]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/ctree.c
Merge remote-tracking branch 'spi/topic/doc' into spi-next
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 return path;
51 }
52
53 /*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 }
69 }
70
71 /*
72 * reset all the locked nodes in the patch to spinning locks.
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
78 */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
81 {
82 int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85 /* lockdep really cares that we take all of these spinlocks
86 * in the right order. If any of the locks in the path are not
87 * currently blocking, it is going to complain. So, make really
88 * really sure by forcing the path to blocking before we clear
89 * the path blocking.
90 */
91 if (held) {
92 btrfs_set_lock_blocking_rw(held, held_rw);
93 if (held_rw == BTRFS_WRITE_LOCK)
94 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 else if (held_rw == BTRFS_READ_LOCK)
96 held_rw = BTRFS_READ_LOCK_BLOCKING;
97 }
98 btrfs_set_path_blocking(p);
99 #endif
100
101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102 if (p->nodes[i] && p->locks[i]) {
103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 p->locks[i] = BTRFS_WRITE_LOCK;
106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 p->locks[i] = BTRFS_READ_LOCK;
108 }
109 }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112 if (held)
113 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120 if (!p)
121 return;
122 btrfs_release_path(p);
123 kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127 * path release drops references on the extent buffers in the path
128 * and it drops any locks held by this path
129 *
130 * It is safe to call this on paths that no locks or extent buffers held.
131 */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134 int i;
135
136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137 p->slots[i] = 0;
138 if (!p->nodes[i])
139 continue;
140 if (p->locks[i]) {
141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142 p->locks[i] = 0;
143 }
144 free_extent_buffer(p->nodes[i]);
145 p->nodes[i] = NULL;
146 }
147 }
148
149 /*
150 * safely gets a reference on the root node of a tree. A lock
151 * is not taken, so a concurrent writer may put a different node
152 * at the root of the tree. See btrfs_lock_root_node for the
153 * looping required.
154 *
155 * The extent buffer returned by this has a reference taken, so
156 * it won't disappear. It may stop being the root of the tree
157 * at any time because there are no locks held.
158 */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161 struct extent_buffer *eb;
162
163 while (1) {
164 rcu_read_lock();
165 eb = rcu_dereference(root->node);
166
167 /*
168 * RCU really hurts here, we could free up the root node because
169 * it was cow'ed but we may not get the new root node yet so do
170 * the inc_not_zero dance and if it doesn't work then
171 * synchronize_rcu and try again.
172 */
173 if (atomic_inc_not_zero(&eb->refs)) {
174 rcu_read_unlock();
175 break;
176 }
177 rcu_read_unlock();
178 synchronize_rcu();
179 }
180 return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184 * tree until you end up with a lock on the root. A locked buffer
185 * is returned, with a reference held.
186 */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189 struct extent_buffer *eb;
190
191 while (1) {
192 eb = btrfs_root_node(root);
193 btrfs_tree_lock(eb);
194 if (eb == root->node)
195 break;
196 btrfs_tree_unlock(eb);
197 free_extent_buffer(eb);
198 }
199 return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203 * tree until you end up with a lock on the root. A locked buffer
204 * is returned, with a reference held.
205 */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208 struct extent_buffer *eb;
209
210 while (1) {
211 eb = btrfs_root_node(root);
212 btrfs_tree_read_lock(eb);
213 if (eb == root->node)
214 break;
215 btrfs_tree_read_unlock(eb);
216 free_extent_buffer(eb);
217 }
218 return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222 * put onto a simple dirty list. transaction.c walks this to make sure they
223 * get properly updated on disk.
224 */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227 spin_lock(&root->fs_info->trans_lock);
228 if (root->track_dirty && list_empty(&root->dirty_list)) {
229 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots);
231 }
232 spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 struct extent_buffer *cow;
246 int ret = 0;
247 int level;
248 struct btrfs_disk_key disk_key;
249
250 WARN_ON(root->ref_cows && trans->transid !=
251 root->fs_info->running_transaction->transid);
252 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254 level = btrfs_header_level(buf);
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
259
260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 new_root_objectid, &disk_key, level,
262 buf->start, 0);
263 if (IS_ERR(cow))
264 return PTR_ERR(cow);
265
266 copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 btrfs_set_header_bytenr(cow, cow->start);
268 btrfs_set_header_generation(cow, trans->transid);
269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 BTRFS_HEADER_FLAG_RELOC);
272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 else
275 btrfs_set_header_owner(cow, new_root_objectid);
276
277 write_extent_buffer(cow, root->fs_info->fsid,
278 (unsigned long)btrfs_header_fsid(cow),
279 BTRFS_FSID_SIZE);
280
281 WARN_ON(btrfs_header_generation(buf) > trans->transid);
282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284 else
285 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287 if (ret)
288 return ret;
289
290 btrfs_mark_buffer_dirty(cow);
291 *cow_ret = cow;
292 return 0;
293 }
294
295 enum mod_log_op {
296 MOD_LOG_KEY_REPLACE,
297 MOD_LOG_KEY_ADD,
298 MOD_LOG_KEY_REMOVE,
299 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301 MOD_LOG_MOVE_KEYS,
302 MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306 int dst_slot;
307 int nr_items;
308 };
309
310 struct tree_mod_root {
311 u64 logical;
312 u8 level;
313 };
314
315 struct tree_mod_elem {
316 struct rb_node node;
317 u64 index; /* shifted logical */
318 u64 seq;
319 enum mod_log_op op;
320
321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 int slot;
323
324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 u64 generation;
326
327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328 struct btrfs_disk_key key;
329 u64 blockptr;
330
331 /* this is used for op == MOD_LOG_MOVE_KEYS */
332 struct tree_mod_move move;
333
334 /* this is used for op == MOD_LOG_ROOT_REPLACE */
335 struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340 read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345 read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350 write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355 write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359 * Increment the upper half of tree_mod_seq, set lower half zero.
360 *
361 * Must be called with fs_info->tree_mod_seq_lock held.
362 */
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365 u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366 seq &= 0xffffffff00000000ull;
367 seq += 1ull << 32;
368 atomic64_set(&fs_info->tree_mod_seq, seq);
369 return seq;
370 }
371
372 /*
373 * Increment the lower half of tree_mod_seq.
374 *
375 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376 * are generated should not technically require a spin lock here. (Rationale:
377 * incrementing the minor while incrementing the major seq number is between its
378 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379 * just returns a unique sequence number as usual.) We have decided to leave
380 * that requirement in here and rethink it once we notice it really imposes a
381 * problem on some workload.
382 */
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385 return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387
388 /*
389 * return the last minor in the previous major tree_mod_seq number
390 */
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393 return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395
396 /*
397 * This adds a new blocker to the tree mod log's blocker list if the @elem
398 * passed does not already have a sequence number set. So when a caller expects
399 * to record tree modifications, it should ensure to set elem->seq to zero
400 * before calling btrfs_get_tree_mod_seq.
401 * Returns a fresh, unused tree log modification sequence number, even if no new
402 * blocker was added.
403 */
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405 struct seq_list *elem)
406 {
407 u64 seq;
408
409 tree_mod_log_write_lock(fs_info);
410 spin_lock(&fs_info->tree_mod_seq_lock);
411 if (!elem->seq) {
412 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414 }
415 seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416 spin_unlock(&fs_info->tree_mod_seq_lock);
417 tree_mod_log_write_unlock(fs_info);
418
419 return seq;
420 }
421
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423 struct seq_list *elem)
424 {
425 struct rb_root *tm_root;
426 struct rb_node *node;
427 struct rb_node *next;
428 struct seq_list *cur_elem;
429 struct tree_mod_elem *tm;
430 u64 min_seq = (u64)-1;
431 u64 seq_putting = elem->seq;
432
433 if (!seq_putting)
434 return;
435
436 spin_lock(&fs_info->tree_mod_seq_lock);
437 list_del(&elem->list);
438 elem->seq = 0;
439
440 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441 if (cur_elem->seq < min_seq) {
442 if (seq_putting > cur_elem->seq) {
443 /*
444 * blocker with lower sequence number exists, we
445 * cannot remove anything from the log
446 */
447 spin_unlock(&fs_info->tree_mod_seq_lock);
448 return;
449 }
450 min_seq = cur_elem->seq;
451 }
452 }
453 spin_unlock(&fs_info->tree_mod_seq_lock);
454
455 /*
456 * anything that's lower than the lowest existing (read: blocked)
457 * sequence number can be removed from the tree.
458 */
459 tree_mod_log_write_lock(fs_info);
460 tm_root = &fs_info->tree_mod_log;
461 for (node = rb_first(tm_root); node; node = next) {
462 next = rb_next(node);
463 tm = container_of(node, struct tree_mod_elem, node);
464 if (tm->seq > min_seq)
465 continue;
466 rb_erase(node, tm_root);
467 kfree(tm);
468 }
469 tree_mod_log_write_unlock(fs_info);
470 }
471
472 /*
473 * key order of the log:
474 * index -> sequence
475 *
476 * the index is the shifted logical of the *new* root node for root replace
477 * operations, or the shifted logical of the affected block for all other
478 * operations.
479 */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483 struct rb_root *tm_root;
484 struct rb_node **new;
485 struct rb_node *parent = NULL;
486 struct tree_mod_elem *cur;
487
488 BUG_ON(!tm || !tm->seq);
489
490 tm_root = &fs_info->tree_mod_log;
491 new = &tm_root->rb_node;
492 while (*new) {
493 cur = container_of(*new, struct tree_mod_elem, node);
494 parent = *new;
495 if (cur->index < tm->index)
496 new = &((*new)->rb_left);
497 else if (cur->index > tm->index)
498 new = &((*new)->rb_right);
499 else if (cur->seq < tm->seq)
500 new = &((*new)->rb_left);
501 else if (cur->seq > tm->seq)
502 new = &((*new)->rb_right);
503 else {
504 kfree(tm);
505 return -EEXIST;
506 }
507 }
508
509 rb_link_node(&tm->node, parent, new);
510 rb_insert_color(&tm->node, tm_root);
511 return 0;
512 }
513
514 /*
515 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516 * returns zero with the tree_mod_log_lock acquired. The caller must hold
517 * this until all tree mod log insertions are recorded in the rb tree and then
518 * call tree_mod_log_write_unlock() to release.
519 */
520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521 struct extent_buffer *eb) {
522 smp_mb();
523 if (list_empty(&(fs_info)->tree_mod_seq_list))
524 return 1;
525 if (eb && btrfs_header_level(eb) == 0)
526 return 1;
527
528 tree_mod_log_write_lock(fs_info);
529 if (list_empty(&fs_info->tree_mod_seq_list)) {
530 /*
531 * someone emptied the list while we were waiting for the lock.
532 * we must not add to the list when no blocker exists.
533 */
534 tree_mod_log_write_unlock(fs_info);
535 return 1;
536 }
537
538 return 0;
539 }
540
541 /*
542 * This allocates memory and gets a tree modification sequence number.
543 *
544 * Returns <0 on error.
545 * Returns >0 (the added sequence number) on success.
546 */
547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548 struct tree_mod_elem **tm_ret)
549 {
550 struct tree_mod_elem *tm;
551
552 /*
553 * once we switch from spin locks to something different, we should
554 * honor the flags parameter here.
555 */
556 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
557 if (!tm)
558 return -ENOMEM;
559
560 spin_lock(&fs_info->tree_mod_seq_lock);
561 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562 spin_unlock(&fs_info->tree_mod_seq_lock);
563
564 return tm->seq;
565 }
566
567 static inline int
568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int slot,
570 enum mod_log_op op, gfp_t flags)
571 {
572 int ret;
573 struct tree_mod_elem *tm;
574
575 ret = tree_mod_alloc(fs_info, flags, &tm);
576 if (ret < 0)
577 return ret;
578
579 tm->index = eb->start >> PAGE_CACHE_SHIFT;
580 if (op != MOD_LOG_KEY_ADD) {
581 btrfs_node_key(eb, &tm->key, slot);
582 tm->blockptr = btrfs_node_blockptr(eb, slot);
583 }
584 tm->op = op;
585 tm->slot = slot;
586 tm->generation = btrfs_node_ptr_generation(eb, slot);
587
588 return __tree_mod_log_insert(fs_info, tm);
589 }
590
591 static noinline int
592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593 struct extent_buffer *eb, int slot,
594 enum mod_log_op op, gfp_t flags)
595 {
596 int ret;
597
598 if (tree_mod_dont_log(fs_info, eb))
599 return 0;
600
601 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
602
603 tree_mod_log_write_unlock(fs_info);
604 return ret;
605 }
606
607 static noinline int
608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609 int slot, enum mod_log_op op)
610 {
611 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
612 }
613
614 static noinline int
615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616 struct extent_buffer *eb, int slot,
617 enum mod_log_op op)
618 {
619 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
620 }
621
622 static noinline int
623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624 struct extent_buffer *eb, int dst_slot, int src_slot,
625 int nr_items, gfp_t flags)
626 {
627 struct tree_mod_elem *tm;
628 int ret;
629 int i;
630
631 if (tree_mod_dont_log(fs_info, eb))
632 return 0;
633
634 /*
635 * When we override something during the move, we log these removals.
636 * This can only happen when we move towards the beginning of the
637 * buffer, i.e. dst_slot < src_slot.
638 */
639 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
642 BUG_ON(ret < 0);
643 }
644
645 ret = tree_mod_alloc(fs_info, flags, &tm);
646 if (ret < 0)
647 goto out;
648
649 tm->index = eb->start >> PAGE_CACHE_SHIFT;
650 tm->slot = src_slot;
651 tm->move.dst_slot = dst_slot;
652 tm->move.nr_items = nr_items;
653 tm->op = MOD_LOG_MOVE_KEYS;
654
655 ret = __tree_mod_log_insert(fs_info, tm);
656 out:
657 tree_mod_log_write_unlock(fs_info);
658 return ret;
659 }
660
661 static inline void
662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
663 {
664 int i;
665 u32 nritems;
666 int ret;
667
668 if (btrfs_header_level(eb) == 0)
669 return;
670
671 nritems = btrfs_header_nritems(eb);
672 for (i = nritems - 1; i >= 0; i--) {
673 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
675 BUG_ON(ret < 0);
676 }
677 }
678
679 static noinline int
680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681 struct extent_buffer *old_root,
682 struct extent_buffer *new_root, gfp_t flags,
683 int log_removal)
684 {
685 struct tree_mod_elem *tm;
686 int ret;
687
688 if (tree_mod_dont_log(fs_info, NULL))
689 return 0;
690
691 if (log_removal)
692 __tree_mod_log_free_eb(fs_info, old_root);
693
694 ret = tree_mod_alloc(fs_info, flags, &tm);
695 if (ret < 0)
696 goto out;
697
698 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699 tm->old_root.logical = old_root->start;
700 tm->old_root.level = btrfs_header_level(old_root);
701 tm->generation = btrfs_header_generation(old_root);
702 tm->op = MOD_LOG_ROOT_REPLACE;
703
704 ret = __tree_mod_log_insert(fs_info, tm);
705 out:
706 tree_mod_log_write_unlock(fs_info);
707 return ret;
708 }
709
710 static struct tree_mod_elem *
711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712 int smallest)
713 {
714 struct rb_root *tm_root;
715 struct rb_node *node;
716 struct tree_mod_elem *cur = NULL;
717 struct tree_mod_elem *found = NULL;
718 u64 index = start >> PAGE_CACHE_SHIFT;
719
720 tree_mod_log_read_lock(fs_info);
721 tm_root = &fs_info->tree_mod_log;
722 node = tm_root->rb_node;
723 while (node) {
724 cur = container_of(node, struct tree_mod_elem, node);
725 if (cur->index < index) {
726 node = node->rb_left;
727 } else if (cur->index > index) {
728 node = node->rb_right;
729 } else if (cur->seq < min_seq) {
730 node = node->rb_left;
731 } else if (!smallest) {
732 /* we want the node with the highest seq */
733 if (found)
734 BUG_ON(found->seq > cur->seq);
735 found = cur;
736 node = node->rb_left;
737 } else if (cur->seq > min_seq) {
738 /* we want the node with the smallest seq */
739 if (found)
740 BUG_ON(found->seq < cur->seq);
741 found = cur;
742 node = node->rb_right;
743 } else {
744 found = cur;
745 break;
746 }
747 }
748 tree_mod_log_read_unlock(fs_info);
749
750 return found;
751 }
752
753 /*
754 * this returns the element from the log with the smallest time sequence
755 * value that's in the log (the oldest log item). any element with a time
756 * sequence lower than min_seq will be ignored.
757 */
758 static struct tree_mod_elem *
759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760 u64 min_seq)
761 {
762 return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764
765 /*
766 * this returns the element from the log with the largest time sequence
767 * value that's in the log (the most recent log item). any element with
768 * a time sequence lower than min_seq will be ignored.
769 */
770 static struct tree_mod_elem *
771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773 return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775
776 static noinline void
777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778 struct extent_buffer *src, unsigned long dst_offset,
779 unsigned long src_offset, int nr_items)
780 {
781 int ret;
782 int i;
783
784 if (tree_mod_dont_log(fs_info, NULL))
785 return;
786
787 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788 tree_mod_log_write_unlock(fs_info);
789 return;
790 }
791
792 for (i = 0; i < nr_items; i++) {
793 ret = tree_mod_log_insert_key_locked(fs_info, src,
794 i + src_offset,
795 MOD_LOG_KEY_REMOVE);
796 BUG_ON(ret < 0);
797 ret = tree_mod_log_insert_key_locked(fs_info, dst,
798 i + dst_offset,
799 MOD_LOG_KEY_ADD);
800 BUG_ON(ret < 0);
801 }
802
803 tree_mod_log_write_unlock(fs_info);
804 }
805
806 static inline void
807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808 int dst_offset, int src_offset, int nr_items)
809 {
810 int ret;
811 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
812 nr_items, GFP_NOFS);
813 BUG_ON(ret < 0);
814 }
815
816 static noinline void
817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818 struct extent_buffer *eb, int slot, int atomic)
819 {
820 int ret;
821
822 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
823 MOD_LOG_KEY_REPLACE,
824 atomic ? GFP_ATOMIC : GFP_NOFS);
825 BUG_ON(ret < 0);
826 }
827
828 static noinline void
829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
830 {
831 if (tree_mod_dont_log(fs_info, eb))
832 return;
833
834 __tree_mod_log_free_eb(fs_info, eb);
835
836 tree_mod_log_write_unlock(fs_info);
837 }
838
839 static noinline void
840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841 struct extent_buffer *new_root_node,
842 int log_removal)
843 {
844 int ret;
845 ret = tree_mod_log_insert_root(root->fs_info, root->node,
846 new_root_node, GFP_NOFS, log_removal);
847 BUG_ON(ret < 0);
848 }
849
850 /*
851 * check if the tree block can be shared by multiple trees
852 */
853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854 struct extent_buffer *buf)
855 {
856 /*
857 * Tree blocks not in refernece counted trees and tree roots
858 * are never shared. If a block was allocated after the last
859 * snapshot and the block was not allocated by tree relocation,
860 * we know the block is not shared.
861 */
862 if (root->ref_cows &&
863 buf != root->node && buf != root->commit_root &&
864 (btrfs_header_generation(buf) <=
865 btrfs_root_last_snapshot(&root->root_item) ||
866 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
867 return 1;
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869 if (root->ref_cows &&
870 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
871 return 1;
872 #endif
873 return 0;
874 }
875
876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877 struct btrfs_root *root,
878 struct extent_buffer *buf,
879 struct extent_buffer *cow,
880 int *last_ref)
881 {
882 u64 refs;
883 u64 owner;
884 u64 flags;
885 u64 new_flags = 0;
886 int ret;
887
888 /*
889 * Backrefs update rules:
890 *
891 * Always use full backrefs for extent pointers in tree block
892 * allocated by tree relocation.
893 *
894 * If a shared tree block is no longer referenced by its owner
895 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896 * use full backrefs for extent pointers in tree block.
897 *
898 * If a tree block is been relocating
899 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900 * use full backrefs for extent pointers in tree block.
901 * The reason for this is some operations (such as drop tree)
902 * are only allowed for blocks use full backrefs.
