2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_path
*path
, int level
);
31 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
32 *root
, struct btrfs_key
*ins_key
,
33 struct btrfs_path
*path
, int data_size
, int extend
);
34 static int push_node_left(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
, struct extent_buffer
*dst
,
36 struct extent_buffer
*src
, int empty
);
37 static int balance_node_right(struct btrfs_trans_handle
*trans
,
38 struct btrfs_root
*root
,
39 struct extent_buffer
*dst_buf
,
40 struct extent_buffer
*src_buf
);
41 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
43 static int tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
44 struct extent_buffer
*eb
);
46 struct btrfs_path
*btrfs_alloc_path(void)
48 return kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
52 * set all locked nodes in the path to blocking locks. This should
53 * be done before scheduling
55 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
58 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
59 if (!p
->nodes
[i
] || !p
->locks
[i
])
61 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
62 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
63 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
64 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
65 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
70 * reset all the locked nodes in the patch to spinning locks.
72 * held is used to keep lockdep happy, when lockdep is enabled
73 * we set held to a blocking lock before we go around and
74 * retake all the spinlocks in the path. You can safely use NULL
77 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
78 struct extent_buffer
*held
, int held_rw
)
83 btrfs_set_lock_blocking_rw(held
, held_rw
);
84 if (held_rw
== BTRFS_WRITE_LOCK
)
85 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
86 else if (held_rw
== BTRFS_READ_LOCK
)
87 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
89 btrfs_set_path_blocking(p
);
91 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
92 if (p
->nodes
[i
] && p
->locks
[i
]) {
93 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
94 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
95 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
96 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
97 p
->locks
[i
] = BTRFS_READ_LOCK
;
102 btrfs_clear_lock_blocking_rw(held
, held_rw
);
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path
*p
)
110 btrfs_release_path(p
);
111 kmem_cache_free(btrfs_path_cachep
, p
);
115 * path release drops references on the extent buffers in the path
116 * and it drops any locks held by this path
118 * It is safe to call this on paths that no locks or extent buffers held.
120 noinline
void btrfs_release_path(struct btrfs_path
*p
)
124 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
129 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
132 free_extent_buffer(p
->nodes
[i
]);
138 * safely gets a reference on the root node of a tree. A lock
139 * is not taken, so a concurrent writer may put a different node
140 * at the root of the tree. See btrfs_lock_root_node for the
143 * The extent buffer returned by this has a reference taken, so
144 * it won't disappear. It may stop being the root of the tree
145 * at any time because there are no locks held.
147 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
149 struct extent_buffer
*eb
;
153 eb
= rcu_dereference(root
->node
);
156 * RCU really hurts here, we could free up the root node because
157 * it was COWed but we may not get the new root node yet so do
158 * the inc_not_zero dance and if it doesn't work then
159 * synchronize_rcu and try again.
161 if (atomic_inc_not_zero(&eb
->refs
)) {
171 /* loop around taking references on and locking the root node of the
172 * tree until you end up with a lock on the root. A locked buffer
173 * is returned, with a reference held.
175 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
177 struct extent_buffer
*eb
;
180 eb
= btrfs_root_node(root
);
182 if (eb
== root
->node
)
184 btrfs_tree_unlock(eb
);
185 free_extent_buffer(eb
);
190 /* loop around taking references on and locking the root node of the
191 * tree until you end up with a lock on the root. A locked buffer
192 * is returned, with a reference held.
194 static struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
196 struct extent_buffer
*eb
;
199 eb
= btrfs_root_node(root
);
200 btrfs_tree_read_lock(eb
);
201 if (eb
== root
->node
)
203 btrfs_tree_read_unlock(eb
);
204 free_extent_buffer(eb
);
209 /* cowonly root (everything not a reference counted cow subvolume), just get
210 * put onto a simple dirty list. transaction.c walks this to make sure they
211 * get properly updated on disk.
213 static void add_root_to_dirty_list(struct btrfs_root
*root
)
215 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
216 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
219 spin_lock(&root
->fs_info
->trans_lock
);
220 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
221 /* Want the extent tree to be the last on the list */
222 if (root
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
223 list_move_tail(&root
->dirty_list
,
224 &root
->fs_info
->dirty_cowonly_roots
);
226 list_move(&root
->dirty_list
,
227 &root
->fs_info
->dirty_cowonly_roots
);
229 spin_unlock(&root
->fs_info
->trans_lock
);
233 * used by snapshot creation to make a copy of a root for a tree with
234 * a given objectid. The buffer with the new root node is returned in
235 * cow_ret, and this func returns zero on success or a negative error code.
237 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
238 struct btrfs_root
*root
,
239 struct extent_buffer
*buf
,
240 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
242 struct extent_buffer
*cow
;
245 struct btrfs_disk_key disk_key
;
247 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
248 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
250 trans
->transid
!= root
->last_trans
);
252 level
= btrfs_header_level(buf
);
254 btrfs_item_key(buf
, &disk_key
, 0);
256 btrfs_node_key(buf
, &disk_key
, 0);
258 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
259 &disk_key
, level
, buf
->start
, 0);
263 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
264 btrfs_set_header_bytenr(cow
, cow
->start
);
265 btrfs_set_header_generation(cow
, trans
->transid
);
266 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
267 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
268 BTRFS_HEADER_FLAG_RELOC
);
269 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
270 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
272 btrfs_set_header_owner(cow
, new_root_objectid
);
274 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
277 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
278 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
279 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
281 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
286 btrfs_mark_buffer_dirty(cow
);
295 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
296 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
298 MOD_LOG_ROOT_REPLACE
,
301 struct tree_mod_move
{
306 struct tree_mod_root
{
311 struct tree_mod_elem
{
317 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
324 struct btrfs_disk_key key
;
327 /* this is used for op == MOD_LOG_MOVE_KEYS */
328 struct tree_mod_move move
;
330 /* this is used for op == MOD_LOG_ROOT_REPLACE */
331 struct tree_mod_root old_root
;
334 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
336 read_lock(&fs_info
->tree_mod_log_lock
);
339 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
341 read_unlock(&fs_info
->tree_mod_log_lock
);
344 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
346 write_lock(&fs_info
->tree_mod_log_lock
);
349 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
351 write_unlock(&fs_info
->tree_mod_log_lock
);
355 * Pull a new tree mod seq number for our operation.
357 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
359 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
363 * This adds a new blocker to the tree mod log's blocker list if the @elem
364 * passed does not already have a sequence number set. So when a caller expects
365 * to record tree modifications, it should ensure to set elem->seq to zero
366 * before calling btrfs_get_tree_mod_seq.
367 * Returns a fresh, unused tree log modification sequence number, even if no new
370 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
371 struct seq_list
*elem
)
373 tree_mod_log_write_lock(fs_info
);
374 spin_lock(&fs_info
->tree_mod_seq_lock
);
376 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
377 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
379 spin_unlock(&fs_info
->tree_mod_seq_lock
);
380 tree_mod_log_write_unlock(fs_info
);
385 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
386 struct seq_list
*elem
)
388 struct rb_root
*tm_root
;
389 struct rb_node
*node
;
390 struct rb_node
*next
;
391 struct seq_list
*cur_elem
;
392 struct tree_mod_elem
*tm
;
393 u64 min_seq
= (u64
)-1;
394 u64 seq_putting
= elem
->seq
;
399 spin_lock(&fs_info
->tree_mod_seq_lock
);
400 list_del(&elem
->list
);
403 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
404 if (cur_elem
->seq
< min_seq
) {
405 if (seq_putting
> cur_elem
->seq
) {
407 * blocker with lower sequence number exists, we
408 * cannot remove anything from the log
410 spin_unlock(&fs_info
->tree_mod_seq_lock
);
413 min_seq
= cur_elem
->seq
;
416 spin_unlock(&fs_info
->tree_mod_seq_lock
);
419 * anything that's lower than the lowest existing (read: blocked)
420 * sequence number can be removed from the tree.
422 tree_mod_log_write_lock(fs_info
);
423 tm_root
= &fs_info
->tree_mod_log
;
424 for (node
= rb_first(tm_root
); node
; node
= next
) {
425 next
= rb_next(node
);
426 tm
= container_of(node
, struct tree_mod_elem
, node
);
427 if (tm
->seq
> min_seq
)
429 rb_erase(node
, tm_root
);
432 tree_mod_log_write_unlock(fs_info
);
436 * key order of the log:
437 * node/leaf start address -> sequence
439 * The 'start address' is the logical address of the *new* root node
440 * for root replace operations, or the logical address of the affected
441 * block for all other operations.
443 * Note: must be called with write lock (tree_mod_log_write_lock).
446 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
448 struct rb_root
*tm_root
;
449 struct rb_node
**new;
450 struct rb_node
*parent
= NULL
;
451 struct tree_mod_elem
*cur
;
455 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
457 tm_root
= &fs_info
->tree_mod_log
;
458 new = &tm_root
->rb_node
;
460 cur
= container_of(*new, struct tree_mod_elem
, node
);
462 if (cur
->logical
< tm
->logical
)
463 new = &((*new)->rb_left
);
464 else if (cur
->logical
> tm
->logical
)
465 new = &((*new)->rb_right
);
466 else if (cur
->seq
< tm
->seq
)
467 new = &((*new)->rb_left
);
468 else if (cur
->seq
> tm
->seq
)
469 new = &((*new)->rb_right
);
474 rb_link_node(&tm
->node
, parent
, new);
475 rb_insert_color(&tm
->node
, tm_root
);
480 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
481 * returns zero with the tree_mod_log_lock acquired. The caller must hold
482 * this until all tree mod log insertions are recorded in the rb tree and then
483 * call tree_mod_log_write_unlock() to release.
485 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
486 struct extent_buffer
*eb
) {
488 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
490 if (eb
&& btrfs_header_level(eb
) == 0)
493 tree_mod_log_write_lock(fs_info
);
494 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
495 tree_mod_log_write_unlock(fs_info
);
502 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
503 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
504 struct extent_buffer
*eb
)
507 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
509 if (eb
&& btrfs_header_level(eb
) == 0)
515 static struct tree_mod_elem
*
516 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
517 enum mod_log_op op
, gfp_t flags
)
519 struct tree_mod_elem
*tm
;
521 tm
= kzalloc(sizeof(*tm
), flags
);
525 tm
->logical
= eb
->start
;
526 if (op
!= MOD_LOG_KEY_ADD
) {
527 btrfs_node_key(eb
, &tm
->key
, slot
);
528 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
532 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
533 RB_CLEAR_NODE(&tm
->node
);
539 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
540 struct extent_buffer
*eb
, int slot
,
541 enum mod_log_op op
, gfp_t flags
)
543 struct tree_mod_elem
*tm
;
546 if (!tree_mod_need_log(fs_info
, eb
))
549 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
553 if (tree_mod_dont_log(fs_info
, eb
)) {
558 ret
= __tree_mod_log_insert(fs_info
, tm
);
559 tree_mod_log_write_unlock(fs_info
);
567 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
568 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
569 int nr_items
, gfp_t flags
)
571 struct tree_mod_elem
*tm
= NULL
;
572 struct tree_mod_elem
**tm_list
= NULL
;
577 if (!tree_mod_need_log(fs_info
, eb
))
580 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), flags
);
584 tm
= kzalloc(sizeof(*tm
), flags
);
590 tm
->logical
= eb
->start
;
592 tm
->move
.dst_slot
= dst_slot
;
593 tm
->move
.nr_items
= nr_items
;
594 tm
->op
= MOD_LOG_MOVE_KEYS
;
596 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
597 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
598 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, flags
);
605 if (tree_mod_dont_log(fs_info
, eb
))
610 * When we override something during the move, we log these removals.
611 * This can only happen when we move towards the beginning of the
612 * buffer, i.e. dst_slot < src_slot.
614 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
615 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
620 ret
= __tree_mod_log_insert(fs_info
, tm
);
623 tree_mod_log_write_unlock(fs_info
);
628 for (i
= 0; i
< nr_items
; i
++) {
629 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
630 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
634 tree_mod_log_write_unlock(fs_info
);
642 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
643 struct tree_mod_elem
**tm_list
,
649 for (i
= nritems
- 1; i
>= 0; i
--) {
650 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
652 for (j
= nritems
- 1; j
> i
; j
--)
653 rb_erase(&tm_list
[j
]->node
,
654 &fs_info
->tree_mod_log
);
663 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
664 struct extent_buffer
*old_root
,
665 struct extent_buffer
*new_root
, gfp_t flags
,
668 struct tree_mod_elem
*tm
= NULL
;
669 struct tree_mod_elem
**tm_list
= NULL
;
674 if (!tree_mod_need_log(fs_info
, NULL
))
677 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
678 nritems
= btrfs_header_nritems(old_root
);
679 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
685 for (i
= 0; i
< nritems
; i
++) {
686 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
687 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, flags
);
695 tm
= kzalloc(sizeof(*tm
), flags
);
701 tm
->logical
= new_root
->start
;
702 tm
->old_root
.logical
= old_root
->start
;
703 tm
->old_root
.level
= btrfs_header_level(old_root
);
704 tm
->generation
= btrfs_header_generation(old_root
);
705 tm
->op
= MOD_LOG_ROOT_REPLACE
;
707 if (tree_mod_dont_log(fs_info
, NULL
))
711 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
713 ret
= __tree_mod_log_insert(fs_info
, tm
);
715 tree_mod_log_write_unlock(fs_info
);
724 for (i
= 0; i
< nritems
; i
++)
733 static struct tree_mod_elem
*
734 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
737 struct rb_root
*tm_root
;
738 struct rb_node
*node
;
739 struct tree_mod_elem
*cur
= NULL
;
740 struct tree_mod_elem
*found
= NULL
;
742 tree_mod_log_read_lock(fs_info
);
743 tm_root
= &fs_info
->tree_mod_log
;
744 node
= tm_root
->rb_node
;
746 cur
= container_of(node
, struct tree_mod_elem
, node
);
747 if (cur
->logical
< start
) {
748 node
= node
->rb_left
;
749 } else if (cur
->logical
> start
) {
750 node
= node
->rb_right
;
751 } else if (cur
->seq
< min_seq
) {
752 node
= node
->rb_left
;
753 } else if (!smallest
) {
754 /* we want the node with the highest seq */
756 BUG_ON(found
->seq
> cur
->seq
);
758 node
= node
->rb_left
;
759 } else if (cur
->seq
> min_seq
) {
760 /* we want the node with the smallest seq */
762 BUG_ON(found
->seq
< cur
->seq
);
764 node
= node
->rb_right
;
770 tree_mod_log_read_unlock(fs_info
);
776 * this returns the element from the log with the smallest time sequence
777 * value that's in the log (the oldest log item). any element with a time
778 * sequence lower than min_seq will be ignored.
780 static struct tree_mod_elem
*
781 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
784 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
788 * this returns the element from the log with the largest time sequence
789 * value that's in the log (the most recent log item). any element with
790 * a time sequence lower than min_seq will be ignored.
792 static struct tree_mod_elem
*
793 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
795 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
799 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
800 struct extent_buffer
*src
, unsigned long dst_offset
,
801 unsigned long src_offset
, int nr_items
)
804 struct tree_mod_elem
**tm_list
= NULL
;
805 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
809 if (!tree_mod_need_log(fs_info
, NULL
))
812 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
815 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
820 tm_list_add
= tm_list
;
821 tm_list_rem
= tm_list
+ nr_items
;
822 for (i
= 0; i
< nr_items
; i
++) {
823 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
824 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
825 if (!tm_list_rem
[i
]) {
830 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
831 MOD_LOG_KEY_ADD
, GFP_NOFS
);
832 if (!tm_list_add
[i
]) {
838 if (tree_mod_dont_log(fs_info
, NULL
))
842 for (i
= 0; i
< nr_items
; i
++) {
843 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
846 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
851 tree_mod_log_write_unlock(fs_info
);
857 for (i
= 0; i
< nr_items
* 2; i
++) {
858 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
859 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
863 tree_mod_log_write_unlock(fs_info
);
870 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
871 int dst_offset
, int src_offset
, int nr_items
)
874 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
880 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
881 struct extent_buffer
*eb
, int slot
, int atomic
)
885 ret
= tree_mod_log_insert_key(fs_info
, eb
, slot
,
887 atomic
? GFP_ATOMIC
: GFP_NOFS
);
892 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
894 struct tree_mod_elem
**tm_list
= NULL
;
899 if (btrfs_header_level(eb
) == 0)
902 if (!tree_mod_need_log(fs_info
, NULL
))
905 nritems
= btrfs_header_nritems(eb
);
906 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
910 for (i
= 0; i
< nritems
; i
++) {
911 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
912 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
919 if (tree_mod_dont_log(fs_info
, eb
))
922 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
923 tree_mod_log_write_unlock(fs_info
);
931 for (i
= 0; i
< nritems
; i
++)
939 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
940 struct extent_buffer
*new_root_node
,
944 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
945 new_root_node
, GFP_NOFS
, log_removal
);
950 * check if the tree block can be shared by multiple trees
952 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
953 struct extent_buffer
*buf
)
956 * Tree blocks not in reference counted trees and tree roots
957 * are never shared. If a block was allocated after the last
958 * snapshot and the block was not allocated by tree relocation,
959 * we know the block is not shared.
