]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/ctree.c
Merge branch 'topic/ctxfi' into for-linus
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_key *ins_key,
30 struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root, struct extent_buffer *dst,
33 struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root,
36 struct extent_buffer *dst_buf,
37 struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 struct btrfs_path *path, int level, int slot);
40
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43 struct btrfs_path *path;
44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 if (path)
46 path->reada = 1;
47 return path;
48 }
49
50 /*
51 * set all locked nodes in the path to blocking locks. This should
52 * be done before scheduling
53 */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56 int i;
57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 if (p->nodes[i] && p->locks[i])
59 btrfs_set_lock_blocking(p->nodes[i]);
60 }
61 }
62
63 /*
64 * reset all the locked nodes in the patch to spinning locks.
65 *
66 * held is used to keep lockdep happy, when lockdep is enabled
67 * we set held to a blocking lock before we go around and
68 * retake all the spinlocks in the path. You can safely use NULL
69 * for held
70 */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72 struct extent_buffer *held)
73 {
74 int i;
75
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 /* lockdep really cares that we take all of these spinlocks
78 * in the right order. If any of the locks in the path are not
79 * currently blocking, it is going to complain. So, make really
80 * really sure by forcing the path to blocking before we clear
81 * the path blocking.
82 */
83 if (held)
84 btrfs_set_lock_blocking(held);
85 btrfs_set_path_blocking(p);
86 #endif
87
88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89 if (p->nodes[i] && p->locks[i])
90 btrfs_clear_lock_blocking(p->nodes[i]);
91 }
92
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 if (held)
95 btrfs_clear_lock_blocking(held);
96 #endif
97 }
98
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102 btrfs_release_path(NULL, p);
103 kmem_cache_free(btrfs_path_cachep, p);
104 }
105
106 /*
107 * path release drops references on the extent buffers in the path
108 * and it drops any locks held by this path
109 *
110 * It is safe to call this on paths that no locks or extent buffers held.
111 */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114 int i;
115
116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117 p->slots[i] = 0;
118 if (!p->nodes[i])
119 continue;
120 if (p->locks[i]) {
121 btrfs_tree_unlock(p->nodes[i]);
122 p->locks[i] = 0;
123 }
124 free_extent_buffer(p->nodes[i]);
125 p->nodes[i] = NULL;
126 }
127 }
128
129 /*
130 * safely gets a reference on the root node of a tree. A lock
131 * is not taken, so a concurrent writer may put a different node
132 * at the root of the tree. See btrfs_lock_root_node for the
133 * looping required.
134 *
135 * The extent buffer returned by this has a reference taken, so
136 * it won't disappear. It may stop being the root of the tree
137 * at any time because there are no locks held.
138 */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141 struct extent_buffer *eb;
142 spin_lock(&root->node_lock);
143 eb = root->node;
144 extent_buffer_get(eb);
145 spin_unlock(&root->node_lock);
146 return eb;
147 }
148
149 /* loop around taking references on and locking the root node of the
150 * tree until you end up with a lock on the root. A locked buffer
151 * is returned, with a reference held.
152 */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155 struct extent_buffer *eb;
156
157 while (1) {
158 eb = btrfs_root_node(root);
159 btrfs_tree_lock(eb);
160
161 spin_lock(&root->node_lock);
162 if (eb == root->node) {
163 spin_unlock(&root->node_lock);
164 break;
165 }
166 spin_unlock(&root->node_lock);
167
168 btrfs_tree_unlock(eb);
169 free_extent_buffer(eb);
170 }
171 return eb;
172 }
173
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175 * put onto a simple dirty list. transaction.c walks this to make sure they
176 * get properly updated on disk.
177 */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180 if (root->track_dirty && list_empty(&root->dirty_list)) {
181 list_add(&root->dirty_list,
182 &root->fs_info->dirty_cowonly_roots);
183 }
184 }
185
186 /*
187 * used by snapshot creation to make a copy of a root for a tree with
188 * a given objectid. The buffer with the new root node is returned in
189 * cow_ret, and this func returns zero on success or a negative error code.
190 */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192 struct btrfs_root *root,
193 struct extent_buffer *buf,
194 struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196 struct extent_buffer *cow;
197 u32 nritems;
198 int ret = 0;
199 int level;
200 struct btrfs_root *new_root;
201
202 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
203 if (!new_root)
204 return -ENOMEM;
205
206 memcpy(new_root, root, sizeof(*new_root));
207 new_root->root_key.objectid = new_root_objectid;
208
209 WARN_ON(root->ref_cows && trans->transid !=
210 root->fs_info->running_transaction->transid);
211 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
212
213 level = btrfs_header_level(buf);
214 nritems = btrfs_header_nritems(buf);
215
216 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
217 new_root_objectid, trans->transid,
218 level, buf->start, 0);
219 if (IS_ERR(cow)) {
220 kfree(new_root);
221 return PTR_ERR(cow);
222 }
223
224 copy_extent_buffer(cow, buf, 0, 0, cow->len);
225 btrfs_set_header_bytenr(cow, cow->start);
226 btrfs_set_header_generation(cow, trans->transid);
227 btrfs_set_header_owner(cow, new_root_objectid);
228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
229
230 write_extent_buffer(cow, root->fs_info->fsid,
231 (unsigned long)btrfs_header_fsid(cow),
232 BTRFS_FSID_SIZE);
233
234 WARN_ON(btrfs_header_generation(buf) > trans->transid);
235 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
236 kfree(new_root);
237
238 if (ret)
239 return ret;
240
241 btrfs_mark_buffer_dirty(cow);
242 *cow_ret = cow;
243 return 0;
244 }
245
246 /*
247 * does the dirty work in cow of a single block. The parent block (if
248 * supplied) is updated to point to the new cow copy. The new buffer is marked
249 * dirty and returned locked. If you modify the block it needs to be marked
250 * dirty again.
251 *
252 * search_start -- an allocation hint for the new block
253 *
254 * empty_size -- a hint that you plan on doing more cow. This is the size in
255 * bytes the allocator should try to find free next to the block it returns.
256 * This is just a hint and may be ignored by the allocator.
257 */
258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259 struct btrfs_root *root,
260 struct extent_buffer *buf,
261 struct extent_buffer *parent, int parent_slot,
262 struct extent_buffer **cow_ret,
263 u64 search_start, u64 empty_size)
264 {
265 u64 parent_start;
266 struct extent_buffer *cow;
267 u32 nritems;
268 int ret = 0;
269 int level;
270 int unlock_orig = 0;
271
272 if (*cow_ret == buf)
273 unlock_orig = 1;
274
275 btrfs_assert_tree_locked(buf);
276
277 if (parent)
278 parent_start = parent->start;
279 else
280 parent_start = 0;
281
282 WARN_ON(root->ref_cows && trans->transid !=
283 root->fs_info->running_transaction->transid);
284 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
285
286 level = btrfs_header_level(buf);
287 nritems = btrfs_header_nritems(buf);
288
289 cow = btrfs_alloc_free_block(trans, root, buf->len,
290 parent_start, root->root_key.objectid,
291 trans->transid, level,
292 search_start, empty_size);
293 if (IS_ERR(cow))
294 return PTR_ERR(cow);
295
296 /* cow is set to blocking by btrfs_init_new_buffer */
297
298 copy_extent_buffer(cow, buf, 0, 0, cow->len);
299 btrfs_set_header_bytenr(cow, cow->start);
300 btrfs_set_header_generation(cow, trans->transid);
301 btrfs_set_header_owner(cow, root->root_key.objectid);
302 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
303
304 write_extent_buffer(cow, root->fs_info->fsid,
305 (unsigned long)btrfs_header_fsid(cow),
306 BTRFS_FSID_SIZE);
307
308 WARN_ON(btrfs_header_generation(buf) > trans->transid);
309 if (btrfs_header_generation(buf) != trans->transid) {
310 u32 nr_extents;
311 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
312 if (ret)
313 return ret;
314
315 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
316 WARN_ON(ret);
317 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
318 /*
319 * There are only two places that can drop reference to
320 * tree blocks owned by living reloc trees, one is here,
321 * the other place is btrfs_drop_subtree. In both places,
322 * we check reference count while tree block is locked.
323 * Furthermore, if reference count is one, it won't get
324 * increased by someone else.
325 */
326 u32 refs;
327 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
328 buf->len, &refs);
329 BUG_ON(ret);
330 if (refs == 1) {
331 ret = btrfs_update_ref(trans, root, buf, cow,
332 0, nritems);
333 clean_tree_block(trans, root, buf);
334 } else {
335 ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
336 }
337 BUG_ON(ret);
338 } else {
339 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
340 if (ret)
341 return ret;
342 clean_tree_block(trans, root, buf);
343 }
344
345 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
346 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
347 WARN_ON(ret);
348 }
349
350 if (buf == root->node) {
351 WARN_ON(parent && parent != buf);
352
353 spin_lock(&root->node_lock);
354 root->node = cow;
355 extent_buffer_get(cow);
356 spin_unlock(&root->node_lock);
357
358 if (buf != root->commit_root) {
359 btrfs_free_extent(trans, root, buf->start,
360 buf->len, buf->start,
361 root->root_key.objectid,
362 btrfs_header_generation(buf),
363 level, 1);
364 }
365 free_extent_buffer(buf);
366 add_root_to_dirty_list(root);
367 } else {
368 btrfs_set_node_blockptr(parent, parent_slot,
369 cow->start);
370 WARN_ON(trans->transid == 0);
371 btrfs_set_node_ptr_generation(parent, parent_slot,
372 trans->transid);
373 btrfs_mark_buffer_dirty(parent);
374 WARN_ON(btrfs_header_generation(parent) != trans->transid);
375 btrfs_free_extent(trans, root, buf->start, buf->len,
376 parent_start, btrfs_header_owner(parent),
377 btrfs_header_generation(parent), level, 1);
378 }
379 if (unlock_orig)
380 btrfs_tree_unlock(buf);
381 free_extent_buffer(buf);
382 btrfs_mark_buffer_dirty(cow);
383 *cow_ret = cow;
384 return 0;
385 }
386
387 /*
388 * cows a single block, see __btrfs_cow_block for the real work.
389 * This version of it has extra checks so that a block isn't cow'd more than
390 * once per transaction, as long as it hasn't been written yet
391 */
392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
393 struct btrfs_root *root, struct extent_buffer *buf,
394 struct extent_buffer *parent, int parent_slot,
395 struct extent_buffer **cow_ret)
396 {
397 u64 search_start;
398 int ret;
399
400 if (trans->transaction != root->fs_info->running_transaction) {
401 printk(KERN_CRIT "trans %llu running %llu\n",
402 (unsigned long long)trans->transid,
403 (unsigned long long)
404 root->fs_info->running_transaction->transid);
405 WARN_ON(1);
406 }
407 if (trans->transid != root->fs_info->generation) {
408 printk(KERN_CRIT "trans %llu running %llu\n",
409 (unsigned long long)trans->transid,
410 (unsigned long long)root->fs_info->generation);
411 WARN_ON(1);
412 }
413
414 if (btrfs_header_generation(buf) == trans->transid &&
415 btrfs_header_owner(buf) == root->root_key.objectid &&
416 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
417 *cow_ret = buf;
418 return 0;
419 }
420
421 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
422
423 if (parent)
424 btrfs_set_lock_blocking(parent);
425 btrfs_set_lock_blocking(buf);
426
427 ret = __btrfs_cow_block(trans, root, buf, parent,
428 parent_slot, cow_ret, search_start, 0);
429 return ret;
430 }
431
432 /*
433 * helper function for defrag to decide if two blocks pointed to by a
434 * node are actually close by
435 */
436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
437 {
438 if (blocknr < other && other - (blocknr + blocksize) < 32768)
439 return 1;
440 if (blocknr > other && blocknr - (other + blocksize) < 32768)
441 return 1;
442 return 0;
443 }
444
445 /*
446 * compare two keys in a memcmp fashion
447 */
448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
449 {
450 struct btrfs_key k1;
451
452 btrfs_disk_key_to_cpu(&k1, disk);
453
454 if (k1.objectid > k2->objectid)
455 return 1;
456 if (k1.objectid < k2->objectid)
457 return -1;
458 if (k1.type > k2->type)
459 return 1;
460 if (k1.type < k2->type)
461 return -1;
462 if (k1.offset > k2->offset)
463 return 1;
464 if (k1.offset < k2->offset)
465 return -1;
466 return 0;
467 }
468
469 /*
470 * same as comp_keys only with two btrfs_key's
471 */
472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
473 {
474 if (k1->objectid > k2->objectid)
475 return 1;
476 if (k1->objectid < k2->objectid)
477 return -1;
478 if (k1->type > k2->type)
479 return 1;
480 if (k1->type < k2->type)
481 return -1;
482 if (k1->offset > k2->offset)
483 return 1;
484 if (k1->offset < k2->offset)
485 return -1;
486 return 0;
487 }
488
489 /*
490 * this is used by the defrag code to go through all the
491 * leaves pointed to by a node and reallocate them so that
492 * disk order is close to key order
493 */
494 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
495 struct btrfs_root *root, struct extent_buffer *parent,
496 int start_slot, int cache_only, u64 *last_ret,
497 struct btrfs_key *progress)
498 {
499 struct extent_buffer *cur;
500 u64 blocknr;
501 u64 gen;
502 u64 search_start = *last_ret;
503 u64 last_block = 0;
504 u64 other;
505 u32 parent_nritems;
506 int end_slot;
507 int i;
508 int err = 0;
509 int parent_level;
510 int uptodate;
511 u32 blocksize;
512 int progress_passed = 0;
513 struct btrfs_disk_key disk_key;
514
515 parent_level = btrfs_header_level(parent);
516 if (cache_only && parent_level != 1)
517 return 0;
518
519 if (trans->transaction != root->fs_info->running_transaction)
520 WARN_ON(1);
521 if (trans->transid != root->fs_info->generation)
522 WARN_ON(1);
523
524 parent_nritems = btrfs_header_nritems(parent);
525 blocksize = btrfs_level_size(root, parent_level - 1);
526 end_slot = parent_nritems;
527
528 if (parent_nritems == 1)
529 return 0;
530
531 btrfs_set_lock_blocking(parent);
532
533 for (i = start_slot; i < end_slot; i++) {
534 int close = 1;
535
536 if (!parent->map_token) {
537 map_extent_buffer(parent,
538 btrfs_node_key_ptr_offset(i),
539 sizeof(struct btrfs_key_ptr),
540 &parent->map_token, &parent->kaddr,
541 &parent->map_start, &parent->map_len,
542 KM_USER1);
543 }
544 btrfs_node_key(parent, &disk_key, i);
545 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
546 continue;
547
548 progress_passed = 1;
549 blocknr = btrfs_node_blockptr(parent, i);
550 gen = btrfs_node_ptr_generation(parent, i);
551 if (last_block == 0)
552 last_block = blocknr;
553
554 if (i > 0) {
555 other = btrfs_node_blockptr(parent, i - 1);
556 close = close_blocks(blocknr, other, blocksize);
557 }
558 if (!close && i < end_slot - 2) {
559 other = btrfs_node_blockptr(parent, i + 1);
560 close = close_blocks(blocknr, other, blocksize);
561 }
562 if (close) {
563 last_block = blocknr;
564 continue;
565 }
566 if (parent->map_token) {
567 unmap_extent_buffer(parent, parent->map_token,
568 KM_USER1);
569 parent->map_token = NULL;
570 }
571
572 cur = btrfs_find_tree_block(root, blocknr, blocksize);
573 if (cur)
574 uptodate = btrfs_buffer_uptodate(cur, gen);
575 else
576 uptodate = 0;
577 if (!cur || !uptodate) {
578 if (cache_only) {
579 free_extent_buffer(cur);
580 continue;
581 }
582 if (!cur) {
583 cur = read_tree_block(root, blocknr,
584 blocksize, gen);
585 } else if (!uptodate) {
586 btrfs_read_buffer(cur, gen);
587 }
588 }
589 if (search_start == 0)
590 search_start = last_block;
591
592 btrfs_tree_lock(cur);
593 btrfs_set_lock_blocking(cur);
594 err = __btrfs_cow_block(trans, root, cur, parent, i,
595 &cur, search_start,
596 min(16 * blocksize,
597 (end_slot - i) * blocksize));
598 if (err) {
599 btrfs_tree_unlock(cur);
600 free_extent_buffer(cur);
601 break;
602 }
603 search_start = cur->start;
604 last_block = cur->start;
605 *last_ret = search_start;
606 btrfs_tree_unlock(cur);
607 free_extent_buffer(cur);
608 }
609 if (parent->map_token) {
610 unmap_extent_buffer(parent, parent->map_token,
611 KM_USER1);
612 parent->map_token = NULL;
613 }
614 return err;
615 }
616
617 /*
618 * The leaf data grows from end-to-front in the node.
