2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_path
*path
, int level
);
31 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
32 *root
, struct btrfs_key
*ins_key
,
33 struct btrfs_path
*path
, int data_size
, int extend
);
34 static int push_node_left(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
, struct extent_buffer
*dst
,
36 struct extent_buffer
*src
, int empty
);
37 static int balance_node_right(struct btrfs_trans_handle
*trans
,
38 struct btrfs_root
*root
,
39 struct extent_buffer
*dst_buf
,
40 struct extent_buffer
*src_buf
);
41 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
43 static int tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
44 struct extent_buffer
*eb
);
46 struct btrfs_path
*btrfs_alloc_path(void)
48 struct btrfs_path
*path
;
49 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
57 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
60 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
61 if (!p
->nodes
[i
] || !p
->locks
[i
])
63 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
64 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
65 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
66 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
67 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
72 * reset all the locked nodes in the patch to spinning locks.
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
79 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
80 struct extent_buffer
*held
, int held_rw
)
85 btrfs_set_lock_blocking_rw(held
, held_rw
);
86 if (held_rw
== BTRFS_WRITE_LOCK
)
87 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
88 else if (held_rw
== BTRFS_READ_LOCK
)
89 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
91 btrfs_set_path_blocking(p
);
93 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
94 if (p
->nodes
[i
] && p
->locks
[i
]) {
95 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
96 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
97 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
98 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
99 p
->locks
[i
] = BTRFS_READ_LOCK
;
104 btrfs_clear_lock_blocking_rw(held
, held_rw
);
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path
*p
)
112 btrfs_release_path(p
);
113 kmem_cache_free(btrfs_path_cachep
, p
);
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
120 * It is safe to call this on paths that no locks or extent buffers held.
122 noinline
void btrfs_release_path(struct btrfs_path
*p
)
126 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
131 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
134 free_extent_buffer(p
->nodes
[i
]);
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
149 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
151 struct extent_buffer
*eb
;
155 eb
= rcu_dereference(root
->node
);
158 * RCU really hurts here, we could free up the root node because
159 * it was COWed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
163 if (atomic_inc_not_zero(&eb
->refs
)) {
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
177 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
179 struct extent_buffer
*eb
;
182 eb
= btrfs_root_node(root
);
184 if (eb
== root
->node
)
186 btrfs_tree_unlock(eb
);
187 free_extent_buffer(eb
);
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
196 static struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
198 struct extent_buffer
*eb
;
201 eb
= btrfs_root_node(root
);
202 btrfs_tree_read_lock(eb
);
203 if (eb
== root
->node
)
205 btrfs_tree_read_unlock(eb
);
206 free_extent_buffer(eb
);
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
215 static void add_root_to_dirty_list(struct btrfs_root
*root
)
217 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
221 spin_lock(&root
->fs_info
->trans_lock
);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
223 /* Want the extent tree to be the last on the list */
224 if (root
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
225 list_move_tail(&root
->dirty_list
,
226 &root
->fs_info
->dirty_cowonly_roots
);
228 list_move(&root
->dirty_list
,
229 &root
->fs_info
->dirty_cowonly_roots
);
231 spin_unlock(&root
->fs_info
->trans_lock
);
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
239 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
240 struct btrfs_root
*root
,
241 struct extent_buffer
*buf
,
242 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
244 struct extent_buffer
*cow
;
247 struct btrfs_disk_key disk_key
;
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
250 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
252 trans
->transid
!= root
->last_trans
);
254 level
= btrfs_header_level(buf
);
256 btrfs_item_key(buf
, &disk_key
, 0);
258 btrfs_node_key(buf
, &disk_key
, 0);
260 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
261 &disk_key
, level
, buf
->start
, 0);
265 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
266 btrfs_set_header_bytenr(cow
, cow
->start
);
267 btrfs_set_header_generation(cow
, trans
->transid
);
268 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
269 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
270 BTRFS_HEADER_FLAG_RELOC
);
271 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
272 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
274 btrfs_set_header_owner(cow
, new_root_objectid
);
276 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
279 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
280 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
281 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
283 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
288 btrfs_mark_buffer_dirty(cow
);
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
300 MOD_LOG_ROOT_REPLACE
,
303 struct tree_mod_move
{
308 struct tree_mod_root
{
313 struct tree_mod_elem
{
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key
;
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move
;
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root
;
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
338 read_lock(&fs_info
->tree_mod_log_lock
);
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
343 read_unlock(&fs_info
->tree_mod_log_lock
);
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
348 write_lock(&fs_info
->tree_mod_log_lock
);
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
353 write_unlock(&fs_info
->tree_mod_log_lock
);
357 * Pull a new tree mod seq number for our operation.
359 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
361 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
372 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
373 struct seq_list
*elem
)
375 tree_mod_log_write_lock(fs_info
);
376 spin_lock(&fs_info
->tree_mod_seq_lock
);
378 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
379 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
381 spin_unlock(&fs_info
->tree_mod_seq_lock
);
382 tree_mod_log_write_unlock(fs_info
);
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
388 struct seq_list
*elem
)
390 struct rb_root
*tm_root
;
391 struct rb_node
*node
;
392 struct rb_node
*next
;
393 struct seq_list
*cur_elem
;
394 struct tree_mod_elem
*tm
;
395 u64 min_seq
= (u64
)-1;
396 u64 seq_putting
= elem
->seq
;
401 spin_lock(&fs_info
->tree_mod_seq_lock
);
402 list_del(&elem
->list
);
405 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
406 if (cur_elem
->seq
< min_seq
) {
407 if (seq_putting
> cur_elem
->seq
) {
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
412 spin_unlock(&fs_info
->tree_mod_seq_lock
);
415 min_seq
= cur_elem
->seq
;
418 spin_unlock(&fs_info
->tree_mod_seq_lock
);
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
424 tree_mod_log_write_lock(fs_info
);
425 tm_root
= &fs_info
->tree_mod_log
;
426 for (node
= rb_first(tm_root
); node
; node
= next
) {
427 next
= rb_next(node
);
428 tm
= container_of(node
, struct tree_mod_elem
, node
);
429 if (tm
->seq
> min_seq
)
431 rb_erase(node
, tm_root
);
434 tree_mod_log_write_unlock(fs_info
);
438 * key order of the log:
439 * node/leaf start address -> sequence
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
445 * Note: must be called with write lock (tree_mod_log_write_lock).
448 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
450 struct rb_root
*tm_root
;
451 struct rb_node
**new;
452 struct rb_node
*parent
= NULL
;
453 struct tree_mod_elem
*cur
;
457 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
459 tm_root
= &fs_info
->tree_mod_log
;
460 new = &tm_root
->rb_node
;
462 cur
= container_of(*new, struct tree_mod_elem
, node
);
464 if (cur
->logical
< tm
->logical
)
465 new = &((*new)->rb_left
);
466 else if (cur
->logical
> tm
->logical
)
467 new = &((*new)->rb_right
);
468 else if (cur
->seq
< tm
->seq
)
469 new = &((*new)->rb_left
);
470 else if (cur
->seq
> tm
->seq
)
471 new = &((*new)->rb_right
);
476 rb_link_node(&tm
->node
, parent
, new);
477 rb_insert_color(&tm
->node
, tm_root
);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
488 struct extent_buffer
*eb
) {
490 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
492 if (eb
&& btrfs_header_level(eb
) == 0)
495 tree_mod_log_write_lock(fs_info
);
496 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
497 tree_mod_log_write_unlock(fs_info
);
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
506 struct extent_buffer
*eb
)
509 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
511 if (eb
&& btrfs_header_level(eb
) == 0)
517 static struct tree_mod_elem
*
518 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
519 enum mod_log_op op
, gfp_t flags
)
521 struct tree_mod_elem
*tm
;
523 tm
= kzalloc(sizeof(*tm
), flags
);
527 tm
->logical
= eb
->start
;
528 if (op
!= MOD_LOG_KEY_ADD
) {
529 btrfs_node_key(eb
, &tm
->key
, slot
);
530 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
534 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
535 RB_CLEAR_NODE(&tm
->node
);
541 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
542 struct extent_buffer
*eb
, int slot
,
543 enum mod_log_op op
, gfp_t flags
)
545 struct tree_mod_elem
*tm
;
548 if (!tree_mod_need_log(fs_info
, eb
))
551 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
555 if (tree_mod_dont_log(fs_info
, eb
)) {
560 ret
= __tree_mod_log_insert(fs_info
, tm
);
561 tree_mod_log_write_unlock(fs_info
);
569 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
570 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
571 int nr_items
, gfp_t flags
)
573 struct tree_mod_elem
*tm
= NULL
;
574 struct tree_mod_elem
**tm_list
= NULL
;
579 if (!tree_mod_need_log(fs_info
, eb
))
582 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), flags
);
586 tm
= kzalloc(sizeof(*tm
), flags
);
592 tm
->logical
= eb
->start
;
594 tm
->move
.dst_slot
= dst_slot
;
595 tm
->move
.nr_items
= nr_items
;
596 tm
->op
= MOD_LOG_MOVE_KEYS
;
598 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
599 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, flags
);
607 if (tree_mod_dont_log(fs_info
, eb
))
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
616 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
617 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
622 ret
= __tree_mod_log_insert(fs_info
, tm
);
625 tree_mod_log_write_unlock(fs_info
);
630 for (i
= 0; i
< nr_items
; i
++) {
631 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
632 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
636 tree_mod_log_write_unlock(fs_info
);
644 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
645 struct tree_mod_elem
**tm_list
,
651 for (i
= nritems
- 1; i
>= 0; i
--) {
652 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
654 for (j
= nritems
- 1; j
> i
; j
--)
655 rb_erase(&tm_list
[j
]->node
,
656 &fs_info
->tree_mod_log
);
665 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
666 struct extent_buffer
*old_root
,
667 struct extent_buffer
*new_root
, gfp_t flags
,
670 struct tree_mod_elem
*tm
= NULL
;
671 struct tree_mod_elem
**tm_list
= NULL
;
676 if (!tree_mod_need_log(fs_info
, NULL
))
679 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
680 nritems
= btrfs_header_nritems(old_root
);
681 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
687 for (i
= 0; i
< nritems
; i
++) {
688 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, flags
);
697 tm
= kzalloc(sizeof(*tm
), flags
);
703 tm
->logical
= new_root
->start
;
704 tm
->old_root
.logical
= old_root
->start
;
705 tm
->old_root
.level
= btrfs_header_level(old_root
);
706 tm
->generation
= btrfs_header_generation(old_root
);
707 tm
->op
= MOD_LOG_ROOT_REPLACE
;
709 if (tree_mod_dont_log(fs_info
, NULL
))
713 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
715 ret
= __tree_mod_log_insert(fs_info
, tm
);
717 tree_mod_log_write_unlock(fs_info
);
726 for (i
= 0; i
< nritems
; i
++)
735 static struct tree_mod_elem
*
736 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
739 struct rb_root
*tm_root
;
740 struct rb_node
*node
;
741 struct tree_mod_elem
*cur
= NULL
;
742 struct tree_mod_elem
*found
= NULL
;
744 tree_mod_log_read_lock(fs_info
);
745 tm_root
= &fs_info
->tree_mod_log
;
746 node
= tm_root
->rb_node
;
748 cur
= container_of(node
, struct tree_mod_elem
, node
);
749 if (cur
->logical
< start
) {
750 node
= node
->rb_left
;
751 } else if (cur
->logical
> start
) {
752 node
= node
->rb_right
;
753 } else if (cur
->seq
< min_seq
) {
754 node
= node
->rb_left
;
755 } else if (!smallest
) {
756 /* we want the node with the highest seq */
758 BUG_ON(found
->seq
> cur
->seq
);
760 node
= node
->rb_left
;
761 } else if (cur
->seq
> min_seq
) {
762 /* we want the node with the smallest seq */
764 BUG_ON(found
->seq
< cur
->seq
);
766 node
= node
->rb_right
;
772 tree_mod_log_read_unlock(fs_info
);
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
782 static struct tree_mod_elem
*
783 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
786 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
794 static struct tree_mod_elem
*
795 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
797 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
801 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
802 struct extent_buffer
*src
, unsigned long dst_offset
,
803 unsigned long src_offset
, int nr_items
)
806 struct tree_mod_elem
**tm_list
= NULL
;
807 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
811 if (!tree_mod_need_log(fs_info
, NULL
))
814 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
817 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
822 tm_list_add
= tm_list
;
823 tm_list_rem
= tm_list
+ nr_items
;
824 for (i
= 0; i
< nr_items
; i
++) {
825 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
826 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
827 if (!tm_list_rem
[i
]) {
832 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
833 MOD_LOG_KEY_ADD
, GFP_NOFS
);
834 if (!tm_list_add
[i
]) {
840 if (tree_mod_dont_log(fs_info
, NULL
))
844 for (i
= 0; i
< nr_items
; i
++) {
845 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
848 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
853 tree_mod_log_write_unlock(fs_info
);
859 for (i
= 0; i
< nr_items
* 2; i
++) {
860 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
861 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
865 tree_mod_log_write_unlock(fs_info
);
872 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
873 int dst_offset
, int src_offset
, int nr_items
)
876 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
882 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
883 struct extent_buffer
*eb
, int slot
, int atomic
)
887 ret
= tree_mod_log_insert_key(fs_info
, eb
, slot
,
889 atomic
? GFP_ATOMIC
: GFP_NOFS
);
894 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
896 struct tree_mod_elem
**tm_list
= NULL
;
901 if (btrfs_header_level(eb
) == 0)
904 if (!tree_mod_need_log(fs_info
, NULL
))
907 nritems
= btrfs_header_nritems(eb
);
908 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
912 for (i
= 0; i
< nritems
; i
++) {
913 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
921 if (tree_mod_dont_log(fs_info
, eb
))
924 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
925 tree_mod_log_write_unlock(fs_info
);
933 for (i
= 0; i
< nritems
; i
++)
941 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
942 struct extent_buffer
*new_root_node
,
946 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
947 new_root_node
, GFP_NOFS
, log_removal
);
952 * check if the tree block can be shared by multiple trees
954 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
955 struct extent_buffer
*buf
)
958 * Tree blocks not in reference counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
963 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
964 buf
!= root
->node
&& buf
!= root
->commit_root
&&
965 (btrfs_header_generation(buf
) <=
966 btrfs_root_last_snapshot(&root
->root_item
) ||
967 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
971 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
977 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
978 struct btrfs_root
*root
,
979 struct extent_buffer
*buf
,
980 struct extent_buffer
*cow
,
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root
, buf
)) {
1007 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
1008 btrfs_header_level(buf
), 1,
1014 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
1019 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1020 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1021 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1026 owner
= btrfs_header_owner(buf
);
1027 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
1028 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
1031 if ((owner
== root
->root_key
.objectid
||
1032 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
1033 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
1034 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
1035 BUG_ON(ret
); /* -ENOMEM */
1037 if (root
->root_key
.objectid
==
1038 BTRFS_TREE_RELOC_OBJECTID