961 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
962 buf
!= root
->node
&& buf
!= root
->commit_root
&&
963 (btrfs_header_generation(buf
) <=
964 btrfs_root_last_snapshot(&root
->root_item
) ||
965 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
967 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
968 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
969 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
975 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
976 struct btrfs_root
*root
,
977 struct extent_buffer
*buf
,
978 struct extent_buffer
*cow
,
988 * Backrefs update rules:
990 * Always use full backrefs for extent pointers in tree block
991 * allocated by tree relocation.
993 * If a shared tree block is no longer referenced by its owner
994 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
995 * use full backrefs for extent pointers in tree block.
997 * If a tree block is been relocating
998 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
999 * use full backrefs for extent pointers in tree block.
1000 * The reason for this is some operations (such as drop tree)
1001 * are only allowed for blocks use full backrefs.
1004 if (btrfs_block_can_be_shared(root
, buf
)) {
1005 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
1006 btrfs_header_level(buf
), 1,
1012 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
1017 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1018 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1019 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1024 owner
= btrfs_header_owner(buf
);
1025 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
1026 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
1029 if ((owner
== root
->root_key
.objectid
||
1030 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
1031 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
1032 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
1033 BUG_ON(ret
); /* -ENOMEM */
1035 if (root
->root_key
.objectid
==
1036 BTRFS_TREE_RELOC_OBJECTID
) {
1037 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
1038 BUG_ON(ret
); /* -ENOMEM */
1039 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1040 BUG_ON(ret
); /* -ENOMEM */
1042 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1045 if (root
->root_key
.objectid
==
1046 BTRFS_TREE_RELOC_OBJECTID
)
1047 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1049 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1050 BUG_ON(ret
); /* -ENOMEM */
1052 if (new_flags
!= 0) {
1053 int level
= btrfs_header_level(buf
);
1055 ret
= btrfs_set_disk_extent_flags(trans
, root
,
1058 new_flags
, level
, 0);
1063 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
1064 if (root
->root_key
.objectid
==
1065 BTRFS_TREE_RELOC_OBJECTID
)
1066 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1068 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1069 BUG_ON(ret
); /* -ENOMEM */
1070 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
1071 BUG_ON(ret
); /* -ENOMEM */
1073 clean_tree_block(trans
, root
->fs_info
, buf
);
1080 * does the dirty work in cow of a single block. The parent block (if
1081 * supplied) is updated to point to the new cow copy. The new buffer is marked
1082 * dirty and returned locked. If you modify the block it needs to be marked
1085 * search_start -- an allocation hint for the new block
1087 * empty_size -- a hint that you plan on doing more cow. This is the size in
1088 * bytes the allocator should try to find free next to the block it returns.
1089 * This is just a hint and may be ignored by the allocator.
1091 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1092 struct btrfs_root
*root
,
1093 struct extent_buffer
*buf
,
1094 struct extent_buffer
*parent
, int parent_slot
,
1095 struct extent_buffer
**cow_ret
,
1096 u64 search_start
, u64 empty_size
)
1098 struct btrfs_disk_key disk_key
;
1099 struct extent_buffer
*cow
;
1102 int unlock_orig
= 0;
1103 u64 parent_start
= 0;
1105 if (*cow_ret
== buf
)
1108 btrfs_assert_tree_locked(buf
);
1110 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1111 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1113 trans
->transid
!= root
->last_trans
);
1115 level
= btrfs_header_level(buf
);
1118 btrfs_item_key(buf
, &disk_key
, 0);
1120 btrfs_node_key(buf
, &disk_key
, 0);
1122 if ((root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) && parent
)
1123 parent_start
= parent
->start
;
1125 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1126 root
->root_key
.objectid
, &disk_key
, level
,
1127 search_start
, empty_size
);
1129 return PTR_ERR(cow
);
1131 /* cow is set to blocking by btrfs_init_new_buffer */
1133 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
1134 btrfs_set_header_bytenr(cow
, cow
->start
);
1135 btrfs_set_header_generation(cow
, trans
->transid
);
1136 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1137 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1138 BTRFS_HEADER_FLAG_RELOC
);
1139 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1140 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1142 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1144 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
1147 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1149 btrfs_abort_transaction(trans
, ret
);
1153 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1154 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1156 btrfs_abort_transaction(trans
, ret
);
1161 if (buf
== root
->node
) {
1162 WARN_ON(parent
&& parent
!= buf
);
1163 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1164 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1165 parent_start
= buf
->start
;
1167 extent_buffer_get(cow
);
1168 tree_mod_log_set_root_pointer(root
, cow
, 1);
1169 rcu_assign_pointer(root
->node
, cow
);
1171 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1173 free_extent_buffer(buf
);
1174 add_root_to_dirty_list(root
);
1176 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1177 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1178 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1179 btrfs_set_node_blockptr(parent
, parent_slot
,
1181 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1183 btrfs_mark_buffer_dirty(parent
);
1185 ret
= tree_mod_log_free_eb(root
->fs_info
, buf
);
1187 btrfs_abort_transaction(trans
, ret
);
1191 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1195 btrfs_tree_unlock(buf
);
1196 free_extent_buffer_stale(buf
);
1197 btrfs_mark_buffer_dirty(cow
);
1203 * returns the logical address of the oldest predecessor of the given root.
1204 * entries older than time_seq are ignored.
1206 static struct tree_mod_elem
*
1207 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1208 struct extent_buffer
*eb_root
, u64 time_seq
)
1210 struct tree_mod_elem
*tm
;
1211 struct tree_mod_elem
*found
= NULL
;
1212 u64 root_logical
= eb_root
->start
;
1219 * the very last operation that's logged for a root is the
1220 * replacement operation (if it is replaced at all). this has
1221 * the logical address of the *new* root, making it the very
1222 * first operation that's logged for this root.
1225 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1230 * if there are no tree operation for the oldest root, we simply
1231 * return it. this should only happen if that (old) root is at
1238 * if there's an operation that's not a root replacement, we
1239 * found the oldest version of our root. normally, we'll find a
1240 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1242 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1246 root_logical
= tm
->old_root
.logical
;
1250 /* if there's no old root to return, return what we found instead */
1258 * tm is a pointer to the first operation to rewind within eb. then, all
1259 * previous operations will be rewound (until we reach something older than
1263 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1264 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1267 struct rb_node
*next
;
1268 struct tree_mod_elem
*tm
= first_tm
;
1269 unsigned long o_dst
;
1270 unsigned long o_src
;
1271 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1273 n
= btrfs_header_nritems(eb
);
1274 tree_mod_log_read_lock(fs_info
);
1275 while (tm
&& tm
->seq
>= time_seq
) {
1277 * all the operations are recorded with the operator used for
1278 * the modification. as we're going backwards, we do the
1279 * opposite of each operation here.
1282 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1283 BUG_ON(tm
->slot
< n
);
1285 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1286 case MOD_LOG_KEY_REMOVE
:
1287 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1288 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1289 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1293 case MOD_LOG_KEY_REPLACE
:
1294 BUG_ON(tm
->slot
>= n
);
1295 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1296 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1297 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1300 case MOD_LOG_KEY_ADD
:
1301 /* if a move operation is needed it's in the log */
1304 case MOD_LOG_MOVE_KEYS
:
1305 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1306 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1307 memmove_extent_buffer(eb
, o_dst
, o_src
,
1308 tm
->move
.nr_items
* p_size
);
1310 case MOD_LOG_ROOT_REPLACE
:
1312 * this operation is special. for roots, this must be
1313 * handled explicitly before rewinding.
1314 * for non-roots, this operation may exist if the node
1315 * was a root: root A -> child B; then A gets empty and
1316 * B is promoted to the new root. in the mod log, we'll
1317 * have a root-replace operation for B, a tree block
1318 * that is no root. we simply ignore that operation.
1322 next
= rb_next(&tm
->node
);
1325 tm
= container_of(next
, struct tree_mod_elem
, node
);
1326 if (tm
->logical
!= first_tm
->logical
)
1329 tree_mod_log_read_unlock(fs_info
);
1330 btrfs_set_header_nritems(eb
, n
);
1334 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1335 * is returned. If rewind operations happen, a fresh buffer is returned. The
1336 * returned buffer is always read-locked. If the returned buffer is not the
1337 * input buffer, the lock on the input buffer is released and the input buffer
1338 * is freed (its refcount is decremented).
1340 static struct extent_buffer
*
1341 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1342 struct extent_buffer
*eb
, u64 time_seq
)
1344 struct extent_buffer
*eb_rewin
;
1345 struct tree_mod_elem
*tm
;
1350 if (btrfs_header_level(eb
) == 0)
1353 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1357 btrfs_set_path_blocking(path
);
1358 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1360 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1361 BUG_ON(tm
->slot
!= 0);
1362 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
,
1365 btrfs_tree_read_unlock_blocking(eb
);
1366 free_extent_buffer(eb
);
1369 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1370 btrfs_set_header_backref_rev(eb_rewin
,
1371 btrfs_header_backref_rev(eb
));
1372 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1373 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1375 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1377 btrfs_tree_read_unlock_blocking(eb
);
1378 free_extent_buffer(eb
);
1383 btrfs_clear_path_blocking(path
, NULL
, BTRFS_READ_LOCK
);
1384 btrfs_tree_read_unlock_blocking(eb
);
1385 free_extent_buffer(eb
);
1387 extent_buffer_get(eb_rewin
);
1388 btrfs_tree_read_lock(eb_rewin
);
1389 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1390 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1391 BTRFS_NODEPTRS_PER_BLOCK(fs_info
->tree_root
));
1397 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1398 * value. If there are no changes, the current root->root_node is returned. If
1399 * anything changed in between, there's a fresh buffer allocated on which the
1400 * rewind operations are done. In any case, the returned buffer is read locked.
1401 * Returns NULL on error (with no locks held).
1403 static inline struct extent_buffer
*
1404 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1406 struct tree_mod_elem
*tm
;
1407 struct extent_buffer
*eb
= NULL
;
1408 struct extent_buffer
*eb_root
;
1409 struct extent_buffer
*old
;
1410 struct tree_mod_root
*old_root
= NULL
;
1411 u64 old_generation
= 0;
1414 eb_root
= btrfs_read_lock_root_node(root
);
1415 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1419 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1420 old_root
= &tm
->old_root
;
1421 old_generation
= tm
->generation
;
1422 logical
= old_root
->logical
;
1424 logical
= eb_root
->start
;
1427 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1428 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1429 btrfs_tree_read_unlock(eb_root
);
1430 free_extent_buffer(eb_root
);
1431 old
= read_tree_block(root
, logical
, 0);
1432 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1434 free_extent_buffer(old
);
1435 btrfs_warn(root
->fs_info
,
1436 "failed to read tree block %llu from get_old_root", logical
);
1438 eb
= btrfs_clone_extent_buffer(old
);
1439 free_extent_buffer(old
);
1441 } else if (old_root
) {
1442 btrfs_tree_read_unlock(eb_root
);
1443 free_extent_buffer(eb_root
);
1444 eb
= alloc_dummy_extent_buffer(root
->fs_info
, logical
,
1447 btrfs_set_lock_blocking_rw(eb_root
, BTRFS_READ_LOCK
);
1448 eb
= btrfs_clone_extent_buffer(eb_root
);
1449 btrfs_tree_read_unlock_blocking(eb_root
);
1450 free_extent_buffer(eb_root
);
1455 extent_buffer_get(eb
);
1456 btrfs_tree_read_lock(eb
);
1458 btrfs_set_header_bytenr(eb
, eb
->start
);
1459 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1460 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1461 btrfs_set_header_level(eb
, old_root
->level
);
1462 btrfs_set_header_generation(eb
, old_generation
);
1465 __tree_mod_log_rewind(root
->fs_info
, eb
, time_seq
, tm
);
1467 WARN_ON(btrfs_header_level(eb
) != 0);
1468 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(root
));
1473 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1475 struct tree_mod_elem
*tm
;
1477 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1479 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1480 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1481 level
= tm
->old_root
.level
;
1483 level
= btrfs_header_level(eb_root
);
1485 free_extent_buffer(eb_root
);
1490 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1491 struct btrfs_root
*root
,
1492 struct extent_buffer
*buf
)
1494 if (btrfs_is_testing(root
->fs_info
))
1497 /* ensure we can see the force_cow */
1501 * We do not need to cow a block if
1502 * 1) this block is not created or changed in this transaction;
1503 * 2) this block does not belong to TREE_RELOC tree;
1504 * 3) the root is not forced COW.
1506 * What is forced COW:
1507 * when we create snapshot during committing the transaction,
1508 * after we've finished coping src root, we must COW the shared
1509 * block to ensure the metadata consistency.
1511 if (btrfs_header_generation(buf
) == trans
->transid
&&
1512 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1513 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1514 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1515 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1521 * cows a single block, see __btrfs_cow_block for the real work.
1522 * This version of it has extra checks so that a block isn't COWed more than
1523 * once per transaction, as long as it hasn't been written yet
1525 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1526 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1527 struct extent_buffer
*parent
, int parent_slot
,
1528 struct extent_buffer
**cow_ret
)
1533 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1534 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1536 root
->fs_info
->running_transaction
->transid
);
1538 if (trans
->transid
!= root
->fs_info
->generation
)
1539 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1540 trans
->transid
, root
->fs_info
->generation
);
1542 if (!should_cow_block(trans
, root
, buf
)) {
1543 trans
->dirty
= true;
1548 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1551 btrfs_set_lock_blocking(parent
);
1552 btrfs_set_lock_blocking(buf
);
1554 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1555 parent_slot
, cow_ret
, search_start
, 0);
1557 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1563 * helper function for defrag to decide if two blocks pointed to by a
1564 * node are actually close by
1566 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1568 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1570 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1576 * compare two keys in a memcmp fashion
1578 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1580 struct btrfs_key k1
;
1582 btrfs_disk_key_to_cpu(&k1
, disk
);
1584 return btrfs_comp_cpu_keys(&k1
, k2
);
1588 * same as comp_keys only with two btrfs_key's
1590 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1592 if (k1
->objectid
> k2
->objectid
)
1594 if (k1
->objectid
< k2
->objectid
)
1596 if (k1
->type
> k2
->type
)
1598 if (k1
->type
< k2
->type
)
1600 if (k1
->offset
> k2
->offset
)
1602 if (k1
->offset
< k2
->offset
)
1608 * this is used by the defrag code to go through all the
1609 * leaves pointed to by a node and reallocate them so that
1610 * disk order is close to key order
1612 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1613 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1614 int start_slot
, u64
*last_ret
,
1615 struct btrfs_key
*progress
)
1617 struct extent_buffer
*cur
;
1620 u64 search_start
= *last_ret
;
1630 int progress_passed
= 0;
1631 struct btrfs_disk_key disk_key
;
1633 parent_level
= btrfs_header_level(parent
);
1635 WARN_ON(trans
->transaction
!= root
->fs_info
->running_transaction
);
1636 WARN_ON(trans
->transid
!= root
->fs_info
->generation
);
1638 parent_nritems
= btrfs_header_nritems(parent
);
1639 blocksize
= root
->nodesize
;
1640 end_slot
= parent_nritems
- 1;
1642 if (parent_nritems
<= 1)
1645 btrfs_set_lock_blocking(parent
);
1647 for (i
= start_slot
; i
<= end_slot
; i
++) {
1650 btrfs_node_key(parent
, &disk_key
, i
);
1651 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1654 progress_passed
= 1;
1655 blocknr
= btrfs_node_blockptr(parent
, i
);
1656 gen
= btrfs_node_ptr_generation(parent
, i
);
1657 if (last_block
== 0)
1658 last_block
= blocknr
;
1661 other
= btrfs_node_blockptr(parent
, i
- 1);
1662 close
= close_blocks(blocknr
, other
, blocksize
);
1664 if (!close
&& i
< end_slot
) {
1665 other
= btrfs_node_blockptr(parent
, i
+ 1);
1666 close
= close_blocks(blocknr
, other
, blocksize
);
1669 last_block
= blocknr
;
1673 cur
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
1675 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1678 if (!cur
|| !uptodate
) {
1680 cur
= read_tree_block(root
, blocknr
, gen
);
1682 return PTR_ERR(cur
);
1683 } else if (!extent_buffer_uptodate(cur
)) {
1684 free_extent_buffer(cur
);
1687 } else if (!uptodate
) {
1688 err
= btrfs_read_buffer(cur
, gen
);
1690 free_extent_buffer(cur
);
1695 if (search_start
== 0)
1696 search_start
= last_block
;
1698 btrfs_tree_lock(cur
);
1699 btrfs_set_lock_blocking(cur
);
1700 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1703 (end_slot
- i
) * blocksize
));
1705 btrfs_tree_unlock(cur
);
1706 free_extent_buffer(cur
);
1709 search_start
= cur
->start
;
1710 last_block
= cur
->start
;
1711 *last_ret
= search_start
;
1712 btrfs_tree_unlock(cur
);
1713 free_extent_buffer(cur
);
1720 * search for key in the extent_buffer. The items start at offset p,
1721 * and they are item_size apart. There are 'max' items in p.
