]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ctree.c
Btrfs: optimize read_block_for_search
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 return path;
51 }
52
53 /*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 }
69 }
70
71 /*
72 * reset all the locked nodes in the patch to spinning locks.
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
78 */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
81 {
82 int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85 /* lockdep really cares that we take all of these spinlocks
86 * in the right order. If any of the locks in the path are not
87 * currently blocking, it is going to complain. So, make really
88 * really sure by forcing the path to blocking before we clear
89 * the path blocking.
90 */
91 if (held) {
92 btrfs_set_lock_blocking_rw(held, held_rw);
93 if (held_rw == BTRFS_WRITE_LOCK)
94 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 else if (held_rw == BTRFS_READ_LOCK)
96 held_rw = BTRFS_READ_LOCK_BLOCKING;
97 }
98 btrfs_set_path_blocking(p);
99 #endif
100
101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102 if (p->nodes[i] && p->locks[i]) {
103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 p->locks[i] = BTRFS_WRITE_LOCK;
106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 p->locks[i] = BTRFS_READ_LOCK;
108 }
109 }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112 if (held)
113 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120 if (!p)
121 return;
122 btrfs_release_path(p);
123 kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127 * path release drops references on the extent buffers in the path
128 * and it drops any locks held by this path
129 *
130 * It is safe to call this on paths that no locks or extent buffers held.
131 */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134 int i;
135
136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137 p->slots[i] = 0;
138 if (!p->nodes[i])
139 continue;
140 if (p->locks[i]) {
141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142 p->locks[i] = 0;
143 }
144 free_extent_buffer(p->nodes[i]);
145 p->nodes[i] = NULL;
146 }
147 }
148
149 /*
150 * safely gets a reference on the root node of a tree. A lock
151 * is not taken, so a concurrent writer may put a different node
152 * at the root of the tree. See btrfs_lock_root_node for the
153 * looping required.
154 *
155 * The extent buffer returned by this has a reference taken, so
156 * it won't disappear. It may stop being the root of the tree
157 * at any time because there are no locks held.
158 */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161 struct extent_buffer *eb;
162
163 while (1) {
164 rcu_read_lock();
165 eb = rcu_dereference(root->node);
166
167 /*
168 * RCU really hurts here, we could free up the root node because
169 * it was cow'ed but we may not get the new root node yet so do
170 * the inc_not_zero dance and if it doesn't work then
171 * synchronize_rcu and try again.
172 */
173 if (atomic_inc_not_zero(&eb->refs)) {
174 rcu_read_unlock();
175 break;
176 }
177 rcu_read_unlock();
178 synchronize_rcu();
179 }
180 return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184 * tree until you end up with a lock on the root. A locked buffer
185 * is returned, with a reference held.
186 */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189 struct extent_buffer *eb;
190
191 while (1) {
192 eb = btrfs_root_node(root);
193 btrfs_tree_lock(eb);
194 if (eb == root->node)
195 break;
196 btrfs_tree_unlock(eb);
197 free_extent_buffer(eb);
198 }
199 return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203 * tree until you end up with a lock on the root. A locked buffer
204 * is returned, with a reference held.
205 */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208 struct extent_buffer *eb;
209
210 while (1) {
211 eb = btrfs_root_node(root);
212 btrfs_tree_read_lock(eb);
213 if (eb == root->node)
214 break;
215 btrfs_tree_read_unlock(eb);
216 free_extent_buffer(eb);
217 }
218 return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222 * put onto a simple dirty list. transaction.c walks this to make sure they
223 * get properly updated on disk.
224 */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227 spin_lock(&root->fs_info->trans_lock);
228 if (root->track_dirty && list_empty(&root->dirty_list)) {
229 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots);
231 }
232 spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 struct extent_buffer *cow;
246 int ret = 0;
247 int level;
248 struct btrfs_disk_key disk_key;
249
250 WARN_ON(root->ref_cows && trans->transid !=
251 root->fs_info->running_transaction->transid);
252 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254 level = btrfs_header_level(buf);
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
259
260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 new_root_objectid, &disk_key, level,
262 buf->start, 0);
263 if (IS_ERR(cow))
264 return PTR_ERR(cow);
265
266 copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 btrfs_set_header_bytenr(cow, cow->start);
268 btrfs_set_header_generation(cow, trans->transid);
269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 BTRFS_HEADER_FLAG_RELOC);
272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 else
275 btrfs_set_header_owner(cow, new_root_objectid);
276
277 write_extent_buffer(cow, root->fs_info->fsid,
278 (unsigned long)btrfs_header_fsid(cow),
279 BTRFS_FSID_SIZE);
280
281 WARN_ON(btrfs_header_generation(buf) > trans->transid);
282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284 else
285 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286
287 if (ret)
288 return ret;
289
290 btrfs_mark_buffer_dirty(cow);
291 *cow_ret = cow;
292 return 0;
293 }
294
295 enum mod_log_op {
296 MOD_LOG_KEY_REPLACE,
297 MOD_LOG_KEY_ADD,
298 MOD_LOG_KEY_REMOVE,
299 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301 MOD_LOG_MOVE_KEYS,
302 MOD_LOG_ROOT_REPLACE,
303 };
304
305 struct tree_mod_move {
306 int dst_slot;
307 int nr_items;
308 };
309
310 struct tree_mod_root {
311 u64 logical;
312 u8 level;
313 };
314
315 struct tree_mod_elem {
316 struct rb_node node;
317 u64 index; /* shifted logical */
318 u64 seq;
319 enum mod_log_op op;
320
321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 int slot;
323
324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 u64 generation;
326
327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328 struct btrfs_disk_key key;
329 u64 blockptr;
330
331 /* this is used for op == MOD_LOG_MOVE_KEYS */
332 struct tree_mod_move move;
333
334 /* this is used for op == MOD_LOG_ROOT_REPLACE */
335 struct tree_mod_root old_root;
336 };
337
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340 read_lock(&fs_info->tree_mod_log_lock);
341 }
342
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345 read_unlock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350 write_lock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355 write_unlock(&fs_info->tree_mod_log_lock);
356 }
357
358 /*
359 * Increment the upper half of tree_mod_seq, set lower half zero.
360 *
361 * Must be called with fs_info->tree_mod_seq_lock held.
362 */
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365 u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366 seq &= 0xffffffff00000000ull;
367 seq += 1ull << 32;
368 atomic64_set(&fs_info->tree_mod_seq, seq);
369 return seq;
370 }
371
372 /*
373 * Increment the lower half of tree_mod_seq.
374 *
375 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376 * are generated should not technically require a spin lock here. (Rationale:
377 * incrementing the minor while incrementing the major seq number is between its
378 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379 * just returns a unique sequence number as usual.) We have decided to leave
380 * that requirement in here and rethink it once we notice it really imposes a
381 * problem on some workload.
382 */
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385 return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387
388 /*
389 * return the last minor in the previous major tree_mod_seq number
390 */
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393 return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395
396 /*
397 * This adds a new blocker to the tree mod log's blocker list if the @elem
398 * passed does not already have a sequence number set. So when a caller expects
399 * to record tree modifications, it should ensure to set elem->seq to zero
400 * before calling btrfs_get_tree_mod_seq.
401 * Returns a fresh, unused tree log modification sequence number, even if no new
402 * blocker was added.
403 */
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405 struct seq_list *elem)
406 {
407 u64 seq;
408
409 tree_mod_log_write_lock(fs_info);
410 spin_lock(&fs_info->tree_mod_seq_lock);
411 if (!elem->seq) {
412 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414 }
415 seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416 spin_unlock(&fs_info->tree_mod_seq_lock);
417 tree_mod_log_write_unlock(fs_info);
418
419 return seq;
420 }
421
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423 struct seq_list *elem)
424 {
425 struct rb_root *tm_root;
426 struct rb_node *node;
427 struct rb_node *next;
428 struct seq_list *cur_elem;
429 struct tree_mod_elem *tm;
430 u64 min_seq = (u64)-1;
431 u64 seq_putting = elem->seq;
432
433 if (!seq_putting)
434 return;
435
436 spin_lock(&fs_info->tree_mod_seq_lock);
437 list_del(&elem->list);
438 elem->seq = 0;
439
440 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441 if (cur_elem->seq < min_seq) {
442 if (seq_putting > cur_elem->seq) {
443 /*
444 * blocker with lower sequence number exists, we
445 * cannot remove anything from the log
446 */
447 spin_unlock(&fs_info->tree_mod_seq_lock);
448 return;
449 }
450 min_seq = cur_elem->seq;
451 }
452 }
453 spin_unlock(&fs_info->tree_mod_seq_lock);
454
455 /*
456 * anything that's lower than the lowest existing (read: blocked)
457 * sequence number can be removed from the tree.
458 */
459 tree_mod_log_write_lock(fs_info);
460 tm_root = &fs_info->tree_mod_log;
461 for (node = rb_first(tm_root); node; node = next) {
462 next = rb_next(node);
463 tm = container_of(node, struct tree_mod_elem, node);
464 if (tm->seq > min_seq)
465 continue;
466 rb_erase(node, tm_root);
467 kfree(tm);
468 }
469 tree_mod_log_write_unlock(fs_info);
470 }
471
472 /*
473 * key order of the log:
474 * index -> sequence
475 *
476 * the index is the shifted logical of the *new* root node for root replace
477 * operations, or the shifted logical of the affected block for all other
478 * operations.
479 */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483 struct rb_root *tm_root;
484 struct rb_node **new;
485 struct rb_node *parent = NULL;
486 struct tree_mod_elem *cur;
487
488 BUG_ON(!tm || !tm->seq);
489
490 tm_root = &fs_info->tree_mod_log;
491 new = &tm_root->rb_node;
492 while (*new) {
493 cur = container_of(*new, struct tree_mod_elem, node);
494 parent = *new;
495 if (cur->index < tm->index)
496 new = &((*new)->rb_left);
497 else if (cur->index > tm->index)
498 new = &((*new)->rb_right);
499 else if (cur->seq < tm->seq)
500 new = &((*new)->rb_left);
501 else if (cur->seq > tm->seq)
502 new = &((*new)->rb_right);
503 else {
504 kfree(tm);
505 return -EEXIST;
506 }
507 }
508
509 rb_link_node(&tm->node, parent, new);
510 rb_insert_color(&tm->node, tm_root);
511 return 0;
512 }
513
514 /*
515 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516 * returns zero with the tree_mod_log_lock acquired. The caller must hold
517 * this until all tree mod log insertions are recorded in the rb tree and then
518 * call tree_mod_log_write_unlock() to release.
519 */
520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521 struct extent_buffer *eb) {
522 smp_mb();
523 if (list_empty(&(fs_info)->tree_mod_seq_list))
524 return 1;
525 if (eb && btrfs_header_level(eb) == 0)
526 return 1;
527
528 tree_mod_log_write_lock(fs_info);
529 if (list_empty(&fs_info->tree_mod_seq_list)) {
530 /*
531 * someone emptied the list while we were waiting for the lock.
532 * we must not add to the list when no blocker exists.
533 */
534 tree_mod_log_write_unlock(fs_info);
535 return 1;
536 }
537
538 return 0;
539 }
540
541 /*
542 * This allocates memory and gets a tree modification sequence number.
543 *
544 * Returns <0 on error.
545 * Returns >0 (the added sequence number) on success.
546 */
547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548 struct tree_mod_elem **tm_ret)
549 {
550 struct tree_mod_elem *tm;
551
552 /*
553 * once we switch from spin locks to something different, we should
554 * honor the flags parameter here.
555 */
556 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
557 if (!tm)
558 return -ENOMEM;
559
560 spin_lock(&fs_info->tree_mod_seq_lock);
561 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562 spin_unlock(&fs_info->tree_mod_seq_lock);
563
564 return tm->seq;
565 }
566
567 static inline int
568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int slot,
570 enum mod_log_op op, gfp_t flags)
571 {
572 int ret;
573 struct tree_mod_elem *tm;
574
575 ret = tree_mod_alloc(fs_info, flags, &tm);
576 if (ret < 0)
577 return ret;
578
579 tm->index = eb->start >> PAGE_CACHE_SHIFT;
580 if (op != MOD_LOG_KEY_ADD) {
581 btrfs_node_key(eb, &tm->key, slot);
582 tm->blockptr = btrfs_node_blockptr(eb, slot);
583 }
584 tm->op = op;
585 tm->slot = slot;
586 tm->generation = btrfs_node_ptr_generation(eb, slot);
587
588 return __tree_mod_log_insert(fs_info, tm);
589 }
590
591 static noinline int
592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593 struct extent_buffer *eb, int slot,
594 enum mod_log_op op, gfp_t flags)
595 {
596 int ret;
597
598 if (tree_mod_dont_log(fs_info, eb))
599 return 0;
600
601 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
602
603 tree_mod_log_write_unlock(fs_info);
604 return ret;
605 }
606
607 static noinline int
608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609 int slot, enum mod_log_op op)
610 {
611 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
612 }
613
614 static noinline int
615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616 struct extent_buffer *eb, int slot,
617 enum mod_log_op op)
618 {
619 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
620 }
621
622 static noinline int
623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624 struct extent_buffer *eb, int dst_slot, int src_slot,
625 int nr_items, gfp_t flags)
626 {
627 struct tree_mod_elem *tm;
628 int ret;
629 int i;
630
631 if (tree_mod_dont_log(fs_info, eb))
632 return 0;
633
634 /*
635 * When we override something during the move, we log these removals.
636 * This can only happen when we move towards the beginning of the
637 * buffer, i.e. dst_slot < src_slot.
638 */
639 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
642 BUG_ON(ret < 0);
643 }
644
645 ret = tree_mod_alloc(fs_info, flags, &tm);
646 if (ret < 0)
647 goto out;
648
649 tm->index = eb->start >> PAGE_CACHE_SHIFT;
650 tm->slot = src_slot;
651 tm->move.dst_slot = dst_slot;
652 tm->move.nr_items = nr_items;
653 tm->op = MOD_LOG_MOVE_KEYS;
654
655 ret = __tree_mod_log_insert(fs_info, tm);
656 out:
657 tree_mod_log_write_unlock(fs_info);
658 return ret;
659 }
660
661 static inline void
662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
663 {
664 int i;
665 u32 nritems;
666 int ret;
667
668 if (btrfs_header_level(eb) == 0)
669 return;
670
671 nritems = btrfs_header_nritems(eb);
672 for (i = nritems - 1; i >= 0; i--) {
673 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
675 BUG_ON(ret < 0);
676 }
677 }
678
679 static noinline int
680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681 struct extent_buffer *old_root,
682 struct extent_buffer *new_root, gfp_t flags,
683 int log_removal)
684 {
685 struct tree_mod_elem *tm;
686 int ret;
687
688 if (tree_mod_dont_log(fs_info, NULL))
689 return 0;
690
691 if (log_removal)
692 __tree_mod_log_free_eb(fs_info, old_root);
693
694 ret = tree_mod_alloc(fs_info, flags, &tm);
695 if (ret < 0)
696 goto out;
697
698 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699 tm->old_root.logical = old_root->start;
700 tm->old_root.level = btrfs_header_level(old_root);
701 tm->generation = btrfs_header_generation(old_root);
702 tm->op = MOD_LOG_ROOT_REPLACE;
703
704 ret = __tree_mod_log_insert(fs_info, tm);
705 out:
706 tree_mod_log_write_unlock(fs_info);
707 return ret;
708 }
709
710 static struct tree_mod_elem *
711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712 int smallest)
713 {
714 struct rb_root *tm_root;
715 struct rb_node *node;
716 struct tree_mod_elem *cur = NULL;
717 struct tree_mod_elem *found = NULL;
718 u64 index = start >> PAGE_CACHE_SHIFT;
719
720 tree_mod_log_read_lock(fs_info);
721 tm_root = &fs_info->tree_mod_log;
722 node = tm_root->rb_node;
723 while (node) {
724 cur = container_of(node, struct tree_mod_elem, node);
725 if (cur->index < index) {
726 node = node->rb_left;
727 } else if (cur->index > index) {
728 node = node->rb_right;
729 } else if (cur->seq < min_seq) {
730 node = node->rb_left;
731 } else if (!smallest) {
732 /* we want the node with the highest seq */
733 if (found)
734 BUG_ON(found->seq > cur->seq);
735 found = cur;
736 node = node->rb_left;
737 } else if (cur->seq > min_seq) {
738 /* we want the node with the smallest seq */
739 if (found)
740 BUG_ON(found->seq < cur->seq);
741 found = cur;
742 node = node->rb_right;
743 } else {
744 found = cur;
745 break;
746 }
747 }
748 tree_mod_log_read_unlock(fs_info);
749
750 return found;
751 }
752
753 /*
754 * this returns the element from the log with the smallest time sequence
755 * value that's in the log (the oldest log item). any element with a time
756 * sequence lower than min_seq will be ignored.
757 */
758 static struct tree_mod_elem *
759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760 u64 min_seq)
761 {
762 return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764
765 /*
766 * this returns the element from the log with the largest time sequence
767 * value that's in the log (the most recent log item). any element with
768 * a time sequence lower than min_seq will be ignored.
769 */
770 static struct tree_mod_elem *
771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773 return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775
776 static noinline void
777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778 struct extent_buffer *src, unsigned long dst_offset,
779 unsigned long src_offset, int nr_items)
780 {
781 int ret;
782 int i;
783
784 if (tree_mod_dont_log(fs_info, NULL))
785 return;
786
787 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788 tree_mod_log_write_unlock(fs_info);
789 return;
790 }
791
792 for (i = 0; i < nr_items; i++) {
793 ret = tree_mod_log_insert_key_locked(fs_info, src,
794 i + src_offset,
795 MOD_LOG_KEY_REMOVE);
796 BUG_ON(ret < 0);
797 ret = tree_mod_log_insert_key_locked(fs_info, dst,
798 i + dst_offset,
799 MOD_LOG_KEY_ADD);
800 BUG_ON(ret < 0);
801 }
802
803 tree_mod_log_write_unlock(fs_info);
804 }
805
806 static inline void
807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808 int dst_offset, int src_offset, int nr_items)
809 {
810 int ret;
811 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
812 nr_items, GFP_NOFS);
813 BUG_ON(ret < 0);
814 }
815
816 static noinline void
817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818 struct extent_buffer *eb, int slot, int atomic)
819 {
820 int ret;
821
822 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
823 MOD_LOG_KEY_REPLACE,
824 atomic ? GFP_ATOMIC : GFP_NOFS);
825 BUG_ON(ret < 0);
826 }
827
828 static noinline void
829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
830 {
831 if (tree_mod_dont_log(fs_info, eb))
832 return;
833
834 __tree_mod_log_free_eb(fs_info, eb);
835
836 tree_mod_log_write_unlock(fs_info);
837 }
838
839 static noinline void
840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841 struct extent_buffer *new_root_node,
842 int log_removal)
843 {
844 int ret;
845 ret = tree_mod_log_insert_root(root->fs_info, root->node,
846 new_root_node, GFP_NOFS, log_removal);
847 BUG_ON(ret < 0);
848 }
849
850 /*
851 * check if the tree block can be shared by multiple trees
852 */
853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854 struct extent_buffer *buf)
855 {
856 /*
857 * Tree blocks not in refernece counted trees and tree roots
858 * are never shared. If a block was allocated after the last
859 * snapshot and the block was not allocated by tree relocation,
860 * we know the block is not shared.
861 */
862 if (root->ref_cows &&
863 buf != root->node && buf != root->commit_root &&
864 (btrfs_header_generation(buf) <=
865 btrfs_root_last_snapshot(&root->root_item) ||
866 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
867 return 1;
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869 if (root->ref_cows &&
870 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
871 return 1;
872 #endif
873 return 0;
874 }
875
876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877 struct btrfs_root *root,
878 struct extent_buffer *buf,
879 struct extent_buffer *cow,
880 int *last_ref)
881 {
882 u64 refs;
883 u64 owner;
884 u64 flags;
885 u64 new_flags = 0;
886 int ret;
887
888 /*
889 * Backrefs update rules:
890 *
891 * Always use full backrefs for extent pointers in tree block
892 * allocated by tree relocation.
893 *
894 * If a shared tree block is no longer referenced by its owner
895 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896 * use full backrefs for extent pointers in tree block.
897 *
898 * If a tree block is been relocating
899 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900 * use full backrefs for extent pointers in tree block.
901 * The reason for this is some operations (such as drop tree)
902 * are only allowed for blocks use full backrefs.