619 * this returns the address of the start of the last item,
620 * which is the stop of the leaf data stack
621 */
622 static inline unsigned int leaf_data_end(struct btrfs_root *root,
623 struct extent_buffer *leaf)
624 {
625 u32 nr = btrfs_header_nritems(leaf);
626 if (nr == 0)
627 return BTRFS_LEAF_DATA_SIZE(root);
628 return btrfs_item_offset_nr(leaf, nr - 1);
629 }
630
631 /*
632 * extra debugging checks to make sure all the items in a key are
633 * well formed and in the proper order
634 */
635 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
636 int level)
637 {
638 struct extent_buffer *parent = NULL;
639 struct extent_buffer *node = path->nodes[level];
640 struct btrfs_disk_key parent_key;
641 struct btrfs_disk_key node_key;
642 int parent_slot;
643 int slot;
644 struct btrfs_key cpukey;
645 u32 nritems = btrfs_header_nritems(node);
646
647 if (path->nodes[level + 1])
648 parent = path->nodes[level + 1];
649
650 slot = path->slots[level];
651 BUG_ON(nritems == 0);
652 if (parent) {
653 parent_slot = path->slots[level + 1];
654 btrfs_node_key(parent, &parent_key, parent_slot);
655 btrfs_node_key(node, &node_key, 0);
656 BUG_ON(memcmp(&parent_key, &node_key,
657 sizeof(struct btrfs_disk_key)));
658 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
659 btrfs_header_bytenr(node));
660 }
661 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
662 if (slot != 0) {
663 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
664 btrfs_node_key(node, &node_key, slot);
665 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
666 }
667 if (slot < nritems - 1) {
668 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
669 btrfs_node_key(node, &node_key, slot);
670 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
671 }
672 return 0;
673 }
674
675 /*
676 * extra checking to make sure all the items in a leaf are
677 * well formed and in the proper order
678 */
679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
680 int level)
681 {
682 struct extent_buffer *leaf = path->nodes[level];
683 struct extent_buffer *parent = NULL;
684 int parent_slot;
685 struct btrfs_key cpukey;
686 struct btrfs_disk_key parent_key;
687 struct btrfs_disk_key leaf_key;
688 int slot = path->slots[0];
689
690 u32 nritems = btrfs_header_nritems(leaf);
691
692 if (path->nodes[level + 1])
693 parent = path->nodes[level + 1];
694
695 if (nritems == 0)
696 return 0;
697
698 if (parent) {
699 parent_slot = path->slots[level + 1];
700 btrfs_node_key(parent, &parent_key, parent_slot);
701 btrfs_item_key(leaf, &leaf_key, 0);
702
703 BUG_ON(memcmp(&parent_key, &leaf_key,
704 sizeof(struct btrfs_disk_key)));
705 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
706 btrfs_header_bytenr(leaf));
707 }
708 if (slot != 0 && slot < nritems - 1) {
709 btrfs_item_key(leaf, &leaf_key, slot);
710 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
711 if (comp_keys(&leaf_key, &cpukey) <= 0) {
712 btrfs_print_leaf(root, leaf);
713 printk(KERN_CRIT "slot %d offset bad key\n", slot);
714 BUG_ON(1);
715 }
716 if (btrfs_item_offset_nr(leaf, slot - 1) !=
717 btrfs_item_end_nr(leaf, slot)) {
718 btrfs_print_leaf(root, leaf);
719 printk(KERN_CRIT "slot %d offset bad\n", slot);
720 BUG_ON(1);
721 }
722 }
723 if (slot < nritems - 1) {
724 btrfs_item_key(leaf, &leaf_key, slot);
725 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
726 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
727 if (btrfs_item_offset_nr(leaf, slot) !=
728 btrfs_item_end_nr(leaf, slot + 1)) {
729 btrfs_print_leaf(root, leaf);
730 printk(KERN_CRIT "slot %d offset bad\n", slot);
731 BUG_ON(1);
732 }
733 }
734 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
735 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
736 return 0;
737 }
738
739 static noinline int check_block(struct btrfs_root *root,
740 struct btrfs_path *path, int level)
741 {
742 return 0;
743 if (level == 0)
744 return check_leaf(root, path, level);
745 return check_node(root, path, level);
746 }
747
748 /*
749 * search for key in the extent_buffer. The items start at offset p,
750 * and they are item_size apart. There are 'max' items in p.
751 *
752 * the slot in the array is returned via slot, and it points to
753 * the place where you would insert key if it is not found in
754 * the array.
755 *
756 * slot may point to max if the key is bigger than all of the keys
757 */
758 static noinline int generic_bin_search(struct extent_buffer *eb,
759 unsigned long p,
760 int item_size, struct btrfs_key *key,
761 int max, int *slot)
762 {
763 int low = 0;
764 int high = max;
765 int mid;
766 int ret;
767 struct btrfs_disk_key *tmp = NULL;
768 struct btrfs_disk_key unaligned;
769 unsigned long offset;
770 char *map_token = NULL;
771 char *kaddr = NULL;
772 unsigned long map_start = 0;
773 unsigned long map_len = 0;
774 int err;
775
776 while (low < high) {
777 mid = (low + high) / 2;
778 offset = p + mid * item_size;
779
780 if (!map_token || offset < map_start ||
781 (offset + sizeof(struct btrfs_disk_key)) >
782 map_start + map_len) {
783 if (map_token) {
784 unmap_extent_buffer(eb, map_token, KM_USER0);
785 map_token = NULL;
786 }
787
788 err = map_private_extent_buffer(eb, offset,
789 sizeof(struct btrfs_disk_key),
790 &map_token, &kaddr,
791 &map_start, &map_len, KM_USER0);
792
793 if (!err) {
794 tmp = (struct btrfs_disk_key *)(kaddr + offset -
795 map_start);
796 } else {
797 read_extent_buffer(eb, &unaligned,
798 offset, sizeof(unaligned));
799 tmp = &unaligned;
800 }
801
802 } else {
803 tmp = (struct btrfs_disk_key *)(kaddr + offset -
804 map_start);
805 }
806 ret = comp_keys(tmp, key);
807
808 if (ret < 0)
809 low = mid + 1;
810 else if (ret > 0)
811 high = mid;
812 else {
813 *slot = mid;
814 if (map_token)
815 unmap_extent_buffer(eb, map_token, KM_USER0);
816 return 0;
817 }
818 }
819 *slot = low;
820 if (map_token)
821 unmap_extent_buffer(eb, map_token, KM_USER0);
822 return 1;
823 }
824
825 /*
826 * simple bin_search frontend that does the right thing for
827 * leaves vs nodes
828 */
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830 int level, int *slot)
831 {
832 if (level == 0) {
833 return generic_bin_search(eb,
834 offsetof(struct btrfs_leaf, items),
835 sizeof(struct btrfs_item),
836 key, btrfs_header_nritems(eb),
837 slot);
838 } else {
839 return generic_bin_search(eb,
840 offsetof(struct btrfs_node, ptrs),
841 sizeof(struct btrfs_key_ptr),
842 key, btrfs_header_nritems(eb),
843 slot);
844 }
845 return -1;
846 }
847
848 /* given a node and slot number, this reads the blocks it points to. The
849 * extent buffer is returned with a reference taken (but unlocked).
850 * NULL is returned on error.
851 */
852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
853 struct extent_buffer *parent, int slot)
854 {
855 int level = btrfs_header_level(parent);
856 if (slot < 0)
857 return NULL;
858 if (slot >= btrfs_header_nritems(parent))
859 return NULL;
860
861 BUG_ON(level == 0);
862
863 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
864 btrfs_level_size(root, level - 1),
865 btrfs_node_ptr_generation(parent, slot));
866 }
867
868 /*
869 * node level balancing, used to make sure nodes are in proper order for
870 * item deletion. We balance from the top down, so we have to make sure
871 * that a deletion won't leave an node completely empty later on.
872 */
873 static noinline int balance_level(struct btrfs_trans_handle *trans,
874 struct btrfs_root *root,
875 struct btrfs_path *path, int level)
876 {
877 struct extent_buffer *right = NULL;
878 struct extent_buffer *mid;
879 struct extent_buffer *left = NULL;
880 struct extent_buffer *parent = NULL;
881 int ret = 0;
882 int wret;
883 int pslot;
884 int orig_slot = path->slots[level];
885 int err_on_enospc = 0;
886 u64 orig_ptr;
887
888 if (level == 0)
889 return 0;
890
891 mid = path->nodes[level];
892
893 WARN_ON(!path->locks[level]);
894 WARN_ON(btrfs_header_generation(mid) != trans->transid);
895
896 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
897
898 if (level < BTRFS_MAX_LEVEL - 1)
899 parent = path->nodes[level + 1];
900 pslot = path->slots[level + 1];
901
902 /*
903 * deal with the case where there is only one pointer in the root
904 * by promoting the node below to a root
905 */
906 if (!parent) {
907 struct extent_buffer *child;
908
909 if (btrfs_header_nritems(mid) != 1)
910 return 0;
911
912 /* promote the child to a root */
913 child = read_node_slot(root, mid, 0);
914 BUG_ON(!child);
915 btrfs_tree_lock(child);
916 btrfs_set_lock_blocking(child);
917 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918 BUG_ON(ret);
919
920 spin_lock(&root->node_lock);
921 root->node = child;
922 spin_unlock(&root->node_lock);
923
924 ret = btrfs_update_extent_ref(trans, root, child->start,
925 child->len,
926 mid->start, child->start,
927 root->root_key.objectid,
928 trans->transid, level - 1);
929 BUG_ON(ret);
930
931 add_root_to_dirty_list(root);
932 btrfs_tree_unlock(child);
933
934 path->locks[level] = 0;
935 path->nodes[level] = NULL;
936 clean_tree_block(trans, root, mid);
937 btrfs_tree_unlock(mid);
938 /* once for the path */
939 free_extent_buffer(mid);
940 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
941 mid->start, root->root_key.objectid,
942 btrfs_header_generation(mid),
943 level, 1);
944 /* once for the root ptr */
945 free_extent_buffer(mid);
946 return ret;
947 }
948 if (btrfs_header_nritems(mid) >
949 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
950 return 0;
951
952 if (trans->transaction->delayed_refs.flushing &&
953 btrfs_header_nritems(mid) > 2)
954 return 0;
955
956 if (btrfs_header_nritems(mid) < 2)
957 err_on_enospc = 1;
958
959 left = read_node_slot(root, parent, pslot - 1);
960 if (left) {
961 btrfs_tree_lock(left);
962 btrfs_set_lock_blocking(left);
963 wret = btrfs_cow_block(trans, root, left,
964 parent, pslot - 1, &left);
965 if (wret) {
966 ret = wret;
967 goto enospc;
968 }
969 }
970 right = read_node_slot(root, parent, pslot + 1);
971 if (right) {
972 btrfs_tree_lock(right);
973 btrfs_set_lock_blocking(right);
974 wret = btrfs_cow_block(trans, root, right,
975 parent, pslot + 1, &right);
976 if (wret) {
977 ret = wret;
978 goto enospc;
979 }
980 }
981
982 /* first, try to make some room in the middle buffer */
983 if (left) {
984 orig_slot += btrfs_header_nritems(left);
985 wret = push_node_left(trans, root, left, mid, 1);
986 if (wret < 0)
987 ret = wret;
988 if (btrfs_header_nritems(mid) < 2)
989 err_on_enospc = 1;
990 }
991
992 /*
993 * then try to empty the right most buffer into the middle
994 */
995 if (right) {
996 wret = push_node_left(trans, root, mid, right, 1);
997 if (wret < 0 && wret != -ENOSPC)
998 ret = wret;
999 if (btrfs_header_nritems(right) == 0) {
1000 u64 bytenr = right->start;
1001 u64 generation = btrfs_header_generation(parent);
1002 u32 blocksize = right->len;
1003
1004 clean_tree_block(trans, root, right);
1005 btrfs_tree_unlock(right);
1006 free_extent_buffer(right);
1007 right = NULL;
1008 wret = del_ptr(trans, root, path, level + 1, pslot +
1009 1);
1010 if (wret)
1011 ret = wret;
1012 wret = btrfs_free_extent(trans, root, bytenr,
1013 blocksize, parent->start,
1014 btrfs_header_owner(parent),
1015 generation, level, 1);
1016 if (wret)
1017 ret = wret;
1018 } else {
1019 struct btrfs_disk_key right_key;
1020 btrfs_node_key(right, &right_key, 0);
1021 btrfs_set_node_key(parent, &right_key, pslot + 1);
1022 btrfs_mark_buffer_dirty(parent);
1023 }
1024 }
1025 if (btrfs_header_nritems(mid) == 1) {
1026 /*
1027 * we're not allowed to leave a node with one item in the
1028 * tree during a delete. A deletion from lower in the tree
1029 * could try to delete the only pointer in this node.
1030 * So, pull some keys from the left.
1031 * There has to be a left pointer at this point because
1032 * otherwise we would have pulled some pointers from the
1033 * right
1034 */
1035 BUG_ON(!left);
1036 wret = balance_node_right(trans, root, mid, left);
1037 if (wret < 0) {
1038 ret = wret;
1039 goto enospc;
1040 }
1041 if (wret == 1) {
1042 wret = push_node_left(trans, root, left, mid, 1);
1043 if (wret < 0)
1044 ret = wret;
1045 }
1046 BUG_ON(wret == 1);
1047 }
1048 if (btrfs_header_nritems(mid) == 0) {
1049 /* we've managed to empty the middle node, drop it */
1050 u64 root_gen = btrfs_header_generation(parent);
1051 u64 bytenr = mid->start;
1052 u32 blocksize = mid->len;
1053
1054 clean_tree_block(trans, root, mid);
1055 btrfs_tree_unlock(mid);
1056 free_extent_buffer(mid);
1057 mid = NULL;
1058 wret = del_ptr(trans, root, path, level + 1, pslot);
1059 if (wret)
1060 ret = wret;
1061 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1062 parent->start,
1063 btrfs_header_owner(parent),
1064 root_gen, level, 1);
1065 if (wret)
1066 ret = wret;
1067 } else {
1068 /* update the parent key to reflect our changes */
1069 struct btrfs_disk_key mid_key;
1070 btrfs_node_key(mid, &mid_key, 0);
1071 btrfs_set_node_key(parent, &mid_key, pslot);
1072 btrfs_mark_buffer_dirty(parent);
1073 }
1074
1075 /* update the path */
1076 if (left) {
1077 if (btrfs_header_nritems(left) > orig_slot) {
1078 extent_buffer_get(left);
1079 /* left was locked after cow */
1080 path->nodes[level] = left;
1081 path->slots[level + 1] -= 1;
1082 path->slots[level] = orig_slot;
1083 if (mid) {
1084 btrfs_tree_unlock(mid);
1085 free_extent_buffer(mid);
1086 }
1087 } else {
1088 orig_slot -= btrfs_header_nritems(left);
1089 path->slots[level] = orig_slot;
1090 }
1091 }
1092 /* double check we haven't messed things up */
1093 check_block(root, path, level);
1094 if (orig_ptr !=
1095 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1096 BUG();
1097 enospc:
1098 if (right) {
1099 btrfs_tree_unlock(right);
1100 free_extent_buffer(right);
1101 }
1102 if (left) {
1103 if (path->nodes[level] != left)
1104 btrfs_tree_unlock(left);
1105 free_extent_buffer(left);
1106 }
1107 return ret;
1108 }
1109
1110 /* Node balancing for insertion. Here we only split or push nodes around
1111 * when they are completely full. This is also done top down, so we
1112 * have to be pessimistic.