) {
1039 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
1040 BUG_ON(ret
); /* -ENOMEM */
1041 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1042 BUG_ON(ret
); /* -ENOMEM */
1044 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1047 if (root
->root_key
.objectid
==
1048 BTRFS_TREE_RELOC_OBJECTID
)
1049 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1051 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1052 BUG_ON(ret
); /* -ENOMEM */
1054 if (new_flags
!= 0) {
1055 int level
= btrfs_header_level(buf
);
1057 ret
= btrfs_set_disk_extent_flags(trans
, root
,
1060 new_flags
, level
, 0);
1065 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
1066 if (root
->root_key
.objectid
==
1067 BTRFS_TREE_RELOC_OBJECTID
)
1068 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1070 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1071 BUG_ON(ret
); /* -ENOMEM */
1072 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
1073 BUG_ON(ret
); /* -ENOMEM */
1075 clean_tree_block(trans
, root
->fs_info
, buf
);
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1087 * search_start -- an allocation hint for the new block
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1093 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1094 struct btrfs_root
*root
,
1095 struct extent_buffer
*buf
,
1096 struct extent_buffer
*parent
, int parent_slot
,
1097 struct extent_buffer
**cow_ret
,
1098 u64 search_start
, u64 empty_size
)
1100 struct btrfs_disk_key disk_key
;
1101 struct extent_buffer
*cow
;
1104 int unlock_orig
= 0;
1107 if (*cow_ret
== buf
)
1110 btrfs_assert_tree_locked(buf
);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1113 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1115 trans
->transid
!= root
->last_trans
);
1117 level
= btrfs_header_level(buf
);
1120 btrfs_item_key(buf
, &disk_key
, 0);
1122 btrfs_node_key(buf
, &disk_key
, 0);
1124 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
1126 parent_start
= parent
->start
;
1132 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1133 root
->root_key
.objectid
, &disk_key
, level
,
1134 search_start
, empty_size
);
1136 return PTR_ERR(cow
);
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1140 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
1141 btrfs_set_header_bytenr(cow
, cow
->start
);
1142 btrfs_set_header_generation(cow
, trans
->transid
);
1143 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1144 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1145 BTRFS_HEADER_FLAG_RELOC
);
1146 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1147 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1149 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1151 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
1154 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1156 btrfs_abort_transaction(trans
, root
, ret
);
1160 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1161 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1163 btrfs_abort_transaction(trans
, root
, ret
);
1168 if (buf
== root
->node
) {
1169 WARN_ON(parent
&& parent
!= buf
);
1170 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1171 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1172 parent_start
= buf
->start
;
1176 extent_buffer_get(cow
);
1177 tree_mod_log_set_root_pointer(root
, cow
, 1);
1178 rcu_assign_pointer(root
->node
, cow
);
1180 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1182 free_extent_buffer(buf
);
1183 add_root_to_dirty_list(root
);
1185 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1186 parent_start
= parent
->start
;
1190 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1191 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1192 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1193 btrfs_set_node_blockptr(parent
, parent_slot
,
1195 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1197 btrfs_mark_buffer_dirty(parent
);
1199 ret
= tree_mod_log_free_eb(root
->fs_info
, buf
);
1201 btrfs_abort_transaction(trans
, root
, ret
);
1205 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1209 btrfs_tree_unlock(buf
);
1210 free_extent_buffer_stale(buf
);
1211 btrfs_mark_buffer_dirty(cow
);
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1220 static struct tree_mod_elem
*
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1222 struct extent_buffer
*eb_root
, u64 time_seq
)
1224 struct tree_mod_elem
*tm
;
1225 struct tree_mod_elem
*found
= NULL
;
1226 u64 root_logical
= eb_root
->start
;
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1239 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1260 root_logical
= tm
->old_root
.logical
;
1264 /* if there's no old root to return, return what we found instead */
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1277 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1278 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1281 struct rb_node
*next
;
1282 struct tree_mod_elem
*tm
= first_tm
;
1283 unsigned long o_dst
;
1284 unsigned long o_src
;
1285 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1287 n
= btrfs_header_nritems(eb
);
1288 tree_mod_log_read_lock(fs_info
);
1289 while (tm
&& tm
->seq
>= time_seq
) {
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1297 BUG_ON(tm
->slot
< n
);
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1300 case MOD_LOG_KEY_REMOVE
:
1301 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1302 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1303 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1307 case MOD_LOG_KEY_REPLACE
:
1308 BUG_ON(tm
->slot
>= n
);
1309 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1310 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1311 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1314 case MOD_LOG_KEY_ADD
:
1315 /* if a move operation is needed it's in the log */
1318 case MOD_LOG_MOVE_KEYS
:
1319 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1320 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1321 memmove_extent_buffer(eb
, o_dst
, o_src
,
1322 tm
->move
.nr_items
* p_size
);
1324 case MOD_LOG_ROOT_REPLACE
:
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1336 next
= rb_next(&tm
->node
);
1339 tm
= container_of(next
, struct tree_mod_elem
, node
);
1340 if (tm
->logical
!= first_tm
->logical
)
1343 tree_mod_log_read_unlock(fs_info
);
1344 btrfs_set_header_nritems(eb
, n
);
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1354 static struct extent_buffer
*
1355 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1356 struct extent_buffer
*eb
, u64 time_seq
)
1358 struct extent_buffer
*eb_rewin
;
1359 struct tree_mod_elem
*tm
;
1364 if (btrfs_header_level(eb
) == 0)
1367 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1371 btrfs_set_path_blocking(path
);
1372 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1374 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1375 BUG_ON(tm
->slot
!= 0);
1376 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
,
1379 btrfs_tree_read_unlock_blocking(eb
);
1380 free_extent_buffer(eb
);
1383 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1384 btrfs_set_header_backref_rev(eb_rewin
,
1385 btrfs_header_backref_rev(eb
));
1386 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1387 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1389 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1391 btrfs_tree_read_unlock_blocking(eb
);
1392 free_extent_buffer(eb
);
1397 btrfs_clear_path_blocking(path
, NULL
, BTRFS_READ_LOCK
);
1398 btrfs_tree_read_unlock_blocking(eb
);
1399 free_extent_buffer(eb
);
1401 extent_buffer_get(eb_rewin
);
1402 btrfs_tree_read_lock(eb_rewin
);
1403 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1404 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info
->tree_root
));
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1417 static inline struct extent_buffer
*
1418 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1420 struct tree_mod_elem
*tm
;
1421 struct extent_buffer
*eb
= NULL
;
1422 struct extent_buffer
*eb_root
;
1423 struct extent_buffer
*old
;
1424 struct tree_mod_root
*old_root
= NULL
;
1425 u64 old_generation
= 0;
1428 eb_root
= btrfs_read_lock_root_node(root
);
1429 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1433 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1434 old_root
= &tm
->old_root
;
1435 old_generation
= tm
->generation
;
1436 logical
= old_root
->logical
;
1438 logical
= eb_root
->start
;
1441 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1442 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1443 btrfs_tree_read_unlock(eb_root
);
1444 free_extent_buffer(eb_root
);
1445 old
= read_tree_block(root
, logical
, 0);
1446 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1448 free_extent_buffer(old
);
1449 btrfs_warn(root
->fs_info
,
1450 "failed to read tree block %llu from get_old_root", logical
);
1452 eb
= btrfs_clone_extent_buffer(old
);
1453 free_extent_buffer(old
);
1455 } else if (old_root
) {
1456 btrfs_tree_read_unlock(eb_root
);
1457 free_extent_buffer(eb_root
);
1458 eb
= alloc_dummy_extent_buffer(root
->fs_info
, logical
,
1461 btrfs_set_lock_blocking_rw(eb_root
, BTRFS_READ_LOCK
);
1462 eb
= btrfs_clone_extent_buffer(eb_root
);
1463 btrfs_tree_read_unlock_blocking(eb_root
);
1464 free_extent_buffer(eb_root
);
1469 extent_buffer_get(eb
);
1470 btrfs_tree_read_lock(eb
);
1472 btrfs_set_header_bytenr(eb
, eb
->start
);
1473 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1474 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1475 btrfs_set_header_level(eb
, old_root
->level
);
1476 btrfs_set_header_generation(eb
, old_generation
);
1479 __tree_mod_log_rewind(root
->fs_info
, eb
, time_seq
, tm
);
1481 WARN_ON(btrfs_header_level(eb
) != 0);
1482 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(root
));
1487 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1489 struct tree_mod_elem
*tm
;
1491 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1493 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1494 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1495 level
= tm
->old_root
.level
;
1497 level
= btrfs_header_level(eb_root
);
1499 free_extent_buffer(eb_root
);
1504 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1505 struct btrfs_root
*root
,
1506 struct extent_buffer
*buf
)
1508 if (btrfs_test_is_dummy_root(root
))
1511 /* ensure we can see the force_cow */
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1520 * What is forced COW:
1521 * when we create snapshot during committing the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1525 if (btrfs_header_generation(buf
) == trans
->transid
&&
1526 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1527 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1528 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1529 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1539 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1540 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1541 struct extent_buffer
*parent
, int parent_slot
,
1542 struct extent_buffer
**cow_ret
)
1547 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1548 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1550 root
->fs_info
->running_transaction
->transid
);
1552 if (trans
->transid
!= root
->fs_info
->generation
)
1553 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1554 trans
->transid
, root
->fs_info
->generation
);
1556 if (!should_cow_block(trans
, root
, buf
)) {
1557 trans
->dirty
= true;
1562 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1565 btrfs_set_lock_blocking(parent
);
1566 btrfs_set_lock_blocking(buf
);
1568 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1569 parent_slot
, cow_ret
, search_start
, 0);
1571 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1580 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1582 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1584 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1590 * compare two keys in a memcmp fashion
1592 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1594 struct btrfs_key k1
;
1596 btrfs_disk_key_to_cpu(&k1
, disk
);
1598 return btrfs_comp_cpu_keys(&k1
, k2
);
1602 * same as comp_keys only with two btrfs_key's
1604 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1606 if (k1
->objectid
> k2
->objectid
)
1608 if (k1
->objectid
< k2
->objectid
)
1610 if (k1
->type
> k2
->type
)
1612 if (k1
->type
< k2
->type
)
1614 if (k1
->offset
> k2
->offset
)
1616 if (k1
->offset
< k2
->offset
)
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1626 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1627 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1628 int start_slot
, u64
*last_ret
,
1629 struct btrfs_key
*progress
)
1631 struct extent_buffer
*cur
;
1634 u64 search_start
= *last_ret
;
1644 int progress_passed
= 0;
1645 struct btrfs_disk_key disk_key
;
1647 parent_level
= btrfs_header_level(parent
);
1649 WARN_ON(trans
->transaction
!= root
->fs_info
->running_transaction
);
1650 WARN_ON(trans
->transid
!= root
->fs_info
->generation
);
1652 parent_nritems
= btrfs_header_nritems(parent
);
1653 blocksize
= root
->nodesize
;
1654 end_slot
= parent_nritems
- 1;
1656 if (parent_nritems
<= 1)
1659 btrfs_set_lock_blocking(parent
);
1661 for (i
= start_slot
; i
<= end_slot
; i
++) {
1664 btrfs_node_key(parent
, &disk_key
, i
);
1665 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1668 progress_passed
= 1;
1669 blocknr
= btrfs_node_blockptr(parent
, i
);
1670 gen
= btrfs_node_ptr_generation(parent
, i
);
1671 if (last_block
== 0)
1672 last_block
= blocknr
;
1675 other
= btrfs_node_blockptr(parent
, i
- 1);
1676 close
= close_blocks(blocknr
, other
, blocksize
);
1678 if (!close
&& i
< end_slot
) {
1679 other
= btrfs_node_blockptr(parent
, i
+ 1);
1680 close
= close_blocks(blocknr
, other
, blocksize
);
1683 last_block
= blocknr
;
1687 cur
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
1689 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1692 if (!cur
|| !uptodate
) {
1694 cur
= read_tree_block(root
, blocknr
, gen
);
1696 return PTR_ERR(cur
);
1697 } else if (!extent_buffer_uptodate(cur
)) {
1698 free_extent_buffer(cur
);
1701 } else if (!uptodate
) {
1702 err
= btrfs_read_buffer(cur
, gen
);
1704 free_extent_buffer(cur
);
1709 if (search_start
== 0)
1710 search_start
= last_block
;
1712 btrfs_tree_lock(cur
);
1713 btrfs_set_lock_blocking(cur
);
1714 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1717 (end_slot
- i
) * blocksize
));
1719 btrfs_tree_unlock(cur
);
1720 free_extent_buffer(cur
);
1723 search_start
= cur
->start
;
1724 last_block
= cur
->start
;
1725 *last_ret
= search_start
;
1726 btrfs_tree_unlock(cur
);
1727 free_extent_buffer(cur
);
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1737 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
1738 struct extent_buffer
*leaf
)
1740 u32 nr
= btrfs_header_nritems(leaf
);
1742 return BTRFS_LEAF_DATA_SIZE(root
);
1743 return btrfs_item_offset_nr(leaf
, nr
- 1);
1748 * search for key in the extent_buffer. The items start at offset p,
1749 * and they are item_size apart. There are 'max' items in p.
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1755 * slot may point to max if the key is bigger than all of the keys
1757 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1759 int item_size
, struct btrfs_key
*key
,
1766 struct btrfs_disk_key
*tmp
= NULL
;
1767 struct btrfs_disk_key unaligned
;
1768 unsigned long offset
;
1770 unsigned long map_start
= 0;
1771 unsigned long map_len
= 0;
1774 while (low
< high
) {
1775 mid
= (low
+ high
) / 2;
1776 offset
= p
+ mid
* item_size
;
1778 if (!kaddr
|| offset
< map_start
||
1779 (offset
+ sizeof(struct btrfs_disk_key
)) >
1780 map_start
+ map_len
) {
1782 err
= map_private_extent_buffer(eb
, offset
,
1783 sizeof(struct btrfs_disk_key
),
1784 &kaddr
, &map_start
, &map_len
);
1787 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1789 } else if (err
== 1) {
1790 read_extent_buffer(eb
, &unaligned
,
1791 offset
, sizeof(unaligned
));
1798 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1801 ret
= comp_keys(tmp
, key
);
1817 * simple bin_search frontend that does the right thing for
1820 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1821 int level
, int *slot
)
1824 return generic_bin_search(eb
,
1825 offsetof(struct btrfs_leaf
, items
),
1826 sizeof(struct btrfs_item
),
1827 key
, btrfs_header_nritems(eb
),
1830 return generic_bin_search(eb
,
1831 offsetof(struct btrfs_node
, ptrs
),
1832 sizeof(struct btrfs_key_ptr
),
1833 key
, btrfs_header_nritems(eb
),
1837 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1838 int level
, int *slot
)
1840 return bin_search(eb
, key
, level
, slot
);
1843 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1845 spin_lock(&root
->accounting_lock
);
1846 btrfs_set_root_used(&root
->root_item
,
1847 btrfs_root_used(&root
->root_item
) + size
);
1848 spin_unlock(&root
->accounting_lock
);
1851 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1853 spin_lock(&root
->accounting_lock
);
1854 btrfs_set_root_used(&root
->root_item
,
1855 btrfs_root_used(&root
->root_item
) - size
);
1856 spin_unlock(&root
->accounting_lock
);
1859 /* given a node and slot number, this reads the blocks it points to. The
1860 * extent buffer is returned with a reference taken (but unlocked).
1861 * NULL is returned on error.
1863 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1864 struct extent_buffer
*parent
, int slot
)
1866 int level
= btrfs_header_level(parent
);
1867 struct extent_buffer
*eb
;
1871 if (slot
>= btrfs_header_nritems(parent
))
1876 eb
= read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1877 btrfs_node_ptr_generation(parent
, slot
));
1878 if (IS_ERR(eb
) || !extent_buffer_uptodate(eb
)) {
1880 free_extent_buffer(eb
);
1888 * node level balancing, used to make sure nodes are in proper order for
1889 * item deletion. We balance from the top down, so we have to make sure
1890 * that a deletion won't leave an node completely empty later on.