1723 * the slot in the array is returned via slot, and it points to
1724 * the place where you would insert key if it is not found in
1727 * slot may point to max if the key is bigger than all of the keys
1729 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1731 int item_size
, struct btrfs_key
*key
,
1738 struct btrfs_disk_key
*tmp
= NULL
;
1739 struct btrfs_disk_key unaligned
;
1740 unsigned long offset
;
1742 unsigned long map_start
= 0;
1743 unsigned long map_len
= 0;
1747 btrfs_err(eb
->fs_info
,
1748 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1749 __func__
, low
, high
, eb
->start
,
1750 btrfs_header_owner(eb
), btrfs_header_level(eb
));
1754 while (low
< high
) {
1755 mid
= (low
+ high
) / 2;
1756 offset
= p
+ mid
* item_size
;
1758 if (!kaddr
|| offset
< map_start
||
1759 (offset
+ sizeof(struct btrfs_disk_key
)) >
1760 map_start
+ map_len
) {
1762 err
= map_private_extent_buffer(eb
, offset
,
1763 sizeof(struct btrfs_disk_key
),
1764 &kaddr
, &map_start
, &map_len
);
1767 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1769 } else if (err
== 1) {
1770 read_extent_buffer(eb
, &unaligned
,
1771 offset
, sizeof(unaligned
));
1778 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1781 ret
= comp_keys(tmp
, key
);
1797 * simple bin_search frontend that does the right thing for
1800 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1801 int level
, int *slot
)
1804 return generic_bin_search(eb
,
1805 offsetof(struct btrfs_leaf
, items
),
1806 sizeof(struct btrfs_item
),
1807 key
, btrfs_header_nritems(eb
),
1810 return generic_bin_search(eb
,
1811 offsetof(struct btrfs_node
, ptrs
),
1812 sizeof(struct btrfs_key_ptr
),
1813 key
, btrfs_header_nritems(eb
),
1817 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1818 int level
, int *slot
)
1820 return bin_search(eb
, key
, level
, slot
);
1823 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1825 spin_lock(&root
->accounting_lock
);
1826 btrfs_set_root_used(&root
->root_item
,
1827 btrfs_root_used(&root
->root_item
) + size
);
1828 spin_unlock(&root
->accounting_lock
);
1831 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1833 spin_lock(&root
->accounting_lock
);
1834 btrfs_set_root_used(&root
->root_item
,
1835 btrfs_root_used(&root
->root_item
) - size
);
1836 spin_unlock(&root
->accounting_lock
);
1839 /* given a node and slot number, this reads the blocks it points to. The
1840 * extent buffer is returned with a reference taken (but unlocked).
1842 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1843 struct extent_buffer
*parent
, int slot
)
1845 int level
= btrfs_header_level(parent
);
1846 struct extent_buffer
*eb
;
1848 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
1849 return ERR_PTR(-ENOENT
);
1853 eb
= read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1854 btrfs_node_ptr_generation(parent
, slot
));
1855 if (!IS_ERR(eb
) && !extent_buffer_uptodate(eb
)) {
1856 free_extent_buffer(eb
);
1864 * node level balancing, used to make sure nodes are in proper order for
1865 * item deletion. We balance from the top down, so we have to make sure
1866 * that a deletion won't leave an node completely empty later on.
1868 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1869 struct btrfs_root
*root
,
1870 struct btrfs_path
*path
, int level
)
1872 struct extent_buffer
*right
= NULL
;
1873 struct extent_buffer
*mid
;
1874 struct extent_buffer
*left
= NULL
;
1875 struct extent_buffer
*parent
= NULL
;
1879 int orig_slot
= path
->slots
[level
];
1885 mid
= path
->nodes
[level
];
1887 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1888 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1889 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1891 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1893 if (level
< BTRFS_MAX_LEVEL
- 1) {
1894 parent
= path
->nodes
[level
+ 1];
1895 pslot
= path
->slots
[level
+ 1];
1899 * deal with the case where there is only one pointer in the root
1900 * by promoting the node below to a root
1903 struct extent_buffer
*child
;
1905 if (btrfs_header_nritems(mid
) != 1)
1908 /* promote the child to a root */
1909 child
= read_node_slot(root
, mid
, 0);
1910 if (IS_ERR(child
)) {
1911 ret
= PTR_ERR(child
);
1912 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
1916 btrfs_tree_lock(child
);
1917 btrfs_set_lock_blocking(child
);
1918 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1920 btrfs_tree_unlock(child
);
1921 free_extent_buffer(child
);
1925 tree_mod_log_set_root_pointer(root
, child
, 1);
1926 rcu_assign_pointer(root
->node
, child
);
1928 add_root_to_dirty_list(root
);
1929 btrfs_tree_unlock(child
);
1931 path
->locks
[level
] = 0;
1932 path
->nodes
[level
] = NULL
;
1933 clean_tree_block(trans
, root
->fs_info
, mid
);
1934 btrfs_tree_unlock(mid
);
1935 /* once for the path */
1936 free_extent_buffer(mid
);
1938 root_sub_used(root
, mid
->len
);
1939 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1940 /* once for the root ptr */
1941 free_extent_buffer_stale(mid
);
1944 if (btrfs_header_nritems(mid
) >
1945 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1948 left
= read_node_slot(root
, parent
, pslot
- 1);
1953 btrfs_tree_lock(left
);
1954 btrfs_set_lock_blocking(left
);
1955 wret
= btrfs_cow_block(trans
, root
, left
,
1956 parent
, pslot
- 1, &left
);
1963 right
= read_node_slot(root
, parent
, pslot
+ 1);
1968 btrfs_tree_lock(right
);
1969 btrfs_set_lock_blocking(right
);
1970 wret
= btrfs_cow_block(trans
, root
, right
,
1971 parent
, pslot
+ 1, &right
);
1978 /* first, try to make some room in the middle buffer */
1980 orig_slot
+= btrfs_header_nritems(left
);
1981 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1987 * then try to empty the right most buffer into the middle
1990 wret
= push_node_left(trans
, root
, mid
, right
, 1);
1991 if (wret
< 0 && wret
!= -ENOSPC
)
1993 if (btrfs_header_nritems(right
) == 0) {
1994 clean_tree_block(trans
, root
->fs_info
, right
);
1995 btrfs_tree_unlock(right
);
1996 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
1997 root_sub_used(root
, right
->len
);
1998 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1999 free_extent_buffer_stale(right
);
2002 struct btrfs_disk_key right_key
;
2003 btrfs_node_key(right
, &right_key
, 0);
2004 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2006 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
2007 btrfs_mark_buffer_dirty(parent
);
2010 if (btrfs_header_nritems(mid
) == 1) {
2012 * we're not allowed to leave a node with one item in the
2013 * tree during a delete. A deletion from lower in the tree
2014 * could try to delete the only pointer in this node.
2015 * So, pull some keys from the left.
2016 * There has to be a left pointer at this point because
2017 * otherwise we would have pulled some pointers from the
2022 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2025 wret
= balance_node_right(trans
, root
, mid
, left
);
2031 wret
= push_node_left(trans
, root
, left
, mid
, 1);
2037 if (btrfs_header_nritems(mid
) == 0) {
2038 clean_tree_block(trans
, root
->fs_info
, mid
);
2039 btrfs_tree_unlock(mid
);
2040 del_ptr(root
, path
, level
+ 1, pslot
);
2041 root_sub_used(root
, mid
->len
);
2042 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
2043 free_extent_buffer_stale(mid
);
2046 /* update the parent key to reflect our changes */
2047 struct btrfs_disk_key mid_key
;
2048 btrfs_node_key(mid
, &mid_key
, 0);
2049 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2051 btrfs_set_node_key(parent
, &mid_key
, pslot
);
2052 btrfs_mark_buffer_dirty(parent
);
2055 /* update the path */
2057 if (btrfs_header_nritems(left
) > orig_slot
) {
2058 extent_buffer_get(left
);
2059 /* left was locked after cow */
2060 path
->nodes
[level
] = left
;
2061 path
->slots
[level
+ 1] -= 1;
2062 path
->slots
[level
] = orig_slot
;
2064 btrfs_tree_unlock(mid
);
2065 free_extent_buffer(mid
);
2068 orig_slot
-= btrfs_header_nritems(left
);
2069 path
->slots
[level
] = orig_slot
;
2072 /* double check we haven't messed things up */
2074 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2078 btrfs_tree_unlock(right
);
2079 free_extent_buffer(right
);
2082 if (path
->nodes
[level
] != left
)
2083 btrfs_tree_unlock(left
);
2084 free_extent_buffer(left
);
2089 /* Node balancing for insertion. Here we only split or push nodes around
2090 * when they are completely full. This is also done top down, so we
2091 * have to be pessimistic.
2093 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2094 struct btrfs_root
*root
,
2095 struct btrfs_path
*path
, int level
)
2097 struct extent_buffer
*right
= NULL
;
2098 struct extent_buffer
*mid
;
2099 struct extent_buffer
*left
= NULL
;
2100 struct extent_buffer
*parent
= NULL
;
2104 int orig_slot
= path
->slots
[level
];
2109 mid
= path
->nodes
[level
];
2110 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2112 if (level
< BTRFS_MAX_LEVEL
- 1) {
2113 parent
= path
->nodes
[level
+ 1];
2114 pslot
= path
->slots
[level
+ 1];
2120 left
= read_node_slot(root
, parent
, pslot
- 1);
2124 /* first, try to make some room in the middle buffer */
2128 btrfs_tree_lock(left
);
2129 btrfs_set_lock_blocking(left
);
2131 left_nr
= btrfs_header_nritems(left
);
2132 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2135 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2140 wret
= push_node_left(trans
, root
,
2147 struct btrfs_disk_key disk_key
;
2148 orig_slot
+= left_nr
;
2149 btrfs_node_key(mid
, &disk_key
, 0);
2150 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2152 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2153 btrfs_mark_buffer_dirty(parent
);
2154 if (btrfs_header_nritems(left
) > orig_slot
) {
2155 path
->nodes
[level
] = left
;
2156 path
->slots
[level
+ 1] -= 1;
2157 path
->slots
[level
] = orig_slot
;
2158 btrfs_tree_unlock(mid
);
2159 free_extent_buffer(mid
);
2162 btrfs_header_nritems(left
);
2163 path
->slots
[level
] = orig_slot
;
2164 btrfs_tree_unlock(left
);
2165 free_extent_buffer(left
);
2169 btrfs_tree_unlock(left
);
2170 free_extent_buffer(left
);
2172 right
= read_node_slot(root
, parent
, pslot
+ 1);
2177 * then try to empty the right most buffer into the middle
2182 btrfs_tree_lock(right
);
2183 btrfs_set_lock_blocking(right
);
2185 right_nr
= btrfs_header_nritems(right
);
2186 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2189 ret
= btrfs_cow_block(trans
, root
, right
,
2195 wret
= balance_node_right(trans
, root
,
2202 struct btrfs_disk_key disk_key
;
2204 btrfs_node_key(right
, &disk_key
, 0);
2205 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2207 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2208 btrfs_mark_buffer_dirty(parent
);
2210 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2211 path
->nodes
[level
] = right
;
2212 path
->slots
[level
+ 1] += 1;
2213 path
->slots
[level
] = orig_slot
-
2214 btrfs_header_nritems(mid
);
2215 btrfs_tree_unlock(mid
);
2216 free_extent_buffer(mid
);
2218 btrfs_tree_unlock(right
);
2219 free_extent_buffer(right
);
2223 btrfs_tree_unlock(right
);
2224 free_extent_buffer(right
);
2230 * readahead one full node of leaves, finding things that are close
2231 * to the block in 'slot', and triggering ra on them.
2233 static void reada_for_search(struct btrfs_root
*root
,
2234 struct btrfs_path
*path
,
2235 int level
, int slot
, u64 objectid
)
2237 struct extent_buffer
*node
;
2238 struct btrfs_disk_key disk_key
;
2243 struct extent_buffer
*eb
;
2251 if (!path
->nodes
[level
])
2254 node
= path
->nodes
[level
];
2256 search
= btrfs_node_blockptr(node
, slot
);
2257 blocksize
= root
->nodesize
;
2258 eb
= btrfs_find_tree_block(root
->fs_info
, search
);
2260 free_extent_buffer(eb
);
2266 nritems
= btrfs_header_nritems(node
);
2270 if (path
->reada
== READA_BACK
) {
2274 } else if (path
->reada
== READA_FORWARD
) {
2279 if (path
->reada
== READA_BACK
&& objectid
) {
2280 btrfs_node_key(node
, &disk_key
, nr
);
2281 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2284 search
= btrfs_node_blockptr(node
, nr
);
2285 if ((search
<= target
&& target
- search
<= 65536) ||
2286 (search
> target
&& search
- target
<= 65536)) {
2287 readahead_tree_block(root
, search
);
2291 if ((nread
> 65536 || nscan
> 32))
2296 static noinline
void reada_for_balance(struct btrfs_root
*root
,
2297 struct btrfs_path
*path
, int level
)
2301 struct extent_buffer
*parent
;
2302 struct extent_buffer
*eb
;
2307 parent
= path
->nodes
[level
+ 1];
2311 nritems
= btrfs_header_nritems(parent
);
2312 slot
= path
->slots
[level
+ 1];
2315 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2316 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2317 eb
= btrfs_find_tree_block(root
->fs_info
, block1
);
2319 * if we get -eagain from btrfs_buffer_uptodate, we
2320 * don't want to return eagain here. That will loop
2323 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2325 free_extent_buffer(eb
);
2327 if (slot
+ 1 < nritems
) {
2328 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2329 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2330 eb
= btrfs_find_tree_block(root
->fs_info
, block2
);
2331 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2333 free_extent_buffer(eb
);
2337 readahead_tree_block(root
, block1
);
2339 readahead_tree_block(root
, block2
);
2344 * when we walk down the tree, it is usually safe to unlock the higher layers
2345 * in the tree. The exceptions are when our path goes through slot 0, because
2346 * operations on the tree might require changing key pointers higher up in the
2349 * callers might also have set path->keep_locks, which tells this code to keep
2350 * the lock if the path points to the last slot in the block. This is part of
2351 * walking through the tree, and selecting the next slot in the higher block.
2353 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2354 * if lowest_unlock is 1, level 0 won't be unlocked
2356 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2357 int lowest_unlock
, int min_write_lock_level
,
2358 int *write_lock_level
)
2361 int skip_level
= level
;
2363 struct extent_buffer
*t
;
2365 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2366 if (!path
->nodes
[i
])
2368 if (!path
->locks
[i
])
2370 if (!no_skips
&& path
->slots
[i
] == 0) {
2374 if (!no_skips
&& path
->keep_locks
) {
2377 nritems
= btrfs_header_nritems(t
);
2378 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2383 if (skip_level
< i
&& i
>= lowest_unlock
)
2387 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2388 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2390 if (write_lock_level
&&
2391 i
> min_write_lock_level
&&
2392 i
<= *write_lock_level
) {
2393 *write_lock_level
= i
- 1;
2400 * This releases any locks held in the path starting at level and
2401 * going all the way up to the root.
