2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_path
*path
, int level
);
31 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
32 *root
, struct btrfs_key
*ins_key
,
33 struct btrfs_path
*path
, int data_size
, int extend
);
34 static int push_node_left(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
, struct extent_buffer
*dst
,
36 struct extent_buffer
*src
, int empty
);
37 static int balance_node_right(struct btrfs_trans_handle
*trans
,
38 struct btrfs_root
*root
,
39 struct extent_buffer
*dst_buf
,
40 struct extent_buffer
*src_buf
);
41 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
43 static int tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
44 struct extent_buffer
*eb
);
46 struct btrfs_path
*btrfs_alloc_path(void)
48 struct btrfs_path
*path
;
49 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
57 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
60 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
61 if (!p
->nodes
[i
] || !p
->locks
[i
])
63 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
64 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
65 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
66 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
67 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
72 * reset all the locked nodes in the patch to spinning locks.
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
79 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
80 struct extent_buffer
*held
, int held_rw
)
85 btrfs_set_lock_blocking_rw(held
, held_rw
);
86 if (held_rw
== BTRFS_WRITE_LOCK
)
87 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
88 else if (held_rw
== BTRFS_READ_LOCK
)
89 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
91 btrfs_set_path_blocking(p
);
93 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
94 if (p
->nodes
[i
] && p
->locks
[i
]) {
95 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
96 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
97 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
98 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
99 p
->locks
[i
] = BTRFS_READ_LOCK
;
104 btrfs_clear_lock_blocking_rw(held
, held_rw
);
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path
*p
)
112 btrfs_release_path(p
);
113 kmem_cache_free(btrfs_path_cachep
, p
);
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
120 * It is safe to call this on paths that no locks or extent buffers held.
122 noinline
void btrfs_release_path(struct btrfs_path
*p
)
126 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
131 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
134 free_extent_buffer(p
->nodes
[i
]);
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
149 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
151 struct extent_buffer
*eb
;
155 eb
= rcu_dereference(root
->node
);
158 * RCU really hurts here, we could free up the root node because
159 * it was COWed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
163 if (atomic_inc_not_zero(&eb
->refs
)) {
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
177 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
179 struct extent_buffer
*eb
;
182 eb
= btrfs_root_node(root
);
184 if (eb
== root
->node
)
186 btrfs_tree_unlock(eb
);
187 free_extent_buffer(eb
);
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
196 static struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
198 struct extent_buffer
*eb
;
201 eb
= btrfs_root_node(root
);
202 btrfs_tree_read_lock(eb
);
203 if (eb
== root
->node
)
205 btrfs_tree_read_unlock(eb
);
206 free_extent_buffer(eb
);
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
215 static void add_root_to_dirty_list(struct btrfs_root
*root
)
217 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
221 spin_lock(&root
->fs_info
->trans_lock
);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
223 /* Want the extent tree to be the last on the list */
224 if (root
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
225 list_move_tail(&root
->dirty_list
,
226 &root
->fs_info
->dirty_cowonly_roots
);
228 list_move(&root
->dirty_list
,
229 &root
->fs_info
->dirty_cowonly_roots
);
231 spin_unlock(&root
->fs_info
->trans_lock
);
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
239 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
240 struct btrfs_root
*root
,
241 struct extent_buffer
*buf
,
242 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
244 struct extent_buffer
*cow
;
247 struct btrfs_disk_key disk_key
;
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
250 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
252 trans
->transid
!= root
->last_trans
);
254 level
= btrfs_header_level(buf
);
256 btrfs_item_key(buf
, &disk_key
, 0);
258 btrfs_node_key(buf
, &disk_key
, 0);
260 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
261 &disk_key
, level
, buf
->start
, 0);
265 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
266 btrfs_set_header_bytenr(cow
, cow
->start
);
267 btrfs_set_header_generation(cow
, trans
->transid
);
268 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
269 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
270 BTRFS_HEADER_FLAG_RELOC
);
271 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
272 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
274 btrfs_set_header_owner(cow
, new_root_objectid
);
276 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
279 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
280 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
281 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
283 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
288 btrfs_mark_buffer_dirty(cow
);
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
300 MOD_LOG_ROOT_REPLACE
,
303 struct tree_mod_move
{
308 struct tree_mod_root
{
313 struct tree_mod_elem
{
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key
;
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move
;
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root
;
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
338 read_lock(&fs_info
->tree_mod_log_lock
);
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
343 read_unlock(&fs_info
->tree_mod_log_lock
);
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
348 write_lock(&fs_info
->tree_mod_log_lock
);
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
353 write_unlock(&fs_info
->tree_mod_log_lock
);
357 * Pull a new tree mod seq number for our operation.
359 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
361 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
372 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
373 struct seq_list
*elem
)
375 tree_mod_log_write_lock(fs_info
);
376 spin_lock(&fs_info
->tree_mod_seq_lock
);
378 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
379 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
381 spin_unlock(&fs_info
->tree_mod_seq_lock
);
382 tree_mod_log_write_unlock(fs_info
);
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
388 struct seq_list
*elem
)
390 struct rb_root
*tm_root
;
391 struct rb_node
*node
;
392 struct rb_node
*next
;
393 struct seq_list
*cur_elem
;
394 struct tree_mod_elem
*tm
;
395 u64 min_seq
= (u64
)-1;
396 u64 seq_putting
= elem
->seq
;
401 spin_lock(&fs_info
->tree_mod_seq_lock
);
402 list_del(&elem
->list
);
405 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
406 if (cur_elem
->seq
< min_seq
) {
407 if (seq_putting
> cur_elem
->seq
) {
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
412 spin_unlock(&fs_info
->tree_mod_seq_lock
);
415 min_seq
= cur_elem
->seq
;
418 spin_unlock(&fs_info
->tree_mod_seq_lock
);
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
424 tree_mod_log_write_lock(fs_info
);
425 tm_root
= &fs_info
->tree_mod_log
;
426 for (node
= rb_first(tm_root
); node
; node
= next
) {
427 next
= rb_next(node
);
428 tm
= container_of(node
, struct tree_mod_elem
, node
);
429 if (tm
->seq
> min_seq
)
431 rb_erase(node
, tm_root
);
434 tree_mod_log_write_unlock(fs_info
);
438 * key order of the log:
439 * node/leaf start address -> sequence
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
445 * Note: must be called with write lock (tree_mod_log_write_lock).
448 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
450 struct rb_root
*tm_root
;
451 struct rb_node
**new;
452 struct rb_node
*parent
= NULL
;
453 struct tree_mod_elem
*cur
;
457 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
459 tm_root
= &fs_info
->tree_mod_log
;
460 new = &tm_root
->rb_node
;
462 cur
= container_of(*new, struct tree_mod_elem
, node
);
464 if (cur
->logical
< tm
->logical
)
465 new = &((*new)->rb_left
);
466 else if (cur
->logical
> tm
->logical
)
467 new = &((*new)->rb_right
);
468 else if (cur
->seq
< tm
->seq
)
469 new = &((*new)->rb_left
);
470 else if (cur
->seq
> tm
->seq
)
471 new = &((*new)->rb_right
);
476 rb_link_node(&tm
->node
, parent
, new);
477 rb_insert_color(&tm
->node
, tm_root
);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
488 struct extent_buffer
*eb
) {
490 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
492 if (eb
&& btrfs_header_level(eb
) == 0)
495 tree_mod_log_write_lock(fs_info
);
496 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
497 tree_mod_log_write_unlock(fs_info
);
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
506 struct extent_buffer
*eb
)
509 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
511 if (eb
&& btrfs_header_level(eb
) == 0)
517 static struct tree_mod_elem
*
518 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
519 enum mod_log_op op
, gfp_t flags
)
521 struct tree_mod_elem
*tm
;
523 tm
= kzalloc(sizeof(*tm
), flags
);
527 tm
->logical
= eb
->start
;
528 if (op
!= MOD_LOG_KEY_ADD
) {
529 btrfs_node_key(eb
, &tm
->key
, slot
);
530 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
534 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
535 RB_CLEAR_NODE(&tm
->node
);
541 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
542 struct extent_buffer
*eb
, int slot
,
543 enum mod_log_op op
, gfp_t flags
)
545 struct tree_mod_elem
*tm
;
548 if (!tree_mod_need_log(fs_info
, eb
))
551 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
555 if (tree_mod_dont_log(fs_info
, eb
)) {
560 ret
= __tree_mod_log_insert(fs_info
, tm
);
561 tree_mod_log_write_unlock(fs_info
);
569 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
570 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
571 int nr_items
, gfp_t flags
)
573 struct tree_mod_elem
*tm
= NULL
;
574 struct tree_mod_elem
**tm_list
= NULL
;
579 if (!tree_mod_need_log(fs_info
, eb
))
582 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), flags
);
586 tm
= kzalloc(sizeof(*tm
), flags
);
592 tm
->logical
= eb
->start
;
594 tm
->move
.dst_slot
= dst_slot
;
595 tm
->move
.nr_items
= nr_items
;
596 tm
->op
= MOD_LOG_MOVE_KEYS
;
598 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
599 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, flags
);
607 if (tree_mod_dont_log(fs_info
, eb
))
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
616 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
617 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
622 ret
= __tree_mod_log_insert(fs_info
, tm
);
625 tree_mod_log_write_unlock(fs_info
);
630 for (i
= 0; i
< nr_items
; i
++) {
631 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
632 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
636 tree_mod_log_write_unlock(fs_info
);
644 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
645 struct tree_mod_elem
**tm_list
,
651 for (i
= nritems
- 1; i
>= 0; i
--) {
652 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
654 for (j
= nritems
- 1; j
> i
; j
--)
655 rb_erase(&tm_list
[j
]->node
,
656 &fs_info
->tree_mod_log
);
665 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
666 struct extent_buffer
*old_root
,
667 struct extent_buffer
*new_root
, gfp_t flags
,
670 struct tree_mod_elem
*tm
= NULL
;
671 struct tree_mod_elem
**tm_list
= NULL
;
676 if (!tree_mod_need_log(fs_info
, NULL
))
679 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
680 nritems
= btrfs_header_nritems(old_root
);
681 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
687 for (i
= 0; i
< nritems
; i
++) {
688 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, flags
);
697 tm
= kzalloc(sizeof(*tm
), flags
);
703 tm
->logical
= new_root
->start
;
704 tm
->old_root
.logical
= old_root
->start
;
705 tm
->old_root
.level
= btrfs_header_level(old_root
);
706 tm
->generation
= btrfs_header_generation(old_root
);
707 tm
->op
= MOD_LOG_ROOT_REPLACE
;
709 if (tree_mod_dont_log(fs_info
, NULL
))
713 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
715 ret
= __tree_mod_log_insert(fs_info
, tm
);
717 tree_mod_log_write_unlock(fs_info
);
726 for (i
= 0; i
< nritems
; i
++)
735 static struct tree_mod_elem
*
736 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
739 struct rb_root
*tm_root
;
740 struct rb_node
*node
;
741 struct tree_mod_elem
*cur
= NULL
;
742 struct tree_mod_elem
*found
= NULL
;
744 tree_mod_log_read_lock(fs_info
);
745 tm_root
= &fs_info
->tree_mod_log
;
746 node
= tm_root
->rb_node
;
748 cur
= container_of(node
, struct tree_mod_elem
, node
);
749 if (cur
->logical
< start
) {
750 node
= node
->rb_left
;
751 } else if (cur
->logical
> start
) {
752 node
= node
->rb_right
;
753 } else if (cur
->seq
< min_seq
) {
754 node
= node
->rb_left
;
755 } else if (!smallest
) {
756 /* we want the node with the highest seq */
758 BUG_ON(found
->seq
> cur
->seq
);
760 node
= node
->rb_left
;
761 } else if (cur
->seq
> min_seq
) {
762 /* we want the node with the smallest seq */
764 BUG_ON(found
->seq
< cur
->seq
);
766 node
= node
->rb_right
;
772 tree_mod_log_read_unlock(fs_info
);
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
782 static struct tree_mod_elem
*
783 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
786 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
794 static struct tree_mod_elem
*
795 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
797 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
801 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
802 struct extent_buffer
*src
, unsigned long dst_offset
,
803 unsigned long src_offset
, int nr_items
)
806 struct tree_mod_elem
**tm_list
= NULL
;
807 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
811 if (!tree_mod_need_log(fs_info
, NULL
))
814 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
817 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
822 tm_list_add
= tm_list
;
823 tm_list_rem
= tm_list
+ nr_items
;
824 for (i
= 0; i
< nr_items
; i
++) {
825 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
826 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
827 if (!tm_list_rem
[i
]) {
832 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
833 MOD_LOG_KEY_ADD
, GFP_NOFS
);
834 if (!tm_list_add
[i
]) {
840 if (tree_mod_dont_log(fs_info
, NULL
))
844 for (i
= 0; i
< nr_items
; i
++) {
845 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
848 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
853 tree_mod_log_write_unlock(fs_info
);
859 for (i
= 0; i
< nr_items
* 2; i
++) {
860 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
861 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
865 tree_mod_log_write_unlock(fs_info
);
872 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
873 int dst_offset
, int src_offset
, int nr_items
)
876 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
882 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
883 struct extent_buffer
*eb
, int slot
, int atomic
)
887 ret
= tree_mod_log_insert_key(fs_info
, eb
, slot
,
889 atomic
? GFP_ATOMIC
: GFP_NOFS
);
894 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
896 struct tree_mod_elem
**tm_list
= NULL
;
901 if (btrfs_header_level(eb
) == 0)
904 if (!tree_mod_need_log(fs_info
, NULL
))
907 nritems
= btrfs_header_nritems(eb
);
908 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
912 for (i
= 0; i
< nritems
; i
++) {
913 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
921 if (tree_mod_dont_log(fs_info
, eb
))
924 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
925 tree_mod_log_write_unlock(fs_info
);
933 for (i
= 0; i
< nritems
; i
++)
941 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
942 struct extent_buffer
*new_root_node
,
946 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
947 new_root_node
, GFP_NOFS
, log_removal
);
952 * check if the tree block can be shared by multiple trees
954 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
955 struct extent_buffer
*buf
)
958 * Tree blocks not in reference counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
963 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
964 buf
!= root
->node
&& buf
!= root
->commit_root
&&
965 (btrfs_header_generation(buf
) <=
966 btrfs_root_last_snapshot(&root
->root_item
) ||
967 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
971 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
977 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
978 struct btrfs_root
*root
,
979 struct extent_buffer
*buf
,
980 struct extent_buffer
*cow
,
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root
, buf
)) {
1007 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
1008 btrfs_header_level(buf
), 1,
1014 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
1019 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1020 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1021 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1026 owner
= btrfs_header_owner(buf
);
1027 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
1028 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
1031 if ((owner
== root
->root_key
.objectid
||
1032 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
1033 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
