]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/ctree.c
Btrfs: Switch to libcrc32c to avoid problems with cryptomgr on highmem machines
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/module.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23
24 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
25 *root, struct btrfs_path *path, int level);
26 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_key *ins_key,
28 struct btrfs_path *path, int data_size);
29 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct buffer_head *dst, struct buffer_head
31 *src);
32 static int balance_node_right(struct btrfs_trans_handle *trans, struct
33 btrfs_root *root, struct buffer_head *dst_buf,
34 struct buffer_head *src_buf);
35 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
36 struct btrfs_path *path, int level, int slot);
37
38 inline void btrfs_init_path(struct btrfs_path *p)
39 {
40 memset(p, 0, sizeof(*p));
41 }
42
43 struct btrfs_path *btrfs_alloc_path(void)
44 {
45 struct btrfs_path *path;
46 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
47 if (path)
48 btrfs_init_path(path);
49 return path;
50 }
51
52 void btrfs_free_path(struct btrfs_path *p)
53 {
54 btrfs_release_path(NULL, p);
55 kmem_cache_free(btrfs_path_cachep, p);
56 }
57
58 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
59 {
60 int i;
61 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
62 if (!p->nodes[i])
63 break;
64 btrfs_block_release(root, p->nodes[i]);
65 }
66 memset(p, 0, sizeof(*p));
67 }
68
69 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
70 *root, struct buffer_head *buf, struct buffer_head
71 *parent, int parent_slot, struct buffer_head
72 **cow_ret)
73 {
74 struct buffer_head *cow;
75 struct btrfs_node *cow_node;
76
77 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
78 trans->transid) {
79 *cow_ret = buf;
80 return 0;
81 }
82 cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
83 cow_node = btrfs_buffer_node(cow);
84 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
85 WARN_ON(1);
86 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
87 btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
88 btrfs_set_header_generation(&cow_node->header, trans->transid);
89 btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
90 btrfs_inc_ref(trans, root, buf);
91 if (buf == root->node) {
92 root->node = cow;
93 get_bh(cow);
94 if (buf != root->commit_root) {
95 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
96 }
97 btrfs_block_release(root, buf);
98 } else {
99 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
100 bh_blocknr(cow));
101 btrfs_mark_buffer_dirty(parent);
102 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
103 }
104 btrfs_block_release(root, buf);
105 mark_buffer_dirty(cow);
106 *cow_ret = cow;
107 return 0;
108 }
109
110 /*
111 * The leaf data grows from end-to-front in the node.
112 * this returns the address of the start of the last item,
113 * which is the stop of the leaf data stack
114 */
115 static inline unsigned int leaf_data_end(struct btrfs_root *root,
116 struct btrfs_leaf *leaf)
117 {
118 u32 nr = btrfs_header_nritems(&leaf->header);
119 if (nr == 0)
120 return BTRFS_LEAF_DATA_SIZE(root);
121 return btrfs_item_offset(leaf->items + nr - 1);
122 }
123
124 /*
125 * compare two keys in a memcmp fashion
126 */
127 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
128 {
129 struct btrfs_key k1;
130
131 btrfs_disk_key_to_cpu(&k1, disk);
132
133 if (k1.objectid > k2->objectid)
134 return 1;
135 if (k1.objectid < k2->objectid)
136 return -1;
137 if (k1.flags > k2->flags)
138 return 1;
139 if (k1.flags < k2->flags)
140 return -1;
141 if (k1.offset > k2->offset)
142 return 1;
143 if (k1.offset < k2->offset)
144 return -1;
145 return 0;
146 }
147
148 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
149 int level)
150 {
151 struct btrfs_node *parent = NULL;
152 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
153 int parent_slot;
154 int slot;
155 struct btrfs_key cpukey;
156 u32 nritems = btrfs_header_nritems(&node->header);
157
158 if (path->nodes[level + 1])
159 parent = btrfs_buffer_node(path->nodes[level + 1]);
160 parent_slot = path->slots[level + 1];
161 slot = path->slots[level];
162 BUG_ON(nritems == 0);
163 if (parent) {
164 struct btrfs_disk_key *parent_key;
165 parent_key = &parent->ptrs[parent_slot].key;
166 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
167 sizeof(struct btrfs_disk_key)));
168 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
169 btrfs_header_blocknr(&node->header));
170 }
171 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
172 if (slot != 0) {
173 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
174 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
175 }
176 if (slot < nritems - 1) {
177 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
178 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
179 }
180 return 0;
181 }
182
183 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
184 int level)
185 {
186 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
187 struct btrfs_node *parent = NULL;
188 int parent_slot;
189 int slot = path->slots[0];
190 struct btrfs_key cpukey;
191
192 u32 nritems = btrfs_header_nritems(&leaf->header);
193
194 if (path->nodes[level + 1])
195 parent = btrfs_buffer_node(path->nodes[level + 1]);
196 parent_slot = path->slots[level + 1];
197 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
198
199 if (nritems == 0)
200 return 0;
201
202 if (parent) {
203 struct btrfs_disk_key *parent_key;
204 parent_key = &parent->ptrs[parent_slot].key;
205 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
206 sizeof(struct btrfs_disk_key)));
207 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
208 btrfs_header_blocknr(&leaf->header));
209 }
210 if (slot != 0) {
211 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
212 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
213 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
214 btrfs_item_end(leaf->items + slot));
215 }
216 if (slot < nritems - 1) {
217 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
218 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
219 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
220 btrfs_item_end(leaf->items + slot + 1));
221 }
222 BUG_ON(btrfs_item_offset(leaf->items) +
223 btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
224 return 0;
225 }
226
227 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
228 int level)
229 {
230 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
231 if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
232 sizeof(node->header.fsid)))
233 BUG();
234 if (level == 0)
235 return check_leaf(root, path, level);
236 return check_node(root, path, level);
237 }
238
239 /*
240 * search for key in the array p. items p are item_size apart
241 * and there are 'max' items in p
242 * the slot in the array is returned via slot, and it points to
243 * the place where you would insert key if it is not found in
244 * the array.