903 */
904
905 if (btrfs_block_can_be_shared(root, buf)) {
906 ret = btrfs_lookup_extent_info(trans, root, buf->start,
907 btrfs_header_level(buf), 1,
908 &refs, &flags);
909 if (ret)
910 return ret;
911 if (refs == 0) {
912 ret = -EROFS;
913 btrfs_std_error(root->fs_info, ret);
914 return ret;
915 }
916 } else {
917 refs = 1;
918 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
921 else
922 flags = 0;
923 }
924
925 owner = btrfs_header_owner(buf);
926 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
928
929 if (refs > 1) {
930 if ((owner == root->root_key.objectid ||
931 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934 BUG_ON(ret); /* -ENOMEM */
935
936 if (root->root_key.objectid ==
937 BTRFS_TREE_RELOC_OBJECTID) {
938 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939 BUG_ON(ret); /* -ENOMEM */
940 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941 BUG_ON(ret); /* -ENOMEM */
942 }
943 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
944 } else {
945
946 if (root->root_key.objectid ==
947 BTRFS_TREE_RELOC_OBJECTID)
948 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
949 else
950 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951 BUG_ON(ret); /* -ENOMEM */
952 }
953 if (new_flags != 0) {
954 int level = btrfs_header_level(buf);
955
956 ret = btrfs_set_disk_extent_flags(trans, root,
957 buf->start,
958 buf->len,
959 new_flags, level, 0);
960 if (ret)
961 return ret;
962 }
963 } else {
964 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
965 if (root->root_key.objectid ==
966 BTRFS_TREE_RELOC_OBJECTID)
967 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
968 else
969 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
970 BUG_ON(ret); /* -ENOMEM */
971 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
972 BUG_ON(ret); /* -ENOMEM */
973 }
974 clean_tree_block(trans, root, buf);
975 *last_ref = 1;
976 }
977 return 0;
978 }
979
980 /*
981 * does the dirty work in cow of a single block. The parent block (if
982 * supplied) is updated to point to the new cow copy. The new buffer is marked
983 * dirty and returned locked. If you modify the block it needs to be marked
984 * dirty again.
985 *
986 * search_start -- an allocation hint for the new block
987 *
988 * empty_size -- a hint that you plan on doing more cow. This is the size in
989 * bytes the allocator should try to find free next to the block it returns.
990 * This is just a hint and may be ignored by the allocator.
991 */
992 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
993 struct btrfs_root *root,
994 struct extent_buffer *buf,
995 struct extent_buffer *parent, int parent_slot,
996 struct extent_buffer **cow_ret,
997 u64 search_start, u64 empty_size)
998 {
999 struct btrfs_disk_key disk_key;
1000 struct extent_buffer *cow;
1001 int level, ret;
1002 int last_ref = 0;
1003 int unlock_orig = 0;
1004 u64 parent_start;
1005
1006 if (*cow_ret == buf)
1007 unlock_orig = 1;
1008
1009 btrfs_assert_tree_locked(buf);
1010
1011 WARN_ON(root->ref_cows && trans->transid !=
1012 root->fs_info->running_transaction->transid);
1013 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1014
1015 level = btrfs_header_level(buf);
1016
1017 if (level == 0)
1018 btrfs_item_key(buf, &disk_key, 0);
1019 else
1020 btrfs_node_key(buf, &disk_key, 0);
1021
1022 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1023 if (parent)
1024 parent_start = parent->start;
1025 else
1026 parent_start = 0;
1027 } else
1028 parent_start = 0;
1029
1030 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1031 root->root_key.objectid, &disk_key,
1032 level, search_start, empty_size);
1033 if (IS_ERR(cow))
1034 return PTR_ERR(cow);
1035
1036 /* cow is set to blocking by btrfs_init_new_buffer */
1037
1038 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1039 btrfs_set_header_bytenr(cow, cow->start);
1040 btrfs_set_header_generation(cow, trans->transid);
1041 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1042 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1043 BTRFS_HEADER_FLAG_RELOC);
1044 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1045 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1046 else
1047 btrfs_set_header_owner(cow, root->root_key.objectid);
1048
1049 write_extent_buffer(cow, root->fs_info->fsid,
1050 (unsigned long)btrfs_header_fsid(cow),
1051 BTRFS_FSID_SIZE);
1052
1053 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1054 if (ret) {
1055 btrfs_abort_transaction(trans, root, ret);
1056 return ret;
1057 }
1058
1059 if (root->ref_cows)
1060 btrfs_reloc_cow_block(trans, root, buf, cow);
1061
1062 if (buf == root->node) {
1063 WARN_ON(parent && parent != buf);
1064 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1065 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1066 parent_start = buf->start;
1067 else
1068 parent_start = 0;
1069
1070 extent_buffer_get(cow);
1071 tree_mod_log_set_root_pointer(root, cow, 1);
1072 rcu_assign_pointer(root->node, cow);
1073
1074 btrfs_free_tree_block(trans, root, buf, parent_start,
1075 last_ref);
1076 free_extent_buffer(buf);
1077 add_root_to_dirty_list(root);
1078 } else {
1079 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080 parent_start = parent->start;
1081 else
1082 parent_start = 0;
1083
1084 WARN_ON(trans->transid != btrfs_header_generation(parent));
1085 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1086 MOD_LOG_KEY_REPLACE);
1087 btrfs_set_node_blockptr(parent, parent_slot,
1088 cow->start);
1089 btrfs_set_node_ptr_generation(parent, parent_slot,
1090 trans->transid);
1091 btrfs_mark_buffer_dirty(parent);
1092 if (last_ref)
1093 tree_mod_log_free_eb(root->fs_info, buf);
1094 btrfs_free_tree_block(trans, root, buf, parent_start,
1095 last_ref);
1096 }
1097 if (unlock_orig)
1098 btrfs_tree_unlock(buf);
1099 free_extent_buffer_stale(buf);
1100 btrfs_mark_buffer_dirty(cow);
1101 *cow_ret = cow;
1102 return 0;
1103 }
1104
1105 /*
1106 * returns the logical address of the oldest predecessor of the given root.
1107 * entries older than time_seq are ignored.
1108 */
1109 static struct tree_mod_elem *
1110 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1111 struct extent_buffer *eb_root, u64 time_seq)
1112 {
1113 struct tree_mod_elem *tm;
1114 struct tree_mod_elem *found = NULL;
1115 u64 root_logical = eb_root->start;
1116 int looped = 0;
1117
1118 if (!time_seq)
1119 return 0;
1120
1121 /*
1122 * the very last operation that's logged for a root is the replacement
1123 * operation (if it is replaced at all). this has the index of the *new*
1124 * root, making it the very first operation that's logged for this root.
1125 */
1126 while (1) {
1127 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1128 time_seq);
1129 if (!looped && !tm)
1130 return 0;
1131 /*
1132 * if there are no tree operation for the oldest root, we simply
1133 * return it. this should only happen if that (old) root is at
1134 * level 0.
1135 */
1136 if (!tm)
1137 break;
1138
1139 /*
1140 * if there's an operation that's not a root replacement, we
1141 * found the oldest version of our root. normally, we'll find a
1142 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1143 */
1144 if (tm->op != MOD_LOG_ROOT_REPLACE)
1145 break;
1146
1147 found = tm;
1148 root_logical = tm->old_root.logical;
1149 looped = 1;
1150 }
1151
1152 /* if there's no old root to return, return what we found instead */
1153 if (!found)
1154 found = tm;
1155
1156 return found;
1157 }
1158
1159 /*
1160 * tm is a pointer to the first operation to rewind within eb. then, all
1161 * previous operations will be rewinded (until we reach something older than
1162 * time_seq).
1163 */
1164 static void
1165 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1166 u64 time_seq, struct tree_mod_elem *first_tm)
1167 {
1168 u32 n;
1169 struct rb_node *next;
1170 struct tree_mod_elem *tm = first_tm;
1171 unsigned long o_dst;
1172 unsigned long o_src;
1173 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1174
1175 n = btrfs_header_nritems(eb);
1176 tree_mod_log_read_lock(fs_info);
1177 while (tm && tm->seq >= time_seq) {
1178 /*
1179 * all the operations are recorded with the operator used for
1180 * the modification. as we're going backwards, we do the
1181 * opposite of each operation here.
1182 */
1183 switch (tm->op) {
1184 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1185 BUG_ON(tm->slot < n);
1186 /* Fallthrough */
1187 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1188 case MOD_LOG_KEY_REMOVE:
1189 btrfs_set_node_key(eb, &tm->key, tm->slot);
1190 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1191 btrfs_set_node_ptr_generation(eb, tm->slot,
1192 tm->generation);
1193 n++;
1194 break;
1195 case MOD_LOG_KEY_REPLACE:
1196 BUG_ON(tm->slot >= n);
1197 btrfs_set_node_key(eb, &tm->key, tm->slot);
1198 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1199 btrfs_set_node_ptr_generation(eb, tm->slot,
1200 tm->generation);
1201 break;
1202 case MOD_LOG_KEY_ADD:
1203 /* if a move operation is needed it's in the log */
1204 n--;
1205 break;
1206 case MOD_LOG_MOVE_KEYS:
1207 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1208 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1209 memmove_extent_buffer(eb, o_dst, o_src,
1210 tm->move.nr_items * p_size);
1211 break;
1212 case MOD_LOG_ROOT_REPLACE:
1213 /*
1214 * this operation is special. for roots, this must be
1215 * handled explicitly before rewinding.
1216 * for non-roots, this operation may exist if the node
1217 * was a root: root A -> child B; then A gets empty and
1218 * B is promoted to the new root. in the mod log, we'll
1219 * have a root-replace operation for B, a tree block
1220 * that is no root. we simply ignore that operation.
1221 */
1222 break;
1223 }
1224 next = rb_next(&tm->node);
1225 if (!next)
1226 break;
1227 tm = container_of(next, struct tree_mod_elem, node);
1228 if (tm->index != first_tm->index)
1229 break;
1230 }
1231 tree_mod_log_read_unlock(fs_info);
1232 btrfs_set_header_nritems(eb, n);
1233 }
1234
1235 /*
1236 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1237 * is returned. If rewind operations happen, a fresh buffer is returned. The
1238 * returned buffer is always read-locked. If the returned buffer is not the
1239 * input buffer, the lock on the input buffer is released and the input buffer
1240 * is freed (its refcount is decremented).
1241 */
1242 static struct extent_buffer *
1243 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1244 u64 time_seq)
1245 {
1246 struct extent_buffer *eb_rewin;
1247 struct tree_mod_elem *tm;
1248
1249 if (!time_seq)
1250 return eb;
1251
1252 if (btrfs_header_level(eb) == 0)
1253 return eb;
1254
1255 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1256 if (!tm)
1257 return eb;
1258
1259 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1260 BUG_ON(tm->slot != 0);
1261 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1262 fs_info->tree_root->nodesize);
1263 BUG_ON(!eb_rewin);
1264 btrfs_set_header_bytenr(eb_rewin, eb->start);
1265 btrfs_set_header_backref_rev(eb_rewin,
1266 btrfs_header_backref_rev(eb));
1267 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1268 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1269 } else {
1270 eb_rewin = btrfs_clone_extent_buffer(eb);
1271 BUG_ON(!eb_rewin);
1272 }
1273
1274 btrfs_tree_read_unlock(eb);
1275 free_extent_buffer(eb);
1276
1277 extent_buffer_get(eb_rewin);
1278 btrfs_tree_read_lock(eb_rewin);
1279 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1280 WARN_ON(btrfs_header_nritems(eb_rewin) >
1281 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1282
1283 return eb_rewin;
1284 }
1285
1286 /*
1287 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1288 * value. If there are no changes, the current root->root_node is returned. If
1289 * anything changed in between, there's a fresh buffer allocated on which the
1290 * rewind operations are done. In any case, the returned buffer is read locked.
1291 * Returns NULL on error (with no locks held).
1292 */
1293 static inline struct extent_buffer *
1294 get_old_root(struct btrfs_root *root, u64 time_seq)
1295 {
1296 struct tree_mod_elem *tm;
1297 struct extent_buffer *eb = NULL;
1298 struct extent_buffer *eb_root;
1299 struct extent_buffer *old;
1300 struct tree_mod_root *old_root = NULL;
1301 u64 old_generation = 0;
1302 u64 logical;
1303 u32 blocksize;
1304
1305 eb_root = btrfs_read_lock_root_node(root);
1306 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1307 if (!tm)
1308 return eb_root;
1309
1310 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1311 old_root = &tm->old_root;
1312 old_generation = tm->generation;
1313 logical = old_root->logical;
1314 } else {
1315 logical = eb_root->start;
1316 }
1317
1318 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1319 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1320 btrfs_tree_read_unlock(eb_root);
1321 free_extent_buffer(eb_root);
1322 blocksize = btrfs_level_size(root, old_root->level);
1323 old = read_tree_block(root, logical, blocksize, 0);
1324 if (!old || !extent_buffer_uptodate(old)) {
1325 free_extent_buffer(old);
1326 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1327 logical);
1328 WARN_ON(1);
1329 } else {
1330 eb = btrfs_clone_extent_buffer(old);
1331 free_extent_buffer(old);
1332 }
1333 } else if (old_root) {
1334 btrfs_tree_read_unlock(eb_root);
1335 free_extent_buffer(eb_root);
1336 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1337 } else {
1338 eb = btrfs_clone_extent_buffer(eb_root);
1339 btrfs_tree_read_unlock(eb_root);
1340 free_extent_buffer(eb_root);
1341 }
1342
1343 if (!eb)
1344 return NULL;
1345 extent_buffer_get(eb);
1346 btrfs_tree_read_lock(eb);
1347 if (old_root) {
1348 btrfs_set_header_bytenr(eb, eb->start);
1349 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1350 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1351 btrfs_set_header_level(eb, old_root->level);
1352 btrfs_set_header_generation(eb, old_generation);
1353 }
1354 if (tm)
1355 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1356 else
1357 WARN_ON(btrfs_header_level(eb) != 0);
1358 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1359
1360 return eb;
1361 }
1362
1363 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1364 {
1365 struct tree_mod_elem *tm;
1366 int level;
1367 struct extent_buffer *eb_root = btrfs_root_node(root);
1368
1369 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1370 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1371 level = tm->old_root.level;
1372 } else {
1373 level = btrfs_header_level(eb_root);
1374 }
1375 free_extent_buffer(eb_root);
1376
1377 return level;
1378 }
1379
1380 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1381 struct btrfs_root *root,
1382 struct extent_buffer *buf)
1383 {
1384 /* ensure we can see the force_cow */
1385 smp_rmb();
1386
1387 /*
1388 * We do not need to cow a block if
1389 * 1) this block is not created or changed in this transaction;
1390 * 2) this block does not belong to TREE_RELOC tree;
1391 * 3) the root is not forced COW.
1392 *
1393 * What is forced COW:
1394 * when we create snapshot during commiting the transaction,
1395 * after we've finished coping src root, we must COW the shared
1396 * block to ensure the metadata consistency.
1397 */
1398 if (btrfs_header_generation(buf) == trans->transid &&
1399 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1400 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1401 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1402 !root->force_cow)
1403 return 0;
1404 return 1;
1405 }
1406
1407 /*
1408 * cows a single block, see __btrfs_cow_block for the real work.
1409 * This version of it has extra checks so that a block isn't cow'd more than
1410 * once per transaction, as long as it hasn't been written yet
1411 */
1412 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1413 struct btrfs_root *root, struct extent_buffer *buf,
1414 struct extent_buffer *parent, int parent_slot,
1415 struct extent_buffer **cow_ret)
1416 {
1417 u64 search_start;
1418 int ret;
1419
1420 if (trans->transaction != root->fs_info->running_transaction)
1421 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1422 (unsigned long long)trans->transid,
1423 (unsigned long long)
1424 root->fs_info->running_transaction->transid);
1425
1426 if (trans->transid != root->fs_info->generation)
1427 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1428 (unsigned long long)trans->transid,
1429 (unsigned long long)root->fs_info->generation);
1430
1431 if (!should_cow_block(trans, root, buf)) {
1432 *cow_ret = buf;
1433 return 0;
1434 }
1435
1436 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1437
1438 if (parent)
1439 btrfs_set_lock_blocking(parent);
1440 btrfs_set_lock_blocking(buf);
1441
1442 ret = __btrfs_cow_block(trans, root, buf, parent,
1443 parent_slot, cow_ret, search_start, 0);
1444
1445 trace_btrfs_cow_block(root, buf, *cow_ret);
1446
1447 return ret;
1448 }
1449
1450 /*
1451 * helper function for defrag to decide if two blocks pointed to by a
1452 * node are actually close by
1453 */
1454 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1455 {
1456 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1457 return 1;
1458 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1459 return 1;
1460 return 0;
1461 }
1462
1463 /*
1464 * compare two keys in a memcmp fashion
1465 */
1466 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1467 {
1468 struct btrfs_key k1;
1469
1470 btrfs_disk_key_to_cpu(&k1, disk);
1471
1472 return btrfs_comp_cpu_keys(&k1, k2);
1473 }
1474
1475 /*
1476 * same as comp_keys only with two btrfs_key's
1477 */
1478 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1479 {
1480 if (k1->objectid > k2->objectid)
1481 return 1;
1482 if (k1->objectid < k2->objectid)
1483 return -1;
1484 if (k1->type > k2->type)
1485 return 1;
1486 if (k1->type < k2->type)
1487 return -1;
1488 if (k1->offset > k2->offset)
1489 return 1;
1490 if (k1->offset < k2->offset)
1491 return -1;
1492 return 0;
1493 }
1494
1495 /*
1496 * this is used by the defrag code to go through all the
1497 * leaves pointed to by a node and reallocate them so that
1498 * disk order is close to key order
1499 */
1500 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1501 struct btrfs_root *root, struct extent_buffer *parent,
1502 int start_slot, u64 *last_ret,
1503 struct btrfs_key *progress)
1504 {
1505 struct extent_buffer *cur;
1506 u64 blocknr;
1507 u64 gen;
1508 u64 search_start = *last_ret;
1509 u64 last_block = 0;
1510 u64 other;
1511 u32 parent_nritems;
1512 int end_slot;
1513 int i;
1514 int err = 0;
1515 int parent_level;
1516 int uptodate;
1517 u32 blocksize;
1518 int progress_passed = 0;
1519 struct btrfs_disk_key disk_key;
1520
1521 parent_level = btrfs_header_level(parent);
1522
1523 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1524 WARN_ON(trans->transid != root->fs_info->generation);
1525
1526 parent_nritems = btrfs_header_nritems(parent);
1527 blocksize = btrfs_level_size(root, parent_level - 1);
1528 end_slot = parent_nritems;
1529
1530 if (parent_nritems == 1)
1531 return 0;
1532
1533 btrfs_set_lock_blocking(parent);
1534
1535 for (i = start_slot; i < end_slot; i++) {
1536 int close = 1;
1537
1538 btrfs_node_key(parent, &disk_key, i);
1539 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1540 continue;
1541
1542 progress_passed = 1;
1543 blocknr = btrfs_node_blockptr(parent, i);
1544 gen = btrfs_node_ptr_generation(parent, i);
1545 if (last_block == 0)
1546 last_block = blocknr;
1547
1548 if (i > 0) {
1549 other = btrfs_node_blockptr(parent, i - 1);
1550 close = close_blocks(blocknr, other, blocksize);
1551 }
1552 if (!close && i < end_slot - 2) {
1553 other = btrfs_node_blockptr(parent, i + 1);
1554 close = close_blocks(blocknr, other, blocksize);
1555 }
1556 if (close) {
1557 last_block = blocknr;
1558 continue;
1559 }
1560
1561 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1562 if (cur)
1563 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1564 else
1565 uptodate = 0;
1566 if (!cur || !uptodate) {
1567 if (!cur) {
1568 cur = read_tree_block(root, blocknr,
1569 blocksize, gen);
1570 if (!cur || !extent_buffer_uptodate(cur)) {
1571 free_extent_buffer(cur);
1572 return -EIO;
1573 }
1574 } else if (!uptodate) {
1575 err = btrfs_read_buffer(cur, gen);
1576 if (err) {
1577 free_extent_buffer(cur);
1578 return err;
1579 }
1580 }
1581 }
1582 if (search_start == 0)
1583 search_start = last_block;
1584
1585 btrfs_tree_lock(cur);
1586 btrfs_set_lock_blocking(cur);
1587 err = __btrfs_cow_block(trans, root, cur, parent, i,
1588 &cur, search_start,
1589 min(16 * blocksize,
1590 (end_slot - i) * blocksize));
1591 if (err) {
1592 btrfs_tree_unlock(cur);
1593 free_extent_buffer(cur);
1594 break;
1595 }
1596 search_start = cur->start;
1597 last_block = cur->start;
1598 *last_ret = search_start;
1599 btrfs_tree_unlock(cur);
1600 free_extent_buffer(cur);
1601 }
1602 return err;
1603 }
1604
1605 /*
1606 * The leaf data grows from end-to-front in the node.
1607 * this returns the address of the start of the last item,
1608 * which is the stop of the leaf data stack
1609 */
1610 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1611 struct extent_buffer *leaf)
1612 {
1613 u32 nr = btrfs_header_nritems(leaf);
1614 if (nr == 0)
1615 return BTRFS_LEAF_DATA_SIZE(root);
1616 return btrfs_item_offset_nr(leaf, nr - 1);
1617 }
1618
1619
1620 /*
1621 * search for key in the extent_buffer. The items start at offset p,
1622 * and they are item_size apart. There are 'max' items in p.
1623 *
1624 * the slot in the array is returned via slot, and it points to
1625 * the place where you would insert key if it is not found in
1626 * the array.