903 */
904
905 if (btrfs_block_can_be_shared(root, buf)) {
906 ret = btrfs_lookup_extent_info(trans, root, buf->start,
907 btrfs_header_level(buf), 1,
908 &refs, &flags);
909 if (ret)
910 return ret;
911 if (refs == 0) {
912 ret = -EROFS;
913 btrfs_std_error(root->fs_info, ret);
914 return ret;
915 }
916 } else {
917 refs = 1;
918 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
921 else
922 flags = 0;
923 }
924
925 owner = btrfs_header_owner(buf);
926 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
928
929 if (refs > 1) {
930 if ((owner == root->root_key.objectid ||
931 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934 BUG_ON(ret); /* -ENOMEM */
935
936 if (root->root_key.objectid ==
937 BTRFS_TREE_RELOC_OBJECTID) {
938 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939 BUG_ON(ret); /* -ENOMEM */
940 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941 BUG_ON(ret); /* -ENOMEM */
942 }
943 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
944 } else {
945
946 if (root->root_key.objectid ==
947 BTRFS_TREE_RELOC_OBJECTID)
948 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
949 else
950 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951 BUG_ON(ret); /* -ENOMEM */
952 }
953 if (new_flags != 0) {
954 int level = btrfs_header_level(buf);
955
956 ret = btrfs_set_disk_extent_flags(trans, root,
957 buf->start,
958 buf->len,
959 new_flags, level, 0);
960 if (ret)
961 return ret;
962 }
963 } else {
964 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
965 if (root->root_key.objectid ==
966 BTRFS_TREE_RELOC_OBJECTID)
967 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
968 else
969 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
970 BUG_ON(ret); /* -ENOMEM */
971 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
972 BUG_ON(ret); /* -ENOMEM */
973 }
974 clean_tree_block(trans, root, buf);
975 *last_ref = 1;
976 }
977 return 0;
978 }
979
980 /*
981 * does the dirty work in cow of a single block. The parent block (if
982 * supplied) is updated to point to the new cow copy. The new buffer is marked
983 * dirty and returned locked. If you modify the block it needs to be marked
984 * dirty again.
985 *
986 * search_start -- an allocation hint for the new block
987 *
988 * empty_size -- a hint that you plan on doing more cow. This is the size in
989 * bytes the allocator should try to find free next to the block it returns.
990 * This is just a hint and may be ignored by the allocator.
991 */
992 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
993 struct btrfs_root *root,
994 struct extent_buffer *buf,
995 struct extent_buffer *parent, int parent_slot,
996 struct extent_buffer **cow_ret,
997 u64 search_start, u64 empty_size)
998 {
999 struct btrfs_disk_key disk_key;
1000 struct extent_buffer *cow;
1001 int level, ret;
1002 int last_ref = 0;
1003 int unlock_orig = 0;
1004 u64 parent_start;
1005
1006 if (*cow_ret == buf)
1007 unlock_orig = 1;
1008
1009 btrfs_assert_tree_locked(buf);
1010
1011 WARN_ON(root->ref_cows && trans->transid !=
1012 root->fs_info->running_transaction->transid);
1013 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1014
1015 level = btrfs_header_level(buf);
1016
1017 if (level == 0)
1018 btrfs_item_key(buf, &disk_key, 0);
1019 else
1020 btrfs_node_key(buf, &disk_key, 0);
1021
1022 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1023 if (parent)
1024 parent_start = parent->start;
1025 else
1026 parent_start = 0;
1027 } else
1028 parent_start = 0;
1029
1030 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1031 root->root_key.objectid, &disk_key,
1032 level, search_start, empty_size);
1033 if (IS_ERR(cow))
1034 return PTR_ERR(cow);
1035
1036 /* cow is set to blocking by btrfs_init_new_buffer */
1037
1038 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1039 btrfs_set_header_bytenr(cow, cow->start);
1040 btrfs_set_header_generation(cow, trans->transid);
1041 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1042 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1043 BTRFS_HEADER_FLAG_RELOC);
1044 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1045 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1046 else
1047 btrfs_set_header_owner(cow, root->root_key.objectid);
1048
1049 write_extent_buffer(cow, root->fs_info->fsid,
1050 (unsigned long)btrfs_header_fsid(cow),
1051 BTRFS_FSID_SIZE);
1052
1053 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1054 if (ret) {
1055 btrfs_abort_transaction(trans, root, ret);
1056 return ret;
1057 }
1058
1059 if (root->ref_cows)
1060 btrfs_reloc_cow_block(trans, root, buf, cow);
1061
1062 if (buf == root->node) {
1063 WARN_ON(parent && parent != buf);
1064 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1065 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1066 parent_start = buf->start;
1067 else
1068 parent_start = 0;
1069
1070 extent_buffer_get(cow);
1071 tree_mod_log_set_root_pointer(root, cow, 1);
1072 rcu_assign_pointer(root->node, cow);
1073
1074 btrfs_free_tree_block(trans, root, buf, parent_start,
1075 last_ref);
1076 free_extent_buffer(buf);
1077 add_root_to_dirty_list(root);
1078 } else {
1079 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080 parent_start = parent->start;
1081 else
1082 parent_start = 0;
1083
1084 WARN_ON(trans->transid != btrfs_header_generation(parent));
1085 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1086 MOD_LOG_KEY_REPLACE);
1087 btrfs_set_node_blockptr(parent, parent_slot,
1088 cow->start);
1089 btrfs_set_node_ptr_generation(parent, parent_slot,
1090 trans->transid);
1091 btrfs_mark_buffer_dirty(parent);
1092 tree_mod_log_free_eb(root->fs_info, buf);
1093 btrfs_free_tree_block(trans, root, buf, parent_start,
1094 last_ref);
1095 }
1096 if (unlock_orig)
1097 btrfs_tree_unlock(buf);
1098 free_extent_buffer_stale(buf);
1099 btrfs_mark_buffer_dirty(cow);
1100 *cow_ret = cow;
1101 return 0;
1102 }
1103
1104 /*
1105 * returns the logical address of the oldest predecessor of the given root.
1106 * entries older than time_seq are ignored.
1107 */
1108 static struct tree_mod_elem *
1109 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1110 struct extent_buffer *eb_root, u64 time_seq)
1111 {
1112 struct tree_mod_elem *tm;
1113 struct tree_mod_elem *found = NULL;
1114 u64 root_logical = eb_root->start;
1115 int looped = 0;
1116
1117 if (!time_seq)
1118 return 0;
1119
1120 /*
1121 * the very last operation that's logged for a root is the replacement
1122 * operation (if it is replaced at all). this has the index of the *new*
1123 * root, making it the very first operation that's logged for this root.
1124 */
1125 while (1) {
1126 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1127 time_seq);
1128 if (!looped && !tm)
1129 return 0;
1130 /*
1131 * if there are no tree operation for the oldest root, we simply
1132 * return it. this should only happen if that (old) root is at
1133 * level 0.
1134 */
1135 if (!tm)
1136 break;
1137
1138 /*
1139 * if there's an operation that's not a root replacement, we
1140 * found the oldest version of our root. normally, we'll find a
1141 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1142 */
1143 if (tm->op != MOD_LOG_ROOT_REPLACE)
1144 break;
1145
1146 found = tm;
1147 root_logical = tm->old_root.logical;
1148 looped = 1;
1149 }
1150
1151 /* if there's no old root to return, return what we found instead */
1152 if (!found)
1153 found = tm;
1154
1155 return found;
1156 }
1157
1158 /*
1159 * tm is a pointer to the first operation to rewind within eb. then, all
1160 * previous operations will be rewinded (until we reach something older than
1161 * time_seq).
1162 */
1163 static void
1164 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1165 struct tree_mod_elem *first_tm)
1166 {
1167 u32 n;
1168 struct rb_node *next;
1169 struct tree_mod_elem *tm = first_tm;
1170 unsigned long o_dst;
1171 unsigned long o_src;
1172 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1173
1174 n = btrfs_header_nritems(eb);
1175 while (tm && tm->seq >= time_seq) {
1176 /*
1177 * all the operations are recorded with the operator used for
1178 * the modification. as we're going backwards, we do the
1179 * opposite of each operation here.
1180 */
1181 switch (tm->op) {
1182 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1183 BUG_ON(tm->slot < n);
1184 /* Fallthrough */
1185 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1186 case MOD_LOG_KEY_REMOVE:
1187 btrfs_set_node_key(eb, &tm->key, tm->slot);
1188 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1189 btrfs_set_node_ptr_generation(eb, tm->slot,
1190 tm->generation);
1191 n++;
1192 break;
1193 case MOD_LOG_KEY_REPLACE:
1194 BUG_ON(tm->slot >= n);
1195 btrfs_set_node_key(eb, &tm->key, tm->slot);
1196 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1197 btrfs_set_node_ptr_generation(eb, tm->slot,
1198 tm->generation);
1199 break;
1200 case MOD_LOG_KEY_ADD:
1201 /* if a move operation is needed it's in the log */
1202 n--;
1203 break;
1204 case MOD_LOG_MOVE_KEYS:
1205 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1206 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1207 memmove_extent_buffer(eb, o_dst, o_src,
1208 tm->move.nr_items * p_size);
1209 break;
1210 case MOD_LOG_ROOT_REPLACE:
1211 /*
1212 * this operation is special. for roots, this must be
1213 * handled explicitly before rewinding.
1214 * for non-roots, this operation may exist if the node
1215 * was a root: root A -> child B; then A gets empty and
1216 * B is promoted to the new root. in the mod log, we'll
1217 * have a root-replace operation for B, a tree block
1218 * that is no root. we simply ignore that operation.
1219 */
1220 break;
1221 }
1222 next = rb_next(&tm->node);
1223 if (!next)
1224 break;
1225 tm = container_of(next, struct tree_mod_elem, node);
1226 if (tm->index != first_tm->index)
1227 break;
1228 }
1229 btrfs_set_header_nritems(eb, n);
1230 }
1231
1232 /*
1233 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1234 * is returned. If rewind operations happen, a fresh buffer is returned. The
1235 * returned buffer is always read-locked. If the returned buffer is not the
1236 * input buffer, the lock on the input buffer is released and the input buffer
1237 * is freed (its refcount is decremented).
1238 */
1239 static struct extent_buffer *
1240 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1241 u64 time_seq)
1242 {
1243 struct extent_buffer *eb_rewin;
1244 struct tree_mod_elem *tm;
1245
1246 if (!time_seq)
1247 return eb;
1248
1249 if (btrfs_header_level(eb) == 0)
1250 return eb;
1251
1252 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1253 if (!tm)
1254 return eb;
1255
1256 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1257 BUG_ON(tm->slot != 0);
1258 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1259 fs_info->tree_root->nodesize);
1260 BUG_ON(!eb_rewin);
1261 btrfs_set_header_bytenr(eb_rewin, eb->start);
1262 btrfs_set_header_backref_rev(eb_rewin,
1263 btrfs_header_backref_rev(eb));
1264 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1265 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1266 } else {
1267 eb_rewin = btrfs_clone_extent_buffer(eb);
1268 BUG_ON(!eb_rewin);
1269 }
1270
1271 extent_buffer_get(eb_rewin);
1272 btrfs_tree_read_unlock(eb);
1273 free_extent_buffer(eb);
1274
1275 extent_buffer_get(eb_rewin);
1276 btrfs_tree_read_lock(eb_rewin);
1277 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1278 WARN_ON(btrfs_header_nritems(eb_rewin) >
1279 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1280
1281 return eb_rewin;
1282 }
1283
1284 /*
1285 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1286 * value. If there are no changes, the current root->root_node is returned. If
1287 * anything changed in between, there's a fresh buffer allocated on which the
1288 * rewind operations are done. In any case, the returned buffer is read locked.
1289 * Returns NULL on error (with no locks held).
1290 */
1291 static inline struct extent_buffer *
1292 get_old_root(struct btrfs_root *root, u64 time_seq)
1293 {
1294 struct tree_mod_elem *tm;
1295 struct extent_buffer *eb = NULL;
1296 struct extent_buffer *eb_root;
1297 struct extent_buffer *old;
1298 struct tree_mod_root *old_root = NULL;
1299 u64 old_generation = 0;
1300 u64 logical;
1301 u32 blocksize;
1302
1303 eb_root = btrfs_read_lock_root_node(root);
1304 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1305 if (!tm)
1306 return eb_root;
1307
1308 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1309 old_root = &tm->old_root;
1310 old_generation = tm->generation;
1311 logical = old_root->logical;
1312 } else {
1313 logical = eb_root->start;
1314 }
1315
1316 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1317 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1318 btrfs_tree_read_unlock(eb_root);
1319 free_extent_buffer(eb_root);
1320 blocksize = btrfs_level_size(root, old_root->level);
1321 old = read_tree_block(root, logical, blocksize, 0);
1322 if (!old || !extent_buffer_uptodate(old)) {
1323 free_extent_buffer(old);
1324 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1325 logical);
1326 WARN_ON(1);
1327 } else {
1328 eb = btrfs_clone_extent_buffer(old);
1329 free_extent_buffer(old);
1330 }
1331 } else if (old_root) {
1332 btrfs_tree_read_unlock(eb_root);
1333 free_extent_buffer(eb_root);
1334 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1335 } else {
1336 eb = btrfs_clone_extent_buffer(eb_root);
1337 btrfs_tree_read_unlock(eb_root);
1338 free_extent_buffer(eb_root);
1339 }
1340
1341 if (!eb)
1342 return NULL;
1343 extent_buffer_get(eb);
1344 btrfs_tree_read_lock(eb);
1345 if (old_root) {
1346 btrfs_set_header_bytenr(eb, eb->start);
1347 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1348 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1349 btrfs_set_header_level(eb, old_root->level);
1350 btrfs_set_header_generation(eb, old_generation);
1351 }
1352 if (tm)
1353 __tree_mod_log_rewind(eb, time_seq, tm);
1354 else
1355 WARN_ON(btrfs_header_level(eb) != 0);
1356 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1357
1358 return eb;
1359 }
1360
1361 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1362 {
1363 struct tree_mod_elem *tm;
1364 int level;
1365 struct extent_buffer *eb_root = btrfs_root_node(root);
1366
1367 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1368 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1369 level = tm->old_root.level;
1370 } else {
1371 level = btrfs_header_level(eb_root);
1372 }
1373 free_extent_buffer(eb_root);
1374
1375 return level;
1376 }
1377
1378 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1379 struct btrfs_root *root,
1380 struct extent_buffer *buf)
1381 {
1382 /* ensure we can see the force_cow */
1383 smp_rmb();
1384
1385 /*
1386 * We do not need to cow a block if
1387 * 1) this block is not created or changed in this transaction;
1388 * 2) this block does not belong to TREE_RELOC tree;
1389 * 3) the root is not forced COW.
1390 *
1391 * What is forced COW:
1392 * when we create snapshot during commiting the transaction,
1393 * after we've finished coping src root, we must COW the shared
1394 * block to ensure the metadata consistency.
1395 */
1396 if (btrfs_header_generation(buf) == trans->transid &&
1397 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1398 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1399 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1400 !root->force_cow)
1401 return 0;
1402 return 1;
1403 }
1404
1405 /*
1406 * cows a single block, see __btrfs_cow_block for the real work.
1407 * This version of it has extra checks so that a block isn't cow'd more than
1408 * once per transaction, as long as it hasn't been written yet
1409 */
1410 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *root, struct extent_buffer *buf,
1412 struct extent_buffer *parent, int parent_slot,
1413 struct extent_buffer **cow_ret)
1414 {
1415 u64 search_start;
1416 int ret;
1417
1418 if (trans->transaction != root->fs_info->running_transaction)
1419 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1420 (unsigned long long)trans->transid,
1421 (unsigned long long)
1422 root->fs_info->running_transaction->transid);
1423
1424 if (trans->transid != root->fs_info->generation)
1425 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1426 (unsigned long long)trans->transid,
1427 (unsigned long long)root->fs_info->generation);
1428
1429 if (!should_cow_block(trans, root, buf)) {
1430 *cow_ret = buf;
1431 return 0;
1432 }
1433
1434 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1435
1436 if (parent)
1437 btrfs_set_lock_blocking(parent);
1438 btrfs_set_lock_blocking(buf);
1439
1440 ret = __btrfs_cow_block(trans, root, buf, parent,
1441 parent_slot, cow_ret, search_start, 0);
1442
1443 trace_btrfs_cow_block(root, buf, *cow_ret);
1444
1445 return ret;
1446 }
1447
1448 /*
1449 * helper function for defrag to decide if two blocks pointed to by a
1450 * node are actually close by
1451 */
1452 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1453 {
1454 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1455 return 1;
1456 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1457 return 1;
1458 return 0;
1459 }
1460
1461 /*
1462 * compare two keys in a memcmp fashion
1463 */
1464 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1465 {
1466 struct btrfs_key k1;
1467
1468 btrfs_disk_key_to_cpu(&k1, disk);
1469
1470 return btrfs_comp_cpu_keys(&k1, k2);
1471 }
1472
1473 /*
1474 * same as comp_keys only with two btrfs_key's
1475 */
1476 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1477 {
1478 if (k1->objectid > k2->objectid)
1479 return 1;
1480 if (k1->objectid < k2->objectid)
1481 return -1;
1482 if (k1->type > k2->type)
1483 return 1;
1484 if (k1->type < k2->type)
1485 return -1;
1486 if (k1->offset > k2->offset)
1487 return 1;
1488 if (k1->offset < k2->offset)
1489 return -1;
1490 return 0;
1491 }
1492
1493 /*
1494 * this is used by the defrag code to go through all the
1495 * leaves pointed to by a node and reallocate them so that
1496 * disk order is close to key order
1497 */
1498 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root, struct extent_buffer *parent,
1500 int start_slot, u64 *last_ret,
1501 struct btrfs_key *progress)
1502 {
1503 struct extent_buffer *cur;
1504 u64 blocknr;
1505 u64 gen;
1506 u64 search_start = *last_ret;
1507 u64 last_block = 0;
1508 u64 other;
1509 u32 parent_nritems;
1510 int end_slot;
1511 int i;
1512 int err = 0;
1513 int parent_level;
1514 int uptodate;
1515 u32 blocksize;
1516 int progress_passed = 0;
1517 struct btrfs_disk_key disk_key;
1518
1519 parent_level = btrfs_header_level(parent);
1520
1521 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1522 WARN_ON(trans->transid != root->fs_info->generation);
1523
1524 parent_nritems = btrfs_header_nritems(parent);
1525 blocksize = btrfs_level_size(root, parent_level - 1);
1526 end_slot = parent_nritems;
1527
1528 if (parent_nritems == 1)
1529 return 0;
1530
1531 btrfs_set_lock_blocking(parent);
1532
1533 for (i = start_slot; i < end_slot; i++) {
1534 int close = 1;
1535
1536 btrfs_node_key(parent, &disk_key, i);
1537 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1538 continue;
1539
1540 progress_passed = 1;
1541 blocknr = btrfs_node_blockptr(parent, i);
1542 gen = btrfs_node_ptr_generation(parent, i);
1543 if (last_block == 0)
1544 last_block = blocknr;
1545
1546 if (i > 0) {
1547 other = btrfs_node_blockptr(parent, i - 1);
1548 close = close_blocks(blocknr, other, blocksize);
1549 }
1550 if (!close && i < end_slot - 2) {
1551 other = btrfs_node_blockptr(parent, i + 1);
1552 close = close_blocks(blocknr, other, blocksize);
1553 }
1554 if (close) {
1555 last_block = blocknr;
1556 continue;
1557 }
1558
1559 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1560 if (cur)
1561 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1562 else
1563 uptodate = 0;
1564 if (!cur || !uptodate) {
1565 if (!cur) {
1566 cur = read_tree_block(root, blocknr,
1567 blocksize, gen);
1568 if (!cur || !extent_buffer_uptodate(cur)) {
1569 free_extent_buffer(cur);
1570 return -EIO;
1571 }
1572 } else if (!uptodate) {
1573 err = btrfs_read_buffer(cur, gen);
1574 if (err) {
1575 free_extent_buffer(cur);
1576 return err;
1577 }
1578 }
1579 }
1580 if (search_start == 0)
1581 search_start = last_block;
1582
1583 btrfs_tree_lock(cur);
1584 btrfs_set_lock_blocking(cur);
1585 err = __btrfs_cow_block(trans, root, cur, parent, i,
1586 &cur, search_start,
1587 min(16 * blocksize,
1588 (end_slot - i) * blocksize));
1589 if (err) {
1590 btrfs_tree_unlock(cur);
1591 free_extent_buffer(cur);
1592 break;
1593 }
1594 search_start = cur->start;
1595 last_block = cur->start;
1596 *last_ret = search_start;
1597 btrfs_tree_unlock(cur);
1598 free_extent_buffer(cur);
1599 }
1600 return err;
1601 }
1602
1603 /*
1604 * The leaf data grows from end-to-front in the node.
1605 * this returns the address of the start of the last item,
1606 * which is the stop of the leaf data stack
1607 */
1608 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1609 struct extent_buffer *leaf)
1610 {
1611 u32 nr = btrfs_header_nritems(leaf);
1612 if (nr == 0)
1613 return BTRFS_LEAF_DATA_SIZE(root);
1614 return btrfs_item_offset_nr(leaf, nr - 1);
1615 }
1616
1617
1618 /*
1619 * search for key in the extent_buffer. The items start at offset p,
1620 * and they are item_size apart. There are 'max' items in p.
1621 *
1622 * the slot in the array is returned via slot, and it points to
1623 * the place where you would insert key if it is not found in
1624 * the array.