1113 */
1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1115 struct btrfs_root *root,
1116 struct btrfs_path *path, int level)
1117 {
1118 struct extent_buffer *right = NULL;
1119 struct extent_buffer *mid;
1120 struct extent_buffer *left = NULL;
1121 struct extent_buffer *parent = NULL;
1122 int ret = 0;
1123 int wret;
1124 int pslot;
1125 int orig_slot = path->slots[level];
1126 u64 orig_ptr;
1127
1128 if (level == 0)
1129 return 1;
1130
1131 mid = path->nodes[level];
1132 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1133 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1134
1135 if (level < BTRFS_MAX_LEVEL - 1)
1136 parent = path->nodes[level + 1];
1137 pslot = path->slots[level + 1];
1138
1139 if (!parent)
1140 return 1;
1141
1142 left = read_node_slot(root, parent, pslot - 1);
1143
1144 /* first, try to make some room in the middle buffer */
1145 if (left) {
1146 u32 left_nr;
1147
1148 btrfs_tree_lock(left);
1149 btrfs_set_lock_blocking(left);
1150
1151 left_nr = btrfs_header_nritems(left);
1152 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1153 wret = 1;
1154 } else {
1155 ret = btrfs_cow_block(trans, root, left, parent,
1156 pslot - 1, &left);
1157 if (ret)
1158 wret = 1;
1159 else {
1160 wret = push_node_left(trans, root,
1161 left, mid, 0);
1162 }
1163 }
1164 if (wret < 0)
1165 ret = wret;
1166 if (wret == 0) {
1167 struct btrfs_disk_key disk_key;
1168 orig_slot += left_nr;
1169 btrfs_node_key(mid, &disk_key, 0);
1170 btrfs_set_node_key(parent, &disk_key, pslot);
1171 btrfs_mark_buffer_dirty(parent);
1172 if (btrfs_header_nritems(left) > orig_slot) {
1173 path->nodes[level] = left;
1174 path->slots[level + 1] -= 1;
1175 path->slots[level] = orig_slot;
1176 btrfs_tree_unlock(mid);
1177 free_extent_buffer(mid);
1178 } else {
1179 orig_slot -=
1180 btrfs_header_nritems(left);
1181 path->slots[level] = orig_slot;
1182 btrfs_tree_unlock(left);
1183 free_extent_buffer(left);
1184 }
1185 return 0;
1186 }
1187 btrfs_tree_unlock(left);
1188 free_extent_buffer(left);
1189 }
1190 right = read_node_slot(root, parent, pslot + 1);
1191
1192 /*
1193 * then try to empty the right most buffer into the middle
1194 */
1195 if (right) {
1196 u32 right_nr;
1197
1198 btrfs_tree_lock(right);
1199 btrfs_set_lock_blocking(right);
1200
1201 right_nr = btrfs_header_nritems(right);
1202 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1203 wret = 1;
1204 } else {
1205 ret = btrfs_cow_block(trans, root, right,
1206 parent, pslot + 1,
1207 &right);
1208 if (ret)
1209 wret = 1;
1210 else {
1211 wret = balance_node_right(trans, root,
1212 right, mid);
1213 }
1214 }
1215 if (wret < 0)
1216 ret = wret;
1217 if (wret == 0) {
1218 struct btrfs_disk_key disk_key;
1219
1220 btrfs_node_key(right, &disk_key, 0);
1221 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1222 btrfs_mark_buffer_dirty(parent);
1223
1224 if (btrfs_header_nritems(mid) <= orig_slot) {
1225 path->nodes[level] = right;
1226 path->slots[level + 1] += 1;
1227 path->slots[level] = orig_slot -
1228 btrfs_header_nritems(mid);
1229 btrfs_tree_unlock(mid);
1230 free_extent_buffer(mid);
1231 } else {
1232 btrfs_tree_unlock(right);
1233 free_extent_buffer(right);
1234 }
1235 return 0;
1236 }
1237 btrfs_tree_unlock(right);
1238 free_extent_buffer(right);
1239 }
1240 return 1;
1241 }
1242
1243 /*
1244 * readahead one full node of leaves, finding things that are close
1245 * to the block in 'slot', and triggering ra on them.
1246 */
1247 static void reada_for_search(struct btrfs_root *root,
1248 struct btrfs_path *path,
1249 int level, int slot, u64 objectid)
1250 {
1251 struct extent_buffer *node;
1252 struct btrfs_disk_key disk_key;
1253 u32 nritems;
1254 u64 search;
1255 u64 target;
1256 u64 nread = 0;
1257 int direction = path->reada;
1258 struct extent_buffer *eb;
1259 u32 nr;
1260 u32 blocksize;
1261 u32 nscan = 0;
1262
1263 if (level != 1)
1264 return;
1265
1266 if (!path->nodes[level])
1267 return;
1268
1269 node = path->nodes[level];
1270
1271 search = btrfs_node_blockptr(node, slot);
1272 blocksize = btrfs_level_size(root, level - 1);
1273 eb = btrfs_find_tree_block(root, search, blocksize);
1274 if (eb) {
1275 free_extent_buffer(eb);
1276 return;
1277 }
1278
1279 target = search;
1280
1281 nritems = btrfs_header_nritems(node);
1282 nr = slot;
1283 while (1) {
1284 if (direction < 0) {
1285 if (nr == 0)
1286 break;
1287 nr--;
1288 } else if (direction > 0) {
1289 nr++;
1290 if (nr >= nritems)
1291 break;
1292 }
1293 if (path->reada < 0 && objectid) {
1294 btrfs_node_key(node, &disk_key, nr);
1295 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1296 break;
1297 }
1298 search = btrfs_node_blockptr(node, nr);
1299 if ((search <= target && target - search <= 65536) ||
1300 (search > target && search - target <= 65536)) {
1301 readahead_tree_block(root, search, blocksize,
1302 btrfs_node_ptr_generation(node, nr));
1303 nread += blocksize;
1304 }
1305 nscan++;
1306 if ((nread > 65536 || nscan > 32))
1307 break;
1308 }
1309 }
1310
1311 /*
1312 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1313 * cache
1314 */
1315 static noinline int reada_for_balance(struct btrfs_root *root,
1316 struct btrfs_path *path, int level)
1317 {
1318 int slot;
1319 int nritems;
1320 struct extent_buffer *parent;
1321 struct extent_buffer *eb;
1322 u64 gen;
1323 u64 block1 = 0;
1324 u64 block2 = 0;
1325 int ret = 0;
1326 int blocksize;
1327
1328 parent = path->nodes[level + 1];
1329 if (!parent)
1330 return 0;
1331
1332 nritems = btrfs_header_nritems(parent);
1333 slot = path->slots[level + 1];
1334 blocksize = btrfs_level_size(root, level);
1335
1336 if (slot > 0) {
1337 block1 = btrfs_node_blockptr(parent, slot - 1);
1338 gen = btrfs_node_ptr_generation(parent, slot - 1);
1339 eb = btrfs_find_tree_block(root, block1, blocksize);
1340 if (eb && btrfs_buffer_uptodate(eb, gen))
1341 block1 = 0;
1342 free_extent_buffer(eb);
1343 }
1344 if (slot + 1 < nritems) {
1345 block2 = btrfs_node_blockptr(parent, slot + 1);
1346 gen = btrfs_node_ptr_generation(parent, slot + 1);
1347 eb = btrfs_find_tree_block(root, block2, blocksize);
1348 if (eb && btrfs_buffer_uptodate(eb, gen))
1349 block2 = 0;
1350 free_extent_buffer(eb);
1351 }
1352 if (block1 || block2) {
1353 ret = -EAGAIN;
1354
1355 /* release the whole path */
1356 btrfs_release_path(root, path);
1357
1358 /* read the blocks */
1359 if (block1)
1360 readahead_tree_block(root, block1, blocksize, 0);
1361 if (block2)
1362 readahead_tree_block(root, block2, blocksize, 0);
1363
1364 if (block1) {
1365 eb = read_tree_block(root, block1, blocksize, 0);
1366 free_extent_buffer(eb);
1367 }
1368 if (block2) {
1369 eb = read_tree_block(root, block2, blocksize, 0);
1370 free_extent_buffer(eb);
1371 }
1372 }
1373 return ret;
1374 }
1375
1376
1377 /*
1378 * when we walk down the tree, it is usually safe to unlock the higher layers
1379 * in the tree. The exceptions are when our path goes through slot 0, because
1380 * operations on the tree might require changing key pointers higher up in the
1381 * tree.
1382 *
1383 * callers might also have set path->keep_locks, which tells this code to keep
1384 * the lock if the path points to the last slot in the block. This is part of
1385 * walking through the tree, and selecting the next slot in the higher block.
1386 *
1387 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1388 * if lowest_unlock is 1, level 0 won't be unlocked
1389 */
1390 static noinline void unlock_up(struct btrfs_path *path, int level,
1391 int lowest_unlock)
1392 {
1393 int i;
1394 int skip_level = level;
1395 int no_skips = 0;
1396 struct extent_buffer *t;
1397
1398 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1399 if (!path->nodes[i])
1400 break;
1401 if (!path->locks[i])
1402 break;
1403 if (!no_skips && path->slots[i] == 0) {
1404 skip_level = i + 1;
1405 continue;
1406 }
1407 if (!no_skips && path->keep_locks) {
1408 u32 nritems;
1409 t = path->nodes[i];
1410 nritems = btrfs_header_nritems(t);
1411 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1412 skip_level = i + 1;
1413 continue;
1414 }
1415 }
1416 if (skip_level < i && i >= lowest_unlock)
1417 no_skips = 1;
1418
1419 t = path->nodes[i];
1420 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1421 btrfs_tree_unlock(t);
1422 path->locks[i] = 0;
1423 }
1424 }
1425 }
1426
1427 /*
1428 * This releases any locks held in the path starting at level and
1429 * going all the way up to the root.
1430 *
1431 * btrfs_search_slot will keep the lock held on higher nodes in a few
1432 * corner cases, such as COW of the block at slot zero in the node. This
1433 * ignores those rules, and it should only be called when there are no
1434 * more updates to be done higher up in the tree.
1435 */
1436 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1437 {
1438 int i;
1439
1440 if (path->keep_locks || path->lowest_level)
1441 return;
1442
1443 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1444 if (!path->nodes[i])
1445 continue;
1446 if (!path->locks[i])
1447 continue;
1448 btrfs_tree_unlock(path->nodes[i]);
1449 path->locks[i] = 0;
1450 }
1451 }
1452
1453 /*
1454 * helper function for btrfs_search_slot. The goal is to find a block
1455 * in cache without setting the path to blocking. If we find the block
1456 * we return zero and the path is unchanged.
1457 *
1458 * If we can't find the block, we set the path blocking and do some
1459 * reada. -EAGAIN is returned and the search must be repeated.
1460 */
1461 static int
1462 read_block_for_search(struct btrfs_trans_handle *trans,
1463 struct btrfs_root *root, struct btrfs_path *p,
1464 struct extent_buffer **eb_ret, int level, int slot,
1465 struct btrfs_key *key)
1466 {
1467 u64 blocknr;
1468 u64 gen;
1469 u32 blocksize;
1470 struct extent_buffer *b = *eb_ret;
1471 struct extent_buffer *tmp;
1472 int ret;
1473
1474 blocknr = btrfs_node_blockptr(b, slot);
1475 gen = btrfs_node_ptr_generation(b, slot);
1476 blocksize = btrfs_level_size(root, level - 1);
1477
1478 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1479 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1480 /*
1481 * we found an up to date block without sleeping, return
1482 * right away
1483 */
1484 *eb_ret = tmp;
1485 return 0;
1486 }
1487
1488 /*
1489 * reduce lock contention at high levels
1490 * of the btree by dropping locks before
1491 * we read. Don't release the lock on the current
1492 * level because we need to walk this node to figure
1493 * out which blocks to read.
1494 */
1495 btrfs_unlock_up_safe(p, level + 1);
1496 btrfs_set_path_blocking(p);
1497
1498 if (tmp)
1499 free_extent_buffer(tmp);
1500 if (p->reada)
1501 reada_for_search(root, p, level, slot, key->objectid);
1502
1503 btrfs_release_path(NULL, p);
1504
1505 ret = -EAGAIN;
1506 tmp = read_tree_block(root, blocknr, blocksize, gen);
1507 if (tmp) {
1508 /*
1509 * If the read above didn't mark this buffer up to date,
1510 * it will never end up being up to date. Set ret to EIO now
1511 * and give up so that our caller doesn't loop forever
1512 * on our EAGAINs.
1513 */
1514 if (!btrfs_buffer_uptodate(tmp, 0))
1515 ret = -EIO;
1516 free_extent_buffer(tmp);
1517 }
1518 return ret;
1519 }
1520
1521 /*
1522 * helper function for btrfs_search_slot. This does all of the checks
1523 * for node-level blocks and does any balancing required based on
1524 * the ins_len.
1525 *
1526 * If no extra work was required, zero is returned. If we had to
1527 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1528 * start over
1529 */
1530 static int
1531 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root, struct btrfs_path *p,
1533 struct extent_buffer *b, int level, int ins_len)
1534 {
1535 int ret;
1536 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1537 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1538 int sret;
1539
1540 sret = reada_for_balance(root, p, level);
1541 if (sret)
1542 goto again;
1543
1544 btrfs_set_path_blocking(p);
1545 sret = split_node(trans, root, p, level);
1546 btrfs_clear_path_blocking(p, NULL);
1547
1548 BUG_ON(sret > 0);
1549 if (sret) {
1550 ret = sret;
1551 goto done;
1552 }
1553 b = p->nodes[level];
1554 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1555 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1556 int sret;
1557
1558 sret = reada_for_balance(root, p, level);
1559 if (sret)
1560 goto again;
1561
1562 btrfs_set_path_blocking(p);
1563 sret = balance_level(trans, root, p, level);
1564 btrfs_clear_path_blocking(p, NULL);
1565
1566 if (sret) {
1567 ret = sret;
1568 goto done;
1569 }
1570 b = p->nodes[level];
1571 if (!b) {
1572 btrfs_release_path(NULL, p);
1573 goto again;
1574 }
1575 BUG_ON(btrfs_header_nritems(b) == 1);
1576 }
1577 return 0;
1578
1579 again:
1580 ret = -EAGAIN;
1581 done:
1582 return ret;
1583 }
1584
1585 /*
1586 * look for key in the tree. path is filled in with nodes along the way
1587 * if key is found, we return zero and you can find the item in the leaf
1588 * level of the path (level 0)
1589 *
1590 * If the key isn't found, the path points to the slot where it should
1591 * be inserted, and 1 is returned. If there are other errors during the
1592 * search a negative error number is returned.
1593 *
1594 * if ins_len > 0, nodes and leaves will be split as we walk down the
1595 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1596 * possible)
1597 */
1598 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1599 *root, struct btrfs_key *key, struct btrfs_path *p, int
1600 ins_len, int cow)
1601 {
1602 struct extent_buffer *b;
1603 int slot;
1604 int ret;
1605 int level;
1606 int lowest_unlock = 1;
1607 u8 lowest_level = 0;
1608
1609 lowest_level = p->lowest_level;
1610 WARN_ON(lowest_level && ins_len > 0);
1611 WARN_ON(p->nodes[0] != NULL);
1612
1613 if (ins_len < 0)
1614 lowest_unlock = 2;
1615
1616 again:
1617 if (p->skip_locking)
1618 b = btrfs_root_node(root);
1619 else
1620 b = btrfs_lock_root_node(root);
1621
1622 while (b) {
1623 level = btrfs_header_level(b);
1624
1625 /*
1626 * setup the path here so we can release it under lock
1627 * contention with the cow code
1628 */
1629 p->nodes[level] = b;
1630 if (!p->skip_locking)
1631 p->locks[level] = 1;
1632
1633 if (cow) {
1634 int wret;
1635
1636 /*
1637 * if we don't really need to cow this block
1638 * then we don't want to set the path blocking,
1639 * so we test it here
1640 */
1641 if (btrfs_header_generation(b) == trans->transid &&
1642 btrfs_header_owner(b) == root->root_key.objectid &&
1643 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1644 goto cow_done;
1645 }
1646 btrfs_set_path_blocking(p);
1647
1648 wret = btrfs_cow_block(trans, root, b,
1649 p->nodes[level + 1],
1650 p->slots[level + 1], &b);
1651 if (wret) {
1652 free_extent_buffer(b);
1653 ret = wret;
1654 goto done;
1655 }
1656 }
1657 cow_done:
1658 BUG_ON(!cow && ins_len);
1659 if (level != btrfs_header_level(b))
1660 WARN_ON(1);
1661 level = btrfs_header_level(b);
1662
1663 p->nodes[level] = b;
1664 if (!p->skip_locking)
1665 p->locks[level] = 1;
1666
1667 btrfs_clear_path_blocking(p, NULL);
1668
1669 /*
1670 * we have a lock on b and as long as we aren't changing
1671 * the tree, there is no way to for the items in b to change.
1672 * It is safe to drop the lock on our parent before we
1673 * go through the expensive btree search on b.
1674 *
1675 * If cow is true, then we might be changing slot zero,
1676 * which may require changing the parent. So, we can't
1677 * drop the lock until after we know which slot we're
1678 * operating on.