1627 *
1628 * slot may point to max if the key is bigger than all of the keys
1629 */
1630 static noinline int generic_bin_search(struct extent_buffer *eb,
1631 unsigned long p,
1632 int item_size, struct btrfs_key *key,
1633 int max, int *slot)
1634 {
1635 int low = 0;
1636 int high = max;
1637 int mid;
1638 int ret;
1639 struct btrfs_disk_key *tmp = NULL;
1640 struct btrfs_disk_key unaligned;
1641 unsigned long offset;
1642 char *kaddr = NULL;
1643 unsigned long map_start = 0;
1644 unsigned long map_len = 0;
1645 int err;
1646
1647 while (low < high) {
1648 mid = (low + high) / 2;
1649 offset = p + mid * item_size;
1650
1651 if (!kaddr || offset < map_start ||
1652 (offset + sizeof(struct btrfs_disk_key)) >
1653 map_start + map_len) {
1654
1655 err = map_private_extent_buffer(eb, offset,
1656 sizeof(struct btrfs_disk_key),
1657 &kaddr, &map_start, &map_len);
1658
1659 if (!err) {
1660 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1661 map_start);
1662 } else {
1663 read_extent_buffer(eb, &unaligned,
1664 offset, sizeof(unaligned));
1665 tmp = &unaligned;
1666 }
1667
1668 } else {
1669 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1670 map_start);
1671 }
1672 ret = comp_keys(tmp, key);
1673
1674 if (ret < 0)
1675 low = mid + 1;
1676 else if (ret > 0)
1677 high = mid;
1678 else {
1679 *slot = mid;
1680 return 0;
1681 }
1682 }
1683 *slot = low;
1684 return 1;
1685 }
1686
1687 /*
1688 * simple bin_search frontend that does the right thing for
1689 * leaves vs nodes
1690 */
1691 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1692 int level, int *slot)
1693 {
1694 if (level == 0)
1695 return generic_bin_search(eb,
1696 offsetof(struct btrfs_leaf, items),
1697 sizeof(struct btrfs_item),
1698 key, btrfs_header_nritems(eb),
1699 slot);
1700 else
1701 return generic_bin_search(eb,
1702 offsetof(struct btrfs_node, ptrs),
1703 sizeof(struct btrfs_key_ptr),
1704 key, btrfs_header_nritems(eb),
1705 slot);
1706 }
1707
1708 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1709 int level, int *slot)
1710 {
1711 return bin_search(eb, key, level, slot);
1712 }
1713
1714 static void root_add_used(struct btrfs_root *root, u32 size)
1715 {
1716 spin_lock(&root->accounting_lock);
1717 btrfs_set_root_used(&root->root_item,
1718 btrfs_root_used(&root->root_item) + size);
1719 spin_unlock(&root->accounting_lock);
1720 }
1721
1722 static void root_sub_used(struct btrfs_root *root, u32 size)
1723 {
1724 spin_lock(&root->accounting_lock);
1725 btrfs_set_root_used(&root->root_item,
1726 btrfs_root_used(&root->root_item) - size);
1727 spin_unlock(&root->accounting_lock);
1728 }
1729
1730 /* given a node and slot number, this reads the blocks it points to. The
1731 * extent buffer is returned with a reference taken (but unlocked).
1732 * NULL is returned on error.
1733 */
1734 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1735 struct extent_buffer *parent, int slot)
1736 {
1737 int level = btrfs_header_level(parent);
1738 struct extent_buffer *eb;
1739
1740 if (slot < 0)
1741 return NULL;
1742 if (slot >= btrfs_header_nritems(parent))
1743 return NULL;
1744
1745 BUG_ON(level == 0);
1746
1747 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1748 btrfs_level_size(root, level - 1),
1749 btrfs_node_ptr_generation(parent, slot));
1750 if (eb && !extent_buffer_uptodate(eb)) {
1751 free_extent_buffer(eb);
1752 eb = NULL;
1753 }
1754
1755 return eb;
1756 }
1757
1758 /*
1759 * node level balancing, used to make sure nodes are in proper order for
1760 * item deletion. We balance from the top down, so we have to make sure
1761 * that a deletion won't leave an node completely empty later on.
1762 */
1763 static noinline int balance_level(struct btrfs_trans_handle *trans,
1764 struct btrfs_root *root,
1765 struct btrfs_path *path, int level)
1766 {
1767 struct extent_buffer *right = NULL;
1768 struct extent_buffer *mid;
1769 struct extent_buffer *left = NULL;
1770 struct extent_buffer *parent = NULL;
1771 int ret = 0;
1772 int wret;
1773 int pslot;
1774 int orig_slot = path->slots[level];
1775 u64 orig_ptr;
1776
1777 if (level == 0)
1778 return 0;
1779
1780 mid = path->nodes[level];
1781
1782 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1783 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1784 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1785
1786 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1787
1788 if (level < BTRFS_MAX_LEVEL - 1) {
1789 parent = path->nodes[level + 1];
1790 pslot = path->slots[level + 1];
1791 }
1792
1793 /*
1794 * deal with the case where there is only one pointer in the root
1795 * by promoting the node below to a root
1796 */
1797 if (!parent) {
1798 struct extent_buffer *child;
1799
1800 if (btrfs_header_nritems(mid) != 1)
1801 return 0;
1802
1803 /* promote the child to a root */
1804 child = read_node_slot(root, mid, 0);
1805 if (!child) {
1806 ret = -EROFS;
1807 btrfs_std_error(root->fs_info, ret);
1808 goto enospc;
1809 }
1810
1811 btrfs_tree_lock(child);
1812 btrfs_set_lock_blocking(child);
1813 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1814 if (ret) {
1815 btrfs_tree_unlock(child);
1816 free_extent_buffer(child);
1817 goto enospc;
1818 }
1819
1820 tree_mod_log_set_root_pointer(root, child, 1);
1821 rcu_assign_pointer(root->node, child);
1822
1823 add_root_to_dirty_list(root);
1824 btrfs_tree_unlock(child);
1825
1826 path->locks[level] = 0;
1827 path->nodes[level] = NULL;
1828 clean_tree_block(trans, root, mid);
1829 btrfs_tree_unlock(mid);
1830 /* once for the path */
1831 free_extent_buffer(mid);
1832
1833 root_sub_used(root, mid->len);
1834 btrfs_free_tree_block(trans, root, mid, 0, 1);
1835 /* once for the root ptr */
1836 free_extent_buffer_stale(mid);
1837 return 0;
1838 }
1839 if (btrfs_header_nritems(mid) >
1840 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1841 return 0;
1842
1843 left = read_node_slot(root, parent, pslot - 1);
1844 if (left) {
1845 btrfs_tree_lock(left);
1846 btrfs_set_lock_blocking(left);
1847 wret = btrfs_cow_block(trans, root, left,
1848 parent, pslot - 1, &left);
1849 if (wret) {
1850 ret = wret;
1851 goto enospc;
1852 }
1853 }
1854 right = read_node_slot(root, parent, pslot + 1);
1855 if (right) {
1856 btrfs_tree_lock(right);
1857 btrfs_set_lock_blocking(right);
1858 wret = btrfs_cow_block(trans, root, right,
1859 parent, pslot + 1, &right);
1860 if (wret) {
1861 ret = wret;
1862 goto enospc;
1863 }
1864 }
1865
1866 /* first, try to make some room in the middle buffer */
1867 if (left) {
1868 orig_slot += btrfs_header_nritems(left);
1869 wret = push_node_left(trans, root, left, mid, 1);
1870 if (wret < 0)
1871 ret = wret;
1872 }
1873
1874 /*
1875 * then try to empty the right most buffer into the middle
1876 */
1877 if (right) {
1878 wret = push_node_left(trans, root, mid, right, 1);
1879 if (wret < 0 && wret != -ENOSPC)
1880 ret = wret;
1881 if (btrfs_header_nritems(right) == 0) {
1882 clean_tree_block(trans, root, right);
1883 btrfs_tree_unlock(right);
1884 del_ptr(root, path, level + 1, pslot + 1);
1885 root_sub_used(root, right->len);
1886 btrfs_free_tree_block(trans, root, right, 0, 1);
1887 free_extent_buffer_stale(right);
1888 right = NULL;
1889 } else {
1890 struct btrfs_disk_key right_key;
1891 btrfs_node_key(right, &right_key, 0);
1892 tree_mod_log_set_node_key(root->fs_info, parent,
1893 pslot + 1, 0);
1894 btrfs_set_node_key(parent, &right_key, pslot + 1);
1895 btrfs_mark_buffer_dirty(parent);
1896 }
1897 }
1898 if (btrfs_header_nritems(mid) == 1) {
1899 /*
1900 * we're not allowed to leave a node with one item in the
1901 * tree during a delete. A deletion from lower in the tree
1902 * could try to delete the only pointer in this node.
1903 * So, pull some keys from the left.
1904 * There has to be a left pointer at this point because
1905 * otherwise we would have pulled some pointers from the
1906 * right
1907 */
1908 if (!left) {
1909 ret = -EROFS;
1910 btrfs_std_error(root->fs_info, ret);
1911 goto enospc;
1912 }
1913 wret = balance_node_right(trans, root, mid, left);
1914 if (wret < 0) {
1915 ret = wret;
1916 goto enospc;
1917 }
1918 if (wret == 1) {
1919 wret = push_node_left(trans, root, left, mid, 1);
1920 if (wret < 0)
1921 ret = wret;
1922 }
1923 BUG_ON(wret == 1);
1924 }
1925 if (btrfs_header_nritems(mid) == 0) {
1926 clean_tree_block(trans, root, mid);
1927 btrfs_tree_unlock(mid);
1928 del_ptr(root, path, level + 1, pslot);
1929 root_sub_used(root, mid->len);
1930 btrfs_free_tree_block(trans, root, mid, 0, 1);
1931 free_extent_buffer_stale(mid);
1932 mid = NULL;
1933 } else {
1934 /* update the parent key to reflect our changes */
1935 struct btrfs_disk_key mid_key;
1936 btrfs_node_key(mid, &mid_key, 0);
1937 tree_mod_log_set_node_key(root->fs_info, parent,
1938 pslot, 0);
1939 btrfs_set_node_key(parent, &mid_key, pslot);
1940 btrfs_mark_buffer_dirty(parent);
1941 }
1942
1943 /* update the path */
1944 if (left) {
1945 if (btrfs_header_nritems(left) > orig_slot) {
1946 extent_buffer_get(left);
1947 /* left was locked after cow */
1948 path->nodes[level] = left;
1949 path->slots[level + 1] -= 1;
1950 path->slots[level] = orig_slot;
1951 if (mid) {
1952 btrfs_tree_unlock(mid);
1953 free_extent_buffer(mid);
1954 }
1955 } else {
1956 orig_slot -= btrfs_header_nritems(left);
1957 path->slots[level] = orig_slot;
1958 }
1959 }
1960 /* double check we haven't messed things up */
1961 if (orig_ptr !=
1962 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1963 BUG();
1964 enospc:
1965 if (right) {
1966 btrfs_tree_unlock(right);
1967 free_extent_buffer(right);
1968 }
1969 if (left) {
1970 if (path->nodes[level] != left)
1971 btrfs_tree_unlock(left);
1972 free_extent_buffer(left);
1973 }
1974 return ret;
1975 }
1976
1977 /* Node balancing for insertion. Here we only split or push nodes around
1978 * when they are completely full. This is also done top down, so we
1979 * have to be pessimistic.
1980 */
1981 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root,
1983 struct btrfs_path *path, int level)
1984 {
1985 struct extent_buffer *right = NULL;
1986 struct extent_buffer *mid;
1987 struct extent_buffer *left = NULL;
1988 struct extent_buffer *parent = NULL;
1989 int ret = 0;
1990 int wret;
1991 int pslot;
1992 int orig_slot = path->slots[level];
1993
1994 if (level == 0)
1995 return 1;
1996
1997 mid = path->nodes[level];
1998 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1999
2000 if (level < BTRFS_MAX_LEVEL - 1) {
2001 parent = path->nodes[level + 1];
2002 pslot = path->slots[level + 1];
2003 }
2004
2005 if (!parent)
2006 return 1;
2007
2008 left = read_node_slot(root, parent, pslot - 1);
2009
2010 /* first, try to make some room in the middle buffer */
2011 if (left) {
2012 u32 left_nr;
2013
2014 btrfs_tree_lock(left);
2015 btrfs_set_lock_blocking(left);
2016
2017 left_nr = btrfs_header_nritems(left);
2018 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2019 wret = 1;
2020 } else {
2021 ret = btrfs_cow_block(trans, root, left, parent,
2022 pslot - 1, &left);
2023 if (ret)
2024 wret = 1;
2025 else {
2026 wret = push_node_left(trans, root,
2027 left, mid, 0);
2028 }
2029 }
2030 if (wret < 0)
2031 ret = wret;
2032 if (wret == 0) {
2033 struct btrfs_disk_key disk_key;
2034 orig_slot += left_nr;
2035 btrfs_node_key(mid, &disk_key, 0);
2036 tree_mod_log_set_node_key(root->fs_info, parent,
2037 pslot, 0);
2038 btrfs_set_node_key(parent, &disk_key, pslot);
2039 btrfs_mark_buffer_dirty(parent);
2040 if (btrfs_header_nritems(left) > orig_slot) {
2041 path->nodes[level] = left;
2042 path->slots[level + 1] -= 1;
2043 path->slots[level] = orig_slot;
2044 btrfs_tree_unlock(mid);
2045 free_extent_buffer(mid);
2046 } else {
2047 orig_slot -=
2048 btrfs_header_nritems(left);
2049 path->slots[level] = orig_slot;
2050 btrfs_tree_unlock(left);
2051 free_extent_buffer(left);
2052 }
2053 return 0;
2054 }
2055 btrfs_tree_unlock(left);
2056 free_extent_buffer(left);
2057 }
2058 right = read_node_slot(root, parent, pslot + 1);
2059
2060 /*
2061 * then try to empty the right most buffer into the middle
2062 */
2063 if (right) {
2064 u32 right_nr;
2065
2066 btrfs_tree_lock(right);
2067 btrfs_set_lock_blocking(right);
2068
2069 right_nr = btrfs_header_nritems(right);
2070 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2071 wret = 1;
2072 } else {
2073 ret = btrfs_cow_block(trans, root, right,
2074 parent, pslot + 1,
2075 &right);
2076 if (ret)
2077 wret = 1;
2078 else {
2079 wret = balance_node_right(trans, root,
2080 right, mid);
2081 }
2082 }
2083 if (wret < 0)
2084 ret = wret;
2085 if (wret == 0) {
2086 struct btrfs_disk_key disk_key;
2087
2088 btrfs_node_key(right, &disk_key, 0);
2089 tree_mod_log_set_node_key(root->fs_info, parent,
2090 pslot + 1, 0);
2091 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2092 btrfs_mark_buffer_dirty(parent);
2093
2094 if (btrfs_header_nritems(mid) <= orig_slot) {
2095 path->nodes[level] = right;
2096 path->slots[level + 1] += 1;
2097 path->slots[level] = orig_slot -
2098 btrfs_header_nritems(mid);
2099 btrfs_tree_unlock(mid);
2100 free_extent_buffer(mid);
2101 } else {
2102 btrfs_tree_unlock(right);
2103 free_extent_buffer(right);
2104 }
2105 return 0;
2106 }
2107 btrfs_tree_unlock(right);
2108 free_extent_buffer(right);
2109 }
2110 return 1;
2111 }
2112
2113 /*
2114 * readahead one full node of leaves, finding things that are close
2115 * to the block in 'slot', and triggering ra on them.
2116 */
2117 static void reada_for_search(struct btrfs_root *root,
2118 struct btrfs_path *path,
2119 int level, int slot, u64 objectid)
2120 {
2121 struct extent_buffer *node;
2122 struct btrfs_disk_key disk_key;
2123 u32 nritems;
2124 u64 search;
2125 u64 target;
2126 u64 nread = 0;
2127 u64 gen;
2128 int direction = path->reada;
2129 struct extent_buffer *eb;
2130 u32 nr;
2131 u32 blocksize;
2132 u32 nscan = 0;
2133
2134 if (level != 1)
2135 return;
2136
2137 if (!path->nodes[level])
2138 return;
2139
2140 node = path->nodes[level];
2141
2142 search = btrfs_node_blockptr(node, slot);
2143 blocksize = btrfs_level_size(root, level - 1);
2144 eb = btrfs_find_tree_block(root, search, blocksize);
2145 if (eb) {
2146 free_extent_buffer(eb);
2147 return;
2148 }
2149
2150 target = search;
2151
2152 nritems = btrfs_header_nritems(node);
2153 nr = slot;
2154
2155 while (1) {
2156 if (direction < 0) {
2157 if (nr == 0)
2158 break;
2159 nr--;
2160 } else if (direction > 0) {
2161 nr++;
2162 if (nr >= nritems)
2163 break;
2164 }
2165 if (path->reada < 0 && objectid) {
2166 btrfs_node_key(node, &disk_key, nr);
2167 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2168 break;
2169 }
2170 search = btrfs_node_blockptr(node, nr);
2171 if ((search <= target && target - search <= 65536) ||
2172 (search > target && search - target <= 65536)) {
2173 gen = btrfs_node_ptr_generation(node, nr);
2174 readahead_tree_block(root, search, blocksize, gen);
2175 nread += blocksize;
2176 }
2177 nscan++;
2178 if ((nread > 65536 || nscan > 32))
2179 break;
2180 }
2181 }
2182
2183 static noinline void reada_for_balance(struct btrfs_root *root,
2184 struct btrfs_path *path, int level)
2185 {
2186 int slot;
2187 int nritems;
2188 struct extent_buffer *parent;
2189 struct extent_buffer *eb;
2190 u64 gen;
2191 u64 block1 = 0;
2192 u64 block2 = 0;
2193 int blocksize;
2194
2195 parent = path->nodes[level + 1];
2196 if (!parent)
2197 return;
2198
2199 nritems = btrfs_header_nritems(parent);
2200 slot = path->slots[level + 1];
2201 blocksize = btrfs_level_size(root, level);
2202
2203 if (slot > 0) {
2204 block1 = btrfs_node_blockptr(parent, slot - 1);
2205 gen = btrfs_node_ptr_generation(parent, slot - 1);
2206 eb = btrfs_find_tree_block(root, block1, blocksize);
2207 /*
2208 * if we get -eagain from btrfs_buffer_uptodate, we
2209 * don't want to return eagain here. That will loop
2210 * forever
2211 */
2212 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2213 block1 = 0;
2214 free_extent_buffer(eb);
2215 }
2216 if (slot + 1 < nritems) {
2217 block2 = btrfs_node_blockptr(parent, slot + 1);
2218 gen = btrfs_node_ptr_generation(parent, slot + 1);
2219 eb = btrfs_find_tree_block(root, block2, blocksize);
2220 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2221 block2 = 0;
2222 free_extent_buffer(eb);
2223 }
2224
2225 if (block1)
2226 readahead_tree_block(root, block1, blocksize, 0);
2227 if (block2)
2228 readahead_tree_block(root, block2, blocksize, 0);
2229 }
2230
2231
2232 /*
2233 * when we walk down the tree, it is usually safe to unlock the higher layers
2234 * in the tree. The exceptions are when our path goes through slot 0, because
2235 * operations on the tree might require changing key pointers higher up in the
2236 * tree.
2237 *
2238 * callers might also have set path->keep_locks, which tells this code to keep
2239 * the lock if the path points to the last slot in the block. This is part of
2240 * walking through the tree, and selecting the next slot in the higher block.
2241 *
2242 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2243 * if lowest_unlock is 1, level 0 won't be unlocked
2244 */
2245 static noinline void unlock_up(struct btrfs_path *path, int level,
2246 int lowest_unlock, int min_write_lock_level,
2247 int *write_lock_level)
2248 {
2249 int i;
2250 int skip_level = level;
2251 int no_skips = 0;
2252 struct extent_buffer *t;
2253
2254 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2255 if (!path->nodes[i])
2256 break;
2257 if (!path->locks[i])
2258 break;
2259 if (!no_skips && path->slots[i] == 0) {
2260 skip_level = i + 1;
2261 continue;
2262 }
2263 if (!no_skips && path->keep_locks) {
2264 u32 nritems;
2265 t = path->nodes[i];
2266 nritems = btrfs_header_nritems(t);
2267 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2268 skip_level = i + 1;
2269 continue;
2270 }
2271 }
2272 if (skip_level < i && i >= lowest_unlock)
2273 no_skips = 1;
2274
2275 t = path->nodes[i];
2276 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2277 btrfs_tree_unlock_rw(t, path->locks[i]);
2278 path->locks[i] = 0;
2279 if (write_lock_level &&
2280 i > min_write_lock_level &&
2281 i <= *write_lock_level) {
2282 *write_lock_level = i - 1;
2283 }
2284 }
2285 }
2286 }
2287
2288 /*
2289 * This releases any locks held in the path starting at level and
2290 * going all the way up to the root.
2291 *
2292 * btrfs_search_slot will keep the lock held on higher nodes in a few
2293 * corner cases, such as COW of the block at slot zero in the node. This
2294 * ignores those rules, and it should only be called when there are no
2295 * more updates to be done higher up in the tree.