1625 *
1626 * slot may point to max if the key is bigger than all of the keys
1627 */
1628 static noinline int generic_bin_search(struct extent_buffer *eb,
1629 unsigned long p,
1630 int item_size, struct btrfs_key *key,
1631 int max, int *slot)
1632 {
1633 int low = 0;
1634 int high = max;
1635 int mid;
1636 int ret;
1637 struct btrfs_disk_key *tmp = NULL;
1638 struct btrfs_disk_key unaligned;
1639 unsigned long offset;
1640 char *kaddr = NULL;
1641 unsigned long map_start = 0;
1642 unsigned long map_len = 0;
1643 int err;
1644
1645 while (low < high) {
1646 mid = (low + high) / 2;
1647 offset = p + mid * item_size;
1648
1649 if (!kaddr || offset < map_start ||
1650 (offset + sizeof(struct btrfs_disk_key)) >
1651 map_start + map_len) {
1652
1653 err = map_private_extent_buffer(eb, offset,
1654 sizeof(struct btrfs_disk_key),
1655 &kaddr, &map_start, &map_len);
1656
1657 if (!err) {
1658 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1659 map_start);
1660 } else {
1661 read_extent_buffer(eb, &unaligned,
1662 offset, sizeof(unaligned));
1663 tmp = &unaligned;
1664 }
1665
1666 } else {
1667 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1668 map_start);
1669 }
1670 ret = comp_keys(tmp, key);
1671
1672 if (ret < 0)
1673 low = mid + 1;
1674 else if (ret > 0)
1675 high = mid;
1676 else {
1677 *slot = mid;
1678 return 0;
1679 }
1680 }
1681 *slot = low;
1682 return 1;
1683 }
1684
1685 /*
1686 * simple bin_search frontend that does the right thing for
1687 * leaves vs nodes
1688 */
1689 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1690 int level, int *slot)
1691 {
1692 if (level == 0)
1693 return generic_bin_search(eb,
1694 offsetof(struct btrfs_leaf, items),
1695 sizeof(struct btrfs_item),
1696 key, btrfs_header_nritems(eb),
1697 slot);
1698 else
1699 return generic_bin_search(eb,
1700 offsetof(struct btrfs_node, ptrs),
1701 sizeof(struct btrfs_key_ptr),
1702 key, btrfs_header_nritems(eb),
1703 slot);
1704 }
1705
1706 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1707 int level, int *slot)
1708 {
1709 return bin_search(eb, key, level, slot);
1710 }
1711
1712 static void root_add_used(struct btrfs_root *root, u32 size)
1713 {
1714 spin_lock(&root->accounting_lock);
1715 btrfs_set_root_used(&root->root_item,
1716 btrfs_root_used(&root->root_item) + size);
1717 spin_unlock(&root->accounting_lock);
1718 }
1719
1720 static void root_sub_used(struct btrfs_root *root, u32 size)
1721 {
1722 spin_lock(&root->accounting_lock);
1723 btrfs_set_root_used(&root->root_item,
1724 btrfs_root_used(&root->root_item) - size);
1725 spin_unlock(&root->accounting_lock);
1726 }
1727
1728 /* given a node and slot number, this reads the blocks it points to. The
1729 * extent buffer is returned with a reference taken (but unlocked).
1730 * NULL is returned on error.
1731 */
1732 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1733 struct extent_buffer *parent, int slot)
1734 {
1735 int level = btrfs_header_level(parent);
1736 struct extent_buffer *eb;
1737
1738 if (slot < 0)
1739 return NULL;
1740 if (slot >= btrfs_header_nritems(parent))
1741 return NULL;
1742
1743 BUG_ON(level == 0);
1744
1745 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1746 btrfs_level_size(root, level - 1),
1747 btrfs_node_ptr_generation(parent, slot));
1748 if (eb && !extent_buffer_uptodate(eb)) {
1749 free_extent_buffer(eb);
1750 eb = NULL;
1751 }
1752
1753 return eb;
1754 }
1755
1756 /*
1757 * node level balancing, used to make sure nodes are in proper order for
1758 * item deletion. We balance from the top down, so we have to make sure
1759 * that a deletion won't leave an node completely empty later on.
1760 */
1761 static noinline int balance_level(struct btrfs_trans_handle *trans,
1762 struct btrfs_root *root,
1763 struct btrfs_path *path, int level)
1764 {
1765 struct extent_buffer *right = NULL;
1766 struct extent_buffer *mid;
1767 struct extent_buffer *left = NULL;
1768 struct extent_buffer *parent = NULL;
1769 int ret = 0;
1770 int wret;
1771 int pslot;
1772 int orig_slot = path->slots[level];
1773 u64 orig_ptr;
1774
1775 if (level == 0)
1776 return 0;
1777
1778 mid = path->nodes[level];
1779
1780 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1781 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1782 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1783
1784 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1785
1786 if (level < BTRFS_MAX_LEVEL - 1) {
1787 parent = path->nodes[level + 1];
1788 pslot = path->slots[level + 1];
1789 }
1790
1791 /*
1792 * deal with the case where there is only one pointer in the root
1793 * by promoting the node below to a root
1794 */
1795 if (!parent) {
1796 struct extent_buffer *child;
1797
1798 if (btrfs_header_nritems(mid) != 1)
1799 return 0;
1800
1801 /* promote the child to a root */
1802 child = read_node_slot(root, mid, 0);
1803 if (!child) {
1804 ret = -EROFS;
1805 btrfs_std_error(root->fs_info, ret);
1806 goto enospc;
1807 }
1808
1809 btrfs_tree_lock(child);
1810 btrfs_set_lock_blocking(child);
1811 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1812 if (ret) {
1813 btrfs_tree_unlock(child);
1814 free_extent_buffer(child);
1815 goto enospc;
1816 }
1817
1818 tree_mod_log_set_root_pointer(root, child, 1);
1819 rcu_assign_pointer(root->node, child);
1820
1821 add_root_to_dirty_list(root);
1822 btrfs_tree_unlock(child);
1823
1824 path->locks[level] = 0;
1825 path->nodes[level] = NULL;
1826 clean_tree_block(trans, root, mid);
1827 btrfs_tree_unlock(mid);
1828 /* once for the path */
1829 free_extent_buffer(mid);
1830
1831 root_sub_used(root, mid->len);
1832 btrfs_free_tree_block(trans, root, mid, 0, 1);
1833 /* once for the root ptr */
1834 free_extent_buffer_stale(mid);
1835 return 0;
1836 }
1837 if (btrfs_header_nritems(mid) >
1838 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1839 return 0;
1840
1841 left = read_node_slot(root, parent, pslot - 1);
1842 if (left) {
1843 btrfs_tree_lock(left);
1844 btrfs_set_lock_blocking(left);
1845 wret = btrfs_cow_block(trans, root, left,
1846 parent, pslot - 1, &left);
1847 if (wret) {
1848 ret = wret;
1849 goto enospc;
1850 }
1851 }
1852 right = read_node_slot(root, parent, pslot + 1);
1853 if (right) {
1854 btrfs_tree_lock(right);
1855 btrfs_set_lock_blocking(right);
1856 wret = btrfs_cow_block(trans, root, right,
1857 parent, pslot + 1, &right);
1858 if (wret) {
1859 ret = wret;
1860 goto enospc;
1861 }
1862 }
1863
1864 /* first, try to make some room in the middle buffer */
1865 if (left) {
1866 orig_slot += btrfs_header_nritems(left);
1867 wret = push_node_left(trans, root, left, mid, 1);
1868 if (wret < 0)
1869 ret = wret;
1870 }
1871
1872 /*
1873 * then try to empty the right most buffer into the middle
1874 */
1875 if (right) {
1876 wret = push_node_left(trans, root, mid, right, 1);
1877 if (wret < 0 && wret != -ENOSPC)
1878 ret = wret;
1879 if (btrfs_header_nritems(right) == 0) {
1880 clean_tree_block(trans, root, right);
1881 btrfs_tree_unlock(right);
1882 del_ptr(root, path, level + 1, pslot + 1);
1883 root_sub_used(root, right->len);
1884 btrfs_free_tree_block(trans, root, right, 0, 1);
1885 free_extent_buffer_stale(right);
1886 right = NULL;
1887 } else {
1888 struct btrfs_disk_key right_key;
1889 btrfs_node_key(right, &right_key, 0);
1890 tree_mod_log_set_node_key(root->fs_info, parent,
1891 pslot + 1, 0);
1892 btrfs_set_node_key(parent, &right_key, pslot + 1);
1893 btrfs_mark_buffer_dirty(parent);
1894 }
1895 }
1896 if (btrfs_header_nritems(mid) == 1) {
1897 /*
1898 * we're not allowed to leave a node with one item in the
1899 * tree during a delete. A deletion from lower in the tree
1900 * could try to delete the only pointer in this node.
1901 * So, pull some keys from the left.
1902 * There has to be a left pointer at this point because
1903 * otherwise we would have pulled some pointers from the
1904 * right
1905 */
1906 if (!left) {
1907 ret = -EROFS;
1908 btrfs_std_error(root->fs_info, ret);
1909 goto enospc;
1910 }
1911 wret = balance_node_right(trans, root, mid, left);
1912 if (wret < 0) {
1913 ret = wret;
1914 goto enospc;
1915 }
1916 if (wret == 1) {
1917 wret = push_node_left(trans, root, left, mid, 1);
1918 if (wret < 0)
1919 ret = wret;
1920 }
1921 BUG_ON(wret == 1);
1922 }
1923 if (btrfs_header_nritems(mid) == 0) {
1924 clean_tree_block(trans, root, mid);
1925 btrfs_tree_unlock(mid);
1926 del_ptr(root, path, level + 1, pslot);
1927 root_sub_used(root, mid->len);
1928 btrfs_free_tree_block(trans, root, mid, 0, 1);
1929 free_extent_buffer_stale(mid);
1930 mid = NULL;
1931 } else {
1932 /* update the parent key to reflect our changes */
1933 struct btrfs_disk_key mid_key;
1934 btrfs_node_key(mid, &mid_key, 0);
1935 tree_mod_log_set_node_key(root->fs_info, parent,
1936 pslot, 0);
1937 btrfs_set_node_key(parent, &mid_key, pslot);
1938 btrfs_mark_buffer_dirty(parent);
1939 }
1940
1941 /* update the path */
1942 if (left) {
1943 if (btrfs_header_nritems(left) > orig_slot) {
1944 extent_buffer_get(left);
1945 /* left was locked after cow */
1946 path->nodes[level] = left;
1947 path->slots[level + 1] -= 1;
1948 path->slots[level] = orig_slot;
1949 if (mid) {
1950 btrfs_tree_unlock(mid);
1951 free_extent_buffer(mid);
1952 }
1953 } else {
1954 orig_slot -= btrfs_header_nritems(left);
1955 path->slots[level] = orig_slot;
1956 }
1957 }
1958 /* double check we haven't messed things up */
1959 if (orig_ptr !=
1960 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1961 BUG();
1962 enospc:
1963 if (right) {
1964 btrfs_tree_unlock(right);
1965 free_extent_buffer(right);
1966 }
1967 if (left) {
1968 if (path->nodes[level] != left)
1969 btrfs_tree_unlock(left);
1970 free_extent_buffer(left);
1971 }
1972 return ret;
1973 }
1974
1975 /* Node balancing for insertion. Here we only split or push nodes around
1976 * when they are completely full. This is also done top down, so we
1977 * have to be pessimistic.
1978 */
1979 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1980 struct btrfs_root *root,
1981 struct btrfs_path *path, int level)
1982 {
1983 struct extent_buffer *right = NULL;
1984 struct extent_buffer *mid;
1985 struct extent_buffer *left = NULL;
1986 struct extent_buffer *parent = NULL;
1987 int ret = 0;
1988 int wret;
1989 int pslot;
1990 int orig_slot = path->slots[level];
1991
1992 if (level == 0)
1993 return 1;
1994
1995 mid = path->nodes[level];
1996 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1997
1998 if (level < BTRFS_MAX_LEVEL - 1) {
1999 parent = path->nodes[level + 1];
2000 pslot = path->slots[level + 1];
2001 }
2002
2003 if (!parent)
2004 return 1;
2005
2006 left = read_node_slot(root, parent, pslot - 1);
2007
2008 /* first, try to make some room in the middle buffer */
2009 if (left) {
2010 u32 left_nr;
2011
2012 btrfs_tree_lock(left);
2013 btrfs_set_lock_blocking(left);
2014
2015 left_nr = btrfs_header_nritems(left);
2016 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2017 wret = 1;
2018 } else {
2019 ret = btrfs_cow_block(trans, root, left, parent,
2020 pslot - 1, &left);
2021 if (ret)
2022 wret = 1;
2023 else {
2024 wret = push_node_left(trans, root,
2025 left, mid, 0);
2026 }
2027 }
2028 if (wret < 0)
2029 ret = wret;
2030 if (wret == 0) {
2031 struct btrfs_disk_key disk_key;
2032 orig_slot += left_nr;
2033 btrfs_node_key(mid, &disk_key, 0);
2034 tree_mod_log_set_node_key(root->fs_info, parent,
2035 pslot, 0);
2036 btrfs_set_node_key(parent, &disk_key, pslot);
2037 btrfs_mark_buffer_dirty(parent);
2038 if (btrfs_header_nritems(left) > orig_slot) {
2039 path->nodes[level] = left;
2040 path->slots[level + 1] -= 1;
2041 path->slots[level] = orig_slot;
2042 btrfs_tree_unlock(mid);
2043 free_extent_buffer(mid);
2044 } else {
2045 orig_slot -=
2046 btrfs_header_nritems(left);
2047 path->slots[level] = orig_slot;
2048 btrfs_tree_unlock(left);
2049 free_extent_buffer(left);
2050 }
2051 return 0;
2052 }
2053 btrfs_tree_unlock(left);
2054 free_extent_buffer(left);
2055 }
2056 right = read_node_slot(root, parent, pslot + 1);
2057
2058 /*
2059 * then try to empty the right most buffer into the middle
2060 */
2061 if (right) {
2062 u32 right_nr;
2063
2064 btrfs_tree_lock(right);
2065 btrfs_set_lock_blocking(right);
2066
2067 right_nr = btrfs_header_nritems(right);
2068 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2069 wret = 1;
2070 } else {
2071 ret = btrfs_cow_block(trans, root, right,
2072 parent, pslot + 1,
2073 &right);
2074 if (ret)
2075 wret = 1;
2076 else {
2077 wret = balance_node_right(trans, root,
2078 right, mid);
2079 }
2080 }
2081 if (wret < 0)
2082 ret = wret;
2083 if (wret == 0) {
2084 struct btrfs_disk_key disk_key;
2085
2086 btrfs_node_key(right, &disk_key, 0);
2087 tree_mod_log_set_node_key(root->fs_info, parent,
2088 pslot + 1, 0);
2089 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2090 btrfs_mark_buffer_dirty(parent);
2091
2092 if (btrfs_header_nritems(mid) <= orig_slot) {
2093 path->nodes[level] = right;
2094 path->slots[level + 1] += 1;
2095 path->slots[level] = orig_slot -
2096 btrfs_header_nritems(mid);
2097 btrfs_tree_unlock(mid);
2098 free_extent_buffer(mid);
2099 } else {
2100 btrfs_tree_unlock(right);
2101 free_extent_buffer(right);
2102 }
2103 return 0;
2104 }
2105 btrfs_tree_unlock(right);
2106 free_extent_buffer(right);
2107 }
2108 return 1;
2109 }
2110
2111 /*
2112 * readahead one full node of leaves, finding things that are close
2113 * to the block in 'slot', and triggering ra on them.
2114 */
2115 static void reada_for_search(struct btrfs_root *root,
2116 struct btrfs_path *path,
2117 int level, int slot, u64 objectid)
2118 {
2119 struct extent_buffer *node;
2120 struct btrfs_disk_key disk_key;
2121 u32 nritems;
2122 u64 search;
2123 u64 target;
2124 u64 nread = 0;
2125 u64 gen;
2126 int direction = path->reada;
2127 struct extent_buffer *eb;
2128 u32 nr;
2129 u32 blocksize;
2130 u32 nscan = 0;
2131
2132 if (level != 1)
2133 return;
2134
2135 if (!path->nodes[level])
2136 return;
2137
2138 node = path->nodes[level];
2139
2140 search = btrfs_node_blockptr(node, slot);
2141 blocksize = btrfs_level_size(root, level - 1);
2142 eb = btrfs_find_tree_block(root, search, blocksize);
2143 if (eb) {
2144 free_extent_buffer(eb);
2145 return;
2146 }
2147
2148 target = search;
2149
2150 nritems = btrfs_header_nritems(node);
2151 nr = slot;
2152
2153 while (1) {
2154 if (direction < 0) {
2155 if (nr == 0)
2156 break;
2157 nr--;
2158 } else if (direction > 0) {
2159 nr++;
2160 if (nr >= nritems)
2161 break;
2162 }
2163 if (path->reada < 0 && objectid) {
2164 btrfs_node_key(node, &disk_key, nr);
2165 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2166 break;
2167 }
2168 search = btrfs_node_blockptr(node, nr);
2169 if ((search <= target && target - search <= 65536) ||
2170 (search > target && search - target <= 65536)) {
2171 gen = btrfs_node_ptr_generation(node, nr);
2172 readahead_tree_block(root, search, blocksize, gen);
2173 nread += blocksize;
2174 }
2175 nscan++;
2176 if ((nread > 65536 || nscan > 32))
2177 break;
2178 }
2179 }
2180
2181 /*
2182 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2183 * cache
2184 */
2185 static noinline int reada_for_balance(struct btrfs_root *root,
2186 struct btrfs_path *path, int level)
2187 {
2188 int slot;
2189 int nritems;
2190 struct extent_buffer *parent;
2191 struct extent_buffer *eb;
2192 u64 gen;
2193 u64 block1 = 0;
2194 u64 block2 = 0;
2195 int ret = 0;
2196 int blocksize;
2197
2198 parent = path->nodes[level + 1];
2199 if (!parent)
2200 return 0;
2201
2202 nritems = btrfs_header_nritems(parent);
2203 slot = path->slots[level + 1];
2204 blocksize = btrfs_level_size(root, level);
2205
2206 if (slot > 0) {
2207 block1 = btrfs_node_blockptr(parent, slot - 1);
2208 gen = btrfs_node_ptr_generation(parent, slot - 1);
2209 eb = btrfs_find_tree_block(root, block1, blocksize);
2210 /*
2211 * if we get -eagain from btrfs_buffer_uptodate, we
2212 * don't want to return eagain here. That will loop
2213 * forever
2214 */
2215 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2216 block1 = 0;
2217 free_extent_buffer(eb);
2218 }
2219 if (slot + 1 < nritems) {
2220 block2 = btrfs_node_blockptr(parent, slot + 1);
2221 gen = btrfs_node_ptr_generation(parent, slot + 1);
2222 eb = btrfs_find_tree_block(root, block2, blocksize);
2223 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2224 block2 = 0;
2225 free_extent_buffer(eb);
2226 }
2227 if (block1 || block2) {
2228 ret = -EAGAIN;
2229
2230 /* release the whole path */
2231 btrfs_release_path(path);
2232
2233 /* read the blocks */
2234 if (block1)
2235 readahead_tree_block(root, block1, blocksize, 0);
2236 if (block2)
2237 readahead_tree_block(root, block2, blocksize, 0);
2238
2239 if (block1) {
2240 eb = read_tree_block(root, block1, blocksize, 0);
2241 free_extent_buffer(eb);
2242 }
2243 if (block2) {
2244 eb = read_tree_block(root, block2, blocksize, 0);
2245 free_extent_buffer(eb);
2246 }
2247 }
2248 return ret;
2249 }
2250
2251
2252 /*
2253 * when we walk down the tree, it is usually safe to unlock the higher layers
2254 * in the tree. The exceptions are when our path goes through slot 0, because
2255 * operations on the tree might require changing key pointers higher up in the
2256 * tree.
2257 *
2258 * callers might also have set path->keep_locks, which tells this code to keep
2259 * the lock if the path points to the last slot in the block. This is part of
2260 * walking through the tree, and selecting the next slot in the higher block.
2261 *
2262 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2263 * if lowest_unlock is 1, level 0 won't be unlocked
2264 */
2265 static noinline void unlock_up(struct btrfs_path *path, int level,
2266 int lowest_unlock, int min_write_lock_level,
2267 int *write_lock_level)
2268 {
2269 int i;
2270 int skip_level = level;
2271 int no_skips = 0;
2272 struct extent_buffer *t;
2273
2274 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2275 if (!path->nodes[i])
2276 break;
2277 if (!path->locks[i])
2278 break;
2279 if (!no_skips && path->slots[i] == 0) {
2280 skip_level = i + 1;
2281 continue;
2282 }
2283 if (!no_skips && path->keep_locks) {
2284 u32 nritems;
2285 t = path->nodes[i];
2286 nritems = btrfs_header_nritems(t);
2287 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2288 skip_level = i + 1;
2289 continue;
2290 }
2291 }
2292 if (skip_level < i && i >= lowest_unlock)
2293 no_skips = 1;
2294
2295 t = path->nodes[i];
2296 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2297 btrfs_tree_unlock_rw(t, path->locks[i]);
2298 path->locks[i] = 0;
2299 if (write_lock_level &&
2300 i > min_write_lock_level &&
2301 i <= *write_lock_level) {
2302 *write_lock_level = i - 1;
2303 }
2304 }
2305 }
2306 }
2307
2308 /*
2309 * This releases any locks held in the path starting at level and
2310 * going all the way up to the root.