245 *
246 * slot may point to max if the key is bigger than all of the keys
247 */
248 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
249 int max, int *slot)
250 {
251 int low = 0;
252 int high = max;
253 int mid;
254 int ret;
255 struct btrfs_disk_key *tmp;
256
257 while(low < high) {
258 mid = (low + high) / 2;
259 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
260 ret = comp_keys(tmp, key);
261
262 if (ret < 0)
263 low = mid + 1;
264 else if (ret > 0)
265 high = mid;
266 else {
267 *slot = mid;
268 return 0;
269 }
270 }
271 *slot = low;
272 return 1;
273 }
274
275 /*
276 * simple bin_search frontend that does the right thing for
277 * leaves vs nodes
278 */
279 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
280 {
281 if (btrfs_is_leaf(c)) {
282 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
283 return generic_bin_search((void *)l->items,
284 sizeof(struct btrfs_item),
285 key, btrfs_header_nritems(&c->header),
286 slot);
287 } else {
288 return generic_bin_search((void *)c->ptrs,
289 sizeof(struct btrfs_key_ptr),
290 key, btrfs_header_nritems(&c->header),
291 slot);
292 }
293 return -1;
294 }
295
296 static struct buffer_head *read_node_slot(struct btrfs_root *root,
297 struct buffer_head *parent_buf,
298 int slot)
299 {
300 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
301 if (slot < 0)
302 return NULL;
303 if (slot >= btrfs_header_nritems(&node->header))
304 return NULL;
305 return read_tree_block(root, btrfs_node_blockptr(node, slot));
306 }
307
308 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
309 *root, struct btrfs_path *path, int level)
310 {
311 struct buffer_head *right_buf;
312 struct buffer_head *mid_buf;
313 struct buffer_head *left_buf;
314 struct buffer_head *parent_buf = NULL;
315 struct btrfs_node *right = NULL;
316 struct btrfs_node *mid;
317 struct btrfs_node *left = NULL;
318 struct btrfs_node *parent = NULL;
319 int ret = 0;
320 int wret;
321 int pslot;
322 int orig_slot = path->slots[level];
323 u64 orig_ptr;
324
325 if (level == 0)
326 return 0;
327
328 mid_buf = path->nodes[level];
329 mid = btrfs_buffer_node(mid_buf);
330 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
331
332 if (level < BTRFS_MAX_LEVEL - 1)
333 parent_buf = path->nodes[level + 1];
334 pslot = path->slots[level + 1];
335
336 /*
337 * deal with the case where there is only one pointer in the root
338 * by promoting the node below to a root
339 */
340 if (!parent_buf) {
341 struct buffer_head *child;
342 u64 blocknr = bh_blocknr(mid_buf);
343
344 if (btrfs_header_nritems(&mid->header) != 1)
345 return 0;
346
347 /* promote the child to a root */
348 child = read_node_slot(root, mid_buf, 0);
349 BUG_ON(!child);
350 root->node = child;
351 path->nodes[level] = NULL;
352 clean_tree_block(trans, root, mid_buf);
353 wait_on_buffer(mid_buf);
354 /* once for the path */
355 btrfs_block_release(root, mid_buf);
356 /* once for the root ptr */
357 btrfs_block_release(root, mid_buf);
358 return btrfs_free_extent(trans, root, blocknr, 1, 1);
359 }
360 parent = btrfs_buffer_node(parent_buf);
361
362 if (btrfs_header_nritems(&mid->header) >
363 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
364 return 0;
365
366 left_buf = read_node_slot(root, parent_buf, pslot - 1);
367 right_buf = read_node_slot(root, parent_buf, pslot + 1);
368
369 /* first, try to make some room in the middle buffer */
370 if (left_buf) {
371 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
372 &left_buf);
373 left = btrfs_buffer_node(left_buf);
374 orig_slot += btrfs_header_nritems(&left->header);
375 wret = push_node_left(trans, root, left_buf, mid_buf);
376 if (wret < 0)
377 ret = wret;
378 }
379
380 /*
381 * then try to empty the right most buffer into the middle
382 */
383 if (right_buf) {
384 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
385 &right_buf);
386 right = btrfs_buffer_node(right_buf);
387 wret = push_node_left(trans, root, mid_buf, right_buf);
388 if (wret < 0)
389 ret = wret;
390 if (btrfs_header_nritems(&right->header) == 0) {
391 u64 blocknr = bh_blocknr(right_buf);
392 clean_tree_block(trans, root, right_buf);
393 wait_on_buffer(right_buf);
394 btrfs_block_release(root, right_buf);
395 right_buf = NULL;
396 right = NULL;
397 wret = del_ptr(trans, root, path, level + 1, pslot +
398 1);
399 if (wret)
400 ret = wret;
401 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
402 if (wret)
403 ret = wret;
404 } else {
405 btrfs_memcpy(root, parent,
406 &parent->ptrs[pslot + 1].key,
407 &right->ptrs[0].key,
408 sizeof(struct btrfs_disk_key));
409 btrfs_mark_buffer_dirty(parent_buf);
410 }
411 }
412 if (btrfs_header_nritems(&mid->header) == 1) {
413 /*
414 * we're not allowed to leave a node with one item in the
415 * tree during a delete. A deletion from lower in the tree
416 * could try to delete the only pointer in this node.
417 * So, pull some keys from the left.
418 * There has to be a left pointer at this point because
419 * otherwise we would have pulled some pointers from the
420 * right
421 */
422 BUG_ON(!left_buf);
423 wret = balance_node_right(trans, root, mid_buf, left_buf);
424 if (wret < 0)
425 ret = wret;
426 BUG_ON(wret == 1);
427 }
428 if (btrfs_header_nritems(&mid->header) == 0) {
429 /* we've managed to empty the middle node, drop it */
430 u64 blocknr = bh_blocknr(mid_buf);
431 clean_tree_block(trans, root, mid_buf);
432 wait_on_buffer(mid_buf);
433 btrfs_block_release(root, mid_buf);
434 mid_buf = NULL;
435 mid = NULL;
436 wret = del_ptr(trans, root, path, level + 1, pslot);
437 if (wret)
438 ret = wret;
439 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
440 if (wret)
441 ret = wret;
442 } else {
443 /* update the parent key to reflect our changes */
444 btrfs_memcpy(root, parent,
445 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
446 sizeof(struct btrfs_disk_key));
447 btrfs_mark_buffer_dirty(parent_buf);
448 }
449
450 /* update the path */
451 if (left_buf) {
452 if (btrfs_header_nritems(&left->header) > orig_slot) {
453 get_bh(left_buf);
454 path->nodes[level] = left_buf;
455 path->slots[level + 1] -= 1;
456 path->slots[level] = orig_slot;
457 if (mid_buf)
458 btrfs_block_release(root, mid_buf);
459 } else {
460 orig_slot -= btrfs_header_nritems(&left->header);
461 path->slots[level] = orig_slot;
462 }
463 }
464 /* double check we haven't messed things up */
465 check_block(root, path, level);
466 if (orig_ptr !=
467 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
468 path->slots[level]))
469 BUG();
470
471 if (right_buf)
472 btrfs_block_release(root, right_buf);
473 if (left_buf)
474 btrfs_block_release(root, left_buf);
475 return ret;
476 }
477
478 /* returns zero if the push worked, non-zero otherwise */
479 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root,
481 struct btrfs_path *path, int level)
482 {
483 struct buffer_head *right_buf;
484 struct buffer_head *mid_buf;
485 struct buffer_head *left_buf;
486 struct buffer_head *parent_buf = NULL;
487 struct btrfs_node *right = NULL;
488 struct btrfs_node *mid;
489 struct btrfs_node *left = NULL;
490 struct btrfs_node *parent = NULL;
491 int ret = 0;
492 int wret;
493 int pslot;
494 int orig_slot = path->slots[level];
495 u64 orig_ptr;
496
497 if (level == 0)
498 return 1;
499
500 mid_buf = path->nodes[level];
501 mid = btrfs_buffer_node(mid_buf);
502 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
503
504 if (level < BTRFS_MAX_LEVEL - 1)
505 parent_buf = path->nodes[level + 1];
506 pslot = path->slots[level + 1];
507
508 if (!parent_buf)
509 return 1;