1892 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1893 struct btrfs_root
*root
,
1894 struct btrfs_path
*path
, int level
)
1896 struct extent_buffer
*right
= NULL
;
1897 struct extent_buffer
*mid
;
1898 struct extent_buffer
*left
= NULL
;
1899 struct extent_buffer
*parent
= NULL
;
1903 int orig_slot
= path
->slots
[level
];
1909 mid
= path
->nodes
[level
];
1911 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1912 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1913 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1915 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1917 if (level
< BTRFS_MAX_LEVEL
- 1) {
1918 parent
= path
->nodes
[level
+ 1];
1919 pslot
= path
->slots
[level
+ 1];
1923 * deal with the case where there is only one pointer in the root
1924 * by promoting the node below to a root
1927 struct extent_buffer
*child
;
1929 if (btrfs_header_nritems(mid
) != 1)
1932 /* promote the child to a root */
1933 child
= read_node_slot(root
, mid
, 0);
1936 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
1940 btrfs_tree_lock(child
);
1941 btrfs_set_lock_blocking(child
);
1942 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1944 btrfs_tree_unlock(child
);
1945 free_extent_buffer(child
);
1949 tree_mod_log_set_root_pointer(root
, child
, 1);
1950 rcu_assign_pointer(root
->node
, child
);
1952 add_root_to_dirty_list(root
);
1953 btrfs_tree_unlock(child
);
1955 path
->locks
[level
] = 0;
1956 path
->nodes
[level
] = NULL
;
1957 clean_tree_block(trans
, root
->fs_info
, mid
);
1958 btrfs_tree_unlock(mid
);
1959 /* once for the path */
1960 free_extent_buffer(mid
);
1962 root_sub_used(root
, mid
->len
);
1963 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1964 /* once for the root ptr */
1965 free_extent_buffer_stale(mid
);
1968 if (btrfs_header_nritems(mid
) >
1969 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1972 left
= read_node_slot(root
, parent
, pslot
- 1);
1974 btrfs_tree_lock(left
);
1975 btrfs_set_lock_blocking(left
);
1976 wret
= btrfs_cow_block(trans
, root
, left
,
1977 parent
, pslot
- 1, &left
);
1983 right
= read_node_slot(root
, parent
, pslot
+ 1);
1985 btrfs_tree_lock(right
);
1986 btrfs_set_lock_blocking(right
);
1987 wret
= btrfs_cow_block(trans
, root
, right
,
1988 parent
, pslot
+ 1, &right
);
1995 /* first, try to make some room in the middle buffer */
1997 orig_slot
+= btrfs_header_nritems(left
);
1998 wret
= push_node_left(trans
, root
, left
, mid
, 1);
2004 * then try to empty the right most buffer into the middle
2007 wret
= push_node_left(trans
, root
, mid
, right
, 1);
2008 if (wret
< 0 && wret
!= -ENOSPC
)
2010 if (btrfs_header_nritems(right
) == 0) {
2011 clean_tree_block(trans
, root
->fs_info
, right
);
2012 btrfs_tree_unlock(right
);
2013 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
2014 root_sub_used(root
, right
->len
);
2015 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
2016 free_extent_buffer_stale(right
);
2019 struct btrfs_disk_key right_key
;
2020 btrfs_node_key(right
, &right_key
, 0);
2021 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2023 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
2024 btrfs_mark_buffer_dirty(parent
);
2027 if (btrfs_header_nritems(mid
) == 1) {
2029 * we're not allowed to leave a node with one item in the
2030 * tree during a delete. A deletion from lower in the tree
2031 * could try to delete the only pointer in this node.
2032 * So, pull some keys from the left.
2033 * There has to be a left pointer at this point because
2034 * otherwise we would have pulled some pointers from the
2039 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2042 wret
= balance_node_right(trans
, root
, mid
, left
);
2048 wret
= push_node_left(trans
, root
, left
, mid
, 1);
2054 if (btrfs_header_nritems(mid
) == 0) {
2055 clean_tree_block(trans
, root
->fs_info
, mid
);
2056 btrfs_tree_unlock(mid
);
2057 del_ptr(root
, path
, level
+ 1, pslot
);
2058 root_sub_used(root
, mid
->len
);
2059 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
2060 free_extent_buffer_stale(mid
);
2063 /* update the parent key to reflect our changes */
2064 struct btrfs_disk_key mid_key
;
2065 btrfs_node_key(mid
, &mid_key
, 0);
2066 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2068 btrfs_set_node_key(parent
, &mid_key
, pslot
);
2069 btrfs_mark_buffer_dirty(parent
);
2072 /* update the path */
2074 if (btrfs_header_nritems(left
) > orig_slot
) {
2075 extent_buffer_get(left
);
2076 /* left was locked after cow */
2077 path
->nodes
[level
] = left
;
2078 path
->slots
[level
+ 1] -= 1;
2079 path
->slots
[level
] = orig_slot
;
2081 btrfs_tree_unlock(mid
);
2082 free_extent_buffer(mid
);
2085 orig_slot
-= btrfs_header_nritems(left
);
2086 path
->slots
[level
] = orig_slot
;
2089 /* double check we haven't messed things up */
2091 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2095 btrfs_tree_unlock(right
);
2096 free_extent_buffer(right
);
2099 if (path
->nodes
[level
] != left
)
2100 btrfs_tree_unlock(left
);
2101 free_extent_buffer(left
);
2106 /* Node balancing for insertion. Here we only split or push nodes around
2107 * when they are completely full. This is also done top down, so we
2108 * have to be pessimistic.
2110 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2111 struct btrfs_root
*root
,
2112 struct btrfs_path
*path
, int level
)
2114 struct extent_buffer
*right
= NULL
;
2115 struct extent_buffer
*mid
;
2116 struct extent_buffer
*left
= NULL
;
2117 struct extent_buffer
*parent
= NULL
;
2121 int orig_slot
= path
->slots
[level
];
2126 mid
= path
->nodes
[level
];
2127 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2129 if (level
< BTRFS_MAX_LEVEL
- 1) {
2130 parent
= path
->nodes
[level
+ 1];
2131 pslot
= path
->slots
[level
+ 1];
2137 left
= read_node_slot(root
, parent
, pslot
- 1);
2139 /* first, try to make some room in the middle buffer */
2143 btrfs_tree_lock(left
);
2144 btrfs_set_lock_blocking(left
);
2146 left_nr
= btrfs_header_nritems(left
);
2147 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2150 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2155 wret
= push_node_left(trans
, root
,
2162 struct btrfs_disk_key disk_key
;
2163 orig_slot
+= left_nr
;
2164 btrfs_node_key(mid
, &disk_key
, 0);
2165 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2167 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2168 btrfs_mark_buffer_dirty(parent
);
2169 if (btrfs_header_nritems(left
) > orig_slot
) {
2170 path
->nodes
[level
] = left
;
2171 path
->slots
[level
+ 1] -= 1;
2172 path
->slots
[level
] = orig_slot
;
2173 btrfs_tree_unlock(mid
);
2174 free_extent_buffer(mid
);
2177 btrfs_header_nritems(left
);
2178 path
->slots
[level
] = orig_slot
;
2179 btrfs_tree_unlock(left
);
2180 free_extent_buffer(left
);
2184 btrfs_tree_unlock(left
);
2185 free_extent_buffer(left
);
2187 right
= read_node_slot(root
, parent
, pslot
+ 1);
2190 * then try to empty the right most buffer into the middle
2195 btrfs_tree_lock(right
);
2196 btrfs_set_lock_blocking(right
);
2198 right_nr
= btrfs_header_nritems(right
);
2199 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2202 ret
= btrfs_cow_block(trans
, root
, right
,
2208 wret
= balance_node_right(trans
, root
,
2215 struct btrfs_disk_key disk_key
;
2217 btrfs_node_key(right
, &disk_key
, 0);
2218 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2220 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2221 btrfs_mark_buffer_dirty(parent
);
2223 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2224 path
->nodes
[level
] = right
;
2225 path
->slots
[level
+ 1] += 1;
2226 path
->slots
[level
] = orig_slot
-
2227 btrfs_header_nritems(mid
);
2228 btrfs_tree_unlock(mid
);
2229 free_extent_buffer(mid
);
2231 btrfs_tree_unlock(right
);
2232 free_extent_buffer(right
);
2236 btrfs_tree_unlock(right
);
2237 free_extent_buffer(right
);
2243 * readahead one full node of leaves, finding things that are close
2244 * to the block in 'slot', and triggering ra on them.
2246 static void reada_for_search(struct btrfs_root
*root
,
2247 struct btrfs_path
*path
,
2248 int level
, int slot
, u64 objectid
)
2250 struct extent_buffer
*node
;
2251 struct btrfs_disk_key disk_key
;
2257 struct extent_buffer
*eb
;
2265 if (!path
->nodes
[level
])
2268 node
= path
->nodes
[level
];
2270 search
= btrfs_node_blockptr(node
, slot
);
2271 blocksize
= root
->nodesize
;
2272 eb
= btrfs_find_tree_block(root
->fs_info
, search
);
2274 free_extent_buffer(eb
);
2280 nritems
= btrfs_header_nritems(node
);
2284 if (path
->reada
== READA_BACK
) {
2288 } else if (path
->reada
== READA_FORWARD
) {
2293 if (path
->reada
== READA_BACK
&& objectid
) {
2294 btrfs_node_key(node
, &disk_key
, nr
);
2295 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2298 search
= btrfs_node_blockptr(node
, nr
);
2299 if ((search
<= target
&& target
- search
<= 65536) ||
2300 (search
> target
&& search
- target
<= 65536)) {
2301 gen
= btrfs_node_ptr_generation(node
, nr
);
2302 readahead_tree_block(root
, search
);
2306 if ((nread
> 65536 || nscan
> 32))
2311 static noinline
void reada_for_balance(struct btrfs_root
*root
,
2312 struct btrfs_path
*path
, int level
)
2316 struct extent_buffer
*parent
;
2317 struct extent_buffer
*eb
;
2322 parent
= path
->nodes
[level
+ 1];
2326 nritems
= btrfs_header_nritems(parent
);
2327 slot
= path
->slots
[level
+ 1];
2330 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2331 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2332 eb
= btrfs_find_tree_block(root
->fs_info
, block1
);
2334 * if we get -eagain from btrfs_buffer_uptodate, we
2335 * don't want to return eagain here. That will loop
2338 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2340 free_extent_buffer(eb
);
2342 if (slot
+ 1 < nritems
) {
2343 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2344 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2345 eb
= btrfs_find_tree_block(root
->fs_info
, block2
);
2346 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2348 free_extent_buffer(eb
);
2352 readahead_tree_block(root
, block1
);
2354 readahead_tree_block(root
, block2
);
2359 * when we walk down the tree, it is usually safe to unlock the higher layers
2360 * in the tree. The exceptions are when our path goes through slot 0, because
2361 * operations on the tree might require changing key pointers higher up in the
2364 * callers might also have set path->keep_locks, which tells this code to keep
2365 * the lock if the path points to the last slot in the block. This is part of
2366 * walking through the tree, and selecting the next slot in the higher block.
2368 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2369 * if lowest_unlock is 1, level 0 won't be unlocked
2371 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2372 int lowest_unlock
, int min_write_lock_level
,
2373 int *write_lock_level
)
2376 int skip_level
= level
;
2378 struct extent_buffer
*t
;
2380 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2381 if (!path
->nodes
[i
])
2383 if (!path
->locks
[i
])
2385 if (!no_skips
&& path
->slots
[i
] == 0) {
2389 if (!no_skips
&& path
->keep_locks
) {
2392 nritems
= btrfs_header_nritems(t
);
2393 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2398 if (skip_level
< i
&& i
>= lowest_unlock
)
2402 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2403 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2405 if (write_lock_level
&&
2406 i
> min_write_lock_level
&&
2407 i
<= *write_lock_level
) {
2408 *write_lock_level
= i
- 1;
2415 * This releases any locks held in the path starting at level and
2416 * going all the way up to the root.
2418 * btrfs_search_slot will keep the lock held on higher nodes in a few
2419 * corner cases, such as COW of the block at slot zero in the node. This
2420 * ignores those rules, and it should only be called when there are no
2421 * more updates to be done higher up in the tree.
2423 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2427 if (path
->keep_locks
)
2430 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2431 if (!path
->nodes
[i
])
2433 if (!path
->locks
[i
])
2435 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2441 * helper function for btrfs_search_slot. The goal is to find a block
2442 * in cache without setting the path to blocking. If we find the block
2443 * we return zero and the path is unchanged.
2445 * If we can't find the block, we set the path blocking and do some
2446 * reada. -EAGAIN is returned and the search must be repeated.
2449 read_block_for_search(struct btrfs_trans_handle
*trans
,
2450 struct btrfs_root
*root
, struct btrfs_path
*p
,
2451 struct extent_buffer
**eb_ret
, int level
, int slot
,
2452 struct btrfs_key
*key
, u64 time_seq
)
2456 struct extent_buffer
*b
= *eb_ret
;
2457 struct extent_buffer
*tmp
;
2460 blocknr
= btrfs_node_blockptr(b
, slot
);
2461 gen
= btrfs_node_ptr_generation(b
, slot
);
2463 tmp
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
2465 /* first we do an atomic uptodate check */
2466 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2471 /* the pages were up to date, but we failed
2472 * the generation number check. Do a full
2473 * read for the generation number that is correct.
2474 * We must do this without dropping locks so
2475 * we can trust our generation number
2477 btrfs_set_path_blocking(p
);
2479 /* now we're allowed to do a blocking uptodate check */
2480 ret
= btrfs_read_buffer(tmp
, gen
);
2485 free_extent_buffer(tmp
);
2486 btrfs_release_path(p
);
2491 * reduce lock contention at high levels
2492 * of the btree by dropping locks before
2493 * we read. Don't release the lock on the current
2494 * level because we need to walk this node to figure
2495 * out which blocks to read.
