2865 struct extent_buffer *dst,
2866 struct extent_buffer *src)
2867 {
2868 int push_items = 0;
2869 int max_push;
2870 int src_nritems;
2871 int dst_nritems;
2872 int ret = 0;
2873
2874 WARN_ON(btrfs_header_generation(src) != trans->transid);
2875 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2876
2877 src_nritems = btrfs_header_nritems(src);
2878 dst_nritems = btrfs_header_nritems(dst);
2879 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2880 if (push_items <= 0)
2881 return 1;
2882
2883 if (src_nritems < 4)
2884 return 1;
2885
2886 max_push = src_nritems / 2 + 1;
2887 /* don't try to empty the node */
2888 if (max_push >= src_nritems)
2889 return 1;
2890
2891 if (max_push < push_items)
2892 push_items = max_push;
2893
2894 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
2895 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2896 btrfs_node_key_ptr_offset(0),
2897 (dst_nritems) *
2898 sizeof(struct btrfs_key_ptr));
2899
2900 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2901 src_nritems - push_items, push_items);
2902 copy_extent_buffer(dst, src,
2903 btrfs_node_key_ptr_offset(0),
2904 btrfs_node_key_ptr_offset(src_nritems - push_items),
2905 push_items * sizeof(struct btrfs_key_ptr));
2906
2907 btrfs_set_header_nritems(src, src_nritems - push_items);
2908 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2909
2910 btrfs_mark_buffer_dirty(src);
2911 btrfs_mark_buffer_dirty(dst);
2912
2913 return ret;
2914 }
2915
2916 /*
2917 * helper function to insert a new root level in the tree.
2918 * A new node is allocated, and a single item is inserted to
2919 * point to the existing root
2920 *
2921 * returns zero on success or < 0 on failure.
2922 */
2923 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2924 struct btrfs_root *root,
2925 struct btrfs_path *path, int level)
2926 {
2927 u64 lower_gen;
2928 struct extent_buffer *lower;
2929 struct extent_buffer *c;
2930 struct extent_buffer *old;
2931 struct btrfs_disk_key lower_key;
2932
2933 BUG_ON(path->nodes[level]);
2934 BUG_ON(path->nodes[level-1] != root->node);
2935
2936 lower = path->nodes[level-1];
2937 if (level == 1)
2938 btrfs_item_key(lower, &lower_key, 0);
2939 else
2940 btrfs_node_key(lower, &lower_key, 0);
2941
2942 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2943 root->root_key.objectid, &lower_key,
2944 level, root->node->start, 0);
2945 if (IS_ERR(c))
2946 return PTR_ERR(c);
2947
2948 root_add_used(root, root->nodesize);
2949
2950 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2951 btrfs_set_header_nritems(c, 1);
2952 btrfs_set_header_level(c, level);
2953 btrfs_set_header_bytenr(c, c->start);
2954 btrfs_set_header_generation(c, trans->transid);
2955 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2956 btrfs_set_header_owner(c, root->root_key.objectid);
2957
2958 write_extent_buffer(c, root->fs_info->fsid,
2959 (unsigned long)btrfs_header_fsid(c),
2960 BTRFS_FSID_SIZE);
2961
2962 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2963 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2964 BTRFS_UUID_SIZE);
2965
2966 btrfs_set_node_key(c, &lower_key, 0);
2967 btrfs_set_node_blockptr(c, 0, lower->start);
2968 lower_gen = btrfs_header_generation(lower);
2969 WARN_ON(lower_gen != trans->transid);
2970
2971 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2972
2973 btrfs_mark_buffer_dirty(c);
2974
2975 old = root->node;
2976 tree_mod_log_set_root_pointer(root, c);
2977 rcu_assign_pointer(root->node, c);
2978
2979 /* the super has an extra ref to root->node */
2980 free_extent_buffer(old);
2981
2982 add_root_to_dirty_list(root);
2983 extent_buffer_get(c);
2984 path->nodes[level] = c;
2985 path->locks[level] = BTRFS_WRITE_LOCK;
2986 path->slots[level] = 0;
2987 return 0;
2988 }
2989
2990 /*
2991 * worker function to insert a single pointer in a node.
2992 * the node should have enough room for the pointer already
2993 *
2994 * slot and level indicate where you want the key to go, and
2995 * blocknr is the block the key points to.
2996 */
2997 static void insert_ptr(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *root, struct btrfs_path *path,
2999 struct btrfs_disk_key *key, u64 bytenr,
3000 int slot, int level)
3001 {
3002 struct extent_buffer *lower;
3003 int nritems;
3004 int ret;
3005
3006 BUG_ON(!path->nodes[level]);
3007 btrfs_assert_tree_locked(path->nodes[level]);
3008 lower = path->nodes[level];
3009 nritems = btrfs_header_nritems(lower);
3010 BUG_ON(slot > nritems);
3011 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3012 if (slot != nritems) {
3013 if (level)
3014 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3015 slot, nritems - slot);
3016 memmove_extent_buffer(lower,
3017 btrfs_node_key_ptr_offset(slot + 1),
3018 btrfs_node_key_ptr_offset(slot),
3019 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3020 }
3021 if (level) {
3022 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3023 MOD_LOG_KEY_ADD);
3024 BUG_ON(ret < 0);
3025 }
3026 btrfs_set_node_key(lower, key, slot);
3027 btrfs_set_node_blockptr(lower, slot, bytenr);
3028 WARN_ON(trans->transid == 0);
3029 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3030 btrfs_set_header_nritems(lower, nritems + 1);
3031 btrfs_mark_buffer_dirty(lower);
3032 }
3033
3034 /*
3035 * split the node at the specified level in path in two.
3036 * The path is corrected to point to the appropriate node after the split
3037 *
3038 * Before splitting this tries to make some room in the node by pushing
3039 * left and right, if either one works, it returns right away.
3040 *
3041 * returns 0 on success and < 0 on failure
3042 */
3043 static noinline int split_node(struct btrfs_trans_handle *trans,
3044 struct btrfs_root *root,
3045 struct btrfs_path *path, int level)
3046 {
3047 struct extent_buffer *c;
3048 struct extent_buffer *split;
3049 struct btrfs_disk_key disk_key;
3050 int mid;
3051 int ret;
3052 u32 c_nritems;
3053
3054 c = path->nodes[level];
3055 WARN_ON(btrfs_header_generation(c) != trans->transid);
3056 if (c == root->node) {
3057 /* trying to split the root, lets make a new one */
3058 ret = insert_new_root(trans, root, path, level + 1);
3059 if (ret)
3060 return ret;
3061 } else {
3062 ret = push_nodes_for_insert(trans, root, path, level);
3063 c = path->nodes[level];
3064 if (!ret && btrfs_header_nritems(c) <
3065 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3066 return 0;
3067 if (ret < 0)
3068 return ret;
3069 }
3070
3071 c_nritems = btrfs_header_nritems(c);
3072 mid = (c_nritems + 1) / 2;
3073 btrfs_node_key(c, &disk_key, mid);
3074
3075 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3076 root->root_key.objectid,
3077 &disk_key, level, c->start, 0);
3078 if (IS_ERR(split))
3079 return PTR_ERR(split);
3080
3081 root_add_used(root, root->nodesize);
3082
3083 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3084 btrfs_set_header_level(split, btrfs_header_level(c));
3085 btrfs_set_header_bytenr(split, split->start);
3086 btrfs_set_header_generation(split, trans->transid);
3087 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3088 btrfs_set_header_owner(split, root->root_key.objectid);
3089 write_extent_buffer(split, root->fs_info->fsid,
3090 (unsigned long)btrfs_header_fsid(split),
3091 BTRFS_FSID_SIZE);
3092 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3093 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3094 BTRFS_UUID_SIZE);
3095
3096 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3097 copy_extent_buffer(split, c,
3098 btrfs_node_key_ptr_offset(0),
3099 btrfs_node_key_ptr_offset(mid),
3100 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3101 btrfs_set_header_nritems(split, c_nritems - mid);
3102 btrfs_set_header_nritems(c, mid);
3103 ret = 0;
3104
3105 btrfs_mark_buffer_dirty(c);
3106 btrfs_mark_buffer_dirty(split);
3107
3108 insert_ptr(trans, root, path, &disk_key, split->start,
3109 path->slots[level + 1] + 1, level + 1);
3110
3111 if (path->slots[level] >= mid) {
3112 path->slots[level] -= mid;
3113 btrfs_tree_unlock(c);
3114 free_extent_buffer(c);
3115 path->nodes[level] = split;
3116 path->slots[level + 1] += 1;
3117 } else {
3118 btrfs_tree_unlock(split);
3119 free_extent_buffer(split);
3120 }
3121 return ret;
3122 }
3123
3124 /*
3125 * how many bytes are required to store the items in a leaf. start
3126 * and nr indicate which items in the leaf to check. This totals up the
3127 * space used both by the item structs and the item data
3128 */
3129 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3130 {
3131 int data_len;
3132 int nritems = btrfs_header_nritems(l);