1034 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
1035 BUG_ON(ret
); /* -ENOMEM */
1037 if (root
->root_key
.objectid
==
1038 BTRFS_TREE_RELOC_OBJECTID
) {
1039 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
1040 BUG_ON(ret
); /* -ENOMEM */
1041 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1042 BUG_ON(ret
); /* -ENOMEM */
1044 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1047 if (root
->root_key
.objectid
==
1048 BTRFS_TREE_RELOC_OBJECTID
)
1049 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1051 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1052 BUG_ON(ret
); /* -ENOMEM */
1054 if (new_flags
!= 0) {
1055 int level
= btrfs_header_level(buf
);
1057 ret
= btrfs_set_disk_extent_flags(trans
, root
,
1060 new_flags
, level
, 0);
1065 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
1066 if (root
->root_key
.objectid
==
1067 BTRFS_TREE_RELOC_OBJECTID
)
1068 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1070 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1071 BUG_ON(ret
); /* -ENOMEM */
1072 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
1073 BUG_ON(ret
); /* -ENOMEM */
1075 clean_tree_block(trans
, root
->fs_info
, buf
);
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1087 * search_start -- an allocation hint for the new block
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1093 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1094 struct btrfs_root
*root
,
1095 struct extent_buffer
*buf
,
1096 struct extent_buffer
*parent
, int parent_slot
,
1097 struct extent_buffer
**cow_ret
,
1098 u64 search_start
, u64 empty_size
)
1100 struct btrfs_disk_key disk_key
;
1101 struct extent_buffer
*cow
;
1104 int unlock_orig
= 0;
1107 if (*cow_ret
== buf
)
1110 btrfs_assert_tree_locked(buf
);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1113 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1115 trans
->transid
!= root
->last_trans
);
1117 level
= btrfs_header_level(buf
);
1120 btrfs_item_key(buf
, &disk_key
, 0);
1122 btrfs_node_key(buf
, &disk_key
, 0);
1124 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
1126 parent_start
= parent
->start
;
1132 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1133 root
->root_key
.objectid
, &disk_key
, level
,
1134 search_start
, empty_size
);
1136 return PTR_ERR(cow
);
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1140 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
1141 btrfs_set_header_bytenr(cow
, cow
->start
);
1142 btrfs_set_header_generation(cow
, trans
->transid
);
1143 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1144 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1145 BTRFS_HEADER_FLAG_RELOC
);
1146 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1147 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1149 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1151 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
1154 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1156 btrfs_abort_transaction(trans
, root
, ret
);
1160 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1161 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1163 btrfs_abort_transaction(trans
, root
, ret
);
1168 if (buf
== root
->node
) {
1169 WARN_ON(parent
&& parent
!= buf
);
1170 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1171 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1172 parent_start
= buf
->start
;
1176 extent_buffer_get(cow
);
1177 tree_mod_log_set_root_pointer(root
, cow
, 1);
1178 rcu_assign_pointer(root
->node
, cow
);
1180 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1182 free_extent_buffer(buf
);
1183 add_root_to_dirty_list(root
);
1185 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1186 parent_start
= parent
->start
;
1190 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1191 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1192 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1193 btrfs_set_node_blockptr(parent
, parent_slot
,
1195 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1197 btrfs_mark_buffer_dirty(parent
);
1199 ret
= tree_mod_log_free_eb(root
->fs_info
, buf
);
1201 btrfs_abort_transaction(trans
, root
, ret
);
1205 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1209 btrfs_tree_unlock(buf
);
1210 free_extent_buffer_stale(buf
);
1211 btrfs_mark_buffer_dirty(cow
);
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1220 static struct tree_mod_elem
*
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1222 struct extent_buffer
*eb_root
, u64 time_seq
)
1224 struct tree_mod_elem
*tm
;
1225 struct tree_mod_elem
*found
= NULL
;
1226 u64 root_logical
= eb_root
->start
;
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1239 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1260 root_logical
= tm
->old_root
.logical
;
1264 /* if there's no old root to return, return what we found instead */
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1277 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1278 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1281 struct rb_node
*next
;
1282 struct tree_mod_elem
*tm
= first_tm
;
1283 unsigned long o_dst
;
1284 unsigned long o_src
;
1285 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1287 n
= btrfs_header_nritems(eb
);
1288 tree_mod_log_read_lock(fs_info
);
1289 while (tm
&& tm
->seq
>= time_seq
) {
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1297 BUG_ON(tm
->slot
< n
);
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1300 case MOD_LOG_KEY_REMOVE
:
1301 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1302 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1303 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1307 case MOD_LOG_KEY_REPLACE
:
1308 BUG_ON(tm
->slot
>= n
);
1309 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1310 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1311 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1314 case MOD_LOG_KEY_ADD
:
1315 /* if a move operation is needed it's in the log */
1318 case MOD_LOG_MOVE_KEYS
:
1319 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1320 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1321 memmove_extent_buffer(eb
, o_dst
, o_src
,
1322 tm
->move
.nr_items
* p_size
);
1324 case MOD_LOG_ROOT_REPLACE
:
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1336 next
= rb_next(&tm
->node
);
1339 tm
= container_of(next
, struct tree_mod_elem
, node
);
1340 if (tm
->logical
!= first_tm
->logical
)
1343 tree_mod_log_read_unlock(fs_info
);
1344 btrfs_set_header_nritems(eb
, n
);
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1354 static struct extent_buffer
*
1355 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1356 struct extent_buffer
*eb
, u64 time_seq
)
1358 struct extent_buffer
*eb_rewin
;
1359 struct tree_mod_elem
*tm
;
1364 if (btrfs_header_level(eb
) == 0)
1367 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1371 btrfs_set_path_blocking(path
);
1372 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1374 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1375 BUG_ON(tm
->slot
!= 0);
1376 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
,
1379 btrfs_tree_read_unlock_blocking(eb
);
1380 free_extent_buffer(eb
);
1383 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1384 btrfs_set_header_backref_rev(eb_rewin
,
1385 btrfs_header_backref_rev(eb
));
1386 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1387 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1389 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1391 btrfs_tree_read_unlock_blocking(eb
);
1392 free_extent_buffer(eb
);
1397 btrfs_clear_path_blocking(path
, NULL
, BTRFS_READ_LOCK
);
1398 btrfs_tree_read_unlock_blocking(eb
);
1399 free_extent_buffer(eb
);
1401 extent_buffer_get(eb_rewin
);
1402 btrfs_tree_read_lock(eb_rewin
);
1403 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1404 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info
->tree_root
));
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1417 static inline struct extent_buffer
*
1418 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1420 struct tree_mod_elem
*tm
;
1421 struct extent_buffer
*eb
= NULL
;
1422 struct extent_buffer
*eb_root
;
1423 struct extent_buffer
*old
;
1424 struct tree_mod_root
*old_root
= NULL
;
1425 u64 old_generation
= 0;
1428 eb_root
= btrfs_read_lock_root_node(root
);
1429 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1433 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1434 old_root
= &tm
->old_root
;
1435 old_generation
= tm
->generation
;
1436 logical
= old_root
->logical
;
1438 logical
= eb_root
->start
;
1441 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1442 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1443 btrfs_tree_read_unlock(eb_root
);
1444 free_extent_buffer(eb_root
);
1445 old
= read_tree_block(root
, logical
, 0);
1446 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1448 free_extent_buffer(old
);
1449 btrfs_warn(root
->fs_info
,
1450 "failed to read tree block %llu from get_old_root", logical
);
1452 eb
= btrfs_clone_extent_buffer(old
);
1453 free_extent_buffer(old
);
1455 } else if (old_root
) {
1456 btrfs_tree_read_unlock(eb_root
);
1457 free_extent_buffer(eb_root
);
1458 eb
= alloc_dummy_extent_buffer(root
->fs_info
, logical
,
1461 btrfs_set_lock_blocking_rw(eb_root
, BTRFS_READ_LOCK
);
1462 eb
= btrfs_clone_extent_buffer(eb_root
);
1463 btrfs_tree_read_unlock_blocking(eb_root
);
1464 free_extent_buffer(eb_root
);
1469 extent_buffer_get(eb
);
1470 btrfs_tree_read_lock(eb
);
1472 btrfs_set_header_bytenr(eb
, eb
->start
);
1473 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1474 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1475 btrfs_set_header_level(eb
, old_root
->level
);
1476 btrfs_set_header_generation(eb
, old_generation
);
1479 __tree_mod_log_rewind(root
->fs_info
, eb
, time_seq
, tm
);
1481 WARN_ON(btrfs_header_level(eb
) != 0);
1482 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(root
));
1487 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1489 struct tree_mod_elem
*tm
;
1491 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1493 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1494 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1495 level
= tm
->old_root
.level
;
1497 level
= btrfs_header_level(eb_root
);
1499 free_extent_buffer(eb_root
);
1504 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1505 struct btrfs_root
*root
,
1506 struct extent_buffer
*buf
)
1508 if (btrfs_test_is_dummy_root(root
))
1511 /* ensure we can see the force_cow */
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1520 * What is forced COW:
1521 * when we create snapshot during committing the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1525 if (btrfs_header_generation(buf
) == trans
->transid
&&
1526 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1527 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1528 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1529 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1539 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1540 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1541 struct extent_buffer
*parent
, int parent_slot
,
1542 struct extent_buffer
**cow_ret
)
1547 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1548 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1550 root
->fs_info
->running_transaction
->transid
);
1552 if (trans
->transid
!= root
->fs_info
->generation
)
1553 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1554 trans
->transid
, root
->fs_info
->generation
);
1556 if (!should_cow_block(trans
, root
, buf
)) {
1561 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1564 btrfs_set_lock_blocking(parent
);
1565 btrfs_set_lock_blocking(buf
);
1567 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1568 parent_slot
, cow_ret
, search_start
, 0);
1570 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1576 * helper function for defrag to decide if two blocks pointed to by a
1577 * node are actually close by
1579 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1581 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1583 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1589 * compare two keys in a memcmp fashion
1591 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1593 struct btrfs_key k1
;
1595 btrfs_disk_key_to_cpu(&k1
, disk
);
1597 return btrfs_comp_cpu_keys(&k1
, k2
);
1601 * same as comp_keys only with two btrfs_key's
1603 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1605 if (k1
->objectid
> k2
->objectid
)
1607 if (k1
->objectid
< k2
->objectid
)
1609 if (k1
->type
> k2
->type
)
1611 if (k1
->type
< k2
->type
)
1613 if (k1
->offset
> k2
->offset
)
1615 if (k1
->offset
< k2
->offset
)
1621 * this is used by the defrag code to go through all the
1622 * leaves pointed to by a node and reallocate them so that
1623 * disk order is close to key order
1625 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1626 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1627 int start_slot
, u64
*last_ret
,
1628 struct btrfs_key
*progress
)
1630 struct extent_buffer
*cur
;
1633 u64 search_start
= *last_ret
;
1643 int progress_passed
= 0;
1644 struct btrfs_disk_key disk_key
;
1646 parent_level
= btrfs_header_level(parent
);
1648 WARN_ON(trans
->transaction
!= root
->fs_info
->running_transaction
);
1649 WARN_ON(trans
->transid
!= root
->fs_info
->generation
);
1651 parent_nritems
= btrfs_header_nritems(parent
);
1652 blocksize
= root
->nodesize
;
1653 end_slot
= parent_nritems
- 1;
1655 if (parent_nritems
<= 1)
1658 btrfs_set_lock_blocking(parent
);
1660 for (i
= start_slot
; i
<= end_slot
; i
++) {
1663 btrfs_node_key(parent
, &disk_key
, i
);
1664 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1667 progress_passed
= 1;
1668 blocknr
= btrfs_node_blockptr(parent
, i
);
1669 gen
= btrfs_node_ptr_generation(parent
, i
);
1670 if (last_block
== 0)
1671 last_block
= blocknr
;
1674 other
= btrfs_node_blockptr(parent
, i
- 1);
1675 close
= close_blocks(blocknr
, other
, blocksize
);
1677 if (!close
&& i
< end_slot
) {
1678 other
= btrfs_node_blockptr(parent
, i
+ 1);
1679 close
= close_blocks(blocknr
, other
, blocksize
);
1682 last_block
= blocknr
;
1686 cur
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
1688 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1691 if (!cur
|| !uptodate
) {
1693 cur
= read_tree_block(root
, blocknr
, gen
);
1695 return PTR_ERR(cur
);
1696 } else if (!extent_buffer_uptodate(cur
)) {
1697 free_extent_buffer(cur
);
1700 } else if (!uptodate
) {
1701 err
= btrfs_read_buffer(cur
, gen
);
1703 free_extent_buffer(cur
);
1708 if (search_start
== 0)
1709 search_start
= last_block
;
1711 btrfs_tree_lock(cur
);
1712 btrfs_set_lock_blocking(cur
);
1713 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1716 (end_slot
- i
) * blocksize
));
1718 btrfs_tree_unlock(cur
);
1719 free_extent_buffer(cur
);
1722 search_start
= cur
->start
;
1723 last_block
= cur
->start
;
1724 *last_ret
= search_start
;
1725 btrfs_tree_unlock(cur
);
1726 free_extent_buffer(cur
);
1732 * The leaf data grows from end-to-front in the node.
1733 * this returns the address of the start of the last item,
1734 * which is the stop of the leaf data stack
1736 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
1737 struct extent_buffer
*leaf
)
1739 u32 nr
= btrfs_header_nritems(leaf
);
1741 return BTRFS_LEAF_DATA_SIZE(root
);
1742 return btrfs_item_offset_nr(leaf
, nr
- 1);
1747 * search for key in the extent_buffer. The items start at offset p,
1748 * and they are item_size apart. There are 'max' items in p.
1750 * the slot in the array is returned via slot, and it points to
1751 * the place where you would insert key if it is not found in
1754 * slot may point to max if the key is bigger than all of the keys
1756 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1758 int item_size
, struct btrfs_key
*key
,
1765 struct btrfs_disk_key
*tmp
= NULL
;
1766 struct btrfs_disk_key unaligned
;
1767 unsigned long offset
;
1769 unsigned long map_start
= 0;
1770 unsigned long map_len
= 0;
1773 while (low
< high
) {
1774 mid
= (low
+ high
) / 2;
1775 offset
= p
+ mid
* item_size
;
1777 if (!kaddr
|| offset
< map_start
||
1778 (offset
+ sizeof(struct btrfs_disk_key
)) >
1779 map_start
+ map_len
) {
1781 err
= map_private_extent_buffer(eb
, offset
,
1782 sizeof(struct btrfs_disk_key
),
1783 &kaddr
, &map_start
, &map_len
);
1786 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1789 read_extent_buffer(eb
, &unaligned
,
1790 offset
, sizeof(unaligned
));
1795 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1798 ret
= comp_keys(tmp
, key
);
1814 * simple bin_search frontend that does the right thing for
1817 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1818 int level
, int *slot
)
1821 return generic_bin_search(eb
,
1822 offsetof(struct btrfs_leaf
, items
),
1823 sizeof(struct btrfs_item
),
1824 key
, btrfs_header_nritems(eb
),
1827 return generic_bin_search(eb
,
1828 offsetof(struct btrfs_node
, ptrs
),
1829 sizeof(struct btrfs_key_ptr
),
1830 key
, btrfs_header_nritems(eb
),
1834 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1835 int level
, int *slot
)
1837 return bin_search(eb
, key
, level
, slot
);
1840 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1842 spin_lock(&root
->accounting_lock
);
1843 btrfs_set_root_used(&root
->root_item
,
1844 btrfs_root_used(&root
->root_item
) + size
);
1845 spin_unlock(&root
->accounting_lock
);
1848 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1850 spin_lock(&root
->accounting_lock
);
1851 btrfs_set_root_used(&root
->root_item
,
1852 btrfs_root_used(&root
->root_item
) - size
);
1853 spin_unlock(&root
->accounting_lock
);
1856 /* given a node and slot number, this reads the blocks it points to. The
1857 * extent buffer is returned with a reference taken (but unlocked).
1858 * NULL is returned on error.