2296 */
2297 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2298 {
2299 int i;
2300
2301 if (path->keep_locks)
2302 return;
2303
2304 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2305 if (!path->nodes[i])
2306 continue;
2307 if (!path->locks[i])
2308 continue;
2309 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2310 path->locks[i] = 0;
2311 }
2312 }
2313
2314 /*
2315 * helper function for btrfs_search_slot. The goal is to find a block
2316 * in cache without setting the path to blocking. If we find the block
2317 * we return zero and the path is unchanged.
2318 *
2319 * If we can't find the block, we set the path blocking and do some
2320 * reada. -EAGAIN is returned and the search must be repeated.
2321 */
2322 static int
2323 read_block_for_search(struct btrfs_trans_handle *trans,
2324 struct btrfs_root *root, struct btrfs_path *p,
2325 struct extent_buffer **eb_ret, int level, int slot,
2326 struct btrfs_key *key, u64 time_seq)
2327 {
2328 u64 blocknr;
2329 u64 gen;
2330 u32 blocksize;
2331 struct extent_buffer *b = *eb_ret;
2332 struct extent_buffer *tmp;
2333 int ret;
2334
2335 blocknr = btrfs_node_blockptr(b, slot);
2336 gen = btrfs_node_ptr_generation(b, slot);
2337 blocksize = btrfs_level_size(root, level - 1);
2338
2339 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2340 if (tmp) {
2341 /* first we do an atomic uptodate check */
2342 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2343 *eb_ret = tmp;
2344 return 0;
2345 }
2346
2347 /* the pages were up to date, but we failed
2348 * the generation number check. Do a full
2349 * read for the generation number that is correct.
2350 * We must do this without dropping locks so
2351 * we can trust our generation number
2352 */
2353 btrfs_set_path_blocking(p);
2354
2355 /* now we're allowed to do a blocking uptodate check */
2356 ret = btrfs_read_buffer(tmp, gen);
2357 if (!ret) {
2358 *eb_ret = tmp;
2359 return 0;
2360 }
2361 free_extent_buffer(tmp);
2362 btrfs_release_path(p);
2363 return -EIO;
2364 }
2365
2366 /*
2367 * reduce lock contention at high levels
2368 * of the btree by dropping locks before
2369 * we read. Don't release the lock on the current
2370 * level because we need to walk this node to figure
2371 * out which blocks to read.
2372 */
2373 btrfs_unlock_up_safe(p, level + 1);
2374 btrfs_set_path_blocking(p);
2375
2376 free_extent_buffer(tmp);
2377 if (p->reada)
2378 reada_for_search(root, p, level, slot, key->objectid);
2379
2380 btrfs_release_path(p);
2381
2382 ret = -EAGAIN;
2383 tmp = read_tree_block(root, blocknr, blocksize, 0);
2384 if (tmp) {
2385 /*
2386 * If the read above didn't mark this buffer up to date,
2387 * it will never end up being up to date. Set ret to EIO now
2388 * and give up so that our caller doesn't loop forever
2389 * on our EAGAINs.
2390 */
2391 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2392 ret = -EIO;
2393 free_extent_buffer(tmp);
2394 }
2395 return ret;
2396 }
2397
2398 /*
2399 * helper function for btrfs_search_slot. This does all of the checks
2400 * for node-level blocks and does any balancing required based on
2401 * the ins_len.
2402 *
2403 * If no extra work was required, zero is returned. If we had to
2404 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2405 * start over
2406 */
2407 static int
2408 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2409 struct btrfs_root *root, struct btrfs_path *p,
2410 struct extent_buffer *b, int level, int ins_len,
2411 int *write_lock_level)
2412 {
2413 int ret;
2414 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2415 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2416 int sret;
2417
2418 if (*write_lock_level < level + 1) {
2419 *write_lock_level = level + 1;
2420 btrfs_release_path(p);
2421 goto again;
2422 }
2423
2424 btrfs_set_path_blocking(p);
2425 reada_for_balance(root, p, level);
2426 sret = split_node(trans, root, p, level);
2427 btrfs_clear_path_blocking(p, NULL, 0);
2428
2429 BUG_ON(sret > 0);
2430 if (sret) {
2431 ret = sret;
2432 goto done;
2433 }
2434 b = p->nodes[level];
2435 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2436 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2437 int sret;
2438
2439 if (*write_lock_level < level + 1) {
2440 *write_lock_level = level + 1;
2441 btrfs_release_path(p);
2442 goto again;
2443 }
2444
2445 btrfs_set_path_blocking(p);
2446 reada_for_balance(root, p, level);
2447 sret = balance_level(trans, root, p, level);
2448 btrfs_clear_path_blocking(p, NULL, 0);
2449
2450 if (sret) {
2451 ret = sret;
2452 goto done;
2453 }
2454 b = p->nodes[level];
2455 if (!b) {
2456 btrfs_release_path(p);
2457 goto again;
2458 }
2459 BUG_ON(btrfs_header_nritems(b) == 1);
2460 }
2461 return 0;
2462
2463 again:
2464 ret = -EAGAIN;
2465 done:
2466 return ret;
2467 }
2468
2469 /*
2470 * look for key in the tree. path is filled in with nodes along the way
2471 * if key is found, we return zero and you can find the item in the leaf
2472 * level of the path (level 0)
2473 *
2474 * If the key isn't found, the path points to the slot where it should
2475 * be inserted, and 1 is returned. If there are other errors during the
2476 * search a negative error number is returned.
2477 *
2478 * if ins_len > 0, nodes and leaves will be split as we walk down the
2479 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2480 * possible)
2481 */
2482 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2483 *root, struct btrfs_key *key, struct btrfs_path *p, int
2484 ins_len, int cow)
2485 {
2486 struct extent_buffer *b;
2487 int slot;
2488 int ret;
2489 int err;
2490 int level;
2491 int lowest_unlock = 1;
2492 int root_lock;
2493 /* everything at write_lock_level or lower must be write locked */
2494 int write_lock_level = 0;
2495 u8 lowest_level = 0;
2496 int min_write_lock_level;
2497
2498 lowest_level = p->lowest_level;
2499 WARN_ON(lowest_level && ins_len > 0);
2500 WARN_ON(p->nodes[0] != NULL);
2501
2502 if (ins_len < 0) {
2503 lowest_unlock = 2;
2504
2505 /* when we are removing items, we might have to go up to level
2506 * two as we update tree pointers Make sure we keep write
2507 * for those levels as well
2508 */
2509 write_lock_level = 2;
2510 } else if (ins_len > 0) {
2511 /*
2512 * for inserting items, make sure we have a write lock on
2513 * level 1 so we can update keys
2514 */
2515 write_lock_level = 1;
2516 }
2517
2518 if (!cow)
2519 write_lock_level = -1;
2520
2521 if (cow && (p->keep_locks || p->lowest_level))
2522 write_lock_level = BTRFS_MAX_LEVEL;
2523
2524 min_write_lock_level = write_lock_level;
2525
2526 again:
2527 /*
2528 * we try very hard to do read locks on the root
2529 */
2530 root_lock = BTRFS_READ_LOCK;
2531 level = 0;
2532 if (p->search_commit_root) {
2533 /*
2534 * the commit roots are read only
2535 * so we always do read locks
2536 */
2537 b = root->commit_root;
2538 extent_buffer_get(b);
2539 level = btrfs_header_level(b);
2540 if (!p->skip_locking)
2541 btrfs_tree_read_lock(b);
2542 } else {
2543 if (p->skip_locking) {
2544 b = btrfs_root_node(root);
2545 level = btrfs_header_level(b);
2546 } else {
2547 /* we don't know the level of the root node
2548 * until we actually have it read locked
2549 */
2550 b = btrfs_read_lock_root_node(root);
2551 level = btrfs_header_level(b);
2552 if (level <= write_lock_level) {
2553 /* whoops, must trade for write lock */
2554 btrfs_tree_read_unlock(b);
2555 free_extent_buffer(b);
2556 b = btrfs_lock_root_node(root);
2557 root_lock = BTRFS_WRITE_LOCK;
2558
2559 /* the level might have changed, check again */
2560 level = btrfs_header_level(b);
2561 }
2562 }
2563 }
2564 p->nodes[level] = b;
2565 if (!p->skip_locking)
2566 p->locks[level] = root_lock;
2567
2568 while (b) {
2569 level = btrfs_header_level(b);
2570
2571 /*
2572 * setup the path here so we can release it under lock
2573 * contention with the cow code
2574 */
2575 if (cow) {
2576 /*
2577 * if we don't really need to cow this block
2578 * then we don't want to set the path blocking,
2579 * so we test it here
2580 */
2581 if (!should_cow_block(trans, root, b))
2582 goto cow_done;
2583
2584 btrfs_set_path_blocking(p);
2585
2586 /*
2587 * must have write locks on this node and the
2588 * parent
2589 */
2590 if (level > write_lock_level ||
2591 (level + 1 > write_lock_level &&
2592 level + 1 < BTRFS_MAX_LEVEL &&
2593 p->nodes[level + 1])) {
2594 write_lock_level = level + 1;
2595 btrfs_release_path(p);
2596 goto again;
2597 }
2598
2599 err = btrfs_cow_block(trans, root, b,
2600 p->nodes[level + 1],
2601 p->slots[level + 1], &b);
2602 if (err) {
2603 ret = err;
2604 goto done;
2605 }
2606 }
2607 cow_done:
2608 BUG_ON(!cow && ins_len);
2609
2610 p->nodes[level] = b;
2611 btrfs_clear_path_blocking(p, NULL, 0);
2612
2613 /*
2614 * we have a lock on b and as long as we aren't changing
2615 * the tree, there is no way to for the items in b to change.
2616 * It is safe to drop the lock on our parent before we
2617 * go through the expensive btree search on b.
2618 *
2619 * If cow is true, then we might be changing slot zero,
2620 * which may require changing the parent. So, we can't
2621 * drop the lock until after we know which slot we're
2622 * operating on.
2623 */
2624 if (!cow)
2625 btrfs_unlock_up_safe(p, level + 1);
2626
2627 ret = bin_search(b, key, level, &slot);
2628
2629 if (level != 0) {
2630 int dec = 0;
2631 if (ret && slot > 0) {
2632 dec = 1;
2633 slot -= 1;
2634 }
2635 p->slots[level] = slot;
2636 err = setup_nodes_for_search(trans, root, p, b, level,
2637 ins_len, &write_lock_level);
2638 if (err == -EAGAIN)
2639 goto again;
2640 if (err) {
2641 ret = err;
2642 goto done;
2643 }
2644 b = p->nodes[level];
2645 slot = p->slots[level];
2646
2647 /*
2648 * slot 0 is special, if we change the key
2649 * we have to update the parent pointer
2650 * which means we must have a write lock
2651 * on the parent
2652 */
2653 if (slot == 0 && cow &&
2654 write_lock_level < level + 1) {
2655 write_lock_level = level + 1;
2656 btrfs_release_path(p);
2657 goto again;
2658 }
2659
2660 unlock_up(p, level, lowest_unlock,
2661 min_write_lock_level, &write_lock_level);
2662
2663 if (level == lowest_level) {
2664 if (dec)
2665 p->slots[level]++;
2666 goto done;
2667 }
2668
2669 err = read_block_for_search(trans, root, p,
2670 &b, level, slot, key, 0);
2671 if (err == -EAGAIN)
2672 goto again;
2673 if (err) {
2674 ret = err;
2675 goto done;
2676 }
2677
2678 if (!p->skip_locking) {
2679 level = btrfs_header_level(b);
2680 if (level <= write_lock_level) {
2681 err = btrfs_try_tree_write_lock(b);
2682 if (!err) {
2683 btrfs_set_path_blocking(p);
2684 btrfs_tree_lock(b);
2685 btrfs_clear_path_blocking(p, b,
2686 BTRFS_WRITE_LOCK);
2687 }
2688 p->locks[level] = BTRFS_WRITE_LOCK;
2689 } else {
2690 err = btrfs_try_tree_read_lock(b);
2691 if (!err) {
2692 btrfs_set_path_blocking(p);
2693 btrfs_tree_read_lock(b);
2694 btrfs_clear_path_blocking(p, b,
2695 BTRFS_READ_LOCK);
2696 }
2697 p->locks[level] = BTRFS_READ_LOCK;
2698 }
2699 p->nodes[level] = b;
2700 }
2701 } else {
2702 p->slots[level] = slot;
2703 if (ins_len > 0 &&
2704 btrfs_leaf_free_space(root, b) < ins_len) {
2705 if (write_lock_level < 1) {
2706 write_lock_level = 1;
2707 btrfs_release_path(p);
2708 goto again;
2709 }
2710
2711 btrfs_set_path_blocking(p);
2712 err = split_leaf(trans, root, key,
2713 p, ins_len, ret == 0);
2714 btrfs_clear_path_blocking(p, NULL, 0);
2715
2716 BUG_ON(err > 0);
2717 if (err) {
2718 ret = err;
2719 goto done;
2720 }
2721 }
2722 if (!p->search_for_split)
2723 unlock_up(p, level, lowest_unlock,
2724 min_write_lock_level, &write_lock_level);
2725 goto done;
2726 }
2727 }
2728 ret = 1;
2729 done:
2730 /*
2731 * we don't really know what they plan on doing with the path
2732 * from here on, so for now just mark it as blocking
2733 */
2734 if (!p->leave_spinning)
2735 btrfs_set_path_blocking(p);
2736 if (ret < 0)
2737 btrfs_release_path(p);
2738 return ret;
2739 }
2740
2741 /*
2742 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2743 * current state of the tree together with the operations recorded in the tree
2744 * modification log to search for the key in a previous version of this tree, as
2745 * denoted by the time_seq parameter.
2746 *
2747 * Naturally, there is no support for insert, delete or cow operations.
2748 *
2749 * The resulting path and return value will be set up as if we called
2750 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2751 */
2752 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2753 struct btrfs_path *p, u64 time_seq)
2754 {
2755 struct extent_buffer *b;
2756 int slot;
2757 int ret;
2758 int err;
2759 int level;
2760 int lowest_unlock = 1;
2761 u8 lowest_level = 0;
2762
2763 lowest_level = p->lowest_level;
2764 WARN_ON(p->nodes[0] != NULL);
2765
2766 if (p->search_commit_root) {
2767 BUG_ON(time_seq);
2768 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2769 }
2770
2771 again:
2772 b = get_old_root(root, time_seq);
2773 level = btrfs_header_level(b);
2774 p->locks[level] = BTRFS_READ_LOCK;
2775
2776 while (b) {
2777 level = btrfs_header_level(b);
2778 p->nodes[level] = b;
2779 btrfs_clear_path_blocking(p, NULL, 0);
2780
2781 /*
2782 * we have a lock on b and as long as we aren't changing
2783 * the tree, there is no way to for the items in b to change.
2784 * It is safe to drop the lock on our parent before we
2785 * go through the expensive btree search on b.
2786 */
2787 btrfs_unlock_up_safe(p, level + 1);
2788
2789 ret = bin_search(b, key, level, &slot);
2790
2791 if (level != 0) {
2792 int dec = 0;
2793 if (ret && slot > 0) {
2794 dec = 1;
2795 slot -= 1;
2796 }
2797 p->slots[level] = slot;
2798 unlock_up(p, level, lowest_unlock, 0, NULL);
2799
2800 if (level == lowest_level) {
2801 if (dec)
2802 p->slots[level]++;
2803 goto done;
2804 }
2805
2806 err = read_block_for_search(NULL, root, p, &b, level,
2807 slot, key, time_seq);
2808 if (err == -EAGAIN)
2809 goto again;
2810 if (err) {
2811 ret = err;
2812 goto done;
2813 }
2814
2815 level = btrfs_header_level(b);
2816 err = btrfs_try_tree_read_lock(b);
2817 if (!err) {
2818 btrfs_set_path_blocking(p);
2819 btrfs_tree_read_lock(b);
2820 btrfs_clear_path_blocking(p, b,
2821 BTRFS_READ_LOCK);
2822 }
2823 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2824 p->locks[level] = BTRFS_READ_LOCK;
2825 p->nodes[level] = b;
2826 } else {
2827 p->slots[level] = slot;
2828 unlock_up(p, level, lowest_unlock, 0, NULL);
2829 goto done;
2830 }
2831 }
2832 ret = 1;
2833 done:
2834 if (!p->leave_spinning)
2835 btrfs_set_path_blocking(p);
2836 if (ret < 0)
2837 btrfs_release_path(p);
2838
2839 return ret;
2840 }
2841
2842 /*
2843 * helper to use instead of search slot if no exact match is needed but
2844 * instead the next or previous item should be returned.
2845 * When find_higher is true, the next higher item is returned, the next lower
2846 * otherwise.
2847 * When return_any and find_higher are both true, and no higher item is found,
2848 * return the next lower instead.
2849 * When return_any is true and find_higher is false, and no lower item is found,
2850 * return the next higher instead.
2851 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2852 * < 0 on error
2853 */
2854 int btrfs_search_slot_for_read(struct btrfs_root *root,
2855 struct btrfs_key *key, struct btrfs_path *p,
2856 int find_higher, int return_any)
2857 {
2858 int ret;
2859 struct extent_buffer *leaf;
2860
2861 again:
2862 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2863 if (ret <= 0)
2864 return ret;
2865 /*
2866 * a return value of 1 means the path is at the position where the
2867 * item should be inserted. Normally this is the next bigger item,
2868 * but in case the previous item is the last in a leaf, path points
2869 * to the first free slot in the previous leaf, i.e. at an invalid
2870 * item.
2871 */
2872 leaf = p->nodes[0];
2873
2874 if (find_higher) {
2875 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2876 ret = btrfs_next_leaf(root, p);
2877 if (ret <= 0)
2878 return ret;
2879 if (!return_any)
2880 return 1;
2881 /*
2882 * no higher item found, return the next
2883 * lower instead
2884 */
2885 return_any = 0;
2886 find_higher = 0;
2887 btrfs_release_path(p);
2888 goto again;
2889 }
2890 } else {
2891 if (p->slots[0] == 0) {
2892 ret = btrfs_prev_leaf(root, p);
2893 if (ret < 0)
2894 return ret;
2895 if (!ret) {
2896 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2897 return 0;
2898 }
2899 if (!return_any)
2900 return 1;
2901 /*
2902 * no lower item found, return the next
2903 * higher instead
2904 */
2905 return_any = 0;
2906 find_higher = 1;
2907 btrfs_release_path(p);
2908 goto again;
2909 } else {
2910 --p->slots[0];
2911 }
2912 }
2913 return 0;
2914 }
2915
2916 /*
2917 * adjust the pointers going up the tree, starting at level
2918 * making sure the right key of each node is points to 'key'.
2919 * This is used after shifting pointers to the left, so it stops
2920 * fixing up pointers when a given leaf/node is not in slot 0 of the
2921 * higher levels
2922 *
2923 */
2924 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2925 struct btrfs_disk_key *key, int level)
2926 {
2927 int i;
2928 struct extent_buffer *t;
2929
2930 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2931 int tslot = path->slots[i];
2932 if (!path->nodes[i])
2933 break;
2934 t = path->nodes[i];
2935 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2936 btrfs_set_node_key(t, key, tslot);
2937 btrfs_mark_buffer_dirty(path->nodes[i]);
2938 if (tslot != 0)
2939 break;
2940 }
2941 }
2942
2943 /*
2944 * update item key.
2945 *
2946 * This function isn't completely safe. It's the caller's responsibility
2947 * that the new key won't break the order
2948 */
2949 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2950 struct btrfs_key *new_key)
2951 {
2952 struct btrfs_disk_key disk_key;
2953 struct extent_buffer *eb;
2954 int slot;
2955
2956 eb = path->nodes[0];
2957 slot = path->slots[0];
2958 if (slot > 0) {
2959 btrfs_item_key(eb, &disk_key, slot - 1);
2960 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2961 }
2962 if (slot < btrfs_header_nritems(eb) - 1) {
2963 btrfs_item_key(eb, &disk_key, slot + 1);
2964 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2965 }
2966
2967 btrfs_cpu_key_to_disk(&disk_key, new_key);
2968 btrfs_set_item_key(eb, &disk_key, slot);
2969 btrfs_mark_buffer_dirty(eb);
2970 if (slot == 0)
2971 fixup_low_keys(root, path, &disk_key, 1);
2972 }
2973
2974 /*
2975 * try to push data from one node into the next node left in the
2976 * tree.
2977 *
2978 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2979 * error, and > 0 if there was no room in the left hand block.