510 parent = btrfs_buffer_node(parent_buf);
511
512 left_buf = read_node_slot(root, parent_buf, pslot - 1);
513
514 /* first, try to make some room in the middle buffer */
515 if (left_buf) {
516 u32 left_nr;
517 left = btrfs_buffer_node(left_buf);
518 left_nr = btrfs_header_nritems(&left->header);
519 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
520 wret = 1;
521 } else {
522 btrfs_cow_block(trans, root, left_buf, parent_buf,
523 pslot - 1, &left_buf);
524 left = btrfs_buffer_node(left_buf);
525 wret = push_node_left(trans, root, left_buf, mid_buf);
526 }
527 if (wret < 0)
528 ret = wret;
529 if (wret == 0) {
530 orig_slot += left_nr;
531 btrfs_memcpy(root, parent,
532 &parent->ptrs[pslot].key,
533 &mid->ptrs[0].key,
534 sizeof(struct btrfs_disk_key));
535 btrfs_mark_buffer_dirty(parent_buf);
536 if (btrfs_header_nritems(&left->header) > orig_slot) {
537 path->nodes[level] = left_buf;
538 path->slots[level + 1] -= 1;
539 path->slots[level] = orig_slot;
540 btrfs_block_release(root, mid_buf);
541 } else {
542 orig_slot -=
543 btrfs_header_nritems(&left->header);
544 path->slots[level] = orig_slot;
545 btrfs_block_release(root, left_buf);
546 }
547 check_node(root, path, level);
548 return 0;
549 }
550 btrfs_block_release(root, left_buf);
551 }
552 right_buf = read_node_slot(root, parent_buf, pslot + 1);
553
554 /*
555 * then try to empty the right most buffer into the middle
556 */
557 if (right_buf) {
558 u32 right_nr;
559 right = btrfs_buffer_node(right_buf);
560 right_nr = btrfs_header_nritems(&right->header);
561 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
562 wret = 1;
563 } else {
564 btrfs_cow_block(trans, root, right_buf,
565 parent_buf, pslot + 1, &right_buf);
566 right = btrfs_buffer_node(right_buf);
567 wret = balance_node_right(trans, root,
568 right_buf, mid_buf);
569 }
570 if (wret < 0)
571 ret = wret;
572 if (wret == 0) {
573 btrfs_memcpy(root, parent,
574 &parent->ptrs[pslot + 1].key,
575 &right->ptrs[0].key,
576 sizeof(struct btrfs_disk_key));
577 btrfs_mark_buffer_dirty(parent_buf);
578 if (btrfs_header_nritems(&mid->header) <= orig_slot) {
579 path->nodes[level] = right_buf;
580 path->slots[level + 1] += 1;
581 path->slots[level] = orig_slot -
582 btrfs_header_nritems(&mid->header);
583 btrfs_block_release(root, mid_buf);
584 } else {
585 btrfs_block_release(root, right_buf);
586 }
587 check_node(root, path, level);
588 return 0;
589 }
590 btrfs_block_release(root, right_buf);
591 }
592 check_node(root, path, level);
593 return 1;
594 }
595
596 /*
597 * look for key in the tree. path is filled in with nodes along the way
598 * if key is found, we return zero and you can find the item in the leaf
599 * level of the path (level 0)
600 *
601 * If the key isn't found, the path points to the slot where it should
602 * be inserted, and 1 is returned. If there are other errors during the
603 * search a negative error number is returned.
604 *
605 * if ins_len > 0, nodes and leaves will be split as we walk down the
606 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
607 * possible)
608 */
609 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
610 *root, struct btrfs_key *key, struct btrfs_path *p, int
611 ins_len, int cow)
612 {
613 struct buffer_head *b;
614 struct buffer_head *cow_buf;
615 struct btrfs_node *c;
616 int slot;
617 int ret;
618 int level;
619
620 WARN_ON(p->nodes[0] != NULL);
621 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
622 again:
623 b = root->node;
624 get_bh(b);
625 while (b) {
626 c = btrfs_buffer_node(b);
627 level = btrfs_header_level(&c->header);
628 if (cow) {
629 int wret;
630 wret = btrfs_cow_block(trans, root, b,
631 p->nodes[level + 1],
632 p->slots[level + 1],
633 &cow_buf);
634 b = cow_buf;
635 c = btrfs_buffer_node(b);
636 }
637 BUG_ON(!cow && ins_len);
638 if (level != btrfs_header_level(&c->header))
639 WARN_ON(1);
640 level = btrfs_header_level(&c->header);
641 p->nodes[level] = b;
642 ret = check_block(root, p, level);
643 if (ret)
644 return -1;
645 ret = bin_search(c, key, &slot);
646 if (!btrfs_is_leaf(c)) {
647 if (ret && slot > 0)
648 slot -= 1;
649 p->slots[level] = slot;
650 if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
651 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
652 int sret = split_node(trans, root, p, level);
653 BUG_ON(sret > 0);
654 if (sret)
655 return sret;
656 b = p->nodes[level];
657 c = btrfs_buffer_node(b);
658 slot = p->slots[level];
659 } else if (ins_len < 0) {
660 int sret = balance_level(trans, root, p,
661 level);
662 if (sret)
663 return sret;
664 b = p->nodes[level];
665 if (!b)
666 goto again;
667 c = btrfs_buffer_node(b);
668 slot = p->slots[level];
669 BUG_ON(btrfs_header_nritems(&c->header) == 1);
670 }
671 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
672 } else {
673 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
674 p->slots[level] = slot;
675 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
676 sizeof(struct btrfs_item) + ins_len) {
677 int sret = split_leaf(trans, root, key,
678 p, ins_len);
679 BUG_ON(sret > 0);
680 if (sret)
681 return sret;
682 }
683 return ret;
684 }
685 }
686 return 1;
687 }
688
689 /*
690 * adjust the pointers going up the tree, starting at level
691 * making sure the right key of each node is points to 'key'.
692 * This is used after shifting pointers to the left, so it stops
693 * fixing up pointers when a given leaf/node is not in slot 0 of the
694 * higher levels
695 *
696 * If this fails to write a tree block, it returns -1, but continues
697 * fixing up the blocks in ram so the tree is consistent.
698 */
699 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
700 *root, struct btrfs_path *path, struct btrfs_disk_key
701 *key, int level)
702 {
703 int i;
704 int ret = 0;
705 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
706 struct btrfs_node *t;
707 int tslot = path->slots[i];
708 if (!path->nodes[i])
709 break;
710 t = btrfs_buffer_node(path->nodes[i]);
711 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
712 btrfs_mark_buffer_dirty(path->nodes[i]);
713 if (tslot != 0)
714 break;
715 }
716 return ret;
717 }
718
719 /*
720 * try to push data from one node into the next node left in the
721 * tree.
722 *
723 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
724 * error, and > 0 if there was no room in the left hand block.
725 */
726 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
727 *root, struct buffer_head *dst_buf, struct
728 buffer_head *src_buf)
729 {
730 struct btrfs_node *src = btrfs_buffer_node(src_buf);
731 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
732 int push_items = 0;
733 int src_nritems;
734 int dst_nritems;
735 int ret = 0;
736
737 src_nritems = btrfs_header_nritems(&src->header);
738 dst_nritems = btrfs_header_nritems(&dst->header);
739 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
740 if (push_items <= 0) {
741 return 1;
742 }
743
744 if (src_nritems < push_items)
745 push_items = src_nritems;
746
747 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
748 push_items * sizeof(struct btrfs_key_ptr));
749 if (push_items < src_nritems) {
750 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
751 (src_nritems - push_items) *
752 sizeof(struct btrfs_key_ptr));
753 }
754 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
755 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
756 btrfs_mark_buffer_dirty(src_buf);
757 btrfs_mark_buffer_dirty(dst_buf);
758 return ret;
759 }
760
761 /*
762 * try to push data from one node into the next node right in the
763 * tree.