2403 * btrfs_search_slot will keep the lock held on higher nodes in a few
2404 * corner cases, such as COW of the block at slot zero in the node. This
2405 * ignores those rules, and it should only be called when there are no
2406 * more updates to be done higher up in the tree.
2408 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2412 if (path
->keep_locks
)
2415 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2416 if (!path
->nodes
[i
])
2418 if (!path
->locks
[i
])
2420 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2426 * helper function for btrfs_search_slot. The goal is to find a block
2427 * in cache without setting the path to blocking. If we find the block
2428 * we return zero and the path is unchanged.
2430 * If we can't find the block, we set the path blocking and do some
2431 * reada. -EAGAIN is returned and the search must be repeated.
2434 read_block_for_search(struct btrfs_trans_handle
*trans
,
2435 struct btrfs_root
*root
, struct btrfs_path
*p
,
2436 struct extent_buffer
**eb_ret
, int level
, int slot
,
2437 struct btrfs_key
*key
, u64 time_seq
)
2441 struct extent_buffer
*b
= *eb_ret
;
2442 struct extent_buffer
*tmp
;
2445 blocknr
= btrfs_node_blockptr(b
, slot
);
2446 gen
= btrfs_node_ptr_generation(b
, slot
);
2448 tmp
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
2450 /* first we do an atomic uptodate check */
2451 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2456 /* the pages were up to date, but we failed
2457 * the generation number check. Do a full
2458 * read for the generation number that is correct.
2459 * We must do this without dropping locks so
2460 * we can trust our generation number
2462 btrfs_set_path_blocking(p
);
2464 /* now we're allowed to do a blocking uptodate check */
2465 ret
= btrfs_read_buffer(tmp
, gen
);
2470 free_extent_buffer(tmp
);
2471 btrfs_release_path(p
);
2476 * reduce lock contention at high levels
2477 * of the btree by dropping locks before
2478 * we read. Don't release the lock on the current
2479 * level because we need to walk this node to figure
2480 * out which blocks to read.
2482 btrfs_unlock_up_safe(p
, level
+ 1);
2483 btrfs_set_path_blocking(p
);
2485 free_extent_buffer(tmp
);
2486 if (p
->reada
!= READA_NONE
)
2487 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2489 btrfs_release_path(p
);
2492 tmp
= read_tree_block(root
, blocknr
, 0);
2495 * If the read above didn't mark this buffer up to date,
2496 * it will never end up being up to date. Set ret to EIO now
2497 * and give up so that our caller doesn't loop forever
2500 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2502 free_extent_buffer(tmp
);
2510 * helper function for btrfs_search_slot. This does all of the checks
2511 * for node-level blocks and does any balancing required based on
2514 * If no extra work was required, zero is returned. If we had to
2515 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2519 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2520 struct btrfs_root
*root
, struct btrfs_path
*p
,
2521 struct extent_buffer
*b
, int level
, int ins_len
,
2522 int *write_lock_level
)
2525 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2526 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2529 if (*write_lock_level
< level
+ 1) {
2530 *write_lock_level
= level
+ 1;
2531 btrfs_release_path(p
);
2535 btrfs_set_path_blocking(p
);
2536 reada_for_balance(root
, p
, level
);
2537 sret
= split_node(trans
, root
, p
, level
);
2538 btrfs_clear_path_blocking(p
, NULL
, 0);
2545 b
= p
->nodes
[level
];
2546 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2547 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2550 if (*write_lock_level
< level
+ 1) {
2551 *write_lock_level
= level
+ 1;
2552 btrfs_release_path(p
);
2556 btrfs_set_path_blocking(p
);
2557 reada_for_balance(root
, p
, level
);
2558 sret
= balance_level(trans
, root
, p
, level
);
2559 btrfs_clear_path_blocking(p
, NULL
, 0);
2565 b
= p
->nodes
[level
];
2567 btrfs_release_path(p
);
2570 BUG_ON(btrfs_header_nritems(b
) == 1);
2580 static void key_search_validate(struct extent_buffer
*b
,
2581 struct btrfs_key
*key
,
2584 #ifdef CONFIG_BTRFS_ASSERT
2585 struct btrfs_disk_key disk_key
;
2587 btrfs_cpu_key_to_disk(&disk_key
, key
);
2590 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2591 offsetof(struct btrfs_leaf
, items
[0].key
),
2594 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2595 offsetof(struct btrfs_node
, ptrs
[0].key
),
2600 static int key_search(struct extent_buffer
*b
, struct btrfs_key
*key
,
2601 int level
, int *prev_cmp
, int *slot
)
2603 if (*prev_cmp
!= 0) {
2604 *prev_cmp
= bin_search(b
, key
, level
, slot
);
2608 key_search_validate(b
, key
, level
);
2614 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2615 u64 iobjectid
, u64 ioff
, u8 key_type
,
2616 struct btrfs_key
*found_key
)
2619 struct btrfs_key key
;
2620 struct extent_buffer
*eb
;
2625 key
.type
= key_type
;
2626 key
.objectid
= iobjectid
;
2629 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2633 eb
= path
->nodes
[0];
2634 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2635 ret
= btrfs_next_leaf(fs_root
, path
);
2638 eb
= path
->nodes
[0];
2641 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2642 if (found_key
->type
!= key
.type
||
2643 found_key
->objectid
!= key
.objectid
)
2650 * look for key in the tree. path is filled in with nodes along the way
2651 * if key is found, we return zero and you can find the item in the leaf
2652 * level of the path (level 0)
2654 * If the key isn't found, the path points to the slot where it should
2655 * be inserted, and 1 is returned. If there are other errors during the
2656 * search a negative error number is returned.
2658 * if ins_len > 0, nodes and leaves will be split as we walk down the
2659 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2662 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2663 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2666 struct extent_buffer
*b
;
2671 int lowest_unlock
= 1;
2673 /* everything at write_lock_level or lower must be write locked */
2674 int write_lock_level
= 0;
2675 u8 lowest_level
= 0;
2676 int min_write_lock_level
;
2679 lowest_level
= p
->lowest_level
;
2680 WARN_ON(lowest_level
&& ins_len
> 0);
2681 WARN_ON(p
->nodes
[0] != NULL
);
2682 BUG_ON(!cow
&& ins_len
);
2687 /* when we are removing items, we might have to go up to level
2688 * two as we update tree pointers Make sure we keep write
2689 * for those levels as well
2691 write_lock_level
= 2;
2692 } else if (ins_len
> 0) {
2694 * for inserting items, make sure we have a write lock on
2695 * level 1 so we can update keys
2697 write_lock_level
= 1;
2701 write_lock_level
= -1;
2703 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2704 write_lock_level
= BTRFS_MAX_LEVEL
;
2706 min_write_lock_level
= write_lock_level
;
2711 * we try very hard to do read locks on the root
2713 root_lock
= BTRFS_READ_LOCK
;
2715 if (p
->search_commit_root
) {
2717 * the commit roots are read only
2718 * so we always do read locks
2720 if (p
->need_commit_sem
)
2721 down_read(&root
->fs_info
->commit_root_sem
);
2722 b
= root
->commit_root
;
2723 extent_buffer_get(b
);
2724 level
= btrfs_header_level(b
);
2725 if (p
->need_commit_sem
)
2726 up_read(&root
->fs_info
->commit_root_sem
);
2727 if (!p
->skip_locking
)
2728 btrfs_tree_read_lock(b
);
2730 if (p
->skip_locking
) {
2731 b
= btrfs_root_node(root
);
2732 level
= btrfs_header_level(b
);
2734 /* we don't know the level of the root node
2735 * until we actually have it read locked
2737 b
= btrfs_read_lock_root_node(root
);
2738 level
= btrfs_header_level(b
);
2739 if (level
<= write_lock_level
) {
2740 /* whoops, must trade for write lock */
2741 btrfs_tree_read_unlock(b
);
2742 free_extent_buffer(b
);
2743 b
= btrfs_lock_root_node(root
);
2744 root_lock
= BTRFS_WRITE_LOCK
;
2746 /* the level might have changed, check again */
2747 level
= btrfs_header_level(b
);
2751 p
->nodes
[level
] = b
;
2752 if (!p
->skip_locking
)
2753 p
->locks
[level
] = root_lock
;
2756 level
= btrfs_header_level(b
);
2759 * setup the path here so we can release it under lock
2760 * contention with the cow code
2764 * if we don't really need to cow this block
2765 * then we don't want to set the path blocking,
2766 * so we test it here
2768 if (!should_cow_block(trans
, root
, b
)) {
2769 trans
->dirty
= true;
2774 * must have write locks on this node and the
2777 if (level
> write_lock_level
||
2778 (level
+ 1 > write_lock_level
&&
2779 level
+ 1 < BTRFS_MAX_LEVEL
&&
2780 p
->nodes
[level
+ 1])) {
2781 write_lock_level
= level
+ 1;
2782 btrfs_release_path(p
);
2786 btrfs_set_path_blocking(p
);
2787 err
= btrfs_cow_block(trans
, root
, b
,
2788 p
->nodes
[level
+ 1],
2789 p
->slots
[level
+ 1], &b
);
2796 p
->nodes
[level
] = b
;
2797 btrfs_clear_path_blocking(p
, NULL
, 0);
2800 * we have a lock on b and as long as we aren't changing
2801 * the tree, there is no way to for the items in b to change.
2802 * It is safe to drop the lock on our parent before we
2803 * go through the expensive btree search on b.
2805 * If we're inserting or deleting (ins_len != 0), then we might
2806 * be changing slot zero, which may require changing the parent.
2807 * So, we can't drop the lock until after we know which slot
2808 * we're operating on.
2810 if (!ins_len
&& !p
->keep_locks
) {
2813 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2814 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2819 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2825 if (ret
&& slot
> 0) {
2829 p
->slots
[level
] = slot
;
2830 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2831 ins_len
, &write_lock_level
);
2838 b
= p
->nodes
[level
];
2839 slot
= p
->slots
[level
];
2842 * slot 0 is special, if we change the key
2843 * we have to update the parent pointer
2844 * which means we must have a write lock
2847 if (slot
== 0 && ins_len
&&
2848 write_lock_level
< level
+ 1) {
2849 write_lock_level
= level
+ 1;
2850 btrfs_release_path(p
);
2854 unlock_up(p
, level
, lowest_unlock
,
2855 min_write_lock_level
, &write_lock_level
);
2857 if (level
== lowest_level
) {
2863 err
= read_block_for_search(trans
, root
, p
,
2864 &b
, level
, slot
, key
, 0);
2872 if (!p
->skip_locking
) {
2873 level
= btrfs_header_level(b
);
2874 if (level
<= write_lock_level
) {
2875 err
= btrfs_try_tree_write_lock(b
);
2877 btrfs_set_path_blocking(p
);
2879 btrfs_clear_path_blocking(p
, b
,
2882 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2884 err
= btrfs_tree_read_lock_atomic(b
);
2886 btrfs_set_path_blocking(p
);
2887 btrfs_tree_read_lock(b
);
2888 btrfs_clear_path_blocking(p
, b
,
2891 p
->locks
[level
] = BTRFS_READ_LOCK
;
2893 p
->nodes
[level
] = b
;
2896 p
->slots
[level
] = slot
;
2898 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2899 if (write_lock_level
< 1) {
2900 write_lock_level
= 1;
2901 btrfs_release_path(p
);
2905 btrfs_set_path_blocking(p
);
2906 err
= split_leaf(trans
, root
, key
,
2907 p
, ins_len
, ret
== 0);
2908 btrfs_clear_path_blocking(p
, NULL
, 0);
2916 if (!p
->search_for_split
)
2917 unlock_up(p
, level
, lowest_unlock
,
2918 min_write_lock_level
, &write_lock_level
);
2925 * we don't really know what they plan on doing with the path
2926 * from here on, so for now just mark it as blocking
2928 if (!p
->leave_spinning
)
2929 btrfs_set_path_blocking(p
);
2930 if (ret
< 0 && !p
->skip_release_on_error
)
2931 btrfs_release_path(p
);
2936 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2937 * current state of the tree together with the operations recorded in the tree
2938 * modification log to search for the key in a previous version of this tree, as
2939 * denoted by the time_seq parameter.
2941 * Naturally, there is no support for insert, delete or cow operations.
2943 * The resulting path and return value will be set up as if we called
2944 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2946 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2947 struct btrfs_path
*p
, u64 time_seq
)
2949 struct extent_buffer
*b
;
2954 int lowest_unlock
= 1;
2955 u8 lowest_level
= 0;
2958 lowest_level
= p
->lowest_level
;
2959 WARN_ON(p
->nodes
[0] != NULL
);
2961 if (p
->search_commit_root
) {
2963 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2967 b
= get_old_root(root
, time_seq
);
2968 level
= btrfs_header_level(b
);
2969 p
->locks
[level
] = BTRFS_READ_LOCK
;
2972 level
= btrfs_header_level(b
);
2973 p
->nodes
[level
] = b
;
2974 btrfs_clear_path_blocking(p
, NULL
, 0);
2977 * we have a lock on b and as long as we aren't changing
2978 * the tree, there is no way to for the items in b to change.
2979 * It is safe to drop the lock on our parent before we
2980 * go through the expensive btree search on b.
2982 btrfs_unlock_up_safe(p
, level
+ 1);
2985 * Since we can unwind ebs we want to do a real search every
2989 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2993 if (ret
&& slot
> 0) {
2997 p
->slots
[level
] = slot
;
2998 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3000 if (level
== lowest_level
) {
3006 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
3007 slot
, key
, time_seq
);
3015 level
= btrfs_header_level(b
);
3016 err
= btrfs_tree_read_lock_atomic(b
);
3018 btrfs_set_path_blocking(p
);
3019 btrfs_tree_read_lock(b
);
3020 btrfs_clear_path_blocking(p
, b
,
3023 b
= tree_mod_log_rewind(root
->fs_info
, p
, b
, time_seq
);
3028 p
->locks
[level
] = BTRFS_READ_LOCK
;
3029 p
->nodes
[level
] = b
;
3031 p
->slots
[level
] = slot
;
3032 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3038 if (!p
->leave_spinning
)
3039 btrfs_set_path_blocking(p
);
3041 btrfs_release_path(p
);
3047 * helper to use instead of search slot if no exact match is needed but
3048 * instead the next or previous item should be returned.
3049 * When find_higher is true, the next higher item is returned, the next lower
3051 * When return_any and find_higher are both true, and no higher item is found,
3052 * return the next lower instead.
3053 * When return_any is true and find_higher is false, and no lower item is found,
3054 * return the next higher instead.
3055 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3058 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3059 struct btrfs_key
*key
, struct btrfs_path
*p
,
3060 int find_higher
, int return_any
)
3063 struct extent_buffer
*leaf
;
3066 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3070 * a return value of 1 means the path is at the position where the
3071 * item should be inserted. Normally this is the next bigger item,
3072 * but in case the previous item is the last in a leaf, path points
3073 * to the first free slot in the previous leaf, i.e. at an invalid
3079 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3080 ret
= btrfs_next_leaf(root
, p
);
3086 * no higher item found, return the next
3091 btrfs_release_path(p
);
3095 if (p
->slots
[0] == 0) {
3096 ret
= btrfs_prev_leaf(root
, p
);
3101 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3108 * no lower item found, return the next
3113 btrfs_release_path(p
);
3123 * adjust the pointers going up the tree, starting at level
3124 * making sure the right key of each node is points to 'key'.