3133 int end = min(nritems, start + nr) - 1;
3134
3135 if (!nr)
3136 return 0;
3137 data_len = btrfs_item_end_nr(l, start);
3138 data_len = data_len - btrfs_item_offset_nr(l, end);
3139 data_len += sizeof(struct btrfs_item) * nr;
3140 WARN_ON(data_len < 0);
3141 return data_len;
3142 }
3143
3144 /*
3145 * The space between the end of the leaf items and
3146 * the start of the leaf data. IOW, how much room
3147 * the leaf has left for both items and data
3148 */
3149 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3150 struct extent_buffer *leaf)
3151 {
3152 int nritems = btrfs_header_nritems(leaf);
3153 int ret;
3154 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3155 if (ret < 0) {
3156 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3157 "used %d nritems %d\n",
3158 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3159 leaf_space_used(leaf, 0, nritems), nritems);
3160 }
3161 return ret;
3162 }
3163
3164 /*
3165 * min slot controls the lowest index we're willing to push to the
3166 * right. We'll push up to and including min_slot, but no lower
3167 */
3168 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3169 struct btrfs_root *root,
3170 struct btrfs_path *path,
3171 int data_size, int empty,
3172 struct extent_buffer *right,
3173 int free_space, u32 left_nritems,
3174 u32 min_slot)
3175 {
3176 struct extent_buffer *left = path->nodes[0];
3177 struct extent_buffer *upper = path->nodes[1];
3178 struct btrfs_map_token token;
3179 struct btrfs_disk_key disk_key;
3180 int slot;
3181 u32 i;
3182 int push_space = 0;
3183 int push_items = 0;
3184 struct btrfs_item *item;
3185 u32 nr;
3186 u32 right_nritems;
3187 u32 data_end;
3188 u32 this_item_size;
3189
3190 btrfs_init_map_token(&token);
3191
3192 if (empty)
3193 nr = 0;
3194 else
3195 nr = max_t(u32, 1, min_slot);
3196
3197 if (path->slots[0] >= left_nritems)
3198 push_space += data_size;
3199
3200 slot = path->slots[1];
3201 i = left_nritems - 1;
3202 while (i >= nr) {
3203 item = btrfs_item_nr(left, i);
3204
3205 if (!empty && push_items > 0) {
3206 if (path->slots[0] > i)
3207 break;
3208 if (path->slots[0] == i) {
3209 int space = btrfs_leaf_free_space(root, left);
3210 if (space + push_space * 2 > free_space)
3211 break;
3212 }
3213 }
3214
3215 if (path->slots[0] == i)
3216 push_space += data_size;
3217
3218 this_item_size = btrfs_item_size(left, item);
3219 if (this_item_size + sizeof(*item) + push_space > free_space)
3220 break;
3221
3222 push_items++;
3223 push_space += this_item_size + sizeof(*item);
3224 if (i == 0)
3225 break;
3226 i--;
3227 }
3228
3229 if (push_items == 0)
3230 goto out_unlock;
3231
3232 if (!empty && push_items == left_nritems)
3233 WARN_ON(1);
3234
3235 /* push left to right */
3236 right_nritems = btrfs_header_nritems(right);
3237
3238 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3239 push_space -= leaf_data_end(root, left);
3240
3241 /* make room in the right data area */
3242 data_end = leaf_data_end(root, right);
3243 memmove_extent_buffer(right,
3244 btrfs_leaf_data(right) + data_end - push_space,
3245 btrfs_leaf_data(right) + data_end,
3246 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3247
3248 /* copy from the left data area */
3249 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3250 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3251 btrfs_leaf_data(left) + leaf_data_end(root, left),
3252 push_space);
3253
3254 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3255 btrfs_item_nr_offset(0),
3256 right_nritems * sizeof(struct btrfs_item));
3257
3258 /* copy the items from left to right */
3259 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3260 btrfs_item_nr_offset(left_nritems - push_items),
3261 push_items * sizeof(struct btrfs_item));
3262
3263 /* update the item pointers */
3264 right_nritems += push_items;
3265 btrfs_set_header_nritems(right, right_nritems);
3266 push_space = BTRFS_LEAF_DATA_SIZE(root);
3267 for (i = 0; i < right_nritems; i++) {
3268 item = btrfs_item_nr(right, i);
3269 push_space -= btrfs_token_item_size(right, item, &token);
3270 btrfs_set_token_item_offset(right, item, push_space, &token);
3271 }
3272
3273 left_nritems -= push_items;
3274 btrfs_set_header_nritems(left, left_nritems);
3275
3276 if (left_nritems)
3277 btrfs_mark_buffer_dirty(left);
3278 else
3279 clean_tree_block(trans, root, left);
3280
3281 btrfs_mark_buffer_dirty(right);
3282
3283 btrfs_item_key(right, &disk_key, 0);
3284 btrfs_set_node_key(upper, &disk_key, slot + 1);
3285 btrfs_mark_buffer_dirty(upper);
3286
3287 /* then fixup the leaf pointer in the path */
3288 if (path->slots[0] >= left_nritems) {
3289 path->slots[0] -= left_nritems;
3290 if (btrfs_header_nritems(path->nodes[0]) == 0)
3291 clean_tree_block(trans, root, path->nodes[0]);
3292 btrfs_tree_unlock(path->nodes[0]);
3293 free_extent_buffer(path->nodes[0]);
3294 path->nodes[0] = right;
3295 path->slots[1] += 1;
3296 } else {
3297 btrfs_tree_unlock(right);
3298 free_extent_buffer(right);
3299 }
3300 return 0;
3301
3302 out_unlock:
3303 btrfs_tree_unlock(right);
3304 free_extent_buffer(right);
3305 return 1;
3306 }
3307
3308 /*
3309 * push some data in the path leaf to the right, trying to free up at
3310 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3311 *
3312 * returns 1 if the push failed because the other node didn't have enough
3313 * room, 0 if everything worked out and < 0 if there were major errors.
3314 *
3315 * this will push starting from min_slot to the end of the leaf. It won't
3316 * push any slot lower than min_slot
3317 */
3318 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3319 *root, struct btrfs_path *path,
3320 int min_data_size, int data_size,
3321 int empty, u32 min_slot)
3322 {
3323 struct extent_buffer *left = path->nodes[0];
3324 struct extent_buffer *right;
3325 struct extent_buffer *upper;
3326 int slot;
3327 int free_space;
3328 u32 left_nritems;
3329 int ret;
3330
3331 if (!path->nodes[1])
3332 return 1;
3333
3334 slot = path->slots[1];
3335 upper = path->nodes[1];
3336 if (slot >= btrfs_header_nritems(upper) - 1)
3337 return 1;
3338
3339 btrfs_assert_tree_locked(path->nodes[1]);
3340
3341 right = read_node_slot(root, upper, slot + 1);
3342 if (right == NULL)
3343 return 1;
3344
3345 btrfs_tree_lock(right);
3346 btrfs_set_lock_blocking(right);
3347
3348 free_space = btrfs_leaf_free_space(root, right);
3349 if (free_space < data_size)
3350 goto out_unlock;
3351
3352 /* cow and double check */
3353 ret = btrfs_cow_block(trans, root, right, upper,
3354 slot + 1, &right);
3355 if (ret)
3356 goto out_unlock;
3357
3358 free_space = btrfs_leaf_free_space(root, right);
3359 if (free_space < data_size)
3360 goto out_unlock;
3361
3362 left_nritems = btrfs_header_nritems(left);
3363 if (left_nritems == 0)
3364 goto out_unlock;
3365
3366 return __push_leaf_right(trans, root, path, min_data_size, empty,
3367 right, free_space, left_nritems, min_slot);
3368 out_unlock:
3369 btrfs_tree_unlock(right);
3370 free_extent_buffer(right);
3371 return 1;
3372 }
3373
3374 /*
3375 * push some data in the path leaf to the left, trying to free up at
3376 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3377 *
3378 * max_slot can put a limit on how far into the leaf we'll push items. The
3379 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3380 * items
3381 */
3382 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3383 struct btrfs_root *root,
3384 struct btrfs_path *path, int data_size,
3385 int empty, struct extent_buffer *left,
3386 int free_space, u32 right_nritems,
3387 u32 max_slot)
3388 {
3389 struct btrfs_disk_key disk_key;
3390 struct extent_buffer *right = path->nodes[0];
3391 int i;
3392 int push_space = 0;
3393 int push_items = 0;
3394 struct btrfs_item *item;
3395 u32 old_left_nritems;
3396 u32 nr;
3397 int ret = 0;
3398 u32 this_item_size;
3399 u32 old_left_item_size;
3400 struct btrfs_map_token token;
3401
3402 btrfs_init_map_token(&token);
3403
3404 if (empty)
3405 nr = min(right_nritems, max_slot);
3406 else
3407 nr = min(right_nritems - 1, max_slot);
3408
3409 for (i = 0; i < nr; i++) {
3410 item = btrfs_item_nr(right, i);
3411
3412 if (!empty && push_items > 0) {
3413 if (path->slots[0] < i)
3414 break;
3415 if (path->slots[0] == i) {
3416 int space = btrfs_leaf_free_space(root, right);
3417 if (space + push_space * 2 > free_space)
3418 break;
3419 }
3420 }
3421
3422 if (path->slots[0] == i)
3423 push_space += data_size;
3424
3425 this_item_size = btrfs_item_size(right, item);
3426 if (this_item_size + sizeof(*item) + push_space > free_space)
3427 break;
3428
3429 push_items++;