764 *
765 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
766 * error, and > 0 if there was no room in the right hand block.
767 *
768 * this will only push up to 1/2 the contents of the left node over
769 */
770 static int balance_node_right(struct btrfs_trans_handle *trans, struct
771 btrfs_root *root, struct buffer_head *dst_buf,
772 struct buffer_head *src_buf)
773 {
774 struct btrfs_node *src = btrfs_buffer_node(src_buf);
775 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
776 int push_items = 0;
777 int max_push;
778 int src_nritems;
779 int dst_nritems;
780 int ret = 0;
781
782 src_nritems = btrfs_header_nritems(&src->header);
783 dst_nritems = btrfs_header_nritems(&dst->header);
784 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
785 if (push_items <= 0) {
786 return 1;
787 }
788
789 max_push = src_nritems / 2 + 1;
790 /* don't try to empty the node */
791 if (max_push > src_nritems)
792 return 1;
793 if (max_push < push_items)
794 push_items = max_push;
795
796 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
797 dst_nritems * sizeof(struct btrfs_key_ptr));
798
799 btrfs_memcpy(root, dst, dst->ptrs,
800 src->ptrs + src_nritems - push_items,
801 push_items * sizeof(struct btrfs_key_ptr));
802
803 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
804 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
805
806 btrfs_mark_buffer_dirty(src_buf);
807 btrfs_mark_buffer_dirty(dst_buf);
808 return ret;
809 }
810
811 /*
812 * helper function to insert a new root level in the tree.
813 * A new node is allocated, and a single item is inserted to
814 * point to the existing root
815 *
816 * returns zero on success or < 0 on failure.
817 */
818 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
819 *root, struct btrfs_path *path, int level)
820 {
821 struct buffer_head *t;
822 struct btrfs_node *lower;
823 struct btrfs_node *c;
824 struct btrfs_disk_key *lower_key;
825
826 BUG_ON(path->nodes[level]);
827 BUG_ON(path->nodes[level-1] != root->node);
828
829 t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
830 c = btrfs_buffer_node(t);
831 memset(c, 0, root->blocksize);
832 btrfs_set_header_nritems(&c->header, 1);
833 btrfs_set_header_level(&c->header, level);
834 btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
835 btrfs_set_header_generation(&c->header, trans->transid);
836 btrfs_set_header_owner(&c->header, root->root_key.objectid);
837 lower = btrfs_buffer_node(path->nodes[level-1]);
838 memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
839 sizeof(c->header.fsid));
840 if (btrfs_is_leaf(lower))
841 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
842 else
843 lower_key = &lower->ptrs[0].key;
844 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
845 sizeof(struct btrfs_disk_key));
846 btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
847
848 btrfs_mark_buffer_dirty(t);
849
850 /* the super has an extra ref to root->node */
851 btrfs_block_release(root, root->node);
852 root->node = t;
853 get_bh(t);
854 path->nodes[level] = t;
855 path->slots[level] = 0;
856 return 0;
857 }
858
859 /*
860 * worker function to insert a single pointer in a node.
861 * the node should have enough room for the pointer already
862 *
863 * slot and level indicate where you want the key to go, and
864 * blocknr is the block the key points to.
865 *
866 * returns zero on success and < 0 on any error
867 */
868 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
869 *root, struct btrfs_path *path, struct btrfs_disk_key
870 *key, u64 blocknr, int slot, int level)
871 {
872 struct btrfs_node *lower;
873 int nritems;
874
875 BUG_ON(!path->nodes[level]);
876 lower = btrfs_buffer_node(path->nodes[level]);
877 nritems = btrfs_header_nritems(&lower->header);
878 if (slot > nritems)
879 BUG();
880 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
881 BUG();
882 if (slot != nritems) {
883 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
884 lower->ptrs + slot,
885 (nritems - slot) * sizeof(struct btrfs_key_ptr));
886 }
887 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
888 key, sizeof(struct btrfs_disk_key));
889 btrfs_set_node_blockptr(lower, slot, blocknr);
890 btrfs_set_header_nritems(&lower->header, nritems + 1);
891 btrfs_mark_buffer_dirty(path->nodes[level]);
892 check_node(root, path, level);
893 return 0;
894 }
895
896 /*
897 * split the node at the specified level in path in two.
898 * The path is corrected to point to the appropriate node after the split
899 *
900 * Before splitting this tries to make some room in the node by pushing
901 * left and right, if either one works, it returns right away.
902 *
903 * returns 0 on success and < 0 on failure
904 */
905 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
906 *root, struct btrfs_path *path, int level)
907 {
908 struct buffer_head *t;
909 struct btrfs_node *c;
910 struct buffer_head *split_buffer;
911 struct btrfs_node *split;
912 int mid;
913 int ret;
914 int wret;
915 u32 c_nritems;
916
917 t = path->nodes[level];
918 c = btrfs_buffer_node(t);
919 if (t == root->node) {
920 /* trying to split the root, lets make a new one */
921 ret = insert_new_root(trans, root, path, level + 1);
922 if (ret)
923 return ret;
924 } else {
925 ret = push_nodes_for_insert(trans, root, path, level);
926 t = path->nodes[level];
927 c = btrfs_buffer_node(t);
928 if (!ret &&
929 btrfs_header_nritems(&c->header) <
930 BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
931 return 0;
932 }
933
934 c_nritems = btrfs_header_nritems(&c->header);
935 split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
936 split = btrfs_buffer_node(split_buffer);
937 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
938 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
939 btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
940 btrfs_set_header_generation(&split->header, trans->transid);
941 btrfs_set_header_owner(&split->header, root->root_key.objectid);
942 memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
943 sizeof(split->header.fsid));
944 mid = (c_nritems + 1) / 2;
945 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
946 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
947 btrfs_set_header_nritems(&split->header, c_nritems - mid);
948 btrfs_set_header_nritems(&c->header, mid);
949 ret = 0;
950
951 btrfs_mark_buffer_dirty(t);
952 btrfs_mark_buffer_dirty(split_buffer);
953 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
954 bh_blocknr(split_buffer), path->slots[level + 1] + 1,
955 level + 1);
956 if (wret)
957 ret = wret;
958
959 if (path->slots[level] >= mid) {
960 path->slots[level] -= mid;
961 btrfs_block_release(root, t);
962 path->nodes[level] = split_buffer;
963 path->slots[level + 1] += 1;
964 } else {
965 btrfs_block_release(root, split_buffer);
966 }
967 return ret;
968 }
969
970 /*
971 * how many bytes are required to store the items in a leaf. start
972 * and nr indicate which items in the leaf to check. This totals up the
973 * space used both by the item structs and the item data
974 */
975 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
976 {
977 int data_len;
978 int nritems = btrfs_header_nritems(&l->header);
979 int end = min(nritems, start + nr) - 1;
980
981 if (!nr)
982 return 0;
983 data_len = btrfs_item_end(l->items + start);
984 data_len = data_len - btrfs_item_offset(l->items + end);
985 data_len += sizeof(struct btrfs_item) * nr;
986 WARN_ON(data_len < 0);
987 return data_len;
988 }
989
990 /*
991 * The space between the end of the leaf items and
992 * the start of the leaf data. IOW, how much room
993 * the leaf has left for both items and data
994 */
995 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
996 {
997 int nritems = btrfs_header_nritems(&leaf->header);
998 return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
999 }
1000
1001 /*
1002 * push some data in the path leaf to the right, trying to free up at
1003 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1004 *
1005 * returns 1 if the push failed because the other node didn't have enough
1006 * room, 0 if everything worked out and < 0 if there were major errors.