2497 btrfs_unlock_up_safe(p
, level
+ 1);
2498 btrfs_set_path_blocking(p
);
2500 free_extent_buffer(tmp
);
2501 if (p
->reada
!= READA_NONE
)
2502 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2504 btrfs_release_path(p
);
2507 tmp
= read_tree_block(root
, blocknr
, 0);
2510 * If the read above didn't mark this buffer up to date,
2511 * it will never end up being up to date. Set ret to EIO now
2512 * and give up so that our caller doesn't loop forever
2515 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2517 free_extent_buffer(tmp
);
2525 * helper function for btrfs_search_slot. This does all of the checks
2526 * for node-level blocks and does any balancing required based on
2529 * If no extra work was required, zero is returned. If we had to
2530 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2534 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2535 struct btrfs_root
*root
, struct btrfs_path
*p
,
2536 struct extent_buffer
*b
, int level
, int ins_len
,
2537 int *write_lock_level
)
2540 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2541 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2544 if (*write_lock_level
< level
+ 1) {
2545 *write_lock_level
= level
+ 1;
2546 btrfs_release_path(p
);
2550 btrfs_set_path_blocking(p
);
2551 reada_for_balance(root
, p
, level
);
2552 sret
= split_node(trans
, root
, p
, level
);
2553 btrfs_clear_path_blocking(p
, NULL
, 0);
2560 b
= p
->nodes
[level
];
2561 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2562 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2565 if (*write_lock_level
< level
+ 1) {
2566 *write_lock_level
= level
+ 1;
2567 btrfs_release_path(p
);
2571 btrfs_set_path_blocking(p
);
2572 reada_for_balance(root
, p
, level
);
2573 sret
= balance_level(trans
, root
, p
, level
);
2574 btrfs_clear_path_blocking(p
, NULL
, 0);
2580 b
= p
->nodes
[level
];
2582 btrfs_release_path(p
);
2585 BUG_ON(btrfs_header_nritems(b
) == 1);
2595 static void key_search_validate(struct extent_buffer
*b
,
2596 struct btrfs_key
*key
,
2599 #ifdef CONFIG_BTRFS_ASSERT
2600 struct btrfs_disk_key disk_key
;
2602 btrfs_cpu_key_to_disk(&disk_key
, key
);
2605 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2606 offsetof(struct btrfs_leaf
, items
[0].key
),
2609 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2610 offsetof(struct btrfs_node
, ptrs
[0].key
),
2615 static int key_search(struct extent_buffer
*b
, struct btrfs_key
*key
,
2616 int level
, int *prev_cmp
, int *slot
)
2618 if (*prev_cmp
!= 0) {
2619 *prev_cmp
= bin_search(b
, key
, level
, slot
);
2623 key_search_validate(b
, key
, level
);
2629 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2630 u64 iobjectid
, u64 ioff
, u8 key_type
,
2631 struct btrfs_key
*found_key
)
2634 struct btrfs_key key
;
2635 struct extent_buffer
*eb
;
2640 key
.type
= key_type
;
2641 key
.objectid
= iobjectid
;
2644 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2648 eb
= path
->nodes
[0];
2649 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2650 ret
= btrfs_next_leaf(fs_root
, path
);
2653 eb
= path
->nodes
[0];
2656 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2657 if (found_key
->type
!= key
.type
||
2658 found_key
->objectid
!= key
.objectid
)
2665 * look for key in the tree. path is filled in with nodes along the way
2666 * if key is found, we return zero and you can find the item in the leaf
2667 * level of the path (level 0)
2669 * If the key isn't found, the path points to the slot where it should
2670 * be inserted, and 1 is returned. If there are other errors during the
2671 * search a negative error number is returned.
2673 * if ins_len > 0, nodes and leaves will be split as we walk down the
2674 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2677 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2678 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2681 struct extent_buffer
*b
;
2686 int lowest_unlock
= 1;
2688 /* everything at write_lock_level or lower must be write locked */
2689 int write_lock_level
= 0;
2690 u8 lowest_level
= 0;
2691 int min_write_lock_level
;
2694 lowest_level
= p
->lowest_level
;
2695 WARN_ON(lowest_level
&& ins_len
> 0);
2696 WARN_ON(p
->nodes
[0] != NULL
);
2697 BUG_ON(!cow
&& ins_len
);
2702 /* when we are removing items, we might have to go up to level
2703 * two as we update tree pointers Make sure we keep write
2704 * for those levels as well
2706 write_lock_level
= 2;
2707 } else if (ins_len
> 0) {
2709 * for inserting items, make sure we have a write lock on
2710 * level 1 so we can update keys
2712 write_lock_level
= 1;
2716 write_lock_level
= -1;
2718 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2719 write_lock_level
= BTRFS_MAX_LEVEL
;
2721 min_write_lock_level
= write_lock_level
;
2726 * we try very hard to do read locks on the root
2728 root_lock
= BTRFS_READ_LOCK
;
2730 if (p
->search_commit_root
) {
2732 * the commit roots are read only
2733 * so we always do read locks
2735 if (p
->need_commit_sem
)
2736 down_read(&root
->fs_info
->commit_root_sem
);
2737 b
= root
->commit_root
;
2738 extent_buffer_get(b
);
2739 level
= btrfs_header_level(b
);
2740 if (p
->need_commit_sem
)
2741 up_read(&root
->fs_info
->commit_root_sem
);
2742 if (!p
->skip_locking
)
2743 btrfs_tree_read_lock(b
);
2745 if (p
->skip_locking
) {
2746 b
= btrfs_root_node(root
);
2747 level
= btrfs_header_level(b
);
2749 /* we don't know the level of the root node
2750 * until we actually have it read locked
2752 b
= btrfs_read_lock_root_node(root
);
2753 level
= btrfs_header_level(b
);
2754 if (level
<= write_lock_level
) {
2755 /* whoops, must trade for write lock */
2756 btrfs_tree_read_unlock(b
);
2757 free_extent_buffer(b
);
2758 b
= btrfs_lock_root_node(root
);
2759 root_lock
= BTRFS_WRITE_LOCK
;
2761 /* the level might have changed, check again */
2762 level
= btrfs_header_level(b
);
2766 p
->nodes
[level
] = b
;
2767 if (!p
->skip_locking
)
2768 p
->locks
[level
] = root_lock
;
2771 level
= btrfs_header_level(b
);
2774 * setup the path here so we can release it under lock
2775 * contention with the cow code
2779 * if we don't really need to cow this block
2780 * then we don't want to set the path blocking,
2781 * so we test it here
2783 if (!should_cow_block(trans
, root
, b
)) {
2784 trans
->dirty
= true;
2789 * must have write locks on this node and the
2792 if (level
> write_lock_level
||
2793 (level
+ 1 > write_lock_level
&&
2794 level
+ 1 < BTRFS_MAX_LEVEL
&&
2795 p
->nodes
[level
+ 1])) {
2796 write_lock_level
= level
+ 1;
2797 btrfs_release_path(p
);
2801 btrfs_set_path_blocking(p
);
2802 err
= btrfs_cow_block(trans
, root
, b
,
2803 p
->nodes
[level
+ 1],
2804 p
->slots
[level
+ 1], &b
);
2811 p
->nodes
[level
] = b
;
2812 btrfs_clear_path_blocking(p
, NULL
, 0);
2815 * we have a lock on b and as long as we aren't changing
2816 * the tree, there is no way to for the items in b to change.
2817 * It is safe to drop the lock on our parent before we
2818 * go through the expensive btree search on b.
2820 * If we're inserting or deleting (ins_len != 0), then we might
2821 * be changing slot zero, which may require changing the parent.
2822 * So, we can't drop the lock until after we know which slot
2823 * we're operating on.
2825 if (!ins_len
&& !p
->keep_locks
) {
2828 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2829 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2834 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2840 if (ret
&& slot
> 0) {
2844 p
->slots
[level
] = slot
;
2845 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2846 ins_len
, &write_lock_level
);
2853 b
= p
->nodes
[level
];
2854 slot
= p
->slots
[level
];
2857 * slot 0 is special, if we change the key
2858 * we have to update the parent pointer
2859 * which means we must have a write lock
2862 if (slot
== 0 && ins_len
&&
2863 write_lock_level
< level
+ 1) {
2864 write_lock_level
= level
+ 1;
2865 btrfs_release_path(p
);
2869 unlock_up(p
, level
, lowest_unlock
,
2870 min_write_lock_level
, &write_lock_level
);
2872 if (level
== lowest_level
) {
2878 err
= read_block_for_search(trans
, root
, p
,
2879 &b
, level
, slot
, key
, 0);
2887 if (!p
->skip_locking
) {
2888 level
= btrfs_header_level(b
);
2889 if (level
<= write_lock_level
) {
2890 err
= btrfs_try_tree_write_lock(b
);
2892 btrfs_set_path_blocking(p
);
2894 btrfs_clear_path_blocking(p
, b
,
2897 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2899 err
= btrfs_tree_read_lock_atomic(b
);
2901 btrfs_set_path_blocking(p
);
2902 btrfs_tree_read_lock(b
);
2903 btrfs_clear_path_blocking(p
, b
,
2906 p
->locks
[level
] = BTRFS_READ_LOCK
;
2908 p
->nodes
[level
] = b
;
2911 p
->slots
[level
] = slot
;
2913 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2914 if (write_lock_level
< 1) {
2915 write_lock_level
= 1;
2916 btrfs_release_path(p
);
2920 btrfs_set_path_blocking(p
);
2921 err
= split_leaf(trans
, root
, key
,
2922 p
, ins_len
, ret
== 0);
2923 btrfs_clear_path_blocking(p
, NULL
, 0);
2931 if (!p
->search_for_split
)
2932 unlock_up(p
, level
, lowest_unlock
,
2933 min_write_lock_level
, &write_lock_level
);
2940 * we don't really know what they plan on doing with the path
2941 * from here on, so for now just mark it as blocking
2943 if (!p
->leave_spinning
)
2944 btrfs_set_path_blocking(p
);
2945 if (ret
< 0 && !p
->skip_release_on_error
)
2946 btrfs_release_path(p
);
2951 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2952 * current state of the tree together with the operations recorded in the tree
2953 * modification log to search for the key in a previous version of this tree, as
2954 * denoted by the time_seq parameter.
2956 * Naturally, there is no support for insert, delete or cow operations.
2958 * The resulting path and return value will be set up as if we called
2959 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2961 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2962 struct btrfs_path
*p
, u64 time_seq
)
2964 struct extent_buffer
*b
;
2969 int lowest_unlock
= 1;
2970 u8 lowest_level
= 0;
2973 lowest_level
= p
->lowest_level
;
2974 WARN_ON(p
->nodes
[0] != NULL
);
2976 if (p
->search_commit_root
) {
2978 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2982 b
= get_old_root(root
, time_seq
);
2983 level
= btrfs_header_level(b
);
2984 p
->locks
[level
] = BTRFS_READ_LOCK
;
2987 level
= btrfs_header_level(b
);
2988 p
->nodes
[level
] = b
;
2989 btrfs_clear_path_blocking(p
, NULL
, 0);
2992 * we have a lock on b and as long as we aren't changing
2993 * the tree, there is no way to for the items in b to change.
2994 * It is safe to drop the lock on our parent before we
2995 * go through the expensive btree search on b.
2997 btrfs_unlock_up_safe(p
, level
+ 1);
3000 * Since we can unwind ebs we want to do a real search every
3004 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
3008 if (ret
&& slot
> 0) {
3012 p
->slots
[level
] = slot
;
3013 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3015 if (level
== lowest_level
) {
3021 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
3022 slot
, key
, time_seq
);
3030 level
= btrfs_header_level(b
);
3031 err
= btrfs_tree_read_lock_atomic(b
);
3033 btrfs_set_path_blocking(p
);
3034 btrfs_tree_read_lock(b
);
3035 btrfs_clear_path_blocking(p
, b
,
3038 b
= tree_mod_log_rewind(root
->fs_info
, p
, b
, time_seq
);
3043 p
->locks
[level
] = BTRFS_READ_LOCK
;
3044 p
->nodes
[level
] = b
;
3046 p
->slots
[level
] = slot
;
3047 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3053 if (!p
->leave_spinning
)
3054 btrfs_set_path_blocking(p
);
3056 btrfs_release_path(p
);
3062 * helper to use instead of search slot if no exact match is needed but
3063 * instead the next or previous item should be returned.
3064 * When find_higher is true, the next higher item is returned, the next lower
3066 * When return_any and find_higher are both true, and no higher item is found,
3067 * return the next lower instead.
3068 * When return_any is true and find_higher is false, and no lower item is found,
3069 * return the next higher instead.
3070 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3073 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3074 struct btrfs_key
*key
, struct btrfs_path
*p
,
3075 int find_higher
, int return_any
)
3078 struct extent_buffer
*leaf
;
3081 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3085 * a return value of 1 means the path is at the position where the
3086 * item should be inserted. Normally this is the next bigger item,
3087 * but in case the previous item is the last in a leaf, path points
3088 * to the first free slot in the previous leaf, i.e. at an invalid
3094 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3095 ret
= btrfs_next_leaf(root
, p
);
3101 * no higher item found, return the next
3106 btrfs_release_path(p
);
3110 if (p
->slots
[0] == 0) {
3111 ret
= btrfs_prev_leaf(root
, p
);
3116 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3123 * no lower item found, return the next
3128 btrfs_release_path(p
);
3138 * adjust the pointers going up the tree, starting at level
3139 * making sure the right key of each node is points to 'key'.
3140 * This is used after shifting pointers to the left, so it stops
3141 * fixing up pointers when a given leaf/node is not in slot 0 of the
3145 static void fixup_low_keys(struct btrfs_fs_info
*fs_info
,
3146 struct btrfs_path
*path
,
3147 struct btrfs_disk_key
*key
, int level
)
3150 struct extent_buffer
*t
;
3152 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3153 int tslot
= path
->slots
[i
];
3154 if (!path
->nodes
[i
])
3157 tree_mod_log_set_node_key(fs_info
, t
, tslot
, 1);
3158 btrfs_set_node_key(t
, key
, tslot
);
3159 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3168 * This function isn't completely safe. It's the caller's responsibility
3169 * that the new key won't break the order
3171 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3172 struct btrfs_path
*path
,
3173 struct btrfs_key
*new_key
)
3175 struct btrfs_disk_key disk_key
;
3176 struct extent_buffer
*eb
;
3179 eb
= path
->nodes
[0];
3180 slot
= path
->slots
[0];
3182 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3183 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3185 if (slot
< btrfs_header_nritems(eb
) - 1) {
3186 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3187 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3190 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3191 btrfs_set_item_key(eb
, &disk_key
, slot
);
3192 btrfs_mark_buffer_dirty(eb
);
3194 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3198 * try to push data from one node into the next node left in the
3201 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3202 * error, and > 0 if there was no room in the left hand block.
3204 static int push_node_left(struct btrfs_trans_handle
*trans
,
3205 struct btrfs_root
*root
, struct extent_buffer
*dst
,
3206 struct extent_buffer
*src
, int empty
)
3213 src_nritems
= btrfs_header_nritems(src
);
3214 dst_nritems
= btrfs_header_nritems(dst
);
3215 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3216 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3217 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3219 if (!empty
&& src_nritems
<= 8)
3222 if (push_items
<= 0)
3226 push_items
= min(src_nritems
, push_items
);
3227 if (push_items
< src_nritems
) {
3228 /* leave at least 8 pointers in the node if
3229 * we aren't going to empty it
3231 if (src_nritems
- push_items
< 8) {
3232 if (push_items
<= 8)
3238 push_items
= min(src_nritems
- 8, push_items
);
3240 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
3243 btrfs_abort_transaction(trans
, root
, ret
);
3246 copy_extent_buffer(dst
, src
,
3247 btrfs_node_key_ptr_offset(dst_nritems
),
3248 btrfs_node_key_ptr_offset(0),
3249 push_items
* sizeof(struct btrfs_key_ptr
));
3251 if (push_items
< src_nritems
) {
3253 * don't call tree_mod_log_eb_move here, key removal was already
3254 * fully logged by tree_mod_log_eb_copy above.
3256 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3257 btrfs_node_key_ptr_offset(push_items
),
3258 (src_nritems
- push_items
) *
3259 sizeof(struct btrfs_key_ptr
));
3261 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3262 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3263 btrfs_mark_buffer_dirty(src
);
3264 btrfs_mark_buffer_dirty(dst
);
3270 * try to push data from one node into the next node right in the
3273 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3274 * error, and > 0 if there was no room in the right hand block.