2311 *
2312 * btrfs_search_slot will keep the lock held on higher nodes in a few
2313 * corner cases, such as COW of the block at slot zero in the node. This
2314 * ignores those rules, and it should only be called when there are no
2315 * more updates to be done higher up in the tree.
2316 */
2317 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2318 {
2319 int i;
2320
2321 if (path->keep_locks)
2322 return;
2323
2324 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2325 if (!path->nodes[i])
2326 continue;
2327 if (!path->locks[i])
2328 continue;
2329 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2330 path->locks[i] = 0;
2331 }
2332 }
2333
2334 /*
2335 * helper function for btrfs_search_slot. The goal is to find a block
2336 * in cache without setting the path to blocking. If we find the block
2337 * we return zero and the path is unchanged.
2338 *
2339 * If we can't find the block, we set the path blocking and do some
2340 * reada. -EAGAIN is returned and the search must be repeated.
2341 */
2342 static int
2343 read_block_for_search(struct btrfs_trans_handle *trans,
2344 struct btrfs_root *root, struct btrfs_path *p,
2345 struct extent_buffer **eb_ret, int level, int slot,
2346 struct btrfs_key *key, u64 time_seq)
2347 {
2348 u64 blocknr;
2349 u64 gen;
2350 u32 blocksize;
2351 struct extent_buffer *b = *eb_ret;
2352 struct extent_buffer *tmp;
2353 int ret;
2354
2355 blocknr = btrfs_node_blockptr(b, slot);
2356 gen = btrfs_node_ptr_generation(b, slot);
2357 blocksize = btrfs_level_size(root, level - 1);
2358
2359 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2360 if (tmp) {
2361 /* first we do an atomic uptodate check */
2362 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2363 *eb_ret = tmp;
2364 return 0;
2365 }
2366
2367 /* the pages were up to date, but we failed
2368 * the generation number check. Do a full
2369 * read for the generation number that is correct.
2370 * We must do this without dropping locks so
2371 * we can trust our generation number
2372 */
2373 btrfs_set_path_blocking(p);
2374
2375 /* now we're allowed to do a blocking uptodate check */
2376 ret = btrfs_read_buffer(tmp, gen);
2377 if (!ret) {
2378 *eb_ret = tmp;
2379 return 0;
2380 }
2381 free_extent_buffer(tmp);
2382 btrfs_release_path(p);
2383 return -EIO;
2384 }
2385
2386 /*
2387 * reduce lock contention at high levels
2388 * of the btree by dropping locks before
2389 * we read. Don't release the lock on the current
2390 * level because we need to walk this node to figure
2391 * out which blocks to read.
2392 */
2393 btrfs_unlock_up_safe(p, level + 1);
2394 btrfs_set_path_blocking(p);
2395
2396 free_extent_buffer(tmp);
2397 if (p->reada)
2398 reada_for_search(root, p, level, slot, key->objectid);
2399
2400 btrfs_release_path(p);
2401
2402 ret = -EAGAIN;
2403 tmp = read_tree_block(root, blocknr, blocksize, 0);
2404 if (tmp) {
2405 /*
2406 * If the read above didn't mark this buffer up to date,
2407 * it will never end up being up to date. Set ret to EIO now
2408 * and give up so that our caller doesn't loop forever
2409 * on our EAGAINs.
2410 */
2411 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2412 ret = -EIO;
2413 free_extent_buffer(tmp);
2414 }
2415 return ret;
2416 }
2417
2418 /*
2419 * helper function for btrfs_search_slot. This does all of the checks
2420 * for node-level blocks and does any balancing required based on
2421 * the ins_len.
2422 *
2423 * If no extra work was required, zero is returned. If we had to
2424 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2425 * start over
2426 */
2427 static int
2428 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2429 struct btrfs_root *root, struct btrfs_path *p,
2430 struct extent_buffer *b, int level, int ins_len,
2431 int *write_lock_level)
2432 {
2433 int ret;
2434 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2435 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2436 int sret;
2437
2438 if (*write_lock_level < level + 1) {
2439 *write_lock_level = level + 1;
2440 btrfs_release_path(p);
2441 goto again;
2442 }
2443
2444 sret = reada_for_balance(root, p, level);
2445 if (sret)
2446 goto again;
2447
2448 btrfs_set_path_blocking(p);
2449 sret = split_node(trans, root, p, level);
2450 btrfs_clear_path_blocking(p, NULL, 0);
2451
2452 BUG_ON(sret > 0);
2453 if (sret) {
2454 ret = sret;
2455 goto done;
2456 }
2457 b = p->nodes[level];
2458 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2459 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2460 int sret;
2461
2462 if (*write_lock_level < level + 1) {
2463 *write_lock_level = level + 1;
2464 btrfs_release_path(p);
2465 goto again;
2466 }
2467
2468 sret = reada_for_balance(root, p, level);
2469 if (sret)
2470 goto again;
2471
2472 btrfs_set_path_blocking(p);
2473 sret = balance_level(trans, root, p, level);
2474 btrfs_clear_path_blocking(p, NULL, 0);
2475
2476 if (sret) {
2477 ret = sret;
2478 goto done;
2479 }
2480 b = p->nodes[level];
2481 if (!b) {
2482 btrfs_release_path(p);
2483 goto again;
2484 }
2485 BUG_ON(btrfs_header_nritems(b) == 1);
2486 }
2487 return 0;
2488
2489 again:
2490 ret = -EAGAIN;
2491 done:
2492 return ret;
2493 }
2494
2495 /*
2496 * look for key in the tree. path is filled in with nodes along the way
2497 * if key is found, we return zero and you can find the item in the leaf
2498 * level of the path (level 0)
2499 *
2500 * If the key isn't found, the path points to the slot where it should
2501 * be inserted, and 1 is returned. If there are other errors during the
2502 * search a negative error number is returned.
2503 *
2504 * if ins_len > 0, nodes and leaves will be split as we walk down the
2505 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2506 * possible)
2507 */
2508 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2509 *root, struct btrfs_key *key, struct btrfs_path *p, int
2510 ins_len, int cow)
2511 {
2512 struct extent_buffer *b;
2513 int slot;
2514 int ret;
2515 int err;
2516 int level;
2517 int lowest_unlock = 1;
2518 int root_lock;
2519 /* everything at write_lock_level or lower must be write locked */
2520 int write_lock_level = 0;
2521 u8 lowest_level = 0;
2522 int min_write_lock_level;
2523
2524 lowest_level = p->lowest_level;
2525 WARN_ON(lowest_level && ins_len > 0);
2526 WARN_ON(p->nodes[0] != NULL);
2527
2528 if (ins_len < 0) {
2529 lowest_unlock = 2;
2530
2531 /* when we are removing items, we might have to go up to level
2532 * two as we update tree pointers Make sure we keep write
2533 * for those levels as well
2534 */
2535 write_lock_level = 2;
2536 } else if (ins_len > 0) {
2537 /*
2538 * for inserting items, make sure we have a write lock on
2539 * level 1 so we can update keys
2540 */
2541 write_lock_level = 1;
2542 }
2543
2544 if (!cow)
2545 write_lock_level = -1;
2546
2547 if (cow && (p->keep_locks || p->lowest_level))
2548 write_lock_level = BTRFS_MAX_LEVEL;
2549
2550 min_write_lock_level = write_lock_level;
2551
2552 again:
2553 /*
2554 * we try very hard to do read locks on the root
2555 */
2556 root_lock = BTRFS_READ_LOCK;
2557 level = 0;
2558 if (p->search_commit_root) {
2559 /*
2560 * the commit roots are read only
2561 * so we always do read locks
2562 */
2563 b = root->commit_root;
2564 extent_buffer_get(b);
2565 level = btrfs_header_level(b);
2566 if (!p->skip_locking)
2567 btrfs_tree_read_lock(b);
2568 } else {
2569 if (p->skip_locking) {
2570 b = btrfs_root_node(root);
2571 level = btrfs_header_level(b);
2572 } else {
2573 /* we don't know the level of the root node
2574 * until we actually have it read locked
2575 */
2576 b = btrfs_read_lock_root_node(root);
2577 level = btrfs_header_level(b);
2578 if (level <= write_lock_level) {
2579 /* whoops, must trade for write lock */
2580 btrfs_tree_read_unlock(b);
2581 free_extent_buffer(b);
2582 b = btrfs_lock_root_node(root);
2583 root_lock = BTRFS_WRITE_LOCK;
2584
2585 /* the level might have changed, check again */
2586 level = btrfs_header_level(b);
2587 }
2588 }
2589 }
2590 p->nodes[level] = b;
2591 if (!p->skip_locking)
2592 p->locks[level] = root_lock;
2593
2594 while (b) {
2595 level = btrfs_header_level(b);
2596
2597 /*
2598 * setup the path here so we can release it under lock
2599 * contention with the cow code
2600 */
2601 if (cow) {
2602 /*
2603 * if we don't really need to cow this block
2604 * then we don't want to set the path blocking,
2605 * so we test it here
2606 */
2607 if (!should_cow_block(trans, root, b))
2608 goto cow_done;
2609
2610 btrfs_set_path_blocking(p);
2611
2612 /*
2613 * must have write locks on this node and the
2614 * parent
2615 */
2616 if (level > write_lock_level ||
2617 (level + 1 > write_lock_level &&
2618 level + 1 < BTRFS_MAX_LEVEL &&
2619 p->nodes[level + 1])) {
2620 write_lock_level = level + 1;
2621 btrfs_release_path(p);
2622 goto again;
2623 }
2624
2625 err = btrfs_cow_block(trans, root, b,
2626 p->nodes[level + 1],
2627 p->slots[level + 1], &b);
2628 if (err) {
2629 ret = err;
2630 goto done;
2631 }
2632 }
2633 cow_done:
2634 BUG_ON(!cow && ins_len);
2635
2636 p->nodes[level] = b;
2637 btrfs_clear_path_blocking(p, NULL, 0);
2638
2639 /*
2640 * we have a lock on b and as long as we aren't changing
2641 * the tree, there is no way to for the items in b to change.
2642 * It is safe to drop the lock on our parent before we
2643 * go through the expensive btree search on b.
2644 *
2645 * If cow is true, then we might be changing slot zero,
2646 * which may require changing the parent. So, we can't
2647 * drop the lock until after we know which slot we're
2648 * operating on.
2649 */
2650 if (!cow)
2651 btrfs_unlock_up_safe(p, level + 1);
2652
2653 ret = bin_search(b, key, level, &slot);
2654
2655 if (level != 0) {
2656 int dec = 0;
2657 if (ret && slot > 0) {
2658 dec = 1;
2659 slot -= 1;
2660 }
2661 p->slots[level] = slot;
2662 err = setup_nodes_for_search(trans, root, p, b, level,
2663 ins_len, &write_lock_level);
2664 if (err == -EAGAIN)
2665 goto again;
2666 if (err) {
2667 ret = err;
2668 goto done;
2669 }
2670 b = p->nodes[level];
2671 slot = p->slots[level];
2672
2673 /*
2674 * slot 0 is special, if we change the key
2675 * we have to update the parent pointer
2676 * which means we must have a write lock
2677 * on the parent
2678 */
2679 if (slot == 0 && cow &&
2680 write_lock_level < level + 1) {
2681 write_lock_level = level + 1;
2682 btrfs_release_path(p);
2683 goto again;
2684 }
2685
2686 unlock_up(p, level, lowest_unlock,
2687 min_write_lock_level, &write_lock_level);
2688
2689 if (level == lowest_level) {
2690 if (dec)
2691 p->slots[level]++;
2692 goto done;
2693 }
2694
2695 err = read_block_for_search(trans, root, p,
2696 &b, level, slot, key, 0);
2697 if (err == -EAGAIN)
2698 goto again;
2699 if (err) {
2700 ret = err;
2701 goto done;
2702 }
2703
2704 if (!p->skip_locking) {
2705 level = btrfs_header_level(b);
2706 if (level <= write_lock_level) {
2707 err = btrfs_try_tree_write_lock(b);
2708 if (!err) {
2709 btrfs_set_path_blocking(p);
2710 btrfs_tree_lock(b);
2711 btrfs_clear_path_blocking(p, b,
2712 BTRFS_WRITE_LOCK);
2713 }
2714 p->locks[level] = BTRFS_WRITE_LOCK;
2715 } else {
2716 err = btrfs_try_tree_read_lock(b);
2717 if (!err) {
2718 btrfs_set_path_blocking(p);
2719 btrfs_tree_read_lock(b);
2720 btrfs_clear_path_blocking(p, b,
2721 BTRFS_READ_LOCK);
2722 }
2723 p->locks[level] = BTRFS_READ_LOCK;
2724 }
2725 p->nodes[level] = b;
2726 }
2727 } else {
2728 p->slots[level] = slot;
2729 if (ins_len > 0 &&
2730 btrfs_leaf_free_space(root, b) < ins_len) {
2731 if (write_lock_level < 1) {
2732 write_lock_level = 1;
2733 btrfs_release_path(p);
2734 goto again;
2735 }
2736
2737 btrfs_set_path_blocking(p);
2738 err = split_leaf(trans, root, key,
2739 p, ins_len, ret == 0);
2740 btrfs_clear_path_blocking(p, NULL, 0);
2741
2742 BUG_ON(err > 0);
2743 if (err) {
2744 ret = err;
2745 goto done;
2746 }
2747 }
2748 if (!p->search_for_split)
2749 unlock_up(p, level, lowest_unlock,
2750 min_write_lock_level, &write_lock_level);
2751 goto done;
2752 }
2753 }
2754 ret = 1;
2755 done:
2756 /*
2757 * we don't really know what they plan on doing with the path
2758 * from here on, so for now just mark it as blocking
2759 */
2760 if (!p->leave_spinning)
2761 btrfs_set_path_blocking(p);
2762 if (ret < 0)
2763 btrfs_release_path(p);
2764 return ret;
2765 }
2766
2767 /*
2768 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2769 * current state of the tree together with the operations recorded in the tree
2770 * modification log to search for the key in a previous version of this tree, as
2771 * denoted by the time_seq parameter.
2772 *
2773 * Naturally, there is no support for insert, delete or cow operations.
2774 *
2775 * The resulting path and return value will be set up as if we called
2776 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2777 */
2778 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2779 struct btrfs_path *p, u64 time_seq)
2780 {
2781 struct extent_buffer *b;
2782 int slot;
2783 int ret;
2784 int err;
2785 int level;
2786 int lowest_unlock = 1;
2787 u8 lowest_level = 0;
2788
2789 lowest_level = p->lowest_level;
2790 WARN_ON(p->nodes[0] != NULL);
2791
2792 if (p->search_commit_root) {
2793 BUG_ON(time_seq);
2794 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2795 }
2796
2797 again:
2798 b = get_old_root(root, time_seq);
2799 level = btrfs_header_level(b);
2800 p->locks[level] = BTRFS_READ_LOCK;
2801
2802 while (b) {
2803 level = btrfs_header_level(b);
2804 p->nodes[level] = b;
2805 btrfs_clear_path_blocking(p, NULL, 0);
2806
2807 /*
2808 * we have a lock on b and as long as we aren't changing
2809 * the tree, there is no way to for the items in b to change.
2810 * It is safe to drop the lock on our parent before we
2811 * go through the expensive btree search on b.
2812 */
2813 btrfs_unlock_up_safe(p, level + 1);
2814
2815 ret = bin_search(b, key, level, &slot);
2816
2817 if (level != 0) {
2818 int dec = 0;
2819 if (ret && slot > 0) {
2820 dec = 1;
2821 slot -= 1;
2822 }
2823 p->slots[level] = slot;
2824 unlock_up(p, level, lowest_unlock, 0, NULL);
2825
2826 if (level == lowest_level) {
2827 if (dec)
2828 p->slots[level]++;
2829 goto done;
2830 }
2831
2832 err = read_block_for_search(NULL, root, p, &b, level,
2833 slot, key, time_seq);
2834 if (err == -EAGAIN)
2835 goto again;
2836 if (err) {
2837 ret = err;
2838 goto done;
2839 }
2840
2841 level = btrfs_header_level(b);
2842 err = btrfs_try_tree_read_lock(b);
2843 if (!err) {
2844 btrfs_set_path_blocking(p);
2845 btrfs_tree_read_lock(b);
2846 btrfs_clear_path_blocking(p, b,
2847 BTRFS_READ_LOCK);
2848 }
2849 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2850 p->locks[level] = BTRFS_READ_LOCK;
2851 p->nodes[level] = b;
2852 } else {
2853 p->slots[level] = slot;
2854 unlock_up(p, level, lowest_unlock, 0, NULL);
2855 goto done;
2856 }
2857 }
2858 ret = 1;
2859 done:
2860 if (!p->leave_spinning)
2861 btrfs_set_path_blocking(p);
2862 if (ret < 0)
2863 btrfs_release_path(p);
2864
2865 return ret;
2866 }
2867
2868 /*
2869 * helper to use instead of search slot if no exact match is needed but
2870 * instead the next or previous item should be returned.
2871 * When find_higher is true, the next higher item is returned, the next lower
2872 * otherwise.
2873 * When return_any and find_higher are both true, and no higher item is found,
2874 * return the next lower instead.
2875 * When return_any is true and find_higher is false, and no lower item is found,
2876 * return the next higher instead.
2877 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2878 * < 0 on error
2879 */
2880 int btrfs_search_slot_for_read(struct btrfs_root *root,
2881 struct btrfs_key *key, struct btrfs_path *p,
2882 int find_higher, int return_any)
2883 {
2884 int ret;
2885 struct extent_buffer *leaf;
2886
2887 again:
2888 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2889 if (ret <= 0)
2890 return ret;
2891 /*
2892 * a return value of 1 means the path is at the position where the
2893 * item should be inserted. Normally this is the next bigger item,
2894 * but in case the previous item is the last in a leaf, path points
2895 * to the first free slot in the previous leaf, i.e. at an invalid
2896 * item.
2897 */
2898 leaf = p->nodes[0];
2899
2900 if (find_higher) {
2901 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2902 ret = btrfs_next_leaf(root, p);
2903 if (ret <= 0)
2904 return ret;
2905 if (!return_any)
2906 return 1;
2907 /*
2908 * no higher item found, return the next
2909 * lower instead
2910 */
2911 return_any = 0;
2912 find_higher = 0;
2913 btrfs_release_path(p);
2914 goto again;
2915 }
2916 } else {
2917 if (p->slots[0] == 0) {
2918 ret = btrfs_prev_leaf(root, p);
2919 if (ret < 0)
2920 return ret;
2921 if (!ret) {
2922 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2923 return 0;
2924 }
2925 if (!return_any)
2926 return 1;
2927 /*
2928 * no lower item found, return the next
2929 * higher instead
2930 */
2931 return_any = 0;
2932 find_higher = 1;
2933 btrfs_release_path(p);
2934 goto again;
2935 } else {
2936 --p->slots[0];
2937 }
2938 }
2939 return 0;
2940 }
2941
2942 /*
2943 * adjust the pointers going up the tree, starting at level
2944 * making sure the right key of each node is points to 'key'.
2945 * This is used after shifting pointers to the left, so it stops
2946 * fixing up pointers when a given leaf/node is not in slot 0 of the
2947 * higher levels
2948 *
2949 */
2950 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2951 struct btrfs_disk_key *key, int level)
2952 {
2953 int i;
2954 struct extent_buffer *t;
2955
2956 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2957 int tslot = path->slots[i];
2958 if (!path->nodes[i])
2959 break;
2960 t = path->nodes[i];
2961 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2962 btrfs_set_node_key(t, key, tslot);
2963 btrfs_mark_buffer_dirty(path->nodes[i]);
2964 if (tslot != 0)
2965 break;
2966 }
2967 }
2968
2969 /*
2970 * update item key.
2971 *
2972 * This function isn't completely safe. It's the caller's responsibility
2973 * that the new key won't break the order
2974 */
2975 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2976 struct btrfs_key *new_key)
2977 {
2978 struct btrfs_disk_key disk_key;
2979 struct extent_buffer *eb;
2980 int slot;
2981
2982 eb = path->nodes[0];
2983 slot = path->slots[0];
2984 if (slot > 0) {
2985 btrfs_item_key(eb, &disk_key, slot - 1);
2986 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2987 }
2988 if (slot < btrfs_header_nritems(eb) - 1) {
2989 btrfs_item_key(eb, &disk_key, slot + 1);
2990 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2991 }
2992
2993 btrfs_cpu_key_to_disk(&disk_key, new_key);
2994 btrfs_set_item_key(eb, &disk_key, slot);
2995 btrfs_mark_buffer_dirty(eb);
2996 if (slot == 0)
2997 fixup_low_keys(root, path, &disk_key, 1);
2998 }
2999
3000 /*
3001 * try to push data from one node into the next node left in the
3002 * tree.
3003 *
3004 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3005 * error, and > 0 if there was no room in the left hand block.