1007 */
1008 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1009 *root, struct btrfs_path *path, int data_size)
1010 {
1011 struct buffer_head *left_buf = path->nodes[0];
1012 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
1013 struct btrfs_leaf *right;
1014 struct buffer_head *right_buf;
1015 struct buffer_head *upper;
1016 struct btrfs_node *upper_node;
1017 int slot;
1018 int i;
1019 int free_space;
1020 int push_space = 0;
1021 int push_items = 0;
1022 struct btrfs_item *item;
1023 u32 left_nritems;
1024 u32 right_nritems;
1025
1026 slot = path->slots[1];
1027 if (!path->nodes[1]) {
1028 return 1;
1029 }
1030 upper = path->nodes[1];
1031 upper_node = btrfs_buffer_node(upper);
1032 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1033 return 1;
1034 }
1035 right_buf = read_tree_block(root,
1036 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1037 right = btrfs_buffer_leaf(right_buf);
1038 free_space = btrfs_leaf_free_space(root, right);
1039 if (free_space < data_size + sizeof(struct btrfs_item)) {
1040 btrfs_block_release(root, right_buf);
1041 return 1;
1042 }
1043 /* cow and double check */
1044 btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
1045 right = btrfs_buffer_leaf(right_buf);
1046 free_space = btrfs_leaf_free_space(root, right);
1047 if (free_space < data_size + sizeof(struct btrfs_item)) {
1048 btrfs_block_release(root, right_buf);
1049 return 1;
1050 }
1051
1052 left_nritems = btrfs_header_nritems(&left->header);
1053 if (left_nritems == 0) {
1054 btrfs_block_release(root, right_buf);
1055 return 1;
1056 }
1057 for (i = left_nritems - 1; i >= 1; i--) {
1058 item = left->items + i;
1059 if (path->slots[0] == i)
1060 push_space += data_size + sizeof(*item);
1061 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1062 free_space)
1063 break;
1064 push_items++;
1065 push_space += btrfs_item_size(item) + sizeof(*item);
1066 }
1067 if (push_items == 0) {
1068 btrfs_block_release(root, right_buf);
1069 return 1;
1070 }
1071 if (push_items == left_nritems)
1072 WARN_ON(1);
1073 right_nritems = btrfs_header_nritems(&right->header);
1074 /* push left to right */
1075 push_space = btrfs_item_end(left->items + left_nritems - push_items);
1076 push_space -= leaf_data_end(root, left);
1077 /* make room in the right data area */
1078 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1079 leaf_data_end(root, right) - push_space,
1080 btrfs_leaf_data(right) +
1081 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1082 leaf_data_end(root, right));
1083 /* copy from the left data area */
1084 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1085 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1086 btrfs_leaf_data(left) + leaf_data_end(root, left),
1087 push_space);
1088 btrfs_memmove(root, right, right->items + push_items, right->items,
1089 right_nritems * sizeof(struct btrfs_item));
1090 /* copy the items from left to right */
1091 btrfs_memcpy(root, right, right->items, left->items +
1092 left_nritems - push_items,
1093 push_items * sizeof(struct btrfs_item));
1094
1095 /* update the item pointers */
1096 right_nritems += push_items;
1097 btrfs_set_header_nritems(&right->header, right_nritems);
1098 push_space = BTRFS_LEAF_DATA_SIZE(root);
1099 for (i = 0; i < right_nritems; i++) {
1100 btrfs_set_item_offset(right->items + i, push_space -
1101 btrfs_item_size(right->items + i));
1102 push_space = btrfs_item_offset(right->items + i);
1103 }
1104 left_nritems -= push_items;
1105 btrfs_set_header_nritems(&left->header, left_nritems);
1106
1107 btrfs_mark_buffer_dirty(left_buf);
1108 btrfs_mark_buffer_dirty(right_buf);
1109
1110 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1111 &right->items[0].key, sizeof(struct btrfs_disk_key));
1112 btrfs_mark_buffer_dirty(upper);
1113
1114 /* then fixup the leaf pointer in the path */
1115 if (path->slots[0] >= left_nritems) {
1116 path->slots[0] -= left_nritems;
1117 btrfs_block_release(root, path->nodes[0]);
1118 path->nodes[0] = right_buf;
1119 path->slots[1] += 1;
1120 } else {
1121 btrfs_block_release(root, right_buf);
1122 }
1123 if (path->nodes[1])
1124 check_node(root, path, 1);
1125 return 0;
1126 }
1127 /*
1128 * push some data in the path leaf to the left, trying to free up at
1129 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1130 */
1131 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1132 *root, struct btrfs_path *path, int data_size)
1133 {
1134 struct buffer_head *right_buf = path->nodes[0];
1135 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1136 struct buffer_head *t;
1137 struct btrfs_leaf *left;
1138 int slot;
1139 int i;
1140 int free_space;
1141 int push_space = 0;
1142 int push_items = 0;
1143 struct btrfs_item *item;
1144 u32 old_left_nritems;
1145 int ret = 0;
1146 int wret;
1147
1148 slot = path->slots[1];
1149 if (slot == 0) {
1150 return 1;
1151 }
1152 if (!path->nodes[1]) {
1153 return 1;
1154 }
1155 t = read_tree_block(root,
1156 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1157 left = btrfs_buffer_leaf(t);
1158 free_space = btrfs_leaf_free_space(root, left);
1159 if (free_space < data_size + sizeof(struct btrfs_item)) {
1160 btrfs_block_release(root, t);
1161 return 1;
1162 }
1163
1164 /* cow and double check */
1165 btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1166 left = btrfs_buffer_leaf(t);
1167 free_space = btrfs_leaf_free_space(root, left);
1168 if (free_space < data_size + sizeof(struct btrfs_item)) {
1169 btrfs_block_release(root, t);
1170 return 1;
1171 }
1172
1173 if (btrfs_header_nritems(&right->header) == 0) {
1174 btrfs_block_release(root, t);
1175 return 1;
1176 }
1177
1178 for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1179 item = right->items + i;
1180 if (path->slots[0] == i)
1181 push_space += data_size + sizeof(*item);
1182 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1183 free_space)
1184 break;
1185 push_items++;
1186 push_space += btrfs_item_size(item) + sizeof(*item);
1187 }
1188 if (push_items == 0) {
1189 btrfs_block_release(root, t);
1190 return 1;
1191 }
1192 if (push_items == btrfs_header_nritems(&right->header))
1193 WARN_ON(1);
1194 /* push data from right to left */
1195 btrfs_memcpy(root, left, left->items +
1196 btrfs_header_nritems(&left->header),
1197 right->items, push_items * sizeof(struct btrfs_item));
1198 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1199 btrfs_item_offset(right->items + push_items -1);
1200 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1201 leaf_data_end(root, left) - push_space,
1202 btrfs_leaf_data(right) +
1203 btrfs_item_offset(right->items + push_items - 1),
1204 push_space);
1205 old_left_nritems = btrfs_header_nritems(&left->header);
1206 BUG_ON(old_left_nritems < 0);
1207
1208 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1209 u32 ioff = btrfs_item_offset(left->items + i);
1210 btrfs_set_item_offset(left->items + i, ioff -
1211 (BTRFS_LEAF_DATA_SIZE(root) -
1212 btrfs_item_offset(left->items +
1213 old_left_nritems - 1)));
1214 }
1215 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1216
1217 /* fixup right node */
1218 push_space = btrfs_item_offset(right->items + push_items - 1) -
1219 leaf_data_end(root, right);
1220 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1221 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1222 btrfs_leaf_data(right) +
1223 leaf_data_end(root, right), push_space);
1224 btrfs_memmove(root, right, right->items, right->items + push_items,
1225 (btrfs_header_nritems(&right->header) - push_items) *
1226 sizeof(struct btrfs_item));
1227 btrfs_set_header_nritems(&right->header,
1228 btrfs_header_nritems(&right->header) -
1229 push_items);
1230 push_space = BTRFS_LEAF_DATA_SIZE(root);
1231
1232 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1233 btrfs_set_item_offset(right->items + i, push_space -
1234 btrfs_item_size(right->items + i));
1235 push_space = btrfs_item_offset(right->items + i);
1236 }
1237
1238 btrfs_mark_buffer_dirty(t);
1239 btrfs_mark_buffer_dirty(right_buf);
1240
1241 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1242 if (wret)
1243 ret = wret;
1244
1245 /* then fixup the leaf pointer in the path */
1246 if (path->slots[0] < push_items) {
1247 path->slots[0] += old_left_nritems;
1248 btrfs_block_release(root, path->nodes[0]);
1249 path->nodes[0] = t;
1250 path->slots[1] -= 1;
1251 } else {
1252 btrfs_block_release(root, t);
1253 path->slots[0] -= push_items;
1254 }
1255 BUG_ON(path->slots[0] < 0);
1256 if (path->nodes[1])
1257 check_node(root, path, 1);
1258 return ret;
1259 }
1260
1261 /*
1262 * split the path's leaf in two, making sure there is at least data_size
1263 * available for the resulting leaf level of the path.