1679 */
1680 if (!cow)
1681 btrfs_unlock_up_safe(p, level + 1);
1682
1683 ret = check_block(root, p, level);
1684 if (ret) {
1685 ret = -1;
1686 goto done;
1687 }
1688
1689 ret = bin_search(b, key, level, &slot);
1690
1691 if (level != 0) {
1692 if (ret && slot > 0)
1693 slot -= 1;
1694 p->slots[level] = slot;
1695 ret = setup_nodes_for_search(trans, root, p, b, level,
1696 ins_len);
1697 if (ret == -EAGAIN)
1698 goto again;
1699 else if (ret)
1700 goto done;
1701 b = p->nodes[level];
1702 slot = p->slots[level];
1703
1704 unlock_up(p, level, lowest_unlock);
1705
1706 /* this is only true while dropping a snapshot */
1707 if (level == lowest_level) {
1708 ret = 0;
1709 goto done;
1710 }
1711
1712 ret = read_block_for_search(trans, root, p,
1713 &b, level, slot, key);
1714 if (ret == -EAGAIN)
1715 goto again;
1716
1717 if (ret == -EIO)
1718 goto done;
1719
1720 if (!p->skip_locking) {
1721 int lret;
1722
1723 btrfs_clear_path_blocking(p, NULL);
1724 lret = btrfs_try_spin_lock(b);
1725
1726 if (!lret) {
1727 btrfs_set_path_blocking(p);
1728 btrfs_tree_lock(b);
1729 btrfs_clear_path_blocking(p, b);
1730 }
1731 }
1732 } else {
1733 p->slots[level] = slot;
1734 if (ins_len > 0 &&
1735 btrfs_leaf_free_space(root, b) < ins_len) {
1736 int sret;
1737
1738 btrfs_set_path_blocking(p);
1739 sret = split_leaf(trans, root, key,
1740 p, ins_len, ret == 0);
1741 btrfs_clear_path_blocking(p, NULL);
1742
1743 BUG_ON(sret > 0);
1744 if (sret) {
1745 ret = sret;
1746 goto done;
1747 }
1748 }
1749 if (!p->search_for_split)
1750 unlock_up(p, level, lowest_unlock);
1751 goto done;
1752 }
1753 }
1754 ret = 1;
1755 done:
1756 /*
1757 * we don't really know what they plan on doing with the path
1758 * from here on, so for now just mark it as blocking
1759 */
1760 if (!p->leave_spinning)
1761 btrfs_set_path_blocking(p);
1762 if (ret < 0)
1763 btrfs_release_path(root, p);
1764 return ret;
1765 }
1766
1767 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1768 struct btrfs_root *root,
1769 struct btrfs_key *node_keys,
1770 u64 *nodes, int lowest_level)
1771 {
1772 struct extent_buffer *eb;
1773 struct extent_buffer *parent;
1774 struct btrfs_key key;
1775 u64 bytenr;
1776 u64 generation;
1777 u32 blocksize;
1778 int level;
1779 int slot;
1780 int key_match;
1781 int ret;
1782
1783 eb = btrfs_lock_root_node(root);
1784 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
1785 BUG_ON(ret);
1786
1787 btrfs_set_lock_blocking(eb);
1788
1789 parent = eb;
1790 while (1) {
1791 level = btrfs_header_level(parent);
1792 if (level == 0 || level <= lowest_level)
1793 break;
1794
1795 ret = bin_search(parent, &node_keys[lowest_level], level,
1796 &slot);
1797 if (ret && slot > 0)
1798 slot--;
1799
1800 bytenr = btrfs_node_blockptr(parent, slot);
1801 if (nodes[level - 1] == bytenr)
1802 break;
1803
1804 blocksize = btrfs_level_size(root, level - 1);
1805 generation = btrfs_node_ptr_generation(parent, slot);
1806 btrfs_node_key_to_cpu(eb, &key, slot);
1807 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1808
1809 if (generation == trans->transid) {
1810 eb = read_tree_block(root, bytenr, blocksize,
1811 generation);
1812 btrfs_tree_lock(eb);
1813 btrfs_set_lock_blocking(eb);
1814 }
1815
1816 /*
1817 * if node keys match and node pointer hasn't been modified
1818 * in the running transaction, we can merge the path. for
1819 * blocks owened by reloc trees, the node pointer check is
1820 * skipped, this is because these blocks are fully controlled
1821 * by the space balance code, no one else can modify them.
1822 */
1823 if (!nodes[level - 1] || !key_match ||
1824 (generation == trans->transid &&
1825 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1826 if (level == 1 || level == lowest_level + 1) {
1827 if (generation == trans->transid) {
1828 btrfs_tree_unlock(eb);
1829 free_extent_buffer(eb);
1830 }
1831 break;
1832 }
1833
1834 if (generation != trans->transid) {
1835 eb = read_tree_block(root, bytenr, blocksize,
1836 generation);
1837 btrfs_tree_lock(eb);
1838 btrfs_set_lock_blocking(eb);
1839 }
1840
1841 ret = btrfs_cow_block(trans, root, eb, parent, slot,
1842 &eb);
1843 BUG_ON(ret);
1844
1845 if (root->root_key.objectid ==
1846 BTRFS_TREE_RELOC_OBJECTID) {
1847 if (!nodes[level - 1]) {
1848 nodes[level - 1] = eb->start;
1849 memcpy(&node_keys[level - 1], &key,
1850 sizeof(node_keys[0]));
1851 } else {
1852 WARN_ON(1);
1853 }
1854 }
1855
1856 btrfs_tree_unlock(parent);
1857 free_extent_buffer(parent);
1858 parent = eb;
1859 continue;
1860 }
1861
1862 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1863 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1864 btrfs_mark_buffer_dirty(parent);
1865
1866 ret = btrfs_inc_extent_ref(trans, root,
1867 nodes[level - 1],
1868 blocksize, parent->start,
1869 btrfs_header_owner(parent),
1870 btrfs_header_generation(parent),
1871 level - 1);
1872 BUG_ON(ret);
1873
1874 /*
1875 * If the block was created in the running transaction,
1876 * it's possible this is the last reference to it, so we
1877 * should drop the subtree.
1878 */
1879 if (generation == trans->transid) {
1880 ret = btrfs_drop_subtree(trans, root, eb, parent);
1881 BUG_ON(ret);
1882 btrfs_tree_unlock(eb);
1883 free_extent_buffer(eb);
1884 } else {
1885 ret = btrfs_free_extent(trans, root, bytenr,
1886 blocksize, parent->start,
1887 btrfs_header_owner(parent),
1888 btrfs_header_generation(parent),
1889 level - 1, 1);
1890 BUG_ON(ret);
1891 }
1892 break;
1893 }
1894 btrfs_tree_unlock(parent);
1895 free_extent_buffer(parent);
1896 return 0;
1897 }
1898
1899 /*
1900 * adjust the pointers going up the tree, starting at level
1901 * making sure the right key of each node is points to 'key'.
1902 * This is used after shifting pointers to the left, so it stops
1903 * fixing up pointers when a given leaf/node is not in slot 0 of the
1904 * higher levels
1905 *
1906 * If this fails to write a tree block, it returns -1, but continues
1907 * fixing up the blocks in ram so the tree is consistent.
1908 */
1909 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1910 struct btrfs_root *root, struct btrfs_path *path,
1911 struct btrfs_disk_key *key, int level)
1912 {
1913 int i;
1914 int ret = 0;
1915 struct extent_buffer *t;
1916
1917 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1918 int tslot = path->slots[i];
1919 if (!path->nodes[i])
1920 break;
1921 t = path->nodes[i];
1922 btrfs_set_node_key(t, key, tslot);
1923 btrfs_mark_buffer_dirty(path->nodes[i]);
1924 if (tslot != 0)
1925 break;
1926 }
1927 return ret;
1928 }
1929
1930 /*
1931 * update item key.
1932 *
1933 * This function isn't completely safe. It's the caller's responsibility
1934 * that the new key won't break the order
1935 */
1936 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1937 struct btrfs_root *root, struct btrfs_path *path,
1938 struct btrfs_key *new_key)
1939 {
1940 struct btrfs_disk_key disk_key;
1941 struct extent_buffer *eb;
1942 int slot;
1943
1944 eb = path->nodes[0];
1945 slot = path->slots[0];
1946 if (slot > 0) {
1947 btrfs_item_key(eb, &disk_key, slot - 1);
1948 if (comp_keys(&disk_key, new_key) >= 0)
1949 return -1;
1950 }
1951 if (slot < btrfs_header_nritems(eb) - 1) {
1952 btrfs_item_key(eb, &disk_key, slot + 1);
1953 if (comp_keys(&disk_key, new_key) <= 0)
1954 return -1;
1955 }
1956
1957 btrfs_cpu_key_to_disk(&disk_key, new_key);
1958 btrfs_set_item_key(eb, &disk_key, slot);
1959 btrfs_mark_buffer_dirty(eb);
1960 if (slot == 0)
1961 fixup_low_keys(trans, root, path, &disk_key, 1);
1962 return 0;
1963 }
1964
1965 /*
1966 * try to push data from one node into the next node left in the
1967 * tree.
1968 *
1969 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1970 * error, and > 0 if there was no room in the left hand block.
1971 */
1972 static int push_node_left(struct btrfs_trans_handle *trans,
1973 struct btrfs_root *root, struct extent_buffer *dst,
1974 struct extent_buffer *src, int empty)
1975 {
1976 int push_items = 0;
1977 int src_nritems;
1978 int dst_nritems;
1979 int ret = 0;
1980
1981 src_nritems = btrfs_header_nritems(src);
1982 dst_nritems = btrfs_header_nritems(dst);
1983 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1984 WARN_ON(btrfs_header_generation(src) != trans->transid);
1985 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1986
1987 if (!empty && src_nritems <= 8)
1988 return 1;
1989
1990 if (push_items <= 0)
1991 return 1;
1992
1993 if (empty) {
1994 push_items = min(src_nritems, push_items);
1995 if (push_items < src_nritems) {
1996 /* leave at least 8 pointers in the node if
1997 * we aren't going to empty it
1998 */
1999 if (src_nritems - push_items < 8) {
2000 if (push_items <= 8)
2001 return 1;
2002 push_items -= 8;
2003 }
2004 }
2005 } else
2006 push_items = min(src_nritems - 8, push_items);
2007
2008 copy_extent_buffer(dst, src,
2009 btrfs_node_key_ptr_offset(dst_nritems),
2010 btrfs_node_key_ptr_offset(0),
2011 push_items * sizeof(struct btrfs_key_ptr));
2012
2013 if (push_items < src_nritems) {
2014 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2015 btrfs_node_key_ptr_offset(push_items),
2016 (src_nritems - push_items) *
2017 sizeof(struct btrfs_key_ptr));
2018 }
2019 btrfs_set_header_nritems(src, src_nritems - push_items);
2020 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2021 btrfs_mark_buffer_dirty(src);
2022 btrfs_mark_buffer_dirty(dst);
2023
2024 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
2025 BUG_ON(ret);
2026
2027 return ret;
2028 }
2029
2030 /*
2031 * try to push data from one node into the next node right in the
2032 * tree.
2033 *
2034 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2035 * error, and > 0 if there was no room in the right hand block.
2036 *
2037 * this will only push up to 1/2 the contents of the left node over
2038 */
2039 static int balance_node_right(struct btrfs_trans_handle *trans,
2040 struct btrfs_root *root,
2041 struct extent_buffer *dst,
2042 struct extent_buffer *src)
2043 {
2044 int push_items = 0;
2045 int max_push;
2046 int src_nritems;
2047 int dst_nritems;
2048 int ret = 0;
2049
2050 WARN_ON(btrfs_header_generation(src) != trans->transid);
2051 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2052
2053 src_nritems = btrfs_header_nritems(src);
2054 dst_nritems = btrfs_header_nritems(dst);
2055 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2056 if (push_items <= 0)
2057 return 1;
2058
2059 if (src_nritems < 4)
2060 return 1;
2061
2062 max_push = src_nritems / 2 + 1;
2063 /* don't try to empty the node */
2064 if (max_push >= src_nritems)
2065 return 1;
2066
2067 if (max_push < push_items)
2068 push_items = max_push;
2069
2070 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2071 btrfs_node_key_ptr_offset(0),
2072 (dst_nritems) *
2073 sizeof(struct btrfs_key_ptr));
2074
2075 copy_extent_buffer(dst, src,
2076 btrfs_node_key_ptr_offset(0),
2077 btrfs_node_key_ptr_offset(src_nritems - push_items),
2078 push_items * sizeof(struct btrfs_key_ptr));
2079
2080 btrfs_set_header_nritems(src, src_nritems - push_items);
2081 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2082
2083 btrfs_mark_buffer_dirty(src);
2084 btrfs_mark_buffer_dirty(dst);
2085
2086 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2087 BUG_ON(ret);
2088
2089 return ret;
2090 }
2091
2092 /*
2093 * helper function to insert a new root level in the tree.
2094 * A new node is allocated, and a single item is inserted to
2095 * point to the existing root
2096 *
2097 * returns zero on success or < 0 on failure.
2098 */
2099 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_path *path, int level)
2102 {
2103 u64 lower_gen;
2104 struct extent_buffer *lower;
2105 struct extent_buffer *c;
2106 struct extent_buffer *old;
2107 struct btrfs_disk_key lower_key;
2108 int ret;
2109
2110 BUG_ON(path->nodes[level]);
2111 BUG_ON(path->nodes[level-1] != root->node);
2112
2113 lower = path->nodes[level-1];
2114 if (level == 1)
2115 btrfs_item_key(lower, &lower_key, 0);
2116 else
2117 btrfs_node_key(lower, &lower_key, 0);
2118
2119 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2120 root->root_key.objectid, trans->transid,
2121 level, root->node->start, 0);
2122 if (IS_ERR(c))
2123 return PTR_ERR(c);
2124
2125 memset_extent_buffer(c, 0, 0, root->nodesize);
2126 btrfs_set_header_nritems(c, 1);
2127 btrfs_set_header_level(c, level);
2128 btrfs_set_header_bytenr(c, c->start);
2129 btrfs_set_header_generation(c, trans->transid);
2130 btrfs_set_header_owner(c, root->root_key.objectid);
2131
2132 write_extent_buffer(c, root->fs_info->fsid,
2133 (unsigned long)btrfs_header_fsid(c),
2134 BTRFS_FSID_SIZE);
2135
2136 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2137 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2138 BTRFS_UUID_SIZE);
2139
2140 btrfs_set_node_key(c, &lower_key, 0);
2141 btrfs_set_node_blockptr(c, 0, lower->start);
2142 lower_gen = btrfs_header_generation(lower);
2143 WARN_ON(lower_gen != trans->transid);
2144
2145 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2146
2147 btrfs_mark_buffer_dirty(c);
2148
2149 spin_lock(&root->node_lock);
2150 old = root->node;
2151 root->node = c;
2152 spin_unlock(&root->node_lock);
2153
2154 ret = btrfs_update_extent_ref(trans, root, lower->start,
2155 lower->len, lower->start, c->start,
2156 root->root_key.objectid,
2157 trans->transid, level - 1);
2158 BUG_ON(ret);
2159
2160 /* the super has an extra ref to root->node */
2161 free_extent_buffer(old);
2162
2163 add_root_to_dirty_list(root);
2164 extent_buffer_get(c);
2165 path->nodes[level] = c;
2166 path->locks[level] = 1;
2167 path->slots[level] = 0;
2168 return 0;
2169 }
2170
2171 /*
2172 * worker function to insert a single pointer in a node.
2173 * the node should have enough room for the pointer already
2174 *
2175 * slot and level indicate where you want the key to go, and
2176 * blocknr is the block the key points to.
2177 *
2178 * returns zero on success and < 0 on any error
2179 */
2180 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2181 *root, struct btrfs_path *path, struct btrfs_disk_key
2182 *key, u64 bytenr, int slot, int level)
2183 {
2184 struct extent_buffer *lower;
2185 int nritems;
2186
2187 BUG_ON(!path->nodes[level]);
2188 lower = path->nodes[level];
2189 nritems = btrfs_header_nritems(lower);
2190 BUG_ON(slot > nritems);
2191 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2192 BUG();
2193 if (slot != nritems) {
2194 memmove_extent_buffer(lower,
2195 btrfs_node_key_ptr_offset(slot + 1),
2196 btrfs_node_key_ptr_offset(slot),
2197 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2198 }
2199 btrfs_set_node_key(lower, key, slot);
2200 btrfs_set_node_blockptr(lower, slot, bytenr);
2201 WARN_ON(trans->transid == 0);
2202 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2203 btrfs_set_header_nritems(lower, nritems + 1);
2204 btrfs_mark_buffer_dirty(lower);
2205 return 0;
2206 }
2207
2208 /*
2209 * split the node at the specified level in path in two.
2210 * The path is corrected to point to the appropriate node after the split
2211 *
2212 * Before splitting this tries to make some room in the node by pushing
2213 * left and right, if either one works, it returns right away.