1860 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1861 struct extent_buffer
*parent
, int slot
)
1863 int level
= btrfs_header_level(parent
);
1864 struct extent_buffer
*eb
;
1868 if (slot
>= btrfs_header_nritems(parent
))
1873 eb
= read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1874 btrfs_node_ptr_generation(parent
, slot
));
1875 if (IS_ERR(eb
) || !extent_buffer_uptodate(eb
)) {
1877 free_extent_buffer(eb
);
1885 * node level balancing, used to make sure nodes are in proper order for
1886 * item deletion. We balance from the top down, so we have to make sure
1887 * that a deletion won't leave an node completely empty later on.
1889 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1890 struct btrfs_root
*root
,
1891 struct btrfs_path
*path
, int level
)
1893 struct extent_buffer
*right
= NULL
;
1894 struct extent_buffer
*mid
;
1895 struct extent_buffer
*left
= NULL
;
1896 struct extent_buffer
*parent
= NULL
;
1900 int orig_slot
= path
->slots
[level
];
1906 mid
= path
->nodes
[level
];
1908 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1909 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1910 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1912 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1914 if (level
< BTRFS_MAX_LEVEL
- 1) {
1915 parent
= path
->nodes
[level
+ 1];
1916 pslot
= path
->slots
[level
+ 1];
1920 * deal with the case where there is only one pointer in the root
1921 * by promoting the node below to a root
1924 struct extent_buffer
*child
;
1926 if (btrfs_header_nritems(mid
) != 1)
1929 /* promote the child to a root */
1930 child
= read_node_slot(root
, mid
, 0);
1933 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
1937 btrfs_tree_lock(child
);
1938 btrfs_set_lock_blocking(child
);
1939 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1941 btrfs_tree_unlock(child
);
1942 free_extent_buffer(child
);
1946 tree_mod_log_set_root_pointer(root
, child
, 1);
1947 rcu_assign_pointer(root
->node
, child
);
1949 add_root_to_dirty_list(root
);
1950 btrfs_tree_unlock(child
);
1952 path
->locks
[level
] = 0;
1953 path
->nodes
[level
] = NULL
;
1954 clean_tree_block(trans
, root
->fs_info
, mid
);
1955 btrfs_tree_unlock(mid
);
1956 /* once for the path */
1957 free_extent_buffer(mid
);
1959 root_sub_used(root
, mid
->len
);
1960 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1961 /* once for the root ptr */
1962 free_extent_buffer_stale(mid
);
1965 if (btrfs_header_nritems(mid
) >
1966 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1969 left
= read_node_slot(root
, parent
, pslot
- 1);
1971 btrfs_tree_lock(left
);
1972 btrfs_set_lock_blocking(left
);
1973 wret
= btrfs_cow_block(trans
, root
, left
,
1974 parent
, pslot
- 1, &left
);
1980 right
= read_node_slot(root
, parent
, pslot
+ 1);
1982 btrfs_tree_lock(right
);
1983 btrfs_set_lock_blocking(right
);
1984 wret
= btrfs_cow_block(trans
, root
, right
,
1985 parent
, pslot
+ 1, &right
);
1992 /* first, try to make some room in the middle buffer */
1994 orig_slot
+= btrfs_header_nritems(left
);
1995 wret
= push_node_left(trans
, root
, left
, mid
, 1);
2001 * then try to empty the right most buffer into the middle
2004 wret
= push_node_left(trans
, root
, mid
, right
, 1);
2005 if (wret
< 0 && wret
!= -ENOSPC
)
2007 if (btrfs_header_nritems(right
) == 0) {
2008 clean_tree_block(trans
, root
->fs_info
, right
);
2009 btrfs_tree_unlock(right
);
2010 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
2011 root_sub_used(root
, right
->len
);
2012 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
2013 free_extent_buffer_stale(right
);
2016 struct btrfs_disk_key right_key
;
2017 btrfs_node_key(right
, &right_key
, 0);
2018 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2020 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
2021 btrfs_mark_buffer_dirty(parent
);
2024 if (btrfs_header_nritems(mid
) == 1) {
2026 * we're not allowed to leave a node with one item in the
2027 * tree during a delete. A deletion from lower in the tree
2028 * could try to delete the only pointer in this node.
2029 * So, pull some keys from the left.
2030 * There has to be a left pointer at this point because
2031 * otherwise we would have pulled some pointers from the
2036 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2039 wret
= balance_node_right(trans
, root
, mid
, left
);
2045 wret
= push_node_left(trans
, root
, left
, mid
, 1);
2051 if (btrfs_header_nritems(mid
) == 0) {
2052 clean_tree_block(trans
, root
->fs_info
, mid
);
2053 btrfs_tree_unlock(mid
);
2054 del_ptr(root
, path
, level
+ 1, pslot
);
2055 root_sub_used(root
, mid
->len
);
2056 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
2057 free_extent_buffer_stale(mid
);
2060 /* update the parent key to reflect our changes */
2061 struct btrfs_disk_key mid_key
;
2062 btrfs_node_key(mid
, &mid_key
, 0);
2063 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2065 btrfs_set_node_key(parent
, &mid_key
, pslot
);
2066 btrfs_mark_buffer_dirty(parent
);
2069 /* update the path */
2071 if (btrfs_header_nritems(left
) > orig_slot
) {
2072 extent_buffer_get(left
);
2073 /* left was locked after cow */
2074 path
->nodes
[level
] = left
;
2075 path
->slots
[level
+ 1] -= 1;
2076 path
->slots
[level
] = orig_slot
;
2078 btrfs_tree_unlock(mid
);
2079 free_extent_buffer(mid
);
2082 orig_slot
-= btrfs_header_nritems(left
);
2083 path
->slots
[level
] = orig_slot
;
2086 /* double check we haven't messed things up */
2088 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2092 btrfs_tree_unlock(right
);
2093 free_extent_buffer(right
);
2096 if (path
->nodes
[level
] != left
)
2097 btrfs_tree_unlock(left
);
2098 free_extent_buffer(left
);
2103 /* Node balancing for insertion. Here we only split or push nodes around
2104 * when they are completely full. This is also done top down, so we
2105 * have to be pessimistic.
2107 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2108 struct btrfs_root
*root
,
2109 struct btrfs_path
*path
, int level
)
2111 struct extent_buffer
*right
= NULL
;
2112 struct extent_buffer
*mid
;
2113 struct extent_buffer
*left
= NULL
;
2114 struct extent_buffer
*parent
= NULL
;
2118 int orig_slot
= path
->slots
[level
];
2123 mid
= path
->nodes
[level
];
2124 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2126 if (level
< BTRFS_MAX_LEVEL
- 1) {
2127 parent
= path
->nodes
[level
+ 1];
2128 pslot
= path
->slots
[level
+ 1];
2134 left
= read_node_slot(root
, parent
, pslot
- 1);
2136 /* first, try to make some room in the middle buffer */
2140 btrfs_tree_lock(left
);
2141 btrfs_set_lock_blocking(left
);
2143 left_nr
= btrfs_header_nritems(left
);
2144 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2147 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2152 wret
= push_node_left(trans
, root
,
2159 struct btrfs_disk_key disk_key
;
2160 orig_slot
+= left_nr
;
2161 btrfs_node_key(mid
, &disk_key
, 0);
2162 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2164 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2165 btrfs_mark_buffer_dirty(parent
);
2166 if (btrfs_header_nritems(left
) > orig_slot
) {
2167 path
->nodes
[level
] = left
;
2168 path
->slots
[level
+ 1] -= 1;
2169 path
->slots
[level
] = orig_slot
;
2170 btrfs_tree_unlock(mid
);
2171 free_extent_buffer(mid
);
2174 btrfs_header_nritems(left
);
2175 path
->slots
[level
] = orig_slot
;
2176 btrfs_tree_unlock(left
);
2177 free_extent_buffer(left
);
2181 btrfs_tree_unlock(left
);
2182 free_extent_buffer(left
);
2184 right
= read_node_slot(root
, parent
, pslot
+ 1);
2187 * then try to empty the right most buffer into the middle
2192 btrfs_tree_lock(right
);
2193 btrfs_set_lock_blocking(right
);
2195 right_nr
= btrfs_header_nritems(right
);
2196 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2199 ret
= btrfs_cow_block(trans
, root
, right
,
2205 wret
= balance_node_right(trans
, root
,
2212 struct btrfs_disk_key disk_key
;
2214 btrfs_node_key(right
, &disk_key
, 0);
2215 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2217 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2218 btrfs_mark_buffer_dirty(parent
);
2220 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2221 path
->nodes
[level
] = right
;
2222 path
->slots
[level
+ 1] += 1;
2223 path
->slots
[level
] = orig_slot
-
2224 btrfs_header_nritems(mid
);
2225 btrfs_tree_unlock(mid
);
2226 free_extent_buffer(mid
);
2228 btrfs_tree_unlock(right
);
2229 free_extent_buffer(right
);
2233 btrfs_tree_unlock(right
);
2234 free_extent_buffer(right
);
2240 * readahead one full node of leaves, finding things that are close
2241 * to the block in 'slot', and triggering ra on them.
2243 static void reada_for_search(struct btrfs_root
*root
,
2244 struct btrfs_path
*path
,
2245 int level
, int slot
, u64 objectid
)
2247 struct extent_buffer
*node
;
2248 struct btrfs_disk_key disk_key
;
2254 struct extent_buffer
*eb
;
2262 if (!path
->nodes
[level
])
2265 node
= path
->nodes
[level
];
2267 search
= btrfs_node_blockptr(node
, slot
);
2268 blocksize
= root
->nodesize
;
2269 eb
= btrfs_find_tree_block(root
->fs_info
, search
);
2271 free_extent_buffer(eb
);
2277 nritems
= btrfs_header_nritems(node
);
2281 if (path
->reada
== READA_BACK
) {
2285 } else if (path
->reada
== READA_FORWARD
) {
2290 if (path
->reada
== READA_BACK
&& objectid
) {
2291 btrfs_node_key(node
, &disk_key
, nr
);
2292 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2295 search
= btrfs_node_blockptr(node
, nr
);
2296 if ((search
<= target
&& target
- search
<= 65536) ||
2297 (search
> target
&& search
- target
<= 65536)) {
2298 gen
= btrfs_node_ptr_generation(node
, nr
);
2299 readahead_tree_block(root
, search
);
2303 if ((nread
> 65536 || nscan
> 32))
2308 static noinline
void reada_for_balance(struct btrfs_root
*root
,
2309 struct btrfs_path
*path
, int level
)
2313 struct extent_buffer
*parent
;
2314 struct extent_buffer
*eb
;
2319 parent
= path
->nodes
[level
+ 1];
2323 nritems
= btrfs_header_nritems(parent
);
2324 slot
= path
->slots
[level
+ 1];
2327 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2328 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2329 eb
= btrfs_find_tree_block(root
->fs_info
, block1
);
2331 * if we get -eagain from btrfs_buffer_uptodate, we
2332 * don't want to return eagain here. That will loop
2335 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2337 free_extent_buffer(eb
);
2339 if (slot
+ 1 < nritems
) {
2340 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2341 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2342 eb
= btrfs_find_tree_block(root
->fs_info
, block2
);
2343 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2345 free_extent_buffer(eb
);
2349 readahead_tree_block(root
, block1
);
2351 readahead_tree_block(root
, block2
);
2356 * when we walk down the tree, it is usually safe to unlock the higher layers
2357 * in the tree. The exceptions are when our path goes through slot 0, because
2358 * operations on the tree might require changing key pointers higher up in the
2361 * callers might also have set path->keep_locks, which tells this code to keep
2362 * the lock if the path points to the last slot in the block. This is part of
2363 * walking through the tree, and selecting the next slot in the higher block.
2365 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2366 * if lowest_unlock is 1, level 0 won't be unlocked
2368 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2369 int lowest_unlock
, int min_write_lock_level
,
2370 int *write_lock_level
)
2373 int skip_level
= level
;
2375 struct extent_buffer
*t
;
2377 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2378 if (!path
->nodes
[i
])
2380 if (!path
->locks
[i
])
2382 if (!no_skips
&& path
->slots
[i
] == 0) {
2386 if (!no_skips
&& path
->keep_locks
) {
2389 nritems
= btrfs_header_nritems(t
);
2390 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2395 if (skip_level
< i
&& i
>= lowest_unlock
)
2399 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2400 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2402 if (write_lock_level
&&
2403 i
> min_write_lock_level
&&
2404 i
<= *write_lock_level
) {
2405 *write_lock_level
= i
- 1;
2412 * This releases any locks held in the path starting at level and
2413 * going all the way up to the root.
2415 * btrfs_search_slot will keep the lock held on higher nodes in a few
2416 * corner cases, such as COW of the block at slot zero in the node. This
2417 * ignores those rules, and it should only be called when there are no
2418 * more updates to be done higher up in the tree.
2420 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2424 if (path
->keep_locks
)
2427 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2428 if (!path
->nodes
[i
])
2430 if (!path
->locks
[i
])
2432 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2438 * helper function for btrfs_search_slot. The goal is to find a block
2439 * in cache without setting the path to blocking. If we find the block
2440 * we return zero and the path is unchanged.
2442 * If we can't find the block, we set the path blocking and do some
2443 * reada. -EAGAIN is returned and the search must be repeated.
2446 read_block_for_search(struct btrfs_trans_handle
*trans
,
2447 struct btrfs_root
*root
, struct btrfs_path
*p
,
2448 struct extent_buffer
**eb_ret
, int level
, int slot
,
2449 struct btrfs_key
*key
, u64 time_seq
)
2453 struct extent_buffer
*b
= *eb_ret
;
2454 struct extent_buffer
*tmp
;
2457 blocknr
= btrfs_node_blockptr(b
, slot
);
2458 gen
= btrfs_node_ptr_generation(b
, slot
);
2460 tmp
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
2462 /* first we do an atomic uptodate check */
2463 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2468 /* the pages were up to date, but we failed
2469 * the generation number check. Do a full
2470 * read for the generation number that is correct.
2471 * We must do this without dropping locks so
2472 * we can trust our generation number
2474 btrfs_set_path_blocking(p
);
2476 /* now we're allowed to do a blocking uptodate check */
2477 ret
= btrfs_read_buffer(tmp
, gen
);
2482 free_extent_buffer(tmp
);
2483 btrfs_release_path(p
);
2488 * reduce lock contention at high levels
2489 * of the btree by dropping locks before
2490 * we read. Don't release the lock on the current
2491 * level because we need to walk this node to figure
2492 * out which blocks to read.