2980 */
2981 static int push_node_left(struct btrfs_trans_handle *trans,
2982 struct btrfs_root *root, struct extent_buffer *dst,
2983 struct extent_buffer *src, int empty)
2984 {
2985 int push_items = 0;
2986 int src_nritems;
2987 int dst_nritems;
2988 int ret = 0;
2989
2990 src_nritems = btrfs_header_nritems(src);
2991 dst_nritems = btrfs_header_nritems(dst);
2992 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2993 WARN_ON(btrfs_header_generation(src) != trans->transid);
2994 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2995
2996 if (!empty && src_nritems <= 8)
2997 return 1;
2998
2999 if (push_items <= 0)
3000 return 1;
3001
3002 if (empty) {
3003 push_items = min(src_nritems, push_items);
3004 if (push_items < src_nritems) {
3005 /* leave at least 8 pointers in the node if
3006 * we aren't going to empty it
3007 */
3008 if (src_nritems - push_items < 8) {
3009 if (push_items <= 8)
3010 return 1;
3011 push_items -= 8;
3012 }
3013 }
3014 } else
3015 push_items = min(src_nritems - 8, push_items);
3016
3017 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3018 push_items);
3019 copy_extent_buffer(dst, src,
3020 btrfs_node_key_ptr_offset(dst_nritems),
3021 btrfs_node_key_ptr_offset(0),
3022 push_items * sizeof(struct btrfs_key_ptr));
3023
3024 if (push_items < src_nritems) {
3025 /*
3026 * don't call tree_mod_log_eb_move here, key removal was already
3027 * fully logged by tree_mod_log_eb_copy above.
3028 */
3029 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3030 btrfs_node_key_ptr_offset(push_items),
3031 (src_nritems - push_items) *
3032 sizeof(struct btrfs_key_ptr));
3033 }
3034 btrfs_set_header_nritems(src, src_nritems - push_items);
3035 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3036 btrfs_mark_buffer_dirty(src);
3037 btrfs_mark_buffer_dirty(dst);
3038
3039 return ret;
3040 }
3041
3042 /*
3043 * try to push data from one node into the next node right in the
3044 * tree.
3045 *
3046 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3047 * error, and > 0 if there was no room in the right hand block.
3048 *
3049 * this will only push up to 1/2 the contents of the left node over
3050 */
3051 static int balance_node_right(struct btrfs_trans_handle *trans,
3052 struct btrfs_root *root,
3053 struct extent_buffer *dst,
3054 struct extent_buffer *src)
3055 {
3056 int push_items = 0;
3057 int max_push;
3058 int src_nritems;
3059 int dst_nritems;
3060 int ret = 0;
3061
3062 WARN_ON(btrfs_header_generation(src) != trans->transid);
3063 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3064
3065 src_nritems = btrfs_header_nritems(src);
3066 dst_nritems = btrfs_header_nritems(dst);
3067 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3068 if (push_items <= 0)
3069 return 1;
3070
3071 if (src_nritems < 4)
3072 return 1;
3073
3074 max_push = src_nritems / 2 + 1;
3075 /* don't try to empty the node */
3076 if (max_push >= src_nritems)
3077 return 1;
3078
3079 if (max_push < push_items)
3080 push_items = max_push;
3081
3082 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3083 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3084 btrfs_node_key_ptr_offset(0),
3085 (dst_nritems) *
3086 sizeof(struct btrfs_key_ptr));
3087
3088 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3089 src_nritems - push_items, push_items);
3090 copy_extent_buffer(dst, src,
3091 btrfs_node_key_ptr_offset(0),
3092 btrfs_node_key_ptr_offset(src_nritems - push_items),
3093 push_items * sizeof(struct btrfs_key_ptr));
3094
3095 btrfs_set_header_nritems(src, src_nritems - push_items);
3096 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3097
3098 btrfs_mark_buffer_dirty(src);
3099 btrfs_mark_buffer_dirty(dst);
3100
3101 return ret;
3102 }
3103
3104 /*
3105 * helper function to insert a new root level in the tree.
3106 * A new node is allocated, and a single item is inserted to
3107 * point to the existing root
3108 *
3109 * returns zero on success or < 0 on failure.
3110 */
3111 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3112 struct btrfs_root *root,
3113 struct btrfs_path *path, int level)
3114 {
3115 u64 lower_gen;
3116 struct extent_buffer *lower;
3117 struct extent_buffer *c;
3118 struct extent_buffer *old;
3119 struct btrfs_disk_key lower_key;
3120
3121 BUG_ON(path->nodes[level]);
3122 BUG_ON(path->nodes[level-1] != root->node);
3123
3124 lower = path->nodes[level-1];
3125 if (level == 1)
3126 btrfs_item_key(lower, &lower_key, 0);
3127 else
3128 btrfs_node_key(lower, &lower_key, 0);
3129
3130 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3131 root->root_key.objectid, &lower_key,
3132 level, root->node->start, 0);
3133 if (IS_ERR(c))
3134 return PTR_ERR(c);
3135
3136 root_add_used(root, root->nodesize);
3137
3138 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3139 btrfs_set_header_nritems(c, 1);
3140 btrfs_set_header_level(c, level);
3141 btrfs_set_header_bytenr(c, c->start);
3142 btrfs_set_header_generation(c, trans->transid);
3143 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3144 btrfs_set_header_owner(c, root->root_key.objectid);
3145
3146 write_extent_buffer(c, root->fs_info->fsid,
3147 (unsigned long)btrfs_header_fsid(c),
3148 BTRFS_FSID_SIZE);
3149
3150 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3151 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3152 BTRFS_UUID_SIZE);
3153
3154 btrfs_set_node_key(c, &lower_key, 0);
3155 btrfs_set_node_blockptr(c, 0, lower->start);
3156 lower_gen = btrfs_header_generation(lower);
3157 WARN_ON(lower_gen != trans->transid);
3158
3159 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3160
3161 btrfs_mark_buffer_dirty(c);
3162
3163 old = root->node;
3164 tree_mod_log_set_root_pointer(root, c, 0);
3165 rcu_assign_pointer(root->node, c);
3166
3167 /* the super has an extra ref to root->node */
3168 free_extent_buffer(old);
3169
3170 add_root_to_dirty_list(root);
3171 extent_buffer_get(c);
3172 path->nodes[level] = c;
3173 path->locks[level] = BTRFS_WRITE_LOCK;
3174 path->slots[level] = 0;
3175 return 0;
3176 }
3177
3178 /*
3179 * worker function to insert a single pointer in a node.
3180 * the node should have enough room for the pointer already
3181 *
3182 * slot and level indicate where you want the key to go, and
3183 * blocknr is the block the key points to.
3184 */
3185 static void insert_ptr(struct btrfs_trans_handle *trans,
3186 struct btrfs_root *root, struct btrfs_path *path,
3187 struct btrfs_disk_key *key, u64 bytenr,
3188 int slot, int level)
3189 {
3190 struct extent_buffer *lower;
3191 int nritems;
3192 int ret;
3193
3194 BUG_ON(!path->nodes[level]);
3195 btrfs_assert_tree_locked(path->nodes[level]);
3196 lower = path->nodes[level];
3197 nritems = btrfs_header_nritems(lower);
3198 BUG_ON(slot > nritems);
3199 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3200 if (slot != nritems) {
3201 if (level)
3202 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3203 slot, nritems - slot);
3204 memmove_extent_buffer(lower,
3205 btrfs_node_key_ptr_offset(slot + 1),
3206 btrfs_node_key_ptr_offset(slot),
3207 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3208 }
3209 if (level) {
3210 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3211 MOD_LOG_KEY_ADD);
3212 BUG_ON(ret < 0);
3213 }
3214 btrfs_set_node_key(lower, key, slot);
3215 btrfs_set_node_blockptr(lower, slot, bytenr);
3216 WARN_ON(trans->transid == 0);
3217 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3218 btrfs_set_header_nritems(lower, nritems + 1);
3219 btrfs_mark_buffer_dirty(lower);
3220 }
3221
3222 /*
3223 * split the node at the specified level in path in two.
3224 * The path is corrected to point to the appropriate node after the split
3225 *
3226 * Before splitting this tries to make some room in the node by pushing
3227 * left and right, if either one works, it returns right away.
3228 *
3229 * returns 0 on success and < 0 on failure
3230 */
3231 static noinline int split_node(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *root,
3233 struct btrfs_path *path, int level)
3234 {
3235 struct extent_buffer *c;
3236 struct extent_buffer *split;
3237 struct btrfs_disk_key disk_key;
3238 int mid;
3239 int ret;
3240 u32 c_nritems;
3241
3242 c = path->nodes[level];
3243 WARN_ON(btrfs_header_generation(c) != trans->transid);
3244 if (c == root->node) {
3245 /*
3246 * trying to split the root, lets make a new one
3247 *
3248 * tree mod log: We don't log_removal old root in
3249 * insert_new_root, because that root buffer will be kept as a
3250 * normal node. We are going to log removal of half of the
3251 * elements below with tree_mod_log_eb_copy. We're holding a
3252 * tree lock on the buffer, which is why we cannot race with
3253 * other tree_mod_log users.
3254 */
3255 ret = insert_new_root(trans, root, path, level + 1);
3256 if (ret)
3257 return ret;
3258 } else {
3259 ret = push_nodes_for_insert(trans, root, path, level);
3260 c = path->nodes[level];
3261 if (!ret && btrfs_header_nritems(c) <
3262 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3263 return 0;
3264 if (ret < 0)
3265 return ret;
3266 }
3267
3268 c_nritems = btrfs_header_nritems(c);
3269 mid = (c_nritems + 1) / 2;
3270 btrfs_node_key(c, &disk_key, mid);
3271
3272 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3273 root->root_key.objectid,
3274 &disk_key, level, c->start, 0);
3275 if (IS_ERR(split))
3276 return PTR_ERR(split);
3277
3278 root_add_used(root, root->nodesize);
3279
3280 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3281 btrfs_set_header_level(split, btrfs_header_level(c));
3282 btrfs_set_header_bytenr(split, split->start);
3283 btrfs_set_header_generation(split, trans->transid);
3284 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3285 btrfs_set_header_owner(split, root->root_key.objectid);
3286 write_extent_buffer(split, root->fs_info->fsid,
3287 (unsigned long)btrfs_header_fsid(split),
3288 BTRFS_FSID_SIZE);
3289 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3290 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3291 BTRFS_UUID_SIZE);
3292
3293 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3294 copy_extent_buffer(split, c,
3295 btrfs_node_key_ptr_offset(0),
3296 btrfs_node_key_ptr_offset(mid),
3297 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3298 btrfs_set_header_nritems(split, c_nritems - mid);
3299 btrfs_set_header_nritems(c, mid);
3300 ret = 0;
3301
3302 btrfs_mark_buffer_dirty(c);
3303 btrfs_mark_buffer_dirty(split);
3304
3305 insert_ptr(trans, root, path, &disk_key, split->start,
3306 path->slots[level + 1] + 1, level + 1);
3307
3308 if (path->slots[level] >= mid) {
3309 path->slots[level] -= mid;
3310 btrfs_tree_unlock(c);
3311 free_extent_buffer(c);
3312 path->nodes[level] = split;
3313 path->slots[level + 1] += 1;
3314 } else {
3315 btrfs_tree_unlock(split);
3316 free_extent_buffer(split);
3317 }
3318 return ret;
3319 }
3320
3321 /*
3322 * how many bytes are required to store the items in a leaf. start
3323 * and nr indicate which items in the leaf to check. This totals up the
3324 * space used both by the item structs and the item data
3325 */
3326 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3327 {
3328 struct btrfs_item *start_item;
3329 struct btrfs_item *end_item;
3330 struct btrfs_map_token token;
3331 int data_len;
3332 int nritems = btrfs_header_nritems(l);
3333 int end = min(nritems, start + nr) - 1;
3334
3335 if (!nr)
3336 return 0;
3337 btrfs_init_map_token(&token);
3338 start_item = btrfs_item_nr(l, start);
3339 end_item = btrfs_item_nr(l, end);
3340 data_len = btrfs_token_item_offset(l, start_item, &token) +
3341 btrfs_token_item_size(l, start_item, &token);
3342 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3343 data_len += sizeof(struct btrfs_item) * nr;
3344 WARN_ON(data_len < 0);
3345 return data_len;
3346 }
3347
3348 /*
3349 * The space between the end of the leaf items and
3350 * the start of the leaf data. IOW, how much room
3351 * the leaf has left for both items and data
3352 */
3353 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3354 struct extent_buffer *leaf)
3355 {
3356 int nritems = btrfs_header_nritems(leaf);
3357 int ret;
3358 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3359 if (ret < 0) {
3360 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3361 "used %d nritems %d\n",
3362 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3363 leaf_space_used(leaf, 0, nritems), nritems);
3364 }
3365 return ret;
3366 }
3367
3368 /*
3369 * min slot controls the lowest index we're willing to push to the
3370 * right. We'll push up to and including min_slot, but no lower
3371 */
3372 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3373 struct btrfs_root *root,
3374 struct btrfs_path *path,
3375 int data_size, int empty,
3376 struct extent_buffer *right,
3377 int free_space, u32 left_nritems,
3378 u32 min_slot)
3379 {
3380 struct extent_buffer *left = path->nodes[0];
3381 struct extent_buffer *upper = path->nodes[1];
3382 struct btrfs_map_token token;
3383 struct btrfs_disk_key disk_key;
3384 int slot;
3385 u32 i;
3386 int push_space = 0;
3387 int push_items = 0;
3388 struct btrfs_item *item;
3389 u32 nr;
3390 u32 right_nritems;
3391 u32 data_end;
3392 u32 this_item_size;
3393
3394 btrfs_init_map_token(&token);
3395
3396 if (empty)
3397 nr = 0;
3398 else
3399 nr = max_t(u32, 1, min_slot);
3400
3401 if (path->slots[0] >= left_nritems)
3402 push_space += data_size;
3403
3404 slot = path->slots[1];
3405 i = left_nritems - 1;
3406 while (i >= nr) {
3407 item = btrfs_item_nr(left, i);
3408
3409 if (!empty && push_items > 0) {
3410 if (path->slots[0] > i)
3411 break;
3412 if (path->slots[0] == i) {
3413 int space = btrfs_leaf_free_space(root, left);
3414 if (space + push_space * 2 > free_space)
3415 break;
3416 }
3417 }
3418
3419 if (path->slots[0] == i)
3420 push_space += data_size;
3421
3422 this_item_size = btrfs_item_size(left, item);
3423 if (this_item_size + sizeof(*item) + push_space > free_space)
3424 break;
3425
3426 push_items++;
3427 push_space += this_item_size + sizeof(*item);
3428 if (i == 0)
3429 break;
3430 i--;
3431 }
3432
3433 if (push_items == 0)
3434 goto out_unlock;
3435
3436 WARN_ON(!empty && push_items == left_nritems);
3437
3438 /* push left to right */
3439 right_nritems = btrfs_header_nritems(right);
3440
3441 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3442 push_space -= leaf_data_end(root, left);
3443
3444 /* make room in the right data area */
3445 data_end = leaf_data_end(root, right);
3446 memmove_extent_buffer(right,
3447 btrfs_leaf_data(right) + data_end - push_space,
3448 btrfs_leaf_data(right) + data_end,
3449 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3450
3451 /* copy from the left data area */
3452 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3453 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3454 btrfs_leaf_data(left) + leaf_data_end(root, left),
3455 push_space);
3456
3457 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3458 btrfs_item_nr_offset(0),
3459 right_nritems * sizeof(struct btrfs_item));
3460
3461 /* copy the items from left to right */
3462 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3463 btrfs_item_nr_offset(left_nritems - push_items),
3464 push_items * sizeof(struct btrfs_item));
3465
3466 /* update the item pointers */
3467 right_nritems += push_items;
3468 btrfs_set_header_nritems(right, right_nritems);
3469 push_space = BTRFS_LEAF_DATA_SIZE(root);
3470 for (i = 0; i < right_nritems; i++) {
3471 item = btrfs_item_nr(right, i);
3472 push_space -= btrfs_token_item_size(right, item, &token);
3473 btrfs_set_token_item_offset(right, item, push_space, &token);
3474 }
3475
3476 left_nritems -= push_items;
3477 btrfs_set_header_nritems(left, left_nritems);
3478
3479 if (left_nritems)
3480 btrfs_mark_buffer_dirty(left);
3481 else
3482 clean_tree_block(trans, root, left);
3483
3484 btrfs_mark_buffer_dirty(right);
3485
3486 btrfs_item_key(right, &disk_key, 0);
3487 btrfs_set_node_key(upper, &disk_key, slot + 1);
3488 btrfs_mark_buffer_dirty(upper);
3489
3490 /* then fixup the leaf pointer in the path */
3491 if (path->slots[0] >= left_nritems) {
3492 path->slots[0] -= left_nritems;
3493 if (btrfs_header_nritems(path->nodes[0]) == 0)
3494 clean_tree_block(trans, root, path->nodes[0]);
3495 btrfs_tree_unlock(path->nodes[0]);
3496 free_extent_buffer(path->nodes[0]);
3497 path->nodes[0] = right;
3498 path->slots[1] += 1;
3499 } else {
3500 btrfs_tree_unlock(right);
3501 free_extent_buffer(right);
3502 }
3503 return 0;
3504
3505 out_unlock:
3506 btrfs_tree_unlock(right);
3507 free_extent_buffer(right);
3508 return 1;
3509 }
3510
3511 /*
3512 * push some data in the path leaf to the right, trying to free up at
3513 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3514 *
3515 * returns 1 if the push failed because the other node didn't have enough
3516 * room, 0 if everything worked out and < 0 if there were major errors.