2214 *
2215 * returns 0 on success and < 0 on failure
2216 */
2217 static noinline int split_node(struct btrfs_trans_handle *trans,
2218 struct btrfs_root *root,
2219 struct btrfs_path *path, int level)
2220 {
2221 struct extent_buffer *c;
2222 struct extent_buffer *split;
2223 struct btrfs_disk_key disk_key;
2224 int mid;
2225 int ret;
2226 int wret;
2227 u32 c_nritems;
2228
2229 c = path->nodes[level];
2230 WARN_ON(btrfs_header_generation(c) != trans->transid);
2231 if (c == root->node) {
2232 /* trying to split the root, lets make a new one */
2233 ret = insert_new_root(trans, root, path, level + 1);
2234 if (ret)
2235 return ret;
2236 } else if (!trans->transaction->delayed_refs.flushing) {
2237 ret = push_nodes_for_insert(trans, root, path, level);
2238 c = path->nodes[level];
2239 if (!ret && btrfs_header_nritems(c) <
2240 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2241 return 0;
2242 if (ret < 0)
2243 return ret;
2244 }
2245
2246 c_nritems = btrfs_header_nritems(c);
2247
2248 split = btrfs_alloc_free_block(trans, root, root->nodesize,
2249 path->nodes[level + 1]->start,
2250 root->root_key.objectid,
2251 trans->transid, level, c->start, 0);
2252 if (IS_ERR(split))
2253 return PTR_ERR(split);
2254
2255 btrfs_set_header_flags(split, btrfs_header_flags(c));
2256 btrfs_set_header_level(split, btrfs_header_level(c));
2257 btrfs_set_header_bytenr(split, split->start);
2258 btrfs_set_header_generation(split, trans->transid);
2259 btrfs_set_header_owner(split, root->root_key.objectid);
2260 btrfs_set_header_flags(split, 0);
2261 write_extent_buffer(split, root->fs_info->fsid,
2262 (unsigned long)btrfs_header_fsid(split),
2263 BTRFS_FSID_SIZE);
2264 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2265 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2266 BTRFS_UUID_SIZE);
2267
2268 mid = (c_nritems + 1) / 2;
2269
2270 copy_extent_buffer(split, c,
2271 btrfs_node_key_ptr_offset(0),
2272 btrfs_node_key_ptr_offset(mid),
2273 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2274 btrfs_set_header_nritems(split, c_nritems - mid);
2275 btrfs_set_header_nritems(c, mid);
2276 ret = 0;
2277
2278 btrfs_mark_buffer_dirty(c);
2279 btrfs_mark_buffer_dirty(split);
2280
2281 btrfs_node_key(split, &disk_key, 0);
2282 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2283 path->slots[level + 1] + 1,
2284 level + 1);
2285 if (wret)
2286 ret = wret;
2287
2288 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2289 BUG_ON(ret);
2290
2291 if (path->slots[level] >= mid) {
2292 path->slots[level] -= mid;
2293 btrfs_tree_unlock(c);
2294 free_extent_buffer(c);
2295 path->nodes[level] = split;
2296 path->slots[level + 1] += 1;
2297 } else {
2298 btrfs_tree_unlock(split);
2299 free_extent_buffer(split);
2300 }
2301 return ret;
2302 }
2303
2304 /*
2305 * how many bytes are required to store the items in a leaf. start
2306 * and nr indicate which items in the leaf to check. This totals up the
2307 * space used both by the item structs and the item data
2308 */
2309 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2310 {
2311 int data_len;
2312 int nritems = btrfs_header_nritems(l);
2313 int end = min(nritems, start + nr) - 1;
2314
2315 if (!nr)
2316 return 0;
2317 data_len = btrfs_item_end_nr(l, start);
2318 data_len = data_len - btrfs_item_offset_nr(l, end);
2319 data_len += sizeof(struct btrfs_item) * nr;
2320 WARN_ON(data_len < 0);
2321 return data_len;
2322 }
2323
2324 /*
2325 * The space between the end of the leaf items and
2326 * the start of the leaf data. IOW, how much room
2327 * the leaf has left for both items and data
2328 */
2329 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2330 struct extent_buffer *leaf)
2331 {
2332 int nritems = btrfs_header_nritems(leaf);
2333 int ret;
2334 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2335 if (ret < 0) {
2336 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2337 "used %d nritems %d\n",
2338 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2339 leaf_space_used(leaf, 0, nritems), nritems);
2340 }
2341 return ret;
2342 }
2343
2344 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2345 struct btrfs_root *root,
2346 struct btrfs_path *path,
2347 int data_size, int empty,
2348 struct extent_buffer *right,
2349 int free_space, u32 left_nritems)
2350 {
2351 struct extent_buffer *left = path->nodes[0];
2352 struct extent_buffer *upper = path->nodes[1];
2353 struct btrfs_disk_key disk_key;
2354 int slot;
2355 u32 i;
2356 int push_space = 0;
2357 int push_items = 0;
2358 struct btrfs_item *item;
2359 u32 nr;
2360 u32 right_nritems;
2361 u32 data_end;
2362 u32 this_item_size;
2363 int ret;
2364
2365 if (empty)
2366 nr = 0;
2367 else
2368 nr = 1;
2369
2370 if (path->slots[0] >= left_nritems)
2371 push_space += data_size;
2372
2373 slot = path->slots[1];
2374 i = left_nritems - 1;
2375 while (i >= nr) {
2376 item = btrfs_item_nr(left, i);
2377
2378 if (!empty && push_items > 0) {
2379 if (path->slots[0] > i)
2380 break;
2381 if (path->slots[0] == i) {
2382 int space = btrfs_leaf_free_space(root, left);
2383 if (space + push_space * 2 > free_space)
2384 break;
2385 }
2386 }
2387
2388 if (path->slots[0] == i)
2389 push_space += data_size;
2390
2391 if (!left->map_token) {
2392 map_extent_buffer(left, (unsigned long)item,
2393 sizeof(struct btrfs_item),
2394 &left->map_token, &left->kaddr,
2395 &left->map_start, &left->map_len,
2396 KM_USER1);
2397 }
2398
2399 this_item_size = btrfs_item_size(left, item);
2400 if (this_item_size + sizeof(*item) + push_space > free_space)
2401 break;
2402
2403 push_items++;
2404 push_space += this_item_size + sizeof(*item);
2405 if (i == 0)
2406 break;
2407 i--;
2408 }
2409 if (left->map_token) {
2410 unmap_extent_buffer(left, left->map_token, KM_USER1);
2411 left->map_token = NULL;
2412 }
2413
2414 if (push_items == 0)
2415 goto out_unlock;
2416
2417 if (!empty && push_items == left_nritems)
2418 WARN_ON(1);
2419
2420 /* push left to right */
2421 right_nritems = btrfs_header_nritems(right);
2422
2423 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2424 push_space -= leaf_data_end(root, left);
2425
2426 /* make room in the right data area */
2427 data_end = leaf_data_end(root, right);
2428 memmove_extent_buffer(right,
2429 btrfs_leaf_data(right) + data_end - push_space,
2430 btrfs_leaf_data(right) + data_end,
2431 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2432
2433 /* copy from the left data area */
2434 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2435 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2436 btrfs_leaf_data(left) + leaf_data_end(root, left),
2437 push_space);
2438
2439 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2440 btrfs_item_nr_offset(0),
2441 right_nritems * sizeof(struct btrfs_item));
2442
2443 /* copy the items from left to right */
2444 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2445 btrfs_item_nr_offset(left_nritems - push_items),
2446 push_items * sizeof(struct btrfs_item));
2447
2448 /* update the item pointers */
2449 right_nritems += push_items;
2450 btrfs_set_header_nritems(right, right_nritems);
2451 push_space = BTRFS_LEAF_DATA_SIZE(root);
2452 for (i = 0; i < right_nritems; i++) {
2453 item = btrfs_item_nr(right, i);
2454 if (!right->map_token) {
2455 map_extent_buffer(right, (unsigned long)item,
2456 sizeof(struct btrfs_item),
2457 &right->map_token, &right->kaddr,
2458 &right->map_start, &right->map_len,
2459 KM_USER1);
2460 }
2461 push_space -= btrfs_item_size(right, item);
2462 btrfs_set_item_offset(right, item, push_space);
2463 }
2464
2465 if (right->map_token) {
2466 unmap_extent_buffer(right, right->map_token, KM_USER1);
2467 right->map_token = NULL;
2468 }
2469 left_nritems -= push_items;
2470 btrfs_set_header_nritems(left, left_nritems);
2471
2472 if (left_nritems)
2473 btrfs_mark_buffer_dirty(left);
2474 btrfs_mark_buffer_dirty(right);
2475
2476 ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2477 BUG_ON(ret);
2478
2479 btrfs_item_key(right, &disk_key, 0);
2480 btrfs_set_node_key(upper, &disk_key, slot + 1);
2481 btrfs_mark_buffer_dirty(upper);
2482
2483 /* then fixup the leaf pointer in the path */
2484 if (path->slots[0] >= left_nritems) {
2485 path->slots[0] -= left_nritems;
2486 if (btrfs_header_nritems(path->nodes[0]) == 0)
2487 clean_tree_block(trans, root, path->nodes[0]);
2488 btrfs_tree_unlock(path->nodes[0]);
2489 free_extent_buffer(path->nodes[0]);
2490 path->nodes[0] = right;
2491 path->slots[1] += 1;
2492 } else {
2493 btrfs_tree_unlock(right);
2494 free_extent_buffer(right);
2495 }
2496 return 0;
2497
2498 out_unlock:
2499 btrfs_tree_unlock(right);
2500 free_extent_buffer(right);
2501 return 1;
2502 }
2503
2504 /*
2505 * push some data in the path leaf to the right, trying to free up at
2506 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2507 *
2508 * returns 1 if the push failed because the other node didn't have enough
2509 * room, 0 if everything worked out and < 0 if there were major errors.
2510 */
2511 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2512 *root, struct btrfs_path *path, int data_size,
2513 int empty)
2514 {
2515 struct extent_buffer *left = path->nodes[0];
2516 struct extent_buffer *right;
2517 struct extent_buffer *upper;
2518 int slot;
2519 int free_space;
2520 u32 left_nritems;
2521 int ret;
2522
2523 if (!path->nodes[1])
2524 return 1;
2525
2526 slot = path->slots[1];
2527 upper = path->nodes[1];
2528 if (slot >= btrfs_header_nritems(upper) - 1)
2529 return 1;
2530
2531 btrfs_assert_tree_locked(path->nodes[1]);
2532
2533 right = read_node_slot(root, upper, slot + 1);
2534 btrfs_tree_lock(right);
2535 btrfs_set_lock_blocking(right);
2536
2537 free_space = btrfs_leaf_free_space(root, right);
2538 if (free_space < data_size)
2539 goto out_unlock;
2540
2541 /* cow and double check */
2542 ret = btrfs_cow_block(trans, root, right, upper,
2543 slot + 1, &right);
2544 if (ret)
2545 goto out_unlock;
2546
2547 free_space = btrfs_leaf_free_space(root, right);
2548 if (free_space < data_size)
2549 goto out_unlock;
2550
2551 left_nritems = btrfs_header_nritems(left);
2552 if (left_nritems == 0)
2553 goto out_unlock;
2554
2555 return __push_leaf_right(trans, root, path, data_size, empty,
2556 right, free_space, left_nritems);
2557 out_unlock:
2558 btrfs_tree_unlock(right);
2559 free_extent_buffer(right);
2560 return 1;
2561 }
2562
2563 /*
2564 * push some data in the path leaf to the left, trying to free up at
2565 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2566 */
2567 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2568 struct btrfs_root *root,
2569 struct btrfs_path *path, int data_size,
2570 int empty, struct extent_buffer *left,
2571 int free_space, int right_nritems)
2572 {
2573 struct btrfs_disk_key disk_key;
2574 struct extent_buffer *right = path->nodes[0];
2575 int slot;
2576 int i;
2577 int push_space = 0;
2578 int push_items = 0;
2579 struct btrfs_item *item;
2580 u32 old_left_nritems;
2581 u32 nr;
2582 int ret = 0;
2583 int wret;
2584 u32 this_item_size;
2585 u32 old_left_item_size;
2586
2587 slot = path->slots[1];
2588
2589 if (empty)
2590 nr = right_nritems;
2591 else
2592 nr = right_nritems - 1;
2593
2594 for (i = 0; i < nr; i++) {
2595 item = btrfs_item_nr(right, i);
2596 if (!right->map_token) {
2597 map_extent_buffer(right, (unsigned long)item,
2598 sizeof(struct btrfs_item),
2599 &right->map_token, &right->kaddr,
2600 &right->map_start, &right->map_len,
2601 KM_USER1);
2602 }
2603
2604 if (!empty && push_items > 0) {
2605 if (path->slots[0] < i)
2606 break;
2607 if (path->slots[0] == i) {
2608 int space = btrfs_leaf_free_space(root, right);
2609 if (space + push_space * 2 > free_space)
2610 break;
2611 }
2612 }
2613
2614 if (path->slots[0] == i)
2615 push_space += data_size;
2616
2617 this_item_size = btrfs_item_size(right, item);
2618 if (this_item_size + sizeof(*item) + push_space > free_space)
2619 break;
2620
2621 push_items++;
2622 push_space += this_item_size + sizeof(*item);
2623 }
2624
2625 if (right->map_token) {
2626 unmap_extent_buffer(right, right->map_token, KM_USER1);
2627 right->map_token = NULL;
2628 }
2629
2630 if (push_items == 0) {
2631 ret = 1;
2632 goto out;
2633 }
2634 if (!empty && push_items == btrfs_header_nritems(right))
2635 WARN_ON(1);
2636
2637 /* push data from right to left */
2638 copy_extent_buffer(left, right,
2639 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2640 btrfs_item_nr_offset(0),
2641 push_items * sizeof(struct btrfs_item));
2642
2643 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2644 btrfs_item_offset_nr(right, push_items - 1);
2645
2646 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2647 leaf_data_end(root, left) - push_space,
2648 btrfs_leaf_data(right) +
2649 btrfs_item_offset_nr(right, push_items - 1),
2650 push_space);
2651 old_left_nritems = btrfs_header_nritems(left);
2652 BUG_ON(old_left_nritems <= 0);
2653
2654 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2655 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2656 u32 ioff;
2657
2658 item = btrfs_item_nr(left, i);
2659 if (!left->map_token) {
2660 map_extent_buffer(left, (unsigned long)item,
2661 sizeof(struct btrfs_item),
2662 &left->map_token, &left->kaddr,
2663 &left->map_start, &left->map_len,
2664 KM_USER1);
2665 }
2666
2667 ioff = btrfs_item_offset(left, item);
2668 btrfs_set_item_offset(left, item,
2669 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2670 }
2671 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2672 if (left->map_token) {
2673 unmap_extent_buffer(left, left->map_token, KM_USER1);
2674 left->map_token = NULL;
2675 }
2676
2677 /* fixup right node */
2678 if (push_items > right_nritems) {
2679 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2680 right_nritems);
2681 WARN_ON(1);
2682 }
2683
2684 if (push_items < right_nritems) {
2685 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2686 leaf_data_end(root, right);
2687 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2688 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2689 btrfs_leaf_data(right) +
2690 leaf_data_end(root, right), push_space);
2691
2692 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2693 btrfs_item_nr_offset(push_items),
2694 (btrfs_header_nritems(right) - push_items) *
2695 sizeof(struct btrfs_item));
2696 }
2697 right_nritems -= push_items;
2698 btrfs_set_header_nritems(right, right_nritems);
2699 push_space = BTRFS_LEAF_DATA_SIZE(root);
2700 for (i = 0; i < right_nritems; i++) {
2701 item = btrfs_item_nr(right, i);
2702
2703 if (!right->map_token) {
2704 map_extent_buffer(right, (unsigned long)item,
2705 sizeof(struct btrfs_item),
2706 &right->map_token, &right->kaddr,
2707 &right->map_start, &right->map_len,
2708 KM_USER1);
2709 }
2710
2711 push_space = push_space - btrfs_item_size(right, item);
2712 btrfs_set_item_offset(right, item, push_space);
2713 }
2714 if (right->map_token) {
2715 unmap_extent_buffer(right, right->map_token, KM_USER1);
2716 right->map_token = NULL;
2717 }
2718
2719 btrfs_mark_buffer_dirty(left);
2720 if (right_nritems)
2721 btrfs_mark_buffer_dirty(right);
2722
2723 ret = btrfs_update_ref(trans, root, right, left,
2724 old_left_nritems, push_items);
2725 BUG_ON(ret);
2726
2727 btrfs_item_key(right, &disk_key, 0);
2728 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2729 if (wret)
2730 ret = wret;
2731
2732 /* then fixup the leaf pointer in the path */
2733 if (path->slots[0] < push_items) {
2734 path->slots[0] += old_left_nritems;
2735 if (btrfs_header_nritems(path->nodes[0]) == 0)
2736 clean_tree_block(trans, root, path->nodes[0]);
2737 btrfs_tree_unlock(path->nodes[0]);
2738 free_extent_buffer(path->nodes[0]);
2739 path->nodes[0] = left;
2740 path->slots[1] -= 1;
2741 } else {
2742 btrfs_tree_unlock(left);
2743 free_extent_buffer(left);
2744 path->slots[0] -= push_items;
2745 }
2746 BUG_ON(path->slots[0] < 0);
2747 return ret;
2748 out:
2749 btrfs_tree_unlock(left);
2750 free_extent_buffer(left);
2751 return ret;
2752 }
2753
2754 /*
2755 * push some data in the path leaf to the left, trying to free up at
2756 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2757 */
2758 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2759 *root, struct btrfs_path *path, int data_size,
2760 int empty)
2761 {
2762 struct extent_buffer *right = path->nodes[0];
2763 struct extent_buffer *left;
2764 int slot;
2765 int free_space;
2766 u32 right_nritems;
2767 int ret = 0;
2768
2769 slot = path->slots[1];
2770 if (slot == 0)
2771 return 1;
2772 if (!path->nodes[1])
2773 return 1;
2774
2775 right_nritems = btrfs_header_nritems(right);
2776 if (right_nritems == 0)
2777 return 1;
2778
2779 btrfs_assert_tree_locked(path->nodes[1]);
2780
2781 left = read_node_slot(root, path->nodes[1], slot - 1);
2782 btrfs_tree_lock(left);
2783 btrfs_set_lock_blocking(left);
2784
2785 free_space = btrfs_leaf_free_space(root, left);
2786 if (free_space < data_size) {
2787 ret = 1;
2788 goto out;
2789 }
2790
2791 /* cow and double check */
2792 ret = btrfs_cow_block(trans, root, left,
2793 path->nodes[1], slot - 1, &left);
2794 if (ret) {
2795 /* we hit -ENOSPC, but it isn't fatal here */
2796 ret = 1;
2797 goto out;
2798 }
2799
2800 free_space = btrfs_leaf_free_space(root, left);
2801 if (free_space < data_size) {
2802 ret = 1;
2803 goto out;
2804 }
2805
2806 return __push_leaf_left(trans, root, path, data_size,
2807 empty, left, free_space, right_nritems);
2808 out:
2809 btrfs_tree_unlock(left);
2810 free_extent_buffer(left);
2811 return ret;
2812 }
2813
2814 /*
2815 * split the path's leaf in two, making sure there is at least data_size
2816 * available for the resulting leaf level of the path.