2494 btrfs_unlock_up_safe(p
, level
+ 1);
2495 btrfs_set_path_blocking(p
);
2497 free_extent_buffer(tmp
);
2498 if (p
->reada
!= READA_NONE
)
2499 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2501 btrfs_release_path(p
);
2504 tmp
= read_tree_block(root
, blocknr
, 0);
2507 * If the read above didn't mark this buffer up to date,
2508 * it will never end up being up to date. Set ret to EIO now
2509 * and give up so that our caller doesn't loop forever
2512 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2514 free_extent_buffer(tmp
);
2520 * helper function for btrfs_search_slot. This does all of the checks
2521 * for node-level blocks and does any balancing required based on
2524 * If no extra work was required, zero is returned. If we had to
2525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2529 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2530 struct btrfs_root
*root
, struct btrfs_path
*p
,
2531 struct extent_buffer
*b
, int level
, int ins_len
,
2532 int *write_lock_level
)
2535 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2536 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2539 if (*write_lock_level
< level
+ 1) {
2540 *write_lock_level
= level
+ 1;
2541 btrfs_release_path(p
);
2545 btrfs_set_path_blocking(p
);
2546 reada_for_balance(root
, p
, level
);
2547 sret
= split_node(trans
, root
, p
, level
);
2548 btrfs_clear_path_blocking(p
, NULL
, 0);
2555 b
= p
->nodes
[level
];
2556 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2557 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2560 if (*write_lock_level
< level
+ 1) {
2561 *write_lock_level
= level
+ 1;
2562 btrfs_release_path(p
);
2566 btrfs_set_path_blocking(p
);
2567 reada_for_balance(root
, p
, level
);
2568 sret
= balance_level(trans
, root
, p
, level
);
2569 btrfs_clear_path_blocking(p
, NULL
, 0);
2575 b
= p
->nodes
[level
];
2577 btrfs_release_path(p
);
2580 BUG_ON(btrfs_header_nritems(b
) == 1);
2590 static void key_search_validate(struct extent_buffer
*b
,
2591 struct btrfs_key
*key
,
2594 #ifdef CONFIG_BTRFS_ASSERT
2595 struct btrfs_disk_key disk_key
;
2597 btrfs_cpu_key_to_disk(&disk_key
, key
);
2600 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2601 offsetof(struct btrfs_leaf
, items
[0].key
),
2604 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2605 offsetof(struct btrfs_node
, ptrs
[0].key
),
2610 static int key_search(struct extent_buffer
*b
, struct btrfs_key
*key
,
2611 int level
, int *prev_cmp
, int *slot
)
2613 if (*prev_cmp
!= 0) {
2614 *prev_cmp
= bin_search(b
, key
, level
, slot
);
2618 key_search_validate(b
, key
, level
);
2624 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2625 u64 iobjectid
, u64 ioff
, u8 key_type
,
2626 struct btrfs_key
*found_key
)
2629 struct btrfs_key key
;
2630 struct extent_buffer
*eb
;
2635 key
.type
= key_type
;
2636 key
.objectid
= iobjectid
;
2639 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2643 eb
= path
->nodes
[0];
2644 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2645 ret
= btrfs_next_leaf(fs_root
, path
);
2648 eb
= path
->nodes
[0];
2651 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2652 if (found_key
->type
!= key
.type
||
2653 found_key
->objectid
!= key
.objectid
)
2660 * look for key in the tree. path is filled in with nodes along the way
2661 * if key is found, we return zero and you can find the item in the leaf
2662 * level of the path (level 0)
2664 * If the key isn't found, the path points to the slot where it should
2665 * be inserted, and 1 is returned. If there are other errors during the
2666 * search a negative error number is returned.
2668 * if ins_len > 0, nodes and leaves will be split as we walk down the
2669 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2672 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2673 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2676 struct extent_buffer
*b
;
2681 int lowest_unlock
= 1;
2683 /* everything at write_lock_level or lower must be write locked */
2684 int write_lock_level
= 0;
2685 u8 lowest_level
= 0;
2686 int min_write_lock_level
;
2689 lowest_level
= p
->lowest_level
;
2690 WARN_ON(lowest_level
&& ins_len
> 0);
2691 WARN_ON(p
->nodes
[0] != NULL
);
2692 BUG_ON(!cow
&& ins_len
);
2697 /* when we are removing items, we might have to go up to level
2698 * two as we update tree pointers Make sure we keep write
2699 * for those levels as well
2701 write_lock_level
= 2;
2702 } else if (ins_len
> 0) {
2704 * for inserting items, make sure we have a write lock on
2705 * level 1 so we can update keys
2707 write_lock_level
= 1;
2711 write_lock_level
= -1;
2713 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2714 write_lock_level
= BTRFS_MAX_LEVEL
;
2716 min_write_lock_level
= write_lock_level
;
2721 * we try very hard to do read locks on the root
2723 root_lock
= BTRFS_READ_LOCK
;
2725 if (p
->search_commit_root
) {
2727 * the commit roots are read only
2728 * so we always do read locks
2730 if (p
->need_commit_sem
)
2731 down_read(&root
->fs_info
->commit_root_sem
);
2732 b
= root
->commit_root
;
2733 extent_buffer_get(b
);
2734 level
= btrfs_header_level(b
);
2735 if (p
->need_commit_sem
)
2736 up_read(&root
->fs_info
->commit_root_sem
);
2737 if (!p
->skip_locking
)
2738 btrfs_tree_read_lock(b
);
2740 if (p
->skip_locking
) {
2741 b
= btrfs_root_node(root
);
2742 level
= btrfs_header_level(b
);
2744 /* we don't know the level of the root node
2745 * until we actually have it read locked
2747 b
= btrfs_read_lock_root_node(root
);
2748 level
= btrfs_header_level(b
);
2749 if (level
<= write_lock_level
) {
2750 /* whoops, must trade for write lock */
2751 btrfs_tree_read_unlock(b
);
2752 free_extent_buffer(b
);
2753 b
= btrfs_lock_root_node(root
);
2754 root_lock
= BTRFS_WRITE_LOCK
;
2756 /* the level might have changed, check again */
2757 level
= btrfs_header_level(b
);
2761 p
->nodes
[level
] = b
;
2762 if (!p
->skip_locking
)
2763 p
->locks
[level
] = root_lock
;
2766 level
= btrfs_header_level(b
);
2769 * setup the path here so we can release it under lock
2770 * contention with the cow code
2774 * if we don't really need to cow this block
2775 * then we don't want to set the path blocking,
2776 * so we test it here
2778 if (!should_cow_block(trans
, root
, b
))
2782 * must have write locks on this node and the
2785 if (level
> write_lock_level
||
2786 (level
+ 1 > write_lock_level
&&
2787 level
+ 1 < BTRFS_MAX_LEVEL
&&
2788 p
->nodes
[level
+ 1])) {
2789 write_lock_level
= level
+ 1;
2790 btrfs_release_path(p
);
2794 btrfs_set_path_blocking(p
);
2795 err
= btrfs_cow_block(trans
, root
, b
,
2796 p
->nodes
[level
+ 1],
2797 p
->slots
[level
+ 1], &b
);
2804 p
->nodes
[level
] = b
;
2805 btrfs_clear_path_blocking(p
, NULL
, 0);
2808 * we have a lock on b and as long as we aren't changing
2809 * the tree, there is no way to for the items in b to change.
2810 * It is safe to drop the lock on our parent before we
2811 * go through the expensive btree search on b.
2813 * If we're inserting or deleting (ins_len != 0), then we might
2814 * be changing slot zero, which may require changing the parent.
2815 * So, we can't drop the lock until after we know which slot
2816 * we're operating on.
2818 if (!ins_len
&& !p
->keep_locks
) {
2821 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2822 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2827 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2831 if (ret
&& slot
> 0) {
2835 p
->slots
[level
] = slot
;
2836 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2837 ins_len
, &write_lock_level
);
2844 b
= p
->nodes
[level
];
2845 slot
= p
->slots
[level
];
2848 * slot 0 is special, if we change the key
2849 * we have to update the parent pointer
2850 * which means we must have a write lock
2853 if (slot
== 0 && ins_len
&&
2854 write_lock_level
< level
+ 1) {
2855 write_lock_level
= level
+ 1;
2856 btrfs_release_path(p
);
2860 unlock_up(p
, level
, lowest_unlock
,
2861 min_write_lock_level
, &write_lock_level
);
2863 if (level
== lowest_level
) {
2869 err
= read_block_for_search(trans
, root
, p
,
2870 &b
, level
, slot
, key
, 0);
2878 if (!p
->skip_locking
) {
2879 level
= btrfs_header_level(b
);
2880 if (level
<= write_lock_level
) {
2881 err
= btrfs_try_tree_write_lock(b
);
2883 btrfs_set_path_blocking(p
);
2885 btrfs_clear_path_blocking(p
, b
,
2888 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2890 err
= btrfs_tree_read_lock_atomic(b
);
2892 btrfs_set_path_blocking(p
);
2893 btrfs_tree_read_lock(b
);
2894 btrfs_clear_path_blocking(p
, b
,
2897 p
->locks
[level
] = BTRFS_READ_LOCK
;
2899 p
->nodes
[level
] = b
;
2902 p
->slots
[level
] = slot
;
2904 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2905 if (write_lock_level
< 1) {
2906 write_lock_level
= 1;
2907 btrfs_release_path(p
);
2911 btrfs_set_path_blocking(p
);
2912 err
= split_leaf(trans
, root
, key
,
2913 p
, ins_len
, ret
== 0);
2914 btrfs_clear_path_blocking(p
, NULL
, 0);
2922 if (!p
->search_for_split
)
2923 unlock_up(p
, level
, lowest_unlock
,
2924 min_write_lock_level
, &write_lock_level
);
2931 * we don't really know what they plan on doing with the path
2932 * from here on, so for now just mark it as blocking
2934 if (!p
->leave_spinning
)
2935 btrfs_set_path_blocking(p
);
2936 if (ret
< 0 && !p
->skip_release_on_error
)
2937 btrfs_release_path(p
);
2942 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2943 * current state of the tree together with the operations recorded in the tree
2944 * modification log to search for the key in a previous version of this tree, as
2945 * denoted by the time_seq parameter.
2947 * Naturally, there is no support for insert, delete or cow operations.
2949 * The resulting path and return value will be set up as if we called
2950 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2952 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2953 struct btrfs_path
*p
, u64 time_seq
)
2955 struct extent_buffer
*b
;
2960 int lowest_unlock
= 1;
2961 u8 lowest_level
= 0;
2964 lowest_level
= p
->lowest_level
;
2965 WARN_ON(p
->nodes
[0] != NULL
);
2967 if (p
->search_commit_root
) {
2969 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2973 b
= get_old_root(root
, time_seq
);
2974 level
= btrfs_header_level(b
);
2975 p
->locks
[level
] = BTRFS_READ_LOCK
;
2978 level
= btrfs_header_level(b
);
2979 p
->nodes
[level
] = b
;
2980 btrfs_clear_path_blocking(p
, NULL
, 0);
2983 * we have a lock on b and as long as we aren't changing
2984 * the tree, there is no way to for the items in b to change.
2985 * It is safe to drop the lock on our parent before we
2986 * go through the expensive btree search on b.
2988 btrfs_unlock_up_safe(p
, level
+ 1);
2991 * Since we can unwind ebs we want to do a real search every
2995 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2999 if (ret
&& slot
> 0) {
3003 p
->slots
[level
] = slot
;
3004 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3006 if (level
== lowest_level
) {
3012 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
3013 slot
, key
, time_seq
);
3021 level
= btrfs_header_level(b
);
3022 err
= btrfs_tree_read_lock_atomic(b
);
3024 btrfs_set_path_blocking(p
);
3025 btrfs_tree_read_lock(b
);
3026 btrfs_clear_path_blocking(p
, b
,
3029 b
= tree_mod_log_rewind(root
->fs_info
, p
, b
, time_seq
);
3034 p
->locks
[level
] = BTRFS_READ_LOCK
;
3035 p
->nodes
[level
] = b
;
3037 p
->slots
[level
] = slot
;
3038 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3044 if (!p
->leave_spinning
)
3045 btrfs_set_path_blocking(p
);
3047 btrfs_release_path(p
);
3053 * helper to use instead of search slot if no exact match is needed but
3054 * instead the next or previous item should be returned.
3055 * When find_higher is true, the next higher item is returned, the next lower
3057 * When return_any and find_higher are both true, and no higher item is found,
3058 * return the next lower instead.
3059 * When return_any is true and find_higher is false, and no lower item is found,
3060 * return the next higher instead.
3061 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3064 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3065 struct btrfs_key
*key
, struct btrfs_path
*p
,
3066 int find_higher
, int return_any
)
3069 struct extent_buffer
*leaf
;
3072 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3076 * a return value of 1 means the path is at the position where the
3077 * item should be inserted. Normally this is the next bigger item,
3078 * but in case the previous item is the last in a leaf, path points
3079 * to the first free slot in the previous leaf, i.e. at an invalid
3085 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3086 ret
= btrfs_next_leaf(root
, p
);
3092 * no higher item found, return the next
3097 btrfs_release_path(p
);
3101 if (p
->slots
[0] == 0) {
3102 ret
= btrfs_prev_leaf(root
, p
);
3107 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3114 * no lower item found, return the next
3119 btrfs_release_path(p
);
3129 * adjust the pointers going up the tree, starting at level
3130 * making sure the right key of each node is points to 'key'.
3131 * This is used after shifting pointers to the left, so it stops
3132 * fixing up pointers when a given leaf/node is not in slot 0 of the
3136 static void fixup_low_keys(struct btrfs_fs_info
*fs_info
,
3137 struct btrfs_path
*path
,
3138 struct btrfs_disk_key
*key
, int level
)
3141 struct extent_buffer
*t
;
3143 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3144 int tslot
= path
->slots
[i
];
3145 if (!path
->nodes
[i
])
3148 tree_mod_log_set_node_key(fs_info
, t
, tslot
, 1);
3149 btrfs_set_node_key(t
, key
, tslot
);
3150 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3159 * This function isn't completely safe. It's the caller's responsibility
3160 * that the new key won't break the order
3162 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3163 struct btrfs_path
*path
,
3164 struct btrfs_key
*new_key
)
3166 struct btrfs_disk_key disk_key
;
3167 struct extent_buffer
*eb
;
3170 eb
= path
->nodes
[0];
3171 slot
= path
->slots
[0];
3173 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3174 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3176 if (slot
< btrfs_header_nritems(eb
) - 1) {
3177 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3178 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3181 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3182 btrfs_set_item_key(eb
, &disk_key
, slot
);
3183 btrfs_mark_buffer_dirty(eb
);
3185 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3189 * try to push data from one node into the next node left in the
3192 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3193 * error, and > 0 if there was no room in the left hand block.
3195 static int push_node_left(struct btrfs_trans_handle
*trans
,
3196 struct btrfs_root
*root
, struct extent_buffer
*dst
,
3197 struct extent_buffer
*src
, int empty
)
3204 src_nritems
= btrfs_header_nritems(src
);
3205 dst_nritems
= btrfs_header_nritems(dst
);
3206 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3207 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3208 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3210 if (!empty
&& src_nritems
<= 8)
3213 if (push_items
<= 0)
3217 push_items
= min(src_nritems
, push_items
);
3218 if (push_items
< src_nritems
) {
3219 /* leave at least 8 pointers in the node if
3220 * we aren't going to empty it
3222 if (src_nritems
- push_items
< 8) {
3223 if (push_items
<= 8)
3229 push_items
= min(src_nritems
- 8, push_items
);
3231 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
3234 btrfs_abort_transaction(trans
, root
, ret
);
3237 copy_extent_buffer(dst
, src
,
3238 btrfs_node_key_ptr_offset(dst_nritems
),
3239 btrfs_node_key_ptr_offset(0),
3240 push_items
* sizeof(struct btrfs_key_ptr
));
3242 if (push_items
< src_nritems
) {
3244 * don't call tree_mod_log_eb_move here, key removal was already
3245 * fully logged by tree_mod_log_eb_copy above.
3247 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3248 btrfs_node_key_ptr_offset(push_items
),
3249 (src_nritems
- push_items
) *
3250 sizeof(struct btrfs_key_ptr
));
3252 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3253 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3254 btrfs_mark_buffer_dirty(src
);
3255 btrfs_mark_buffer_dirty(dst
);
3261 * try to push data from one node into the next node right in the
3264 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3265 * error, and > 0 if there was no room in the right hand block.