3430 push_space += this_item_size + sizeof(*item);
3431 }
3432
3433 if (push_items == 0) {
3434 ret = 1;
3435 goto out;
3436 }
3437 if (!empty && push_items == btrfs_header_nritems(right))
3438 WARN_ON(1);
3439
3440 /* push data from right to left */
3441 copy_extent_buffer(left, right,
3442 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3443 btrfs_item_nr_offset(0),
3444 push_items * sizeof(struct btrfs_item));
3445
3446 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3447 btrfs_item_offset_nr(right, push_items - 1);
3448
3449 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3450 leaf_data_end(root, left) - push_space,
3451 btrfs_leaf_data(right) +
3452 btrfs_item_offset_nr(right, push_items - 1),
3453 push_space);
3454 old_left_nritems = btrfs_header_nritems(left);
3455 BUG_ON(old_left_nritems <= 0);
3456
3457 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3458 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3459 u32 ioff;
3460
3461 item = btrfs_item_nr(left, i);
3462
3463 ioff = btrfs_token_item_offset(left, item, &token);
3464 btrfs_set_token_item_offset(left, item,
3465 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3466 &token);
3467 }
3468 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3469
3470 /* fixup right node */
3471 if (push_items > right_nritems) {
3472 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3473 right_nritems);
3474 WARN_ON(1);
3475 }
3476
3477 if (push_items < right_nritems) {
3478 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3479 leaf_data_end(root, right);
3480 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3481 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3482 btrfs_leaf_data(right) +
3483 leaf_data_end(root, right), push_space);
3484
3485 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3486 btrfs_item_nr_offset(push_items),
3487 (btrfs_header_nritems(right) - push_items) *
3488 sizeof(struct btrfs_item));
3489 }
3490 right_nritems -= push_items;
3491 btrfs_set_header_nritems(right, right_nritems);
3492 push_space = BTRFS_LEAF_DATA_SIZE(root);
3493 for (i = 0; i < right_nritems; i++) {
3494 item = btrfs_item_nr(right, i);
3495
3496 push_space = push_space - btrfs_token_item_size(right,
3497 item, &token);
3498 btrfs_set_token_item_offset(right, item, push_space, &token);
3499 }
3500
3501 btrfs_mark_buffer_dirty(left);
3502 if (right_nritems)
3503 btrfs_mark_buffer_dirty(right);
3504 else
3505 clean_tree_block(trans, root, right);
3506
3507 btrfs_item_key(right, &disk_key, 0);
3508 fixup_low_keys(trans, root, path, &disk_key, 1);
3509
3510 /* then fixup the leaf pointer in the path */
3511 if (path->slots[0] < push_items) {
3512 path->slots[0] += old_left_nritems;
3513 btrfs_tree_unlock(path->nodes[0]);
3514 free_extent_buffer(path->nodes[0]);
3515 path->nodes[0] = left;
3516 path->slots[1] -= 1;
3517 } else {
3518 btrfs_tree_unlock(left);
3519 free_extent_buffer(left);
3520 path->slots[0] -= push_items;
3521 }
3522 BUG_ON(path->slots[0] < 0);
3523 return ret;
3524 out:
3525 btrfs_tree_unlock(left);
3526 free_extent_buffer(left);
3527 return ret;
3528 }
3529
3530 /*
3531 * push some data in the path leaf to the left, trying to free up at
3532 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3533 *
3534 * max_slot can put a limit on how far into the leaf we'll push items. The
3535 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3536 * items
3537 */
3538 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3539 *root, struct btrfs_path *path, int min_data_size,
3540 int data_size, int empty, u32 max_slot)
3541 {
3542 struct extent_buffer *right = path->nodes[0];
3543 struct extent_buffer *left;
3544 int slot;
3545 int free_space;
3546 u32 right_nritems;
3547 int ret = 0;
3548
3549 slot = path->slots[1];
3550 if (slot == 0)
3551 return 1;
3552 if (!path->nodes[1])
3553 return 1;
3554
3555 right_nritems = btrfs_header_nritems(right);
3556 if (right_nritems == 0)
3557 return 1;
3558
3559 btrfs_assert_tree_locked(path->nodes[1]);
3560
3561 left = read_node_slot(root, path->nodes[1], slot - 1);
3562 if (left == NULL)
3563 return 1;
3564
3565 btrfs_tree_lock(left);
3566 btrfs_set_lock_blocking(left);
3567
3568 free_space = btrfs_leaf_free_space(root, left);
3569 if (free_space < data_size) {
3570 ret = 1;
3571 goto out;
3572 }
3573
3574 /* cow and double check */
3575 ret = btrfs_cow_block(trans, root, left,
3576 path->nodes[1], slot - 1, &left);
3577 if (ret) {
3578 /* we hit -ENOSPC, but it isn't fatal here */
3579 if (ret == -ENOSPC)
3580 ret = 1;
3581 goto out;
3582 }
3583
3584 free_space = btrfs_leaf_free_space(root, left);
3585 if (free_space < data_size) {
3586 ret = 1;
3587 goto out;
3588 }
3589
3590 return __push_leaf_left(trans, root, path, min_data_size,
3591 empty, left, free_space, right_nritems,
3592 max_slot);
3593 out:
3594 btrfs_tree_unlock(left);
3595 free_extent_buffer(left);
3596 return ret;
3597 }
3598
3599 /*
3600 * split the path's leaf in two, making sure there is at least data_size
3601 * available for the resulting leaf level of the path.
3602 */
3603 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3604 struct btrfs_root *root,
3605 struct btrfs_path *path,
3606 struct extent_buffer *l,
3607 struct extent_buffer *right,
3608 int slot, int mid, int nritems)
3609 {
3610 int data_copy_size;
3611 int rt_data_off;
3612 int i;
3613 struct btrfs_disk_key disk_key;
3614 struct btrfs_map_token token;
3615
3616 btrfs_init_map_token(&token);
3617
3618 nritems = nritems - mid;
3619 btrfs_set_header_nritems(right, nritems);
3620 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3621
3622 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3623 btrfs_item_nr_offset(mid),
3624 nritems * sizeof(struct btrfs_item));
3625
3626 copy_extent_buffer(right, l,
3627 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3628 data_copy_size, btrfs_leaf_data(l) +
3629 leaf_data_end(root, l), data_copy_size);
3630
3631 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3632 btrfs_item_end_nr(l, mid);
3633
3634 for (i = 0; i < nritems; i++) {
3635 struct btrfs_item *item = btrfs_item_nr(right, i);
3636 u32 ioff;
3637
3638 ioff = btrfs_token_item_offset(right, item, &token);
3639 btrfs_set_token_item_offset(right, item,
3640 ioff + rt_data_off, &token);
3641 }
3642
3643 btrfs_set_header_nritems(l, mid);
3644 btrfs_item_key(right, &disk_key, 0);
3645 insert_ptr(trans, root, path, &disk_key, right->start,
3646 path->slots[1] + 1, 1);
3647
3648 btrfs_mark_buffer_dirty(right);
3649 btrfs_mark_buffer_dirty(l);
3650 BUG_ON(path->slots[0] != slot);
3651
3652 if (mid <= slot) {
3653 btrfs_tree_unlock(path->nodes[0]);
3654 free_extent_buffer(path->nodes[0]);
3655 path->nodes[0] = right;
3656 path->slots[0] -= mid;
3657 path->slots[1] += 1;
3658 } else {
3659 btrfs_tree_unlock(right);
3660 free_extent_buffer(right);
3661 }
3662
3663 BUG_ON(path->slots[0] < 0);
3664 }
3665
3666 /*
3667 * double splits happen when we need to insert a big item in the middle
3668 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3669 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3670 * A B C
3671 *
3672 * We avoid this by trying to push the items on either side of our target
3673 * into the adjacent leaves. If all goes well we can avoid the double split
3674 * completely.
3675 */
3676 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3677 struct btrfs_root *root,
3678 struct btrfs_path *path,
3679 int data_size)
3680 {
3681 int ret;
3682 int progress = 0;
3683 int slot;
3684 u32 nritems;
3685
3686 slot = path->slots[0];
3687
3688 /*
3689 * try to push all the items after our slot into the
3690 * right leaf
3691 */
3692 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3693 if (ret < 0)
3694 return ret;
3695
3696 if (ret == 0)
3697 progress++;
3698
3699 nritems = btrfs_header_nritems(path->nodes[0]);
3700 /*
3701 * our goal is to get our slot at the start or end of a leaf. If
3702 * we've done so we're done
3703 */
3704 if (path->slots[0] == 0 || path->slots[0] == nritems)
3705 return 0;
3706
3707 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3708 return 0;
3709
3710 /* try to push all the items before our slot into the next leaf */
3711 slot = path->slots[0];
3712 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3713 if (ret < 0)
3714 return ret;
3715
3716 if (ret == 0)
3717 progress++;
3718
3719 if (progress)
3720 return 0;
3721 return 1;
3722 }
3723
3724 /*
3725 * split the path's leaf in two, making sure there is at least data_size
3726 * available for the resulting leaf level of the path.
3727 *
3728 * returns 0 if all went well and < 0 on failure.