2817 *
2818 * returns 0 if all went well and < 0 on failure.
2819 */
2820 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2821 struct btrfs_root *root,
2822 struct btrfs_path *path,
2823 struct extent_buffer *l,
2824 struct extent_buffer *right,
2825 int slot, int mid, int nritems)
2826 {
2827 int data_copy_size;
2828 int rt_data_off;
2829 int i;
2830 int ret = 0;
2831 int wret;
2832 struct btrfs_disk_key disk_key;
2833
2834 nritems = nritems - mid;
2835 btrfs_set_header_nritems(right, nritems);
2836 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2837
2838 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2839 btrfs_item_nr_offset(mid),
2840 nritems * sizeof(struct btrfs_item));
2841
2842 copy_extent_buffer(right, l,
2843 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2844 data_copy_size, btrfs_leaf_data(l) +
2845 leaf_data_end(root, l), data_copy_size);
2846
2847 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2848 btrfs_item_end_nr(l, mid);
2849
2850 for (i = 0; i < nritems; i++) {
2851 struct btrfs_item *item = btrfs_item_nr(right, i);
2852 u32 ioff;
2853
2854 if (!right->map_token) {
2855 map_extent_buffer(right, (unsigned long)item,
2856 sizeof(struct btrfs_item),
2857 &right->map_token, &right->kaddr,
2858 &right->map_start, &right->map_len,
2859 KM_USER1);
2860 }
2861
2862 ioff = btrfs_item_offset(right, item);
2863 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2864 }
2865
2866 if (right->map_token) {
2867 unmap_extent_buffer(right, right->map_token, KM_USER1);
2868 right->map_token = NULL;
2869 }
2870
2871 btrfs_set_header_nritems(l, mid);
2872 ret = 0;
2873 btrfs_item_key(right, &disk_key, 0);
2874 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2875 path->slots[1] + 1, 1);
2876 if (wret)
2877 ret = wret;
2878
2879 btrfs_mark_buffer_dirty(right);
2880 btrfs_mark_buffer_dirty(l);
2881 BUG_ON(path->slots[0] != slot);
2882
2883 ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2884 BUG_ON(ret);
2885
2886 if (mid <= slot) {
2887 btrfs_tree_unlock(path->nodes[0]);
2888 free_extent_buffer(path->nodes[0]);
2889 path->nodes[0] = right;
2890 path->slots[0] -= mid;
2891 path->slots[1] += 1;
2892 } else {
2893 btrfs_tree_unlock(right);
2894 free_extent_buffer(right);
2895 }
2896
2897 BUG_ON(path->slots[0] < 0);
2898
2899 return ret;
2900 }
2901
2902 /*
2903 * split the path's leaf in two, making sure there is at least data_size
2904 * available for the resulting leaf level of the path.
2905 *
2906 * returns 0 if all went well and < 0 on failure.
2907 */
2908 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2909 struct btrfs_root *root,
2910 struct btrfs_key *ins_key,
2911 struct btrfs_path *path, int data_size,
2912 int extend)
2913 {
2914 struct extent_buffer *l;
2915 u32 nritems;
2916 int mid;
2917 int slot;
2918 struct extent_buffer *right;
2919 int ret = 0;
2920 int wret;
2921 int double_split;
2922 int num_doubles = 0;
2923
2924 /* first try to make some room by pushing left and right */
2925 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
2926 !trans->transaction->delayed_refs.flushing) {
2927 wret = push_leaf_right(trans, root, path, data_size, 0);
2928 if (wret < 0)
2929 return wret;
2930 if (wret) {
2931 wret = push_leaf_left(trans, root, path, data_size, 0);
2932 if (wret < 0)
2933 return wret;
2934 }
2935 l = path->nodes[0];
2936
2937 /* did the pushes work? */
2938 if (btrfs_leaf_free_space(root, l) >= data_size)
2939 return 0;
2940 }
2941
2942 if (!path->nodes[1]) {
2943 ret = insert_new_root(trans, root, path, 1);
2944 if (ret)
2945 return ret;
2946 }
2947 again:
2948 double_split = 0;
2949 l = path->nodes[0];
2950 slot = path->slots[0];
2951 nritems = btrfs_header_nritems(l);
2952 mid = (nritems + 1) / 2;
2953
2954 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2955 path->nodes[1]->start,
2956 root->root_key.objectid,
2957 trans->transid, 0, l->start, 0);
2958 if (IS_ERR(right)) {
2959 BUG_ON(1);
2960 return PTR_ERR(right);
2961 }
2962
2963 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2964 btrfs_set_header_bytenr(right, right->start);
2965 btrfs_set_header_generation(right, trans->transid);
2966 btrfs_set_header_owner(right, root->root_key.objectid);
2967 btrfs_set_header_level(right, 0);
2968 write_extent_buffer(right, root->fs_info->fsid,
2969 (unsigned long)btrfs_header_fsid(right),
2970 BTRFS_FSID_SIZE);
2971
2972 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2973 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2974 BTRFS_UUID_SIZE);
2975
2976 if (mid <= slot) {
2977 if (nritems == 1 ||
2978 leaf_space_used(l, mid, nritems - mid) + data_size >
2979 BTRFS_LEAF_DATA_SIZE(root)) {
2980 if (slot >= nritems) {
2981 struct btrfs_disk_key disk_key;
2982
2983 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2984 btrfs_set_header_nritems(right, 0);
2985 wret = insert_ptr(trans, root, path,
2986 &disk_key, right->start,
2987 path->slots[1] + 1, 1);
2988 if (wret)
2989 ret = wret;
2990
2991 btrfs_tree_unlock(path->nodes[0]);
2992 free_extent_buffer(path->nodes[0]);
2993 path->nodes[0] = right;
2994 path->slots[0] = 0;
2995 path->slots[1] += 1;
2996 btrfs_mark_buffer_dirty(right);
2997 return ret;
2998 }
2999 mid = slot;
3000 if (mid != nritems &&
3001 leaf_space_used(l, mid, nritems - mid) +
3002 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3003 double_split = 1;
3004 }
3005 }
3006 } else {
3007 if (leaf_space_used(l, 0, mid) + data_size >
3008 BTRFS_LEAF_DATA_SIZE(root)) {
3009 if (!extend && data_size && slot == 0) {
3010 struct btrfs_disk_key disk_key;
3011
3012 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3013 btrfs_set_header_nritems(right, 0);
3014 wret = insert_ptr(trans, root, path,
3015 &disk_key,
3016 right->start,
3017 path->slots[1], 1);
3018 if (wret)
3019 ret = wret;
3020 btrfs_tree_unlock(path->nodes[0]);
3021 free_extent_buffer(path->nodes[0]);
3022 path->nodes[0] = right;
3023 path->slots[0] = 0;
3024 if (path->slots[1] == 0) {
3025 wret = fixup_low_keys(trans, root,
3026 path, &disk_key, 1);
3027 if (wret)
3028 ret = wret;
3029 }
3030 btrfs_mark_buffer_dirty(right);
3031 return ret;
3032 } else if ((extend || !data_size) && slot == 0) {
3033 mid = 1;
3034 } else {
3035 mid = slot;
3036 if (mid != nritems &&
3037 leaf_space_used(l, mid, nritems - mid) +
3038 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3039 double_split = 1;
3040 }
3041 }
3042 }
3043 }
3044
3045 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3046 BUG_ON(ret);
3047
3048 if (double_split) {
3049 BUG_ON(num_doubles != 0);
3050 num_doubles++;
3051 goto again;
3052 }
3053
3054 return ret;
3055 }
3056
3057 /*
3058 * This function splits a single item into two items,
3059 * giving 'new_key' to the new item and splitting the
3060 * old one at split_offset (from the start of the item).
3061 *
3062 * The path may be released by this operation. After
3063 * the split, the path is pointing to the old item. The
3064 * new item is going to be in the same node as the old one.
3065 *
3066 * Note, the item being split must be smaller enough to live alone on
3067 * a tree block with room for one extra struct btrfs_item
3068 *
3069 * This allows us to split the item in place, keeping a lock on the
3070 * leaf the entire time.
3071 */
3072 int btrfs_split_item(struct btrfs_trans_handle *trans,
3073 struct btrfs_root *root,
3074 struct btrfs_path *path,
3075 struct btrfs_key *new_key,
3076 unsigned long split_offset)
3077 {
3078 u32 item_size;
3079 struct extent_buffer *leaf;
3080 struct btrfs_key orig_key;
3081 struct btrfs_item *item;
3082 struct btrfs_item *new_item;
3083 int ret = 0;
3084 int slot;
3085 u32 nritems;
3086 u32 orig_offset;
3087 struct btrfs_disk_key disk_key;
3088 char *buf;
3089
3090 leaf = path->nodes[0];
3091 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3092 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3093 goto split;
3094
3095 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3096 btrfs_release_path(root, path);
3097
3098 path->search_for_split = 1;
3099 path->keep_locks = 1;
3100
3101 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3102 path->search_for_split = 0;
3103
3104 /* if our item isn't there or got smaller, return now */
3105 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3106 path->slots[0])) {
3107 path->keep_locks = 0;
3108 return -EAGAIN;
3109 }
3110
3111 btrfs_set_path_blocking(path);
3112 ret = split_leaf(trans, root, &orig_key, path,
3113 sizeof(struct btrfs_item), 1);
3114 path->keep_locks = 0;
3115 BUG_ON(ret);
3116
3117 btrfs_unlock_up_safe(path, 1);
3118 leaf = path->nodes[0];
3119 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3120
3121 split:
3122 /*
3123 * make sure any changes to the path from split_leaf leave it
3124 * in a blocking state
3125 */
3126 btrfs_set_path_blocking(path);
3127
3128 item = btrfs_item_nr(leaf, path->slots[0]);
3129 orig_offset = btrfs_item_offset(leaf, item);
3130 item_size = btrfs_item_size(leaf, item);
3131
3132 buf = kmalloc(item_size, GFP_NOFS);
3133 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3134 path->slots[0]), item_size);
3135 slot = path->slots[0] + 1;
3136 leaf = path->nodes[0];
3137
3138 nritems = btrfs_header_nritems(leaf);
3139
3140 if (slot != nritems) {
3141 /* shift the items */
3142 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3143 btrfs_item_nr_offset(slot),
3144 (nritems - slot) * sizeof(struct btrfs_item));
3145
3146 }
3147
3148 btrfs_cpu_key_to_disk(&disk_key, new_key);
3149 btrfs_set_item_key(leaf, &disk_key, slot);
3150
3151 new_item = btrfs_item_nr(leaf, slot);
3152
3153 btrfs_set_item_offset(leaf, new_item, orig_offset);
3154 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3155
3156 btrfs_set_item_offset(leaf, item,
3157 orig_offset + item_size - split_offset);
3158 btrfs_set_item_size(leaf, item, split_offset);
3159
3160 btrfs_set_header_nritems(leaf, nritems + 1);
3161
3162 /* write the data for the start of the original item */
3163 write_extent_buffer(leaf, buf,
3164 btrfs_item_ptr_offset(leaf, path->slots[0]),
3165 split_offset);
3166
3167 /* write the data for the new item */
3168 write_extent_buffer(leaf, buf + split_offset,
3169 btrfs_item_ptr_offset(leaf, slot),
3170 item_size - split_offset);
3171 btrfs_mark_buffer_dirty(leaf);
3172
3173 ret = 0;
3174 if (btrfs_leaf_free_space(root, leaf) < 0) {
3175 btrfs_print_leaf(root, leaf);
3176 BUG();
3177 }
3178 kfree(buf);
3179 return ret;
3180 }
3181
3182 /*
3183 * make the item pointed to by the path smaller. new_size indicates
3184 * how small to make it, and from_end tells us if we just chop bytes
3185 * off the end of the item or if we shift the item to chop bytes off
3186 * the front.
3187 */
3188 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 struct btrfs_path *path,
3191 u32 new_size, int from_end)
3192 {
3193 int ret = 0;
3194 int slot;
3195 int slot_orig;
3196 struct extent_buffer *leaf;
3197 struct btrfs_item *item;
3198 u32 nritems;
3199 unsigned int data_end;
3200 unsigned int old_data_start;
3201 unsigned int old_size;
3202 unsigned int size_diff;
3203 int i;
3204
3205 slot_orig = path->slots[0];
3206 leaf = path->nodes[0];
3207 slot = path->slots[0];
3208
3209 old_size = btrfs_item_size_nr(leaf, slot);
3210 if (old_size == new_size)
3211 return 0;
3212
3213 nritems = btrfs_header_nritems(leaf);
3214 data_end = leaf_data_end(root, leaf);
3215
3216 old_data_start = btrfs_item_offset_nr(leaf, slot);
3217
3218 size_diff = old_size - new_size;
3219
3220 BUG_ON(slot < 0);
3221 BUG_ON(slot >= nritems);
3222
3223 /*
3224 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3225 */
3226 /* first correct the data pointers */
3227 for (i = slot; i < nritems; i++) {
3228 u32 ioff;
3229 item = btrfs_item_nr(leaf, i);
3230
3231 if (!leaf->map_token) {
3232 map_extent_buffer(leaf, (unsigned long)item,
3233 sizeof(struct btrfs_item),
3234 &leaf->map_token, &leaf->kaddr,
3235 &leaf->map_start, &leaf->map_len,
3236 KM_USER1);
3237 }
3238
3239 ioff = btrfs_item_offset(leaf, item);
3240 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3241 }
3242
3243 if (leaf->map_token) {
3244 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3245 leaf->map_token = NULL;
3246 }
3247
3248 /* shift the data */
3249 if (from_end) {
3250 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3251 data_end + size_diff, btrfs_leaf_data(leaf) +
3252 data_end, old_data_start + new_size - data_end);
3253 } else {
3254 struct btrfs_disk_key disk_key;
3255 u64 offset;
3256
3257 btrfs_item_key(leaf, &disk_key, slot);
3258
3259 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3260 unsigned long ptr;
3261 struct btrfs_file_extent_item *fi;
3262
3263 fi = btrfs_item_ptr(leaf, slot,
3264 struct btrfs_file_extent_item);
3265 fi = (struct btrfs_file_extent_item *)(
3266 (unsigned long)fi - size_diff);
3267
3268 if (btrfs_file_extent_type(leaf, fi) ==
3269 BTRFS_FILE_EXTENT_INLINE) {
3270 ptr = btrfs_item_ptr_offset(leaf, slot);
3271 memmove_extent_buffer(leaf, ptr,
3272 (unsigned long)fi,
3273 offsetof(struct btrfs_file_extent_item,
3274 disk_bytenr));
3275 }
3276 }
3277
3278 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3279 data_end + size_diff, btrfs_leaf_data(leaf) +
3280 data_end, old_data_start - data_end);
3281
3282 offset = btrfs_disk_key_offset(&disk_key);
3283 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3284 btrfs_set_item_key(leaf, &disk_key, slot);
3285 if (slot == 0)
3286 fixup_low_keys(trans, root, path, &disk_key, 1);
3287 }
3288
3289 item = btrfs_item_nr(leaf, slot);
3290 btrfs_set_item_size(leaf, item, new_size);
3291 btrfs_mark_buffer_dirty(leaf);
3292
3293 ret = 0;
3294 if (btrfs_leaf_free_space(root, leaf) < 0) {
3295 btrfs_print_leaf(root, leaf);
3296 BUG();
3297 }
3298 return ret;
3299 }
3300
3301 /*
3302 * make the item pointed to by the path bigger, data_size is the new size.