3267 * this will only push up to 1/2 the contents of the left node over
3269 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3270 struct btrfs_root
*root
,
3271 struct extent_buffer
*dst
,
3272 struct extent_buffer
*src
)
3280 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3281 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3283 src_nritems
= btrfs_header_nritems(src
);
3284 dst_nritems
= btrfs_header_nritems(dst
);
3285 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3286 if (push_items
<= 0)
3289 if (src_nritems
< 4)
3292 max_push
= src_nritems
/ 2 + 1;
3293 /* don't try to empty the node */
3294 if (max_push
>= src_nritems
)
3297 if (max_push
< push_items
)
3298 push_items
= max_push
;
3300 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3301 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3302 btrfs_node_key_ptr_offset(0),
3304 sizeof(struct btrfs_key_ptr
));
3306 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3307 src_nritems
- push_items
, push_items
);
3309 btrfs_abort_transaction(trans
, root
, ret
);
3312 copy_extent_buffer(dst
, src
,
3313 btrfs_node_key_ptr_offset(0),
3314 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3315 push_items
* sizeof(struct btrfs_key_ptr
));
3317 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3318 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3320 btrfs_mark_buffer_dirty(src
);
3321 btrfs_mark_buffer_dirty(dst
);
3327 * helper function to insert a new root level in the tree.
3328 * A new node is allocated, and a single item is inserted to
3329 * point to the existing root
3331 * returns zero on success or < 0 on failure.
3333 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3334 struct btrfs_root
*root
,
3335 struct btrfs_path
*path
, int level
)
3338 struct extent_buffer
*lower
;
3339 struct extent_buffer
*c
;
3340 struct extent_buffer
*old
;
3341 struct btrfs_disk_key lower_key
;
3343 BUG_ON(path
->nodes
[level
]);
3344 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3346 lower
= path
->nodes
[level
-1];
3348 btrfs_item_key(lower
, &lower_key
, 0);
3350 btrfs_node_key(lower
, &lower_key
, 0);
3352 c
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3353 &lower_key
, level
, root
->node
->start
, 0);
3357 root_add_used(root
, root
->nodesize
);
3359 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3360 btrfs_set_header_nritems(c
, 1);
3361 btrfs_set_header_level(c
, level
);
3362 btrfs_set_header_bytenr(c
, c
->start
);
3363 btrfs_set_header_generation(c
, trans
->transid
);
3364 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3365 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3367 write_extent_buffer(c
, root
->fs_info
->fsid
, btrfs_header_fsid(),
3370 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3371 btrfs_header_chunk_tree_uuid(c
), BTRFS_UUID_SIZE
);
3373 btrfs_set_node_key(c
, &lower_key
, 0);
3374 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3375 lower_gen
= btrfs_header_generation(lower
);
3376 WARN_ON(lower_gen
!= trans
->transid
);
3378 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3380 btrfs_mark_buffer_dirty(c
);
3383 tree_mod_log_set_root_pointer(root
, c
, 0);
3384 rcu_assign_pointer(root
->node
, c
);
3386 /* the super has an extra ref to root->node */
3387 free_extent_buffer(old
);
3389 add_root_to_dirty_list(root
);
3390 extent_buffer_get(c
);
3391 path
->nodes
[level
] = c
;
3392 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3393 path
->slots
[level
] = 0;
3398 * worker function to insert a single pointer in a node.
3399 * the node should have enough room for the pointer already
3401 * slot and level indicate where you want the key to go, and
3402 * blocknr is the block the key points to.
3404 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3405 struct btrfs_root
*root
, struct btrfs_path
*path
,
3406 struct btrfs_disk_key
*key
, u64 bytenr
,
3407 int slot
, int level
)
3409 struct extent_buffer
*lower
;
3413 BUG_ON(!path
->nodes
[level
]);
3414 btrfs_assert_tree_locked(path
->nodes
[level
]);
3415 lower
= path
->nodes
[level
];
3416 nritems
= btrfs_header_nritems(lower
);
3417 BUG_ON(slot
> nritems
);
3418 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3419 if (slot
!= nritems
) {
3421 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3422 slot
, nritems
- slot
);
3423 memmove_extent_buffer(lower
,
3424 btrfs_node_key_ptr_offset(slot
+ 1),
3425 btrfs_node_key_ptr_offset(slot
),
3426 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3429 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3430 MOD_LOG_KEY_ADD
, GFP_NOFS
);
3433 btrfs_set_node_key(lower
, key
, slot
);
3434 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3435 WARN_ON(trans
->transid
== 0);
3436 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3437 btrfs_set_header_nritems(lower
, nritems
+ 1);
3438 btrfs_mark_buffer_dirty(lower
);
3442 * split the node at the specified level in path in two.
3443 * The path is corrected to point to the appropriate node after the split
3445 * Before splitting this tries to make some room in the node by pushing
3446 * left and right, if either one works, it returns right away.
3448 * returns 0 on success and < 0 on failure
3450 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3451 struct btrfs_root
*root
,
3452 struct btrfs_path
*path
, int level
)
3454 struct extent_buffer
*c
;
3455 struct extent_buffer
*split
;
3456 struct btrfs_disk_key disk_key
;
3461 c
= path
->nodes
[level
];
3462 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3463 if (c
== root
->node
) {
3465 * trying to split the root, lets make a new one
3467 * tree mod log: We don't log_removal old root in
3468 * insert_new_root, because that root buffer will be kept as a
3469 * normal node. We are going to log removal of half of the
3470 * elements below with tree_mod_log_eb_copy. We're holding a
3471 * tree lock on the buffer, which is why we cannot race with
3472 * other tree_mod_log users.
3474 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3478 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3479 c
= path
->nodes
[level
];
3480 if (!ret
&& btrfs_header_nritems(c
) <
3481 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3487 c_nritems
= btrfs_header_nritems(c
);
3488 mid
= (c_nritems
+ 1) / 2;
3489 btrfs_node_key(c
, &disk_key
, mid
);
3491 split
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3492 &disk_key
, level
, c
->start
, 0);
3494 return PTR_ERR(split
);
3496 root_add_used(root
, root
->nodesize
);
3498 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3499 btrfs_set_header_level(split
, btrfs_header_level(c
));
3500 btrfs_set_header_bytenr(split
, split
->start
);
3501 btrfs_set_header_generation(split
, trans
->transid
);
3502 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3503 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3504 write_extent_buffer(split
, root
->fs_info
->fsid
,
3505 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
3506 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3507 btrfs_header_chunk_tree_uuid(split
),
3510 ret
= tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0,
3511 mid
, c_nritems
- mid
);
3513 btrfs_abort_transaction(trans
, root
, ret
);
3516 copy_extent_buffer(split
, c
,
3517 btrfs_node_key_ptr_offset(0),
3518 btrfs_node_key_ptr_offset(mid
),
3519 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3520 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3521 btrfs_set_header_nritems(c
, mid
);
3524 btrfs_mark_buffer_dirty(c
);
3525 btrfs_mark_buffer_dirty(split
);
3527 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3528 path
->slots
[level
+ 1] + 1, level
+ 1);
3530 if (path
->slots
[level
] >= mid
) {
3531 path
->slots
[level
] -= mid
;
3532 btrfs_tree_unlock(c
);
3533 free_extent_buffer(c
);
3534 path
->nodes
[level
] = split
;
3535 path
->slots
[level
+ 1] += 1;
3537 btrfs_tree_unlock(split
);
3538 free_extent_buffer(split
);
3544 * how many bytes are required to store the items in a leaf. start
3545 * and nr indicate which items in the leaf to check. This totals up the
3546 * space used both by the item structs and the item data
3548 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3550 struct btrfs_item
*start_item
;
3551 struct btrfs_item
*end_item
;
3552 struct btrfs_map_token token
;
3554 int nritems
= btrfs_header_nritems(l
);
3555 int end
= min(nritems
, start
+ nr
) - 1;
3559 btrfs_init_map_token(&token
);
3560 start_item
= btrfs_item_nr(start
);
3561 end_item
= btrfs_item_nr(end
);
3562 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3563 btrfs_token_item_size(l
, start_item
, &token
);
3564 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3565 data_len
+= sizeof(struct btrfs_item
) * nr
;
3566 WARN_ON(data_len
< 0);
3571 * The space between the end of the leaf items and
3572 * the start of the leaf data. IOW, how much room
3573 * the leaf has left for both items and data
3575 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3576 struct extent_buffer
*leaf
)
3578 int nritems
= btrfs_header_nritems(leaf
);
3580 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3582 btrfs_crit(root
->fs_info
,
3583 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3584 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3585 leaf_space_used(leaf
, 0, nritems
), nritems
);
3591 * min slot controls the lowest index we're willing to push to the
3592 * right. We'll push up to and including min_slot, but no lower
3594 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3595 struct btrfs_root
*root
,
3596 struct btrfs_path
*path
,
3597 int data_size
, int empty
,
3598 struct extent_buffer
*right
,
3599 int free_space
, u32 left_nritems
,
3602 struct extent_buffer
*left
= path
->nodes
[0];
3603 struct extent_buffer
*upper
= path
->nodes
[1];
3604 struct btrfs_map_token token
;
3605 struct btrfs_disk_key disk_key
;
3610 struct btrfs_item
*item
;
3616 btrfs_init_map_token(&token
);
3621 nr
= max_t(u32
, 1, min_slot
);
3623 if (path
->slots
[0] >= left_nritems
)
3624 push_space
+= data_size
;
3626 slot
= path
->slots
[1];
3627 i
= left_nritems
- 1;
3629 item
= btrfs_item_nr(i
);
3631 if (!empty
&& push_items
> 0) {
3632 if (path
->slots
[0] > i
)
3634 if (path
->slots
[0] == i
) {
3635 int space
= btrfs_leaf_free_space(root
, left
);
3636 if (space
+ push_space
* 2 > free_space
)
3641 if (path
->slots
[0] == i
)
3642 push_space
+= data_size
;
3644 this_item_size
= btrfs_item_size(left
, item
);
3645 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3649 push_space
+= this_item_size
+ sizeof(*item
);
3655 if (push_items
== 0)
3658 WARN_ON(!empty
&& push_items
== left_nritems
);
3660 /* push left to right */
3661 right_nritems
= btrfs_header_nritems(right
);
3663 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3664 push_space
-= leaf_data_end(root
, left
);
3666 /* make room in the right data area */
3667 data_end
= leaf_data_end(root
, right
);
3668 memmove_extent_buffer(right
,
3669 btrfs_leaf_data(right
) + data_end
- push_space
,
3670 btrfs_leaf_data(right
) + data_end
,
3671 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3673 /* copy from the left data area */
3674 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3675 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3676 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3679 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3680 btrfs_item_nr_offset(0),
3681 right_nritems
* sizeof(struct btrfs_item
));
3683 /* copy the items from left to right */
3684 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3685 btrfs_item_nr_offset(left_nritems
- push_items
),
3686 push_items
* sizeof(struct btrfs_item
));
3688 /* update the item pointers */
3689 right_nritems
+= push_items
;
3690 btrfs_set_header_nritems(right
, right_nritems
);
3691 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3692 for (i
= 0; i
< right_nritems
; i
++) {
3693 item
= btrfs_item_nr(i
);
3694 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3695 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3698 left_nritems
-= push_items
;
3699 btrfs_set_header_nritems(left
, left_nritems
);
3702 btrfs_mark_buffer_dirty(left
);
3704 clean_tree_block(trans
, root
->fs_info
, left
);
3706 btrfs_mark_buffer_dirty(right
);
3708 btrfs_item_key(right
, &disk_key
, 0);
3709 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3710 btrfs_mark_buffer_dirty(upper
);
3712 /* then fixup the leaf pointer in the path */
3713 if (path
->slots
[0] >= left_nritems
) {
3714 path
->slots
[0] -= left_nritems
;
3715 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3716 clean_tree_block(trans
, root
->fs_info
, path
->nodes
[0]);
3717 btrfs_tree_unlock(path
->nodes
[0]);
3718 free_extent_buffer(path
->nodes
[0]);
3719 path
->nodes
[0] = right
;
3720 path
->slots
[1] += 1;
3722 btrfs_tree_unlock(right
);
3723 free_extent_buffer(right
);
3728 btrfs_tree_unlock(right
);
3729 free_extent_buffer(right
);
3734 * push some data in the path leaf to the right, trying to free up at
3735 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3737 * returns 1 if the push failed because the other node didn't have enough
3738 * room, 0 if everything worked out and < 0 if there were major errors.