3729 */
3730 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3731 struct btrfs_root *root,
3732 struct btrfs_key *ins_key,
3733 struct btrfs_path *path, int data_size,
3734 int extend)
3735 {
3736 struct btrfs_disk_key disk_key;
3737 struct extent_buffer *l;
3738 u32 nritems;
3739 int mid;
3740 int slot;
3741 struct extent_buffer *right;
3742 int ret = 0;
3743 int wret;
3744 int split;
3745 int num_doubles = 0;
3746 int tried_avoid_double = 0;
3747
3748 l = path->nodes[0];
3749 slot = path->slots[0];
3750 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3751 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3752 return -EOVERFLOW;
3753
3754 /* first try to make some room by pushing left and right */
3755 if (data_size) {
3756 wret = push_leaf_right(trans, root, path, data_size,
3757 data_size, 0, 0);
3758 if (wret < 0)
3759 return wret;
3760 if (wret) {
3761 wret = push_leaf_left(trans, root, path, data_size,
3762 data_size, 0, (u32)-1);
3763 if (wret < 0)
3764 return wret;
3765 }
3766 l = path->nodes[0];
3767
3768 /* did the pushes work? */
3769 if (btrfs_leaf_free_space(root, l) >= data_size)
3770 return 0;
3771 }
3772
3773 if (!path->nodes[1]) {
3774 ret = insert_new_root(trans, root, path, 1);
3775 if (ret)
3776 return ret;
3777 }
3778 again:
3779 split = 1;
3780 l = path->nodes[0];
3781 slot = path->slots[0];
3782 nritems = btrfs_header_nritems(l);
3783 mid = (nritems + 1) / 2;
3784
3785 if (mid <= slot) {
3786 if (nritems == 1 ||
3787 leaf_space_used(l, mid, nritems - mid) + data_size >
3788 BTRFS_LEAF_DATA_SIZE(root)) {
3789 if (slot >= nritems) {
3790 split = 0;
3791 } else {
3792 mid = slot;
3793 if (mid != nritems &&
3794 leaf_space_used(l, mid, nritems - mid) +
3795 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3796 if (data_size && !tried_avoid_double)
3797 goto push_for_double;
3798 split = 2;
3799 }
3800 }
3801 }
3802 } else {
3803 if (leaf_space_used(l, 0, mid) + data_size >
3804 BTRFS_LEAF_DATA_SIZE(root)) {
3805 if (!extend && data_size && slot == 0) {
3806 split = 0;
3807 } else if ((extend || !data_size) && slot == 0) {
3808 mid = 1;
3809 } else {
3810 mid = slot;
3811 if (mid != nritems &&
3812 leaf_space_used(l, mid, nritems - mid) +
3813 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3814 if (data_size && !tried_avoid_double)
3815 goto push_for_double;
3816 split = 2 ;
3817 }
3818 }
3819 }
3820 }
3821
3822 if (split == 0)
3823 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3824 else
3825 btrfs_item_key(l, &disk_key, mid);
3826
3827 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3828 root->root_key.objectid,
3829 &disk_key, 0, l->start, 0);
3830 if (IS_ERR(right))
3831 return PTR_ERR(right);
3832
3833 root_add_used(root, root->leafsize);
3834
3835 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3836 btrfs_set_header_bytenr(right, right->start);
3837 btrfs_set_header_generation(right, trans->transid);
3838 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3839 btrfs_set_header_owner(right, root->root_key.objectid);
3840 btrfs_set_header_level(right, 0);
3841 write_extent_buffer(right, root->fs_info->fsid,
3842 (unsigned long)btrfs_header_fsid(right),
3843 BTRFS_FSID_SIZE);
3844
3845 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3846 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3847 BTRFS_UUID_SIZE);
3848
3849 if (split == 0) {
3850 if (mid <= slot) {
3851 btrfs_set_header_nritems(right, 0);
3852 insert_ptr(trans, root, path, &disk_key, right->start,
3853 path->slots[1] + 1, 1);
3854 btrfs_tree_unlock(path->nodes[0]);
3855 free_extent_buffer(path->nodes[0]);
3856 path->nodes[0] = right;
3857 path->slots[0] = 0;
3858 path->slots[1] += 1;
3859 } else {
3860 btrfs_set_header_nritems(right, 0);
3861 insert_ptr(trans, root, path, &disk_key, right->start,
3862 path->slots[1], 1);
3863 btrfs_tree_unlock(path->nodes[0]);
3864 free_extent_buffer(path->nodes[0]);
3865 path->nodes[0] = right;
3866 path->slots[0] = 0;
3867 if (path->slots[1] == 0)
3868 fixup_low_keys(trans, root, path,
3869 &disk_key, 1);
3870 }
3871 btrfs_mark_buffer_dirty(right);
3872 return ret;
3873 }
3874
3875 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3876
3877 if (split == 2) {
3878 BUG_ON(num_doubles != 0);
3879 num_doubles++;
3880 goto again;
3881 }
3882
3883 return 0;
3884
3885 push_for_double:
3886 push_for_double_split(trans, root, path, data_size);
3887 tried_avoid_double = 1;
3888 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3889 return 0;
3890 goto again;
3891 }
3892
3893 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3894 struct btrfs_root *root,
3895 struct btrfs_path *path, int ins_len)
3896 {
3897 struct btrfs_key key;
3898 struct extent_buffer *leaf;
3899 struct btrfs_file_extent_item *fi;
3900 u64 extent_len = 0;
3901 u32 item_size;
3902 int ret;
3903
3904 leaf = path->nodes[0];
3905 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3906
3907 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3908 key.type != BTRFS_EXTENT_CSUM_KEY);
3909
3910 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3911 return 0;
3912
3913 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3914 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3915 fi = btrfs_item_ptr(leaf, path->slots[0],
3916 struct btrfs_file_extent_item);
3917 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3918 }
3919 btrfs_release_path(path);
3920
3921 path->keep_locks = 1;
3922 path->search_for_split = 1;
3923 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3924 path->search_for_split = 0;
3925 if (ret < 0)
3926 goto err;
3927
3928 ret = -EAGAIN;
3929 leaf = path->nodes[0];
3930 /* if our item isn't there or got smaller, return now */
3931 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3932 goto err;
3933
3934 /* the leaf has changed, it now has room. return now */
3935 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3936 goto err;
3937
3938 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3939 fi = btrfs_item_ptr(leaf, path->slots[0],
3940 struct btrfs_file_extent_item);
3941 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3942 goto err;
3943 }
3944
3945 btrfs_set_path_blocking(path);
3946 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3947 if (ret)
3948 goto err;
3949
3950 path->keep_locks = 0;
3951 btrfs_unlock_up_safe(path, 1);
3952 return 0;
3953 err:
3954 path->keep_locks = 0;
3955 return ret;
3956 }
3957
3958 static noinline int split_item(struct btrfs_trans_handle *trans,
3959 struct btrfs_root *root,
3960 struct btrfs_path *path,
3961 struct btrfs_key *new_key,
3962 unsigned long split_offset)
3963 {
3964 struct extent_buffer *leaf;
3965 struct btrfs_item *item;
3966 struct btrfs_item *new_item;
3967 int slot;
3968 char *buf;
3969 u32 nritems;
3970 u32 item_size;
3971 u32 orig_offset;
3972 struct btrfs_disk_key disk_key;
3973
3974 leaf = path->nodes[0];
3975 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3976
3977 btrfs_set_path_blocking(path);
3978
3979 item = btrfs_item_nr(leaf, path->slots[0]);
3980 orig_offset = btrfs_item_offset(leaf, item);
3981 item_size = btrfs_item_size(leaf, item);
3982
3983 buf = kmalloc(item_size, GFP_NOFS);
3984 if (!buf)
3985 return -ENOMEM;
3986
3987 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3988 path->slots[0]), item_size);
3989
3990 slot = path->slots[0] + 1;
3991 nritems = btrfs_header_nritems(leaf);
3992 if (slot != nritems) {
3993 /* shift the items */
3994 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3995 btrfs_item_nr_offset(slot),
3996 (nritems - slot) * sizeof(struct btrfs_item));
3997 }
3998
3999 btrfs_cpu_key_to_disk(&disk_key, new_key);
4000 btrfs_set_item_key(leaf, &disk_key, slot);
4001
4002 new_item = btrfs_item_nr(leaf, slot);
4003
4004 btrfs_set_item_offset(leaf, new_item, orig_offset);
4005 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4006
4007 btrfs_set_item_offset(leaf, item,
4008 orig_offset + item_size - split_offset);
4009 btrfs_set_item_size(leaf, item, split_offset);
4010
4011 btrfs_set_header_nritems(leaf, nritems + 1);
4012
4013 /* write the data for the start of the original item */
4014 write_extent_buffer(leaf, buf,
4015 btrfs_item_ptr_offset(leaf, path->slots[0]),
4016 split_offset);
4017
4018 /* write the data for the new item */
4019 write_extent_buffer(leaf, buf + split_offset,
4020 btrfs_item_ptr_offset(leaf, slot),
4021 item_size - split_offset);
4022 btrfs_mark_buffer_dirty(leaf);
4023
4024 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4025 kfree(buf);
4026 return 0;
4027 }
4028
4029 /*
4030 * This function splits a single item into two items,
4031 * giving 'new_key' to the new item and splitting the
4032 * old one at split_offset (from the start of the item).
4033 *
4034 * The path may be released by this operation. After
4035 * the split, the path is pointing to the old item. The
4036 * new item is going to be in the same node as the old one.
4037 *
4038 * Note, the item being split must be smaller enough to live alone on
4039 * a tree block with room for one extra struct btrfs_item
4040 *
4041 * This allows us to split the item in place, keeping a lock on the
4042 * leaf the entire time.