3125 * This is used after shifting pointers to the left, so it stops
3126 * fixing up pointers when a given leaf/node is not in slot 0 of the
3130 static void fixup_low_keys(struct btrfs_fs_info
*fs_info
,
3131 struct btrfs_path
*path
,
3132 struct btrfs_disk_key
*key
, int level
)
3135 struct extent_buffer
*t
;
3137 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3138 int tslot
= path
->slots
[i
];
3139 if (!path
->nodes
[i
])
3142 tree_mod_log_set_node_key(fs_info
, t
, tslot
, 1);
3143 btrfs_set_node_key(t
, key
, tslot
);
3144 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3153 * This function isn't completely safe. It's the caller's responsibility
3154 * that the new key won't break the order
3156 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3157 struct btrfs_path
*path
,
3158 struct btrfs_key
*new_key
)
3160 struct btrfs_disk_key disk_key
;
3161 struct extent_buffer
*eb
;
3164 eb
= path
->nodes
[0];
3165 slot
= path
->slots
[0];
3167 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3168 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3170 if (slot
< btrfs_header_nritems(eb
) - 1) {
3171 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3172 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3175 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3176 btrfs_set_item_key(eb
, &disk_key
, slot
);
3177 btrfs_mark_buffer_dirty(eb
);
3179 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3183 * try to push data from one node into the next node left in the
3186 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3187 * error, and > 0 if there was no room in the left hand block.
3189 static int push_node_left(struct btrfs_trans_handle
*trans
,
3190 struct btrfs_root
*root
, struct extent_buffer
*dst
,
3191 struct extent_buffer
*src
, int empty
)
3198 src_nritems
= btrfs_header_nritems(src
);
3199 dst_nritems
= btrfs_header_nritems(dst
);
3200 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3201 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3202 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3204 if (!empty
&& src_nritems
<= 8)
3207 if (push_items
<= 0)
3211 push_items
= min(src_nritems
, push_items
);
3212 if (push_items
< src_nritems
) {
3213 /* leave at least 8 pointers in the node if
3214 * we aren't going to empty it
3216 if (src_nritems
- push_items
< 8) {
3217 if (push_items
<= 8)
3223 push_items
= min(src_nritems
- 8, push_items
);
3225 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
3228 btrfs_abort_transaction(trans
, ret
);
3231 copy_extent_buffer(dst
, src
,
3232 btrfs_node_key_ptr_offset(dst_nritems
),
3233 btrfs_node_key_ptr_offset(0),
3234 push_items
* sizeof(struct btrfs_key_ptr
));
3236 if (push_items
< src_nritems
) {
3238 * don't call tree_mod_log_eb_move here, key removal was already
3239 * fully logged by tree_mod_log_eb_copy above.
3241 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3242 btrfs_node_key_ptr_offset(push_items
),
3243 (src_nritems
- push_items
) *
3244 sizeof(struct btrfs_key_ptr
));
3246 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3247 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3248 btrfs_mark_buffer_dirty(src
);
3249 btrfs_mark_buffer_dirty(dst
);
3255 * try to push data from one node into the next node right in the
3258 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3259 * error, and > 0 if there was no room in the right hand block.
3261 * this will only push up to 1/2 the contents of the left node over
3263 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3264 struct btrfs_root
*root
,
3265 struct extent_buffer
*dst
,
3266 struct extent_buffer
*src
)
3274 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3275 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3277 src_nritems
= btrfs_header_nritems(src
);
3278 dst_nritems
= btrfs_header_nritems(dst
);
3279 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3280 if (push_items
<= 0)
3283 if (src_nritems
< 4)
3286 max_push
= src_nritems
/ 2 + 1;
3287 /* don't try to empty the node */
3288 if (max_push
>= src_nritems
)
3291 if (max_push
< push_items
)
3292 push_items
= max_push
;
3294 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3295 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3296 btrfs_node_key_ptr_offset(0),
3298 sizeof(struct btrfs_key_ptr
));
3300 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3301 src_nritems
- push_items
, push_items
);
3303 btrfs_abort_transaction(trans
, ret
);
3306 copy_extent_buffer(dst
, src
,
3307 btrfs_node_key_ptr_offset(0),
3308 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3309 push_items
* sizeof(struct btrfs_key_ptr
));
3311 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3312 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3314 btrfs_mark_buffer_dirty(src
);
3315 btrfs_mark_buffer_dirty(dst
);
3321 * helper function to insert a new root level in the tree.
3322 * A new node is allocated, and a single item is inserted to
3323 * point to the existing root
3325 * returns zero on success or < 0 on failure.
3327 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3328 struct btrfs_root
*root
,
3329 struct btrfs_path
*path
, int level
)
3332 struct extent_buffer
*lower
;
3333 struct extent_buffer
*c
;
3334 struct extent_buffer
*old
;
3335 struct btrfs_disk_key lower_key
;
3337 BUG_ON(path
->nodes
[level
]);
3338 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3340 lower
= path
->nodes
[level
-1];
3342 btrfs_item_key(lower
, &lower_key
, 0);
3344 btrfs_node_key(lower
, &lower_key
, 0);
3346 c
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3347 &lower_key
, level
, root
->node
->start
, 0);
3351 root_add_used(root
, root
->nodesize
);
3353 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3354 btrfs_set_header_nritems(c
, 1);
3355 btrfs_set_header_level(c
, level
);
3356 btrfs_set_header_bytenr(c
, c
->start
);
3357 btrfs_set_header_generation(c
, trans
->transid
);
3358 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3359 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3361 write_extent_buffer(c
, root
->fs_info
->fsid
, btrfs_header_fsid(),
3364 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3365 btrfs_header_chunk_tree_uuid(c
), BTRFS_UUID_SIZE
);
3367 btrfs_set_node_key(c
, &lower_key
, 0);
3368 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3369 lower_gen
= btrfs_header_generation(lower
);
3370 WARN_ON(lower_gen
!= trans
->transid
);
3372 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3374 btrfs_mark_buffer_dirty(c
);
3377 tree_mod_log_set_root_pointer(root
, c
, 0);
3378 rcu_assign_pointer(root
->node
, c
);
3380 /* the super has an extra ref to root->node */
3381 free_extent_buffer(old
);
3383 add_root_to_dirty_list(root
);
3384 extent_buffer_get(c
);
3385 path
->nodes
[level
] = c
;
3386 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3387 path
->slots
[level
] = 0;
3392 * worker function to insert a single pointer in a node.
3393 * the node should have enough room for the pointer already
3395 * slot and level indicate where you want the key to go, and
3396 * blocknr is the block the key points to.
3398 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3399 struct btrfs_root
*root
, struct btrfs_path
*path
,
3400 struct btrfs_disk_key
*key
, u64 bytenr
,
3401 int slot
, int level
)
3403 struct extent_buffer
*lower
;
3407 BUG_ON(!path
->nodes
[level
]);
3408 btrfs_assert_tree_locked(path
->nodes
[level
]);
3409 lower
= path
->nodes
[level
];
3410 nritems
= btrfs_header_nritems(lower
);
3411 BUG_ON(slot
> nritems
);
3412 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3413 if (slot
!= nritems
) {
3415 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3416 slot
, nritems
- slot
);
3417 memmove_extent_buffer(lower
,
3418 btrfs_node_key_ptr_offset(slot
+ 1),
3419 btrfs_node_key_ptr_offset(slot
),
3420 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3423 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3424 MOD_LOG_KEY_ADD
, GFP_NOFS
);
3427 btrfs_set_node_key(lower
, key
, slot
);
3428 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3429 WARN_ON(trans
->transid
== 0);
3430 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3431 btrfs_set_header_nritems(lower
, nritems
+ 1);
3432 btrfs_mark_buffer_dirty(lower
);
3436 * split the node at the specified level in path in two.
3437 * The path is corrected to point to the appropriate node after the split
3439 * Before splitting this tries to make some room in the node by pushing
3440 * left and right, if either one works, it returns right away.
3442 * returns 0 on success and < 0 on failure
3444 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3445 struct btrfs_root
*root
,
3446 struct btrfs_path
*path
, int level
)
3448 struct extent_buffer
*c
;
3449 struct extent_buffer
*split
;
3450 struct btrfs_disk_key disk_key
;
3455 c
= path
->nodes
[level
];
3456 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3457 if (c
== root
->node
) {
3459 * trying to split the root, lets make a new one
3461 * tree mod log: We don't log_removal old root in
3462 * insert_new_root, because that root buffer will be kept as a
3463 * normal node. We are going to log removal of half of the
3464 * elements below with tree_mod_log_eb_copy. We're holding a
3465 * tree lock on the buffer, which is why we cannot race with
3466 * other tree_mod_log users.
3468 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3472 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3473 c
= path
->nodes
[level
];
3474 if (!ret
&& btrfs_header_nritems(c
) <
3475 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3481 c_nritems
= btrfs_header_nritems(c
);
3482 mid
= (c_nritems
+ 1) / 2;
3483 btrfs_node_key(c
, &disk_key
, mid
);
3485 split
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3486 &disk_key
, level
, c
->start
, 0);
3488 return PTR_ERR(split
);
3490 root_add_used(root
, root
->nodesize
);
3492 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3493 btrfs_set_header_level(split
, btrfs_header_level(c
));
3494 btrfs_set_header_bytenr(split
, split
->start
);
3495 btrfs_set_header_generation(split
, trans
->transid
);
3496 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3497 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3498 write_extent_buffer(split
, root
->fs_info
->fsid
,
3499 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
3500 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3501 btrfs_header_chunk_tree_uuid(split
),
3504 ret
= tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0,
3505 mid
, c_nritems
- mid
);
3507 btrfs_abort_transaction(trans
, ret
);
3510 copy_extent_buffer(split
, c
,
3511 btrfs_node_key_ptr_offset(0),
3512 btrfs_node_key_ptr_offset(mid
),
3513 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3514 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3515 btrfs_set_header_nritems(c
, mid
);
3518 btrfs_mark_buffer_dirty(c
);
3519 btrfs_mark_buffer_dirty(split
);
3521 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3522 path
->slots
[level
+ 1] + 1, level
+ 1);
3524 if (path
->slots
[level
] >= mid
) {
3525 path
->slots
[level
] -= mid
;
3526 btrfs_tree_unlock(c
);
3527 free_extent_buffer(c
);
3528 path
->nodes
[level
] = split
;
3529 path
->slots
[level
+ 1] += 1;
3531 btrfs_tree_unlock(split
);
3532 free_extent_buffer(split
);
3538 * how many bytes are required to store the items in a leaf. start
3539 * and nr indicate which items in the leaf to check. This totals up the
3540 * space used both by the item structs and the item data
3542 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3544 struct btrfs_item
*start_item
;
3545 struct btrfs_item
*end_item
;
3546 struct btrfs_map_token token
;
3548 int nritems
= btrfs_header_nritems(l
);
3549 int end
= min(nritems
, start
+ nr
) - 1;
3553 btrfs_init_map_token(&token
);
3554 start_item
= btrfs_item_nr(start
);
3555 end_item
= btrfs_item_nr(end
);
3556 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3557 btrfs_token_item_size(l
, start_item
, &token
);
3558 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3559 data_len
+= sizeof(struct btrfs_item
) * nr
;
3560 WARN_ON(data_len
< 0);
3565 * The space between the end of the leaf items and
3566 * the start of the leaf data. IOW, how much room
3567 * the leaf has left for both items and data
3569 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3570 struct extent_buffer
*leaf
)
3572 int nritems
= btrfs_header_nritems(leaf
);
3574 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3576 btrfs_crit(root
->fs_info
,
3577 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3578 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3579 leaf_space_used(leaf
, 0, nritems
), nritems
);
3585 * min slot controls the lowest index we're willing to push to the
3586 * right. We'll push up to and including min_slot, but no lower
3588 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3589 struct btrfs_root
*root
,
3590 struct btrfs_path
*path
,
3591 int data_size
, int empty
,
3592 struct extent_buffer
*right
,
3593 int free_space
, u32 left_nritems
,
3596 struct extent_buffer
*left
= path
->nodes
[0];
3597 struct extent_buffer
*upper
= path
->nodes
[1];
3598 struct btrfs_map_token token
;
3599 struct btrfs_disk_key disk_key
;
3604 struct btrfs_item
*item
;
3610 btrfs_init_map_token(&token
);
3615 nr
= max_t(u32
, 1, min_slot
);
3617 if (path
->slots
[0] >= left_nritems
)
3618 push_space
+= data_size
;
3620 slot
= path
->slots
[1];
3621 i
= left_nritems
- 1;
3623 item
= btrfs_item_nr(i
);
3625 if (!empty
&& push_items
> 0) {
3626 if (path
->slots
[0] > i
)
3628 if (path
->slots
[0] == i
) {
3629 int space
= btrfs_leaf_free_space(root
, left
);
3630 if (space
+ push_space
* 2 > free_space
)
3635 if (path
->slots
[0] == i
)
3636 push_space
+= data_size
;
3638 this_item_size
= btrfs_item_size(left
, item
);
3639 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3643 push_space
+= this_item_size
+ sizeof(*item
);
3649 if (push_items
== 0)
3652 WARN_ON(!empty
&& push_items
== left_nritems
);
3654 /* push left to right */
3655 right_nritems
= btrfs_header_nritems(right
);
3657 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3658 push_space
-= leaf_data_end(root
, left
);
3660 /* make room in the right data area */
3661 data_end
= leaf_data_end(root
, right
);
3662 memmove_extent_buffer(right
,
3663 btrfs_leaf_data(right
) + data_end
- push_space
,
3664 btrfs_leaf_data(right
) + data_end
,
3665 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3667 /* copy from the left data area */
3668 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3669 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3670 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3673 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3674 btrfs_item_nr_offset(0),
3675 right_nritems
* sizeof(struct btrfs_item
));
3677 /* copy the items from left to right */
3678 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3679 btrfs_item_nr_offset(left_nritems
- push_items
),
3680 push_items
* sizeof(struct btrfs_item
));
3682 /* update the item pointers */
3683 right_nritems
+= push_items
;
3684 btrfs_set_header_nritems(right
, right_nritems
);
3685 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3686 for (i
= 0; i
< right_nritems
; i
++) {
3687 item
= btrfs_item_nr(i
);
3688 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3689 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3692 left_nritems
-= push_items
;
3693 btrfs_set_header_nritems(left
, left_nritems
);
3696 btrfs_mark_buffer_dirty(left
);
3698 clean_tree_block(trans
, root
->fs_info
, left
);
3700 btrfs_mark_buffer_dirty(right
);
3702 btrfs_item_key(right
, &disk_key
, 0);
3703 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3704 btrfs_mark_buffer_dirty(upper
);
3706 /* then fixup the leaf pointer in the path */
3707 if (path
->slots
[0] >= left_nritems
) {
3708 path
->slots
[0] -= left_nritems
;
3709 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3710 clean_tree_block(trans
, root
->fs_info
, path
->nodes
[0]);
3711 btrfs_tree_unlock(path
->nodes
[0]);
3712 free_extent_buffer(path
->nodes
[0]);
3713 path
->nodes
[0] = right
;
3714 path
->slots
[1] += 1;
3716 btrfs_tree_unlock(right
);
3717 free_extent_buffer(right
);
3722 btrfs_tree_unlock(right
);
3723 free_extent_buffer(right
);
3728 * push some data in the path leaf to the right, trying to free up at
3729 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3731 * returns 1 if the push failed because the other node didn't have enough
3732 * room, 0 if everything worked out and < 0 if there were major errors.
3734 * this will push starting from min_slot to the end of the leaf. It won't
3735 * push any slot lower than min_slot
3737 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3738 *root
, struct btrfs_path
*path
,
3739 int min_data_size
, int data_size
,
3740 int empty
, u32 min_slot
)
3742 struct extent_buffer
*left
= path
->nodes
[0];
3743 struct extent_buffer
*right
;
3744 struct extent_buffer
*upper
;
3750 if (!path
->nodes
[1])
3753 slot
= path
->slots
[1];
3754 upper
= path
->nodes
[1];
3755 if (slot
>= btrfs_header_nritems(upper
) - 1)
3758 btrfs_assert_tree_locked(path
->nodes
[1]);
3760 right
= read_node_slot(root
, upper
, slot
+ 1);
3762 * slot + 1 is not valid or we fail to read the right node,
3763 * no big deal, just return.