3006 */
3007 static int push_node_left(struct btrfs_trans_handle *trans,
3008 struct btrfs_root *root, struct extent_buffer *dst,
3009 struct extent_buffer *src, int empty)
3010 {
3011 int push_items = 0;
3012 int src_nritems;
3013 int dst_nritems;
3014 int ret = 0;
3015
3016 src_nritems = btrfs_header_nritems(src);
3017 dst_nritems = btrfs_header_nritems(dst);
3018 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3019 WARN_ON(btrfs_header_generation(src) != trans->transid);
3020 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3021
3022 if (!empty && src_nritems <= 8)
3023 return 1;
3024
3025 if (push_items <= 0)
3026 return 1;
3027
3028 if (empty) {
3029 push_items = min(src_nritems, push_items);
3030 if (push_items < src_nritems) {
3031 /* leave at least 8 pointers in the node if
3032 * we aren't going to empty it
3033 */
3034 if (src_nritems - push_items < 8) {
3035 if (push_items <= 8)
3036 return 1;
3037 push_items -= 8;
3038 }
3039 }
3040 } else
3041 push_items = min(src_nritems - 8, push_items);
3042
3043 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3044 push_items);
3045 copy_extent_buffer(dst, src,
3046 btrfs_node_key_ptr_offset(dst_nritems),
3047 btrfs_node_key_ptr_offset(0),
3048 push_items * sizeof(struct btrfs_key_ptr));
3049
3050 if (push_items < src_nritems) {
3051 /*
3052 * don't call tree_mod_log_eb_move here, key removal was already
3053 * fully logged by tree_mod_log_eb_copy above.
3054 */
3055 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3056 btrfs_node_key_ptr_offset(push_items),
3057 (src_nritems - push_items) *
3058 sizeof(struct btrfs_key_ptr));
3059 }
3060 btrfs_set_header_nritems(src, src_nritems - push_items);
3061 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3062 btrfs_mark_buffer_dirty(src);
3063 btrfs_mark_buffer_dirty(dst);
3064
3065 return ret;
3066 }
3067
3068 /*
3069 * try to push data from one node into the next node right in the
3070 * tree.
3071 *
3072 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3073 * error, and > 0 if there was no room in the right hand block.
3074 *
3075 * this will only push up to 1/2 the contents of the left node over
3076 */
3077 static int balance_node_right(struct btrfs_trans_handle *trans,
3078 struct btrfs_root *root,
3079 struct extent_buffer *dst,
3080 struct extent_buffer *src)
3081 {
3082 int push_items = 0;
3083 int max_push;
3084 int src_nritems;
3085 int dst_nritems;
3086 int ret = 0;
3087
3088 WARN_ON(btrfs_header_generation(src) != trans->transid);
3089 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3090
3091 src_nritems = btrfs_header_nritems(src);
3092 dst_nritems = btrfs_header_nritems(dst);
3093 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3094 if (push_items <= 0)
3095 return 1;
3096
3097 if (src_nritems < 4)
3098 return 1;
3099
3100 max_push = src_nritems / 2 + 1;
3101 /* don't try to empty the node */
3102 if (max_push >= src_nritems)
3103 return 1;
3104
3105 if (max_push < push_items)
3106 push_items = max_push;
3107
3108 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3109 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3110 btrfs_node_key_ptr_offset(0),
3111 (dst_nritems) *
3112 sizeof(struct btrfs_key_ptr));
3113
3114 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3115 src_nritems - push_items, push_items);
3116 copy_extent_buffer(dst, src,
3117 btrfs_node_key_ptr_offset(0),
3118 btrfs_node_key_ptr_offset(src_nritems - push_items),
3119 push_items * sizeof(struct btrfs_key_ptr));
3120
3121 btrfs_set_header_nritems(src, src_nritems - push_items);
3122 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3123
3124 btrfs_mark_buffer_dirty(src);
3125 btrfs_mark_buffer_dirty(dst);
3126
3127 return ret;
3128 }
3129
3130 /*
3131 * helper function to insert a new root level in the tree.
3132 * A new node is allocated, and a single item is inserted to
3133 * point to the existing root
3134 *
3135 * returns zero on success or < 0 on failure.
3136 */
3137 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3138 struct btrfs_root *root,
3139 struct btrfs_path *path, int level)
3140 {
3141 u64 lower_gen;
3142 struct extent_buffer *lower;
3143 struct extent_buffer *c;
3144 struct extent_buffer *old;
3145 struct btrfs_disk_key lower_key;
3146
3147 BUG_ON(path->nodes[level]);
3148 BUG_ON(path->nodes[level-1] != root->node);
3149
3150 lower = path->nodes[level-1];
3151 if (level == 1)
3152 btrfs_item_key(lower, &lower_key, 0);
3153 else
3154 btrfs_node_key(lower, &lower_key, 0);
3155
3156 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3157 root->root_key.objectid, &lower_key,
3158 level, root->node->start, 0);
3159 if (IS_ERR(c))
3160 return PTR_ERR(c);
3161
3162 root_add_used(root, root->nodesize);
3163
3164 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3165 btrfs_set_header_nritems(c, 1);
3166 btrfs_set_header_level(c, level);
3167 btrfs_set_header_bytenr(c, c->start);
3168 btrfs_set_header_generation(c, trans->transid);
3169 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3170 btrfs_set_header_owner(c, root->root_key.objectid);
3171
3172 write_extent_buffer(c, root->fs_info->fsid,
3173 (unsigned long)btrfs_header_fsid(c),
3174 BTRFS_FSID_SIZE);
3175
3176 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3177 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3178 BTRFS_UUID_SIZE);
3179
3180 btrfs_set_node_key(c, &lower_key, 0);
3181 btrfs_set_node_blockptr(c, 0, lower->start);
3182 lower_gen = btrfs_header_generation(lower);
3183 WARN_ON(lower_gen != trans->transid);
3184
3185 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3186
3187 btrfs_mark_buffer_dirty(c);
3188
3189 old = root->node;
3190 tree_mod_log_set_root_pointer(root, c, 0);
3191 rcu_assign_pointer(root->node, c);
3192
3193 /* the super has an extra ref to root->node */
3194 free_extent_buffer(old);
3195
3196 add_root_to_dirty_list(root);
3197 extent_buffer_get(c);
3198 path->nodes[level] = c;
3199 path->locks[level] = BTRFS_WRITE_LOCK;
3200 path->slots[level] = 0;
3201 return 0;
3202 }
3203
3204 /*
3205 * worker function to insert a single pointer in a node.
3206 * the node should have enough room for the pointer already
3207 *
3208 * slot and level indicate where you want the key to go, and
3209 * blocknr is the block the key points to.
3210 */
3211 static void insert_ptr(struct btrfs_trans_handle *trans,
3212 struct btrfs_root *root, struct btrfs_path *path,
3213 struct btrfs_disk_key *key, u64 bytenr,
3214 int slot, int level)
3215 {
3216 struct extent_buffer *lower;
3217 int nritems;
3218 int ret;
3219
3220 BUG_ON(!path->nodes[level]);
3221 btrfs_assert_tree_locked(path->nodes[level]);
3222 lower = path->nodes[level];
3223 nritems = btrfs_header_nritems(lower);
3224 BUG_ON(slot > nritems);
3225 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3226 if (slot != nritems) {
3227 if (level)
3228 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3229 slot, nritems - slot);
3230 memmove_extent_buffer(lower,
3231 btrfs_node_key_ptr_offset(slot + 1),
3232 btrfs_node_key_ptr_offset(slot),
3233 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3234 }
3235 if (level) {
3236 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3237 MOD_LOG_KEY_ADD);
3238 BUG_ON(ret < 0);
3239 }
3240 btrfs_set_node_key(lower, key, slot);
3241 btrfs_set_node_blockptr(lower, slot, bytenr);
3242 WARN_ON(trans->transid == 0);
3243 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3244 btrfs_set_header_nritems(lower, nritems + 1);
3245 btrfs_mark_buffer_dirty(lower);
3246 }
3247
3248 /*
3249 * split the node at the specified level in path in two.
3250 * The path is corrected to point to the appropriate node after the split
3251 *
3252 * Before splitting this tries to make some room in the node by pushing
3253 * left and right, if either one works, it returns right away.
3254 *
3255 * returns 0 on success and < 0 on failure
3256 */
3257 static noinline int split_node(struct btrfs_trans_handle *trans,
3258 struct btrfs_root *root,
3259 struct btrfs_path *path, int level)
3260 {
3261 struct extent_buffer *c;
3262 struct extent_buffer *split;
3263 struct btrfs_disk_key disk_key;
3264 int mid;
3265 int ret;
3266 u32 c_nritems;
3267
3268 c = path->nodes[level];
3269 WARN_ON(btrfs_header_generation(c) != trans->transid);
3270 if (c == root->node) {
3271 /*
3272 * trying to split the root, lets make a new one
3273 *
3274 * tree mod log: We don't log_removal old root in
3275 * insert_new_root, because that root buffer will be kept as a
3276 * normal node. We are going to log removal of half of the
3277 * elements below with tree_mod_log_eb_copy. We're holding a
3278 * tree lock on the buffer, which is why we cannot race with
3279 * other tree_mod_log users.
3280 */
3281 ret = insert_new_root(trans, root, path, level + 1);
3282 if (ret)
3283 return ret;
3284 } else {
3285 ret = push_nodes_for_insert(trans, root, path, level);
3286 c = path->nodes[level];
3287 if (!ret && btrfs_header_nritems(c) <
3288 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3289 return 0;
3290 if (ret < 0)
3291 return ret;
3292 }
3293
3294 c_nritems = btrfs_header_nritems(c);
3295 mid = (c_nritems + 1) / 2;
3296 btrfs_node_key(c, &disk_key, mid);
3297
3298 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3299 root->root_key.objectid,
3300 &disk_key, level, c->start, 0);
3301 if (IS_ERR(split))
3302 return PTR_ERR(split);
3303
3304 root_add_used(root, root->nodesize);
3305
3306 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3307 btrfs_set_header_level(split, btrfs_header_level(c));
3308 btrfs_set_header_bytenr(split, split->start);
3309 btrfs_set_header_generation(split, trans->transid);
3310 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3311 btrfs_set_header_owner(split, root->root_key.objectid);
3312 write_extent_buffer(split, root->fs_info->fsid,
3313 (unsigned long)btrfs_header_fsid(split),
3314 BTRFS_FSID_SIZE);
3315 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3316 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3317 BTRFS_UUID_SIZE);
3318
3319 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3320 copy_extent_buffer(split, c,
3321 btrfs_node_key_ptr_offset(0),
3322 btrfs_node_key_ptr_offset(mid),
3323 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3324 btrfs_set_header_nritems(split, c_nritems - mid);
3325 btrfs_set_header_nritems(c, mid);
3326 ret = 0;
3327
3328 btrfs_mark_buffer_dirty(c);
3329 btrfs_mark_buffer_dirty(split);
3330
3331 insert_ptr(trans, root, path, &disk_key, split->start,
3332 path->slots[level + 1] + 1, level + 1);
3333
3334 if (path->slots[level] >= mid) {
3335 path->slots[level] -= mid;
3336 btrfs_tree_unlock(c);
3337 free_extent_buffer(c);
3338 path->nodes[level] = split;
3339 path->slots[level + 1] += 1;
3340 } else {
3341 btrfs_tree_unlock(split);
3342 free_extent_buffer(split);
3343 }
3344 return ret;
3345 }
3346
3347 /*
3348 * how many bytes are required to store the items in a leaf. start
3349 * and nr indicate which items in the leaf to check. This totals up the
3350 * space used both by the item structs and the item data
3351 */
3352 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3353 {
3354 struct btrfs_item *start_item;
3355 struct btrfs_item *end_item;
3356 struct btrfs_map_token token;
3357 int data_len;
3358 int nritems = btrfs_header_nritems(l);
3359 int end = min(nritems, start + nr) - 1;
3360
3361 if (!nr)
3362 return 0;
3363 btrfs_init_map_token(&token);
3364 start_item = btrfs_item_nr(l, start);
3365 end_item = btrfs_item_nr(l, end);
3366 data_len = btrfs_token_item_offset(l, start_item, &token) +
3367 btrfs_token_item_size(l, start_item, &token);
3368 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3369 data_len += sizeof(struct btrfs_item) * nr;
3370 WARN_ON(data_len < 0);
3371 return data_len;
3372 }
3373
3374 /*
3375 * The space between the end of the leaf items and
3376 * the start of the leaf data. IOW, how much room
3377 * the leaf has left for both items and data
3378 */
3379 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3380 struct extent_buffer *leaf)
3381 {
3382 int nritems = btrfs_header_nritems(leaf);
3383 int ret;
3384 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3385 if (ret < 0) {
3386 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3387 "used %d nritems %d\n",
3388 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3389 leaf_space_used(leaf, 0, nritems), nritems);
3390 }
3391 return ret;
3392 }
3393
3394 /*
3395 * min slot controls the lowest index we're willing to push to the
3396 * right. We'll push up to and including min_slot, but no lower
3397 */
3398 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3399 struct btrfs_root *root,
3400 struct btrfs_path *path,
3401 int data_size, int empty,
3402 struct extent_buffer *right,
3403 int free_space, u32 left_nritems,
3404 u32 min_slot)
3405 {
3406 struct extent_buffer *left = path->nodes[0];
3407 struct extent_buffer *upper = path->nodes[1];
3408 struct btrfs_map_token token;
3409 struct btrfs_disk_key disk_key;
3410 int slot;
3411 u32 i;
3412 int push_space = 0;
3413 int push_items = 0;
3414 struct btrfs_item *item;
3415 u32 nr;
3416 u32 right_nritems;
3417 u32 data_end;
3418 u32 this_item_size;
3419
3420 btrfs_init_map_token(&token);
3421
3422 if (empty)
3423 nr = 0;
3424 else
3425 nr = max_t(u32, 1, min_slot);
3426
3427 if (path->slots[0] >= left_nritems)
3428 push_space += data_size;
3429
3430 slot = path->slots[1];
3431 i = left_nritems - 1;
3432 while (i >= nr) {
3433 item = btrfs_item_nr(left, i);
3434
3435 if (!empty && push_items > 0) {
3436 if (path->slots[0] > i)
3437 break;
3438 if (path->slots[0] == i) {
3439 int space = btrfs_leaf_free_space(root, left);
3440 if (space + push_space * 2 > free_space)
3441 break;
3442 }
3443 }
3444
3445 if (path->slots[0] == i)
3446 push_space += data_size;
3447
3448 this_item_size = btrfs_item_size(left, item);
3449 if (this_item_size + sizeof(*item) + push_space > free_space)
3450 break;
3451
3452 push_items++;
3453 push_space += this_item_size + sizeof(*item);
3454 if (i == 0)
3455 break;
3456 i--;
3457 }
3458
3459 if (push_items == 0)
3460 goto out_unlock;
3461
3462 WARN_ON(!empty && push_items == left_nritems);
3463
3464 /* push left to right */
3465 right_nritems = btrfs_header_nritems(right);
3466
3467 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3468 push_space -= leaf_data_end(root, left);
3469
3470 /* make room in the right data area */
3471 data_end = leaf_data_end(root, right);
3472 memmove_extent_buffer(right,
3473 btrfs_leaf_data(right) + data_end - push_space,
3474 btrfs_leaf_data(right) + data_end,
3475 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3476
3477 /* copy from the left data area */
3478 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3479 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3480 btrfs_leaf_data(left) + leaf_data_end(root, left),
3481 push_space);
3482
3483 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3484 btrfs_item_nr_offset(0),
3485 right_nritems * sizeof(struct btrfs_item));
3486
3487 /* copy the items from left to right */
3488 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3489 btrfs_item_nr_offset(left_nritems - push_items),
3490 push_items * sizeof(struct btrfs_item));
3491
3492 /* update the item pointers */
3493 right_nritems += push_items;
3494 btrfs_set_header_nritems(right, right_nritems);
3495 push_space = BTRFS_LEAF_DATA_SIZE(root);
3496 for (i = 0; i < right_nritems; i++) {
3497 item = btrfs_item_nr(right, i);
3498 push_space -= btrfs_token_item_size(right, item, &token);
3499 btrfs_set_token_item_offset(right, item, push_space, &token);
3500 }
3501
3502 left_nritems -= push_items;
3503 btrfs_set_header_nritems(left, left_nritems);
3504
3505 if (left_nritems)
3506 btrfs_mark_buffer_dirty(left);
3507 else
3508 clean_tree_block(trans, root, left);
3509
3510 btrfs_mark_buffer_dirty(right);
3511
3512 btrfs_item_key(right, &disk_key, 0);
3513 btrfs_set_node_key(upper, &disk_key, slot + 1);
3514 btrfs_mark_buffer_dirty(upper);
3515
3516 /* then fixup the leaf pointer in the path */
3517 if (path->slots[0] >= left_nritems) {
3518 path->slots[0] -= left_nritems;
3519 if (btrfs_header_nritems(path->nodes[0]) == 0)
3520 clean_tree_block(trans, root, path->nodes[0]);
3521 btrfs_tree_unlock(path->nodes[0]);
3522 free_extent_buffer(path->nodes[0]);
3523 path->nodes[0] = right;
3524 path->slots[1] += 1;
3525 } else {
3526 btrfs_tree_unlock(right);
3527 free_extent_buffer(right);
3528 }
3529 return 0;
3530
3531 out_unlock:
3532 btrfs_tree_unlock(right);
3533 free_extent_buffer(right);
3534 return 1;
3535 }
3536
3537 /*
3538 * push some data in the path leaf to the right, trying to free up at
3539 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3540 *
3541 * returns 1 if the push failed because the other node didn't have enough
3542 * room, 0 if everything worked out and < 0 if there were major errors.