3740 * this will push starting from min_slot to the end of the leaf. It won't
3741 * push any slot lower than min_slot
3743 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3744 *root
, struct btrfs_path
*path
,
3745 int min_data_size
, int data_size
,
3746 int empty
, u32 min_slot
)
3748 struct extent_buffer
*left
= path
->nodes
[0];
3749 struct extent_buffer
*right
;
3750 struct extent_buffer
*upper
;
3756 if (!path
->nodes
[1])
3759 slot
= path
->slots
[1];
3760 upper
= path
->nodes
[1];
3761 if (slot
>= btrfs_header_nritems(upper
) - 1)
3764 btrfs_assert_tree_locked(path
->nodes
[1]);
3766 right
= read_node_slot(root
, upper
, slot
+ 1);
3770 btrfs_tree_lock(right
);
3771 btrfs_set_lock_blocking(right
);
3773 free_space
= btrfs_leaf_free_space(root
, right
);
3774 if (free_space
< data_size
)
3777 /* cow and double check */
3778 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3783 free_space
= btrfs_leaf_free_space(root
, right
);
3784 if (free_space
< data_size
)
3787 left_nritems
= btrfs_header_nritems(left
);
3788 if (left_nritems
== 0)
3791 if (path
->slots
[0] == left_nritems
&& !empty
) {
3792 /* Key greater than all keys in the leaf, right neighbor has
3793 * enough room for it and we're not emptying our leaf to delete
3794 * it, therefore use right neighbor to insert the new item and
3795 * no need to touch/dirty our left leaft. */
3796 btrfs_tree_unlock(left
);
3797 free_extent_buffer(left
);
3798 path
->nodes
[0] = right
;
3804 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3805 right
, free_space
, left_nritems
, min_slot
);
3807 btrfs_tree_unlock(right
);
3808 free_extent_buffer(right
);
3813 * push some data in the path leaf to the left, trying to free up at
3814 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3816 * max_slot can put a limit on how far into the leaf we'll push items. The
3817 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3820 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3821 struct btrfs_root
*root
,
3822 struct btrfs_path
*path
, int data_size
,
3823 int empty
, struct extent_buffer
*left
,
3824 int free_space
, u32 right_nritems
,
3827 struct btrfs_disk_key disk_key
;
3828 struct extent_buffer
*right
= path
->nodes
[0];
3832 struct btrfs_item
*item
;
3833 u32 old_left_nritems
;
3837 u32 old_left_item_size
;
3838 struct btrfs_map_token token
;
3840 btrfs_init_map_token(&token
);
3843 nr
= min(right_nritems
, max_slot
);
3845 nr
= min(right_nritems
- 1, max_slot
);
3847 for (i
= 0; i
< nr
; i
++) {
3848 item
= btrfs_item_nr(i
);
3850 if (!empty
&& push_items
> 0) {
3851 if (path
->slots
[0] < i
)
3853 if (path
->slots
[0] == i
) {
3854 int space
= btrfs_leaf_free_space(root
, right
);
3855 if (space
+ push_space
* 2 > free_space
)
3860 if (path
->slots
[0] == i
)
3861 push_space
+= data_size
;
3863 this_item_size
= btrfs_item_size(right
, item
);
3864 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3868 push_space
+= this_item_size
+ sizeof(*item
);
3871 if (push_items
== 0) {
3875 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3877 /* push data from right to left */
3878 copy_extent_buffer(left
, right
,
3879 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3880 btrfs_item_nr_offset(0),
3881 push_items
* sizeof(struct btrfs_item
));
3883 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3884 btrfs_item_offset_nr(right
, push_items
- 1);
3886 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3887 leaf_data_end(root
, left
) - push_space
,
3888 btrfs_leaf_data(right
) +
3889 btrfs_item_offset_nr(right
, push_items
- 1),
3891 old_left_nritems
= btrfs_header_nritems(left
);
3892 BUG_ON(old_left_nritems
<= 0);
3894 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3895 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3898 item
= btrfs_item_nr(i
);
3900 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3901 btrfs_set_token_item_offset(left
, item
,
3902 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3905 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3907 /* fixup right node */
3908 if (push_items
> right_nritems
)
3909 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3912 if (push_items
< right_nritems
) {
3913 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3914 leaf_data_end(root
, right
);
3915 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3916 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3917 btrfs_leaf_data(right
) +
3918 leaf_data_end(root
, right
), push_space
);
3920 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3921 btrfs_item_nr_offset(push_items
),
3922 (btrfs_header_nritems(right
) - push_items
) *
3923 sizeof(struct btrfs_item
));
3925 right_nritems
-= push_items
;
3926 btrfs_set_header_nritems(right
, right_nritems
);
3927 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3928 for (i
= 0; i
< right_nritems
; i
++) {
3929 item
= btrfs_item_nr(i
);
3931 push_space
= push_space
- btrfs_token_item_size(right
,
3933 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3936 btrfs_mark_buffer_dirty(left
);
3938 btrfs_mark_buffer_dirty(right
);
3940 clean_tree_block(trans
, root
->fs_info
, right
);
3942 btrfs_item_key(right
, &disk_key
, 0);
3943 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
3945 /* then fixup the leaf pointer in the path */
3946 if (path
->slots
[0] < push_items
) {
3947 path
->slots
[0] += old_left_nritems
;
3948 btrfs_tree_unlock(path
->nodes
[0]);
3949 free_extent_buffer(path
->nodes
[0]);
3950 path
->nodes
[0] = left
;
3951 path
->slots
[1] -= 1;
3953 btrfs_tree_unlock(left
);
3954 free_extent_buffer(left
);
3955 path
->slots
[0] -= push_items
;
3957 BUG_ON(path
->slots
[0] < 0);
3960 btrfs_tree_unlock(left
);
3961 free_extent_buffer(left
);
3966 * push some data in the path leaf to the left, trying to free up at
3967 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3969 * max_slot can put a limit on how far into the leaf we'll push items. The
3970 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3973 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3974 *root
, struct btrfs_path
*path
, int min_data_size
,
3975 int data_size
, int empty
, u32 max_slot
)
3977 struct extent_buffer
*right
= path
->nodes
[0];
3978 struct extent_buffer
*left
;
3984 slot
= path
->slots
[1];
3987 if (!path
->nodes
[1])
3990 right_nritems
= btrfs_header_nritems(right
);
3991 if (right_nritems
== 0)
3994 btrfs_assert_tree_locked(path
->nodes
[1]);
3996 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
4000 btrfs_tree_lock(left
);
4001 btrfs_set_lock_blocking(left
);
4003 free_space
= btrfs_leaf_free_space(root
, left
);
4004 if (free_space
< data_size
) {
4009 /* cow and double check */
4010 ret
= btrfs_cow_block(trans
, root
, left
,
4011 path
->nodes
[1], slot
- 1, &left
);
4013 /* we hit -ENOSPC, but it isn't fatal here */
4019 free_space
= btrfs_leaf_free_space(root
, left
);
4020 if (free_space
< data_size
) {
4025 return __push_leaf_left(trans
, root
, path
, min_data_size
,
4026 empty
, left
, free_space
, right_nritems
,
4029 btrfs_tree_unlock(left
);
4030 free_extent_buffer(left
);
4035 * split the path's leaf in two, making sure there is at least data_size
4036 * available for the resulting leaf level of the path.
4038 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4039 struct btrfs_root
*root
,
4040 struct btrfs_path
*path
,
4041 struct extent_buffer
*l
,
4042 struct extent_buffer
*right
,
4043 int slot
, int mid
, int nritems
)
4048 struct btrfs_disk_key disk_key
;
4049 struct btrfs_map_token token
;
4051 btrfs_init_map_token(&token
);
4053 nritems
= nritems
- mid
;
4054 btrfs_set_header_nritems(right
, nritems
);
4055 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
4057 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4058 btrfs_item_nr_offset(mid
),
4059 nritems
* sizeof(struct btrfs_item
));
4061 copy_extent_buffer(right
, l
,
4062 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
4063 data_copy_size
, btrfs_leaf_data(l
) +
4064 leaf_data_end(root
, l
), data_copy_size
);
4066 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
4067 btrfs_item_end_nr(l
, mid
);
4069 for (i
= 0; i
< nritems
; i
++) {
4070 struct btrfs_item
*item
= btrfs_item_nr(i
);
4073 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4074 btrfs_set_token_item_offset(right
, item
,
4075 ioff
+ rt_data_off
, &token
);
4078 btrfs_set_header_nritems(l
, mid
);
4079 btrfs_item_key(right
, &disk_key
, 0);
4080 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4081 path
->slots
[1] + 1, 1);
4083 btrfs_mark_buffer_dirty(right
);
4084 btrfs_mark_buffer_dirty(l
);
4085 BUG_ON(path
->slots
[0] != slot
);
4088 btrfs_tree_unlock(path
->nodes
[0]);
4089 free_extent_buffer(path
->nodes
[0]);
4090 path
->nodes
[0] = right
;
4091 path
->slots
[0] -= mid
;
4092 path
->slots
[1] += 1;
4094 btrfs_tree_unlock(right
);
4095 free_extent_buffer(right
);
4098 BUG_ON(path
->slots
[0] < 0);
4102 * double splits happen when we need to insert a big item in the middle
4103 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4104 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4107 * We avoid this by trying to push the items on either side of our target
4108 * into the adjacent leaves. If all goes well we can avoid the double split
4111 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4112 struct btrfs_root
*root
,
4113 struct btrfs_path
*path
,
4120 int space_needed
= data_size
;
4122 slot
= path
->slots
[0];
4123 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4124 space_needed
-= btrfs_leaf_free_space(root
, path
->nodes
[0]);
4127 * try to push all the items after our slot into the
4130 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4137 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4139 * our goal is to get our slot at the start or end of a leaf. If
4140 * we've done so we're done
4142 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4145 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4148 /* try to push all the items before our slot into the next leaf */
4149 slot
= path
->slots
[0];
4150 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4163 * split the path's leaf in two, making sure there is at least data_size
4164 * available for the resulting leaf level of the path.
4166 * returns 0 if all went well and < 0 on failure.
4168 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4169 struct btrfs_root
*root
,
4170 struct btrfs_key
*ins_key
,
4171 struct btrfs_path
*path
, int data_size
,
4174 struct btrfs_disk_key disk_key
;
4175 struct extent_buffer
*l
;
4179 struct extent_buffer
*right
;
4180 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4184 int num_doubles
= 0;
4185 int tried_avoid_double
= 0;
4188 slot
= path
->slots
[0];
4189 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4190 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
4193 /* first try to make some room by pushing left and right */
4194 if (data_size
&& path
->nodes
[1]) {
4195 int space_needed
= data_size
;
4197 if (slot
< btrfs_header_nritems(l
))
4198 space_needed
-= btrfs_leaf_free_space(root
, l
);
4200 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4201 space_needed
, 0, 0);
4205 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4206 space_needed
, 0, (u32
)-1);
4212 /* did the pushes work? */
4213 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
4217 if (!path
->nodes
[1]) {
4218 ret
= insert_new_root(trans
, root
, path
, 1);
4225 slot
= path
->slots
[0];
4226 nritems
= btrfs_header_nritems(l
);
4227 mid
= (nritems
+ 1) / 2;
4231 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4232 BTRFS_LEAF_DATA_SIZE(root
)) {
4233 if (slot
>= nritems
) {
4237 if (mid
!= nritems
&&
4238 leaf_space_used(l
, mid
, nritems
- mid
) +
4239 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4240 if (data_size
&& !tried_avoid_double
)
4241 goto push_for_double
;
4247 if (leaf_space_used(l
, 0, mid
) + data_size
>
4248 BTRFS_LEAF_DATA_SIZE(root
)) {
4249 if (!extend
&& data_size
&& slot
== 0) {
4251 } else if ((extend
|| !data_size
) && slot
== 0) {
4255 if (mid
!= nritems
&&
4256 leaf_space_used(l
, mid
, nritems
- mid
) +
4257 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4258 if (data_size
&& !tried_avoid_double
)
4259 goto push_for_double
;
4267 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4269 btrfs_item_key(l
, &disk_key
, mid
);
4271 right
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
4272 &disk_key
, 0, l
->start
, 0);
4274 return PTR_ERR(right
);
4276 root_add_used(root
, root
->nodesize
);
4278 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
4279 btrfs_set_header_bytenr(right
, right
->start
);
4280 btrfs_set_header_generation(right
, trans
->transid
);
4281 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4282 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4283 btrfs_set_header_level(right
, 0);
4284 write_extent_buffer(right
, fs_info
->fsid
,
4285 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
4287 write_extent_buffer(right
, fs_info
->chunk_tree_uuid
,
4288 btrfs_header_chunk_tree_uuid(right
),
4293 btrfs_set_header_nritems(right
, 0);
4294 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4295 path
->slots
[1] + 1, 1);
4296 btrfs_tree_unlock(path
->nodes
[0]);
4297 free_extent_buffer(path
->nodes
[0]);
4298 path
->nodes
[0] = right
;
4300 path
->slots
[1] += 1;
4302 btrfs_set_header_nritems(right
, 0);
4303 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4305 btrfs_tree_unlock(path
->nodes
[0]);
4306 free_extent_buffer(path
->nodes
[0]);
4307 path
->nodes
[0] = right
;
4309 if (path
->slots
[1] == 0)
4310 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4312 btrfs_mark_buffer_dirty(right
);
4316 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4319 BUG_ON(num_doubles
!= 0);
4327 push_for_double_split(trans
, root
, path
, data_size
);
4328 tried_avoid_double
= 1;
4329 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4334 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4335 struct btrfs_root
*root
,
4336 struct btrfs_path
*path
, int ins_len
)
4338 struct btrfs_key key
;
4339 struct extent_buffer
*leaf
;
4340 struct btrfs_file_extent_item
*fi
;
4345 leaf
= path
->nodes
[0];
4346 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4348 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4349 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4351 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4354 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4355 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4356 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4357 struct btrfs_file_extent_item
);
4358 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4360 btrfs_release_path(path
);
4362 path
->keep_locks
= 1;
4363 path
->search_for_split
= 1;
4364 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4365 path
->search_for_split
= 0;
4372 leaf
= path
->nodes
[0];
4373 /* if our item isn't there, return now */
4374 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4377 /* the leaf has changed, it now has room. return now */
4378 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4381 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4382 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4383 struct btrfs_file_extent_item
);
4384 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4388 btrfs_set_path_blocking(path
);
4389 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4393 path
->keep_locks
= 0;
4394 btrfs_unlock_up_safe(path
, 1);
4397 path
->keep_locks
= 0;
4401 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4402 struct btrfs_root
*root
,
4403 struct btrfs_path
*path
,
4404 struct btrfs_key
*new_key
,
4405 unsigned long split_offset
)
4407 struct extent_buffer
*leaf
;
4408 struct btrfs_item
*item
;
4409 struct btrfs_item
*new_item
;
4415 struct btrfs_disk_key disk_key
;
4417 leaf
= path
->nodes
[0];
4418 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4420 btrfs_set_path_blocking(path
);
4422 item
= btrfs_item_nr(path
->slots
[0]);
4423 orig_offset
= btrfs_item_offset(leaf
, item
);
4424 item_size
= btrfs_item_size(leaf
, item
);
4426 buf
= kmalloc(item_size
, GFP_NOFS
);
4430 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4431 path
->slots
[0]), item_size
);
4433 slot
= path
->slots
[0] + 1;
4434 nritems
= btrfs_header_nritems(leaf
);
4435 if (slot
!= nritems
) {
4436 /* shift the items */
4437 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4438 btrfs_item_nr_offset(slot
),
4439 (nritems
- slot
) * sizeof(struct btrfs_item
));
4442 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4443 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4445 new_item
= btrfs_item_nr(slot
);
4447 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4448 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4450 btrfs_set_item_offset(leaf
, item
,
4451 orig_offset
+ item_size
- split_offset
);
4452 btrfs_set_item_size(leaf
, item
, split_offset
);
4454 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4456 /* write the data for the start of the original item */
4457 write_extent_buffer(leaf
, buf
,
4458 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4461 /* write the data for the new item */
4462 write_extent_buffer(leaf
, buf
+ split_offset
,
4463 btrfs_item_ptr_offset(leaf
, slot
),
4464 item_size
- split_offset
);
4465 btrfs_mark_buffer_dirty(leaf
);
4467 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4473 * This function splits a single item into two items,
4474 * giving 'new_key' to the new item and splitting the
4475 * old one at split_offset (from the start of the item).
4477 * The path may be released by this operation. After
4478 * the split, the path is pointing to the old item. The
4479 * new item is going to be in the same node as the old one.
4481 * Note, the item being split must be smaller enough to live alone on
4482 * a tree block with room for one extra struct btrfs_item
4484 * This allows us to split the item in place, keeping a lock on the
4485 * leaf the entire time.
4487 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4488 struct btrfs_root
*root
,
4489 struct btrfs_path
*path
,
4490 struct btrfs_key
*new_key
,
4491 unsigned long split_offset
)
4494 ret
= setup_leaf_for_split(trans
, root
, path
,
4495 sizeof(struct btrfs_item
));
4499 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4504 * This function duplicate a item, giving 'new_key' to the new item.
4505 * It guarantees both items live in the same tree leaf and the new item
4506 * is contiguous with the original item.
4508 * This allows us to split file extent in place, keeping a lock on the
4509 * leaf the entire time.