3303 */
3304 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3305 struct btrfs_root *root, struct btrfs_path *path,
3306 u32 data_size)
3307 {
3308 int ret = 0;
3309 int slot;
3310 int slot_orig;
3311 struct extent_buffer *leaf;
3312 struct btrfs_item *item;
3313 u32 nritems;
3314 unsigned int data_end;
3315 unsigned int old_data;
3316 unsigned int old_size;
3317 int i;
3318
3319 slot_orig = path->slots[0];
3320 leaf = path->nodes[0];
3321
3322 nritems = btrfs_header_nritems(leaf);
3323 data_end = leaf_data_end(root, leaf);
3324
3325 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3326 btrfs_print_leaf(root, leaf);
3327 BUG();
3328 }
3329 slot = path->slots[0];
3330 old_data = btrfs_item_end_nr(leaf, slot);
3331
3332 BUG_ON(slot < 0);
3333 if (slot >= nritems) {
3334 btrfs_print_leaf(root, leaf);
3335 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3336 slot, nritems);
3337 BUG_ON(1);
3338 }
3339
3340 /*
3341 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3342 */
3343 /* first correct the data pointers */
3344 for (i = slot; i < nritems; i++) {
3345 u32 ioff;
3346 item = btrfs_item_nr(leaf, i);
3347
3348 if (!leaf->map_token) {
3349 map_extent_buffer(leaf, (unsigned long)item,
3350 sizeof(struct btrfs_item),
3351 &leaf->map_token, &leaf->kaddr,
3352 &leaf->map_start, &leaf->map_len,
3353 KM_USER1);
3354 }
3355 ioff = btrfs_item_offset(leaf, item);
3356 btrfs_set_item_offset(leaf, item, ioff - data_size);
3357 }
3358
3359 if (leaf->map_token) {
3360 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3361 leaf->map_token = NULL;
3362 }
3363
3364 /* shift the data */
3365 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3366 data_end - data_size, btrfs_leaf_data(leaf) +
3367 data_end, old_data - data_end);
3368
3369 data_end = old_data;
3370 old_size = btrfs_item_size_nr(leaf, slot);
3371 item = btrfs_item_nr(leaf, slot);
3372 btrfs_set_item_size(leaf, item, old_size + data_size);
3373 btrfs_mark_buffer_dirty(leaf);
3374
3375 ret = 0;
3376 if (btrfs_leaf_free_space(root, leaf) < 0) {
3377 btrfs_print_leaf(root, leaf);
3378 BUG();
3379 }
3380 return ret;
3381 }
3382
3383 /*
3384 * Given a key and some data, insert items into the tree.
3385 * This does all the path init required, making room in the tree if needed.
3386 * Returns the number of keys that were inserted.
3387 */
3388 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3389 struct btrfs_root *root,
3390 struct btrfs_path *path,
3391 struct btrfs_key *cpu_key, u32 *data_size,
3392 int nr)
3393 {
3394 struct extent_buffer *leaf;
3395 struct btrfs_item *item;
3396 int ret = 0;
3397 int slot;
3398 int i;
3399 u32 nritems;
3400 u32 total_data = 0;
3401 u32 total_size = 0;
3402 unsigned int data_end;
3403 struct btrfs_disk_key disk_key;
3404 struct btrfs_key found_key;
3405
3406 for (i = 0; i < nr; i++) {
3407 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3408 BTRFS_LEAF_DATA_SIZE(root)) {
3409 break;
3410 nr = i;
3411 }
3412 total_data += data_size[i];
3413 total_size += data_size[i] + sizeof(struct btrfs_item);
3414 }
3415 BUG_ON(nr == 0);
3416
3417 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3418 if (ret == 0)
3419 return -EEXIST;
3420 if (ret < 0)
3421 goto out;
3422
3423 leaf = path->nodes[0];
3424
3425 nritems = btrfs_header_nritems(leaf);
3426 data_end = leaf_data_end(root, leaf);
3427
3428 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3429 for (i = nr; i >= 0; i--) {
3430 total_data -= data_size[i];
3431 total_size -= data_size[i] + sizeof(struct btrfs_item);
3432 if (total_size < btrfs_leaf_free_space(root, leaf))
3433 break;
3434 }
3435 nr = i;
3436 }
3437
3438 slot = path->slots[0];
3439 BUG_ON(slot < 0);
3440
3441 if (slot != nritems) {
3442 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3443
3444 item = btrfs_item_nr(leaf, slot);
3445 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3446
3447 /* figure out how many keys we can insert in here */
3448 total_data = data_size[0];
3449 for (i = 1; i < nr; i++) {
3450 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3451 break;
3452 total_data += data_size[i];
3453 }
3454 nr = i;
3455
3456 if (old_data < data_end) {
3457 btrfs_print_leaf(root, leaf);
3458 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3459 slot, old_data, data_end);
3460 BUG_ON(1);
3461 }
3462 /*
3463 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3464 */
3465 /* first correct the data pointers */
3466 WARN_ON(leaf->map_token);
3467 for (i = slot; i < nritems; i++) {
3468 u32 ioff;
3469
3470 item = btrfs_item_nr(leaf, i);
3471 if (!leaf->map_token) {
3472 map_extent_buffer(leaf, (unsigned long)item,
3473 sizeof(struct btrfs_item),
3474 &leaf->map_token, &leaf->kaddr,
3475 &leaf->map_start, &leaf->map_len,
3476 KM_USER1);
3477 }
3478
3479 ioff = btrfs_item_offset(leaf, item);
3480 btrfs_set_item_offset(leaf, item, ioff - total_data);
3481 }
3482 if (leaf->map_token) {
3483 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3484 leaf->map_token = NULL;
3485 }
3486
3487 /* shift the items */
3488 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3489 btrfs_item_nr_offset(slot),
3490 (nritems - slot) * sizeof(struct btrfs_item));
3491
3492 /* shift the data */
3493 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3494 data_end - total_data, btrfs_leaf_data(leaf) +
3495 data_end, old_data - data_end);
3496 data_end = old_data;
3497 } else {
3498 /*
3499 * this sucks but it has to be done, if we are inserting at
3500 * the end of the leaf only insert 1 of the items, since we
3501 * have no way of knowing whats on the next leaf and we'd have
3502 * to drop our current locks to figure it out
3503 */
3504 nr = 1;
3505 }
3506
3507 /* setup the item for the new data */
3508 for (i = 0; i < nr; i++) {
3509 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3510 btrfs_set_item_key(leaf, &disk_key, slot + i);
3511 item = btrfs_item_nr(leaf, slot + i);
3512 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3513 data_end -= data_size[i];
3514 btrfs_set_item_size(leaf, item, data_size[i]);
3515 }
3516 btrfs_set_header_nritems(leaf, nritems + nr);
3517 btrfs_mark_buffer_dirty(leaf);
3518
3519 ret = 0;
3520 if (slot == 0) {
3521 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3522 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3523 }
3524
3525 if (btrfs_leaf_free_space(root, leaf) < 0) {
3526 btrfs_print_leaf(root, leaf);
3527 BUG();
3528 }
3529 out:
3530 if (!ret)
3531 ret = nr;
3532 return ret;
3533 }
3534
3535 /*
3536 * this is a helper for btrfs_insert_empty_items, the main goal here is
3537 * to save stack depth by doing the bulk of the work in a function
3538 * that doesn't call btrfs_search_slot
3539 */
3540 static noinline_for_stack int
3541 setup_items_for_insert(struct btrfs_trans_handle *trans,
3542 struct btrfs_root *root, struct btrfs_path *path,
3543 struct btrfs_key *cpu_key, u32 *data_size,
3544 u32 total_data, u32 total_size, int nr)
3545 {
3546 struct btrfs_item *item;
3547 int i;
3548 u32 nritems;
3549 unsigned int data_end;
3550 struct btrfs_disk_key disk_key;
3551 int ret;
3552 struct extent_buffer *leaf;
3553 int slot;
3554
3555 leaf = path->nodes[0];
3556 slot = path->slots[0];
3557
3558 nritems = btrfs_header_nritems(leaf);
3559 data_end = leaf_data_end(root, leaf);
3560
3561 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3562 btrfs_print_leaf(root, leaf);
3563 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3564 total_size, btrfs_leaf_free_space(root, leaf));
3565 BUG();
3566 }
3567
3568 if (slot != nritems) {
3569 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3570
3571 if (old_data < data_end) {
3572 btrfs_print_leaf(root, leaf);
3573 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3574 slot, old_data, data_end);
3575 BUG_ON(1);
3576 }
3577 /*
3578 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3579 */
3580 /* first correct the data pointers */
3581 WARN_ON(leaf->map_token);
3582 for (i = slot; i < nritems; i++) {
3583 u32 ioff;
3584
3585 item = btrfs_item_nr(leaf, i);
3586 if (!leaf->map_token) {
3587 map_extent_buffer(leaf, (unsigned long)item,
3588 sizeof(struct btrfs_item),
3589 &leaf->map_token, &leaf->kaddr,
3590 &leaf->map_start, &leaf->map_len,
3591 KM_USER1);
3592 }
3593
3594 ioff = btrfs_item_offset(leaf, item);
3595 btrfs_set_item_offset(leaf, item, ioff - total_data);
3596 }
3597 if (leaf->map_token) {
3598 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3599 leaf->map_token = NULL;
3600 }
3601
3602 /* shift the items */
3603 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3604 btrfs_item_nr_offset(slot),
3605 (nritems - slot) * sizeof(struct btrfs_item));
3606
3607 /* shift the data */
3608 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3609 data_end - total_data, btrfs_leaf_data(leaf) +
3610 data_end, old_data - data_end);
3611 data_end = old_data;
3612 }
3613
3614 /* setup the item for the new data */
3615 for (i = 0; i < nr; i++) {
3616 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3617 btrfs_set_item_key(leaf, &disk_key, slot + i);
3618 item = btrfs_item_nr(leaf, slot + i);
3619 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3620 data_end -= data_size[i];
3621 btrfs_set_item_size(leaf, item, data_size[i]);
3622 }
3623
3624 btrfs_set_header_nritems(leaf, nritems + nr);
3625
3626 ret = 0;
3627 if (slot == 0) {
3628 struct btrfs_disk_key disk_key;
3629 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3630 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3631 }
3632 btrfs_unlock_up_safe(path, 1);
3633 btrfs_mark_buffer_dirty(leaf);
3634
3635 if (btrfs_leaf_free_space(root, leaf) < 0) {
3636 btrfs_print_leaf(root, leaf);
3637 BUG();
3638 }
3639 return ret;
3640 }
3641
3642 /*
3643 * Given a key and some data, insert items into the tree.
3644 * This does all the path init required, making room in the tree if needed.
3645 */
3646 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3647 struct btrfs_root *root,
3648 struct btrfs_path *path,
3649 struct btrfs_key *cpu_key, u32 *data_size,
3650 int nr)
3651 {
3652 struct extent_buffer *leaf;
3653 int ret = 0;
3654 int slot;
3655 int i;
3656 u32 total_size = 0;
3657 u32 total_data = 0;
3658
3659 for (i = 0; i < nr; i++)
3660 total_data += data_size[i];
3661
3662 total_size = total_data + (nr * sizeof(struct btrfs_item));
3663 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3664 if (ret == 0)
3665 return -EEXIST;
3666 if (ret < 0)
3667 goto out;
3668
3669 leaf = path->nodes[0];
3670 slot = path->slots[0];
3671 BUG_ON(slot < 0);
3672
3673 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3674 total_data, total_size, nr);
3675
3676 out:
3677 return ret;
3678 }
3679
3680 /*
3681 * Given a key and some data, insert an item into the tree.
3682 * This does all the path init required, making room in the tree if needed.
3683 */
3684 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3685 *root, struct btrfs_key *cpu_key, void *data, u32
3686 data_size)
3687 {
3688 int ret = 0;
3689 struct btrfs_path *path;
3690 struct extent_buffer *leaf;
3691 unsigned long ptr;
3692
3693 path = btrfs_alloc_path();
3694 BUG_ON(!path);
3695 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3696 if (!ret) {
3697 leaf = path->nodes[0];
3698 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3699 write_extent_buffer(leaf, data, ptr, data_size);
3700 btrfs_mark_buffer_dirty(leaf);
3701 }
3702 btrfs_free_path(path);
3703 return ret;
3704 }
3705
3706 /*
3707 * delete the pointer from a given node.
3708 *
3709 * the tree should have been previously balanced so the deletion does not
3710 * empty a node.
3711 */
3712 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3713 struct btrfs_path *path, int level, int slot)
3714 {
3715 struct extent_buffer *parent = path->nodes[level];
3716 u32 nritems;
3717 int ret = 0;
3718 int wret;
3719
3720 nritems = btrfs_header_nritems(parent);
3721 if (slot != nritems - 1) {
3722 memmove_extent_buffer(parent,
3723 btrfs_node_key_ptr_offset(slot),
3724 btrfs_node_key_ptr_offset(slot + 1),
3725 sizeof(struct btrfs_key_ptr) *
3726 (nritems - slot - 1));
3727 }
3728 nritems--;
3729 btrfs_set_header_nritems(parent, nritems);
3730 if (nritems == 0 && parent == root->node) {
3731 BUG_ON(btrfs_header_level(root->node) != 1);
3732 /* just turn the root into a leaf and break */
3733 btrfs_set_header_level(root->node, 0);
3734 } else if (slot == 0) {
3735 struct btrfs_disk_key disk_key;
3736
3737 btrfs_node_key(parent, &disk_key, 0);
3738 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3739 if (wret)
3740 ret = wret;
3741 }
3742 btrfs_mark_buffer_dirty(parent);
3743 return ret;
3744 }
3745
3746 /*
3747 * a helper function to delete the leaf pointed to by path->slots[1] and
3748 * path->nodes[1]. bytenr is the node block pointer, but since the callers
3749 * already know it, it is faster to have them pass it down than to
3750 * read it out of the node again.
3751 *
3752 * This deletes the pointer in path->nodes[1] and frees the leaf
3753 * block extent. zero is returned if it all worked out, < 0 otherwise.
3754 *
3755 * The path must have already been setup for deleting the leaf, including
3756 * all the proper balancing. path->nodes[1] must be locked.