3768 btrfs_tree_lock(right
);
3769 btrfs_set_lock_blocking(right
);
3771 free_space
= btrfs_leaf_free_space(root
, right
);
3772 if (free_space
< data_size
)
3775 /* cow and double check */
3776 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3781 free_space
= btrfs_leaf_free_space(root
, right
);
3782 if (free_space
< data_size
)
3785 left_nritems
= btrfs_header_nritems(left
);
3786 if (left_nritems
== 0)
3789 if (path
->slots
[0] == left_nritems
&& !empty
) {
3790 /* Key greater than all keys in the leaf, right neighbor has
3791 * enough room for it and we're not emptying our leaf to delete
3792 * it, therefore use right neighbor to insert the new item and
3793 * no need to touch/dirty our left leaft. */
3794 btrfs_tree_unlock(left
);
3795 free_extent_buffer(left
);
3796 path
->nodes
[0] = right
;
3802 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3803 right
, free_space
, left_nritems
, min_slot
);
3805 btrfs_tree_unlock(right
);
3806 free_extent_buffer(right
);
3811 * push some data in the path leaf to the left, trying to free up at
3812 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3814 * max_slot can put a limit on how far into the leaf we'll push items. The
3815 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3818 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3819 struct btrfs_root
*root
,
3820 struct btrfs_path
*path
, int data_size
,
3821 int empty
, struct extent_buffer
*left
,
3822 int free_space
, u32 right_nritems
,
3825 struct btrfs_disk_key disk_key
;
3826 struct extent_buffer
*right
= path
->nodes
[0];
3830 struct btrfs_item
*item
;
3831 u32 old_left_nritems
;
3835 u32 old_left_item_size
;
3836 struct btrfs_map_token token
;
3838 btrfs_init_map_token(&token
);
3841 nr
= min(right_nritems
, max_slot
);
3843 nr
= min(right_nritems
- 1, max_slot
);
3845 for (i
= 0; i
< nr
; i
++) {
3846 item
= btrfs_item_nr(i
);
3848 if (!empty
&& push_items
> 0) {
3849 if (path
->slots
[0] < i
)
3851 if (path
->slots
[0] == i
) {
3852 int space
= btrfs_leaf_free_space(root
, right
);
3853 if (space
+ push_space
* 2 > free_space
)
3858 if (path
->slots
[0] == i
)
3859 push_space
+= data_size
;
3861 this_item_size
= btrfs_item_size(right
, item
);
3862 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3866 push_space
+= this_item_size
+ sizeof(*item
);
3869 if (push_items
== 0) {
3873 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3875 /* push data from right to left */
3876 copy_extent_buffer(left
, right
,
3877 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3878 btrfs_item_nr_offset(0),
3879 push_items
* sizeof(struct btrfs_item
));
3881 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3882 btrfs_item_offset_nr(right
, push_items
- 1);
3884 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3885 leaf_data_end(root
, left
) - push_space
,
3886 btrfs_leaf_data(right
) +
3887 btrfs_item_offset_nr(right
, push_items
- 1),
3889 old_left_nritems
= btrfs_header_nritems(left
);
3890 BUG_ON(old_left_nritems
<= 0);
3892 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3893 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3896 item
= btrfs_item_nr(i
);
3898 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3899 btrfs_set_token_item_offset(left
, item
,
3900 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3903 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3905 /* fixup right node */
3906 if (push_items
> right_nritems
)
3907 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3910 if (push_items
< right_nritems
) {
3911 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3912 leaf_data_end(root
, right
);
3913 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3914 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3915 btrfs_leaf_data(right
) +
3916 leaf_data_end(root
, right
), push_space
);
3918 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3919 btrfs_item_nr_offset(push_items
),
3920 (btrfs_header_nritems(right
) - push_items
) *
3921 sizeof(struct btrfs_item
));
3923 right_nritems
-= push_items
;
3924 btrfs_set_header_nritems(right
, right_nritems
);
3925 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3926 for (i
= 0; i
< right_nritems
; i
++) {
3927 item
= btrfs_item_nr(i
);
3929 push_space
= push_space
- btrfs_token_item_size(right
,
3931 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3934 btrfs_mark_buffer_dirty(left
);
3936 btrfs_mark_buffer_dirty(right
);
3938 clean_tree_block(trans
, root
->fs_info
, right
);
3940 btrfs_item_key(right
, &disk_key
, 0);
3941 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
3943 /* then fixup the leaf pointer in the path */
3944 if (path
->slots
[0] < push_items
) {
3945 path
->slots
[0] += old_left_nritems
;
3946 btrfs_tree_unlock(path
->nodes
[0]);
3947 free_extent_buffer(path
->nodes
[0]);
3948 path
->nodes
[0] = left
;
3949 path
->slots
[1] -= 1;
3951 btrfs_tree_unlock(left
);
3952 free_extent_buffer(left
);
3953 path
->slots
[0] -= push_items
;
3955 BUG_ON(path
->slots
[0] < 0);
3958 btrfs_tree_unlock(left
);
3959 free_extent_buffer(left
);
3964 * push some data in the path leaf to the left, trying to free up at
3965 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3967 * max_slot can put a limit on how far into the leaf we'll push items. The
3968 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3971 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3972 *root
, struct btrfs_path
*path
, int min_data_size
,
3973 int data_size
, int empty
, u32 max_slot
)
3975 struct extent_buffer
*right
= path
->nodes
[0];
3976 struct extent_buffer
*left
;
3982 slot
= path
->slots
[1];
3985 if (!path
->nodes
[1])
3988 right_nritems
= btrfs_header_nritems(right
);
3989 if (right_nritems
== 0)
3992 btrfs_assert_tree_locked(path
->nodes
[1]);
3994 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
3996 * slot - 1 is not valid or we fail to read the left node,
3997 * no big deal, just return.
4002 btrfs_tree_lock(left
);
4003 btrfs_set_lock_blocking(left
);
4005 free_space
= btrfs_leaf_free_space(root
, left
);
4006 if (free_space
< data_size
) {
4011 /* cow and double check */
4012 ret
= btrfs_cow_block(trans
, root
, left
,
4013 path
->nodes
[1], slot
- 1, &left
);
4015 /* we hit -ENOSPC, but it isn't fatal here */
4021 free_space
= btrfs_leaf_free_space(root
, left
);
4022 if (free_space
< data_size
) {
4027 return __push_leaf_left(trans
, root
, path
, min_data_size
,
4028 empty
, left
, free_space
, right_nritems
,
4031 btrfs_tree_unlock(left
);
4032 free_extent_buffer(left
);
4037 * split the path's leaf in two, making sure there is at least data_size
4038 * available for the resulting leaf level of the path.
4040 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4041 struct btrfs_root
*root
,
4042 struct btrfs_path
*path
,
4043 struct extent_buffer
*l
,
4044 struct extent_buffer
*right
,
4045 int slot
, int mid
, int nritems
)
4050 struct btrfs_disk_key disk_key
;
4051 struct btrfs_map_token token
;
4053 btrfs_init_map_token(&token
);
4055 nritems
= nritems
- mid
;
4056 btrfs_set_header_nritems(right
, nritems
);
4057 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
4059 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4060 btrfs_item_nr_offset(mid
),
4061 nritems
* sizeof(struct btrfs_item
));
4063 copy_extent_buffer(right
, l
,
4064 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
4065 data_copy_size
, btrfs_leaf_data(l
) +
4066 leaf_data_end(root
, l
), data_copy_size
);
4068 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
4069 btrfs_item_end_nr(l
, mid
);
4071 for (i
= 0; i
< nritems
; i
++) {
4072 struct btrfs_item
*item
= btrfs_item_nr(i
);
4075 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4076 btrfs_set_token_item_offset(right
, item
,
4077 ioff
+ rt_data_off
, &token
);
4080 btrfs_set_header_nritems(l
, mid
);
4081 btrfs_item_key(right
, &disk_key
, 0);
4082 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4083 path
->slots
[1] + 1, 1);
4085 btrfs_mark_buffer_dirty(right
);
4086 btrfs_mark_buffer_dirty(l
);
4087 BUG_ON(path
->slots
[0] != slot
);
4090 btrfs_tree_unlock(path
->nodes
[0]);
4091 free_extent_buffer(path
->nodes
[0]);
4092 path
->nodes
[0] = right
;
4093 path
->slots
[0] -= mid
;
4094 path
->slots
[1] += 1;
4096 btrfs_tree_unlock(right
);
4097 free_extent_buffer(right
);
4100 BUG_ON(path
->slots
[0] < 0);
4104 * double splits happen when we need to insert a big item in the middle
4105 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4106 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4109 * We avoid this by trying to push the items on either side of our target
4110 * into the adjacent leaves. If all goes well we can avoid the double split
4113 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4114 struct btrfs_root
*root
,
4115 struct btrfs_path
*path
,
4122 int space_needed
= data_size
;
4124 slot
= path
->slots
[0];
4125 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4126 space_needed
-= btrfs_leaf_free_space(root
, path
->nodes
[0]);
4129 * try to push all the items after our slot into the
4132 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4139 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4141 * our goal is to get our slot at the start or end of a leaf. If
4142 * we've done so we're done
4144 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4147 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4150 /* try to push all the items before our slot into the next leaf */
4151 slot
= path
->slots
[0];
4152 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4165 * split the path's leaf in two, making sure there is at least data_size
4166 * available for the resulting leaf level of the path.
4168 * returns 0 if all went well and < 0 on failure.
4170 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4171 struct btrfs_root
*root
,
4172 struct btrfs_key
*ins_key
,
4173 struct btrfs_path
*path
, int data_size
,
4176 struct btrfs_disk_key disk_key
;
4177 struct extent_buffer
*l
;
4181 struct extent_buffer
*right
;
4182 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4186 int num_doubles
= 0;
4187 int tried_avoid_double
= 0;
4190 slot
= path
->slots
[0];
4191 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4192 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
4195 /* first try to make some room by pushing left and right */
4196 if (data_size
&& path
->nodes
[1]) {
4197 int space_needed
= data_size
;
4199 if (slot
< btrfs_header_nritems(l
))
4200 space_needed
-= btrfs_leaf_free_space(root
, l
);
4202 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4203 space_needed
, 0, 0);
4207 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4208 space_needed
, 0, (u32
)-1);
4214 /* did the pushes work? */
4215 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
4219 if (!path
->nodes
[1]) {
4220 ret
= insert_new_root(trans
, root
, path
, 1);
4227 slot
= path
->slots
[0];
4228 nritems
= btrfs_header_nritems(l
);
4229 mid
= (nritems
+ 1) / 2;
4233 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4234 BTRFS_LEAF_DATA_SIZE(root
)) {
4235 if (slot
>= nritems
) {
4239 if (mid
!= nritems
&&
4240 leaf_space_used(l
, mid
, nritems
- mid
) +
4241 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4242 if (data_size
&& !tried_avoid_double
)
4243 goto push_for_double
;
4249 if (leaf_space_used(l
, 0, mid
) + data_size
>
4250 BTRFS_LEAF_DATA_SIZE(root
)) {
4251 if (!extend
&& data_size
&& slot
== 0) {
4253 } else if ((extend
|| !data_size
) && slot
== 0) {
4257 if (mid
!= nritems
&&
4258 leaf_space_used(l
, mid
, nritems
- mid
) +
4259 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4260 if (data_size
&& !tried_avoid_double
)
4261 goto push_for_double
;
4269 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4271 btrfs_item_key(l
, &disk_key
, mid
);
4273 right
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
4274 &disk_key
, 0, l
->start
, 0);
4276 return PTR_ERR(right
);
4278 root_add_used(root
, root
->nodesize
);
4280 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
4281 btrfs_set_header_bytenr(right
, right
->start
);
4282 btrfs_set_header_generation(right
, trans
->transid
);
4283 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4284 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4285 btrfs_set_header_level(right
, 0);
4286 write_extent_buffer(right
, fs_info
->fsid
,
4287 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
4289 write_extent_buffer(right
, fs_info
->chunk_tree_uuid
,
4290 btrfs_header_chunk_tree_uuid(right
),
4295 btrfs_set_header_nritems(right
, 0);
4296 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4297 path
->slots
[1] + 1, 1);
4298 btrfs_tree_unlock(path
->nodes
[0]);
4299 free_extent_buffer(path
->nodes
[0]);
4300 path
->nodes
[0] = right
;
4302 path
->slots
[1] += 1;
4304 btrfs_set_header_nritems(right
, 0);
4305 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4307 btrfs_tree_unlock(path
->nodes
[0]);
4308 free_extent_buffer(path
->nodes
[0]);
4309 path
->nodes
[0] = right
;
4311 if (path
->slots
[1] == 0)
4312 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4315 * We create a new leaf 'right' for the required ins_len and
4316 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4317 * the content of ins_len to 'right'.
4322 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4325 BUG_ON(num_doubles
!= 0);
4333 push_for_double_split(trans
, root
, path
, data_size
);
4334 tried_avoid_double
= 1;
4335 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4340 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4341 struct btrfs_root
*root
,
4342 struct btrfs_path
*path
, int ins_len
)
4344 struct btrfs_key key
;
4345 struct extent_buffer
*leaf
;
4346 struct btrfs_file_extent_item
*fi
;
4351 leaf
= path
->nodes
[0];
4352 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4354 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4355 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4357 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4360 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4361 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4362 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4363 struct btrfs_file_extent_item
);
4364 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4366 btrfs_release_path(path
);
4368 path
->keep_locks
= 1;
4369 path
->search_for_split
= 1;
4370 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4371 path
->search_for_split
= 0;
4378 leaf
= path
->nodes
[0];
4379 /* if our item isn't there, return now */
4380 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4383 /* the leaf has changed, it now has room. return now */
4384 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4387 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4388 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4389 struct btrfs_file_extent_item
);
4390 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4394 btrfs_set_path_blocking(path
);
4395 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4399 path
->keep_locks
= 0;
4400 btrfs_unlock_up_safe(path
, 1);
4403 path
->keep_locks
= 0;
4407 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4408 struct btrfs_root
*root
,
4409 struct btrfs_path
*path
,
4410 struct btrfs_key
*new_key
,
4411 unsigned long split_offset
)
4413 struct extent_buffer
*leaf
;
4414 struct btrfs_item
*item
;
4415 struct btrfs_item
*new_item
;
4421 struct btrfs_disk_key disk_key
;
4423 leaf
= path
->nodes
[0];
4424 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4426 btrfs_set_path_blocking(path
);
4428 item
= btrfs_item_nr(path
->slots
[0]);
4429 orig_offset
= btrfs_item_offset(leaf
, item
);
4430 item_size
= btrfs_item_size(leaf
, item
);
4432 buf
= kmalloc(item_size
, GFP_NOFS
);
4436 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4437 path
->slots
[0]), item_size
);
4439 slot
= path
->slots
[0] + 1;
4440 nritems
= btrfs_header_nritems(leaf
);
4441 if (slot
!= nritems
) {
4442 /* shift the items */
4443 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4444 btrfs_item_nr_offset(slot
),
4445 (nritems
- slot
) * sizeof(struct btrfs_item
));
4448 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4449 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4451 new_item
= btrfs_item_nr(slot
);
4453 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4454 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4456 btrfs_set_item_offset(leaf
, item
,
4457 orig_offset
+ item_size
- split_offset
);
4458 btrfs_set_item_size(leaf
, item
, split_offset
);
4460 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4462 /* write the data for the start of the original item */
4463 write_extent_buffer(leaf
, buf
,
4464 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4467 /* write the data for the new item */
4468 write_extent_buffer(leaf
, buf
+ split_offset
,
4469 btrfs_item_ptr_offset(leaf
, slot
),
4470 item_size
- split_offset
);
4471 btrfs_mark_buffer_dirty(leaf
);
4473 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4479 * This function splits a single item into two items,
4480 * giving 'new_key' to the new item and splitting the
4481 * old one at split_offset (from the start of the item).
4483 * The path may be released by this operation. After
4484 * the split, the path is pointing to the old item. The
4485 * new item is going to be in the same node as the old one.
4487 * Note, the item being split must be smaller enough to live alone on
4488 * a tree block with room for one extra struct btrfs_item
4490 * This allows us to split the item in place, keeping a lock on the
4491 * leaf the entire time.
4493 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4494 struct btrfs_root
*root
,
4495 struct btrfs_path
*path
,
4496 struct btrfs_key
*new_key
,
4497 unsigned long split_offset
)
4500 ret
= setup_leaf_for_split(trans
, root
, path
,
4501 sizeof(struct btrfs_item
));
4505 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4510 * This function duplicate a item, giving 'new_key' to the new item.
4511 * It guarantees both items live in the same tree leaf and the new item
4512 * is contiguous with the original item.
4514 * This allows us to split file extent in place, keeping a lock on the
4515 * leaf the entire time.