4511 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4512 struct btrfs_root
*root
,
4513 struct btrfs_path
*path
,
4514 struct btrfs_key
*new_key
)
4516 struct extent_buffer
*leaf
;
4520 leaf
= path
->nodes
[0];
4521 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4522 ret
= setup_leaf_for_split(trans
, root
, path
,
4523 item_size
+ sizeof(struct btrfs_item
));
4528 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4529 item_size
, item_size
+
4530 sizeof(struct btrfs_item
), 1);
4531 leaf
= path
->nodes
[0];
4532 memcpy_extent_buffer(leaf
,
4533 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4534 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4540 * make the item pointed to by the path smaller. new_size indicates
4541 * how small to make it, and from_end tells us if we just chop bytes
4542 * off the end of the item or if we shift the item to chop bytes off
4545 void btrfs_truncate_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4546 u32 new_size
, int from_end
)
4549 struct extent_buffer
*leaf
;
4550 struct btrfs_item
*item
;
4552 unsigned int data_end
;
4553 unsigned int old_data_start
;
4554 unsigned int old_size
;
4555 unsigned int size_diff
;
4557 struct btrfs_map_token token
;
4559 btrfs_init_map_token(&token
);
4561 leaf
= path
->nodes
[0];
4562 slot
= path
->slots
[0];
4564 old_size
= btrfs_item_size_nr(leaf
, slot
);
4565 if (old_size
== new_size
)
4568 nritems
= btrfs_header_nritems(leaf
);
4569 data_end
= leaf_data_end(root
, leaf
);
4571 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4573 size_diff
= old_size
- new_size
;
4576 BUG_ON(slot
>= nritems
);
4579 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4581 /* first correct the data pointers */
4582 for (i
= slot
; i
< nritems
; i
++) {
4584 item
= btrfs_item_nr(i
);
4586 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4587 btrfs_set_token_item_offset(leaf
, item
,
4588 ioff
+ size_diff
, &token
);
4591 /* shift the data */
4593 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4594 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4595 data_end
, old_data_start
+ new_size
- data_end
);
4597 struct btrfs_disk_key disk_key
;
4600 btrfs_item_key(leaf
, &disk_key
, slot
);
4602 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4604 struct btrfs_file_extent_item
*fi
;
4606 fi
= btrfs_item_ptr(leaf
, slot
,
4607 struct btrfs_file_extent_item
);
4608 fi
= (struct btrfs_file_extent_item
*)(
4609 (unsigned long)fi
- size_diff
);
4611 if (btrfs_file_extent_type(leaf
, fi
) ==
4612 BTRFS_FILE_EXTENT_INLINE
) {
4613 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4614 memmove_extent_buffer(leaf
, ptr
,
4616 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4620 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4621 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4622 data_end
, old_data_start
- data_end
);
4624 offset
= btrfs_disk_key_offset(&disk_key
);
4625 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4626 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4628 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4631 item
= btrfs_item_nr(slot
);
4632 btrfs_set_item_size(leaf
, item
, new_size
);
4633 btrfs_mark_buffer_dirty(leaf
);
4635 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4636 btrfs_print_leaf(root
, leaf
);
4642 * make the item pointed to by the path bigger, data_size is the added size.
4644 void btrfs_extend_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4648 struct extent_buffer
*leaf
;
4649 struct btrfs_item
*item
;
4651 unsigned int data_end
;
4652 unsigned int old_data
;
4653 unsigned int old_size
;
4655 struct btrfs_map_token token
;
4657 btrfs_init_map_token(&token
);
4659 leaf
= path
->nodes
[0];
4661 nritems
= btrfs_header_nritems(leaf
);
4662 data_end
= leaf_data_end(root
, leaf
);
4664 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4665 btrfs_print_leaf(root
, leaf
);
4668 slot
= path
->slots
[0];
4669 old_data
= btrfs_item_end_nr(leaf
, slot
);
4672 if (slot
>= nritems
) {
4673 btrfs_print_leaf(root
, leaf
);
4674 btrfs_crit(root
->fs_info
, "slot %d too large, nritems %d",
4680 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4682 /* first correct the data pointers */
4683 for (i
= slot
; i
< nritems
; i
++) {
4685 item
= btrfs_item_nr(i
);
4687 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4688 btrfs_set_token_item_offset(leaf
, item
,
4689 ioff
- data_size
, &token
);
4692 /* shift the data */
4693 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4694 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4695 data_end
, old_data
- data_end
);
4697 data_end
= old_data
;
4698 old_size
= btrfs_item_size_nr(leaf
, slot
);
4699 item
= btrfs_item_nr(slot
);
4700 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4701 btrfs_mark_buffer_dirty(leaf
);
4703 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4704 btrfs_print_leaf(root
, leaf
);
4710 * this is a helper for btrfs_insert_empty_items, the main goal here is
4711 * to save stack depth by doing the bulk of the work in a function
4712 * that doesn't call btrfs_search_slot
4714 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4715 struct btrfs_key
*cpu_key
, u32
*data_size
,
4716 u32 total_data
, u32 total_size
, int nr
)
4718 struct btrfs_item
*item
;
4721 unsigned int data_end
;
4722 struct btrfs_disk_key disk_key
;
4723 struct extent_buffer
*leaf
;
4725 struct btrfs_map_token token
;
4727 if (path
->slots
[0] == 0) {
4728 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4729 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4731 btrfs_unlock_up_safe(path
, 1);
4733 btrfs_init_map_token(&token
);
4735 leaf
= path
->nodes
[0];
4736 slot
= path
->slots
[0];
4738 nritems
= btrfs_header_nritems(leaf
);
4739 data_end
= leaf_data_end(root
, leaf
);
4741 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4742 btrfs_print_leaf(root
, leaf
);
4743 btrfs_crit(root
->fs_info
, "not enough freespace need %u have %d",
4744 total_size
, btrfs_leaf_free_space(root
, leaf
));
4748 if (slot
!= nritems
) {
4749 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4751 if (old_data
< data_end
) {
4752 btrfs_print_leaf(root
, leaf
);
4753 btrfs_crit(root
->fs_info
, "slot %d old_data %d data_end %d",
4754 slot
, old_data
, data_end
);
4758 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4760 /* first correct the data pointers */
4761 for (i
= slot
; i
< nritems
; i
++) {
4764 item
= btrfs_item_nr( i
);
4765 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4766 btrfs_set_token_item_offset(leaf
, item
,
4767 ioff
- total_data
, &token
);
4769 /* shift the items */
4770 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4771 btrfs_item_nr_offset(slot
),
4772 (nritems
- slot
) * sizeof(struct btrfs_item
));
4774 /* shift the data */
4775 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4776 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4777 data_end
, old_data
- data_end
);
4778 data_end
= old_data
;
4781 /* setup the item for the new data */
4782 for (i
= 0; i
< nr
; i
++) {
4783 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4784 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4785 item
= btrfs_item_nr(slot
+ i
);
4786 btrfs_set_token_item_offset(leaf
, item
,
4787 data_end
- data_size
[i
], &token
);
4788 data_end
-= data_size
[i
];
4789 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4792 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4793 btrfs_mark_buffer_dirty(leaf
);
4795 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4796 btrfs_print_leaf(root
, leaf
);
4802 * Given a key and some data, insert items into the tree.
4803 * This does all the path init required, making room in the tree if needed.
4805 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4806 struct btrfs_root
*root
,
4807 struct btrfs_path
*path
,
4808 struct btrfs_key
*cpu_key
, u32
*data_size
,
4817 for (i
= 0; i
< nr
; i
++)
4818 total_data
+= data_size
[i
];
4820 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4821 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4827 slot
= path
->slots
[0];
4830 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4831 total_data
, total_size
, nr
);
4836 * Given a key and some data, insert an item into the tree.
4837 * This does all the path init required, making room in the tree if needed.
4839 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4840 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4844 struct btrfs_path
*path
;
4845 struct extent_buffer
*leaf
;
4848 path
= btrfs_alloc_path();
4851 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4853 leaf
= path
->nodes
[0];
4854 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4855 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4856 btrfs_mark_buffer_dirty(leaf
);
4858 btrfs_free_path(path
);
4863 * delete the pointer from a given node.
4865 * the tree should have been previously balanced so the deletion does not
4868 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4869 int level
, int slot
)
4871 struct extent_buffer
*parent
= path
->nodes
[level
];
4875 nritems
= btrfs_header_nritems(parent
);
4876 if (slot
!= nritems
- 1) {
4878 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4879 slot
+ 1, nritems
- slot
- 1);
4880 memmove_extent_buffer(parent
,
4881 btrfs_node_key_ptr_offset(slot
),
4882 btrfs_node_key_ptr_offset(slot
+ 1),
4883 sizeof(struct btrfs_key_ptr
) *
4884 (nritems
- slot
- 1));
4886 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4887 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
4892 btrfs_set_header_nritems(parent
, nritems
);
4893 if (nritems
== 0 && parent
== root
->node
) {
4894 BUG_ON(btrfs_header_level(root
->node
) != 1);
4895 /* just turn the root into a leaf and break */
4896 btrfs_set_header_level(root
->node
, 0);
4897 } else if (slot
== 0) {
4898 struct btrfs_disk_key disk_key
;
4900 btrfs_node_key(parent
, &disk_key
, 0);
4901 fixup_low_keys(root
->fs_info
, path
, &disk_key
, level
+ 1);
4903 btrfs_mark_buffer_dirty(parent
);
4907 * a helper function to delete the leaf pointed to by path->slots[1] and
4910 * This deletes the pointer in path->nodes[1] and frees the leaf
4911 * block extent. zero is returned if it all worked out, < 0 otherwise.
4913 * The path must have already been setup for deleting the leaf, including
4914 * all the proper balancing. path->nodes[1] must be locked.
4916 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4917 struct btrfs_root
*root
,
4918 struct btrfs_path
*path
,
4919 struct extent_buffer
*leaf
)
4921 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4922 del_ptr(root
, path
, 1, path
->slots
[1]);
4925 * btrfs_free_extent is expensive, we want to make sure we
4926 * aren't holding any locks when we call it
4928 btrfs_unlock_up_safe(path
, 0);
4930 root_sub_used(root
, leaf
->len
);
4932 extent_buffer_get(leaf
);
4933 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4934 free_extent_buffer_stale(leaf
);
4937 * delete the item at the leaf level in path. If that empties
4938 * the leaf, remove it from the tree
4940 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4941 struct btrfs_path
*path
, int slot
, int nr
)
4943 struct extent_buffer
*leaf
;
4944 struct btrfs_item
*item
;
4951 struct btrfs_map_token token
;
4953 btrfs_init_map_token(&token
);
4955 leaf
= path
->nodes
[0];
4956 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4958 for (i
= 0; i
< nr
; i
++)
4959 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4961 nritems
= btrfs_header_nritems(leaf
);
4963 if (slot
+ nr
!= nritems
) {
4964 int data_end
= leaf_data_end(root
, leaf
);
4966 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4968 btrfs_leaf_data(leaf
) + data_end
,
4969 last_off
- data_end
);
4971 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4974 item
= btrfs_item_nr(i
);
4975 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4976 btrfs_set_token_item_offset(leaf
, item
,
4977 ioff
+ dsize
, &token
);
4980 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4981 btrfs_item_nr_offset(slot
+ nr
),
4982 sizeof(struct btrfs_item
) *
4983 (nritems
- slot
- nr
));
4985 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4988 /* delete the leaf if we've emptied it */
4990 if (leaf
== root
->node
) {
4991 btrfs_set_header_level(leaf
, 0);
4993 btrfs_set_path_blocking(path
);
4994 clean_tree_block(trans
, root
->fs_info
, leaf
);
4995 btrfs_del_leaf(trans
, root
, path
, leaf
);
4998 int used
= leaf_space_used(leaf
, 0, nritems
);
5000 struct btrfs_disk_key disk_key
;
5002 btrfs_item_key(leaf
, &disk_key
, 0);
5003 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
5006 /* delete the leaf if it is mostly empty */
5007 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
5008 /* push_leaf_left fixes the path.
5009 * make sure the path still points to our leaf
5010 * for possible call to del_ptr below
5012 slot
= path
->slots
[1];
5013 extent_buffer_get(leaf
);
5015 btrfs_set_path_blocking(path
);
5016 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5018 if (wret
< 0 && wret
!= -ENOSPC
)
5021 if (path
->nodes
[0] == leaf
&&
5022 btrfs_header_nritems(leaf
)) {
5023 wret
= push_leaf_right(trans
, root
, path
, 1,
5025 if (wret
< 0 && wret
!= -ENOSPC
)
5029 if (btrfs_header_nritems(leaf
) == 0) {
5030 path
->slots
[1] = slot
;
5031 btrfs_del_leaf(trans
, root
, path
, leaf
);
5032 free_extent_buffer(leaf
);
5035 /* if we're still in the path, make sure
5036 * we're dirty. Otherwise, one of the
5037 * push_leaf functions must have already
5038 * dirtied this buffer
5040 if (path
->nodes
[0] == leaf
)
5041 btrfs_mark_buffer_dirty(leaf
);
5042 free_extent_buffer(leaf
);
5045 btrfs_mark_buffer_dirty(leaf
);
5052 * search the tree again to find a leaf with lesser keys
5053 * returns 0 if it found something or 1 if there are no lesser leaves.
5054 * returns < 0 on io errors.
5056 * This may release the path, and so you may lose any locks held at the
5059 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5061 struct btrfs_key key
;
5062 struct btrfs_disk_key found_key
;
5065 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5067 if (key
.offset
> 0) {
5069 } else if (key
.type
> 0) {
5071 key
.offset
= (u64
)-1;
5072 } else if (key
.objectid
> 0) {
5075 key
.offset
= (u64
)-1;
5080 btrfs_release_path(path
);
5081 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5084 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5085 ret
= comp_keys(&found_key
, &key
);
5087 * We might have had an item with the previous key in the tree right
5088 * before we released our path. And after we released our path, that
5089 * item might have been pushed to the first slot (0) of the leaf we
5090 * were holding due to a tree balance. Alternatively, an item with the
5091 * previous key can exist as the only element of a leaf (big fat item).
5092 * Therefore account for these 2 cases, so that our callers (like
5093 * btrfs_previous_item) don't miss an existing item with a key matching
5094 * the previous key we computed above.
5102 * A helper function to walk down the tree starting at min_key, and looking
5103 * for nodes or leaves that are have a minimum transaction id.
5104 * This is used by the btree defrag code, and tree logging
5106 * This does not cow, but it does stuff the starting key it finds back
5107 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5108 * key and get a writable path.
5110 * This does lock as it descends, and path->keep_locks should be set
5111 * to 1 by the caller.
5113 * This honors path->lowest_level to prevent descent past a given level
5116 * min_trans indicates the oldest transaction that you are interested
5117 * in walking through. Any nodes or leaves older than min_trans are
5118 * skipped over (without reading them).
5120 * returns zero if something useful was found, < 0 on error and 1 if there
5121 * was nothing in the tree that matched the search criteria.
5123 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5124 struct btrfs_path
*path
,
5127 struct extent_buffer
*cur
;
5128 struct btrfs_key found_key
;
5134 int keep_locks
= path
->keep_locks
;
5136 path
->keep_locks
= 1;
5138 cur
= btrfs_read_lock_root_node(root
);
5139 level
= btrfs_header_level(cur
);
5140 WARN_ON(path
->nodes
[level
]);
5141 path
->nodes
[level
] = cur
;
5142 path
->locks
[level
] = BTRFS_READ_LOCK
;
5144 if (btrfs_header_generation(cur
) < min_trans
) {
5149 nritems
= btrfs_header_nritems(cur
);
5150 level
= btrfs_header_level(cur
);
5151 sret
= bin_search(cur
, min_key
, level
, &slot
);
5153 /* at the lowest level, we're done, setup the path and exit */
5154 if (level
== path
->lowest_level
) {
5155 if (slot
>= nritems
)
5158 path
->slots
[level
] = slot
;
5159 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5162 if (sret
&& slot
> 0)
5165 * check this node pointer against the min_trans parameters.
5166 * If it is too old, old, skip to the next one.