3517 *
3518 * this will push starting from min_slot to the end of the leaf. It won't
3519 * push any slot lower than min_slot
3520 */
3521 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3522 *root, struct btrfs_path *path,
3523 int min_data_size, int data_size,
3524 int empty, u32 min_slot)
3525 {
3526 struct extent_buffer *left = path->nodes[0];
3527 struct extent_buffer *right;
3528 struct extent_buffer *upper;
3529 int slot;
3530 int free_space;
3531 u32 left_nritems;
3532 int ret;
3533
3534 if (!path->nodes[1])
3535 return 1;
3536
3537 slot = path->slots[1];
3538 upper = path->nodes[1];
3539 if (slot >= btrfs_header_nritems(upper) - 1)
3540 return 1;
3541
3542 btrfs_assert_tree_locked(path->nodes[1]);
3543
3544 right = read_node_slot(root, upper, slot + 1);
3545 if (right == NULL)
3546 return 1;
3547
3548 btrfs_tree_lock(right);
3549 btrfs_set_lock_blocking(right);
3550
3551 free_space = btrfs_leaf_free_space(root, right);
3552 if (free_space < data_size)
3553 goto out_unlock;
3554
3555 /* cow and double check */
3556 ret = btrfs_cow_block(trans, root, right, upper,
3557 slot + 1, &right);
3558 if (ret)
3559 goto out_unlock;
3560
3561 free_space = btrfs_leaf_free_space(root, right);
3562 if (free_space < data_size)
3563 goto out_unlock;
3564
3565 left_nritems = btrfs_header_nritems(left);
3566 if (left_nritems == 0)
3567 goto out_unlock;
3568
3569 return __push_leaf_right(trans, root, path, min_data_size, empty,
3570 right, free_space, left_nritems, min_slot);
3571 out_unlock:
3572 btrfs_tree_unlock(right);
3573 free_extent_buffer(right);
3574 return 1;
3575 }
3576
3577 /*
3578 * push some data in the path leaf to the left, trying to free up at
3579 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3580 *
3581 * max_slot can put a limit on how far into the leaf we'll push items. The
3582 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3583 * items
3584 */
3585 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3586 struct btrfs_root *root,
3587 struct btrfs_path *path, int data_size,
3588 int empty, struct extent_buffer *left,
3589 int free_space, u32 right_nritems,
3590 u32 max_slot)
3591 {
3592 struct btrfs_disk_key disk_key;
3593 struct extent_buffer *right = path->nodes[0];
3594 int i;
3595 int push_space = 0;
3596 int push_items = 0;
3597 struct btrfs_item *item;
3598 u32 old_left_nritems;
3599 u32 nr;
3600 int ret = 0;
3601 u32 this_item_size;
3602 u32 old_left_item_size;
3603 struct btrfs_map_token token;
3604
3605 btrfs_init_map_token(&token);
3606
3607 if (empty)
3608 nr = min(right_nritems, max_slot);
3609 else
3610 nr = min(right_nritems - 1, max_slot);
3611
3612 for (i = 0; i < nr; i++) {
3613 item = btrfs_item_nr(right, i);
3614
3615 if (!empty && push_items > 0) {
3616 if (path->slots[0] < i)
3617 break;
3618 if (path->slots[0] == i) {
3619 int space = btrfs_leaf_free_space(root, right);
3620 if (space + push_space * 2 > free_space)
3621 break;
3622 }
3623 }
3624
3625 if (path->slots[0] == i)
3626 push_space += data_size;
3627
3628 this_item_size = btrfs_item_size(right, item);
3629 if (this_item_size + sizeof(*item) + push_space > free_space)
3630 break;
3631
3632 push_items++;
3633 push_space += this_item_size + sizeof(*item);
3634 }
3635
3636 if (push_items == 0) {
3637 ret = 1;
3638 goto out;
3639 }
3640 if (!empty && push_items == btrfs_header_nritems(right))
3641 WARN_ON(1);
3642
3643 /* push data from right to left */
3644 copy_extent_buffer(left, right,
3645 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3646 btrfs_item_nr_offset(0),
3647 push_items * sizeof(struct btrfs_item));
3648
3649 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3650 btrfs_item_offset_nr(right, push_items - 1);
3651
3652 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3653 leaf_data_end(root, left) - push_space,
3654 btrfs_leaf_data(right) +
3655 btrfs_item_offset_nr(right, push_items - 1),
3656 push_space);
3657 old_left_nritems = btrfs_header_nritems(left);
3658 BUG_ON(old_left_nritems <= 0);
3659
3660 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3661 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3662 u32 ioff;
3663
3664 item = btrfs_item_nr(left, i);
3665
3666 ioff = btrfs_token_item_offset(left, item, &token);
3667 btrfs_set_token_item_offset(left, item,
3668 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3669 &token);
3670 }
3671 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3672
3673 /* fixup right node */
3674 if (push_items > right_nritems)
3675 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3676 right_nritems);
3677
3678 if (push_items < right_nritems) {
3679 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3680 leaf_data_end(root, right);
3681 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3682 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3683 btrfs_leaf_data(right) +
3684 leaf_data_end(root, right), push_space);
3685
3686 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3687 btrfs_item_nr_offset(push_items),
3688 (btrfs_header_nritems(right) - push_items) *
3689 sizeof(struct btrfs_item));
3690 }
3691 right_nritems -= push_items;
3692 btrfs_set_header_nritems(right, right_nritems);
3693 push_space = BTRFS_LEAF_DATA_SIZE(root);
3694 for (i = 0; i < right_nritems; i++) {
3695 item = btrfs_item_nr(right, i);
3696
3697 push_space = push_space - btrfs_token_item_size(right,
3698 item, &token);
3699 btrfs_set_token_item_offset(right, item, push_space, &token);
3700 }
3701
3702 btrfs_mark_buffer_dirty(left);
3703 if (right_nritems)
3704 btrfs_mark_buffer_dirty(right);
3705 else
3706 clean_tree_block(trans, root, right);
3707
3708 btrfs_item_key(right, &disk_key, 0);
3709 fixup_low_keys(root, path, &disk_key, 1);
3710
3711 /* then fixup the leaf pointer in the path */
3712 if (path->slots[0] < push_items) {
3713 path->slots[0] += old_left_nritems;
3714 btrfs_tree_unlock(path->nodes[0]);
3715 free_extent_buffer(path->nodes[0]);
3716 path->nodes[0] = left;
3717 path->slots[1] -= 1;
3718 } else {
3719 btrfs_tree_unlock(left);
3720 free_extent_buffer(left);
3721 path->slots[0] -= push_items;
3722 }
3723 BUG_ON(path->slots[0] < 0);
3724 return ret;
3725 out:
3726 btrfs_tree_unlock(left);
3727 free_extent_buffer(left);
3728 return ret;
3729 }
3730
3731 /*
3732 * push some data in the path leaf to the left, trying to free up at
3733 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3734 *
3735 * max_slot can put a limit on how far into the leaf we'll push items. The
3736 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3737 * items
3738 */
3739 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3740 *root, struct btrfs_path *path, int min_data_size,
3741 int data_size, int empty, u32 max_slot)
3742 {
3743 struct extent_buffer *right = path->nodes[0];
3744 struct extent_buffer *left;
3745 int slot;
3746 int free_space;
3747 u32 right_nritems;
3748 int ret = 0;
3749
3750 slot = path->slots[1];
3751 if (slot == 0)
3752 return 1;
3753 if (!path->nodes[1])
3754 return 1;
3755
3756 right_nritems = btrfs_header_nritems(right);
3757 if (right_nritems == 0)
3758 return 1;
3759
3760 btrfs_assert_tree_locked(path->nodes[1]);
3761
3762 left = read_node_slot(root, path->nodes[1], slot - 1);
3763 if (left == NULL)
3764 return 1;
3765
3766 btrfs_tree_lock(left);
3767 btrfs_set_lock_blocking(left);
3768
3769 free_space = btrfs_leaf_free_space(root, left);
3770 if (free_space < data_size) {
3771 ret = 1;
3772 goto out;
3773 }
3774
3775 /* cow and double check */
3776 ret = btrfs_cow_block(trans, root, left,
3777 path->nodes[1], slot - 1, &left);
3778 if (ret) {
3779 /* we hit -ENOSPC, but it isn't fatal here */
3780 if (ret == -ENOSPC)
3781 ret = 1;
3782 goto out;
3783 }
3784
3785 free_space = btrfs_leaf_free_space(root, left);
3786 if (free_space < data_size) {
3787 ret = 1;
3788 goto out;
3789 }
3790
3791 return __push_leaf_left(trans, root, path, min_data_size,
3792 empty, left, free_space, right_nritems,
3793 max_slot);
3794 out:
3795 btrfs_tree_unlock(left);
3796 free_extent_buffer(left);
3797 return ret;
3798 }
3799
3800 /*
3801 * split the path's leaf in two, making sure there is at least data_size
3802 * available for the resulting leaf level of the path.
3803 */
3804 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3805 struct btrfs_root *root,
3806 struct btrfs_path *path,
3807 struct extent_buffer *l,
3808 struct extent_buffer *right,
3809 int slot, int mid, int nritems)
3810 {
3811 int data_copy_size;
3812 int rt_data_off;
3813 int i;
3814 struct btrfs_disk_key disk_key;
3815 struct btrfs_map_token token;
3816
3817 btrfs_init_map_token(&token);
3818
3819 nritems = nritems - mid;
3820 btrfs_set_header_nritems(right, nritems);
3821 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3822
3823 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3824 btrfs_item_nr_offset(mid),
3825 nritems * sizeof(struct btrfs_item));
3826
3827 copy_extent_buffer(right, l,
3828 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3829 data_copy_size, btrfs_leaf_data(l) +
3830 leaf_data_end(root, l), data_copy_size);
3831
3832 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3833 btrfs_item_end_nr(l, mid);
3834
3835 for (i = 0; i < nritems; i++) {
3836 struct btrfs_item *item = btrfs_item_nr(right, i);
3837 u32 ioff;
3838
3839 ioff = btrfs_token_item_offset(right, item, &token);
3840 btrfs_set_token_item_offset(right, item,
3841 ioff + rt_data_off, &token);
3842 }
3843
3844 btrfs_set_header_nritems(l, mid);
3845 btrfs_item_key(right, &disk_key, 0);
3846 insert_ptr(trans, root, path, &disk_key, right->start,
3847 path->slots[1] + 1, 1);
3848
3849 btrfs_mark_buffer_dirty(right);
3850 btrfs_mark_buffer_dirty(l);
3851 BUG_ON(path->slots[0] != slot);
3852
3853 if (mid <= slot) {
3854 btrfs_tree_unlock(path->nodes[0]);
3855 free_extent_buffer(path->nodes[0]);
3856 path->nodes[0] = right;
3857 path->slots[0] -= mid;
3858 path->slots[1] += 1;
3859 } else {
3860 btrfs_tree_unlock(right);
3861 free_extent_buffer(right);
3862 }
3863
3864 BUG_ON(path->slots[0] < 0);
3865 }
3866
3867 /*
3868 * double splits happen when we need to insert a big item in the middle
3869 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3870 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3871 * A B C
3872 *
3873 * We avoid this by trying to push the items on either side of our target
3874 * into the adjacent leaves. If all goes well we can avoid the double split
3875 * completely.
3876 */
3877 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *root,
3879 struct btrfs_path *path,
3880 int data_size)
3881 {
3882 int ret;
3883 int progress = 0;
3884 int slot;
3885 u32 nritems;
3886
3887 slot = path->slots[0];
3888
3889 /*
3890 * try to push all the items after our slot into the
3891 * right leaf
3892 */
3893 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3894 if (ret < 0)
3895 return ret;
3896
3897 if (ret == 0)
3898 progress++;
3899
3900 nritems = btrfs_header_nritems(path->nodes[0]);
3901 /*
3902 * our goal is to get our slot at the start or end of a leaf. If
3903 * we've done so we're done
3904 */
3905 if (path->slots[0] == 0 || path->slots[0] == nritems)
3906 return 0;
3907
3908 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3909 return 0;
3910
3911 /* try to push all the items before our slot into the next leaf */
3912 slot = path->slots[0];
3913 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3914 if (ret < 0)
3915 return ret;
3916
3917 if (ret == 0)
3918 progress++;
3919
3920 if (progress)
3921 return 0;
3922 return 1;
3923 }
3924
3925 /*
3926 * split the path's leaf in two, making sure there is at least data_size
3927 * available for the resulting leaf level of the path.
3928 *
3929 * returns 0 if all went well and < 0 on failure.
3930 */
3931 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3932 struct btrfs_root *root,
3933 struct btrfs_key *ins_key,
3934 struct btrfs_path *path, int data_size,
3935 int extend)
3936 {
3937 struct btrfs_disk_key disk_key;
3938 struct extent_buffer *l;
3939 u32 nritems;
3940 int mid;
3941 int slot;
3942 struct extent_buffer *right;
3943 int ret = 0;
3944 int wret;
3945 int split;
3946 int num_doubles = 0;
3947 int tried_avoid_double = 0;
3948
3949 l = path->nodes[0];
3950 slot = path->slots[0];
3951 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3952 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3953 return -EOVERFLOW;
3954
3955 /* first try to make some room by pushing left and right */
3956 if (data_size && path->nodes[1]) {
3957 wret = push_leaf_right(trans, root, path, data_size,
3958 data_size, 0, 0);
3959 if (wret < 0)
3960 return wret;
3961 if (wret) {
3962 wret = push_leaf_left(trans, root, path, data_size,
3963 data_size, 0, (u32)-1);
3964 if (wret < 0)
3965 return wret;
3966 }
3967 l = path->nodes[0];
3968
3969 /* did the pushes work? */
3970 if (btrfs_leaf_free_space(root, l) >= data_size)
3971 return 0;
3972 }
3973
3974 if (!path->nodes[1]) {
3975 ret = insert_new_root(trans, root, path, 1);
3976 if (ret)
3977 return ret;
3978 }
3979 again:
3980 split = 1;
3981 l = path->nodes[0];
3982 slot = path->slots[0];
3983 nritems = btrfs_header_nritems(l);
3984 mid = (nritems + 1) / 2;
3985
3986 if (mid <= slot) {
3987 if (nritems == 1 ||
3988 leaf_space_used(l, mid, nritems - mid) + data_size >
3989 BTRFS_LEAF_DATA_SIZE(root)) {
3990 if (slot >= nritems) {
3991 split = 0;
3992 } else {
3993 mid = slot;
3994 if (mid != nritems &&
3995 leaf_space_used(l, mid, nritems - mid) +
3996 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3997 if (data_size && !tried_avoid_double)
3998 goto push_for_double;
3999 split = 2;
4000 }
4001 }
4002 }
4003 } else {
4004 if (leaf_space_used(l, 0, mid) + data_size >
4005 BTRFS_LEAF_DATA_SIZE(root)) {
4006 if (!extend && data_size && slot == 0) {
4007 split = 0;
4008 } else if ((extend || !data_size) && slot == 0) {
4009 mid = 1;
4010 } else {
4011 mid = slot;
4012 if (mid != nritems &&
4013 leaf_space_used(l, mid, nritems - mid) +
4014 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4015 if (data_size && !tried_avoid_double)
4016 goto push_for_double;
4017 split = 2 ;
4018 }
4019 }
4020 }
4021 }
4022
4023 if (split == 0)
4024 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4025 else
4026 btrfs_item_key(l, &disk_key, mid);
4027
4028 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4029 root->root_key.objectid,
4030 &disk_key, 0, l->start, 0);
4031 if (IS_ERR(right))
4032 return PTR_ERR(right);
4033
4034 root_add_used(root, root->leafsize);
4035
4036 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4037 btrfs_set_header_bytenr(right, right->start);
4038 btrfs_set_header_generation(right, trans->transid);
4039 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4040 btrfs_set_header_owner(right, root->root_key.objectid);
4041 btrfs_set_header_level(right, 0);
4042 write_extent_buffer(right, root->fs_info->fsid,
4043 (unsigned long)btrfs_header_fsid(right),
4044 BTRFS_FSID_SIZE);
4045
4046 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4047 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4048 BTRFS_UUID_SIZE);
4049
4050 if (split == 0) {
4051 if (mid <= slot) {
4052 btrfs_set_header_nritems(right, 0);
4053 insert_ptr(trans, root, path, &disk_key, right->start,
4054 path->slots[1] + 1, 1);
4055 btrfs_tree_unlock(path->nodes[0]);
4056 free_extent_buffer(path->nodes[0]);
4057 path->nodes[0] = right;
4058 path->slots[0] = 0;
4059 path->slots[1] += 1;
4060 } else {
4061 btrfs_set_header_nritems(right, 0);
4062 insert_ptr(trans, root, path, &disk_key, right->start,
4063 path->slots[1], 1);
4064 btrfs_tree_unlock(path->nodes[0]);
4065 free_extent_buffer(path->nodes[0]);
4066 path->nodes[0] = right;
4067 path->slots[0] = 0;
4068 if (path->slots[1] == 0)
4069 fixup_low_keys(root, path, &disk_key, 1);
4070 }
4071 btrfs_mark_buffer_dirty(right);
4072 return ret;
4073 }
4074
4075 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4076
4077 if (split == 2) {
4078 BUG_ON(num_doubles != 0);
4079 num_doubles++;
4080 goto again;
4081 }
4082
4083 return 0;
4084
4085 push_for_double:
4086 push_for_double_split(trans, root, path, data_size);
4087 tried_avoid_double = 1;
4088 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4089 return 0;
4090 goto again;
4091 }
4092
4093 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4094 struct btrfs_root *root,
4095 struct btrfs_path *path, int ins_len)
4096 {
4097 struct btrfs_key key;
4098 struct extent_buffer *leaf;
4099 struct btrfs_file_extent_item *fi;
4100 u64 extent_len = 0;
4101 u32 item_size;
4102 int ret;
4103
4104 leaf = path->nodes[0];
4105 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4106
4107 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4108 key.type != BTRFS_EXTENT_CSUM_KEY);
4109
4110 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4111 return 0;
4112
4113 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4114 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4115 fi = btrfs_item_ptr(leaf, path->slots[0],
4116 struct btrfs_file_extent_item);
4117 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4118 }
4119 btrfs_release_path(path);
4120
4121 path->keep_locks = 1;
4122 path->search_for_split = 1;
4123 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4124 path->search_for_split = 0;
4125 if (ret < 0)
4126 goto err;
4127
4128 ret = -EAGAIN;
4129 leaf = path->nodes[0];
4130 /* if our item isn't there or got smaller, return now */
4131 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4132 goto err;
4133
4134 /* the leaf has changed, it now has room. return now */
4135 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4136 goto err;
4137
4138 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4139 fi = btrfs_item_ptr(leaf, path->slots[0],
4140 struct btrfs_file_extent_item);
4141 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4142 goto err;
4143 }
4144
4145 btrfs_set_path_blocking(path);
4146 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4147 if (ret)
4148 goto err;
4149
4150 path->keep_locks = 0;
4151 btrfs_unlock_up_safe(path, 1);
4152 return 0;
4153 err:
4154 path->keep_locks = 0;
4155 return ret;
4156 }
4157
4158 static noinline int split_item(struct btrfs_trans_handle *trans,
4159 struct btrfs_root *root,
4160 struct btrfs_path *path,
4161 struct btrfs_key *new_key,
4162 unsigned long split_offset)
4163 {
4164 struct extent_buffer *leaf;
4165 struct btrfs_item *item;
4166 struct btrfs_item *new_item;
4167 int slot;
4168 char *buf;
4169 u32 nritems;
4170 u32 item_size;
4171 u32 orig_offset;
4172 struct btrfs_disk_key disk_key;
4173
4174 leaf = path->nodes[0];
4175 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4176
4177 btrfs_set_path_blocking(path);
4178
4179 item = btrfs_item_nr(leaf, path->slots[0]);
4180 orig_offset = btrfs_item_offset(leaf, item);
4181 item_size = btrfs_item_size(leaf, item);
4182
4183 buf = kmalloc(item_size, GFP_NOFS);
4184 if (!buf)
4185 return -ENOMEM;
4186
4187 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4188 path->slots[0]), item_size);
4189
4190 slot = path->slots[0] + 1;
4191 nritems = btrfs_header_nritems(leaf);
4192 if (slot != nritems) {
4193 /* shift the items */
4194 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4195 btrfs_item_nr_offset(slot),
4196 (nritems - slot) * sizeof(struct btrfs_item));
4197 }
4198
4199 btrfs_cpu_key_to_disk(&disk_key, new_key);
4200 btrfs_set_item_key(leaf, &disk_key, slot);
4201
4202 new_item = btrfs_item_nr(leaf, slot);
4203
4204 btrfs_set_item_offset(leaf, new_item, orig_offset);
4205 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4206
4207 btrfs_set_item_offset(leaf, item,
4208 orig_offset + item_size - split_offset);
4209 btrfs_set_item_size(leaf, item, split_offset);
4210
4211 btrfs_set_header_nritems(leaf, nritems + 1);
4212
4213 /* write the data for the start of the original item */
4214 write_extent_buffer(leaf, buf,
4215 btrfs_item_ptr_offset(leaf, path->slots[0]),
4216 split_offset);
4217
4218 /* write the data for the new item */
4219 write_extent_buffer(leaf, buf + split_offset,
4220 btrfs_item_ptr_offset(leaf, slot),
4221 item_size - split_offset);
4222 btrfs_mark_buffer_dirty(leaf);
4223
4224 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4225 kfree(buf);
4226 return 0;
4227 }
4228
4229 /*
4230 * This function splits a single item into two items,
4231 * giving 'new_key' to the new item and splitting the
4232 * old one at split_offset (from the start of the item).
4233 *
4234 * The path may be released by this operation. After
4235 * the split, the path is pointing to the old item. The
4236 * new item is going to be in the same node as the old one.
4237 *
4238 * Note, the item being split must be smaller enough to live alone on
4239 * a tree block with room for one extra struct btrfs_item
4240 *
4241 * This allows us to split the item in place, keeping a lock on the
4242 * leaf the entire time.
4243 */
4244 int btrfs_split_item(struct btrfs_trans_handle *trans,
4245 struct btrfs_root *root,
4246 struct btrfs_path *path,
4247 struct btrfs_key *new_key,
4248 unsigned long split_offset)
4249 {
4250 int ret;
4251 ret = setup_leaf_for_split(trans, root, path,
4252 sizeof(struct btrfs_item));
4253 if (ret)
4254 return ret;
4255
4256 ret = split_item(trans, root, path, new_key, split_offset);
4257 return ret;
4258 }
4259
4260 /*
4261 * This function duplicate a item, giving 'new_key' to the new item.
4262 * It guarantees both items live in the same tree leaf and the new item
4263 * is contiguous with the original item.
4264 *
4265 * This allows us to split file extent in place, keeping a lock on the
4266 * leaf the entire time.
4267 */
4268 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4269 struct btrfs_root *root,
4270 struct btrfs_path *path,
4271 struct btrfs_key *new_key)
4272 {
4273 struct extent_buffer *leaf;
4274 int ret;
4275 u32 item_size;
4276
4277 leaf = path->nodes[0];
4278 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4279 ret = setup_leaf_for_split(trans, root, path,
4280 item_size + sizeof(struct btrfs_item));
4281 if (ret)
4282 return ret;
4283
4284 path->slots[0]++;
4285 setup_items_for_insert(root, path, new_key, &item_size,
4286 item_size, item_size +
4287 sizeof(struct btrfs_item), 1);
4288 leaf = path->nodes[0];
4289 memcpy_extent_buffer(leaf,
4290 btrfs_item_ptr_offset(leaf, path->slots[0]),
4291 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4292 item_size);
4293 return 0;
4294 }
4295
4296 /*
4297 * make the item pointed to by the path smaller. new_size indicates
4298 * how small to make it, and from_end tells us if we just chop bytes
4299 * off the end of the item or if we shift the item to chop bytes off
4300 * the front.