4517 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4518 struct btrfs_root
*root
,
4519 struct btrfs_path
*path
,
4520 struct btrfs_key
*new_key
)
4522 struct extent_buffer
*leaf
;
4526 leaf
= path
->nodes
[0];
4527 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4528 ret
= setup_leaf_for_split(trans
, root
, path
,
4529 item_size
+ sizeof(struct btrfs_item
));
4534 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4535 item_size
, item_size
+
4536 sizeof(struct btrfs_item
), 1);
4537 leaf
= path
->nodes
[0];
4538 memcpy_extent_buffer(leaf
,
4539 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4540 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4546 * make the item pointed to by the path smaller. new_size indicates
4547 * how small to make it, and from_end tells us if we just chop bytes
4548 * off the end of the item or if we shift the item to chop bytes off
4551 void btrfs_truncate_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4552 u32 new_size
, int from_end
)
4555 struct extent_buffer
*leaf
;
4556 struct btrfs_item
*item
;
4558 unsigned int data_end
;
4559 unsigned int old_data_start
;
4560 unsigned int old_size
;
4561 unsigned int size_diff
;
4563 struct btrfs_map_token token
;
4565 btrfs_init_map_token(&token
);
4567 leaf
= path
->nodes
[0];
4568 slot
= path
->slots
[0];
4570 old_size
= btrfs_item_size_nr(leaf
, slot
);
4571 if (old_size
== new_size
)
4574 nritems
= btrfs_header_nritems(leaf
);
4575 data_end
= leaf_data_end(root
, leaf
);
4577 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4579 size_diff
= old_size
- new_size
;
4582 BUG_ON(slot
>= nritems
);
4585 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4587 /* first correct the data pointers */
4588 for (i
= slot
; i
< nritems
; i
++) {
4590 item
= btrfs_item_nr(i
);
4592 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4593 btrfs_set_token_item_offset(leaf
, item
,
4594 ioff
+ size_diff
, &token
);
4597 /* shift the data */
4599 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4600 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4601 data_end
, old_data_start
+ new_size
- data_end
);
4603 struct btrfs_disk_key disk_key
;
4606 btrfs_item_key(leaf
, &disk_key
, slot
);
4608 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4610 struct btrfs_file_extent_item
*fi
;
4612 fi
= btrfs_item_ptr(leaf
, slot
,
4613 struct btrfs_file_extent_item
);
4614 fi
= (struct btrfs_file_extent_item
*)(
4615 (unsigned long)fi
- size_diff
);
4617 if (btrfs_file_extent_type(leaf
, fi
) ==
4618 BTRFS_FILE_EXTENT_INLINE
) {
4619 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4620 memmove_extent_buffer(leaf
, ptr
,
4622 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4626 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4627 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4628 data_end
, old_data_start
- data_end
);
4630 offset
= btrfs_disk_key_offset(&disk_key
);
4631 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4632 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4634 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4637 item
= btrfs_item_nr(slot
);
4638 btrfs_set_item_size(leaf
, item
, new_size
);
4639 btrfs_mark_buffer_dirty(leaf
);
4641 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4642 btrfs_print_leaf(root
, leaf
);
4648 * make the item pointed to by the path bigger, data_size is the added size.
4650 void btrfs_extend_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4654 struct extent_buffer
*leaf
;
4655 struct btrfs_item
*item
;
4657 unsigned int data_end
;
4658 unsigned int old_data
;
4659 unsigned int old_size
;
4661 struct btrfs_map_token token
;
4663 btrfs_init_map_token(&token
);
4665 leaf
= path
->nodes
[0];
4667 nritems
= btrfs_header_nritems(leaf
);
4668 data_end
= leaf_data_end(root
, leaf
);
4670 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4671 btrfs_print_leaf(root
, leaf
);
4674 slot
= path
->slots
[0];
4675 old_data
= btrfs_item_end_nr(leaf
, slot
);
4678 if (slot
>= nritems
) {
4679 btrfs_print_leaf(root
, leaf
);
4680 btrfs_crit(root
->fs_info
, "slot %d too large, nritems %d",
4686 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4688 /* first correct the data pointers */
4689 for (i
= slot
; i
< nritems
; i
++) {
4691 item
= btrfs_item_nr(i
);
4693 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4694 btrfs_set_token_item_offset(leaf
, item
,
4695 ioff
- data_size
, &token
);
4698 /* shift the data */
4699 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4700 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4701 data_end
, old_data
- data_end
);
4703 data_end
= old_data
;
4704 old_size
= btrfs_item_size_nr(leaf
, slot
);
4705 item
= btrfs_item_nr(slot
);
4706 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4707 btrfs_mark_buffer_dirty(leaf
);
4709 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4710 btrfs_print_leaf(root
, leaf
);
4716 * this is a helper for btrfs_insert_empty_items, the main goal here is
4717 * to save stack depth by doing the bulk of the work in a function
4718 * that doesn't call btrfs_search_slot
4720 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4721 struct btrfs_key
*cpu_key
, u32
*data_size
,
4722 u32 total_data
, u32 total_size
, int nr
)
4724 struct btrfs_item
*item
;
4727 unsigned int data_end
;
4728 struct btrfs_disk_key disk_key
;
4729 struct extent_buffer
*leaf
;
4731 struct btrfs_map_token token
;
4733 if (path
->slots
[0] == 0) {
4734 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4735 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4737 btrfs_unlock_up_safe(path
, 1);
4739 btrfs_init_map_token(&token
);
4741 leaf
= path
->nodes
[0];
4742 slot
= path
->slots
[0];
4744 nritems
= btrfs_header_nritems(leaf
);
4745 data_end
= leaf_data_end(root
, leaf
);
4747 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4748 btrfs_print_leaf(root
, leaf
);
4749 btrfs_crit(root
->fs_info
,
4750 "not enough freespace need %u have %d",
4751 total_size
, btrfs_leaf_free_space(root
, leaf
));
4755 if (slot
!= nritems
) {
4756 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4758 if (old_data
< data_end
) {
4759 btrfs_print_leaf(root
, leaf
);
4760 btrfs_crit(root
->fs_info
,
4761 "slot %d old_data %d data_end %d",
4762 slot
, old_data
, data_end
);
4766 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4768 /* first correct the data pointers */
4769 for (i
= slot
; i
< nritems
; i
++) {
4772 item
= btrfs_item_nr(i
);
4773 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4774 btrfs_set_token_item_offset(leaf
, item
,
4775 ioff
- total_data
, &token
);
4777 /* shift the items */
4778 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4779 btrfs_item_nr_offset(slot
),
4780 (nritems
- slot
) * sizeof(struct btrfs_item
));
4782 /* shift the data */
4783 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4784 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4785 data_end
, old_data
- data_end
);
4786 data_end
= old_data
;
4789 /* setup the item for the new data */
4790 for (i
= 0; i
< nr
; i
++) {
4791 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4792 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4793 item
= btrfs_item_nr(slot
+ i
);
4794 btrfs_set_token_item_offset(leaf
, item
,
4795 data_end
- data_size
[i
], &token
);
4796 data_end
-= data_size
[i
];
4797 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4800 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4801 btrfs_mark_buffer_dirty(leaf
);
4803 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4804 btrfs_print_leaf(root
, leaf
);
4810 * Given a key and some data, insert items into the tree.
4811 * This does all the path init required, making room in the tree if needed.
4813 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4814 struct btrfs_root
*root
,
4815 struct btrfs_path
*path
,
4816 struct btrfs_key
*cpu_key
, u32
*data_size
,
4825 for (i
= 0; i
< nr
; i
++)
4826 total_data
+= data_size
[i
];
4828 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4829 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4835 slot
= path
->slots
[0];
4838 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4839 total_data
, total_size
, nr
);
4844 * Given a key and some data, insert an item into the tree.
4845 * This does all the path init required, making room in the tree if needed.
4847 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4848 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4852 struct btrfs_path
*path
;
4853 struct extent_buffer
*leaf
;
4856 path
= btrfs_alloc_path();
4859 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4861 leaf
= path
->nodes
[0];
4862 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4863 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4864 btrfs_mark_buffer_dirty(leaf
);
4866 btrfs_free_path(path
);
4871 * delete the pointer from a given node.
4873 * the tree should have been previously balanced so the deletion does not
4876 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4877 int level
, int slot
)
4879 struct extent_buffer
*parent
= path
->nodes
[level
];
4883 nritems
= btrfs_header_nritems(parent
);
4884 if (slot
!= nritems
- 1) {
4886 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4887 slot
+ 1, nritems
- slot
- 1);
4888 memmove_extent_buffer(parent
,
4889 btrfs_node_key_ptr_offset(slot
),
4890 btrfs_node_key_ptr_offset(slot
+ 1),
4891 sizeof(struct btrfs_key_ptr
) *
4892 (nritems
- slot
- 1));
4894 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4895 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
4900 btrfs_set_header_nritems(parent
, nritems
);
4901 if (nritems
== 0 && parent
== root
->node
) {
4902 BUG_ON(btrfs_header_level(root
->node
) != 1);
4903 /* just turn the root into a leaf and break */
4904 btrfs_set_header_level(root
->node
, 0);
4905 } else if (slot
== 0) {
4906 struct btrfs_disk_key disk_key
;
4908 btrfs_node_key(parent
, &disk_key
, 0);
4909 fixup_low_keys(root
->fs_info
, path
, &disk_key
, level
+ 1);
4911 btrfs_mark_buffer_dirty(parent
);
4915 * a helper function to delete the leaf pointed to by path->slots[1] and
4918 * This deletes the pointer in path->nodes[1] and frees the leaf
4919 * block extent. zero is returned if it all worked out, < 0 otherwise.
4921 * The path must have already been setup for deleting the leaf, including
4922 * all the proper balancing. path->nodes[1] must be locked.
4924 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4925 struct btrfs_root
*root
,
4926 struct btrfs_path
*path
,
4927 struct extent_buffer
*leaf
)
4929 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4930 del_ptr(root
, path
, 1, path
->slots
[1]);
4933 * btrfs_free_extent is expensive, we want to make sure we
4934 * aren't holding any locks when we call it
4936 btrfs_unlock_up_safe(path
, 0);
4938 root_sub_used(root
, leaf
->len
);
4940 extent_buffer_get(leaf
);
4941 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4942 free_extent_buffer_stale(leaf
);
4945 * delete the item at the leaf level in path. If that empties
4946 * the leaf, remove it from the tree
4948 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4949 struct btrfs_path
*path
, int slot
, int nr
)
4951 struct extent_buffer
*leaf
;
4952 struct btrfs_item
*item
;
4959 struct btrfs_map_token token
;
4961 btrfs_init_map_token(&token
);
4963 leaf
= path
->nodes
[0];
4964 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4966 for (i
= 0; i
< nr
; i
++)
4967 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4969 nritems
= btrfs_header_nritems(leaf
);
4971 if (slot
+ nr
!= nritems
) {
4972 int data_end
= leaf_data_end(root
, leaf
);
4974 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4976 btrfs_leaf_data(leaf
) + data_end
,
4977 last_off
- data_end
);
4979 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4982 item
= btrfs_item_nr(i
);
4983 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4984 btrfs_set_token_item_offset(leaf
, item
,
4985 ioff
+ dsize
, &token
);
4988 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4989 btrfs_item_nr_offset(slot
+ nr
),
4990 sizeof(struct btrfs_item
) *
4991 (nritems
- slot
- nr
));
4993 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4996 /* delete the leaf if we've emptied it */
4998 if (leaf
== root
->node
) {
4999 btrfs_set_header_level(leaf
, 0);
5001 btrfs_set_path_blocking(path
);
5002 clean_tree_block(trans
, root
->fs_info
, leaf
);
5003 btrfs_del_leaf(trans
, root
, path
, leaf
);
5006 int used
= leaf_space_used(leaf
, 0, nritems
);
5008 struct btrfs_disk_key disk_key
;
5010 btrfs_item_key(leaf
, &disk_key
, 0);
5011 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
5014 /* delete the leaf if it is mostly empty */
5015 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
5016 /* push_leaf_left fixes the path.
5017 * make sure the path still points to our leaf
5018 * for possible call to del_ptr below
5020 slot
= path
->slots
[1];
5021 extent_buffer_get(leaf
);
5023 btrfs_set_path_blocking(path
);
5024 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5026 if (wret
< 0 && wret
!= -ENOSPC
)
5029 if (path
->nodes
[0] == leaf
&&
5030 btrfs_header_nritems(leaf
)) {
5031 wret
= push_leaf_right(trans
, root
, path
, 1,
5033 if (wret
< 0 && wret
!= -ENOSPC
)
5037 if (btrfs_header_nritems(leaf
) == 0) {
5038 path
->slots
[1] = slot
;
5039 btrfs_del_leaf(trans
, root
, path
, leaf
);
5040 free_extent_buffer(leaf
);
5043 /* if we're still in the path, make sure
5044 * we're dirty. Otherwise, one of the
5045 * push_leaf functions must have already
5046 * dirtied this buffer
5048 if (path
->nodes
[0] == leaf
)
5049 btrfs_mark_buffer_dirty(leaf
);
5050 free_extent_buffer(leaf
);
5053 btrfs_mark_buffer_dirty(leaf
);
5060 * search the tree again to find a leaf with lesser keys
5061 * returns 0 if it found something or 1 if there are no lesser leaves.
5062 * returns < 0 on io errors.
5064 * This may release the path, and so you may lose any locks held at the
5067 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5069 struct btrfs_key key
;
5070 struct btrfs_disk_key found_key
;
5073 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5075 if (key
.offset
> 0) {
5077 } else if (key
.type
> 0) {
5079 key
.offset
= (u64
)-1;
5080 } else if (key
.objectid
> 0) {
5083 key
.offset
= (u64
)-1;
5088 btrfs_release_path(path
);
5089 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5092 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5093 ret
= comp_keys(&found_key
, &key
);
5095 * We might have had an item with the previous key in the tree right
5096 * before we released our path. And after we released our path, that
5097 * item might have been pushed to the first slot (0) of the leaf we
5098 * were holding due to a tree balance. Alternatively, an item with the
5099 * previous key can exist as the only element of a leaf (big fat item).
5100 * Therefore account for these 2 cases, so that our callers (like
5101 * btrfs_previous_item) don't miss an existing item with a key matching
5102 * the previous key we computed above.
5110 * A helper function to walk down the tree starting at min_key, and looking
5111 * for nodes or leaves that are have a minimum transaction id.
5112 * This is used by the btree defrag code, and tree logging
5114 * This does not cow, but it does stuff the starting key it finds back
5115 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5116 * key and get a writable path.
5118 * This does lock as it descends, and path->keep_locks should be set
5119 * to 1 by the caller.
5121 * This honors path->lowest_level to prevent descent past a given level
5124 * min_trans indicates the oldest transaction that you are interested
5125 * in walking through. Any nodes or leaves older than min_trans are
5126 * skipped over (without reading them).
5128 * returns zero if something useful was found, < 0 on error and 1 if there
5129 * was nothing in the tree that matched the search criteria.
5131 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5132 struct btrfs_path
*path
,
5135 struct extent_buffer
*cur
;
5136 struct btrfs_key found_key
;
5142 int keep_locks
= path
->keep_locks
;
5144 path
->keep_locks
= 1;
5146 cur
= btrfs_read_lock_root_node(root
);
5147 level
= btrfs_header_level(cur
);
5148 WARN_ON(path
->nodes
[level
]);
5149 path
->nodes
[level
] = cur
;
5150 path
->locks
[level
] = BTRFS_READ_LOCK
;
5152 if (btrfs_header_generation(cur
) < min_trans
) {
5157 nritems
= btrfs_header_nritems(cur
);
5158 level
= btrfs_header_level(cur
);
5159 sret
= bin_search(cur
, min_key
, level
, &slot
);
5161 /* at the lowest level, we're done, setup the path and exit */
5162 if (level
== path
->lowest_level
) {
5163 if (slot
>= nritems
)
5166 path
->slots
[level
] = slot
;
5167 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5170 if (sret
&& slot
> 0)
5173 * check this node pointer against the min_trans parameters.
5174 * If it is too old, old, skip to the next one.