3757 */
3758 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3759 struct btrfs_root *root,
3760 struct btrfs_path *path, u64 bytenr)
3761 {
3762 int ret;
3763 u64 root_gen = btrfs_header_generation(path->nodes[1]);
3764 u64 parent_start = path->nodes[1]->start;
3765 u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3766
3767 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3768 if (ret)
3769 return ret;
3770
3771 /*
3772 * btrfs_free_extent is expensive, we want to make sure we
3773 * aren't holding any locks when we call it
3774 */
3775 btrfs_unlock_up_safe(path, 0);
3776
3777 ret = btrfs_free_extent(trans, root, bytenr,
3778 btrfs_level_size(root, 0),
3779 parent_start, parent_owner,
3780 root_gen, 0, 1);
3781 return ret;
3782 }
3783 /*
3784 * delete the item at the leaf level in path. If that empties
3785 * the leaf, remove it from the tree
3786 */
3787 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3788 struct btrfs_path *path, int slot, int nr)
3789 {
3790 struct extent_buffer *leaf;
3791 struct btrfs_item *item;
3792 int last_off;
3793 int dsize = 0;
3794 int ret = 0;
3795 int wret;
3796 int i;
3797 u32 nritems;
3798
3799 leaf = path->nodes[0];
3800 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3801
3802 for (i = 0; i < nr; i++)
3803 dsize += btrfs_item_size_nr(leaf, slot + i);
3804
3805 nritems = btrfs_header_nritems(leaf);
3806
3807 if (slot + nr != nritems) {
3808 int data_end = leaf_data_end(root, leaf);
3809
3810 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3811 data_end + dsize,
3812 btrfs_leaf_data(leaf) + data_end,
3813 last_off - data_end);
3814
3815 for (i = slot + nr; i < nritems; i++) {
3816 u32 ioff;
3817
3818 item = btrfs_item_nr(leaf, i);
3819 if (!leaf->map_token) {
3820 map_extent_buffer(leaf, (unsigned long)item,
3821 sizeof(struct btrfs_item),
3822 &leaf->map_token, &leaf->kaddr,
3823 &leaf->map_start, &leaf->map_len,
3824 KM_USER1);
3825 }
3826 ioff = btrfs_item_offset(leaf, item);
3827 btrfs_set_item_offset(leaf, item, ioff + dsize);
3828 }
3829
3830 if (leaf->map_token) {
3831 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3832 leaf->map_token = NULL;
3833 }
3834
3835 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3836 btrfs_item_nr_offset(slot + nr),
3837 sizeof(struct btrfs_item) *
3838 (nritems - slot - nr));
3839 }
3840 btrfs_set_header_nritems(leaf, nritems - nr);
3841 nritems -= nr;
3842
3843 /* delete the leaf if we've emptied it */
3844 if (nritems == 0) {
3845 if (leaf == root->node) {
3846 btrfs_set_header_level(leaf, 0);
3847 } else {
3848 ret = btrfs_del_leaf(trans, root, path, leaf->start);
3849 BUG_ON(ret);
3850 }
3851 } else {
3852 int used = leaf_space_used(leaf, 0, nritems);
3853 if (slot == 0) {
3854 struct btrfs_disk_key disk_key;
3855
3856 btrfs_item_key(leaf, &disk_key, 0);
3857 wret = fixup_low_keys(trans, root, path,
3858 &disk_key, 1);
3859 if (wret)
3860 ret = wret;
3861 }
3862
3863 /* delete the leaf if it is mostly empty */
3864 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
3865 !trans->transaction->delayed_refs.flushing) {
3866 /* push_leaf_left fixes the path.
3867 * make sure the path still points to our leaf
3868 * for possible call to del_ptr below
3869 */
3870 slot = path->slots[1];
3871 extent_buffer_get(leaf);
3872
3873 btrfs_set_path_blocking(path);
3874 wret = push_leaf_left(trans, root, path, 1, 1);
3875 if (wret < 0 && wret != -ENOSPC)
3876 ret = wret;
3877
3878 if (path->nodes[0] == leaf &&
3879 btrfs_header_nritems(leaf)) {
3880 wret = push_leaf_right(trans, root, path, 1, 1);
3881 if (wret < 0 && wret != -ENOSPC)
3882 ret = wret;
3883 }
3884
3885 if (btrfs_header_nritems(leaf) == 0) {
3886 path->slots[1] = slot;
3887 ret = btrfs_del_leaf(trans, root, path,
3888 leaf->start);
3889 BUG_ON(ret);
3890 free_extent_buffer(leaf);
3891 } else {
3892 /* if we're still in the path, make sure
3893 * we're dirty. Otherwise, one of the
3894 * push_leaf functions must have already
3895 * dirtied this buffer
3896 */
3897 if (path->nodes[0] == leaf)
3898 btrfs_mark_buffer_dirty(leaf);
3899 free_extent_buffer(leaf);
3900 }
3901 } else {
3902 btrfs_mark_buffer_dirty(leaf);
3903 }
3904 }
3905 return ret;
3906 }
3907
3908 /*
3909 * search the tree again to find a leaf with lesser keys
3910 * returns 0 if it found something or 1 if there are no lesser leaves.
3911 * returns < 0 on io errors.
3912 *
3913 * This may release the path, and so you may lose any locks held at the
3914 * time you call it.
3915 */
3916 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3917 {
3918 struct btrfs_key key;
3919 struct btrfs_disk_key found_key;
3920 int ret;
3921
3922 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3923
3924 if (key.offset > 0)
3925 key.offset--;
3926 else if (key.type > 0)
3927 key.type--;
3928 else if (key.objectid > 0)
3929 key.objectid--;
3930 else
3931 return 1;
3932
3933 btrfs_release_path(root, path);
3934 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3935 if (ret < 0)
3936 return ret;
3937 btrfs_item_key(path->nodes[0], &found_key, 0);
3938 ret = comp_keys(&found_key, &key);
3939 if (ret < 0)
3940 return 0;
3941 return 1;
3942 }
3943
3944 /*
3945 * A helper function to walk down the tree starting at min_key, and looking
3946 * for nodes or leaves that are either in cache or have a minimum
3947 * transaction id. This is used by the btree defrag code, and tree logging
3948 *
3949 * This does not cow, but it does stuff the starting key it finds back
3950 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3951 * key and get a writable path.
3952 *
3953 * This does lock as it descends, and path->keep_locks should be set
3954 * to 1 by the caller.
3955 *
3956 * This honors path->lowest_level to prevent descent past a given level
3957 * of the tree.
3958 *
3959 * min_trans indicates the oldest transaction that you are interested
3960 * in walking through. Any nodes or leaves older than min_trans are
3961 * skipped over (without reading them).
3962 *
3963 * returns zero if something useful was found, < 0 on error and 1 if there
3964 * was nothing in the tree that matched the search criteria.
3965 */
3966 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3967 struct btrfs_key *max_key,
3968 struct btrfs_path *path, int cache_only,
3969 u64 min_trans)
3970 {
3971 struct extent_buffer *cur;
3972 struct btrfs_key found_key;
3973 int slot;
3974 int sret;
3975 u32 nritems;
3976 int level;
3977 int ret = 1;
3978
3979 WARN_ON(!path->keep_locks);
3980 again:
3981 cur = btrfs_lock_root_node(root);
3982 level = btrfs_header_level(cur);
3983 WARN_ON(path->nodes[level]);
3984 path->nodes[level] = cur;
3985 path->locks[level] = 1;
3986
3987 if (btrfs_header_generation(cur) < min_trans) {
3988 ret = 1;
3989 goto out;
3990 }
3991 while (1) {
3992 nritems = btrfs_header_nritems(cur);
3993 level = btrfs_header_level(cur);
3994 sret = bin_search(cur, min_key, level, &slot);
3995
3996 /* at the lowest level, we're done, setup the path and exit */
3997 if (level == path->lowest_level) {
3998 if (slot >= nritems)
3999 goto find_next_key;
4000 ret = 0;
4001 path->slots[level] = slot;
4002 btrfs_item_key_to_cpu(cur, &found_key, slot);
4003 goto out;
4004 }
4005 if (sret && slot > 0)
4006 slot--;
4007 /*
4008 * check this node pointer against the cache_only and
4009 * min_trans parameters. If it isn't in cache or is too
4010 * old, skip to the next one.
4011 */
4012 while (slot < nritems) {
4013 u64 blockptr;
4014 u64 gen;
4015 struct extent_buffer *tmp;
4016 struct btrfs_disk_key disk_key;
4017
4018 blockptr = btrfs_node_blockptr(cur, slot);
4019 gen = btrfs_node_ptr_generation(cur, slot);
4020 if (gen < min_trans) {
4021 slot++;
4022 continue;
4023 }
4024 if (!cache_only)
4025 break;
4026
4027 if (max_key) {
4028 btrfs_node_key(cur, &disk_key, slot);
4029 if (comp_keys(&disk_key, max_key) >= 0) {
4030 ret = 1;
4031 goto out;
4032 }
4033 }
4034
4035 tmp = btrfs_find_tree_block(root, blockptr,
4036 btrfs_level_size(root, level - 1));
4037
4038 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4039 free_extent_buffer(tmp);
4040 break;
4041 }
4042 if (tmp)
4043 free_extent_buffer(tmp);
4044 slot++;
4045 }
4046 find_next_key:
4047 /*
4048 * we didn't find a candidate key in this node, walk forward
4049 * and find another one
4050 */
4051 if (slot >= nritems) {
4052 path->slots[level] = slot;
4053 btrfs_set_path_blocking(path);
4054 sret = btrfs_find_next_key(root, path, min_key, level,
4055 cache_only, min_trans);
4056 if (sret == 0) {
4057 btrfs_release_path(root, path);
4058 goto again;
4059 } else {
4060 goto out;
4061 }
4062 }
4063 /* save our key for returning back */
4064 btrfs_node_key_to_cpu(cur, &found_key, slot);
4065 path->slots[level] = slot;
4066 if (level == path->lowest_level) {
4067 ret = 0;
4068 unlock_up(path, level, 1);
4069 goto out;
4070 }
4071 btrfs_set_path_blocking(path);
4072 cur = read_node_slot(root, cur, slot);
4073
4074 btrfs_tree_lock(cur);
4075
4076 path->locks[level - 1] = 1;
4077 path->nodes[level - 1] = cur;
4078 unlock_up(path, level, 1);
4079 btrfs_clear_path_blocking(path, NULL);
4080 }
4081 out:
4082 if (ret == 0)
4083 memcpy(min_key, &found_key, sizeof(found_key));
4084 btrfs_set_path_blocking(path);
4085 return ret;
4086 }
4087
4088 /*
4089 * this is similar to btrfs_next_leaf, but does not try to preserve
4090 * and fixup the path. It looks for and returns the next key in the
4091 * tree based on the current path and the cache_only and min_trans
4092 * parameters.
4093 *
4094 * 0 is returned if another key is found, < 0 if there are any errors
4095 * and 1 is returned if there are no higher keys in the tree
4096 *
4097 * path->keep_locks should be set to 1 on the search made before
4098 * calling this function.
4099 */
4100 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4101 struct btrfs_key *key, int lowest_level,
4102 int cache_only, u64 min_trans)
4103 {
4104 int level = lowest_level;
4105 int slot;
4106 struct extent_buffer *c;
4107
4108 WARN_ON(!path->keep_locks);
4109 while (level < BTRFS_MAX_LEVEL) {
4110 if (!path->nodes[level])
4111 return 1;
4112
4113 slot = path->slots[level] + 1;
4114 c = path->nodes[level];
4115 next:
4116 if (slot >= btrfs_header_nritems(c)) {
4117 level++;
4118 if (level == BTRFS_MAX_LEVEL)
4119 return 1;
4120 continue;
4121 }
4122 if (level == 0)
4123 btrfs_item_key_to_cpu(c, key, slot);
4124 else {
4125 u64 blockptr = btrfs_node_blockptr(c, slot);
4126 u64 gen = btrfs_node_ptr_generation(c, slot);
4127
4128 if (cache_only) {
4129 struct extent_buffer *cur;
4130 cur = btrfs_find_tree_block(root, blockptr,
4131 btrfs_level_size(root, level - 1));
4132 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4133 slot++;
4134 if (cur)
4135 free_extent_buffer(cur);
4136 goto next;
4137 }
4138 free_extent_buffer(cur);
4139 }
4140 if (gen < min_trans) {
4141 slot++;
4142 goto next;
4143 }
4144 btrfs_node_key_to_cpu(c, key, slot);
4145 }
4146 return 0;
4147 }
4148 return 1;
4149 }
4150
4151 /*
4152 * search the tree again to find a leaf with greater keys
4153 * returns 0 if it found something or 1 if there are no greater leaves.
4154 * returns < 0 on io errors.
4155 */
4156 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4157 {
4158 int slot;
4159 int level;
4160 struct extent_buffer *c;
4161 struct extent_buffer *next;
4162 struct btrfs_key key;
4163 u32 nritems;
4164 int ret;
4165 int old_spinning = path->leave_spinning;
4166 int force_blocking = 0;
4167
4168 nritems = btrfs_header_nritems(path->nodes[0]);
4169 if (nritems == 0)
4170 return 1;
4171
4172 /*
4173 * we take the blocks in an order that upsets lockdep. Using
4174 * blocking mode is the only way around it.
4175 */
4176 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4177 force_blocking = 1;
4178 #endif
4179
4180 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4181 again:
4182 level = 1;
4183 next = NULL;
4184 btrfs_release_path(root, path);
4185
4186 path->keep_locks = 1;
4187
4188 if (!force_blocking)
4189 path->leave_spinning = 1;
4190
4191 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4192 path->keep_locks = 0;
4193
4194 if (ret < 0)
4195 return ret;
4196
4197 nritems = btrfs_header_nritems(path->nodes[0]);
4198 /*
4199 * by releasing the path above we dropped all our locks. A balance
4200 * could have added more items next to the key that used to be
4201 * at the very end of the block. So, check again here and
4202 * advance the path if there are now more items available.
4203 */
4204 if (nritems > 0 && path->slots[0] < nritems - 1) {
4205 path->slots[0]++;
4206 ret = 0;
4207 goto done;
4208 }
4209
4210 while (level < BTRFS_MAX_LEVEL) {
4211 if (!path->nodes[level]) {
4212 ret = 1;
4213 goto done;
4214 }
4215
4216 slot = path->slots[level] + 1;
4217 c = path->nodes[level];
4218 if (slot >= btrfs_header_nritems(c)) {
4219 level++;
4220 if (level == BTRFS_MAX_LEVEL) {
4221 ret = 1;
4222 goto done;
4223 }
4224 continue;
4225 }
4226
4227 if (next) {
4228 btrfs_tree_unlock(next);
4229 free_extent_buffer(next);
4230 }
4231
4232 next = c;
4233 ret = read_block_for_search(NULL, root, path, &next, level,
4234 slot, &key);
4235 if (ret == -EAGAIN)
4236 goto again;
4237
4238 if (ret < 0) {
4239 btrfs_release_path(root, path);
4240 goto done;
4241 }
4242
4243 if (!path->skip_locking) {
4244 ret = btrfs_try_spin_lock(next);
4245 if (!ret) {
4246 btrfs_set_path_blocking(path);
4247 btrfs_tree_lock(next);
4248 if (!force_blocking)
4249 btrfs_clear_path_blocking(path, next);
4250 }
4251 if (force_blocking)
4252 btrfs_set_lock_blocking(next);
4253 }
4254 break;
4255 }
4256 path->slots[level] = slot;
4257 while (1) {
4258 level--;
4259 c = path->nodes[level];
4260 if (path->locks[level])
4261 btrfs_tree_unlock(c);
4262
4263 free_extent_buffer(c);
4264 path->nodes[level] = next;
4265 path->slots[level] = 0;
4266 if (!path->skip_locking)
4267 path->locks[level] = 1;
4268
4269 if (!level)
4270 break;
4271
4272 ret = read_block_for_search(NULL, root, path, &next, level,
4273 0, &key);
4274 if (ret == -EAGAIN)
4275 goto again;
4276
4277 if (ret < 0) {
4278 btrfs_release_path(root, path);
4279 goto done;
4280 }
4281
4282 if (!path->skip_locking) {
4283 btrfs_assert_tree_locked(path->nodes[level]);
4284 ret = btrfs_try_spin_lock(next);
4285 if (!ret) {
4286 btrfs_set_path_blocking(path);
4287 btrfs_tree_lock(next);
4288 if (!force_blocking)
4289 btrfs_clear_path_blocking(path, next);
4290 }
4291 if (force_blocking)
4292 btrfs_set_lock_blocking(next);
4293 }
4294 }
4295 ret = 0;
4296 done:
4297 unlock_up(path, 0, 1);
4298 path->leave_spinning = old_spinning;
4299 if (!old_spinning)
4300 btrfs_set_path_blocking(path);
4301
4302 return ret;
4303 }
4304
4305 /*
4306 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4307 * searching until it gets past min_objectid or finds an item of 'type'
4308 *
4309 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4310 */
4311 int btrfs_previous_item(struct btrfs_root *root,
4312 struct btrfs_path *path, u64 min_objectid,
4313 int type)
4314 {
4315 struct btrfs_key found_key;
4316 struct extent_buffer *leaf;
4317 u32 nritems;
4318 int ret;
4319
4320 while (1) {
4321 if (path->slots[0] == 0) {
4322 btrfs_set_path_blocking(path);
4323 ret = btrfs_prev_leaf(root, path);
4324 if (ret != 0)
4325 return ret;
4326 } else {
4327 path->slots[0]--;
4328 }
4329 leaf = path->nodes[0];
4330 nritems = btrfs_header_nritems(leaf);
4331 if (nritems == 0)
4332 return 1;
4333 if (path->slots[0] == nritems)
4334 path->slots[0]--;
4335
4336 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4337 if (found_key.type == type)
4338 return 0;
4339 if (found_key.objectid < min_objectid)
4340 break;
4341 if (found_key.objectid == min_objectid &&
4342 found_key.type < type)
4343 break;
4344 }
4345 return 1;
4346 }