4301 */
4302 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4303 u32 new_size, int from_end)
4304 {
4305 int slot;
4306 struct extent_buffer *leaf;
4307 struct btrfs_item *item;
4308 u32 nritems;
4309 unsigned int data_end;
4310 unsigned int old_data_start;
4311 unsigned int old_size;
4312 unsigned int size_diff;
4313 int i;
4314 struct btrfs_map_token token;
4315
4316 btrfs_init_map_token(&token);
4317
4318 leaf = path->nodes[0];
4319 slot = path->slots[0];
4320
4321 old_size = btrfs_item_size_nr(leaf, slot);
4322 if (old_size == new_size)
4323 return;
4324
4325 nritems = btrfs_header_nritems(leaf);
4326 data_end = leaf_data_end(root, leaf);
4327
4328 old_data_start = btrfs_item_offset_nr(leaf, slot);
4329
4330 size_diff = old_size - new_size;
4331
4332 BUG_ON(slot < 0);
4333 BUG_ON(slot >= nritems);
4334
4335 /*
4336 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4337 */
4338 /* first correct the data pointers */
4339 for (i = slot; i < nritems; i++) {
4340 u32 ioff;
4341 item = btrfs_item_nr(leaf, i);
4342
4343 ioff = btrfs_token_item_offset(leaf, item, &token);
4344 btrfs_set_token_item_offset(leaf, item,
4345 ioff + size_diff, &token);
4346 }
4347
4348 /* shift the data */
4349 if (from_end) {
4350 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4351 data_end + size_diff, btrfs_leaf_data(leaf) +
4352 data_end, old_data_start + new_size - data_end);
4353 } else {
4354 struct btrfs_disk_key disk_key;
4355 u64 offset;
4356
4357 btrfs_item_key(leaf, &disk_key, slot);
4358
4359 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4360 unsigned long ptr;
4361 struct btrfs_file_extent_item *fi;
4362
4363 fi = btrfs_item_ptr(leaf, slot,
4364 struct btrfs_file_extent_item);
4365 fi = (struct btrfs_file_extent_item *)(
4366 (unsigned long)fi - size_diff);
4367
4368 if (btrfs_file_extent_type(leaf, fi) ==
4369 BTRFS_FILE_EXTENT_INLINE) {
4370 ptr = btrfs_item_ptr_offset(leaf, slot);
4371 memmove_extent_buffer(leaf, ptr,
4372 (unsigned long)fi,
4373 offsetof(struct btrfs_file_extent_item,
4374 disk_bytenr));
4375 }
4376 }
4377
4378 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4379 data_end + size_diff, btrfs_leaf_data(leaf) +
4380 data_end, old_data_start - data_end);
4381
4382 offset = btrfs_disk_key_offset(&disk_key);
4383 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4384 btrfs_set_item_key(leaf, &disk_key, slot);
4385 if (slot == 0)
4386 fixup_low_keys(root, path, &disk_key, 1);
4387 }
4388
4389 item = btrfs_item_nr(leaf, slot);
4390 btrfs_set_item_size(leaf, item, new_size);
4391 btrfs_mark_buffer_dirty(leaf);
4392
4393 if (btrfs_leaf_free_space(root, leaf) < 0) {
4394 btrfs_print_leaf(root, leaf);
4395 BUG();
4396 }
4397 }
4398
4399 /*
4400 * make the item pointed to by the path bigger, data_size is the added size.
4401 */
4402 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4403 u32 data_size)
4404 {
4405 int slot;
4406 struct extent_buffer *leaf;
4407 struct btrfs_item *item;
4408 u32 nritems;
4409 unsigned int data_end;
4410 unsigned int old_data;
4411 unsigned int old_size;
4412 int i;
4413 struct btrfs_map_token token;
4414
4415 btrfs_init_map_token(&token);
4416
4417 leaf = path->nodes[0];
4418
4419 nritems = btrfs_header_nritems(leaf);
4420 data_end = leaf_data_end(root, leaf);
4421
4422 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4423 btrfs_print_leaf(root, leaf);
4424 BUG();
4425 }
4426 slot = path->slots[0];
4427 old_data = btrfs_item_end_nr(leaf, slot);
4428
4429 BUG_ON(slot < 0);
4430 if (slot >= nritems) {
4431 btrfs_print_leaf(root, leaf);
4432 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4433 slot, nritems);
4434 BUG_ON(1);
4435 }
4436
4437 /*
4438 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4439 */
4440 /* first correct the data pointers */
4441 for (i = slot; i < nritems; i++) {
4442 u32 ioff;
4443 item = btrfs_item_nr(leaf, i);
4444
4445 ioff = btrfs_token_item_offset(leaf, item, &token);
4446 btrfs_set_token_item_offset(leaf, item,
4447 ioff - data_size, &token);
4448 }
4449
4450 /* shift the data */
4451 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4452 data_end - data_size, btrfs_leaf_data(leaf) +
4453 data_end, old_data - data_end);
4454
4455 data_end = old_data;
4456 old_size = btrfs_item_size_nr(leaf, slot);
4457 item = btrfs_item_nr(leaf, slot);
4458 btrfs_set_item_size(leaf, item, old_size + data_size);
4459 btrfs_mark_buffer_dirty(leaf);
4460
4461 if (btrfs_leaf_free_space(root, leaf) < 0) {
4462 btrfs_print_leaf(root, leaf);
4463 BUG();
4464 }
4465 }
4466
4467 /*
4468 * this is a helper for btrfs_insert_empty_items, the main goal here is
4469 * to save stack depth by doing the bulk of the work in a function
4470 * that doesn't call btrfs_search_slot
4471 */
4472 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4473 struct btrfs_key *cpu_key, u32 *data_size,
4474 u32 total_data, u32 total_size, int nr)
4475 {
4476 struct btrfs_item *item;
4477 int i;
4478 u32 nritems;
4479 unsigned int data_end;
4480 struct btrfs_disk_key disk_key;
4481 struct extent_buffer *leaf;
4482 int slot;
4483 struct btrfs_map_token token;
4484
4485 btrfs_init_map_token(&token);
4486
4487 leaf = path->nodes[0];
4488 slot = path->slots[0];
4489
4490 nritems = btrfs_header_nritems(leaf);
4491 data_end = leaf_data_end(root, leaf);
4492
4493 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4494 btrfs_print_leaf(root, leaf);
4495 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4496 total_size, btrfs_leaf_free_space(root, leaf));
4497 BUG();
4498 }
4499
4500 if (slot != nritems) {
4501 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4502
4503 if (old_data < data_end) {
4504 btrfs_print_leaf(root, leaf);
4505 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4506 slot, old_data, data_end);
4507 BUG_ON(1);
4508 }
4509 /*
4510 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4511 */
4512 /* first correct the data pointers */
4513 for (i = slot; i < nritems; i++) {
4514 u32 ioff;
4515
4516 item = btrfs_item_nr(leaf, i);
4517 ioff = btrfs_token_item_offset(leaf, item, &token);
4518 btrfs_set_token_item_offset(leaf, item,
4519 ioff - total_data, &token);
4520 }
4521 /* shift the items */
4522 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4523 btrfs_item_nr_offset(slot),
4524 (nritems - slot) * sizeof(struct btrfs_item));
4525
4526 /* shift the data */
4527 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4528 data_end - total_data, btrfs_leaf_data(leaf) +
4529 data_end, old_data - data_end);
4530 data_end = old_data;
4531 }
4532
4533 /* setup the item for the new data */
4534 for (i = 0; i < nr; i++) {
4535 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4536 btrfs_set_item_key(leaf, &disk_key, slot + i);
4537 item = btrfs_item_nr(leaf, slot + i);
4538 btrfs_set_token_item_offset(leaf, item,
4539 data_end - data_size[i], &token);
4540 data_end -= data_size[i];
4541 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4542 }
4543
4544 btrfs_set_header_nritems(leaf, nritems + nr);
4545
4546 if (slot == 0) {
4547 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4548 fixup_low_keys(root, path, &disk_key, 1);
4549 }
4550 btrfs_unlock_up_safe(path, 1);
4551 btrfs_mark_buffer_dirty(leaf);
4552
4553 if (btrfs_leaf_free_space(root, leaf) < 0) {
4554 btrfs_print_leaf(root, leaf);
4555 BUG();
4556 }
4557 }
4558
4559 /*
4560 * Given a key and some data, insert items into the tree.
4561 * This does all the path init required, making room in the tree if needed.
4562 */
4563 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4564 struct btrfs_root *root,
4565 struct btrfs_path *path,
4566 struct btrfs_key *cpu_key, u32 *data_size,
4567 int nr)
4568 {
4569 int ret = 0;
4570 int slot;
4571 int i;
4572 u32 total_size = 0;
4573 u32 total_data = 0;
4574
4575 for (i = 0; i < nr; i++)
4576 total_data += data_size[i];
4577
4578 total_size = total_data + (nr * sizeof(struct btrfs_item));
4579 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4580 if (ret == 0)
4581 return -EEXIST;
4582 if (ret < 0)
4583 return ret;
4584
4585 slot = path->slots[0];
4586 BUG_ON(slot < 0);
4587
4588 setup_items_for_insert(root, path, cpu_key, data_size,
4589 total_data, total_size, nr);
4590 return 0;
4591 }
4592
4593 /*
4594 * Given a key and some data, insert an item into the tree.
4595 * This does all the path init required, making room in the tree if needed.
4596 */
4597 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4598 *root, struct btrfs_key *cpu_key, void *data, u32
4599 data_size)
4600 {
4601 int ret = 0;
4602 struct btrfs_path *path;
4603 struct extent_buffer *leaf;
4604 unsigned long ptr;
4605
4606 path = btrfs_alloc_path();
4607 if (!path)
4608 return -ENOMEM;
4609 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4610 if (!ret) {
4611 leaf = path->nodes[0];
4612 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4613 write_extent_buffer(leaf, data, ptr, data_size);
4614 btrfs_mark_buffer_dirty(leaf);
4615 }
4616 btrfs_free_path(path);
4617 return ret;
4618 }
4619
4620 /*
4621 * delete the pointer from a given node.
4622 *
4623 * the tree should have been previously balanced so the deletion does not
4624 * empty a node.
4625 */
4626 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4627 int level, int slot)
4628 {
4629 struct extent_buffer *parent = path->nodes[level];
4630 u32 nritems;
4631 int ret;
4632
4633 nritems = btrfs_header_nritems(parent);
4634 if (slot != nritems - 1) {
4635 if (level)
4636 tree_mod_log_eb_move(root->fs_info, parent, slot,
4637 slot + 1, nritems - slot - 1);
4638 memmove_extent_buffer(parent,
4639 btrfs_node_key_ptr_offset(slot),
4640 btrfs_node_key_ptr_offset(slot + 1),
4641 sizeof(struct btrfs_key_ptr) *
4642 (nritems - slot - 1));
4643 } else if (level) {
4644 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4645 MOD_LOG_KEY_REMOVE);
4646 BUG_ON(ret < 0);
4647 }
4648
4649 nritems--;
4650 btrfs_set_header_nritems(parent, nritems);
4651 if (nritems == 0 && parent == root->node) {
4652 BUG_ON(btrfs_header_level(root->node) != 1);
4653 /* just turn the root into a leaf and break */
4654 btrfs_set_header_level(root->node, 0);
4655 } else if (slot == 0) {
4656 struct btrfs_disk_key disk_key;
4657
4658 btrfs_node_key(parent, &disk_key, 0);
4659 fixup_low_keys(root, path, &disk_key, level + 1);
4660 }
4661 btrfs_mark_buffer_dirty(parent);
4662 }
4663
4664 /*
4665 * a helper function to delete the leaf pointed to by path->slots[1] and
4666 * path->nodes[1].
4667 *
4668 * This deletes the pointer in path->nodes[1] and frees the leaf
4669 * block extent. zero is returned if it all worked out, < 0 otherwise.
4670 *
4671 * The path must have already been setup for deleting the leaf, including
4672 * all the proper balancing. path->nodes[1] must be locked.
4673 */
4674 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4675 struct btrfs_root *root,
4676 struct btrfs_path *path,
4677 struct extent_buffer *leaf)
4678 {
4679 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4680 del_ptr(root, path, 1, path->slots[1]);
4681
4682 /*
4683 * btrfs_free_extent is expensive, we want to make sure we
4684 * aren't holding any locks when we call it
4685 */
4686 btrfs_unlock_up_safe(path, 0);
4687
4688 root_sub_used(root, leaf->len);
4689
4690 extent_buffer_get(leaf);
4691 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4692 free_extent_buffer_stale(leaf);
4693 }
4694 /*
4695 * delete the item at the leaf level in path. If that empties
4696 * the leaf, remove it from the tree
4697 */
4698 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4699 struct btrfs_path *path, int slot, int nr)
4700 {
4701 struct extent_buffer *leaf;
4702 struct btrfs_item *item;
4703 int last_off;
4704 int dsize = 0;
4705 int ret = 0;
4706 int wret;
4707 int i;
4708 u32 nritems;
4709 struct btrfs_map_token token;
4710
4711 btrfs_init_map_token(&token);
4712
4713 leaf = path->nodes[0];
4714 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4715
4716 for (i = 0; i < nr; i++)
4717 dsize += btrfs_item_size_nr(leaf, slot + i);
4718
4719 nritems = btrfs_header_nritems(leaf);
4720
4721 if (slot + nr != nritems) {
4722 int data_end = leaf_data_end(root, leaf);
4723
4724 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4725 data_end + dsize,
4726 btrfs_leaf_data(leaf) + data_end,
4727 last_off - data_end);
4728
4729 for (i = slot + nr; i < nritems; i++) {
4730 u32 ioff;
4731
4732 item = btrfs_item_nr(leaf, i);
4733 ioff = btrfs_token_item_offset(leaf, item, &token);
4734 btrfs_set_token_item_offset(leaf, item,
4735 ioff + dsize, &token);
4736 }
4737
4738 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4739 btrfs_item_nr_offset(slot + nr),
4740 sizeof(struct btrfs_item) *
4741 (nritems - slot - nr));
4742 }
4743 btrfs_set_header_nritems(leaf, nritems - nr);
4744 nritems -= nr;
4745
4746 /* delete the leaf if we've emptied it */
4747 if (nritems == 0) {
4748 if (leaf == root->node) {
4749 btrfs_set_header_level(leaf, 0);
4750 } else {
4751 btrfs_set_path_blocking(path);
4752 clean_tree_block(trans, root, leaf);
4753 btrfs_del_leaf(trans, root, path, leaf);
4754 }
4755 } else {
4756 int used = leaf_space_used(leaf, 0, nritems);
4757 if (slot == 0) {
4758 struct btrfs_disk_key disk_key;
4759
4760 btrfs_item_key(leaf, &disk_key, 0);
4761 fixup_low_keys(root, path, &disk_key, 1);
4762 }
4763
4764 /* delete the leaf if it is mostly empty */
4765 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4766 /* push_leaf_left fixes the path.
4767 * make sure the path still points to our leaf
4768 * for possible call to del_ptr below
4769 */
4770 slot = path->slots[1];
4771 extent_buffer_get(leaf);
4772
4773 btrfs_set_path_blocking(path);
4774 wret = push_leaf_left(trans, root, path, 1, 1,
4775 1, (u32)-1);
4776 if (wret < 0 && wret != -ENOSPC)
4777 ret = wret;
4778
4779 if (path->nodes[0] == leaf &&
4780 btrfs_header_nritems(leaf)) {
4781 wret = push_leaf_right(trans, root, path, 1,
4782 1, 1, 0);
4783 if (wret < 0 && wret != -ENOSPC)
4784 ret = wret;
4785 }
4786
4787 if (btrfs_header_nritems(leaf) == 0) {
4788 path->slots[1] = slot;
4789 btrfs_del_leaf(trans, root, path, leaf);
4790 free_extent_buffer(leaf);
4791 ret = 0;
4792 } else {
4793 /* if we're still in the path, make sure
4794 * we're dirty. Otherwise, one of the
4795 * push_leaf functions must have already
4796 * dirtied this buffer
4797 */
4798 if (path->nodes[0] == leaf)
4799 btrfs_mark_buffer_dirty(leaf);
4800 free_extent_buffer(leaf);
4801 }
4802 } else {
4803 btrfs_mark_buffer_dirty(leaf);
4804 }
4805 }
4806 return ret;
4807 }
4808
4809 /*
4810 * search the tree again to find a leaf with lesser keys
4811 * returns 0 if it found something or 1 if there are no lesser leaves.
4812 * returns < 0 on io errors.
4813 *
4814 * This may release the path, and so you may lose any locks held at the
4815 * time you call it.
4816 */
4817 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4818 {
4819 struct btrfs_key key;
4820 struct btrfs_disk_key found_key;
4821 int ret;
4822
4823 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4824
4825 if (key.offset > 0)
4826 key.offset--;
4827 else if (key.type > 0)
4828 key.type--;
4829 else if (key.objectid > 0)
4830 key.objectid--;
4831 else
4832 return 1;
4833
4834 btrfs_release_path(path);
4835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4836 if (ret < 0)
4837 return ret;
4838 btrfs_item_key(path->nodes[0], &found_key, 0);
4839 ret = comp_keys(&found_key, &key);
4840 if (ret < 0)
4841 return 0;
4842 return 1;
4843 }
4844
4845 /*
4846 * A helper function to walk down the tree starting at min_key, and looking
4847 * for nodes or leaves that are have a minimum transaction id.
4848 * This is used by the btree defrag code, and tree logging
4849 *
4850 * This does not cow, but it does stuff the starting key it finds back
4851 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4852 * key and get a writable path.
4853 *
4854 * This does lock as it descends, and path->keep_locks should be set
4855 * to 1 by the caller.
4856 *
4857 * This honors path->lowest_level to prevent descent past a given level
4858 * of the tree.
4859 *
4860 * min_trans indicates the oldest transaction that you are interested
4861 * in walking through. Any nodes or leaves older than min_trans are
4862 * skipped over (without reading them).
4863 *
4864 * returns zero if something useful was found, < 0 on error and 1 if there
4865 * was nothing in the tree that matched the search criteria.
4866 */
4867 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4868 struct btrfs_key *max_key,
4869 struct btrfs_path *path,
4870 u64 min_trans)
4871 {
4872 struct extent_buffer *cur;
4873 struct btrfs_key found_key;
4874 int slot;
4875 int sret;
4876 u32 nritems;
4877 int level;
4878 int ret = 1;
4879
4880 WARN_ON(!path->keep_locks);
4881 again:
4882 cur = btrfs_read_lock_root_node(root);
4883 level = btrfs_header_level(cur);
4884 WARN_ON(path->nodes[level]);
4885 path->nodes[level] = cur;
4886 path->locks[level] = BTRFS_READ_LOCK;
4887
4888 if (btrfs_header_generation(cur) < min_trans) {
4889 ret = 1;
4890 goto out;
4891 }
4892 while (1) {
4893 nritems = btrfs_header_nritems(cur);
4894 level = btrfs_header_level(cur);
4895 sret = bin_search(cur, min_key, level, &slot);
4896
4897 /* at the lowest level, we're done, setup the path and exit */
4898 if (level == path->lowest_level) {
4899 if (slot >= nritems)
4900 goto find_next_key;
4901 ret = 0;
4902 path->slots[level] = slot;
4903 btrfs_item_key_to_cpu(cur, &found_key, slot);
4904 goto out;
4905 }
4906 if (sret && slot > 0)
4907 slot--;
4908 /*
4909 * check this node pointer against the min_trans parameters.
4910 * If it is too old, old, skip to the next one.
4911 */
4912 while (slot < nritems) {
4913 u64 blockptr;
4914 u64 gen;
4915
4916 blockptr = btrfs_node_blockptr(cur, slot);
4917 gen = btrfs_node_ptr_generation(cur, slot);
4918 if (gen < min_trans) {
4919 slot++;
4920 continue;
4921 }
4922 break;
4923 }
4924 find_next_key:
4925 /*
4926 * we didn't find a candidate key in this node, walk forward
4927 * and find another one
4928 */
4929 if (slot >= nritems) {
4930 path->slots[level] = slot;
4931 btrfs_set_path_blocking(path);
4932 sret = btrfs_find_next_key(root, path, min_key, level,
4933 min_trans);
4934 if (sret == 0) {
4935 btrfs_release_path(path);
4936 goto again;
4937 } else {
4938 goto out;
4939 }
4940 }
4941 /* save our key for returning back */
4942 btrfs_node_key_to_cpu(cur, &found_key, slot);
4943 path->slots[level] = slot;
4944 if (level == path->lowest_level) {
4945 ret = 0;
4946 unlock_up(path, level, 1, 0, NULL);
4947 goto out;
4948 }
4949 btrfs_set_path_blocking(path);
4950 cur = read_node_slot(root, cur, slot);
4951 BUG_ON(!cur); /* -ENOMEM */
4952
4953 btrfs_tree_read_lock(cur);
4954
4955 path->locks[level - 1] = BTRFS_READ_LOCK;
4956 path->nodes[level - 1] = cur;
4957 unlock_up(path, level, 1, 0, NULL);
4958 btrfs_clear_path_blocking(path, NULL, 0);
4959 }
4960 out:
4961 if (ret == 0)
4962 memcpy(min_key, &found_key, sizeof(found_key));
4963 btrfs_set_path_blocking(path);
4964 return ret;
4965 }
4966
4967 static void tree_move_down(struct btrfs_root *root,
4968 struct btrfs_path *path,
4969 int *level, int root_level)
4970 {
4971 BUG_ON(*level == 0);
4972 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4973 path->slots[*level]);
4974 path->slots[*level - 1] = 0;
4975 (*level)--;
4976 }
4977
4978 static int tree_move_next_or_upnext(struct btrfs_root *root,
4979 struct btrfs_path *path,
4980 int *level, int root_level)
4981 {
4982 int ret = 0;
4983 int nritems;
4984 nritems = btrfs_header_nritems(path->nodes[*level]);
4985
4986 path->slots[*level]++;
4987
4988 while (path->slots[*level] >= nritems) {
4989 if (*level == root_level)
4990 return -1;
4991
4992 /* move upnext */
4993 path->slots[*level] = 0;
4994 free_extent_buffer(path->nodes[*level]);
4995 path->nodes[*level] = NULL;
4996 (*level)++;
4997 path->slots[*level]++;
4998
4999 nritems = btrfs_header_nritems(path->nodes[*level]);
5000 ret = 1;
5001 }
5002 return ret;
5003 }
5004
5005 /*
5006 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5007 * or down.