5168 while (slot
< nritems
) {
5171 gen
= btrfs_node_ptr_generation(cur
, slot
);
5172 if (gen
< min_trans
) {
5180 * we didn't find a candidate key in this node, walk forward
5181 * and find another one
5183 if (slot
>= nritems
) {
5184 path
->slots
[level
] = slot
;
5185 btrfs_set_path_blocking(path
);
5186 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5189 btrfs_release_path(path
);
5195 /* save our key for returning back */
5196 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5197 path
->slots
[level
] = slot
;
5198 if (level
== path
->lowest_level
) {
5202 btrfs_set_path_blocking(path
);
5203 cur
= read_node_slot(root
, cur
, slot
);
5204 BUG_ON(!cur
); /* -ENOMEM */
5206 btrfs_tree_read_lock(cur
);
5208 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5209 path
->nodes
[level
- 1] = cur
;
5210 unlock_up(path
, level
, 1, 0, NULL
);
5211 btrfs_clear_path_blocking(path
, NULL
, 0);
5214 path
->keep_locks
= keep_locks
;
5216 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5217 btrfs_set_path_blocking(path
);
5218 memcpy(min_key
, &found_key
, sizeof(found_key
));
5223 static void tree_move_down(struct btrfs_root
*root
,
5224 struct btrfs_path
*path
,
5225 int *level
, int root_level
)
5227 BUG_ON(*level
== 0);
5228 path
->nodes
[*level
- 1] = read_node_slot(root
, path
->nodes
[*level
],
5229 path
->slots
[*level
]);
5230 path
->slots
[*level
- 1] = 0;
5234 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
5235 struct btrfs_path
*path
,
5236 int *level
, int root_level
)
5240 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5242 path
->slots
[*level
]++;
5244 while (path
->slots
[*level
] >= nritems
) {
5245 if (*level
== root_level
)
5249 path
->slots
[*level
] = 0;
5250 free_extent_buffer(path
->nodes
[*level
]);
5251 path
->nodes
[*level
] = NULL
;
5253 path
->slots
[*level
]++;
5255 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5262 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5265 static int tree_advance(struct btrfs_root
*root
,
5266 struct btrfs_path
*path
,
5267 int *level
, int root_level
,
5269 struct btrfs_key
*key
)
5273 if (*level
== 0 || !allow_down
) {
5274 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
5276 tree_move_down(root
, path
, level
, root_level
);
5281 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5282 path
->slots
[*level
]);
5284 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5285 path
->slots
[*level
]);
5290 static int tree_compare_item(struct btrfs_root
*left_root
,
5291 struct btrfs_path
*left_path
,
5292 struct btrfs_path
*right_path
,
5297 unsigned long off1
, off2
;
5299 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5300 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5304 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5305 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5306 right_path
->slots
[0]);
5308 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5310 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5317 #define ADVANCE_ONLY_NEXT -1
5320 * This function compares two trees and calls the provided callback for
5321 * every changed/new/deleted item it finds.
5322 * If shared tree blocks are encountered, whole subtrees are skipped, making
5323 * the compare pretty fast on snapshotted subvolumes.
5325 * This currently works on commit roots only. As commit roots are read only,
5326 * we don't do any locking. The commit roots are protected with transactions.
5327 * Transactions are ended and rejoined when a commit is tried in between.
5329 * This function checks for modifications done to the trees while comparing.
5330 * If it detects a change, it aborts immediately.
5332 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5333 struct btrfs_root
*right_root
,
5334 btrfs_changed_cb_t changed_cb
, void *ctx
)
5338 struct btrfs_path
*left_path
= NULL
;
5339 struct btrfs_path
*right_path
= NULL
;
5340 struct btrfs_key left_key
;
5341 struct btrfs_key right_key
;
5342 char *tmp_buf
= NULL
;
5343 int left_root_level
;
5344 int right_root_level
;
5347 int left_end_reached
;
5348 int right_end_reached
;
5356 left_path
= btrfs_alloc_path();
5361 right_path
= btrfs_alloc_path();
5367 tmp_buf
= kmalloc(left_root
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
5369 tmp_buf
= vmalloc(left_root
->nodesize
);
5376 left_path
->search_commit_root
= 1;
5377 left_path
->skip_locking
= 1;
5378 right_path
->search_commit_root
= 1;
5379 right_path
->skip_locking
= 1;
5382 * Strategy: Go to the first items of both trees. Then do
5384 * If both trees are at level 0
5385 * Compare keys of current items
5386 * If left < right treat left item as new, advance left tree
5388 * If left > right treat right item as deleted, advance right tree
5390 * If left == right do deep compare of items, treat as changed if
5391 * needed, advance both trees and repeat
5392 * If both trees are at the same level but not at level 0
5393 * Compare keys of current nodes/leafs
5394 * If left < right advance left tree and repeat
5395 * If left > right advance right tree and repeat
5396 * If left == right compare blockptrs of the next nodes/leafs
5397 * If they match advance both trees but stay at the same level
5399 * If they don't match advance both trees while allowing to go
5401 * If tree levels are different
5402 * Advance the tree that needs it and repeat
5404 * Advancing a tree means:
5405 * If we are at level 0, try to go to the next slot. If that's not
5406 * possible, go one level up and repeat. Stop when we found a level
5407 * where we could go to the next slot. We may at this point be on a
5410 * If we are not at level 0 and not on shared tree blocks, go one
5413 * If we are not at level 0 and on shared tree blocks, go one slot to
5414 * the right if possible or go up and right.
5417 down_read(&left_root
->fs_info
->commit_root_sem
);
5418 left_level
= btrfs_header_level(left_root
->commit_root
);
5419 left_root_level
= left_level
;
5420 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5421 extent_buffer_get(left_path
->nodes
[left_level
]);
5423 right_level
= btrfs_header_level(right_root
->commit_root
);
5424 right_root_level
= right_level
;
5425 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5426 extent_buffer_get(right_path
->nodes
[right_level
]);
5427 up_read(&left_root
->fs_info
->commit_root_sem
);
5429 if (left_level
== 0)
5430 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5431 &left_key
, left_path
->slots
[left_level
]);
5433 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5434 &left_key
, left_path
->slots
[left_level
]);
5435 if (right_level
== 0)
5436 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5437 &right_key
, right_path
->slots
[right_level
]);
5439 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5440 &right_key
, right_path
->slots
[right_level
]);
5442 left_end_reached
= right_end_reached
= 0;
5443 advance_left
= advance_right
= 0;
5446 if (advance_left
&& !left_end_reached
) {
5447 ret
= tree_advance(left_root
, left_path
, &left_level
,
5449 advance_left
!= ADVANCE_ONLY_NEXT
,
5452 left_end_reached
= ADVANCE
;
5455 if (advance_right
&& !right_end_reached
) {
5456 ret
= tree_advance(right_root
, right_path
, &right_level
,
5458 advance_right
!= ADVANCE_ONLY_NEXT
,
5461 right_end_reached
= ADVANCE
;
5465 if (left_end_reached
&& right_end_reached
) {
5468 } else if (left_end_reached
) {
5469 if (right_level
== 0) {
5470 ret
= changed_cb(left_root
, right_root
,
5471 left_path
, right_path
,
5473 BTRFS_COMPARE_TREE_DELETED
,
5478 advance_right
= ADVANCE
;
5480 } else if (right_end_reached
) {
5481 if (left_level
== 0) {
5482 ret
= changed_cb(left_root
, right_root
,
5483 left_path
, right_path
,
5485 BTRFS_COMPARE_TREE_NEW
,
5490 advance_left
= ADVANCE
;
5494 if (left_level
== 0 && right_level
== 0) {
5495 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5497 ret
= changed_cb(left_root
, right_root
,
5498 left_path
, right_path
,
5500 BTRFS_COMPARE_TREE_NEW
,
5504 advance_left
= ADVANCE
;
5505 } else if (cmp
> 0) {
5506 ret
= changed_cb(left_root
, right_root
,
5507 left_path
, right_path
,
5509 BTRFS_COMPARE_TREE_DELETED
,
5513 advance_right
= ADVANCE
;
5515 enum btrfs_compare_tree_result result
;
5517 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5518 ret
= tree_compare_item(left_root
, left_path
,
5519 right_path
, tmp_buf
);
5521 result
= BTRFS_COMPARE_TREE_CHANGED
;
5523 result
= BTRFS_COMPARE_TREE_SAME
;
5524 ret
= changed_cb(left_root
, right_root
,
5525 left_path
, right_path
,
5526 &left_key
, result
, ctx
);
5529 advance_left
= ADVANCE
;
5530 advance_right
= ADVANCE
;
5532 } else if (left_level
== right_level
) {
5533 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5535 advance_left
= ADVANCE
;
5536 } else if (cmp
> 0) {
5537 advance_right
= ADVANCE
;
5539 left_blockptr
= btrfs_node_blockptr(
5540 left_path
->nodes
[left_level
],
5541 left_path
->slots
[left_level
]);
5542 right_blockptr
= btrfs_node_blockptr(
5543 right_path
->nodes
[right_level
],
5544 right_path
->slots
[right_level
]);
5545 left_gen
= btrfs_node_ptr_generation(
5546 left_path
->nodes
[left_level
],
5547 left_path
->slots
[left_level
]);
5548 right_gen
= btrfs_node_ptr_generation(
5549 right_path
->nodes
[right_level
],
5550 right_path
->slots
[right_level
]);
5551 if (left_blockptr
== right_blockptr
&&
5552 left_gen
== right_gen
) {
5554 * As we're on a shared block, don't
5555 * allow to go deeper.
5557 advance_left
= ADVANCE_ONLY_NEXT
;
5558 advance_right
= ADVANCE_ONLY_NEXT
;
5560 advance_left
= ADVANCE
;
5561 advance_right
= ADVANCE
;
5564 } else if (left_level
< right_level
) {
5565 advance_right
= ADVANCE
;
5567 advance_left
= ADVANCE
;
5572 btrfs_free_path(left_path
);
5573 btrfs_free_path(right_path
);
5579 * this is similar to btrfs_next_leaf, but does not try to preserve
5580 * and fixup the path. It looks for and returns the next key in the
5581 * tree based on the current path and the min_trans parameters.
5583 * 0 is returned if another key is found, < 0 if there are any errors
5584 * and 1 is returned if there are no higher keys in the tree
5586 * path->keep_locks should be set to 1 on the search made before
5587 * calling this function.
5589 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5590 struct btrfs_key
*key
, int level
, u64 min_trans
)
5593 struct extent_buffer
*c
;
5595 WARN_ON(!path
->keep_locks
);
5596 while (level
< BTRFS_MAX_LEVEL
) {
5597 if (!path
->nodes
[level
])
5600 slot
= path
->slots
[level
] + 1;
5601 c
= path
->nodes
[level
];
5603 if (slot
>= btrfs_header_nritems(c
)) {
5606 struct btrfs_key cur_key
;
5607 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5608 !path
->nodes
[level
+ 1])
5611 if (path
->locks
[level
+ 1]) {
5616 slot
= btrfs_header_nritems(c
) - 1;
5618 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5620 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5622 orig_lowest
= path
->lowest_level
;
5623 btrfs_release_path(path
);
5624 path
->lowest_level
= level
;
5625 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5627 path
->lowest_level
= orig_lowest
;
5631 c
= path
->nodes
[level
];
5632 slot
= path
->slots
[level
];
5639 btrfs_item_key_to_cpu(c
, key
, slot
);
5641 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5643 if (gen
< min_trans
) {
5647 btrfs_node_key_to_cpu(c
, key
, slot
);
5655 * search the tree again to find a leaf with greater keys
5656 * returns 0 if it found something or 1 if there are no greater leaves.
5657 * returns < 0 on io errors.
5659 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5661 return btrfs_next_old_leaf(root
, path
, 0);
5664 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5669 struct extent_buffer
*c
;
5670 struct extent_buffer
*next
;
5671 struct btrfs_key key
;
5674 int old_spinning
= path
->leave_spinning
;
5675 int next_rw_lock
= 0;
5677 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5681 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5686 btrfs_release_path(path
);
5688 path
->keep_locks
= 1;
5689 path
->leave_spinning
= 1;
5692 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5694 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5695 path
->keep_locks
= 0;
5700 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5702 * by releasing the path above we dropped all our locks. A balance
5703 * could have added more items next to the key that used to be
5704 * at the very end of the block. So, check again here and
5705 * advance the path if there are now more items available.
5707 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5714 * So the above check misses one case:
5715 * - after releasing the path above, someone has removed the item that
5716 * used to be at the very end of the block, and balance between leafs
5717 * gets another one with bigger key.offset to replace it.
5719 * This one should be returned as well, or we can get leaf corruption
5720 * later(esp. in __btrfs_drop_extents()).
5722 * And a bit more explanation about this check,
5723 * with ret > 0, the key isn't found, the path points to the slot
5724 * where it should be inserted, so the path->slots[0] item must be the
5727 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5732 while (level
< BTRFS_MAX_LEVEL
) {
5733 if (!path
->nodes
[level
]) {
5738 slot
= path
->slots
[level
] + 1;
5739 c
= path
->nodes
[level
];
5740 if (slot
>= btrfs_header_nritems(c
)) {
5742 if (level
== BTRFS_MAX_LEVEL
) {
5750 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5751 free_extent_buffer(next
);
5755 next_rw_lock
= path
->locks
[level
];
5756 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5762 btrfs_release_path(path
);
5766 if (!path
->skip_locking
) {
5767 ret
= btrfs_try_tree_read_lock(next
);
5768 if (!ret
&& time_seq
) {
5770 * If we don't get the lock, we may be racing
5771 * with push_leaf_left, holding that lock while
5772 * itself waiting for the leaf we've currently
5773 * locked. To solve this situation, we give up
5774 * on our lock and cycle.
5776 free_extent_buffer(next
);
5777 btrfs_release_path(path
);
5782 btrfs_set_path_blocking(path
);
5783 btrfs_tree_read_lock(next
);
5784 btrfs_clear_path_blocking(path
, next
,
5787 next_rw_lock
= BTRFS_READ_LOCK
;
5791 path
->slots
[level
] = slot
;
5794 c
= path
->nodes
[level
];
5795 if (path
->locks
[level
])
5796 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5798 free_extent_buffer(c
);
5799 path
->nodes
[level
] = next
;
5800 path
->slots
[level
] = 0;
5801 if (!path
->skip_locking
)
5802 path
->locks
[level
] = next_rw_lock
;
5806 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5812 btrfs_release_path(path
);
5816 if (!path
->skip_locking
) {
5817 ret
= btrfs_try_tree_read_lock(next
);
5819 btrfs_set_path_blocking(path
);
5820 btrfs_tree_read_lock(next
);
5821 btrfs_clear_path_blocking(path
, next
,
5824 next_rw_lock
= BTRFS_READ_LOCK
;
5829 unlock_up(path
, 0, 1, 0, NULL
);
5830 path
->leave_spinning
= old_spinning
;
5832 btrfs_set_path_blocking(path
);
5838 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5839 * searching until it gets past min_objectid or finds an item of 'type'
5841 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5843 int btrfs_previous_item(struct btrfs_root
*root
,
5844 struct btrfs_path
*path
, u64 min_objectid
,
5847 struct btrfs_key found_key
;
5848 struct extent_buffer
*leaf
;
5853 if (path
->slots
[0] == 0) {
5854 btrfs_set_path_blocking(path
);
5855 ret
= btrfs_prev_leaf(root
, path
);
5861 leaf
= path
->nodes
[0];
5862 nritems
= btrfs_header_nritems(leaf
);
5865 if (path
->slots
[0] == nritems
)
5868 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5869 if (found_key
.objectid
< min_objectid
)
5871 if (found_key
.type
== type
)
5873 if (found_key
.objectid
== min_objectid
&&
5874 found_key
.type
< type
)
5881 * search in extent tree to find a previous Metadata/Data extent item with
5884 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5886 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5887 struct btrfs_path
*path
, u64 min_objectid
)
5889 struct btrfs_key found_key
;
5890 struct extent_buffer
*leaf
;
5895 if (path
->slots
[0] == 0) {
5896 btrfs_set_path_blocking(path
);
5897 ret
= btrfs_prev_leaf(root
, path
);
5903 leaf
= path
->nodes
[0];
5904 nritems
= btrfs_header_nritems(leaf
);
5907 if (path
->slots
[0] == nritems
)
5910 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5911 if (found_key
.objectid
< min_objectid
)
5913 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5914 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5916 if (found_key
.objectid
== min_objectid
&&
5917 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)