3543 *
3544 * this will push starting from min_slot to the end of the leaf. It won't
3545 * push any slot lower than min_slot
3546 */
3547 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3548 *root, struct btrfs_path *path,
3549 int min_data_size, int data_size,
3550 int empty, u32 min_slot)
3551 {
3552 struct extent_buffer *left = path->nodes[0];
3553 struct extent_buffer *right;
3554 struct extent_buffer *upper;
3555 int slot;
3556 int free_space;
3557 u32 left_nritems;
3558 int ret;
3559
3560 if (!path->nodes[1])
3561 return 1;
3562
3563 slot = path->slots[1];
3564 upper = path->nodes[1];
3565 if (slot >= btrfs_header_nritems(upper) - 1)
3566 return 1;
3567
3568 btrfs_assert_tree_locked(path->nodes[1]);
3569
3570 right = read_node_slot(root, upper, slot + 1);
3571 if (right == NULL)
3572 return 1;
3573
3574 btrfs_tree_lock(right);
3575 btrfs_set_lock_blocking(right);
3576
3577 free_space = btrfs_leaf_free_space(root, right);
3578 if (free_space < data_size)
3579 goto out_unlock;
3580
3581 /* cow and double check */
3582 ret = btrfs_cow_block(trans, root, right, upper,
3583 slot + 1, &right);
3584 if (ret)
3585 goto out_unlock;
3586
3587 free_space = btrfs_leaf_free_space(root, right);
3588 if (free_space < data_size)
3589 goto out_unlock;
3590
3591 left_nritems = btrfs_header_nritems(left);
3592 if (left_nritems == 0)
3593 goto out_unlock;
3594
3595 return __push_leaf_right(trans, root, path, min_data_size, empty,
3596 right, free_space, left_nritems, min_slot);
3597 out_unlock:
3598 btrfs_tree_unlock(right);
3599 free_extent_buffer(right);
3600 return 1;
3601 }
3602
3603 /*
3604 * push some data in the path leaf to the left, trying to free up at
3605 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3606 *
3607 * max_slot can put a limit on how far into the leaf we'll push items. The
3608 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3609 * items
3610 */
3611 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3612 struct btrfs_root *root,
3613 struct btrfs_path *path, int data_size,
3614 int empty, struct extent_buffer *left,
3615 int free_space, u32 right_nritems,
3616 u32 max_slot)
3617 {
3618 struct btrfs_disk_key disk_key;
3619 struct extent_buffer *right = path->nodes[0];
3620 int i;
3621 int push_space = 0;
3622 int push_items = 0;
3623 struct btrfs_item *item;
3624 u32 old_left_nritems;
3625 u32 nr;
3626 int ret = 0;
3627 u32 this_item_size;
3628 u32 old_left_item_size;
3629 struct btrfs_map_token token;
3630
3631 btrfs_init_map_token(&token);
3632
3633 if (empty)
3634 nr = min(right_nritems, max_slot);
3635 else
3636 nr = min(right_nritems - 1, max_slot);
3637
3638 for (i = 0; i < nr; i++) {
3639 item = btrfs_item_nr(right, i);
3640
3641 if (!empty && push_items > 0) {
3642 if (path->slots[0] < i)
3643 break;
3644 if (path->slots[0] == i) {
3645 int space = btrfs_leaf_free_space(root, right);
3646 if (space + push_space * 2 > free_space)
3647 break;
3648 }
3649 }
3650
3651 if (path->slots[0] == i)
3652 push_space += data_size;
3653
3654 this_item_size = btrfs_item_size(right, item);
3655 if (this_item_size + sizeof(*item) + push_space > free_space)
3656 break;
3657
3658 push_items++;
3659 push_space += this_item_size + sizeof(*item);
3660 }
3661
3662 if (push_items == 0) {
3663 ret = 1;
3664 goto out;
3665 }
3666 if (!empty && push_items == btrfs_header_nritems(right))
3667 WARN_ON(1);
3668
3669 /* push data from right to left */
3670 copy_extent_buffer(left, right,
3671 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3672 btrfs_item_nr_offset(0),
3673 push_items * sizeof(struct btrfs_item));
3674
3675 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3676 btrfs_item_offset_nr(right, push_items - 1);
3677
3678 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3679 leaf_data_end(root, left) - push_space,
3680 btrfs_leaf_data(right) +
3681 btrfs_item_offset_nr(right, push_items - 1),
3682 push_space);
3683 old_left_nritems = btrfs_header_nritems(left);
3684 BUG_ON(old_left_nritems <= 0);
3685
3686 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3687 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3688 u32 ioff;
3689
3690 item = btrfs_item_nr(left, i);
3691
3692 ioff = btrfs_token_item_offset(left, item, &token);
3693 btrfs_set_token_item_offset(left, item,
3694 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3695 &token);
3696 }
3697 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3698
3699 /* fixup right node */
3700 if (push_items > right_nritems)
3701 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3702 right_nritems);
3703
3704 if (push_items < right_nritems) {
3705 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3706 leaf_data_end(root, right);
3707 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3708 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3709 btrfs_leaf_data(right) +
3710 leaf_data_end(root, right), push_space);
3711
3712 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3713 btrfs_item_nr_offset(push_items),
3714 (btrfs_header_nritems(right) - push_items) *
3715 sizeof(struct btrfs_item));
3716 }
3717 right_nritems -= push_items;
3718 btrfs_set_header_nritems(right, right_nritems);
3719 push_space = BTRFS_LEAF_DATA_SIZE(root);
3720 for (i = 0; i < right_nritems; i++) {
3721 item = btrfs_item_nr(right, i);
3722
3723 push_space = push_space - btrfs_token_item_size(right,
3724 item, &token);
3725 btrfs_set_token_item_offset(right, item, push_space, &token);
3726 }
3727
3728 btrfs_mark_buffer_dirty(left);
3729 if (right_nritems)
3730 btrfs_mark_buffer_dirty(right);
3731 else
3732 clean_tree_block(trans, root, right);
3733
3734 btrfs_item_key(right, &disk_key, 0);
3735 fixup_low_keys(root, path, &disk_key, 1);
3736
3737 /* then fixup the leaf pointer in the path */
3738 if (path->slots[0] < push_items) {
3739 path->slots[0] += old_left_nritems;
3740 btrfs_tree_unlock(path->nodes[0]);
3741 free_extent_buffer(path->nodes[0]);
3742 path->nodes[0] = left;
3743 path->slots[1] -= 1;
3744 } else {
3745 btrfs_tree_unlock(left);
3746 free_extent_buffer(left);
3747 path->slots[0] -= push_items;
3748 }
3749 BUG_ON(path->slots[0] < 0);
3750 return ret;
3751 out:
3752 btrfs_tree_unlock(left);
3753 free_extent_buffer(left);
3754 return ret;
3755 }
3756
3757 /*
3758 * push some data in the path leaf to the left, trying to free up at
3759 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3760 *
3761 * max_slot can put a limit on how far into the leaf we'll push items. The
3762 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3763 * items
3764 */
3765 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3766 *root, struct btrfs_path *path, int min_data_size,
3767 int data_size, int empty, u32 max_slot)
3768 {
3769 struct extent_buffer *right = path->nodes[0];
3770 struct extent_buffer *left;
3771 int slot;
3772 int free_space;
3773 u32 right_nritems;
3774 int ret = 0;
3775
3776 slot = path->slots[1];
3777 if (slot == 0)
3778 return 1;
3779 if (!path->nodes[1])
3780 return 1;
3781
3782 right_nritems = btrfs_header_nritems(right);
3783 if (right_nritems == 0)
3784 return 1;
3785
3786 btrfs_assert_tree_locked(path->nodes[1]);
3787
3788 left = read_node_slot(root, path->nodes[1], slot - 1);
3789 if (left == NULL)
3790 return 1;
3791
3792 btrfs_tree_lock(left);
3793 btrfs_set_lock_blocking(left);
3794
3795 free_space = btrfs_leaf_free_space(root, left);
3796 if (free_space < data_size) {
3797 ret = 1;
3798 goto out;
3799 }
3800
3801 /* cow and double check */
3802 ret = btrfs_cow_block(trans, root, left,
3803 path->nodes[1], slot - 1, &left);
3804 if (ret) {
3805 /* we hit -ENOSPC, but it isn't fatal here */
3806 if (ret == -ENOSPC)
3807 ret = 1;
3808 goto out;
3809 }
3810
3811 free_space = btrfs_leaf_free_space(root, left);
3812 if (free_space < data_size) {
3813 ret = 1;
3814 goto out;
3815 }
3816
3817 return __push_leaf_left(trans, root, path, min_data_size,
3818 empty, left, free_space, right_nritems,
3819 max_slot);
3820 out:
3821 btrfs_tree_unlock(left);
3822 free_extent_buffer(left);
3823 return ret;
3824 }
3825
3826 /*
3827 * split the path's leaf in two, making sure there is at least data_size
3828 * available for the resulting leaf level of the path.
3829 */
3830 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3831 struct btrfs_root *root,
3832 struct btrfs_path *path,
3833 struct extent_buffer *l,
3834 struct extent_buffer *right,
3835 int slot, int mid, int nritems)
3836 {
3837 int data_copy_size;
3838 int rt_data_off;
3839 int i;
3840 struct btrfs_disk_key disk_key;
3841 struct btrfs_map_token token;
3842
3843 btrfs_init_map_token(&token);
3844
3845 nritems = nritems - mid;
3846 btrfs_set_header_nritems(right, nritems);
3847 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3848
3849 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3850 btrfs_item_nr_offset(mid),
3851 nritems * sizeof(struct btrfs_item));
3852
3853 copy_extent_buffer(right, l,
3854 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3855 data_copy_size, btrfs_leaf_data(l) +
3856 leaf_data_end(root, l), data_copy_size);
3857
3858 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3859 btrfs_item_end_nr(l, mid);
3860
3861 for (i = 0; i < nritems; i++) {
3862 struct btrfs_item *item = btrfs_item_nr(right, i);
3863 u32 ioff;
3864
3865 ioff = btrfs_token_item_offset(right, item, &token);
3866 btrfs_set_token_item_offset(right, item,
3867 ioff + rt_data_off, &token);
3868 }
3869
3870 btrfs_set_header_nritems(l, mid);
3871 btrfs_item_key(right, &disk_key, 0);
3872 insert_ptr(trans, root, path, &disk_key, right->start,
3873 path->slots[1] + 1, 1);
3874
3875 btrfs_mark_buffer_dirty(right);
3876 btrfs_mark_buffer_dirty(l);
3877 BUG_ON(path->slots[0] != slot);
3878
3879 if (mid <= slot) {
3880 btrfs_tree_unlock(path->nodes[0]);
3881 free_extent_buffer(path->nodes[0]);
3882 path->nodes[0] = right;
3883 path->slots[0] -= mid;
3884 path->slots[1] += 1;
3885 } else {
3886 btrfs_tree_unlock(right);
3887 free_extent_buffer(right);
3888 }
3889
3890 BUG_ON(path->slots[0] < 0);
3891 }
3892
3893 /*
3894 * double splits happen when we need to insert a big item in the middle
3895 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3896 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3897 * A B C
3898 *
3899 * We avoid this by trying to push the items on either side of our target
3900 * into the adjacent leaves. If all goes well we can avoid the double split
3901 * completely.
3902 */
3903 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3904 struct btrfs_root *root,
3905 struct btrfs_path *path,
3906 int data_size)
3907 {
3908 int ret;
3909 int progress = 0;
3910 int slot;
3911 u32 nritems;
3912
3913 slot = path->slots[0];
3914
3915 /*
3916 * try to push all the items after our slot into the
3917 * right leaf
3918 */
3919 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3920 if (ret < 0)
3921 return ret;
3922
3923 if (ret == 0)
3924 progress++;
3925
3926 nritems = btrfs_header_nritems(path->nodes[0]);
3927 /*
3928 * our goal is to get our slot at the start or end of a leaf. If
3929 * we've done so we're done
3930 */
3931 if (path->slots[0] == 0 || path->slots[0] == nritems)
3932 return 0;
3933
3934 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3935 return 0;
3936
3937 /* try to push all the items before our slot into the next leaf */
3938 slot = path->slots[0];
3939 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3940 if (ret < 0)
3941 return ret;
3942
3943 if (ret == 0)
3944 progress++;
3945
3946 if (progress)
3947 return 0;
3948 return 1;
3949 }
3950
3951 /*
3952 * split the path's leaf in two, making sure there is at least data_size
3953 * available for the resulting leaf level of the path.
3954 *
3955 * returns 0 if all went well and < 0 on failure.
3956 */
3957 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3958 struct btrfs_root *root,
3959 struct btrfs_key *ins_key,
3960 struct btrfs_path *path, int data_size,
3961 int extend)
3962 {
3963 struct btrfs_disk_key disk_key;
3964 struct extent_buffer *l;
3965 u32 nritems;
3966 int mid;
3967 int slot;
3968 struct extent_buffer *right;
3969 int ret = 0;
3970 int wret;
3971 int split;
3972 int num_doubles = 0;
3973 int tried_avoid_double = 0;
3974
3975 l = path->nodes[0];
3976 slot = path->slots[0];
3977 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3978 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3979 return -EOVERFLOW;
3980
3981 /* first try to make some room by pushing left and right */
3982 if (data_size && path->nodes[1]) {
3983 wret = push_leaf_right(trans, root, path, data_size,
3984 data_size, 0, 0);
3985 if (wret < 0)
3986 return wret;
3987 if (wret) {
3988 wret = push_leaf_left(trans, root, path, data_size,
3989 data_size, 0, (u32)-1);
3990 if (wret < 0)
3991 return wret;
3992 }
3993 l = path->nodes[0];
3994
3995 /* did the pushes work? */
3996 if (btrfs_leaf_free_space(root, l) >= data_size)
3997 return 0;
3998 }
3999
4000 if (!path->nodes[1]) {
4001 ret = insert_new_root(trans, root, path, 1);
4002 if (ret)
4003 return ret;
4004 }
4005 again:
4006 split = 1;
4007 l = path->nodes[0];
4008 slot = path->slots[0];
4009 nritems = btrfs_header_nritems(l);
4010 mid = (nritems + 1) / 2;
4011
4012 if (mid <= slot) {
4013 if (nritems == 1 ||
4014 leaf_space_used(l, mid, nritems - mid) + data_size >
4015 BTRFS_LEAF_DATA_SIZE(root)) {
4016 if (slot >= nritems) {
4017 split = 0;
4018 } else {
4019 mid = slot;
4020 if (mid != nritems &&
4021 leaf_space_used(l, mid, nritems - mid) +
4022 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4023 if (data_size && !tried_avoid_double)
4024 goto push_for_double;
4025 split = 2;
4026 }
4027 }
4028 }
4029 } else {
4030 if (leaf_space_used(l, 0, mid) + data_size >
4031 BTRFS_LEAF_DATA_SIZE(root)) {
4032 if (!extend && data_size && slot == 0) {
4033 split = 0;
4034 } else if ((extend || !data_size) && slot == 0) {
4035 mid = 1;
4036 } else {
4037 mid = slot;
4038 if (mid != nritems &&
4039 leaf_space_used(l, mid, nritems - mid) +
4040 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4041 if (data_size && !tried_avoid_double)
4042 goto push_for_double;
4043 split = 2 ;
4044 }
4045 }
4046 }
4047 }
4048
4049 if (split == 0)
4050 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4051 else
4052 btrfs_item_key(l, &disk_key, mid);
4053
4054 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4055 root->root_key.objectid,
4056 &disk_key, 0, l->start, 0);
4057 if (IS_ERR(right))
4058 return PTR_ERR(right);
4059
4060 root_add_used(root, root->leafsize);
4061
4062 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4063 btrfs_set_header_bytenr(right, right->start);
4064 btrfs_set_header_generation(right, trans->transid);
4065 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4066 btrfs_set_header_owner(right, root->root_key.objectid);
4067 btrfs_set_header_level(right, 0);
4068 write_extent_buffer(right, root->fs_info->fsid,
4069 (unsigned long)btrfs_header_fsid(right),
4070 BTRFS_FSID_SIZE);
4071
4072 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4073 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4074 BTRFS_UUID_SIZE);
4075
4076 if (split == 0) {
4077 if (mid <= slot) {
4078 btrfs_set_header_nritems(right, 0);
4079 insert_ptr(trans, root, path, &disk_key, right->start,
4080 path->slots[1] + 1, 1);
4081 btrfs_tree_unlock(path->nodes[0]);
4082 free_extent_buffer(path->nodes[0]);
4083 path->nodes[0] = right;
4084 path->slots[0] = 0;
4085 path->slots[1] += 1;
4086 } else {
4087 btrfs_set_header_nritems(right, 0);
4088 insert_ptr(trans, root, path, &disk_key, right->start,
4089 path->slots[1], 1);
4090 btrfs_tree_unlock(path->nodes[0]);
4091 free_extent_buffer(path->nodes[0]);
4092 path->nodes[0] = right;
4093 path->slots[0] = 0;
4094 if (path->slots[1] == 0)
4095 fixup_low_keys(root, path, &disk_key, 1);
4096 }
4097 btrfs_mark_buffer_dirty(right);
4098 return ret;
4099 }
4100
4101 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4102
4103 if (split == 2) {
4104 BUG_ON(num_doubles != 0);
4105 num_doubles++;
4106 goto again;
4107 }
4108
4109 return 0;
4110
4111 push_for_double:
4112 push_for_double_split(trans, root, path, data_size);
4113 tried_avoid_double = 1;
4114 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4115 return 0;
4116 goto again;
4117 }
4118
4119 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4120 struct btrfs_root *root,
4121 struct btrfs_path *path, int ins_len)
4122 {
4123 struct btrfs_key key;
4124 struct extent_buffer *leaf;
4125 struct btrfs_file_extent_item *fi;
4126 u64 extent_len = 0;
4127 u32 item_size;
4128 int ret;
4129
4130 leaf = path->nodes[0];
4131 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4132
4133 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4134 key.type != BTRFS_EXTENT_CSUM_KEY);
4135
4136 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4137 return 0;
4138
4139 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4140 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4141 fi = btrfs_item_ptr(leaf, path->slots[0],
4142 struct btrfs_file_extent_item);
4143 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4144 }
4145 btrfs_release_path(path);
4146
4147 path->keep_locks = 1;
4148 path->search_for_split = 1;
4149 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4150 path->search_for_split = 0;
4151 if (ret < 0)
4152 goto err;
4153
4154 ret = -EAGAIN;
4155 leaf = path->nodes[0];
4156 /* if our item isn't there or got smaller, return now */
4157 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4158 goto err;
4159
4160 /* the leaf has changed, it now has room. return now */
4161 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4162 goto err;
4163
4164 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4165 fi = btrfs_item_ptr(leaf, path->slots[0],
4166 struct btrfs_file_extent_item);
4167 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4168 goto err;
4169 }
4170
4171 btrfs_set_path_blocking(path);
4172 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4173 if (ret)
4174 goto err;
4175
4176 path->keep_locks = 0;
4177 btrfs_unlock_up_safe(path, 1);
4178 return 0;
4179 err:
4180 path->keep_locks = 0;
4181 return ret;
4182 }
4183
4184 static noinline int split_item(struct btrfs_trans_handle *trans,
4185 struct btrfs_root *root,
4186 struct btrfs_path *path,
4187 struct btrfs_key *new_key,
4188 unsigned long split_offset)
4189 {
4190 struct extent_buffer *leaf;
4191 struct btrfs_item *item;
4192 struct btrfs_item *new_item;
4193 int slot;
4194 char *buf;
4195 u32 nritems;
4196 u32 item_size;
4197 u32 orig_offset;
4198 struct btrfs_disk_key disk_key;
4199
4200 leaf = path->nodes[0];
4201 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4202
4203 btrfs_set_path_blocking(path);
4204
4205 item = btrfs_item_nr(leaf, path->slots[0]);
4206 orig_offset = btrfs_item_offset(leaf, item);
4207 item_size = btrfs_item_size(leaf, item);
4208
4209 buf = kmalloc(item_size, GFP_NOFS);
4210 if (!buf)
4211 return -ENOMEM;
4212
4213 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4214 path->slots[0]), item_size);
4215
4216 slot = path->slots[0] + 1;
4217 nritems = btrfs_header_nritems(leaf);
4218 if (slot != nritems) {
4219 /* shift the items */
4220 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4221 btrfs_item_nr_offset(slot),
4222 (nritems - slot) * sizeof(struct btrfs_item));
4223 }
4224
4225 btrfs_cpu_key_to_disk(&disk_key, new_key);
4226 btrfs_set_item_key(leaf, &disk_key, slot);
4227
4228 new_item = btrfs_item_nr(leaf, slot);
4229
4230 btrfs_set_item_offset(leaf, new_item, orig_offset);
4231 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4232
4233 btrfs_set_item_offset(leaf, item,
4234 orig_offset + item_size - split_offset);
4235 btrfs_set_item_size(leaf, item, split_offset);
4236
4237 btrfs_set_header_nritems(leaf, nritems + 1);
4238
4239 /* write the data for the start of the original item */
4240 write_extent_buffer(leaf, buf,
4241 btrfs_item_ptr_offset(leaf, path->slots[0]),
4242 split_offset);
4243
4244 /* write the data for the new item */
4245 write_extent_buffer(leaf, buf + split_offset,
4246 btrfs_item_ptr_offset(leaf, slot),
4247 item_size - split_offset);
4248 btrfs_mark_buffer_dirty(leaf);
4249
4250 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4251 kfree(buf);
4252 return 0;
4253 }
4254
4255 /*
4256 * This function splits a single item into two items,
4257 * giving 'new_key' to the new item and splitting the
4258 * old one at split_offset (from the start of the item).
4259 *
4260 * The path may be released by this operation. After
4261 * the split, the path is pointing to the old item. The
4262 * new item is going to be in the same node as the old one.
4263 *
4264 * Note, the item being split must be smaller enough to live alone on
4265 * a tree block with room for one extra struct btrfs_item
4266 *
4267 * This allows us to split the item in place, keeping a lock on the
4268 * leaf the entire time.
4269 */
4270 int btrfs_split_item(struct btrfs_trans_handle *trans,
4271 struct btrfs_root *root,
4272 struct btrfs_path *path,
4273 struct btrfs_key *new_key,
4274 unsigned long split_offset)
4275 {
4276 int ret;
4277 ret = setup_leaf_for_split(trans, root, path,
4278 sizeof(struct btrfs_item));
4279 if (ret)
4280 return ret;
4281
4282 ret = split_item(trans, root, path, new_key, split_offset);
4283 return ret;
4284 }
4285
4286 /*
4287 * This function duplicate a item, giving 'new_key' to the new item.
4288 * It guarantees both items live in the same tree leaf and the new item
4289 * is contiguous with the original item.
4290 *
4291 * This allows us to split file extent in place, keeping a lock on the
4292 * leaf the entire time.
4293 */
4294 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4295 struct btrfs_root *root,
4296 struct btrfs_path *path,
4297 struct btrfs_key *new_key)
4298 {
4299 struct extent_buffer *leaf;
4300 int ret;
4301 u32 item_size;
4302
4303 leaf = path->nodes[0];
4304 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4305 ret = setup_leaf_for_split(trans, root, path,
4306 item_size + sizeof(struct btrfs_item));
4307 if (ret)
4308 return ret;
4309
4310 path->slots[0]++;
4311 setup_items_for_insert(root, path, new_key, &item_size,
4312 item_size, item_size +
4313 sizeof(struct btrfs_item), 1);
4314 leaf = path->nodes[0];
4315 memcpy_extent_buffer(leaf,
4316 btrfs_item_ptr_offset(leaf, path->slots[0]),
4317 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4318 item_size);
4319 return 0;
4320 }
4321
4322 /*
4323 * make the item pointed to by the path smaller. new_size indicates
4324 * how small to make it, and from_end tells us if we just chop bytes
4325 * off the end of the item or if we shift the item to chop bytes off
4326 * the front.