3276 * this will only push up to 1/2 the contents of the left node over
3278 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3279 struct btrfs_root
*root
,
3280 struct extent_buffer
*dst
,
3281 struct extent_buffer
*src
)
3289 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3290 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3292 src_nritems
= btrfs_header_nritems(src
);
3293 dst_nritems
= btrfs_header_nritems(dst
);
3294 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3295 if (push_items
<= 0)
3298 if (src_nritems
< 4)
3301 max_push
= src_nritems
/ 2 + 1;
3302 /* don't try to empty the node */
3303 if (max_push
>= src_nritems
)
3306 if (max_push
< push_items
)
3307 push_items
= max_push
;
3309 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3310 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3311 btrfs_node_key_ptr_offset(0),
3313 sizeof(struct btrfs_key_ptr
));
3315 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3316 src_nritems
- push_items
, push_items
);
3318 btrfs_abort_transaction(trans
, root
, ret
);
3321 copy_extent_buffer(dst
, src
,
3322 btrfs_node_key_ptr_offset(0),
3323 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3324 push_items
* sizeof(struct btrfs_key_ptr
));
3326 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3327 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3329 btrfs_mark_buffer_dirty(src
);
3330 btrfs_mark_buffer_dirty(dst
);
3336 * helper function to insert a new root level in the tree.
3337 * A new node is allocated, and a single item is inserted to
3338 * point to the existing root
3340 * returns zero on success or < 0 on failure.
3342 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3343 struct btrfs_root
*root
,
3344 struct btrfs_path
*path
, int level
)
3347 struct extent_buffer
*lower
;
3348 struct extent_buffer
*c
;
3349 struct extent_buffer
*old
;
3350 struct btrfs_disk_key lower_key
;
3352 BUG_ON(path
->nodes
[level
]);
3353 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3355 lower
= path
->nodes
[level
-1];
3357 btrfs_item_key(lower
, &lower_key
, 0);
3359 btrfs_node_key(lower
, &lower_key
, 0);
3361 c
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3362 &lower_key
, level
, root
->node
->start
, 0);
3366 root_add_used(root
, root
->nodesize
);
3368 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3369 btrfs_set_header_nritems(c
, 1);
3370 btrfs_set_header_level(c
, level
);
3371 btrfs_set_header_bytenr(c
, c
->start
);
3372 btrfs_set_header_generation(c
, trans
->transid
);
3373 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3374 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3376 write_extent_buffer(c
, root
->fs_info
->fsid
, btrfs_header_fsid(),
3379 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3380 btrfs_header_chunk_tree_uuid(c
), BTRFS_UUID_SIZE
);
3382 btrfs_set_node_key(c
, &lower_key
, 0);
3383 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3384 lower_gen
= btrfs_header_generation(lower
);
3385 WARN_ON(lower_gen
!= trans
->transid
);
3387 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3389 btrfs_mark_buffer_dirty(c
);
3392 tree_mod_log_set_root_pointer(root
, c
, 0);
3393 rcu_assign_pointer(root
->node
, c
);
3395 /* the super has an extra ref to root->node */
3396 free_extent_buffer(old
);
3398 add_root_to_dirty_list(root
);
3399 extent_buffer_get(c
);
3400 path
->nodes
[level
] = c
;
3401 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3402 path
->slots
[level
] = 0;
3407 * worker function to insert a single pointer in a node.
3408 * the node should have enough room for the pointer already
3410 * slot and level indicate where you want the key to go, and
3411 * blocknr is the block the key points to.
3413 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3414 struct btrfs_root
*root
, struct btrfs_path
*path
,
3415 struct btrfs_disk_key
*key
, u64 bytenr
,
3416 int slot
, int level
)
3418 struct extent_buffer
*lower
;
3422 BUG_ON(!path
->nodes
[level
]);
3423 btrfs_assert_tree_locked(path
->nodes
[level
]);
3424 lower
= path
->nodes
[level
];
3425 nritems
= btrfs_header_nritems(lower
);
3426 BUG_ON(slot
> nritems
);
3427 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3428 if (slot
!= nritems
) {
3430 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3431 slot
, nritems
- slot
);
3432 memmove_extent_buffer(lower
,
3433 btrfs_node_key_ptr_offset(slot
+ 1),
3434 btrfs_node_key_ptr_offset(slot
),
3435 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3438 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3439 MOD_LOG_KEY_ADD
, GFP_NOFS
);
3442 btrfs_set_node_key(lower
, key
, slot
);
3443 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3444 WARN_ON(trans
->transid
== 0);
3445 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3446 btrfs_set_header_nritems(lower
, nritems
+ 1);
3447 btrfs_mark_buffer_dirty(lower
);
3451 * split the node at the specified level in path in two.
3452 * The path is corrected to point to the appropriate node after the split
3454 * Before splitting this tries to make some room in the node by pushing
3455 * left and right, if either one works, it returns right away.
3457 * returns 0 on success and < 0 on failure
3459 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3460 struct btrfs_root
*root
,
3461 struct btrfs_path
*path
, int level
)
3463 struct extent_buffer
*c
;
3464 struct extent_buffer
*split
;
3465 struct btrfs_disk_key disk_key
;
3470 c
= path
->nodes
[level
];
3471 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3472 if (c
== root
->node
) {
3474 * trying to split the root, lets make a new one
3476 * tree mod log: We don't log_removal old root in
3477 * insert_new_root, because that root buffer will be kept as a
3478 * normal node. We are going to log removal of half of the
3479 * elements below with tree_mod_log_eb_copy. We're holding a
3480 * tree lock on the buffer, which is why we cannot race with
3481 * other tree_mod_log users.
3483 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3487 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3488 c
= path
->nodes
[level
];
3489 if (!ret
&& btrfs_header_nritems(c
) <
3490 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3496 c_nritems
= btrfs_header_nritems(c
);
3497 mid
= (c_nritems
+ 1) / 2;
3498 btrfs_node_key(c
, &disk_key
, mid
);
3500 split
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3501 &disk_key
, level
, c
->start
, 0);
3503 return PTR_ERR(split
);
3505 root_add_used(root
, root
->nodesize
);
3507 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3508 btrfs_set_header_level(split
, btrfs_header_level(c
));
3509 btrfs_set_header_bytenr(split
, split
->start
);
3510 btrfs_set_header_generation(split
, trans
->transid
);
3511 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3512 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3513 write_extent_buffer(split
, root
->fs_info
->fsid
,
3514 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
3515 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3516 btrfs_header_chunk_tree_uuid(split
),
3519 ret
= tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0,
3520 mid
, c_nritems
- mid
);
3522 btrfs_abort_transaction(trans
, root
, ret
);
3525 copy_extent_buffer(split
, c
,
3526 btrfs_node_key_ptr_offset(0),
3527 btrfs_node_key_ptr_offset(mid
),
3528 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3529 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3530 btrfs_set_header_nritems(c
, mid
);
3533 btrfs_mark_buffer_dirty(c
);
3534 btrfs_mark_buffer_dirty(split
);
3536 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3537 path
->slots
[level
+ 1] + 1, level
+ 1);
3539 if (path
->slots
[level
] >= mid
) {
3540 path
->slots
[level
] -= mid
;
3541 btrfs_tree_unlock(c
);
3542 free_extent_buffer(c
);
3543 path
->nodes
[level
] = split
;
3544 path
->slots
[level
+ 1] += 1;
3546 btrfs_tree_unlock(split
);
3547 free_extent_buffer(split
);
3553 * how many bytes are required to store the items in a leaf. start
3554 * and nr indicate which items in the leaf to check. This totals up the
3555 * space used both by the item structs and the item data
3557 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3559 struct btrfs_item
*start_item
;
3560 struct btrfs_item
*end_item
;
3561 struct btrfs_map_token token
;
3563 int nritems
= btrfs_header_nritems(l
);
3564 int end
= min(nritems
, start
+ nr
) - 1;
3568 btrfs_init_map_token(&token
);
3569 start_item
= btrfs_item_nr(start
);
3570 end_item
= btrfs_item_nr(end
);
3571 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3572 btrfs_token_item_size(l
, start_item
, &token
);
3573 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3574 data_len
+= sizeof(struct btrfs_item
) * nr
;
3575 WARN_ON(data_len
< 0);
3580 * The space between the end of the leaf items and
3581 * the start of the leaf data. IOW, how much room
3582 * the leaf has left for both items and data
3584 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3585 struct extent_buffer
*leaf
)
3587 int nritems
= btrfs_header_nritems(leaf
);
3589 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3591 btrfs_crit(root
->fs_info
,
3592 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3593 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3594 leaf_space_used(leaf
, 0, nritems
), nritems
);
3600 * min slot controls the lowest index we're willing to push to the
3601 * right. We'll push up to and including min_slot, but no lower
3603 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3604 struct btrfs_root
*root
,
3605 struct btrfs_path
*path
,
3606 int data_size
, int empty
,
3607 struct extent_buffer
*right
,
3608 int free_space
, u32 left_nritems
,
3611 struct extent_buffer
*left
= path
->nodes
[0];
3612 struct extent_buffer
*upper
= path
->nodes
[1];
3613 struct btrfs_map_token token
;
3614 struct btrfs_disk_key disk_key
;
3619 struct btrfs_item
*item
;
3625 btrfs_init_map_token(&token
);
3630 nr
= max_t(u32
, 1, min_slot
);
3632 if (path
->slots
[0] >= left_nritems
)
3633 push_space
+= data_size
;
3635 slot
= path
->slots
[1];
3636 i
= left_nritems
- 1;
3638 item
= btrfs_item_nr(i
);
3640 if (!empty
&& push_items
> 0) {
3641 if (path
->slots
[0] > i
)
3643 if (path
->slots
[0] == i
) {
3644 int space
= btrfs_leaf_free_space(root
, left
);
3645 if (space
+ push_space
* 2 > free_space
)
3650 if (path
->slots
[0] == i
)
3651 push_space
+= data_size
;
3653 this_item_size
= btrfs_item_size(left
, item
);
3654 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3658 push_space
+= this_item_size
+ sizeof(*item
);
3664 if (push_items
== 0)
3667 WARN_ON(!empty
&& push_items
== left_nritems
);
3669 /* push left to right */
3670 right_nritems
= btrfs_header_nritems(right
);
3672 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3673 push_space
-= leaf_data_end(root
, left
);
3675 /* make room in the right data area */
3676 data_end
= leaf_data_end(root
, right
);
3677 memmove_extent_buffer(right
,
3678 btrfs_leaf_data(right
) + data_end
- push_space
,
3679 btrfs_leaf_data(right
) + data_end
,
3680 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3682 /* copy from the left data area */
3683 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3684 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3685 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3688 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3689 btrfs_item_nr_offset(0),
3690 right_nritems
* sizeof(struct btrfs_item
));
3692 /* copy the items from left to right */
3693 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3694 btrfs_item_nr_offset(left_nritems
- push_items
),
3695 push_items
* sizeof(struct btrfs_item
));
3697 /* update the item pointers */
3698 right_nritems
+= push_items
;
3699 btrfs_set_header_nritems(right
, right_nritems
);
3700 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3701 for (i
= 0; i
< right_nritems
; i
++) {
3702 item
= btrfs_item_nr(i
);
3703 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3704 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3707 left_nritems
-= push_items
;
3708 btrfs_set_header_nritems(left
, left_nritems
);
3711 btrfs_mark_buffer_dirty(left
);
3713 clean_tree_block(trans
, root
->fs_info
, left
);
3715 btrfs_mark_buffer_dirty(right
);
3717 btrfs_item_key(right
, &disk_key
, 0);
3718 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3719 btrfs_mark_buffer_dirty(upper
);
3721 /* then fixup the leaf pointer in the path */
3722 if (path
->slots
[0] >= left_nritems
) {
3723 path
->slots
[0] -= left_nritems
;
3724 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3725 clean_tree_block(trans
, root
->fs_info
, path
->nodes
[0]);
3726 btrfs_tree_unlock(path
->nodes
[0]);
3727 free_extent_buffer(path
->nodes
[0]);
3728 path
->nodes
[0] = right
;
3729 path
->slots
[1] += 1;
3731 btrfs_tree_unlock(right
);
3732 free_extent_buffer(right
);
3737 btrfs_tree_unlock(right
);
3738 free_extent_buffer(right
);
3743 * push some data in the path leaf to the right, trying to free up at
3744 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3746 * returns 1 if the push failed because the other node didn't have enough
3747 * room, 0 if everything worked out and < 0 if there were major errors.