4043 */
4044 int btrfs_split_item(struct btrfs_trans_handle *trans,
4045 struct btrfs_root *root,
4046 struct btrfs_path *path,
4047 struct btrfs_key *new_key,
4048 unsigned long split_offset)
4049 {
4050 int ret;
4051 ret = setup_leaf_for_split(trans, root, path,
4052 sizeof(struct btrfs_item));
4053 if (ret)
4054 return ret;
4055
4056 ret = split_item(trans, root, path, new_key, split_offset);
4057 return ret;
4058 }
4059
4060 /*
4061 * This function duplicate a item, giving 'new_key' to the new item.
4062 * It guarantees both items live in the same tree leaf and the new item
4063 * is contiguous with the original item.
4064 *
4065 * This allows us to split file extent in place, keeping a lock on the
4066 * leaf the entire time.
4067 */
4068 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4069 struct btrfs_root *root,
4070 struct btrfs_path *path,
4071 struct btrfs_key *new_key)
4072 {
4073 struct extent_buffer *leaf;
4074 int ret;
4075 u32 item_size;
4076
4077 leaf = path->nodes[0];
4078 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4079 ret = setup_leaf_for_split(trans, root, path,
4080 item_size + sizeof(struct btrfs_item));
4081 if (ret)
4082 return ret;
4083
4084 path->slots[0]++;
4085 setup_items_for_insert(trans, root, path, new_key, &item_size,
4086 item_size, item_size +
4087 sizeof(struct btrfs_item), 1);
4088 leaf = path->nodes[0];
4089 memcpy_extent_buffer(leaf,
4090 btrfs_item_ptr_offset(leaf, path->slots[0]),
4091 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4092 item_size);
4093 return 0;
4094 }
4095
4096 /*
4097 * make the item pointed to by the path smaller. new_size indicates
4098 * how small to make it, and from_end tells us if we just chop bytes
4099 * off the end of the item or if we shift the item to chop bytes off
4100 * the front.
4101 */
4102 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4103 struct btrfs_root *root,
4104 struct btrfs_path *path,
4105 u32 new_size, int from_end)
4106 {
4107 int slot;
4108 struct extent_buffer *leaf;
4109 struct btrfs_item *item;
4110 u32 nritems;
4111 unsigned int data_end;
4112 unsigned int old_data_start;
4113 unsigned int old_size;
4114 unsigned int size_diff;
4115 int i;
4116 struct btrfs_map_token token;
4117
4118 btrfs_init_map_token(&token);
4119
4120 leaf = path->nodes[0];
4121 slot = path->slots[0];
4122
4123 old_size = btrfs_item_size_nr(leaf, slot);
4124 if (old_size == new_size)
4125 return;
4126
4127 nritems = btrfs_header_nritems(leaf);
4128 data_end = leaf_data_end(root, leaf);
4129
4130 old_data_start = btrfs_item_offset_nr(leaf, slot);
4131
4132 size_diff = old_size - new_size;
4133
4134 BUG_ON(slot < 0);
4135 BUG_ON(slot >= nritems);
4136
4137 /*
4138 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4139 */
4140 /* first correct the data pointers */
4141 for (i = slot; i < nritems; i++) {
4142 u32 ioff;
4143 item = btrfs_item_nr(leaf, i);
4144
4145 ioff = btrfs_token_item_offset(leaf, item, &token);
4146 btrfs_set_token_item_offset(leaf, item,
4147 ioff + size_diff, &token);
4148 }
4149
4150 /* shift the data */
4151 if (from_end) {
4152 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4153 data_end + size_diff, btrfs_leaf_data(leaf) +
4154 data_end, old_data_start + new_size - data_end);
4155 } else {
4156 struct btrfs_disk_key disk_key;
4157 u64 offset;
4158
4159 btrfs_item_key(leaf, &disk_key, slot);
4160
4161 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4162 unsigned long ptr;
4163 struct btrfs_file_extent_item *fi;
4164
4165 fi = btrfs_item_ptr(leaf, slot,
4166 struct btrfs_file_extent_item);
4167 fi = (struct btrfs_file_extent_item *)(
4168 (unsigned long)fi - size_diff);
4169
4170 if (btrfs_file_extent_type(leaf, fi) ==
4171 BTRFS_FILE_EXTENT_INLINE) {
4172 ptr = btrfs_item_ptr_offset(leaf, slot);
4173 memmove_extent_buffer(leaf, ptr,
4174 (unsigned long)fi,
4175 offsetof(struct btrfs_file_extent_item,
4176 disk_bytenr));
4177 }
4178 }
4179
4180 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4181 data_end + size_diff, btrfs_leaf_data(leaf) +
4182 data_end, old_data_start - data_end);
4183
4184 offset = btrfs_disk_key_offset(&disk_key);
4185 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4186 btrfs_set_item_key(leaf, &disk_key, slot);
4187 if (slot == 0)
4188 fixup_low_keys(trans, root, path, &disk_key, 1);
4189 }
4190
4191 item = btrfs_item_nr(leaf, slot);
4192 btrfs_set_item_size(leaf, item, new_size);
4193 btrfs_mark_buffer_dirty(leaf);
4194
4195 if (btrfs_leaf_free_space(root, leaf) < 0) {
4196 btrfs_print_leaf(root, leaf);
4197 BUG();
4198 }
4199 }
4200
4201 /*
4202 * make the item pointed to by the path bigger, data_size is the new size.
4203 */
4204 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4205 struct btrfs_root *root, struct btrfs_path *path,
4206 u32 data_size)
4207 {
4208 int slot;
4209 struct extent_buffer *leaf;
4210 struct btrfs_item *item;
4211 u32 nritems;
4212 unsigned int data_end;
4213 unsigned int old_data;
4214 unsigned int old_size;
4215 int i;
4216 struct btrfs_map_token token;
4217
4218 btrfs_init_map_token(&token);
4219
4220 leaf = path->nodes[0];
4221
4222 nritems = btrfs_header_nritems(leaf);
4223 data_end = leaf_data_end(root, leaf);
4224
4225 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4226 btrfs_print_leaf(root, leaf);
4227 BUG();
4228 }
4229 slot = path->slots[0];
4230 old_data = btrfs_item_end_nr(leaf, slot);
4231
4232 BUG_ON(slot < 0);
4233 if (slot >= nritems) {
4234 btrfs_print_leaf(root, leaf);
4235 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4236 slot, nritems);
4237 BUG_ON(1);
4238 }
4239
4240 /*
4241 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4242 */
4243 /* first correct the data pointers */
4244 for (i = slot; i < nritems; i++) {
4245 u32 ioff;
4246 item = btrfs_item_nr(leaf, i);
4247
4248 ioff = btrfs_token_item_offset(leaf, item, &token);
4249 btrfs_set_token_item_offset(leaf, item,
4250 ioff - data_size, &token);
4251 }
4252
4253 /* shift the data */
4254 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4255 data_end - data_size, btrfs_leaf_data(leaf) +
4256 data_end, old_data - data_end);
4257
4258 data_end = old_data;
4259 old_size = btrfs_item_size_nr(leaf, slot);
4260 item = btrfs_item_nr(leaf, slot);
4261 btrfs_set_item_size(leaf, item, old_size + data_size);
4262 btrfs_mark_buffer_dirty(leaf);
4263
4264 if (btrfs_leaf_free_space(root, leaf) < 0) {
4265 btrfs_print_leaf(root, leaf);
4266 BUG();
4267 }
4268 }
4269
4270 /*
4271 * Given a key and some data, insert items into the tree.
4272 * This does all the path init required, making room in the tree if needed.
4273 * Returns the number of keys that were inserted.