4327 */
4328 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4329 u32 new_size, int from_end)
4330 {
4331 int slot;
4332 struct extent_buffer *leaf;
4333 struct btrfs_item *item;
4334 u32 nritems;
4335 unsigned int data_end;
4336 unsigned int old_data_start;
4337 unsigned int old_size;
4338 unsigned int size_diff;
4339 int i;
4340 struct btrfs_map_token token;
4341
4342 btrfs_init_map_token(&token);
4343
4344 leaf = path->nodes[0];
4345 slot = path->slots[0];
4346
4347 old_size = btrfs_item_size_nr(leaf, slot);
4348 if (old_size == new_size)
4349 return;
4350
4351 nritems = btrfs_header_nritems(leaf);
4352 data_end = leaf_data_end(root, leaf);
4353
4354 old_data_start = btrfs_item_offset_nr(leaf, slot);
4355
4356 size_diff = old_size - new_size;
4357
4358 BUG_ON(slot < 0);
4359 BUG_ON(slot >= nritems);
4360
4361 /*
4362 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4363 */
4364 /* first correct the data pointers */
4365 for (i = slot; i < nritems; i++) {
4366 u32 ioff;
4367 item = btrfs_item_nr(leaf, i);
4368
4369 ioff = btrfs_token_item_offset(leaf, item, &token);
4370 btrfs_set_token_item_offset(leaf, item,
4371 ioff + size_diff, &token);
4372 }
4373
4374 /* shift the data */
4375 if (from_end) {
4376 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4377 data_end + size_diff, btrfs_leaf_data(leaf) +
4378 data_end, old_data_start + new_size - data_end);
4379 } else {
4380 struct btrfs_disk_key disk_key;
4381 u64 offset;
4382
4383 btrfs_item_key(leaf, &disk_key, slot);
4384
4385 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4386 unsigned long ptr;
4387 struct btrfs_file_extent_item *fi;
4388
4389 fi = btrfs_item_ptr(leaf, slot,
4390 struct btrfs_file_extent_item);
4391 fi = (struct btrfs_file_extent_item *)(
4392 (unsigned long)fi - size_diff);
4393
4394 if (btrfs_file_extent_type(leaf, fi) ==
4395 BTRFS_FILE_EXTENT_INLINE) {
4396 ptr = btrfs_item_ptr_offset(leaf, slot);
4397 memmove_extent_buffer(leaf, ptr,
4398 (unsigned long)fi,
4399 offsetof(struct btrfs_file_extent_item,
4400 disk_bytenr));
4401 }
4402 }
4403
4404 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4405 data_end + size_diff, btrfs_leaf_data(leaf) +
4406 data_end, old_data_start - data_end);
4407
4408 offset = btrfs_disk_key_offset(&disk_key);
4409 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4410 btrfs_set_item_key(leaf, &disk_key, slot);
4411 if (slot == 0)
4412 fixup_low_keys(root, path, &disk_key, 1);
4413 }
4414
4415 item = btrfs_item_nr(leaf, slot);
4416 btrfs_set_item_size(leaf, item, new_size);
4417 btrfs_mark_buffer_dirty(leaf);
4418
4419 if (btrfs_leaf_free_space(root, leaf) < 0) {
4420 btrfs_print_leaf(root, leaf);
4421 BUG();
4422 }
4423 }
4424
4425 /*
4426 * make the item pointed to by the path bigger, data_size is the added size.
4427 */
4428 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4429 u32 data_size)
4430 {
4431 int slot;
4432 struct extent_buffer *leaf;
4433 struct btrfs_item *item;
4434 u32 nritems;
4435 unsigned int data_end;
4436 unsigned int old_data;
4437 unsigned int old_size;
4438 int i;
4439 struct btrfs_map_token token;
4440
4441 btrfs_init_map_token(&token);
4442
4443 leaf = path->nodes[0];
4444
4445 nritems = btrfs_header_nritems(leaf);
4446 data_end = leaf_data_end(root, leaf);
4447
4448 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4449 btrfs_print_leaf(root, leaf);
4450 BUG();
4451 }
4452 slot = path->slots[0];
4453 old_data = btrfs_item_end_nr(leaf, slot);
4454
4455 BUG_ON(slot < 0);
4456 if (slot >= nritems) {
4457 btrfs_print_leaf(root, leaf);
4458 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4459 slot, nritems);
4460 BUG_ON(1);
4461 }
4462
4463 /*
4464 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4465 */
4466 /* first correct the data pointers */
4467 for (i = slot; i < nritems; i++) {
4468 u32 ioff;
4469 item = btrfs_item_nr(leaf, i);
4470
4471 ioff = btrfs_token_item_offset(leaf, item, &token);
4472 btrfs_set_token_item_offset(leaf, item,
4473 ioff - data_size, &token);
4474 }
4475
4476 /* shift the data */
4477 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4478 data_end - data_size, btrfs_leaf_data(leaf) +
4479 data_end, old_data - data_end);
4480
4481 data_end = old_data;
4482 old_size = btrfs_item_size_nr(leaf, slot);
4483 item = btrfs_item_nr(leaf, slot);
4484 btrfs_set_item_size(leaf, item, old_size + data_size);
4485 btrfs_mark_buffer_dirty(leaf);
4486
4487 if (btrfs_leaf_free_space(root, leaf) < 0) {
4488 btrfs_print_leaf(root, leaf);
4489 BUG();
4490 }
4491 }
4492
4493 /*
4494 * this is a helper for btrfs_insert_empty_items, the main goal here is
4495 * to save stack depth by doing the bulk of the work in a function
4496 * that doesn't call btrfs_search_slot
4497 */
4498 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4499 struct btrfs_key *cpu_key, u32 *data_size,
4500 u32 total_data, u32 total_size, int nr)
4501 {
4502 struct btrfs_item *item;
4503 int i;
4504 u32 nritems;
4505 unsigned int data_end;
4506 struct btrfs_disk_key disk_key;
4507 struct extent_buffer *leaf;
4508 int slot;
4509 struct btrfs_map_token token;
4510
4511 btrfs_init_map_token(&token);
4512
4513 leaf = path->nodes[0];
4514 slot = path->slots[0];
4515
4516 nritems = btrfs_header_nritems(leaf);
4517 data_end = leaf_data_end(root, leaf);
4518
4519 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4520 btrfs_print_leaf(root, leaf);
4521 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4522 total_size, btrfs_leaf_free_space(root, leaf));
4523 BUG();
4524 }
4525
4526 if (slot != nritems) {
4527 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4528
4529 if (old_data < data_end) {
4530 btrfs_print_leaf(root, leaf);
4531 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4532 slot, old_data, data_end);
4533 BUG_ON(1);
4534 }
4535 /*
4536 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4537 */
4538 /* first correct the data pointers */
4539 for (i = slot; i < nritems; i++) {
4540 u32 ioff;
4541
4542 item = btrfs_item_nr(leaf, i);
4543 ioff = btrfs_token_item_offset(leaf, item, &token);
4544 btrfs_set_token_item_offset(leaf, item,
4545 ioff - total_data, &token);
4546 }
4547 /* shift the items */
4548 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4549 btrfs_item_nr_offset(slot),
4550 (nritems - slot) * sizeof(struct btrfs_item));
4551
4552 /* shift the data */
4553 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4554 data_end - total_data, btrfs_leaf_data(leaf) +
4555 data_end, old_data - data_end);
4556 data_end = old_data;
4557 }
4558
4559 /* setup the item for the new data */
4560 for (i = 0; i < nr; i++) {
4561 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4562 btrfs_set_item_key(leaf, &disk_key, slot + i);
4563 item = btrfs_item_nr(leaf, slot + i);
4564 btrfs_set_token_item_offset(leaf, item,
4565 data_end - data_size[i], &token);
4566 data_end -= data_size[i];
4567 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4568 }
4569
4570 btrfs_set_header_nritems(leaf, nritems + nr);
4571
4572 if (slot == 0) {
4573 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4574 fixup_low_keys(root, path, &disk_key, 1);
4575 }
4576 btrfs_unlock_up_safe(path, 1);
4577 btrfs_mark_buffer_dirty(leaf);
4578
4579 if (btrfs_leaf_free_space(root, leaf) < 0) {
4580 btrfs_print_leaf(root, leaf);
4581 BUG();
4582 }
4583 }
4584
4585 /*
4586 * Given a key and some data, insert items into the tree.
4587 * This does all the path init required, making room in the tree if needed.
4588 */
4589 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4590 struct btrfs_root *root,
4591 struct btrfs_path *path,
4592 struct btrfs_key *cpu_key, u32 *data_size,
4593 int nr)
4594 {
4595 int ret = 0;
4596 int slot;
4597 int i;
4598 u32 total_size = 0;
4599 u32 total_data = 0;
4600
4601 for (i = 0; i < nr; i++)
4602 total_data += data_size[i];
4603
4604 total_size = total_data + (nr * sizeof(struct btrfs_item));
4605 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4606 if (ret == 0)
4607 return -EEXIST;
4608 if (ret < 0)
4609 return ret;
4610
4611 slot = path->slots[0];
4612 BUG_ON(slot < 0);
4613
4614 setup_items_for_insert(root, path, cpu_key, data_size,
4615 total_data, total_size, nr);
4616 return 0;
4617 }
4618
4619 /*
4620 * Given a key and some data, insert an item into the tree.
4621 * This does all the path init required, making room in the tree if needed.
4622 */
4623 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4624 *root, struct btrfs_key *cpu_key, void *data, u32
4625 data_size)
4626 {
4627 int ret = 0;
4628 struct btrfs_path *path;
4629 struct extent_buffer *leaf;
4630 unsigned long ptr;
4631
4632 path = btrfs_alloc_path();
4633 if (!path)
4634 return -ENOMEM;
4635 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4636 if (!ret) {
4637 leaf = path->nodes[0];
4638 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4639 write_extent_buffer(leaf, data, ptr, data_size);
4640 btrfs_mark_buffer_dirty(leaf);
4641 }
4642 btrfs_free_path(path);
4643 return ret;
4644 }
4645
4646 /*
4647 * delete the pointer from a given node.
4648 *
4649 * the tree should have been previously balanced so the deletion does not
4650 * empty a node.
4651 */
4652 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4653 int level, int slot)
4654 {
4655 struct extent_buffer *parent = path->nodes[level];
4656 u32 nritems;
4657 int ret;
4658
4659 nritems = btrfs_header_nritems(parent);
4660 if (slot != nritems - 1) {
4661 if (level)
4662 tree_mod_log_eb_move(root->fs_info, parent, slot,
4663 slot + 1, nritems - slot - 1);
4664 memmove_extent_buffer(parent,
4665 btrfs_node_key_ptr_offset(slot),
4666 btrfs_node_key_ptr_offset(slot + 1),
4667 sizeof(struct btrfs_key_ptr) *
4668 (nritems - slot - 1));
4669 } else if (level) {
4670 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4671 MOD_LOG_KEY_REMOVE);
4672 BUG_ON(ret < 0);
4673 }
4674
4675 nritems--;
4676 btrfs_set_header_nritems(parent, nritems);
4677 if (nritems == 0 && parent == root->node) {
4678 BUG_ON(btrfs_header_level(root->node) != 1);
4679 /* just turn the root into a leaf and break */
4680 btrfs_set_header_level(root->node, 0);
4681 } else if (slot == 0) {
4682 struct btrfs_disk_key disk_key;
4683
4684 btrfs_node_key(parent, &disk_key, 0);
4685 fixup_low_keys(root, path, &disk_key, level + 1);
4686 }
4687 btrfs_mark_buffer_dirty(parent);
4688 }
4689
4690 /*
4691 * a helper function to delete the leaf pointed to by path->slots[1] and
4692 * path->nodes[1].
4693 *
4694 * This deletes the pointer in path->nodes[1] and frees the leaf
4695 * block extent. zero is returned if it all worked out, < 0 otherwise.
4696 *
4697 * The path must have already been setup for deleting the leaf, including
4698 * all the proper balancing. path->nodes[1] must be locked.
4699 */
4700 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4701 struct btrfs_root *root,
4702 struct btrfs_path *path,
4703 struct extent_buffer *leaf)
4704 {
4705 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4706 del_ptr(root, path, 1, path->slots[1]);
4707
4708 /*
4709 * btrfs_free_extent is expensive, we want to make sure we
4710 * aren't holding any locks when we call it
4711 */
4712 btrfs_unlock_up_safe(path, 0);
4713
4714 root_sub_used(root, leaf->len);
4715
4716 extent_buffer_get(leaf);
4717 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4718 free_extent_buffer_stale(leaf);
4719 }
4720 /*
4721 * delete the item at the leaf level in path. If that empties
4722 * the leaf, remove it from the tree
4723 */
4724 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4725 struct btrfs_path *path, int slot, int nr)
4726 {
4727 struct extent_buffer *leaf;
4728 struct btrfs_item *item;
4729 int last_off;
4730 int dsize = 0;
4731 int ret = 0;
4732 int wret;
4733 int i;
4734 u32 nritems;
4735 struct btrfs_map_token token;
4736
4737 btrfs_init_map_token(&token);
4738
4739 leaf = path->nodes[0];
4740 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4741
4742 for (i = 0; i < nr; i++)
4743 dsize += btrfs_item_size_nr(leaf, slot + i);
4744
4745 nritems = btrfs_header_nritems(leaf);
4746
4747 if (slot + nr != nritems) {
4748 int data_end = leaf_data_end(root, leaf);
4749
4750 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4751 data_end + dsize,
4752 btrfs_leaf_data(leaf) + data_end,
4753 last_off - data_end);
4754
4755 for (i = slot + nr; i < nritems; i++) {
4756 u32 ioff;
4757
4758 item = btrfs_item_nr(leaf, i);
4759 ioff = btrfs_token_item_offset(leaf, item, &token);
4760 btrfs_set_token_item_offset(leaf, item,
4761 ioff + dsize, &token);
4762 }
4763
4764 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4765 btrfs_item_nr_offset(slot + nr),
4766 sizeof(struct btrfs_item) *
4767 (nritems - slot - nr));
4768 }
4769 btrfs_set_header_nritems(leaf, nritems - nr);
4770 nritems -= nr;
4771
4772 /* delete the leaf if we've emptied it */
4773 if (nritems == 0) {
4774 if (leaf == root->node) {
4775 btrfs_set_header_level(leaf, 0);
4776 } else {
4777 btrfs_set_path_blocking(path);
4778 clean_tree_block(trans, root, leaf);
4779 btrfs_del_leaf(trans, root, path, leaf);
4780 }
4781 } else {
4782 int used = leaf_space_used(leaf, 0, nritems);
4783 if (slot == 0) {
4784 struct btrfs_disk_key disk_key;
4785
4786 btrfs_item_key(leaf, &disk_key, 0);
4787 fixup_low_keys(root, path, &disk_key, 1);
4788 }
4789
4790 /* delete the leaf if it is mostly empty */
4791 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4792 /* push_leaf_left fixes the path.
4793 * make sure the path still points to our leaf
4794 * for possible call to del_ptr below
4795 */
4796 slot = path->slots[1];
4797 extent_buffer_get(leaf);
4798
4799 btrfs_set_path_blocking(path);
4800 wret = push_leaf_left(trans, root, path, 1, 1,
4801 1, (u32)-1);
4802 if (wret < 0 && wret != -ENOSPC)
4803 ret = wret;
4804
4805 if (path->nodes[0] == leaf &&
4806 btrfs_header_nritems(leaf)) {
4807 wret = push_leaf_right(trans, root, path, 1,
4808 1, 1, 0);
4809 if (wret < 0 && wret != -ENOSPC)
4810 ret = wret;
4811 }
4812
4813 if (btrfs_header_nritems(leaf) == 0) {
4814 path->slots[1] = slot;
4815 btrfs_del_leaf(trans, root, path, leaf);
4816 free_extent_buffer(leaf);
4817 ret = 0;
4818 } else {
4819 /* if we're still in the path, make sure
4820 * we're dirty. Otherwise, one of the
4821 * push_leaf functions must have already
4822 * dirtied this buffer
4823 */
4824 if (path->nodes[0] == leaf)
4825 btrfs_mark_buffer_dirty(leaf);
4826 free_extent_buffer(leaf);
4827 }
4828 } else {
4829 btrfs_mark_buffer_dirty(leaf);
4830 }
4831 }
4832 return ret;
4833 }
4834
4835 /*
4836 * search the tree again to find a leaf with lesser keys
4837 * returns 0 if it found something or 1 if there are no lesser leaves.
4838 * returns < 0 on io errors.
4839 *
4840 * This may release the path, and so you may lose any locks held at the
4841 * time you call it.
4842 */
4843 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4844 {
4845 struct btrfs_key key;
4846 struct btrfs_disk_key found_key;
4847 int ret;
4848
4849 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4850
4851 if (key.offset > 0)
4852 key.offset--;
4853 else if (key.type > 0)
4854 key.type--;
4855 else if (key.objectid > 0)
4856 key.objectid--;
4857 else
4858 return 1;
4859
4860 btrfs_release_path(path);
4861 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4862 if (ret < 0)
4863 return ret;
4864 btrfs_item_key(path->nodes[0], &found_key, 0);
4865 ret = comp_keys(&found_key, &key);
4866 if (ret < 0)
4867 return 0;
4868 return 1;
4869 }
4870
4871 /*
4872 * A helper function to walk down the tree starting at min_key, and looking
4873 * for nodes or leaves that are have a minimum transaction id.
4874 * This is used by the btree defrag code, and tree logging
4875 *
4876 * This does not cow, but it does stuff the starting key it finds back
4877 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4878 * key and get a writable path.
4879 *
4880 * This does lock as it descends, and path->keep_locks should be set
4881 * to 1 by the caller.
4882 *
4883 * This honors path->lowest_level to prevent descent past a given level
4884 * of the tree.
4885 *
4886 * min_trans indicates the oldest transaction that you are interested
4887 * in walking through. Any nodes or leaves older than min_trans are
4888 * skipped over (without reading them).
4889 *
4890 * returns zero if something useful was found, < 0 on error and 1 if there
4891 * was nothing in the tree that matched the search criteria.
4892 */
4893 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4894 struct btrfs_key *max_key,
4895 struct btrfs_path *path,
4896 u64 min_trans)
4897 {
4898 struct extent_buffer *cur;
4899 struct btrfs_key found_key;
4900 int slot;
4901 int sret;
4902 u32 nritems;
4903 int level;
4904 int ret = 1;
4905
4906 WARN_ON(!path->keep_locks);
4907 again:
4908 cur = btrfs_read_lock_root_node(root);
4909 level = btrfs_header_level(cur);
4910 WARN_ON(path->nodes[level]);
4911 path->nodes[level] = cur;
4912 path->locks[level] = BTRFS_READ_LOCK;
4913
4914 if (btrfs_header_generation(cur) < min_trans) {
4915 ret = 1;
4916 goto out;
4917 }
4918 while (1) {
4919 nritems = btrfs_header_nritems(cur);
4920 level = btrfs_header_level(cur);
4921 sret = bin_search(cur, min_key, level, &slot);
4922
4923 /* at the lowest level, we're done, setup the path and exit */
4924 if (level == path->lowest_level) {
4925 if (slot >= nritems)
4926 goto find_next_key;
4927 ret = 0;
4928 path->slots[level] = slot;
4929 btrfs_item_key_to_cpu(cur, &found_key, slot);
4930 goto out;
4931 }
4932 if (sret && slot > 0)
4933 slot--;
4934 /*
4935 * check this node pointer against the min_trans parameters.
4936 * If it is too old, old, skip to the next one.
4937 */
4938 while (slot < nritems) {
4939 u64 blockptr;
4940 u64 gen;
4941
4942 blockptr = btrfs_node_blockptr(cur, slot);
4943 gen = btrfs_node_ptr_generation(cur, slot);
4944 if (gen < min_trans) {
4945 slot++;
4946 continue;
4947 }
4948 break;
4949 }
4950 find_next_key:
4951 /*
4952 * we didn't find a candidate key in this node, walk forward
4953 * and find another one
4954 */
4955 if (slot >= nritems) {
4956 path->slots[level] = slot;
4957 btrfs_set_path_blocking(path);
4958 sret = btrfs_find_next_key(root, path, min_key, level,
4959 min_trans);
4960 if (sret == 0) {
4961 btrfs_release_path(path);
4962 goto again;
4963 } else {
4964 goto out;
4965 }
4966 }
4967 /* save our key for returning back */
4968 btrfs_node_key_to_cpu(cur, &found_key, slot);
4969 path->slots[level] = slot;
4970 if (level == path->lowest_level) {
4971 ret = 0;
4972 unlock_up(path, level, 1, 0, NULL);
4973 goto out;
4974 }
4975 btrfs_set_path_blocking(path);
4976 cur = read_node_slot(root, cur, slot);
4977 BUG_ON(!cur); /* -ENOMEM */
4978
4979 btrfs_tree_read_lock(cur);
4980
4981 path->locks[level - 1] = BTRFS_READ_LOCK;
4982 path->nodes[level - 1] = cur;
4983 unlock_up(path, level, 1, 0, NULL);
4984 btrfs_clear_path_blocking(path, NULL, 0);
4985 }
4986 out:
4987 if (ret == 0)
4988 memcpy(min_key, &found_key, sizeof(found_key));
4989 btrfs_set_path_blocking(path);
4990 return ret;
4991 }
4992
4993 static void tree_move_down(struct btrfs_root *root,
4994 struct btrfs_path *path,
4995 int *level, int root_level)
4996 {
4997 BUG_ON(*level == 0);
4998 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4999 path->slots[*level]);
5000 path->slots[*level - 1] = 0;
5001 (*level)--;
5002 }
5003
5004 static int tree_move_next_or_upnext(struct btrfs_root *root,
5005 struct btrfs_path *path,
5006 int *level, int root_level)
5007 {
5008 int ret = 0;
5009 int nritems;
5010 nritems = btrfs_header_nritems(path->nodes[*level]);
5011
5012 path->slots[*level]++;
5013
5014 while (path->slots[*level] >= nritems) {
5015 if (*level == root_level)
5016 return -1;
5017
5018 /* move upnext */
5019 path->slots[*level] = 0;
5020 free_extent_buffer(path->nodes[*level]);
5021 path->nodes[*level] = NULL;
5022 (*level)++;
5023 path->slots[*level]++;
5024
5025 nritems = btrfs_header_nritems(path->nodes[*level]);
5026 ret = 1;
5027 }
5028 return ret;
5029 }
5030
5031 /*
5032 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5033 * or down.