3749 * this will push starting from min_slot to the end of the leaf. It won't
3750 * push any slot lower than min_slot
3752 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3753 *root
, struct btrfs_path
*path
,
3754 int min_data_size
, int data_size
,
3755 int empty
, u32 min_slot
)
3757 struct extent_buffer
*left
= path
->nodes
[0];
3758 struct extent_buffer
*right
;
3759 struct extent_buffer
*upper
;
3765 if (!path
->nodes
[1])
3768 slot
= path
->slots
[1];
3769 upper
= path
->nodes
[1];
3770 if (slot
>= btrfs_header_nritems(upper
) - 1)
3773 btrfs_assert_tree_locked(path
->nodes
[1]);
3775 right
= read_node_slot(root
, upper
, slot
+ 1);
3779 btrfs_tree_lock(right
);
3780 btrfs_set_lock_blocking(right
);
3782 free_space
= btrfs_leaf_free_space(root
, right
);
3783 if (free_space
< data_size
)
3786 /* cow and double check */
3787 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3792 free_space
= btrfs_leaf_free_space(root
, right
);
3793 if (free_space
< data_size
)
3796 left_nritems
= btrfs_header_nritems(left
);
3797 if (left_nritems
== 0)
3800 if (path
->slots
[0] == left_nritems
&& !empty
) {
3801 /* Key greater than all keys in the leaf, right neighbor has
3802 * enough room for it and we're not emptying our leaf to delete
3803 * it, therefore use right neighbor to insert the new item and
3804 * no need to touch/dirty our left leaft. */
3805 btrfs_tree_unlock(left
);
3806 free_extent_buffer(left
);
3807 path
->nodes
[0] = right
;
3813 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3814 right
, free_space
, left_nritems
, min_slot
);
3816 btrfs_tree_unlock(right
);
3817 free_extent_buffer(right
);
3822 * push some data in the path leaf to the left, trying to free up at
3823 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3825 * max_slot can put a limit on how far into the leaf we'll push items. The
3826 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3829 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3830 struct btrfs_root
*root
,
3831 struct btrfs_path
*path
, int data_size
,
3832 int empty
, struct extent_buffer
*left
,
3833 int free_space
, u32 right_nritems
,
3836 struct btrfs_disk_key disk_key
;
3837 struct extent_buffer
*right
= path
->nodes
[0];
3841 struct btrfs_item
*item
;
3842 u32 old_left_nritems
;
3846 u32 old_left_item_size
;
3847 struct btrfs_map_token token
;
3849 btrfs_init_map_token(&token
);
3852 nr
= min(right_nritems
, max_slot
);
3854 nr
= min(right_nritems
- 1, max_slot
);
3856 for (i
= 0; i
< nr
; i
++) {
3857 item
= btrfs_item_nr(i
);
3859 if (!empty
&& push_items
> 0) {
3860 if (path
->slots
[0] < i
)
3862 if (path
->slots
[0] == i
) {
3863 int space
= btrfs_leaf_free_space(root
, right
);
3864 if (space
+ push_space
* 2 > free_space
)
3869 if (path
->slots
[0] == i
)
3870 push_space
+= data_size
;
3872 this_item_size
= btrfs_item_size(right
, item
);
3873 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3877 push_space
+= this_item_size
+ sizeof(*item
);
3880 if (push_items
== 0) {
3884 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3886 /* push data from right to left */
3887 copy_extent_buffer(left
, right
,
3888 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3889 btrfs_item_nr_offset(0),
3890 push_items
* sizeof(struct btrfs_item
));
3892 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3893 btrfs_item_offset_nr(right
, push_items
- 1);
3895 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3896 leaf_data_end(root
, left
) - push_space
,
3897 btrfs_leaf_data(right
) +
3898 btrfs_item_offset_nr(right
, push_items
- 1),
3900 old_left_nritems
= btrfs_header_nritems(left
);
3901 BUG_ON(old_left_nritems
<= 0);
3903 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3904 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3907 item
= btrfs_item_nr(i
);
3909 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3910 btrfs_set_token_item_offset(left
, item
,
3911 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3914 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3916 /* fixup right node */
3917 if (push_items
> right_nritems
)
3918 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3921 if (push_items
< right_nritems
) {
3922 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3923 leaf_data_end(root
, right
);
3924 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3925 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3926 btrfs_leaf_data(right
) +
3927 leaf_data_end(root
, right
), push_space
);
3929 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3930 btrfs_item_nr_offset(push_items
),
3931 (btrfs_header_nritems(right
) - push_items
) *
3932 sizeof(struct btrfs_item
));
3934 right_nritems
-= push_items
;
3935 btrfs_set_header_nritems(right
, right_nritems
);
3936 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3937 for (i
= 0; i
< right_nritems
; i
++) {
3938 item
= btrfs_item_nr(i
);
3940 push_space
= push_space
- btrfs_token_item_size(right
,
3942 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3945 btrfs_mark_buffer_dirty(left
);
3947 btrfs_mark_buffer_dirty(right
);
3949 clean_tree_block(trans
, root
->fs_info
, right
);
3951 btrfs_item_key(right
, &disk_key
, 0);
3952 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
3954 /* then fixup the leaf pointer in the path */
3955 if (path
->slots
[0] < push_items
) {
3956 path
->slots
[0] += old_left_nritems
;
3957 btrfs_tree_unlock(path
->nodes
[0]);
3958 free_extent_buffer(path
->nodes
[0]);
3959 path
->nodes
[0] = left
;
3960 path
->slots
[1] -= 1;
3962 btrfs_tree_unlock(left
);
3963 free_extent_buffer(left
);
3964 path
->slots
[0] -= push_items
;
3966 BUG_ON(path
->slots
[0] < 0);
3969 btrfs_tree_unlock(left
);
3970 free_extent_buffer(left
);
3975 * push some data in the path leaf to the left, trying to free up at
3976 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3978 * max_slot can put a limit on how far into the leaf we'll push items. The
3979 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3982 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3983 *root
, struct btrfs_path
*path
, int min_data_size
,
3984 int data_size
, int empty
, u32 max_slot
)
3986 struct extent_buffer
*right
= path
->nodes
[0];
3987 struct extent_buffer
*left
;
3993 slot
= path
->slots
[1];
3996 if (!path
->nodes
[1])
3999 right_nritems
= btrfs_header_nritems(right
);
4000 if (right_nritems
== 0)
4003 btrfs_assert_tree_locked(path
->nodes
[1]);
4005 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
4009 btrfs_tree_lock(left
);
4010 btrfs_set_lock_blocking(left
);
4012 free_space
= btrfs_leaf_free_space(root
, left
);
4013 if (free_space
< data_size
) {
4018 /* cow and double check */
4019 ret
= btrfs_cow_block(trans
, root
, left
,
4020 path
->nodes
[1], slot
- 1, &left
);
4022 /* we hit -ENOSPC, but it isn't fatal here */
4028 free_space
= btrfs_leaf_free_space(root
, left
);
4029 if (free_space
< data_size
) {
4034 return __push_leaf_left(trans
, root
, path
, min_data_size
,
4035 empty
, left
, free_space
, right_nritems
,
4038 btrfs_tree_unlock(left
);
4039 free_extent_buffer(left
);
4044 * split the path's leaf in two, making sure there is at least data_size
4045 * available for the resulting leaf level of the path.
4047 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4048 struct btrfs_root
*root
,
4049 struct btrfs_path
*path
,
4050 struct extent_buffer
*l
,
4051 struct extent_buffer
*right
,
4052 int slot
, int mid
, int nritems
)
4057 struct btrfs_disk_key disk_key
;
4058 struct btrfs_map_token token
;
4060 btrfs_init_map_token(&token
);
4062 nritems
= nritems
- mid
;
4063 btrfs_set_header_nritems(right
, nritems
);
4064 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
4066 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4067 btrfs_item_nr_offset(mid
),
4068 nritems
* sizeof(struct btrfs_item
));
4070 copy_extent_buffer(right
, l
,
4071 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
4072 data_copy_size
, btrfs_leaf_data(l
) +
4073 leaf_data_end(root
, l
), data_copy_size
);
4075 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
4076 btrfs_item_end_nr(l
, mid
);
4078 for (i
= 0; i
< nritems
; i
++) {
4079 struct btrfs_item
*item
= btrfs_item_nr(i
);
4082 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4083 btrfs_set_token_item_offset(right
, item
,
4084 ioff
+ rt_data_off
, &token
);
4087 btrfs_set_header_nritems(l
, mid
);
4088 btrfs_item_key(right
, &disk_key
, 0);
4089 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4090 path
->slots
[1] + 1, 1);
4092 btrfs_mark_buffer_dirty(right
);
4093 btrfs_mark_buffer_dirty(l
);
4094 BUG_ON(path
->slots
[0] != slot
);
4097 btrfs_tree_unlock(path
->nodes
[0]);
4098 free_extent_buffer(path
->nodes
[0]);
4099 path
->nodes
[0] = right
;
4100 path
->slots
[0] -= mid
;
4101 path
->slots
[1] += 1;
4103 btrfs_tree_unlock(right
);
4104 free_extent_buffer(right
);
4107 BUG_ON(path
->slots
[0] < 0);
4111 * double splits happen when we need to insert a big item in the middle
4112 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4113 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4116 * We avoid this by trying to push the items on either side of our target
4117 * into the adjacent leaves. If all goes well we can avoid the double split
4120 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4121 struct btrfs_root
*root
,
4122 struct btrfs_path
*path
,
4129 int space_needed
= data_size
;
4131 slot
= path
->slots
[0];
4132 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4133 space_needed
-= btrfs_leaf_free_space(root
, path
->nodes
[0]);
4136 * try to push all the items after our slot into the
4139 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4146 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4148 * our goal is to get our slot at the start or end of a leaf. If
4149 * we've done so we're done
4151 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4154 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4157 /* try to push all the items before our slot into the next leaf */
4158 slot
= path
->slots
[0];
4159 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4172 * split the path's leaf in two, making sure there is at least data_size
4173 * available for the resulting leaf level of the path.
4175 * returns 0 if all went well and < 0 on failure.
4177 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4178 struct btrfs_root
*root
,
4179 struct btrfs_key
*ins_key
,
4180 struct btrfs_path
*path
, int data_size
,
4183 struct btrfs_disk_key disk_key
;
4184 struct extent_buffer
*l
;
4188 struct extent_buffer
*right
;
4189 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4193 int num_doubles
= 0;
4194 int tried_avoid_double
= 0;
4197 slot
= path
->slots
[0];
4198 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4199 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
4202 /* first try to make some room by pushing left and right */
4203 if (data_size
&& path
->nodes
[1]) {
4204 int space_needed
= data_size
;
4206 if (slot
< btrfs_header_nritems(l
))
4207 space_needed
-= btrfs_leaf_free_space(root
, l
);
4209 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4210 space_needed
, 0, 0);
4214 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4215 space_needed
, 0, (u32
)-1);
4221 /* did the pushes work? */
4222 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
4226 if (!path
->nodes
[1]) {
4227 ret
= insert_new_root(trans
, root
, path
, 1);
4234 slot
= path
->slots
[0];
4235 nritems
= btrfs_header_nritems(l
);
4236 mid
= (nritems
+ 1) / 2;
4240 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4241 BTRFS_LEAF_DATA_SIZE(root
)) {
4242 if (slot
>= nritems
) {
4246 if (mid
!= nritems
&&
4247 leaf_space_used(l
, mid
, nritems
- mid
) +
4248 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4249 if (data_size
&& !tried_avoid_double
)
4250 goto push_for_double
;
4256 if (leaf_space_used(l
, 0, mid
) + data_size
>
4257 BTRFS_LEAF_DATA_SIZE(root
)) {
4258 if (!extend
&& data_size
&& slot
== 0) {
4260 } else if ((extend
|| !data_size
) && slot
== 0) {
4264 if (mid
!= nritems
&&
4265 leaf_space_used(l
, mid
, nritems
- mid
) +
4266 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4267 if (data_size
&& !tried_avoid_double
)
4268 goto push_for_double
;
4276 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4278 btrfs_item_key(l
, &disk_key
, mid
);
4280 right
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
4281 &disk_key
, 0, l
->start
, 0);
4283 return PTR_ERR(right
);
4285 root_add_used(root
, root
->nodesize
);
4287 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
4288 btrfs_set_header_bytenr(right
, right
->start
);
4289 btrfs_set_header_generation(right
, trans
->transid
);
4290 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4291 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4292 btrfs_set_header_level(right
, 0);
4293 write_extent_buffer(right
, fs_info
->fsid
,
4294 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
4296 write_extent_buffer(right
, fs_info
->chunk_tree_uuid
,
4297 btrfs_header_chunk_tree_uuid(right
),
4302 btrfs_set_header_nritems(right
, 0);
4303 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4304 path
->slots
[1] + 1, 1);
4305 btrfs_tree_unlock(path
->nodes
[0]);
4306 free_extent_buffer(path
->nodes
[0]);
4307 path
->nodes
[0] = right
;
4309 path
->slots
[1] += 1;
4311 btrfs_set_header_nritems(right
, 0);
4312 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4314 btrfs_tree_unlock(path
->nodes
[0]);
4315 free_extent_buffer(path
->nodes
[0]);
4316 path
->nodes
[0] = right
;
4318 if (path
->slots
[1] == 0)
4319 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4321 btrfs_mark_buffer_dirty(right
);
4325 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4328 BUG_ON(num_doubles
!= 0);
4336 push_for_double_split(trans
, root
, path
, data_size
);
4337 tried_avoid_double
= 1;
4338 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4343 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4344 struct btrfs_root
*root
,
4345 struct btrfs_path
*path
, int ins_len
)
4347 struct btrfs_key key
;
4348 struct extent_buffer
*leaf
;
4349 struct btrfs_file_extent_item
*fi
;
4354 leaf
= path
->nodes
[0];
4355 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4357 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4358 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4360 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4363 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4364 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4365 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4366 struct btrfs_file_extent_item
);
4367 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4369 btrfs_release_path(path
);
4371 path
->keep_locks
= 1;
4372 path
->search_for_split
= 1;
4373 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4374 path
->search_for_split
= 0;
4381 leaf
= path
->nodes
[0];
4382 /* if our item isn't there, return now */
4383 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4386 /* the leaf has changed, it now has room. return now */
4387 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4390 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4391 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4392 struct btrfs_file_extent_item
);
4393 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4397 btrfs_set_path_blocking(path
);
4398 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4402 path
->keep_locks
= 0;
4403 btrfs_unlock_up_safe(path
, 1);
4406 path
->keep_locks
= 0;
4410 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4411 struct btrfs_root
*root
,
4412 struct btrfs_path
*path
,
4413 struct btrfs_key
*new_key
,
4414 unsigned long split_offset
)
4416 struct extent_buffer
*leaf
;
4417 struct btrfs_item
*item
;
4418 struct btrfs_item
*new_item
;
4424 struct btrfs_disk_key disk_key
;
4426 leaf
= path
->nodes
[0];
4427 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4429 btrfs_set_path_blocking(path
);
4431 item
= btrfs_item_nr(path
->slots
[0]);
4432 orig_offset
= btrfs_item_offset(leaf
, item
);
4433 item_size
= btrfs_item_size(leaf
, item
);
4435 buf
= kmalloc(item_size
, GFP_NOFS
);
4439 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4440 path
->slots
[0]), item_size
);
4442 slot
= path
->slots
[0] + 1;
4443 nritems
= btrfs_header_nritems(leaf
);
4444 if (slot
!= nritems
) {
4445 /* shift the items */
4446 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4447 btrfs_item_nr_offset(slot
),
4448 (nritems
- slot
) * sizeof(struct btrfs_item
));
4451 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4452 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4454 new_item
= btrfs_item_nr(slot
);
4456 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4457 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4459 btrfs_set_item_offset(leaf
, item
,
4460 orig_offset
+ item_size
- split_offset
);
4461 btrfs_set_item_size(leaf
, item
, split_offset
);
4463 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4465 /* write the data for the start of the original item */
4466 write_extent_buffer(leaf
, buf
,
4467 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4470 /* write the data for the new item */
4471 write_extent_buffer(leaf
, buf
+ split_offset
,
4472 btrfs_item_ptr_offset(leaf
, slot
),
4473 item_size
- split_offset
);
4474 btrfs_mark_buffer_dirty(leaf
);
4476 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4482 * This function splits a single item into two items,
4483 * giving 'new_key' to the new item and splitting the
4484 * old one at split_offset (from the start of the item).
4486 * The path may be released by this operation. After
4487 * the split, the path is pointing to the old item. The
4488 * new item is going to be in the same node as the old one.
4490 * Note, the item being split must be smaller enough to live alone on
4491 * a tree block with room for one extra struct btrfs_item
4493 * This allows us to split the item in place, keeping a lock on the
4494 * leaf the entire time.
4496 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4497 struct btrfs_root
*root
,
4498 struct btrfs_path
*path
,
4499 struct btrfs_key
*new_key
,
4500 unsigned long split_offset
)
4503 ret
= setup_leaf_for_split(trans
, root
, path
,
4504 sizeof(struct btrfs_item
));
4508 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4513 * This function duplicate a item, giving 'new_key' to the new item.
4514 * It guarantees both items live in the same tree leaf and the new item
4515 * is contiguous with the original item.
4517 * This allows us to split file extent in place, keeping a lock on the
4518 * leaf the entire time.
4520 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4521 struct btrfs_root
*root
,
4522 struct btrfs_path
*path
,
4523 struct btrfs_key
*new_key
)
4525 struct extent_buffer
*leaf
;
4529 leaf
= path
->nodes
[0];
4530 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4531 ret
= setup_leaf_for_split(trans
, root
, path
,
4532 item_size
+ sizeof(struct btrfs_item
));
4537 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4538 item_size
, item_size
+
4539 sizeof(struct btrfs_item
), 1);
4540 leaf
= path
->nodes
[0];
4541 memcpy_extent_buffer(leaf
,
4542 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4543 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4549 * make the item pointed to by the path smaller. new_size indicates
4550 * how small to make it, and from_end tells us if we just chop bytes
4551 * off the end of the item or if we shift the item to chop bytes off
4554 void btrfs_truncate_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4555 u32 new_size
, int from_end
)
4558 struct extent_buffer
*leaf
;
4559 struct btrfs_item
*item
;
4561 unsigned int data_end
;
4562 unsigned int old_data_start
;
4563 unsigned int old_size
;
4564 unsigned int size_diff
;
4566 struct btrfs_map_token token
;
4568 btrfs_init_map_token(&token
);
4570 leaf
= path
->nodes
[0];
4571 slot
= path
->slots
[0];
4573 old_size
= btrfs_item_size_nr(leaf
, slot
);
4574 if (old_size
== new_size
)
4577 nritems
= btrfs_header_nritems(leaf
);
4578 data_end
= leaf_data_end(root
, leaf
);
4580 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4582 size_diff
= old_size
- new_size
;
4585 BUG_ON(slot
>= nritems
);
4588 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4590 /* first correct the data pointers */
4591 for (i
= slot
; i
< nritems
; i
++) {
4593 item
= btrfs_item_nr(i
);
4595 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4596 btrfs_set_token_item_offset(leaf
, item
,
4597 ioff
+ size_diff
, &token
);
4600 /* shift the data */
4602 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4603 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4604 data_end
, old_data_start
+ new_size
- data_end
);
4606 struct btrfs_disk_key disk_key
;
4609 btrfs_item_key(leaf
, &disk_key
, slot
);
4611 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4613 struct btrfs_file_extent_item
*fi
;
4615 fi
= btrfs_item_ptr(leaf
, slot
,
4616 struct btrfs_file_extent_item
);
4617 fi
= (struct btrfs_file_extent_item
*)(
4618 (unsigned long)fi
- size_diff
);
4620 if (btrfs_file_extent_type(leaf
, fi
) ==
4621 BTRFS_FILE_EXTENT_INLINE
) {
4622 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4623 memmove_extent_buffer(leaf
, ptr
,
4625 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4629 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4630 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4631 data_end
, old_data_start
- data_end
);
4633 offset
= btrfs_disk_key_offset(&disk_key
);
4634 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4635 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4637 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4640 item
= btrfs_item_nr(slot
);
4641 btrfs_set_item_size(leaf
, item
, new_size
);
4642 btrfs_mark_buffer_dirty(leaf
);
4644 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4645 btrfs_print_leaf(root
, leaf
);
4651 * make the item pointed to by the path bigger, data_size is the added size.