1264 *
1265 * returns 0 if all went well and < 0 on failure.
1266 */
1267 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1268 *root, struct btrfs_key *ins_key,
1269 struct btrfs_path *path, int data_size)
1270 {
1271 struct buffer_head *l_buf;
1272 struct btrfs_leaf *l;
1273 u32 nritems;
1274 int mid;
1275 int slot;
1276 struct btrfs_leaf *right;
1277 struct buffer_head *right_buffer;
1278 int space_needed = data_size + sizeof(struct btrfs_item);
1279 int data_copy_size;
1280 int rt_data_off;
1281 int i;
1282 int ret = 0;
1283 int wret;
1284 int double_split = 0;
1285 struct btrfs_disk_key disk_key;
1286
1287 /* first try to make some room by pushing left and right */
1288 wret = push_leaf_left(trans, root, path, data_size);
1289 if (wret < 0)
1290 return wret;
1291 if (wret) {
1292 wret = push_leaf_right(trans, root, path, data_size);
1293 if (wret < 0)
1294 return wret;
1295 }
1296 l_buf = path->nodes[0];
1297 l = btrfs_buffer_leaf(l_buf);
1298
1299 /* did the pushes work? */
1300 if (btrfs_leaf_free_space(root, l) >=
1301 sizeof(struct btrfs_item) + data_size)
1302 return 0;
1303
1304 if (!path->nodes[1]) {
1305 ret = insert_new_root(trans, root, path, 1);
1306 if (ret)
1307 return ret;
1308 }
1309 slot = path->slots[0];
1310 nritems = btrfs_header_nritems(&l->header);
1311 mid = (nritems + 1)/ 2;
1312 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1313 BUG_ON(!right_buffer);
1314 right = btrfs_buffer_leaf(right_buffer);
1315 memset(&right->header, 0, sizeof(right->header));
1316 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1317 btrfs_set_header_generation(&right->header, trans->transid);
1318 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1319 btrfs_set_header_level(&right->header, 0);
1320 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1321 sizeof(right->header.fsid));
1322 if (mid <= slot) {
1323 if (nritems == 1 ||
1324 leaf_space_used(l, mid, nritems - mid) + space_needed >
1325 BTRFS_LEAF_DATA_SIZE(root)) {
1326 if (slot >= nritems) {
1327 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1328 btrfs_set_header_nritems(&right->header, 0);
1329 wret = insert_ptr(trans, root, path,
1330 &disk_key,
1331 bh_blocknr(right_buffer),
1332 path->slots[1] + 1, 1);
1333 if (wret)
1334 ret = wret;
1335 btrfs_block_release(root, path->nodes[0]);
1336 path->nodes[0] = right_buffer;
1337 path->slots[0] = 0;
1338 path->slots[1] += 1;
1339 return ret;
1340 }
1341 mid = slot;
1342 double_split = 1;
1343 }
1344 } else {
1345 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1346 BTRFS_LEAF_DATA_SIZE(root)) {
1347 if (slot == 0) {
1348 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1349 btrfs_set_header_nritems(&right->header, 0);
1350 wret = insert_ptr(trans, root, path,
1351 &disk_key,
1352 bh_blocknr(right_buffer),
1353 path->slots[1], 1);
1354 if (wret)
1355 ret = wret;
1356 btrfs_block_release(root, path->nodes[0]);
1357 path->nodes[0] = right_buffer;
1358 path->slots[0] = 0;
1359 if (path->slots[1] == 0) {
1360 wret = fixup_low_keys(trans, root,
1361 path, &disk_key, 1);
1362 if (wret)
1363 ret = wret;
1364 }
1365 return ret;
1366 }
1367 mid = slot;
1368 double_split = 1;
1369 }
1370 }
1371 btrfs_set_header_nritems(&right->header, nritems - mid);
1372 data_copy_size = btrfs_item_end(l->items + mid) -
1373 leaf_data_end(root, l);
1374 btrfs_memcpy(root, right, right->items, l->items + mid,
1375 (nritems - mid) * sizeof(struct btrfs_item));
1376 btrfs_memcpy(root, right,
1377 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1378 data_copy_size, btrfs_leaf_data(l) +
1379 leaf_data_end(root, l), data_copy_size);
1380 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1381 btrfs_item_end(l->items + mid);
1382
1383 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1384 u32 ioff = btrfs_item_offset(right->items + i);
1385 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1386 }
1387
1388 btrfs_set_header_nritems(&l->header, mid);
1389 ret = 0;
1390 wret = insert_ptr(trans, root, path, &right->items[0].key,
1391 bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1392 if (wret)
1393 ret = wret;
1394 btrfs_mark_buffer_dirty(right_buffer);
1395 btrfs_mark_buffer_dirty(l_buf);
1396 BUG_ON(path->slots[0] != slot);
1397 if (mid <= slot) {
1398 btrfs_block_release(root, path->nodes[0]);
1399 path->nodes[0] = right_buffer;
1400 path->slots[0] -= mid;
1401 path->slots[1] += 1;
1402 } else
1403 btrfs_block_release(root, right_buffer);
1404 BUG_ON(path->slots[0] < 0);
1405 check_node(root, path, 1);
1406
1407 if (!double_split)
1408 return ret;
1409 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1410 BUG_ON(!right_buffer);
1411 right = btrfs_buffer_leaf(right_buffer);
1412 memset(&right->header, 0, sizeof(right->header));
1413 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1414 btrfs_set_header_generation(&right->header, trans->transid);
1415 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1416 btrfs_set_header_level(&right->header, 0);
1417 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1418 sizeof(right->header.fsid));
1419 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1420 btrfs_set_header_nritems(&right->header, 0);
1421 wret = insert_ptr(trans, root, path,
1422 &disk_key,
1423 bh_blocknr(right_buffer),
1424 path->slots[1], 1);
1425 if (wret)
1426 ret = wret;
1427 if (path->slots[1] == 0) {
1428 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1429 if (wret)
1430 ret = wret;
1431 }
1432 btrfs_block_release(root, path->nodes[0]);
1433 path->nodes[0] = right_buffer;
1434 path->slots[0] = 0;
1435 check_node(root, path, 1);
1436 check_leaf(root, path, 0);
1437 return ret;
1438 }
1439
1440 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1441 struct btrfs_root *root,