4274 */
4275 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4276 struct btrfs_root *root,
4277 struct btrfs_path *path,
4278 struct btrfs_key *cpu_key, u32 *data_size,
4279 int nr)
4280 {
4281 struct extent_buffer *leaf;
4282 struct btrfs_item *item;
4283 int ret = 0;
4284 int slot;
4285 int i;
4286 u32 nritems;
4287 u32 total_data = 0;
4288 u32 total_size = 0;
4289 unsigned int data_end;
4290 struct btrfs_disk_key disk_key;
4291 struct btrfs_key found_key;
4292 struct btrfs_map_token token;
4293
4294 btrfs_init_map_token(&token);
4295
4296 for (i = 0; i < nr; i++) {
4297 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4298 BTRFS_LEAF_DATA_SIZE(root)) {
4299 break;
4300 nr = i;
4301 }
4302 total_data += data_size[i];
4303 total_size += data_size[i] + sizeof(struct btrfs_item);
4304 }
4305 BUG_ON(nr == 0);
4306
4307 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4308 if (ret == 0)
4309 return -EEXIST;
4310 if (ret < 0)
4311 goto out;
4312
4313 leaf = path->nodes[0];
4314
4315 nritems = btrfs_header_nritems(leaf);
4316 data_end = leaf_data_end(root, leaf);
4317
4318 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4319 for (i = nr; i >= 0; i--) {
4320 total_data -= data_size[i];
4321 total_size -= data_size[i] + sizeof(struct btrfs_item);
4322 if (total_size < btrfs_leaf_free_space(root, leaf))
4323 break;
4324 }
4325 nr = i;
4326 }
4327
4328 slot = path->slots[0];
4329 BUG_ON(slot < 0);
4330
4331 if (slot != nritems) {
4332 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4333
4334 item = btrfs_item_nr(leaf, slot);
4335 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4336
4337 /* figure out how many keys we can insert in here */
4338 total_data = data_size[0];
4339 for (i = 1; i < nr; i++) {
4340 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4341 break;
4342 total_data += data_size[i];
4343 }
4344 nr = i;
4345
4346 if (old_data < data_end) {
4347 btrfs_print_leaf(root, leaf);
4348 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4349 slot, old_data, data_end);
4350 BUG_ON(1);
4351 }
4352 /*
4353 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4354 */
4355 /* first correct the data pointers */
4356 for (i = slot; i < nritems; i++) {
4357 u32 ioff;
4358
4359 item = btrfs_item_nr(leaf, i);
4360 ioff = btrfs_token_item_offset(leaf, item, &token);
4361 btrfs_set_token_item_offset(leaf, item,
4362 ioff - total_data, &token);
4363 }
4364 /* shift the items */
4365 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4366 btrfs_item_nr_offset(slot),
4367 (nritems - slot) * sizeof(struct btrfs_item));
4368
4369 /* shift the data */
4370 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4371 data_end - total_data, btrfs_leaf_data(leaf) +
4372 data_end, old_data - data_end);
4373 data_end = old_data;
4374 } else {
4375 /*
4376 * this sucks but it has to be done, if we are inserting at
4377 * the end of the leaf only insert 1 of the items, since we
4378 * have no way of knowing whats on the next leaf and we'd have
4379 * to drop our current locks to figure it out
4380 */
4381 nr = 1;
4382 }
4383
4384 /* setup the item for the new data */
4385 for (i = 0; i < nr; i++) {
4386 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4387 btrfs_set_item_key(leaf, &disk_key, slot + i);
4388 item = btrfs_item_nr(leaf, slot + i);
4389 btrfs_set_token_item_offset(leaf, item,
4390 data_end - data_size[i], &token);
4391 data_end -= data_size[i];
4392 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4393 }
4394 btrfs_set_header_nritems(leaf, nritems + nr);
4395 btrfs_mark_buffer_dirty(leaf);
4396
4397 ret = 0;
4398 if (slot == 0) {
4399 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4400 fixup_low_keys(trans, root, path, &disk_key, 1);
4401 }
4402
4403 if (btrfs_leaf_free_space(root, leaf) < 0) {
4404 btrfs_print_leaf(root, leaf);
4405 BUG();
4406 }
4407 out:
4408 if (!ret)
4409 ret = nr;
4410 return ret;
4411 }
4412
4413 /*
4414 * this is a helper for btrfs_insert_empty_items, the main goal here is
4415 * to save stack depth by doing the bulk of the work in a function
4416 * that doesn't call btrfs_search_slot
4417 */
4418 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4419 struct btrfs_root *root, struct btrfs_path *path,
4420 struct btrfs_key *cpu_key, u32 *data_size,
4421 u32 total_data, u32 total_size, int nr)
4422 {
4423 struct btrfs_item *item;
4424 int i;
4425 u32 nritems;
4426 unsigned int data_end;
4427 struct btrfs_disk_key disk_key;
4428 struct extent_buffer *leaf;
4429 int slot;
4430 struct btrfs_map_token token;
4431
4432 btrfs_init_map_token(&token);
4433
4434 leaf = path->nodes[0];
4435 slot = path->slots[0];
4436
4437 nritems = btrfs_header_nritems(leaf);
4438 data_end = leaf_data_end(root, leaf);
4439
4440 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4441 btrfs_print_leaf(root, leaf);
4442 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4443 total_size, btrfs_leaf_free_space(root, leaf));
4444 BUG();
4445 }
4446
4447 if (slot != nritems) {
4448 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4449
4450 if (old_data < data_end) {
4451 btrfs_print_leaf(root, leaf);
4452 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4453 slot, old_data, data_end);
4454 BUG_ON(1);
4455 }
4456 /*
4457 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4458 */
4459 /* first correct the data pointers */
4460 for (i = slot; i < nritems; i++) {
4461 u32 ioff;
4462
4463 item = btrfs_item_nr(leaf, i);
4464 ioff = btrfs_token_item_offset(leaf, item, &token);
4465 btrfs_set_token_item_offset(leaf, item,
4466 ioff - total_data, &token);
4467 }
4468 /* shift the items */
4469 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4470 btrfs_item_nr_offset(slot),
4471 (nritems - slot) * sizeof(struct btrfs_item));
4472
4473 /* shift the data */
4474 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4475 data_end - total_data, btrfs_leaf_data(leaf) +
4476 data_end, old_data - data_end);
4477 data_end = old_data;
4478 }
4479
4480 /* setup the item for the new data */
4481 for (i = 0; i < nr; i++) {
4482 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4483 btrfs_set_item_key(leaf, &disk_key, slot + i);
4484 item = btrfs_item_nr(leaf, slot + i);
4485 btrfs_set_token_item_offset(leaf, item,
4486 data_end - data_size[i], &token);
4487 data_end -= data_size[i];
4488 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4489 }
4490
4491 btrfs_set_header_nritems(leaf, nritems + nr);
4492
4493 if (slot == 0) {
4494 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4495 fixup_low_keys(trans, root, path, &disk_key, 1);
4496 }
4497 btrfs_unlock_up_safe(path, 1);
4498 btrfs_mark_buffer_dirty(leaf);
4499
4500 if (btrfs_leaf_free_space(root, leaf) < 0) {
4501 btrfs_print_leaf(root, leaf);
4502 BUG();
4503 }
4504 }
4505
4506 /*
4507 * Given a key and some data, insert items into the tree.
4508 * This does all the path init required, making room in the tree if needed.
4509 */
4510 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4511 struct btrfs_root *root,
4512 struct btrfs_path *path,
4513 struct btrfs_key *cpu_key, u32 *data_size,
4514 int nr)
4515 {
4516 int ret = 0;
4517 int slot;
4518 int i;
4519 u32 total_size = 0;
4520 u32 total_data = 0;
4521
4522 for (i = 0; i < nr; i++)
4523 total_data += data_size[i];
4524
4525 total_size = total_data + (nr * sizeof(struct btrfs_item));
4526 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4527 if (ret == 0)
4528 return -EEXIST;
4529 if (ret < 0)
4530 return ret;
4531
4532 slot = path->slots[0];
4533 BUG_ON(slot < 0);
4534
4535 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4536 total_data, total_size, nr);
4537 return 0;
4538 }
4539
4540 /*
4541 * Given a key and some data, insert an item into the tree.
4542 * This does all the path init required, making room in the tree if needed.
4543 */
4544 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4545 *root, struct btrfs_key *cpu_key, void *data, u32
4546 data_size)
4547 {
4548 int ret = 0;
4549 struct btrfs_path *path;
4550 struct extent_buffer *leaf;
4551 unsigned long ptr;
4552
4553 path = btrfs_alloc_path();
4554 if (!path)
4555 return -ENOMEM;
4556 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4557 if (!ret) {
4558 leaf = path->nodes[0];
4559 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4560 write_extent_buffer(leaf, data, ptr, data_size);
4561 btrfs_mark_buffer_dirty(leaf);
4562 }
4563 btrfs_free_path(path);
4564 return ret;
4565 }
4566
4567 /*
4568 * delete the pointer from a given node.
4569 *
4570 * the tree should have been previously balanced so the deletion does not
4571 * empty a node.
4572 */
4573 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4574 struct btrfs_path *path, int level, int slot,
4575 int tree_mod_log)
4576 {
4577 struct extent_buffer *parent = path->nodes[level];
4578 u32 nritems;
4579 int ret;
4580
4581 nritems = btrfs_header_nritems(parent);
4582 if (slot != nritems - 1) {
4583 if (tree_mod_log && level)
4584 tree_mod_log_eb_move(root->fs_info, parent, slot,
4585 slot + 1, nritems - slot - 1);
4586 memmove_extent_buffer(parent,
4587 btrfs_node_key_ptr_offset(slot),
4588 btrfs_node_key_ptr_offset(slot + 1),
4589 sizeof(struct btrfs_key_ptr) *
4590 (nritems - slot - 1));
4591 } else if (tree_mod_log && level) {
4592 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4593 MOD_LOG_KEY_REMOVE);
4594 BUG_ON(ret < 0);
4595 }
4596
4597 nritems--;
4598 btrfs_set_header_nritems(parent, nritems);
4599 if (nritems == 0 && parent == root->node) {
4600 BUG_ON(btrfs_header_level(root->node) != 1);
4601 /* just turn the root into a leaf and break */
4602 btrfs_set_header_level(root->node, 0);
4603 } else if (slot == 0) {
4604 struct btrfs_disk_key disk_key;
4605
4606 btrfs_node_key(parent, &disk_key, 0);
4607 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4608 }
4609 btrfs_mark_buffer_dirty(parent);
4610 }
4611
4612 /*
4613 * a helper function to delete the leaf pointed to by path->slots[1] and
4614 * path->nodes[1].
4615 *
4616 * This deletes the pointer in path->nodes[1] and frees the leaf
4617 * block extent. zero is returned if it all worked out, < 0 otherwise.
4618 *
4619 * The path must have already been setup for deleting the leaf, including
4620 * all the proper balancing. path->nodes[1] must be locked.