4653 void btrfs_extend_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4657 struct extent_buffer
*leaf
;
4658 struct btrfs_item
*item
;
4660 unsigned int data_end
;
4661 unsigned int old_data
;
4662 unsigned int old_size
;
4664 struct btrfs_map_token token
;
4666 btrfs_init_map_token(&token
);
4668 leaf
= path
->nodes
[0];
4670 nritems
= btrfs_header_nritems(leaf
);
4671 data_end
= leaf_data_end(root
, leaf
);
4673 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4674 btrfs_print_leaf(root
, leaf
);
4677 slot
= path
->slots
[0];
4678 old_data
= btrfs_item_end_nr(leaf
, slot
);
4681 if (slot
>= nritems
) {
4682 btrfs_print_leaf(root
, leaf
);
4683 btrfs_crit(root
->fs_info
, "slot %d too large, nritems %d",
4689 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4691 /* first correct the data pointers */
4692 for (i
= slot
; i
< nritems
; i
++) {
4694 item
= btrfs_item_nr(i
);
4696 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4697 btrfs_set_token_item_offset(leaf
, item
,
4698 ioff
- data_size
, &token
);
4701 /* shift the data */
4702 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4703 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4704 data_end
, old_data
- data_end
);
4706 data_end
= old_data
;
4707 old_size
= btrfs_item_size_nr(leaf
, slot
);
4708 item
= btrfs_item_nr(slot
);
4709 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4710 btrfs_mark_buffer_dirty(leaf
);
4712 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4713 btrfs_print_leaf(root
, leaf
);
4719 * this is a helper for btrfs_insert_empty_items, the main goal here is
4720 * to save stack depth by doing the bulk of the work in a function
4721 * that doesn't call btrfs_search_slot
4723 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4724 struct btrfs_key
*cpu_key
, u32
*data_size
,
4725 u32 total_data
, u32 total_size
, int nr
)
4727 struct btrfs_item
*item
;
4730 unsigned int data_end
;
4731 struct btrfs_disk_key disk_key
;
4732 struct extent_buffer
*leaf
;
4734 struct btrfs_map_token token
;
4736 if (path
->slots
[0] == 0) {
4737 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4738 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4740 btrfs_unlock_up_safe(path
, 1);
4742 btrfs_init_map_token(&token
);
4744 leaf
= path
->nodes
[0];
4745 slot
= path
->slots
[0];
4747 nritems
= btrfs_header_nritems(leaf
);
4748 data_end
= leaf_data_end(root
, leaf
);
4750 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4751 btrfs_print_leaf(root
, leaf
);
4752 btrfs_crit(root
->fs_info
, "not enough freespace need %u have %d",
4753 total_size
, btrfs_leaf_free_space(root
, leaf
));
4757 if (slot
!= nritems
) {
4758 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4760 if (old_data
< data_end
) {
4761 btrfs_print_leaf(root
, leaf
);
4762 btrfs_crit(root
->fs_info
, "slot %d old_data %d data_end %d",
4763 slot
, old_data
, data_end
);
4767 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4769 /* first correct the data pointers */
4770 for (i
= slot
; i
< nritems
; i
++) {
4773 item
= btrfs_item_nr( i
);
4774 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4775 btrfs_set_token_item_offset(leaf
, item
,
4776 ioff
- total_data
, &token
);
4778 /* shift the items */
4779 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4780 btrfs_item_nr_offset(slot
),
4781 (nritems
- slot
) * sizeof(struct btrfs_item
));
4783 /* shift the data */
4784 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4785 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4786 data_end
, old_data
- data_end
);
4787 data_end
= old_data
;
4790 /* setup the item for the new data */
4791 for (i
= 0; i
< nr
; i
++) {
4792 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4793 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4794 item
= btrfs_item_nr(slot
+ i
);
4795 btrfs_set_token_item_offset(leaf
, item
,
4796 data_end
- data_size
[i
], &token
);
4797 data_end
-= data_size
[i
];
4798 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4801 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4802 btrfs_mark_buffer_dirty(leaf
);
4804 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4805 btrfs_print_leaf(root
, leaf
);
4811 * Given a key and some data, insert items into the tree.
4812 * This does all the path init required, making room in the tree if needed.
4814 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4815 struct btrfs_root
*root
,
4816 struct btrfs_path
*path
,
4817 struct btrfs_key
*cpu_key
, u32
*data_size
,
4826 for (i
= 0; i
< nr
; i
++)
4827 total_data
+= data_size
[i
];
4829 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4830 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4836 slot
= path
->slots
[0];
4839 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4840 total_data
, total_size
, nr
);
4845 * Given a key and some data, insert an item into the tree.
4846 * This does all the path init required, making room in the tree if needed.
4848 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4849 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4853 struct btrfs_path
*path
;
4854 struct extent_buffer
*leaf
;
4857 path
= btrfs_alloc_path();
4860 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4862 leaf
= path
->nodes
[0];
4863 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4864 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4865 btrfs_mark_buffer_dirty(leaf
);
4867 btrfs_free_path(path
);
4872 * delete the pointer from a given node.
4874 * the tree should have been previously balanced so the deletion does not
4877 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4878 int level
, int slot
)
4880 struct extent_buffer
*parent
= path
->nodes
[level
];
4884 nritems
= btrfs_header_nritems(parent
);
4885 if (slot
!= nritems
- 1) {
4887 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4888 slot
+ 1, nritems
- slot
- 1);
4889 memmove_extent_buffer(parent
,
4890 btrfs_node_key_ptr_offset(slot
),
4891 btrfs_node_key_ptr_offset(slot
+ 1),
4892 sizeof(struct btrfs_key_ptr
) *
4893 (nritems
- slot
- 1));
4895 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4896 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
4901 btrfs_set_header_nritems(parent
, nritems
);
4902 if (nritems
== 0 && parent
== root
->node
) {
4903 BUG_ON(btrfs_header_level(root
->node
) != 1);
4904 /* just turn the root into a leaf and break */
4905 btrfs_set_header_level(root
->node
, 0);
4906 } else if (slot
== 0) {
4907 struct btrfs_disk_key disk_key
;
4909 btrfs_node_key(parent
, &disk_key
, 0);
4910 fixup_low_keys(root
->fs_info
, path
, &disk_key
, level
+ 1);
4912 btrfs_mark_buffer_dirty(parent
);
4916 * a helper function to delete the leaf pointed to by path->slots[1] and
4919 * This deletes the pointer in path->nodes[1] and frees the leaf
4920 * block extent. zero is returned if it all worked out, < 0 otherwise.
4922 * The path must have already been setup for deleting the leaf, including
4923 * all the proper balancing. path->nodes[1] must be locked.
4925 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4926 struct btrfs_root
*root
,
4927 struct btrfs_path
*path
,
4928 struct extent_buffer
*leaf
)
4930 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4931 del_ptr(root
, path
, 1, path
->slots
[1]);
4934 * btrfs_free_extent is expensive, we want to make sure we
4935 * aren't holding any locks when we call it
4937 btrfs_unlock_up_safe(path
, 0);
4939 root_sub_used(root
, leaf
->len
);
4941 extent_buffer_get(leaf
);
4942 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4943 free_extent_buffer_stale(leaf
);
4946 * delete the item at the leaf level in path. If that empties
4947 * the leaf, remove it from the tree
4949 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4950 struct btrfs_path
*path
, int slot
, int nr
)
4952 struct extent_buffer
*leaf
;
4953 struct btrfs_item
*item
;
4960 struct btrfs_map_token token
;
4962 btrfs_init_map_token(&token
);
4964 leaf
= path
->nodes
[0];
4965 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4967 for (i
= 0; i
< nr
; i
++)
4968 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4970 nritems
= btrfs_header_nritems(leaf
);
4972 if (slot
+ nr
!= nritems
) {
4973 int data_end
= leaf_data_end(root
, leaf
);
4975 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4977 btrfs_leaf_data(leaf
) + data_end
,
4978 last_off
- data_end
);
4980 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4983 item
= btrfs_item_nr(i
);
4984 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4985 btrfs_set_token_item_offset(leaf
, item
,
4986 ioff
+ dsize
, &token
);
4989 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4990 btrfs_item_nr_offset(slot
+ nr
),
4991 sizeof(struct btrfs_item
) *
4992 (nritems
- slot
- nr
));
4994 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4997 /* delete the leaf if we've emptied it */
4999 if (leaf
== root
->node
) {
5000 btrfs_set_header_level(leaf
, 0);
5002 btrfs_set_path_blocking(path
);
5003 clean_tree_block(trans
, root
->fs_info
, leaf
);
5004 btrfs_del_leaf(trans
, root
, path
, leaf
);
5007 int used
= leaf_space_used(leaf
, 0, nritems
);
5009 struct btrfs_disk_key disk_key
;
5011 btrfs_item_key(leaf
, &disk_key
, 0);
5012 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
5015 /* delete the leaf if it is mostly empty */
5016 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
5017 /* push_leaf_left fixes the path.
5018 * make sure the path still points to our leaf
5019 * for possible call to del_ptr below
5021 slot
= path
->slots
[1];
5022 extent_buffer_get(leaf
);
5024 btrfs_set_path_blocking(path
);
5025 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5027 if (wret
< 0 && wret
!= -ENOSPC
)
5030 if (path
->nodes
[0] == leaf
&&
5031 btrfs_header_nritems(leaf
)) {
5032 wret
= push_leaf_right(trans
, root
, path
, 1,
5034 if (wret
< 0 && wret
!= -ENOSPC
)
5038 if (btrfs_header_nritems(leaf
) == 0) {
5039 path
->slots
[1] = slot
;
5040 btrfs_del_leaf(trans
, root
, path
, leaf
);
5041 free_extent_buffer(leaf
);
5044 /* if we're still in the path, make sure
5045 * we're dirty. Otherwise, one of the
5046 * push_leaf functions must have already
5047 * dirtied this buffer
5049 if (path
->nodes
[0] == leaf
)
5050 btrfs_mark_buffer_dirty(leaf
);
5051 free_extent_buffer(leaf
);
5054 btrfs_mark_buffer_dirty(leaf
);
5061 * search the tree again to find a leaf with lesser keys
5062 * returns 0 if it found something or 1 if there are no lesser leaves.
5063 * returns < 0 on io errors.
5065 * This may release the path, and so you may lose any locks held at the
5068 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5070 struct btrfs_key key
;
5071 struct btrfs_disk_key found_key
;
5074 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5076 if (key
.offset
> 0) {
5078 } else if (key
.type
> 0) {
5080 key
.offset
= (u64
)-1;
5081 } else if (key
.objectid
> 0) {
5084 key
.offset
= (u64
)-1;
5089 btrfs_release_path(path
);
5090 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5093 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5094 ret
= comp_keys(&found_key
, &key
);
5096 * We might have had an item with the previous key in the tree right
5097 * before we released our path. And after we released our path, that
5098 * item might have been pushed to the first slot (0) of the leaf we
5099 * were holding due to a tree balance. Alternatively, an item with the
5100 * previous key can exist as the only element of a leaf (big fat item).
5101 * Therefore account for these 2 cases, so that our callers (like
5102 * btrfs_previous_item) don't miss an existing item with a key matching
5103 * the previous key we computed above.
5111 * A helper function to walk down the tree starting at min_key, and looking
5112 * for nodes or leaves that are have a minimum transaction id.
5113 * This is used by the btree defrag code, and tree logging
5115 * This does not cow, but it does stuff the starting key it finds back
5116 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5117 * key and get a writable path.
5119 * This does lock as it descends, and path->keep_locks should be set
5120 * to 1 by the caller.
5122 * This honors path->lowest_level to prevent descent past a given level
5125 * min_trans indicates the oldest transaction that you are interested
5126 * in walking through. Any nodes or leaves older than min_trans are
5127 * skipped over (without reading them).
5129 * returns zero if something useful was found, < 0 on error and 1 if there
5130 * was nothing in the tree that matched the search criteria.
5132 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5133 struct btrfs_path
*path
,
5136 struct extent_buffer
*cur
;
5137 struct btrfs_key found_key
;
5143 int keep_locks
= path
->keep_locks
;
5145 path
->keep_locks
= 1;
5147 cur
= btrfs_read_lock_root_node(root
);
5148 level
= btrfs_header_level(cur
);
5149 WARN_ON(path
->nodes
[level
]);
5150 path
->nodes
[level
] = cur
;
5151 path
->locks
[level
] = BTRFS_READ_LOCK
;
5153 if (btrfs_header_generation(cur
) < min_trans
) {
5158 nritems
= btrfs_header_nritems(cur
);
5159 level
= btrfs_header_level(cur
);
5160 sret
= bin_search(cur
, min_key
, level
, &slot
);
5162 /* at the lowest level, we're done, setup the path and exit */
5163 if (level
== path
->lowest_level
) {
5164 if (slot
>= nritems
)
5167 path
->slots
[level
] = slot
;
5168 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5171 if (sret
&& slot
> 0)
5174 * check this node pointer against the min_trans parameters.
5175 * If it is too old, old, skip to the next one.