1442 struct btrfs_path *path,
1443 u32 new_size)
1444 {
1445 int ret = 0;
1446 int slot;
1447 int slot_orig;
1448 struct btrfs_leaf *leaf;
1449 struct buffer_head *leaf_buf;
1450 u32 nritems;
1451 unsigned int data_end;
1452 unsigned int old_data_start;
1453 unsigned int old_size;
1454 unsigned int size_diff;
1455 int i;
1456
1457 slot_orig = path->slots[0];
1458 leaf_buf = path->nodes[0];
1459 leaf = btrfs_buffer_leaf(leaf_buf);
1460
1461 nritems = btrfs_header_nritems(&leaf->header);
1462 data_end = leaf_data_end(root, leaf);
1463
1464 slot = path->slots[0];
1465 old_data_start = btrfs_item_offset(leaf->items + slot);
1466 old_size = btrfs_item_size(leaf->items + slot);
1467 BUG_ON(old_size <= new_size);
1468 size_diff = old_size - new_size;
1469
1470 BUG_ON(slot < 0);
1471 BUG_ON(slot >= nritems);
1472
1473 /*
1474 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1475 */
1476 /* first correct the data pointers */
1477 for (i = slot; i < nritems; i++) {
1478 u32 ioff = btrfs_item_offset(leaf->items + i);
1479 btrfs_set_item_offset(leaf->items + i,
1480 ioff + size_diff);
1481 }
1482 /* shift the data */
1483 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1484 data_end + size_diff, btrfs_leaf_data(leaf) +
1485 data_end, old_data_start + new_size - data_end);
1486 btrfs_set_item_size(leaf->items + slot, new_size);
1487 btrfs_mark_buffer_dirty(leaf_buf);
1488
1489 ret = 0;
1490 if (btrfs_leaf_free_space(root, leaf) < 0)
1491 BUG();
1492 check_leaf(root, path, 0);
1493 return ret;
1494 }
1495
1496 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1497 *root, struct btrfs_path *path, u32 data_size)
1498 {
1499 int ret = 0;
1500 int slot;
1501 int slot_orig;
1502 struct btrfs_leaf *leaf;
1503 struct buffer_head *leaf_buf;
1504 u32 nritems;
1505 unsigned int data_end;
1506 unsigned int old_data;
1507 unsigned int old_size;
1508 int i;
1509
1510 slot_orig = path->slots[0];
1511 leaf_buf = path->nodes[0];
1512 leaf = btrfs_buffer_leaf(leaf_buf);
1513
1514 nritems = btrfs_header_nritems(&leaf->header);
1515 data_end = leaf_data_end(root, leaf);
1516
1517 if (btrfs_leaf_free_space(root, leaf) < data_size)
1518 BUG();
1519 slot = path->slots[0];
1520 old_data = btrfs_item_end(leaf->items + slot);
1521
1522 BUG_ON(slot < 0);
1523 BUG_ON(slot >= nritems);
1524
1525 /*
1526 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1527 */
1528 /* first correct the data pointers */
1529 for (i = slot; i < nritems; i++) {
1530 u32 ioff = btrfs_item_offset(leaf->items + i);
1531 btrfs_set_item_offset(leaf->items + i,
1532 ioff - data_size);
1533 }
1534 /* shift the data */
1535 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1536 data_end - data_size, btrfs_leaf_data(leaf) +
1537 data_end, old_data - data_end);
1538 data_end = old_data;
1539 old_size = btrfs_item_size(leaf->items + slot);
1540 btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1541 btrfs_mark_buffer_dirty(leaf_buf);
1542
1543 ret = 0;
1544 if (btrfs_leaf_free_space(root, leaf) < 0)
1545 BUG();
1546 check_leaf(root, path, 0);
1547 return ret;
1548 }
1549
1550 /*
1551 * Given a key and some data, insert an item into the tree.
1552 * This does all the path init required, making room in the tree if needed.
1553 */
1554 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1555 *root, struct btrfs_path *path, struct btrfs_key
1556 *cpu_key, u32 data_size)
1557 {
1558 int ret = 0;
1559 int slot;
1560 int slot_orig;
1561 struct btrfs_leaf *leaf;
1562 struct buffer_head *leaf_buf;
1563 u32 nritems;
1564 unsigned int data_end;
1565 struct btrfs_disk_key disk_key;
1566
1567 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1568
1569 /* create a root if there isn't one */
1570 if (!root->node)
1571 BUG();
1572 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1573 if (ret == 0) {
1574 return -EEXIST;
1575 }
1576 if (ret < 0)
1577 goto out;
1578
1579 slot_orig = path->slots[0];
1580 leaf_buf = path->nodes[0];
1581 leaf = btrfs_buffer_leaf(leaf_buf);
1582
1583 nritems = btrfs_header_nritems(&leaf->header);
1584 data_end = leaf_data_end(root, leaf);
1585
1586 if (btrfs_leaf_free_space(root, leaf) <
1587 sizeof(struct btrfs_item) + data_size) {
1588 BUG();
1589 }
1590 slot = path->slots[0];
1591 BUG_ON(slot < 0);
1592 if (slot != nritems) {
1593 int i;
1594 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1595
1596 /*
1597 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1598 */
1599 /* first correct the data pointers */
1600 for (i = slot; i < nritems; i++) {
1601 u32 ioff = btrfs_item_offset(leaf->items + i);
1602 btrfs_set_item_offset(leaf->items + i,
1603 ioff - data_size);
1604 }
1605
1606 /* shift the items */
1607 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1608 leaf->items + slot,
1609 (nritems - slot) * sizeof(struct btrfs_item));
1610
1611 /* shift the data */
1612 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1613 data_end - data_size, btrfs_leaf_data(leaf) +
1614 data_end, old_data - data_end);
1615 data_end = old_data;
1616 }
1617 /* setup the item for the new data */
1618 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1619 sizeof(struct btrfs_disk_key));
1620 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1621 btrfs_set_item_size(leaf->items + slot, data_size);
1622 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1623 btrfs_mark_buffer_dirty(leaf_buf);
1624
1625 ret = 0;
1626 if (slot == 0)
1627 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1628
1629 if (btrfs_leaf_free_space(root, leaf) < 0)
1630 BUG();
1631 check_leaf(root, path, 0);
1632 out:
1633 return ret;
1634 }
1635
1636 /*
1637 * Given a key and some data, insert an item into the tree.
1638 * This does all the path init required, making room in the tree if needed.