4621 */
4622 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4623 struct btrfs_root *root,
4624 struct btrfs_path *path,
4625 struct extent_buffer *leaf)
4626 {
4627 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4628 del_ptr(trans, root, path, 1, path->slots[1], 1);
4629
4630 /*
4631 * btrfs_free_extent is expensive, we want to make sure we
4632 * aren't holding any locks when we call it
4633 */
4634 btrfs_unlock_up_safe(path, 0);
4635
4636 root_sub_used(root, leaf->len);
4637
4638 extent_buffer_get(leaf);
4639 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4640 free_extent_buffer_stale(leaf);
4641 }
4642 /*
4643 * delete the item at the leaf level in path. If that empties
4644 * the leaf, remove it from the tree
4645 */
4646 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4647 struct btrfs_path *path, int slot, int nr)
4648 {
4649 struct extent_buffer *leaf;
4650 struct btrfs_item *item;
4651 int last_off;
4652 int dsize = 0;
4653 int ret = 0;
4654 int wret;
4655 int i;
4656 u32 nritems;
4657 struct btrfs_map_token token;
4658
4659 btrfs_init_map_token(&token);
4660
4661 leaf = path->nodes[0];
4662 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4663
4664 for (i = 0; i < nr; i++)
4665 dsize += btrfs_item_size_nr(leaf, slot + i);
4666
4667 nritems = btrfs_header_nritems(leaf);
4668
4669 if (slot + nr != nritems) {
4670 int data_end = leaf_data_end(root, leaf);
4671
4672 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4673 data_end + dsize,
4674 btrfs_leaf_data(leaf) + data_end,
4675 last_off - data_end);
4676
4677 for (i = slot + nr; i < nritems; i++) {
4678 u32 ioff;
4679
4680 item = btrfs_item_nr(leaf, i);
4681 ioff = btrfs_token_item_offset(leaf, item, &token);
4682 btrfs_set_token_item_offset(leaf, item,
4683 ioff + dsize, &token);
4684 }
4685
4686 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4687 btrfs_item_nr_offset(slot + nr),
4688 sizeof(struct btrfs_item) *
4689 (nritems - slot - nr));
4690 }
4691 btrfs_set_header_nritems(leaf, nritems - nr);
4692 nritems -= nr;
4693
4694 /* delete the leaf if we've emptied it */
4695 if (nritems == 0) {
4696 if (leaf == root->node) {
4697 btrfs_set_header_level(leaf, 0);
4698 } else {
4699 btrfs_set_path_blocking(path);
4700 clean_tree_block(trans, root, leaf);
4701 btrfs_del_leaf(trans, root, path, leaf);
4702 }
4703 } else {
4704 int used = leaf_space_used(leaf, 0, nritems);
4705 if (slot == 0) {
4706 struct btrfs_disk_key disk_key;
4707
4708 btrfs_item_key(leaf, &disk_key, 0);
4709 fixup_low_keys(trans, root, path, &disk_key, 1);
4710 }
4711
4712 /* delete the leaf if it is mostly empty */
4713 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4714 /* push_leaf_left fixes the path.
4715 * make sure the path still points to our leaf
4716 * for possible call to del_ptr below
4717 */
4718 slot = path->slots[1];
4719 extent_buffer_get(leaf);
4720
4721 btrfs_set_path_blocking(path);
4722 wret = push_leaf_left(trans, root, path, 1, 1,
4723 1, (u32)-1);
4724 if (wret < 0 && wret != -ENOSPC)
4725 ret = wret;
4726
4727 if (path->nodes[0] == leaf &&
4728 btrfs_header_nritems(leaf)) {
4729 wret = push_leaf_right(trans, root, path, 1,
4730 1, 1, 0);
4731 if (wret < 0 && wret != -ENOSPC)
4732 ret = wret;
4733 }
4734
4735 if (btrfs_header_nritems(leaf) == 0) {
4736 path->slots[1] = slot;
4737 btrfs_del_leaf(trans, root, path, leaf);
4738 free_extent_buffer(leaf);
4739 ret = 0;
4740 } else {
4741 /* if we're still in the path, make sure
4742 * we're dirty. Otherwise, one of the
4743 * push_leaf functions must have already
4744 * dirtied this buffer
4745 */
4746 if (path->nodes[0] == leaf)
4747 btrfs_mark_buffer_dirty(leaf);
4748 free_extent_buffer(leaf);
4749 }
4750 } else {
4751 btrfs_mark_buffer_dirty(leaf);
4752 }
4753 }
4754 return ret;
4755 }
4756
4757 /*
4758 * search the tree again to find a leaf with lesser keys
4759 * returns 0 if it found something or 1 if there are no lesser leaves.
4760 * returns < 0 on io errors.
4761 *
4762 * This may release the path, and so you may lose any locks held at the
4763 * time you call it.
4764 */
4765 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4766 {
4767 struct btrfs_key key;
4768 struct btrfs_disk_key found_key;
4769 int ret;
4770
4771 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4772
4773 if (key.offset > 0)
4774 key.offset--;
4775 else if (key.type > 0)
4776 key.type--;
4777 else if (key.objectid > 0)
4778 key.objectid--;
4779 else
4780 return 1;
4781
4782 btrfs_release_path(path);
4783 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4784 if (ret < 0)
4785 return ret;
4786 btrfs_item_key(path->nodes[0], &found_key, 0);
4787 ret = comp_keys(&found_key, &key);
4788 if (ret < 0)
4789 return 0;
4790 return 1;
4791 }
4792
4793 /*
4794 * A helper function to walk down the tree starting at min_key, and looking
4795 * for nodes or leaves that are either in cache or have a minimum
4796 * transaction id. This is used by the btree defrag code, and tree logging
4797 *
4798 * This does not cow, but it does stuff the starting key it finds back
4799 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4800 * key and get a writable path.
4801 *
4802 * This does lock as it descends, and path->keep_locks should be set
4803 * to 1 by the caller.
4804 *
4805 * This honors path->lowest_level to prevent descent past a given level
4806 * of the tree.
4807 *
4808 * min_trans indicates the oldest transaction that you are interested
4809 * in walking through. Any nodes or leaves older than min_trans are
4810 * skipped over (without reading them).
4811 *
4812 * returns zero if something useful was found, < 0 on error and 1 if there
4813 * was nothing in the tree that matched the search criteria.
4814 */
4815 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4816 struct btrfs_key *max_key,
4817 struct btrfs_path *path, int cache_only,
4818 u64 min_trans)
4819 {
4820 struct extent_buffer *cur;
4821 struct btrfs_key found_key;
4822 int slot;
4823 int sret;
4824 u32 nritems;
4825 int level;
4826 int ret = 1;
4827
4828 WARN_ON(!path->keep_locks);
4829 again:
4830 cur = btrfs_read_lock_root_node(root);
4831 level = btrfs_header_level(cur);
4832 WARN_ON(path->nodes[level]);
4833 path->nodes[level] = cur;
4834 path->locks[level] = BTRFS_READ_LOCK;
4835
4836 if (btrfs_header_generation(cur) < min_trans) {
4837 ret = 1;
4838 goto out;
4839 }
4840 while (1) {
4841 nritems = btrfs_header_nritems(cur);
4842 level = btrfs_header_level(cur);
4843 sret = bin_search(cur, min_key, level, &slot);
4844
4845 /* at the lowest level, we're done, setup the path and exit */
4846 if (level == path->lowest_level) {
4847 if (slot >= nritems)
4848 goto find_next_key;
4849 ret = 0;
4850 path->slots[level] = slot;
4851 btrfs_item_key_to_cpu(cur, &found_key, slot);
4852 goto out;
4853 }
4854 if (sret && slot > 0)
4855 slot--;
4856 /*
4857 * check this node pointer against the cache_only and
4858 * min_trans parameters. If it isn't in cache or is too
4859 * old, skip to the next one.
4860 */
4861 while (slot < nritems) {
4862 u64 blockptr;
4863 u64 gen;
4864 struct extent_buffer *tmp;
4865 struct btrfs_disk_key disk_key;
4866
4867 blockptr = btrfs_node_blockptr(cur, slot);
4868 gen = btrfs_node_ptr_generation(cur, slot);
4869 if (gen < min_trans) {
4870 slot++;
4871 continue;
4872 }
4873 if (!cache_only)
4874 break;
4875
4876 if (max_key) {
4877 btrfs_node_key(cur, &disk_key, slot);
4878 if (comp_keys(&disk_key, max_key) >= 0) {
4879 ret = 1;
4880 goto out;
4881 }
4882 }
4883
4884 tmp = btrfs_find_tree_block(root, blockptr,
4885 btrfs_level_size(root, level - 1));
4886
4887 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4888 free_extent_buffer(tmp);
4889 break;
4890 }
4891 if (tmp)
4892 free_extent_buffer(tmp);
4893 slot++;
4894 }
4895 find_next_key:
4896 /*
4897 * we didn't find a candidate key in this node, walk forward
4898 * and find another one
4899 */
4900 if (slot >= nritems) {
4901 path->slots[level] = slot;
4902 btrfs_set_path_blocking(path);
4903 sret = btrfs_find_next_key(root, path, min_key, level,
4904 cache_only, min_trans);
4905 if (sret == 0) {
4906 btrfs_release_path(path);
4907 goto again;
4908 } else {
4909 goto out;
4910 }
4911 }
4912 /* save our key for returning back */
4913 btrfs_node_key_to_cpu(cur, &found_key, slot);
4914 path->slots[level] = slot;
4915 if (level == path->lowest_level) {
4916 ret = 0;
4917 unlock_up(path, level, 1, 0, NULL);
4918 goto out;
4919 }
4920 btrfs_set_path_blocking(path);
4921 cur = read_node_slot(root, cur, slot);
4922 BUG_ON(!cur); /* -ENOMEM */
4923
4924 btrfs_tree_read_lock(cur);
4925
4926 path->locks[level - 1] = BTRFS_READ_LOCK;
4927 path->nodes[level - 1] = cur;
4928 unlock_up(path, level, 1, 0, NULL);
4929 btrfs_clear_path_blocking(path, NULL, 0);
4930 }
4931 out:
4932 if (ret == 0)
4933 memcpy(min_key, &found_key, sizeof(found_key));
4934 btrfs_set_path_blocking(path);
4935 return ret;
4936 }
4937
4938 /*
4939 * this is similar to btrfs_next_leaf, but does not try to preserve
4940 * and fixup the path. It looks for and returns the next key in the
4941 * tree based on the current path and the cache_only and min_trans
4942 * parameters.