5034 */
5035 static int tree_advance(struct btrfs_root *root,
5036 struct btrfs_path *path,
5037 int *level, int root_level,
5038 int allow_down,
5039 struct btrfs_key *key)
5040 {
5041 int ret;
5042
5043 if (*level == 0 || !allow_down) {
5044 ret = tree_move_next_or_upnext(root, path, level, root_level);
5045 } else {
5046 tree_move_down(root, path, level, root_level);
5047 ret = 0;
5048 }
5049 if (ret >= 0) {
5050 if (*level == 0)
5051 btrfs_item_key_to_cpu(path->nodes[*level], key,
5052 path->slots[*level]);
5053 else
5054 btrfs_node_key_to_cpu(path->nodes[*level], key,
5055 path->slots[*level]);
5056 }
5057 return ret;
5058 }
5059
5060 static int tree_compare_item(struct btrfs_root *left_root,
5061 struct btrfs_path *left_path,
5062 struct btrfs_path *right_path,
5063 char *tmp_buf)
5064 {
5065 int cmp;
5066 int len1, len2;
5067 unsigned long off1, off2;
5068
5069 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5070 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5071 if (len1 != len2)
5072 return 1;
5073
5074 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5075 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5076 right_path->slots[0]);
5077
5078 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5079
5080 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5081 if (cmp)
5082 return 1;
5083 return 0;
5084 }
5085
5086 #define ADVANCE 1
5087 #define ADVANCE_ONLY_NEXT -1
5088
5089 /*
5090 * This function compares two trees and calls the provided callback for
5091 * every changed/new/deleted item it finds.
5092 * If shared tree blocks are encountered, whole subtrees are skipped, making
5093 * the compare pretty fast on snapshotted subvolumes.
5094 *
5095 * This currently works on commit roots only. As commit roots are read only,
5096 * we don't do any locking. The commit roots are protected with transactions.
5097 * Transactions are ended and rejoined when a commit is tried in between.
5098 *
5099 * This function checks for modifications done to the trees while comparing.
5100 * If it detects a change, it aborts immediately.
5101 */
5102 int btrfs_compare_trees(struct btrfs_root *left_root,
5103 struct btrfs_root *right_root,
5104 btrfs_changed_cb_t changed_cb, void *ctx)
5105 {
5106 int ret;
5107 int cmp;
5108 struct btrfs_trans_handle *trans = NULL;
5109 struct btrfs_path *left_path = NULL;
5110 struct btrfs_path *right_path = NULL;
5111 struct btrfs_key left_key;
5112 struct btrfs_key right_key;
5113 char *tmp_buf = NULL;
5114 int left_root_level;
5115 int right_root_level;
5116 int left_level;
5117 int right_level;
5118 int left_end_reached;
5119 int right_end_reached;
5120 int advance_left;
5121 int advance_right;
5122 u64 left_blockptr;
5123 u64 right_blockptr;
5124 u64 left_start_ctransid;
5125 u64 right_start_ctransid;
5126 u64 ctransid;
5127
5128 left_path = btrfs_alloc_path();
5129 if (!left_path) {
5130 ret = -ENOMEM;
5131 goto out;
5132 }
5133 right_path = btrfs_alloc_path();
5134 if (!right_path) {
5135 ret = -ENOMEM;
5136 goto out;
5137 }
5138
5139 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5140 if (!tmp_buf) {
5141 ret = -ENOMEM;
5142 goto out;
5143 }
5144
5145 left_path->search_commit_root = 1;
5146 left_path->skip_locking = 1;
5147 right_path->search_commit_root = 1;
5148 right_path->skip_locking = 1;
5149
5150 spin_lock(&left_root->root_item_lock);
5151 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5152 spin_unlock(&left_root->root_item_lock);
5153
5154 spin_lock(&right_root->root_item_lock);
5155 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5156 spin_unlock(&right_root->root_item_lock);
5157
5158 trans = btrfs_join_transaction(left_root);
5159 if (IS_ERR(trans)) {
5160 ret = PTR_ERR(trans);
5161 trans = NULL;
5162 goto out;
5163 }
5164
5165 /*
5166 * Strategy: Go to the first items of both trees. Then do
5167 *
5168 * If both trees are at level 0
5169 * Compare keys of current items
5170 * If left < right treat left item as new, advance left tree
5171 * and repeat
5172 * If left > right treat right item as deleted, advance right tree
5173 * and repeat
5174 * If left == right do deep compare of items, treat as changed if
5175 * needed, advance both trees and repeat
5176 * If both trees are at the same level but not at level 0
5177 * Compare keys of current nodes/leafs
5178 * If left < right advance left tree and repeat
5179 * If left > right advance right tree and repeat
5180 * If left == right compare blockptrs of the next nodes/leafs
5181 * If they match advance both trees but stay at the same level
5182 * and repeat
5183 * If they don't match advance both trees while allowing to go
5184 * deeper and repeat
5185 * If tree levels are different
5186 * Advance the tree that needs it and repeat
5187 *
5188 * Advancing a tree means:
5189 * If we are at level 0, try to go to the next slot. If that's not
5190 * possible, go one level up and repeat. Stop when we found a level
5191 * where we could go to the next slot. We may at this point be on a
5192 * node or a leaf.
5193 *
5194 * If we are not at level 0 and not on shared tree blocks, go one
5195 * level deeper.
5196 *
5197 * If we are not at level 0 and on shared tree blocks, go one slot to
5198 * the right if possible or go up and right.
5199 */
5200
5201 left_level = btrfs_header_level(left_root->commit_root);
5202 left_root_level = left_level;
5203 left_path->nodes[left_level] = left_root->commit_root;
5204 extent_buffer_get(left_path->nodes[left_level]);
5205
5206 right_level = btrfs_header_level(right_root->commit_root);
5207 right_root_level = right_level;
5208 right_path->nodes[right_level] = right_root->commit_root;
5209 extent_buffer_get(right_path->nodes[right_level]);
5210
5211 if (left_level == 0)
5212 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5213 &left_key, left_path->slots[left_level]);
5214 else
5215 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5216 &left_key, left_path->slots[left_level]);
5217 if (right_level == 0)
5218 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5219 &right_key, right_path->slots[right_level]);
5220 else
5221 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5222 &right_key, right_path->slots[right_level]);
5223
5224 left_end_reached = right_end_reached = 0;
5225 advance_left = advance_right = 0;
5226
5227 while (1) {
5228 /*
5229 * We need to make sure the transaction does not get committed
5230 * while we do anything on commit roots. This means, we need to
5231 * join and leave transactions for every item that we process.
5232 */
5233 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5234 btrfs_release_path(left_path);
5235 btrfs_release_path(right_path);
5236
5237 ret = btrfs_end_transaction(trans, left_root);
5238 trans = NULL;
5239 if (ret < 0)
5240 goto out;
5241 }
5242 /* now rejoin the transaction */
5243 if (!trans) {
5244 trans = btrfs_join_transaction(left_root);
5245 if (IS_ERR(trans)) {
5246 ret = PTR_ERR(trans);
5247 trans = NULL;
5248 goto out;
5249 }
5250
5251 spin_lock(&left_root->root_item_lock);
5252 ctransid = btrfs_root_ctransid(&left_root->root_item);
5253 spin_unlock(&left_root->root_item_lock);
5254 if (ctransid != left_start_ctransid)
5255 left_start_ctransid = 0;
5256
5257 spin_lock(&right_root->root_item_lock);
5258 ctransid = btrfs_root_ctransid(&right_root->root_item);
5259 spin_unlock(&right_root->root_item_lock);
5260 if (ctransid != right_start_ctransid)
5261 right_start_ctransid = 0;
5262
5263 if (!left_start_ctransid || !right_start_ctransid) {
5264 WARN(1, KERN_WARNING
5265 "btrfs: btrfs_compare_tree detected "
5266 "a change in one of the trees while "
5267 "iterating. This is probably a "
5268 "bug.\n");
5269 ret = -EIO;
5270 goto out;
5271 }
5272
5273 /*
5274 * the commit root may have changed, so start again
5275 * where we stopped
5276 */
5277 left_path->lowest_level = left_level;
5278 right_path->lowest_level = right_level;
5279 ret = btrfs_search_slot(NULL, left_root,
5280 &left_key, left_path, 0, 0);
5281 if (ret < 0)
5282 goto out;
5283 ret = btrfs_search_slot(NULL, right_root,
5284 &right_key, right_path, 0, 0);
5285 if (ret < 0)
5286 goto out;
5287 }
5288
5289 if (advance_left && !left_end_reached) {
5290 ret = tree_advance(left_root, left_path, &left_level,
5291 left_root_level,
5292 advance_left != ADVANCE_ONLY_NEXT,
5293 &left_key);
5294 if (ret < 0)
5295 left_end_reached = ADVANCE;
5296 advance_left = 0;
5297 }
5298 if (advance_right && !right_end_reached) {
5299 ret = tree_advance(right_root, right_path, &right_level,
5300 right_root_level,
5301 advance_right != ADVANCE_ONLY_NEXT,
5302 &right_key);
5303 if (ret < 0)
5304 right_end_reached = ADVANCE;
5305 advance_right = 0;
5306 }
5307
5308 if (left_end_reached && right_end_reached) {
5309 ret = 0;
5310 goto out;
5311 } else if (left_end_reached) {
5312 if (right_level == 0) {
5313 ret = changed_cb(left_root, right_root,
5314 left_path, right_path,
5315 &right_key,
5316 BTRFS_COMPARE_TREE_DELETED,
5317 ctx);
5318 if (ret < 0)
5319 goto out;
5320 }
5321 advance_right = ADVANCE;
5322 continue;
5323 } else if (right_end_reached) {
5324 if (left_level == 0) {
5325 ret = changed_cb(left_root, right_root,
5326 left_path, right_path,
5327 &left_key,
5328 BTRFS_COMPARE_TREE_NEW,
5329 ctx);
5330 if (ret < 0)
5331 goto out;
5332 }
5333 advance_left = ADVANCE;
5334 continue;
5335 }
5336
5337 if (left_level == 0 && right_level == 0) {
5338 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5339 if (cmp < 0) {
5340 ret = changed_cb(left_root, right_root,
5341 left_path, right_path,
5342 &left_key,
5343 BTRFS_COMPARE_TREE_NEW,
5344 ctx);
5345 if (ret < 0)
5346 goto out;
5347 advance_left = ADVANCE;
5348 } else if (cmp > 0) {
5349 ret = changed_cb(left_root, right_root,
5350 left_path, right_path,
5351 &right_key,
5352 BTRFS_COMPARE_TREE_DELETED,
5353 ctx);
5354 if (ret < 0)
5355 goto out;
5356 advance_right = ADVANCE;
5357 } else {
5358 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5359 ret = tree_compare_item(left_root, left_path,
5360 right_path, tmp_buf);
5361 if (ret) {
5362 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5363 ret = changed_cb(left_root, right_root,
5364 left_path, right_path,
5365 &left_key,
5366 BTRFS_COMPARE_TREE_CHANGED,
5367 ctx);
5368 if (ret < 0)
5369 goto out;
5370 }
5371 advance_left = ADVANCE;
5372 advance_right = ADVANCE;
5373 }
5374 } else if (left_level == right_level) {
5375 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5376 if (cmp < 0) {
5377 advance_left = ADVANCE;
5378 } else if (cmp > 0) {
5379 advance_right = ADVANCE;
5380 } else {
5381 left_blockptr = btrfs_node_blockptr(
5382 left_path->nodes[left_level],
5383 left_path->slots[left_level]);
5384 right_blockptr = btrfs_node_blockptr(
5385 right_path->nodes[right_level],
5386 right_path->slots[right_level]);
5387 if (left_blockptr == right_blockptr) {
5388 /*
5389 * As we're on a shared block, don't
5390 * allow to go deeper.
5391 */
5392 advance_left = ADVANCE_ONLY_NEXT;
5393 advance_right = ADVANCE_ONLY_NEXT;
5394 } else {
5395 advance_left = ADVANCE;
5396 advance_right = ADVANCE;
5397 }
5398 }
5399 } else if (left_level < right_level) {
5400 advance_right = ADVANCE;
5401 } else {
5402 advance_left = ADVANCE;
5403 }
5404 }
5405
5406 out:
5407 btrfs_free_path(left_path);
5408 btrfs_free_path(right_path);
5409 kfree(tmp_buf);
5410
5411 if (trans) {
5412 if (!ret)
5413 ret = btrfs_end_transaction(trans, left_root);
5414 else
5415 btrfs_end_transaction(trans, left_root);
5416 }
5417
5418 return ret;
5419 }
5420
5421 /*
5422 * this is similar to btrfs_next_leaf, but does not try to preserve
5423 * and fixup the path. It looks for and returns the next key in the
5424 * tree based on the current path and the min_trans parameters.
5425 *
5426 * 0 is returned if another key is found, < 0 if there are any errors
5427 * and 1 is returned if there are no higher keys in the tree
5428 *
5429 * path->keep_locks should be set to 1 on the search made before
5430 * calling this function.
5431 */
5432 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5433 struct btrfs_key *key, int level, u64 min_trans)
5434 {
5435 int slot;
5436 struct extent_buffer *c;
5437
5438 WARN_ON(!path->keep_locks);
5439 while (level < BTRFS_MAX_LEVEL) {
5440 if (!path->nodes[level])
5441 return 1;
5442
5443 slot = path->slots[level] + 1;
5444 c = path->nodes[level];
5445 next:
5446 if (slot >= btrfs_header_nritems(c)) {
5447 int ret;
5448 int orig_lowest;
5449 struct btrfs_key cur_key;
5450 if (level + 1 >= BTRFS_MAX_LEVEL ||
5451 !path->nodes[level + 1])
5452 return 1;
5453
5454 if (path->locks[level + 1]) {
5455 level++;
5456 continue;
5457 }
5458
5459 slot = btrfs_header_nritems(c) - 1;
5460 if (level == 0)
5461 btrfs_item_key_to_cpu(c, &cur_key, slot);
5462 else
5463 btrfs_node_key_to_cpu(c, &cur_key, slot);
5464
5465 orig_lowest = path->lowest_level;
5466 btrfs_release_path(path);
5467 path->lowest_level = level;
5468 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5469 0, 0);
5470 path->lowest_level = orig_lowest;
5471 if (ret < 0)
5472 return ret;
5473
5474 c = path->nodes[level];
5475 slot = path->slots[level];
5476 if (ret == 0)
5477 slot++;
5478 goto next;
5479 }
5480
5481 if (level == 0)
5482 btrfs_item_key_to_cpu(c, key, slot);
5483 else {
5484 u64 gen = btrfs_node_ptr_generation(c, slot);
5485
5486 if (gen < min_trans) {
5487 slot++;
5488 goto next;
5489 }
5490 btrfs_node_key_to_cpu(c, key, slot);
5491 }
5492 return 0;
5493 }
5494 return 1;
5495 }
5496
5497 /*
5498 * search the tree again to find a leaf with greater keys
5499 * returns 0 if it found something or 1 if there are no greater leaves.
5500 * returns < 0 on io errors.
5501 */
5502 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5503 {
5504 return btrfs_next_old_leaf(root, path, 0);
5505 }
5506
5507 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5508 u64 time_seq)
5509 {
5510 int slot;
5511 int level;
5512 struct extent_buffer *c;
5513 struct extent_buffer *next;
5514 struct btrfs_key key;
5515 u32 nritems;
5516 int ret;
5517 int old_spinning = path->leave_spinning;
5518 int next_rw_lock = 0;
5519
5520 nritems = btrfs_header_nritems(path->nodes[0]);
5521 if (nritems == 0)
5522 return 1;
5523
5524 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5525 again:
5526 level = 1;
5527 next = NULL;
5528 next_rw_lock = 0;
5529 btrfs_release_path(path);
5530
5531 path->keep_locks = 1;
5532 path->leave_spinning = 1;
5533
5534 if (time_seq)
5535 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5536 else
5537 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5538 path->keep_locks = 0;
5539
5540 if (ret < 0)
5541 return ret;
5542
5543 nritems = btrfs_header_nritems(path->nodes[0]);
5544 /*
5545 * by releasing the path above we dropped all our locks. A balance
5546 * could have added more items next to the key that used to be
5547 * at the very end of the block. So, check again here and
5548 * advance the path if there are now more items available.
5549 */
5550 if (nritems > 0 && path->slots[0] < nritems - 1) {
5551 if (ret == 0)
5552 path->slots[0]++;
5553 ret = 0;
5554 goto done;
5555 }
5556
5557 while (level < BTRFS_MAX_LEVEL) {
5558 if (!path->nodes[level]) {
5559 ret = 1;
5560 goto done;
5561 }
5562
5563 slot = path->slots[level] + 1;
5564 c = path->nodes[level];
5565 if (slot >= btrfs_header_nritems(c)) {
5566 level++;
5567 if (level == BTRFS_MAX_LEVEL) {
5568 ret = 1;
5569 goto done;
5570 }
5571 continue;
5572 }
5573
5574 if (next) {
5575 btrfs_tree_unlock_rw(next, next_rw_lock);
5576 free_extent_buffer(next);
5577 }
5578
5579 next = c;
5580 next_rw_lock = path->locks[level];
5581 ret = read_block_for_search(NULL, root, path, &next, level,
5582 slot, &key, 0);
5583 if (ret == -EAGAIN)
5584 goto again;
5585
5586 if (ret < 0) {
5587 btrfs_release_path(path);
5588 goto done;
5589 }
5590
5591 if (!path->skip_locking) {
5592 ret = btrfs_try_tree_read_lock(next);
5593 if (!ret && time_seq) {
5594 /*
5595 * If we don't get the lock, we may be racing
5596 * with push_leaf_left, holding that lock while
5597 * itself waiting for the leaf we've currently
5598 * locked. To solve this situation, we give up
5599 * on our lock and cycle.
5600 */
5601 free_extent_buffer(next);
5602 btrfs_release_path(path);
5603 cond_resched();
5604 goto again;
5605 }
5606 if (!ret) {
5607 btrfs_set_path_blocking(path);
5608 btrfs_tree_read_lock(next);
5609 btrfs_clear_path_blocking(path, next,
5610 BTRFS_READ_LOCK);
5611 }
5612 next_rw_lock = BTRFS_READ_LOCK;
5613 }
5614 break;
5615 }
5616 path->slots[level] = slot;
5617 while (1) {
5618 level--;
5619 c = path->nodes[level];
5620 if (path->locks[level])
5621 btrfs_tree_unlock_rw(c, path->locks[level]);
5622
5623 free_extent_buffer(c);
5624 path->nodes[level] = next;
5625 path->slots[level] = 0;
5626 if (!path->skip_locking)
5627 path->locks[level] = next_rw_lock;
5628 if (!level)
5629 break;
5630
5631 ret = read_block_for_search(NULL, root, path, &next, level,
5632 0, &key, 0);
5633 if (ret == -EAGAIN)
5634 goto again;
5635
5636 if (ret < 0) {
5637 btrfs_release_path(path);
5638 goto done;
5639 }
5640
5641 if (!path->skip_locking) {
5642 ret = btrfs_try_tree_read_lock(next);
5643 if (!ret) {
5644 btrfs_set_path_blocking(path);
5645 btrfs_tree_read_lock(next);
5646 btrfs_clear_path_blocking(path, next,
5647 BTRFS_READ_LOCK);
5648 }
5649 next_rw_lock = BTRFS_READ_LOCK;
5650 }
5651 }
5652 ret = 0;
5653 done:
5654 unlock_up(path, 0, 1, 0, NULL);
5655 path->leave_spinning = old_spinning;
5656 if (!old_spinning)
5657 btrfs_set_path_blocking(path);
5658
5659 return ret;
5660 }
5661
5662 /*
5663 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5664 * searching until it gets past min_objectid or finds an item of 'type'
5665 *
5666 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5667 */
5668 int btrfs_previous_item(struct btrfs_root *root,
5669 struct btrfs_path *path, u64 min_objectid,
5670 int type)
5671 {
5672 struct btrfs_key found_key;
5673 struct extent_buffer *leaf;
5674 u32 nritems;
5675 int ret;
5676
5677 while (1) {
5678 if (path->slots[0] == 0) {
5679 btrfs_set_path_blocking(path);
5680 ret = btrfs_prev_leaf(root, path);
5681 if (ret != 0)
5682 return ret;
5683 } else {
5684 path->slots[0]--;
5685 }
5686 leaf = path->nodes[0];
5687 nritems = btrfs_header_nritems(leaf);
5688 if (nritems == 0)
5689 return 1;
5690 if (path->slots[0] == nritems)
5691 path->slots[0]--;
5692
5693 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5694 if (found_key.objectid < min_objectid)
5695 break;
5696 if (found_key.type == type)
5697 return 0;
5698 if (found_key.objectid == min_objectid &&
5699 found_key.type < type)
5700 break;
5701 }
5702 return 1;
5703 }