1639 */
1640 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1641 *root, struct btrfs_key *cpu_key, void *data, u32
1642 data_size)
1643 {
1644 int ret = 0;
1645 struct btrfs_path *path;
1646 u8 *ptr;
1647
1648 path = btrfs_alloc_path();
1649 BUG_ON(!path);
1650 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1651 if (!ret) {
1652 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1653 path->slots[0], u8);
1654 btrfs_memcpy(root, path->nodes[0]->b_data,
1655 ptr, data, data_size);
1656 btrfs_mark_buffer_dirty(path->nodes[0]);
1657 }
1658 btrfs_release_path(root, path);
1659 btrfs_free_path(path);
1660 return ret;
1661 }
1662
1663 /*
1664 * delete the pointer from a given node.
1665 *
1666 * If the delete empties a node, the node is removed from the tree,
1667 * continuing all the way the root if required. The root is converted into
1668 * a leaf if all the nodes are emptied.
1669 */
1670 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1671 struct btrfs_path *path, int level, int slot)
1672 {
1673 struct btrfs_node *node;
1674 struct buffer_head *parent = path->nodes[level];
1675 u32 nritems;
1676 int ret = 0;
1677 int wret;
1678
1679 node = btrfs_buffer_node(parent);
1680 nritems = btrfs_header_nritems(&node->header);
1681 if (slot != nritems -1) {
1682 btrfs_memmove(root, node, node->ptrs + slot,
1683 node->ptrs + slot + 1,
1684 sizeof(struct btrfs_key_ptr) *
1685 (nritems - slot - 1));
1686 }
1687 nritems--;
1688 btrfs_set_header_nritems(&node->header, nritems);
1689 if (nritems == 0 && parent == root->node) {
1690 struct btrfs_header *header = btrfs_buffer_header(root->node);
1691 BUG_ON(btrfs_header_level(header) != 1);
1692 /* just turn the root into a leaf and break */
1693 btrfs_set_header_level(header, 0);
1694 } else if (slot == 0) {
1695 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1696 level + 1);
1697 if (wret)
1698 ret = wret;
1699 }
1700 btrfs_mark_buffer_dirty(parent);
1701 return ret;
1702 }
1703
1704 /*
1705 * delete the item at the leaf level in path. If that empties
1706 * the leaf, remove it from the tree
1707 */
1708 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1709 struct btrfs_path *path)
1710 {
1711 int slot;
1712 struct btrfs_leaf *leaf;
1713 struct buffer_head *leaf_buf;
1714 int doff;
1715 int dsize;
1716 int ret = 0;
1717 int wret;
1718 u32 nritems;
1719
1720 leaf_buf = path->nodes[0];
1721 leaf = btrfs_buffer_leaf(leaf_buf);
1722 slot = path->slots[0];
1723 doff = btrfs_item_offset(leaf->items + slot);
1724 dsize = btrfs_item_size(leaf->items + slot);
1725 nritems = btrfs_header_nritems(&leaf->header);
1726
1727 if (slot != nritems - 1) {
1728 int i;
1729 int data_end = leaf_data_end(root, leaf);
1730 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1731 data_end + dsize,
1732 btrfs_leaf_data(leaf) + data_end,
1733 doff - data_end);
1734 for (i = slot + 1; i < nritems; i++) {
1735 u32 ioff = btrfs_item_offset(leaf->items + i);
1736 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1737 }
1738 btrfs_memmove(root, leaf, leaf->items + slot,
1739 leaf->items + slot + 1,
1740 sizeof(struct btrfs_item) *
1741 (nritems - slot - 1));
1742 }
1743 btrfs_set_header_nritems(&leaf->header, nritems - 1);
1744 nritems--;
1745 /* delete the leaf if we've emptied it */
1746 if (nritems == 0) {
1747 if (leaf_buf == root->node) {
1748 btrfs_set_header_level(&leaf->header, 0);
1749 } else {
1750 clean_tree_block(trans, root, leaf_buf);
1751 wait_on_buffer(leaf_buf);
1752 wret = del_ptr(trans, root, path, 1, path->slots[1]);
1753 if (wret)
1754 ret = wret;
1755 wret = btrfs_free_extent(trans, root,
1756 bh_blocknr(leaf_buf), 1, 1);
1757 if (wret)
1758 ret = wret;
1759 }
1760 } else {
1761 int used = leaf_space_used(leaf, 0, nritems);
1762 if (slot == 0) {
1763 wret = fixup_low_keys(trans, root, path,
1764 &leaf->items[0].key, 1);
1765 if (wret)
1766 ret = wret;
1767 }
1768
1769 /* delete the leaf if it is mostly empty */
1770 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1771 /* push_leaf_left fixes the path.
1772 * make sure the path still points to our leaf
1773 * for possible call to del_ptr below
1774 */
1775 slot = path->slots[1];
1776 get_bh(leaf_buf);
1777 wret = push_leaf_left(trans, root, path, 1);
1778 if (wret < 0)
1779 ret = wret;
1780 if (path->nodes[0] == leaf_buf &&
1781 btrfs_header_nritems(&leaf->header)) {
1782 wret = push_leaf_right(trans, root, path, 1);
1783 if (wret < 0)
1784 ret = wret;
1785 }
1786 if (btrfs_header_nritems(&leaf->header) == 0) {
1787 u64 blocknr = bh_blocknr(leaf_buf);
1788 clean_tree_block(trans, root, leaf_buf);
1789 wait_on_buffer(leaf_buf);
1790 wret = del_ptr(trans, root, path, 1, slot);
1791 if (wret)
1792 ret = wret;
1793 btrfs_block_release(root, leaf_buf);
1794 wret = btrfs_free_extent(trans, root, blocknr,
1795 1, 1);
1796 if (wret)
1797 ret = wret;
1798 } else {
1799 btrfs_mark_buffer_dirty(leaf_buf);
1800 btrfs_block_release(root, leaf_buf);
1801 }
1802 } else {
1803 btrfs_mark_buffer_dirty(leaf_buf);
1804 }
1805 }
1806 return ret;
1807 }
1808
1809 /*
1810 * walk up the tree as far as required to find the next leaf.
1811 * returns 0 if it found something or 1 if there are no greater leaves.
1812 * returns < 0 on io errors.
1813 */
1814 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1815 {
1816 int slot;
1817 int level = 1;
1818 u64 blocknr;
1819 struct buffer_head *c;
1820 struct btrfs_node *c_node;
1821 struct buffer_head *next = NULL;
1822
1823 while(level < BTRFS_MAX_LEVEL) {
1824 if (!path->nodes[level])
1825 return 1;
1826 slot = path->slots[level] + 1;
1827 c = path->nodes[level];
1828 c_node = btrfs_buffer_node(c);
1829 if (slot >= btrfs_header_nritems(&c_node->header)) {
1830 level++;
1831 continue;
1832 }
1833 blocknr = btrfs_node_blockptr(c_node, slot);
1834 if (next)
1835 btrfs_block_release(root, next);
1836 next = read_tree_block(root, blocknr);
1837 break;
1838 }
1839 path->slots[level] = slot;
1840 while(1) {
1841 level--;
1842 c = path->nodes[level];
1843 btrfs_block_release(root, c);
1844 path->nodes[level] = next;
1845 path->slots[level] = 0;
1846 if (!level)
1847 break;
1848 next = read_tree_block(root,
1849 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1850 }
1851 return 0;
1852 }