4943 *
4944 * 0 is returned if another key is found, < 0 if there are any errors
4945 * and 1 is returned if there are no higher keys in the tree
4946 *
4947 * path->keep_locks should be set to 1 on the search made before
4948 * calling this function.
4949 */
4950 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4951 struct btrfs_key *key, int level,
4952 int cache_only, u64 min_trans)
4953 {
4954 int slot;
4955 struct extent_buffer *c;
4956
4957 WARN_ON(!path->keep_locks);
4958 while (level < BTRFS_MAX_LEVEL) {
4959 if (!path->nodes[level])
4960 return 1;
4961
4962 slot = path->slots[level] + 1;
4963 c = path->nodes[level];
4964 next:
4965 if (slot >= btrfs_header_nritems(c)) {
4966 int ret;
4967 int orig_lowest;
4968 struct btrfs_key cur_key;
4969 if (level + 1 >= BTRFS_MAX_LEVEL ||
4970 !path->nodes[level + 1])
4971 return 1;
4972
4973 if (path->locks[level + 1]) {
4974 level++;
4975 continue;
4976 }
4977
4978 slot = btrfs_header_nritems(c) - 1;
4979 if (level == 0)
4980 btrfs_item_key_to_cpu(c, &cur_key, slot);
4981 else
4982 btrfs_node_key_to_cpu(c, &cur_key, slot);
4983
4984 orig_lowest = path->lowest_level;
4985 btrfs_release_path(path);
4986 path->lowest_level = level;
4987 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4988 0, 0);
4989 path->lowest_level = orig_lowest;
4990 if (ret < 0)
4991 return ret;
4992
4993 c = path->nodes[level];
4994 slot = path->slots[level];
4995 if (ret == 0)
4996 slot++;
4997 goto next;
4998 }
4999
5000 if (level == 0)
5001 btrfs_item_key_to_cpu(c, key, slot);
5002 else {
5003 u64 blockptr = btrfs_node_blockptr(c, slot);
5004 u64 gen = btrfs_node_ptr_generation(c, slot);
5005
5006 if (cache_only) {
5007 struct extent_buffer *cur;
5008 cur = btrfs_find_tree_block(root, blockptr,
5009 btrfs_level_size(root, level - 1));
5010 if (!cur ||
5011 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5012 slot++;
5013 if (cur)
5014 free_extent_buffer(cur);
5015 goto next;
5016 }
5017 free_extent_buffer(cur);
5018 }
5019 if (gen < min_trans) {
5020 slot++;
5021 goto next;
5022 }
5023 btrfs_node_key_to_cpu(c, key, slot);
5024 }
5025 return 0;
5026 }
5027 return 1;
5028 }
5029
5030 /*
5031 * search the tree again to find a leaf with greater keys
5032 * returns 0 if it found something or 1 if there are no greater leaves.
5033 * returns < 0 on io errors.
5034 */
5035 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5036 {
5037 return btrfs_next_old_leaf(root, path, 0);
5038 }
5039
5040 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5041 u64 time_seq)
5042 {
5043 int slot;
5044 int level;
5045 struct extent_buffer *c;
5046 struct extent_buffer *next;
5047 struct btrfs_key key;
5048 u32 nritems;
5049 int ret;
5050 int old_spinning = path->leave_spinning;
5051 int next_rw_lock = 0;
5052
5053 nritems = btrfs_header_nritems(path->nodes[0]);
5054 if (nritems == 0)
5055 return 1;
5056
5057 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5058 again:
5059 level = 1;
5060 next = NULL;
5061 next_rw_lock = 0;
5062 btrfs_release_path(path);
5063
5064 path->keep_locks = 1;
5065 path->leave_spinning = 1;
5066
5067 if (time_seq)
5068 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5069 else
5070 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5071 path->keep_locks = 0;
5072
5073 if (ret < 0)
5074 return ret;
5075
5076 nritems = btrfs_header_nritems(path->nodes[0]);
5077 /*
5078 * by releasing the path above we dropped all our locks. A balance
5079 * could have added more items next to the key that used to be
5080 * at the very end of the block. So, check again here and
5081 * advance the path if there are now more items available.
5082 */
5083 if (nritems > 0 && path->slots[0] < nritems - 1) {
5084 if (ret == 0)
5085 path->slots[0]++;
5086 ret = 0;
5087 goto done;
5088 }
5089
5090 while (level < BTRFS_MAX_LEVEL) {
5091 if (!path->nodes[level]) {
5092 ret = 1;
5093 goto done;
5094 }
5095
5096 slot = path->slots[level] + 1;
5097 c = path->nodes[level];
5098 if (slot >= btrfs_header_nritems(c)) {
5099 level++;
5100 if (level == BTRFS_MAX_LEVEL) {
5101 ret = 1;
5102 goto done;
5103 }
5104 continue;
5105 }
5106
5107 if (next) {
5108 btrfs_tree_unlock_rw(next, next_rw_lock);
5109 free_extent_buffer(next);
5110 }
5111
5112 next = c;
5113 next_rw_lock = path->locks[level];
5114 ret = read_block_for_search(NULL, root, path, &next, level,
5115 slot, &key, 0);
5116 if (ret == -EAGAIN)
5117 goto again;
5118
5119 if (ret < 0) {
5120 btrfs_release_path(path);
5121 goto done;
5122 }
5123
5124 if (!path->skip_locking) {
5125 ret = btrfs_try_tree_read_lock(next);
5126 if (!ret) {
5127 btrfs_set_path_blocking(path);
5128 btrfs_tree_read_lock(next);
5129 btrfs_clear_path_blocking(path, next,
5130 BTRFS_READ_LOCK);
5131 }
5132 next_rw_lock = BTRFS_READ_LOCK;
5133 }
5134 break;
5135 }
5136 path->slots[level] = slot;
5137 while (1) {
5138 level--;
5139 c = path->nodes[level];
5140 if (path->locks[level])
5141 btrfs_tree_unlock_rw(c, path->locks[level]);
5142
5143 free_extent_buffer(c);
5144 path->nodes[level] = next;
5145 path->slots[level] = 0;
5146 if (!path->skip_locking)
5147 path->locks[level] = next_rw_lock;
5148 if (!level)
5149 break;
5150
5151 ret = read_block_for_search(NULL, root, path, &next, level,
5152 0, &key, 0);
5153 if (ret == -EAGAIN)
5154 goto again;
5155
5156 if (ret < 0) {
5157 btrfs_release_path(path);
5158 goto done;
5159 }
5160
5161 if (!path->skip_locking) {
5162 ret = btrfs_try_tree_read_lock(next);
5163 if (!ret) {
5164 btrfs_set_path_blocking(path);
5165 btrfs_tree_read_lock(next);
5166 btrfs_clear_path_blocking(path, next,
5167 BTRFS_READ_LOCK);
5168 }
5169 next_rw_lock = BTRFS_READ_LOCK;
5170 }
5171 }
5172 ret = 0;
5173 done:
5174 unlock_up(path, 0, 1, 0, NULL);
5175 path->leave_spinning = old_spinning;
5176 if (!old_spinning)
5177 btrfs_set_path_blocking(path);
5178
5179 return ret;
5180 }
5181
5182 /*
5183 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5184 * searching until it gets past min_objectid or finds an item of 'type'
5185 *
5186 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5187 */
5188 int btrfs_previous_item(struct btrfs_root *root,
5189 struct btrfs_path *path, u64 min_objectid,
5190 int type)
5191 {
5192 struct btrfs_key found_key;
5193 struct extent_buffer *leaf;
5194 u32 nritems;
5195 int ret;
5196
5197 while (1) {
5198 if (path->slots[0] == 0) {
5199 btrfs_set_path_blocking(path);
5200 ret = btrfs_prev_leaf(root, path);
5201 if (ret != 0)
5202 return ret;
5203 } else {
5204 path->slots[0]--;
5205 }
5206 leaf = path->nodes[0];
5207 nritems = btrfs_header_nritems(leaf);
5208 if (nritems == 0)
5209 return 1;
5210 if (path->slots[0] == nritems)
5211 path->slots[0]--;
5212
5213 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5214 if (found_key.objectid < min_objectid)
5215 break;
5216 if (found_key.type == type)
5217 return 0;
5218 if (found_key.objectid == min_objectid &&
5219 found_key.type < type)
5220 break;
5221 }
5222 return 1;
5223 }