5176 while (slot
< nritems
) {
5179 gen
= btrfs_node_ptr_generation(cur
, slot
);
5180 if (gen
< min_trans
) {
5188 * we didn't find a candidate key in this node, walk forward
5189 * and find another one
5191 if (slot
>= nritems
) {
5192 path
->slots
[level
] = slot
;
5193 btrfs_set_path_blocking(path
);
5194 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5197 btrfs_release_path(path
);
5203 /* save our key for returning back */
5204 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5205 path
->slots
[level
] = slot
;
5206 if (level
== path
->lowest_level
) {
5210 btrfs_set_path_blocking(path
);
5211 cur
= read_node_slot(root
, cur
, slot
);
5217 btrfs_tree_read_lock(cur
);
5219 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5220 path
->nodes
[level
- 1] = cur
;
5221 unlock_up(path
, level
, 1, 0, NULL
);
5222 btrfs_clear_path_blocking(path
, NULL
, 0);
5225 path
->keep_locks
= keep_locks
;
5227 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5228 btrfs_set_path_blocking(path
);
5229 memcpy(min_key
, &found_key
, sizeof(found_key
));
5234 static int tree_move_down(struct btrfs_root
*root
,
5235 struct btrfs_path
*path
,
5236 int *level
, int root_level
)
5238 struct extent_buffer
*eb
;
5240 BUG_ON(*level
== 0);
5241 eb
= read_node_slot(root
, path
->nodes
[*level
], path
->slots
[*level
]);
5245 path
->nodes
[*level
- 1] = eb
;
5246 path
->slots
[*level
- 1] = 0;
5251 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
5252 struct btrfs_path
*path
,
5253 int *level
, int root_level
)
5257 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5259 path
->slots
[*level
]++;
5261 while (path
->slots
[*level
] >= nritems
) {
5262 if (*level
== root_level
)
5266 path
->slots
[*level
] = 0;
5267 free_extent_buffer(path
->nodes
[*level
]);
5268 path
->nodes
[*level
] = NULL
;
5270 path
->slots
[*level
]++;
5272 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5279 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5282 static int tree_advance(struct btrfs_root
*root
,
5283 struct btrfs_path
*path
,
5284 int *level
, int root_level
,
5286 struct btrfs_key
*key
)
5290 if (*level
== 0 || !allow_down
) {
5291 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
5293 ret
= tree_move_down(root
, path
, level
, root_level
);
5297 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5298 path
->slots
[*level
]);
5300 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5301 path
->slots
[*level
]);
5306 static int tree_compare_item(struct btrfs_root
*left_root
,
5307 struct btrfs_path
*left_path
,
5308 struct btrfs_path
*right_path
,
5313 unsigned long off1
, off2
;
5315 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5316 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5320 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5321 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5322 right_path
->slots
[0]);
5324 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5326 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5333 #define ADVANCE_ONLY_NEXT -1
5336 * This function compares two trees and calls the provided callback for
5337 * every changed/new/deleted item it finds.
5338 * If shared tree blocks are encountered, whole subtrees are skipped, making
5339 * the compare pretty fast on snapshotted subvolumes.
5341 * This currently works on commit roots only. As commit roots are read only,
5342 * we don't do any locking. The commit roots are protected with transactions.
5343 * Transactions are ended and rejoined when a commit is tried in between.
5345 * This function checks for modifications done to the trees while comparing.
5346 * If it detects a change, it aborts immediately.
5348 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5349 struct btrfs_root
*right_root
,
5350 btrfs_changed_cb_t changed_cb
, void *ctx
)
5354 struct btrfs_path
*left_path
= NULL
;
5355 struct btrfs_path
*right_path
= NULL
;
5356 struct btrfs_key left_key
;
5357 struct btrfs_key right_key
;
5358 char *tmp_buf
= NULL
;
5359 int left_root_level
;
5360 int right_root_level
;
5363 int left_end_reached
;
5364 int right_end_reached
;
5372 left_path
= btrfs_alloc_path();
5377 right_path
= btrfs_alloc_path();
5383 tmp_buf
= kmalloc(left_root
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
5385 tmp_buf
= vmalloc(left_root
->nodesize
);
5392 left_path
->search_commit_root
= 1;
5393 left_path
->skip_locking
= 1;
5394 right_path
->search_commit_root
= 1;
5395 right_path
->skip_locking
= 1;
5398 * Strategy: Go to the first items of both trees. Then do
5400 * If both trees are at level 0
5401 * Compare keys of current items
5402 * If left < right treat left item as new, advance left tree
5404 * If left > right treat right item as deleted, advance right tree
5406 * If left == right do deep compare of items, treat as changed if
5407 * needed, advance both trees and repeat
5408 * If both trees are at the same level but not at level 0
5409 * Compare keys of current nodes/leafs
5410 * If left < right advance left tree and repeat
5411 * If left > right advance right tree and repeat
5412 * If left == right compare blockptrs of the next nodes/leafs
5413 * If they match advance both trees but stay at the same level
5415 * If they don't match advance both trees while allowing to go
5417 * If tree levels are different
5418 * Advance the tree that needs it and repeat
5420 * Advancing a tree means:
5421 * If we are at level 0, try to go to the next slot. If that's not
5422 * possible, go one level up and repeat. Stop when we found a level
5423 * where we could go to the next slot. We may at this point be on a
5426 * If we are not at level 0 and not on shared tree blocks, go one
5429 * If we are not at level 0 and on shared tree blocks, go one slot to
5430 * the right if possible or go up and right.
5433 down_read(&left_root
->fs_info
->commit_root_sem
);
5434 left_level
= btrfs_header_level(left_root
->commit_root
);
5435 left_root_level
= left_level
;
5436 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5437 extent_buffer_get(left_path
->nodes
[left_level
]);
5439 right_level
= btrfs_header_level(right_root
->commit_root
);
5440 right_root_level
= right_level
;
5441 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5442 extent_buffer_get(right_path
->nodes
[right_level
]);
5443 up_read(&left_root
->fs_info
->commit_root_sem
);
5445 if (left_level
== 0)
5446 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5447 &left_key
, left_path
->slots
[left_level
]);
5449 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5450 &left_key
, left_path
->slots
[left_level
]);
5451 if (right_level
== 0)
5452 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5453 &right_key
, right_path
->slots
[right_level
]);
5455 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5456 &right_key
, right_path
->slots
[right_level
]);
5458 left_end_reached
= right_end_reached
= 0;
5459 advance_left
= advance_right
= 0;
5462 if (advance_left
&& !left_end_reached
) {
5463 ret
= tree_advance(left_root
, left_path
, &left_level
,
5465 advance_left
!= ADVANCE_ONLY_NEXT
,
5468 left_end_reached
= ADVANCE
;
5473 if (advance_right
&& !right_end_reached
) {
5474 ret
= tree_advance(right_root
, right_path
, &right_level
,
5476 advance_right
!= ADVANCE_ONLY_NEXT
,
5479 right_end_reached
= ADVANCE
;
5485 if (left_end_reached
&& right_end_reached
) {
5488 } else if (left_end_reached
) {
5489 if (right_level
== 0) {
5490 ret
= changed_cb(left_root
, right_root
,
5491 left_path
, right_path
,
5493 BTRFS_COMPARE_TREE_DELETED
,
5498 advance_right
= ADVANCE
;
5500 } else if (right_end_reached
) {
5501 if (left_level
== 0) {
5502 ret
= changed_cb(left_root
, right_root
,
5503 left_path
, right_path
,
5505 BTRFS_COMPARE_TREE_NEW
,
5510 advance_left
= ADVANCE
;
5514 if (left_level
== 0 && right_level
== 0) {
5515 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5517 ret
= changed_cb(left_root
, right_root
,
5518 left_path
, right_path
,
5520 BTRFS_COMPARE_TREE_NEW
,
5524 advance_left
= ADVANCE
;
5525 } else if (cmp
> 0) {
5526 ret
= changed_cb(left_root
, right_root
,
5527 left_path
, right_path
,
5529 BTRFS_COMPARE_TREE_DELETED
,
5533 advance_right
= ADVANCE
;
5535 enum btrfs_compare_tree_result result
;
5537 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5538 ret
= tree_compare_item(left_root
, left_path
,
5539 right_path
, tmp_buf
);
5541 result
= BTRFS_COMPARE_TREE_CHANGED
;
5543 result
= BTRFS_COMPARE_TREE_SAME
;
5544 ret
= changed_cb(left_root
, right_root
,
5545 left_path
, right_path
,
5546 &left_key
, result
, ctx
);
5549 advance_left
= ADVANCE
;
5550 advance_right
= ADVANCE
;
5552 } else if (left_level
== right_level
) {
5553 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5555 advance_left
= ADVANCE
;
5556 } else if (cmp
> 0) {
5557 advance_right
= ADVANCE
;
5559 left_blockptr
= btrfs_node_blockptr(
5560 left_path
->nodes
[left_level
],
5561 left_path
->slots
[left_level
]);
5562 right_blockptr
= btrfs_node_blockptr(
5563 right_path
->nodes
[right_level
],
5564 right_path
->slots
[right_level
]);
5565 left_gen
= btrfs_node_ptr_generation(
5566 left_path
->nodes
[left_level
],
5567 left_path
->slots
[left_level
]);
5568 right_gen
= btrfs_node_ptr_generation(
5569 right_path
->nodes
[right_level
],
5570 right_path
->slots
[right_level
]);
5571 if (left_blockptr
== right_blockptr
&&
5572 left_gen
== right_gen
) {
5574 * As we're on a shared block, don't
5575 * allow to go deeper.
5577 advance_left
= ADVANCE_ONLY_NEXT
;
5578 advance_right
= ADVANCE_ONLY_NEXT
;
5580 advance_left
= ADVANCE
;
5581 advance_right
= ADVANCE
;
5584 } else if (left_level
< right_level
) {
5585 advance_right
= ADVANCE
;
5587 advance_left
= ADVANCE
;
5592 btrfs_free_path(left_path
);
5593 btrfs_free_path(right_path
);
5599 * this is similar to btrfs_next_leaf, but does not try to preserve
5600 * and fixup the path. It looks for and returns the next key in the
5601 * tree based on the current path and the min_trans parameters.
5603 * 0 is returned if another key is found, < 0 if there are any errors
5604 * and 1 is returned if there are no higher keys in the tree
5606 * path->keep_locks should be set to 1 on the search made before
5607 * calling this function.
5609 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5610 struct btrfs_key
*key
, int level
, u64 min_trans
)
5613 struct extent_buffer
*c
;
5615 WARN_ON(!path
->keep_locks
);
5616 while (level
< BTRFS_MAX_LEVEL
) {
5617 if (!path
->nodes
[level
])
5620 slot
= path
->slots
[level
] + 1;
5621 c
= path
->nodes
[level
];
5623 if (slot
>= btrfs_header_nritems(c
)) {
5626 struct btrfs_key cur_key
;
5627 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5628 !path
->nodes
[level
+ 1])
5631 if (path
->locks
[level
+ 1]) {
5636 slot
= btrfs_header_nritems(c
) - 1;
5638 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5640 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5642 orig_lowest
= path
->lowest_level
;
5643 btrfs_release_path(path
);
5644 path
->lowest_level
= level
;
5645 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5647 path
->lowest_level
= orig_lowest
;
5651 c
= path
->nodes
[level
];
5652 slot
= path
->slots
[level
];
5659 btrfs_item_key_to_cpu(c
, key
, slot
);
5661 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5663 if (gen
< min_trans
) {
5667 btrfs_node_key_to_cpu(c
, key
, slot
);
5675 * search the tree again to find a leaf with greater keys
5676 * returns 0 if it found something or 1 if there are no greater leaves.
5677 * returns < 0 on io errors.
5679 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5681 return btrfs_next_old_leaf(root
, path
, 0);
5684 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5689 struct extent_buffer
*c
;
5690 struct extent_buffer
*next
;
5691 struct btrfs_key key
;
5694 int old_spinning
= path
->leave_spinning
;
5695 int next_rw_lock
= 0;
5697 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5701 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5706 btrfs_release_path(path
);
5708 path
->keep_locks
= 1;
5709 path
->leave_spinning
= 1;
5712 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5714 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5715 path
->keep_locks
= 0;
5720 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5722 * by releasing the path above we dropped all our locks. A balance
5723 * could have added more items next to the key that used to be
5724 * at the very end of the block. So, check again here and
5725 * advance the path if there are now more items available.
5727 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5734 * So the above check misses one case:
5735 * - after releasing the path above, someone has removed the item that
5736 * used to be at the very end of the block, and balance between leafs
5737 * gets another one with bigger key.offset to replace it.
5739 * This one should be returned as well, or we can get leaf corruption
5740 * later(esp. in __btrfs_drop_extents()).
5742 * And a bit more explanation about this check,
5743 * with ret > 0, the key isn't found, the path points to the slot
5744 * where it should be inserted, so the path->slots[0] item must be the
5747 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5752 while (level
< BTRFS_MAX_LEVEL
) {
5753 if (!path
->nodes
[level
]) {
5758 slot
= path
->slots
[level
] + 1;
5759 c
= path
->nodes
[level
];
5760 if (slot
>= btrfs_header_nritems(c
)) {
5762 if (level
== BTRFS_MAX_LEVEL
) {
5770 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5771 free_extent_buffer(next
);
5775 next_rw_lock
= path
->locks
[level
];
5776 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5782 btrfs_release_path(path
);
5786 if (!path
->skip_locking
) {
5787 ret
= btrfs_try_tree_read_lock(next
);
5788 if (!ret
&& time_seq
) {
5790 * If we don't get the lock, we may be racing
5791 * with push_leaf_left, holding that lock while
5792 * itself waiting for the leaf we've currently
5793 * locked. To solve this situation, we give up
5794 * on our lock and cycle.
5796 free_extent_buffer(next
);
5797 btrfs_release_path(path
);
5802 btrfs_set_path_blocking(path
);
5803 btrfs_tree_read_lock(next
);
5804 btrfs_clear_path_blocking(path
, next
,
5807 next_rw_lock
= BTRFS_READ_LOCK
;
5811 path
->slots
[level
] = slot
;
5814 c
= path
->nodes
[level
];
5815 if (path
->locks
[level
])
5816 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5818 free_extent_buffer(c
);
5819 path
->nodes
[level
] = next
;
5820 path
->slots
[level
] = 0;
5821 if (!path
->skip_locking
)
5822 path
->locks
[level
] = next_rw_lock
;
5826 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5832 btrfs_release_path(path
);
5836 if (!path
->skip_locking
) {
5837 ret
= btrfs_try_tree_read_lock(next
);
5839 btrfs_set_path_blocking(path
);
5840 btrfs_tree_read_lock(next
);
5841 btrfs_clear_path_blocking(path
, next
,
5844 next_rw_lock
= BTRFS_READ_LOCK
;
5849 unlock_up(path
, 0, 1, 0, NULL
);
5850 path
->leave_spinning
= old_spinning
;
5852 btrfs_set_path_blocking(path
);
5858 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5859 * searching until it gets past min_objectid or finds an item of 'type'
5861 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5863 int btrfs_previous_item(struct btrfs_root
*root
,
5864 struct btrfs_path
*path
, u64 min_objectid
,
5867 struct btrfs_key found_key
;
5868 struct extent_buffer
*leaf
;
5873 if (path
->slots
[0] == 0) {
5874 btrfs_set_path_blocking(path
);
5875 ret
= btrfs_prev_leaf(root
, path
);
5881 leaf
= path
->nodes
[0];
5882 nritems
= btrfs_header_nritems(leaf
);
5885 if (path
->slots
[0] == nritems
)
5888 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5889 if (found_key
.objectid
< min_objectid
)
5891 if (found_key
.type
== type
)
5893 if (found_key
.objectid
== min_objectid
&&
5894 found_key
.type
< type
)
5901 * search in extent tree to find a previous Metadata/Data extent item with
5904 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5906 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5907 struct btrfs_path
*path
, u64 min_objectid
)
5909 struct btrfs_key found_key
;
5910 struct extent_buffer
*leaf
;
5915 if (path
->slots
[0] == 0) {
5916 btrfs_set_path_blocking(path
);
5917 ret
= btrfs_prev_leaf(root
, path
);
5923 leaf
= path
->nodes
[0];
5924 nritems
= btrfs_header_nritems(leaf
);
5927 if (path
->slots
[0] == nritems
)
5930 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5931 if (found_key
.objectid
< min_objectid
)
5933 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5934 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5936 if (found_key
.objectid
== min_objectid
&&
5937 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)