5008 */
5009 static int tree_advance(struct btrfs_root *root,
5010 struct btrfs_path *path,
5011 int *level, int root_level,
5012 int allow_down,
5013 struct btrfs_key *key)
5014 {
5015 int ret;
5016
5017 if (*level == 0 || !allow_down) {
5018 ret = tree_move_next_or_upnext(root, path, level, root_level);
5019 } else {
5020 tree_move_down(root, path, level, root_level);
5021 ret = 0;
5022 }
5023 if (ret >= 0) {
5024 if (*level == 0)
5025 btrfs_item_key_to_cpu(path->nodes[*level], key,
5026 path->slots[*level]);
5027 else
5028 btrfs_node_key_to_cpu(path->nodes[*level], key,
5029 path->slots[*level]);
5030 }
5031 return ret;
5032 }
5033
5034 static int tree_compare_item(struct btrfs_root *left_root,
5035 struct btrfs_path *left_path,
5036 struct btrfs_path *right_path,
5037 char *tmp_buf)
5038 {
5039 int cmp;
5040 int len1, len2;
5041 unsigned long off1, off2;
5042
5043 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5044 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5045 if (len1 != len2)
5046 return 1;
5047
5048 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5049 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5050 right_path->slots[0]);
5051
5052 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5053
5054 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5055 if (cmp)
5056 return 1;
5057 return 0;
5058 }
5059
5060 #define ADVANCE 1
5061 #define ADVANCE_ONLY_NEXT -1
5062
5063 /*
5064 * This function compares two trees and calls the provided callback for
5065 * every changed/new/deleted item it finds.
5066 * If shared tree blocks are encountered, whole subtrees are skipped, making
5067 * the compare pretty fast on snapshotted subvolumes.
5068 *
5069 * This currently works on commit roots only. As commit roots are read only,
5070 * we don't do any locking. The commit roots are protected with transactions.
5071 * Transactions are ended and rejoined when a commit is tried in between.
5072 *
5073 * This function checks for modifications done to the trees while comparing.
5074 * If it detects a change, it aborts immediately.
5075 */
5076 int btrfs_compare_trees(struct btrfs_root *left_root,
5077 struct btrfs_root *right_root,
5078 btrfs_changed_cb_t changed_cb, void *ctx)
5079 {
5080 int ret;
5081 int cmp;
5082 struct btrfs_trans_handle *trans = NULL;
5083 struct btrfs_path *left_path = NULL;
5084 struct btrfs_path *right_path = NULL;
5085 struct btrfs_key left_key;
5086 struct btrfs_key right_key;
5087 char *tmp_buf = NULL;
5088 int left_root_level;
5089 int right_root_level;
5090 int left_level;
5091 int right_level;
5092 int left_end_reached;
5093 int right_end_reached;
5094 int advance_left;
5095 int advance_right;
5096 u64 left_blockptr;
5097 u64 right_blockptr;
5098 u64 left_start_ctransid;
5099 u64 right_start_ctransid;
5100 u64 ctransid;
5101
5102 left_path = btrfs_alloc_path();
5103 if (!left_path) {
5104 ret = -ENOMEM;
5105 goto out;
5106 }
5107 right_path = btrfs_alloc_path();
5108 if (!right_path) {
5109 ret = -ENOMEM;
5110 goto out;
5111 }
5112
5113 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5114 if (!tmp_buf) {
5115 ret = -ENOMEM;
5116 goto out;
5117 }
5118
5119 left_path->search_commit_root = 1;
5120 left_path->skip_locking = 1;
5121 right_path->search_commit_root = 1;
5122 right_path->skip_locking = 1;
5123
5124 spin_lock(&left_root->root_item_lock);
5125 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5126 spin_unlock(&left_root->root_item_lock);
5127
5128 spin_lock(&right_root->root_item_lock);
5129 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5130 spin_unlock(&right_root->root_item_lock);
5131
5132 trans = btrfs_join_transaction(left_root);
5133 if (IS_ERR(trans)) {
5134 ret = PTR_ERR(trans);
5135 trans = NULL;
5136 goto out;
5137 }
5138
5139 /*
5140 * Strategy: Go to the first items of both trees. Then do
5141 *
5142 * If both trees are at level 0
5143 * Compare keys of current items
5144 * If left < right treat left item as new, advance left tree
5145 * and repeat
5146 * If left > right treat right item as deleted, advance right tree
5147 * and repeat
5148 * If left == right do deep compare of items, treat as changed if
5149 * needed, advance both trees and repeat
5150 * If both trees are at the same level but not at level 0
5151 * Compare keys of current nodes/leafs
5152 * If left < right advance left tree and repeat
5153 * If left > right advance right tree and repeat
5154 * If left == right compare blockptrs of the next nodes/leafs
5155 * If they match advance both trees but stay at the same level
5156 * and repeat
5157 * If they don't match advance both trees while allowing to go
5158 * deeper and repeat
5159 * If tree levels are different
5160 * Advance the tree that needs it and repeat
5161 *
5162 * Advancing a tree means:
5163 * If we are at level 0, try to go to the next slot. If that's not
5164 * possible, go one level up and repeat. Stop when we found a level
5165 * where we could go to the next slot. We may at this point be on a
5166 * node or a leaf.
5167 *
5168 * If we are not at level 0 and not on shared tree blocks, go one
5169 * level deeper.
5170 *
5171 * If we are not at level 0 and on shared tree blocks, go one slot to
5172 * the right if possible or go up and right.
5173 */
5174
5175 left_level = btrfs_header_level(left_root->commit_root);
5176 left_root_level = left_level;
5177 left_path->nodes[left_level] = left_root->commit_root;
5178 extent_buffer_get(left_path->nodes[left_level]);
5179
5180 right_level = btrfs_header_level(right_root->commit_root);
5181 right_root_level = right_level;
5182 right_path->nodes[right_level] = right_root->commit_root;
5183 extent_buffer_get(right_path->nodes[right_level]);
5184
5185 if (left_level == 0)
5186 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5187 &left_key, left_path->slots[left_level]);
5188 else
5189 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5190 &left_key, left_path->slots[left_level]);
5191 if (right_level == 0)
5192 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5193 &right_key, right_path->slots[right_level]);
5194 else
5195 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5196 &right_key, right_path->slots[right_level]);
5197
5198 left_end_reached = right_end_reached = 0;
5199 advance_left = advance_right = 0;
5200
5201 while (1) {
5202 /*
5203 * We need to make sure the transaction does not get committed
5204 * while we do anything on commit roots. This means, we need to
5205 * join and leave transactions for every item that we process.
5206 */
5207 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5208 btrfs_release_path(left_path);
5209 btrfs_release_path(right_path);
5210
5211 ret = btrfs_end_transaction(trans, left_root);
5212 trans = NULL;
5213 if (ret < 0)
5214 goto out;
5215 }
5216 /* now rejoin the transaction */
5217 if (!trans) {
5218 trans = btrfs_join_transaction(left_root);
5219 if (IS_ERR(trans)) {
5220 ret = PTR_ERR(trans);
5221 trans = NULL;
5222 goto out;
5223 }
5224
5225 spin_lock(&left_root->root_item_lock);
5226 ctransid = btrfs_root_ctransid(&left_root->root_item);
5227 spin_unlock(&left_root->root_item_lock);
5228 if (ctransid != left_start_ctransid)
5229 left_start_ctransid = 0;
5230
5231 spin_lock(&right_root->root_item_lock);
5232 ctransid = btrfs_root_ctransid(&right_root->root_item);
5233 spin_unlock(&right_root->root_item_lock);
5234 if (ctransid != right_start_ctransid)
5235 right_start_ctransid = 0;
5236
5237 if (!left_start_ctransid || !right_start_ctransid) {
5238 WARN(1, KERN_WARNING
5239 "btrfs: btrfs_compare_tree detected "
5240 "a change in one of the trees while "
5241 "iterating. This is probably a "
5242 "bug.\n");
5243 ret = -EIO;
5244 goto out;
5245 }
5246
5247 /*
5248 * the commit root may have changed, so start again
5249 * where we stopped
5250 */
5251 left_path->lowest_level = left_level;
5252 right_path->lowest_level = right_level;
5253 ret = btrfs_search_slot(NULL, left_root,
5254 &left_key, left_path, 0, 0);
5255 if (ret < 0)
5256 goto out;
5257 ret = btrfs_search_slot(NULL, right_root,
5258 &right_key, right_path, 0, 0);
5259 if (ret < 0)
5260 goto out;
5261 }
5262
5263 if (advance_left && !left_end_reached) {
5264 ret = tree_advance(left_root, left_path, &left_level,
5265 left_root_level,
5266 advance_left != ADVANCE_ONLY_NEXT,
5267 &left_key);
5268 if (ret < 0)
5269 left_end_reached = ADVANCE;
5270 advance_left = 0;
5271 }
5272 if (advance_right && !right_end_reached) {
5273 ret = tree_advance(right_root, right_path, &right_level,
5274 right_root_level,
5275 advance_right != ADVANCE_ONLY_NEXT,
5276 &right_key);
5277 if (ret < 0)
5278 right_end_reached = ADVANCE;
5279 advance_right = 0;
5280 }
5281
5282 if (left_end_reached && right_end_reached) {
5283 ret = 0;
5284 goto out;
5285 } else if (left_end_reached) {
5286 if (right_level == 0) {
5287 ret = changed_cb(left_root, right_root,
5288 left_path, right_path,
5289 &right_key,
5290 BTRFS_COMPARE_TREE_DELETED,
5291 ctx);
5292 if (ret < 0)
5293 goto out;
5294 }
5295 advance_right = ADVANCE;
5296 continue;
5297 } else if (right_end_reached) {
5298 if (left_level == 0) {
5299 ret = changed_cb(left_root, right_root,
5300 left_path, right_path,
5301 &left_key,
5302 BTRFS_COMPARE_TREE_NEW,
5303 ctx);
5304 if (ret < 0)
5305 goto out;
5306 }
5307 advance_left = ADVANCE;
5308 continue;
5309 }
5310
5311 if (left_level == 0 && right_level == 0) {
5312 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5313 if (cmp < 0) {
5314 ret = changed_cb(left_root, right_root,
5315 left_path, right_path,
5316 &left_key,
5317 BTRFS_COMPARE_TREE_NEW,
5318 ctx);
5319 if (ret < 0)
5320 goto out;
5321 advance_left = ADVANCE;
5322 } else if (cmp > 0) {
5323 ret = changed_cb(left_root, right_root,
5324 left_path, right_path,
5325 &right_key,
5326 BTRFS_COMPARE_TREE_DELETED,
5327 ctx);
5328 if (ret < 0)
5329 goto out;
5330 advance_right = ADVANCE;
5331 } else {
5332 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5333 ret = tree_compare_item(left_root, left_path,
5334 right_path, tmp_buf);
5335 if (ret) {
5336 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5337 ret = changed_cb(left_root, right_root,
5338 left_path, right_path,
5339 &left_key,
5340 BTRFS_COMPARE_TREE_CHANGED,
5341 ctx);
5342 if (ret < 0)
5343 goto out;
5344 }
5345 advance_left = ADVANCE;
5346 advance_right = ADVANCE;
5347 }
5348 } else if (left_level == right_level) {
5349 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5350 if (cmp < 0) {
5351 advance_left = ADVANCE;
5352 } else if (cmp > 0) {
5353 advance_right = ADVANCE;
5354 } else {
5355 left_blockptr = btrfs_node_blockptr(
5356 left_path->nodes[left_level],
5357 left_path->slots[left_level]);
5358 right_blockptr = btrfs_node_blockptr(
5359 right_path->nodes[right_level],
5360 right_path->slots[right_level]);
5361 if (left_blockptr == right_blockptr) {
5362 /*
5363 * As we're on a shared block, don't
5364 * allow to go deeper.
5365 */
5366 advance_left = ADVANCE_ONLY_NEXT;
5367 advance_right = ADVANCE_ONLY_NEXT;
5368 } else {
5369 advance_left = ADVANCE;
5370 advance_right = ADVANCE;
5371 }
5372 }
5373 } else if (left_level < right_level) {
5374 advance_right = ADVANCE;
5375 } else {
5376 advance_left = ADVANCE;
5377 }
5378 }
5379
5380 out:
5381 btrfs_free_path(left_path);
5382 btrfs_free_path(right_path);
5383 kfree(tmp_buf);
5384
5385 if (trans) {
5386 if (!ret)
5387 ret = btrfs_end_transaction(trans, left_root);
5388 else
5389 btrfs_end_transaction(trans, left_root);
5390 }
5391
5392 return ret;
5393 }
5394
5395 /*
5396 * this is similar to btrfs_next_leaf, but does not try to preserve
5397 * and fixup the path. It looks for and returns the next key in the
5398 * tree based on the current path and the min_trans parameters.
5399 *
5400 * 0 is returned if another key is found, < 0 if there are any errors
5401 * and 1 is returned if there are no higher keys in the tree
5402 *
5403 * path->keep_locks should be set to 1 on the search made before
5404 * calling this function.
5405 */
5406 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5407 struct btrfs_key *key, int level, u64 min_trans)
5408 {
5409 int slot;
5410 struct extent_buffer *c;
5411
5412 WARN_ON(!path->keep_locks);
5413 while (level < BTRFS_MAX_LEVEL) {
5414 if (!path->nodes[level])
5415 return 1;
5416
5417 slot = path->slots[level] + 1;
5418 c = path->nodes[level];
5419 next:
5420 if (slot >= btrfs_header_nritems(c)) {
5421 int ret;
5422 int orig_lowest;
5423 struct btrfs_key cur_key;
5424 if (level + 1 >= BTRFS_MAX_LEVEL ||
5425 !path->nodes[level + 1])
5426 return 1;
5427
5428 if (path->locks[level + 1]) {
5429 level++;
5430 continue;
5431 }
5432
5433 slot = btrfs_header_nritems(c) - 1;
5434 if (level == 0)
5435 btrfs_item_key_to_cpu(c, &cur_key, slot);
5436 else
5437 btrfs_node_key_to_cpu(c, &cur_key, slot);
5438
5439 orig_lowest = path->lowest_level;
5440 btrfs_release_path(path);
5441 path->lowest_level = level;
5442 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5443 0, 0);
5444 path->lowest_level = orig_lowest;
5445 if (ret < 0)
5446 return ret;
5447
5448 c = path->nodes[level];
5449 slot = path->slots[level];
5450 if (ret == 0)
5451 slot++;
5452 goto next;
5453 }
5454
5455 if (level == 0)
5456 btrfs_item_key_to_cpu(c, key, slot);
5457 else {
5458 u64 gen = btrfs_node_ptr_generation(c, slot);
5459
5460 if (gen < min_trans) {
5461 slot++;
5462 goto next;
5463 }
5464 btrfs_node_key_to_cpu(c, key, slot);
5465 }
5466 return 0;
5467 }
5468 return 1;
5469 }
5470
5471 /*
5472 * search the tree again to find a leaf with greater keys
5473 * returns 0 if it found something or 1 if there are no greater leaves.
5474 * returns < 0 on io errors.
5475 */
5476 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5477 {
5478 return btrfs_next_old_leaf(root, path, 0);
5479 }
5480
5481 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5482 u64 time_seq)
5483 {
5484 int slot;
5485 int level;
5486 struct extent_buffer *c;
5487 struct extent_buffer *next;
5488 struct btrfs_key key;
5489 u32 nritems;
5490 int ret;
5491 int old_spinning = path->leave_spinning;
5492 int next_rw_lock = 0;
5493
5494 nritems = btrfs_header_nritems(path->nodes[0]);
5495 if (nritems == 0)
5496 return 1;
5497
5498 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5499 again:
5500 level = 1;
5501 next = NULL;
5502 next_rw_lock = 0;
5503 btrfs_release_path(path);
5504
5505 path->keep_locks = 1;
5506 path->leave_spinning = 1;
5507
5508 if (time_seq)
5509 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5510 else
5511 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5512 path->keep_locks = 0;
5513
5514 if (ret < 0)
5515 return ret;
5516
5517 nritems = btrfs_header_nritems(path->nodes[0]);
5518 /*
5519 * by releasing the path above we dropped all our locks. A balance
5520 * could have added more items next to the key that used to be
5521 * at the very end of the block. So, check again here and
5522 * advance the path if there are now more items available.
5523 */
5524 if (nritems > 0 && path->slots[0] < nritems - 1) {
5525 if (ret == 0)
5526 path->slots[0]++;
5527 ret = 0;
5528 goto done;
5529 }
5530
5531 while (level < BTRFS_MAX_LEVEL) {
5532 if (!path->nodes[level]) {
5533 ret = 1;
5534 goto done;
5535 }
5536
5537 slot = path->slots[level] + 1;
5538 c = path->nodes[level];
5539 if (slot >= btrfs_header_nritems(c)) {
5540 level++;
5541 if (level == BTRFS_MAX_LEVEL) {
5542 ret = 1;
5543 goto done;
5544 }
5545 continue;
5546 }
5547
5548 if (next) {
5549 btrfs_tree_unlock_rw(next, next_rw_lock);
5550 free_extent_buffer(next);
5551 }
5552
5553 next = c;
5554 next_rw_lock = path->locks[level];
5555 ret = read_block_for_search(NULL, root, path, &next, level,
5556 slot, &key, 0);
5557 if (ret == -EAGAIN)
5558 goto again;
5559
5560 if (ret < 0) {
5561 btrfs_release_path(path);
5562 goto done;
5563 }
5564
5565 if (!path->skip_locking) {
5566 ret = btrfs_try_tree_read_lock(next);
5567 if (!ret && time_seq) {
5568 /*
5569 * If we don't get the lock, we may be racing
5570 * with push_leaf_left, holding that lock while
5571 * itself waiting for the leaf we've currently
5572 * locked. To solve this situation, we give up
5573 * on our lock and cycle.
5574 */
5575 free_extent_buffer(next);
5576 btrfs_release_path(path);
5577 cond_resched();
5578 goto again;
5579 }
5580 if (!ret) {
5581 btrfs_set_path_blocking(path);
5582 btrfs_tree_read_lock(next);
5583 btrfs_clear_path_blocking(path, next,
5584 BTRFS_READ_LOCK);
5585 }
5586 next_rw_lock = BTRFS_READ_LOCK;
5587 }
5588 break;
5589 }
5590 path->slots[level] = slot;
5591 while (1) {
5592 level--;
5593 c = path->nodes[level];
5594 if (path->locks[level])
5595 btrfs_tree_unlock_rw(c, path->locks[level]);
5596
5597 free_extent_buffer(c);
5598 path->nodes[level] = next;
5599 path->slots[level] = 0;
5600 if (!path->skip_locking)
5601 path->locks[level] = next_rw_lock;
5602 if (!level)
5603 break;
5604
5605 ret = read_block_for_search(NULL, root, path, &next, level,
5606 0, &key, 0);
5607 if (ret == -EAGAIN)
5608 goto again;
5609
5610 if (ret < 0) {
5611 btrfs_release_path(path);
5612 goto done;
5613 }
5614
5615 if (!path->skip_locking) {
5616 ret = btrfs_try_tree_read_lock(next);
5617 if (!ret) {
5618 btrfs_set_path_blocking(path);
5619 btrfs_tree_read_lock(next);
5620 btrfs_clear_path_blocking(path, next,
5621 BTRFS_READ_LOCK);
5622 }
5623 next_rw_lock = BTRFS_READ_LOCK;
5624 }
5625 }
5626 ret = 0;
5627 done:
5628 unlock_up(path, 0, 1, 0, NULL);
5629 path->leave_spinning = old_spinning;
5630 if (!old_spinning)
5631 btrfs_set_path_blocking(path);
5632
5633 return ret;
5634 }
5635
5636 /*
5637 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5638 * searching until it gets past min_objectid or finds an item of 'type'
5639 *
5640 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5641 */
5642 int btrfs_previous_item(struct btrfs_root *root,
5643 struct btrfs_path *path, u64 min_objectid,
5644 int type)
5645 {
5646 struct btrfs_key found_key;
5647 struct extent_buffer *leaf;
5648 u32 nritems;
5649 int ret;
5650
5651 while (1) {
5652 if (path->slots[0] == 0) {
5653 btrfs_set_path_blocking(path);
5654 ret = btrfs_prev_leaf(root, path);
5655 if (ret != 0)
5656 return ret;
5657 } else {
5658 path->slots[0]--;
5659 }
5660 leaf = path->nodes[0];
5661 nritems = btrfs_header_nritems(leaf);
5662 if (nritems == 0)
5663 return 1;
5664 if (path->slots[0] == nritems)
5665 path->slots[0]--;
5666
5667 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5668 if (found_key.objectid < min_objectid)
5669 break;
5670 if (found_key.type == type)
5671 return 0;
5672 if (found_key.objectid == min_objectid &&
5673 found_key.type < type)
5674 break;
5675 }
5676 return 1;
5677 }