5177 while (slot
< nritems
) {
5180 gen
= btrfs_node_ptr_generation(cur
, slot
);
5181 if (gen
< min_trans
) {
5189 * we didn't find a candidate key in this node, walk forward
5190 * and find another one
5192 if (slot
>= nritems
) {
5193 path
->slots
[level
] = slot
;
5194 btrfs_set_path_blocking(path
);
5195 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5198 btrfs_release_path(path
);
5204 /* save our key for returning back */
5205 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5206 path
->slots
[level
] = slot
;
5207 if (level
== path
->lowest_level
) {
5211 btrfs_set_path_blocking(path
);
5212 cur
= read_node_slot(root
, cur
, slot
);
5213 BUG_ON(!cur
); /* -ENOMEM */
5215 btrfs_tree_read_lock(cur
);
5217 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5218 path
->nodes
[level
- 1] = cur
;
5219 unlock_up(path
, level
, 1, 0, NULL
);
5220 btrfs_clear_path_blocking(path
, NULL
, 0);
5223 path
->keep_locks
= keep_locks
;
5225 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5226 btrfs_set_path_blocking(path
);
5227 memcpy(min_key
, &found_key
, sizeof(found_key
));
5232 static void tree_move_down(struct btrfs_root
*root
,
5233 struct btrfs_path
*path
,
5234 int *level
, int root_level
)
5236 BUG_ON(*level
== 0);
5237 path
->nodes
[*level
- 1] = read_node_slot(root
, path
->nodes
[*level
],
5238 path
->slots
[*level
]);
5239 path
->slots
[*level
- 1] = 0;
5243 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
5244 struct btrfs_path
*path
,
5245 int *level
, int root_level
)
5249 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5251 path
->slots
[*level
]++;
5253 while (path
->slots
[*level
] >= nritems
) {
5254 if (*level
== root_level
)
5258 path
->slots
[*level
] = 0;
5259 free_extent_buffer(path
->nodes
[*level
]);
5260 path
->nodes
[*level
] = NULL
;
5262 path
->slots
[*level
]++;
5264 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5271 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5274 static int tree_advance(struct btrfs_root
*root
,
5275 struct btrfs_path
*path
,
5276 int *level
, int root_level
,
5278 struct btrfs_key
*key
)
5282 if (*level
== 0 || !allow_down
) {
5283 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
5285 tree_move_down(root
, path
, level
, root_level
);
5290 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5291 path
->slots
[*level
]);
5293 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5294 path
->slots
[*level
]);
5299 static int tree_compare_item(struct btrfs_root
*left_root
,
5300 struct btrfs_path
*left_path
,
5301 struct btrfs_path
*right_path
,
5306 unsigned long off1
, off2
;
5308 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5309 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5313 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5314 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5315 right_path
->slots
[0]);
5317 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5319 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5326 #define ADVANCE_ONLY_NEXT -1
5329 * This function compares two trees and calls the provided callback for
5330 * every changed/new/deleted item it finds.
5331 * If shared tree blocks are encountered, whole subtrees are skipped, making
5332 * the compare pretty fast on snapshotted subvolumes.
5334 * This currently works on commit roots only. As commit roots are read only,
5335 * we don't do any locking. The commit roots are protected with transactions.
5336 * Transactions are ended and rejoined when a commit is tried in between.
5338 * This function checks for modifications done to the trees while comparing.
5339 * If it detects a change, it aborts immediately.
5341 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5342 struct btrfs_root
*right_root
,
5343 btrfs_changed_cb_t changed_cb
, void *ctx
)
5347 struct btrfs_path
*left_path
= NULL
;
5348 struct btrfs_path
*right_path
= NULL
;
5349 struct btrfs_key left_key
;
5350 struct btrfs_key right_key
;
5351 char *tmp_buf
= NULL
;
5352 int left_root_level
;
5353 int right_root_level
;
5356 int left_end_reached
;
5357 int right_end_reached
;
5365 left_path
= btrfs_alloc_path();
5370 right_path
= btrfs_alloc_path();
5376 tmp_buf
= kmalloc(left_root
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
5378 tmp_buf
= vmalloc(left_root
->nodesize
);
5385 left_path
->search_commit_root
= 1;
5386 left_path
->skip_locking
= 1;
5387 right_path
->search_commit_root
= 1;
5388 right_path
->skip_locking
= 1;
5391 * Strategy: Go to the first items of both trees. Then do
5393 * If both trees are at level 0
5394 * Compare keys of current items
5395 * If left < right treat left item as new, advance left tree
5397 * If left > right treat right item as deleted, advance right tree
5399 * If left == right do deep compare of items, treat as changed if
5400 * needed, advance both trees and repeat
5401 * If both trees are at the same level but not at level 0
5402 * Compare keys of current nodes/leafs
5403 * If left < right advance left tree and repeat
5404 * If left > right advance right tree and repeat
5405 * If left == right compare blockptrs of the next nodes/leafs
5406 * If they match advance both trees but stay at the same level
5408 * If they don't match advance both trees while allowing to go
5410 * If tree levels are different
5411 * Advance the tree that needs it and repeat
5413 * Advancing a tree means:
5414 * If we are at level 0, try to go to the next slot. If that's not
5415 * possible, go one level up and repeat. Stop when we found a level
5416 * where we could go to the next slot. We may at this point be on a
5419 * If we are not at level 0 and not on shared tree blocks, go one
5422 * If we are not at level 0 and on shared tree blocks, go one slot to
5423 * the right if possible or go up and right.
5426 down_read(&left_root
->fs_info
->commit_root_sem
);
5427 left_level
= btrfs_header_level(left_root
->commit_root
);
5428 left_root_level
= left_level
;
5429 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5430 extent_buffer_get(left_path
->nodes
[left_level
]);
5432 right_level
= btrfs_header_level(right_root
->commit_root
);
5433 right_root_level
= right_level
;
5434 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5435 extent_buffer_get(right_path
->nodes
[right_level
]);
5436 up_read(&left_root
->fs_info
->commit_root_sem
);
5438 if (left_level
== 0)
5439 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5440 &left_key
, left_path
->slots
[left_level
]);
5442 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5443 &left_key
, left_path
->slots
[left_level
]);
5444 if (right_level
== 0)
5445 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5446 &right_key
, right_path
->slots
[right_level
]);
5448 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5449 &right_key
, right_path
->slots
[right_level
]);
5451 left_end_reached
= right_end_reached
= 0;
5452 advance_left
= advance_right
= 0;
5455 if (advance_left
&& !left_end_reached
) {
5456 ret
= tree_advance(left_root
, left_path
, &left_level
,
5458 advance_left
!= ADVANCE_ONLY_NEXT
,
5461 left_end_reached
= ADVANCE
;
5464 if (advance_right
&& !right_end_reached
) {
5465 ret
= tree_advance(right_root
, right_path
, &right_level
,
5467 advance_right
!= ADVANCE_ONLY_NEXT
,
5470 right_end_reached
= ADVANCE
;
5474 if (left_end_reached
&& right_end_reached
) {
5477 } else if (left_end_reached
) {
5478 if (right_level
== 0) {
5479 ret
= changed_cb(left_root
, right_root
,
5480 left_path
, right_path
,
5482 BTRFS_COMPARE_TREE_DELETED
,
5487 advance_right
= ADVANCE
;
5489 } else if (right_end_reached
) {
5490 if (left_level
== 0) {
5491 ret
= changed_cb(left_root
, right_root
,
5492 left_path
, right_path
,
5494 BTRFS_COMPARE_TREE_NEW
,
5499 advance_left
= ADVANCE
;
5503 if (left_level
== 0 && right_level
== 0) {
5504 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5506 ret
= changed_cb(left_root
, right_root
,
5507 left_path
, right_path
,
5509 BTRFS_COMPARE_TREE_NEW
,
5513 advance_left
= ADVANCE
;
5514 } else if (cmp
> 0) {
5515 ret
= changed_cb(left_root
, right_root
,
5516 left_path
, right_path
,
5518 BTRFS_COMPARE_TREE_DELETED
,
5522 advance_right
= ADVANCE
;
5524 enum btrfs_compare_tree_result result
;
5526 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5527 ret
= tree_compare_item(left_root
, left_path
,
5528 right_path
, tmp_buf
);
5530 result
= BTRFS_COMPARE_TREE_CHANGED
;
5532 result
= BTRFS_COMPARE_TREE_SAME
;
5533 ret
= changed_cb(left_root
, right_root
,
5534 left_path
, right_path
,
5535 &left_key
, result
, ctx
);
5538 advance_left
= ADVANCE
;
5539 advance_right
= ADVANCE
;
5541 } else if (left_level
== right_level
) {
5542 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5544 advance_left
= ADVANCE
;
5545 } else if (cmp
> 0) {
5546 advance_right
= ADVANCE
;
5548 left_blockptr
= btrfs_node_blockptr(
5549 left_path
->nodes
[left_level
],
5550 left_path
->slots
[left_level
]);
5551 right_blockptr
= btrfs_node_blockptr(
5552 right_path
->nodes
[right_level
],
5553 right_path
->slots
[right_level
]);
5554 left_gen
= btrfs_node_ptr_generation(
5555 left_path
->nodes
[left_level
],
5556 left_path
->slots
[left_level
]);
5557 right_gen
= btrfs_node_ptr_generation(
5558 right_path
->nodes
[right_level
],
5559 right_path
->slots
[right_level
]);
5560 if (left_blockptr
== right_blockptr
&&
5561 left_gen
== right_gen
) {
5563 * As we're on a shared block, don't
5564 * allow to go deeper.
5566 advance_left
= ADVANCE_ONLY_NEXT
;
5567 advance_right
= ADVANCE_ONLY_NEXT
;
5569 advance_left
= ADVANCE
;
5570 advance_right
= ADVANCE
;
5573 } else if (left_level
< right_level
) {
5574 advance_right
= ADVANCE
;
5576 advance_left
= ADVANCE
;
5581 btrfs_free_path(left_path
);
5582 btrfs_free_path(right_path
);
5588 * this is similar to btrfs_next_leaf, but does not try to preserve
5589 * and fixup the path. It looks for and returns the next key in the
5590 * tree based on the current path and the min_trans parameters.
5592 * 0 is returned if another key is found, < 0 if there are any errors
5593 * and 1 is returned if there are no higher keys in the tree
5595 * path->keep_locks should be set to 1 on the search made before
5596 * calling this function.
5598 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5599 struct btrfs_key
*key
, int level
, u64 min_trans
)
5602 struct extent_buffer
*c
;
5604 WARN_ON(!path
->keep_locks
);
5605 while (level
< BTRFS_MAX_LEVEL
) {
5606 if (!path
->nodes
[level
])
5609 slot
= path
->slots
[level
] + 1;
5610 c
= path
->nodes
[level
];
5612 if (slot
>= btrfs_header_nritems(c
)) {
5615 struct btrfs_key cur_key
;
5616 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5617 !path
->nodes
[level
+ 1])
5620 if (path
->locks
[level
+ 1]) {
5625 slot
= btrfs_header_nritems(c
) - 1;
5627 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5629 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5631 orig_lowest
= path
->lowest_level
;
5632 btrfs_release_path(path
);
5633 path
->lowest_level
= level
;
5634 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5636 path
->lowest_level
= orig_lowest
;
5640 c
= path
->nodes
[level
];
5641 slot
= path
->slots
[level
];
5648 btrfs_item_key_to_cpu(c
, key
, slot
);
5650 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5652 if (gen
< min_trans
) {
5656 btrfs_node_key_to_cpu(c
, key
, slot
);
5664 * search the tree again to find a leaf with greater keys
5665 * returns 0 if it found something or 1 if there are no greater leaves.
5666 * returns < 0 on io errors.
5668 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5670 return btrfs_next_old_leaf(root
, path
, 0);
5673 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5678 struct extent_buffer
*c
;
5679 struct extent_buffer
*next
;
5680 struct btrfs_key key
;
5683 int old_spinning
= path
->leave_spinning
;
5684 int next_rw_lock
= 0;
5686 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5690 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5695 btrfs_release_path(path
);
5697 path
->keep_locks
= 1;
5698 path
->leave_spinning
= 1;
5701 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5703 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5704 path
->keep_locks
= 0;
5709 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5711 * by releasing the path above we dropped all our locks. A balance
5712 * could have added more items next to the key that used to be
5713 * at the very end of the block. So, check again here and
5714 * advance the path if there are now more items available.
5716 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5723 * So the above check misses one case:
5724 * - after releasing the path above, someone has removed the item that
5725 * used to be at the very end of the block, and balance between leafs
5726 * gets another one with bigger key.offset to replace it.
5728 * This one should be returned as well, or we can get leaf corruption
5729 * later(esp. in __btrfs_drop_extents()).
5731 * And a bit more explanation about this check,
5732 * with ret > 0, the key isn't found, the path points to the slot
5733 * where it should be inserted, so the path->slots[0] item must be the
5736 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5741 while (level
< BTRFS_MAX_LEVEL
) {
5742 if (!path
->nodes
[level
]) {
5747 slot
= path
->slots
[level
] + 1;
5748 c
= path
->nodes
[level
];
5749 if (slot
>= btrfs_header_nritems(c
)) {
5751 if (level
== BTRFS_MAX_LEVEL
) {
5759 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5760 free_extent_buffer(next
);
5764 next_rw_lock
= path
->locks
[level
];
5765 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5771 btrfs_release_path(path
);
5775 if (!path
->skip_locking
) {
5776 ret
= btrfs_try_tree_read_lock(next
);
5777 if (!ret
&& time_seq
) {
5779 * If we don't get the lock, we may be racing
5780 * with push_leaf_left, holding that lock while
5781 * itself waiting for the leaf we've currently
5782 * locked. To solve this situation, we give up
5783 * on our lock and cycle.
5785 free_extent_buffer(next
);
5786 btrfs_release_path(path
);
5791 btrfs_set_path_blocking(path
);
5792 btrfs_tree_read_lock(next
);
5793 btrfs_clear_path_blocking(path
, next
,
5796 next_rw_lock
= BTRFS_READ_LOCK
;
5800 path
->slots
[level
] = slot
;
5803 c
= path
->nodes
[level
];
5804 if (path
->locks
[level
])
5805 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5807 free_extent_buffer(c
);
5808 path
->nodes
[level
] = next
;
5809 path
->slots
[level
] = 0;
5810 if (!path
->skip_locking
)
5811 path
->locks
[level
] = next_rw_lock
;
5815 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5821 btrfs_release_path(path
);
5825 if (!path
->skip_locking
) {
5826 ret
= btrfs_try_tree_read_lock(next
);
5828 btrfs_set_path_blocking(path
);
5829 btrfs_tree_read_lock(next
);
5830 btrfs_clear_path_blocking(path
, next
,
5833 next_rw_lock
= BTRFS_READ_LOCK
;
5838 unlock_up(path
, 0, 1, 0, NULL
);
5839 path
->leave_spinning
= old_spinning
;
5841 btrfs_set_path_blocking(path
);
5847 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5848 * searching until it gets past min_objectid or finds an item of 'type'
5850 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5852 int btrfs_previous_item(struct btrfs_root
*root
,
5853 struct btrfs_path
*path
, u64 min_objectid
,
5856 struct btrfs_key found_key
;
5857 struct extent_buffer
*leaf
;
5862 if (path
->slots
[0] == 0) {
5863 btrfs_set_path_blocking(path
);
5864 ret
= btrfs_prev_leaf(root
, path
);
5870 leaf
= path
->nodes
[0];
5871 nritems
= btrfs_header_nritems(leaf
);
5874 if (path
->slots
[0] == nritems
)
5877 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5878 if (found_key
.objectid
< min_objectid
)
5880 if (found_key
.type
== type
)
5882 if (found_key
.objectid
== min_objectid
&&
5883 found_key
.type
< type
)
5890 * search in extent tree to find a previous Metadata/Data extent item with
5893 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5895 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5896 struct btrfs_path
*path
, u64 min_objectid
)
5898 struct btrfs_key found_key
;
5899 struct extent_buffer
*leaf
;
5904 if (path
->slots
[0] == 0) {
5905 btrfs_set_path_blocking(path
);
5906 ret
= btrfs_prev_leaf(root
, path
);
5912 leaf
= path
->nodes
[0];
5913 nritems
= btrfs_header_nritems(leaf
);
5916 if (path
->slots
[0] == nritems
)
5919 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5920 if (found_key
.objectid
< min_objectid
)
5922 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5923 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5925 if (found_key
.objectid
== min_objectid
&&
5926 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)