]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ctree.h
btrfs: Replace fs_info->submit_workers with btrfs_workqueue.
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include "extent_io.h"
37 #include "extent_map.h"
38 #include "async-thread.h"
39
40 struct btrfs_trans_handle;
41 struct btrfs_transaction;
42 struct btrfs_pending_snapshot;
43 extern struct kmem_cache *btrfs_trans_handle_cachep;
44 extern struct kmem_cache *btrfs_transaction_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 struct btrfs_ordered_sum;
49
50 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
51 #define STATIC noinline
52 #else
53 #define STATIC static noinline
54 #endif
55
56 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
57
58 #define BTRFS_MAX_MIRRORS 3
59
60 #define BTRFS_MAX_LEVEL 8
61
62 #define BTRFS_COMPAT_EXTENT_TREE_V0
63
64 /*
65 * files bigger than this get some pre-flushing when they are added
66 * to the ordered operations list. That way we limit the total
67 * work done by the commit
68 */
69 #define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
70
71 /* holds pointers to all of the tree roots */
72 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
73
74 /* stores information about which extents are in use, and reference counts */
75 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
76
77 /*
78 * chunk tree stores translations from logical -> physical block numbering
79 * the super block points to the chunk tree
80 */
81 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
82
83 /*
84 * stores information about which areas of a given device are in use.
85 * one per device. The tree of tree roots points to the device tree
86 */
87 #define BTRFS_DEV_TREE_OBJECTID 4ULL
88
89 /* one per subvolume, storing files and directories */
90 #define BTRFS_FS_TREE_OBJECTID 5ULL
91
92 /* directory objectid inside the root tree */
93 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
94
95 /* holds checksums of all the data extents */
96 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
97
98 /* holds quota configuration and tracking */
99 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
100
101 /* for storing items that use the BTRFS_UUID_KEY* types */
102 #define BTRFS_UUID_TREE_OBJECTID 9ULL
103
104 /* for storing balance parameters in the root tree */
105 #define BTRFS_BALANCE_OBJECTID -4ULL
106
107 /* orhpan objectid for tracking unlinked/truncated files */
108 #define BTRFS_ORPHAN_OBJECTID -5ULL
109
110 /* does write ahead logging to speed up fsyncs */
111 #define BTRFS_TREE_LOG_OBJECTID -6ULL
112 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
113
114 /* for space balancing */
115 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
116 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
117
118 /*
119 * extent checksums all have this objectid
120 * this allows them to share the logging tree
121 * for fsyncs
122 */
123 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
124
125 /* For storing free space cache */
126 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
127
128 /*
129 * The inode number assigned to the special inode for storing
130 * free ino cache
131 */
132 #define BTRFS_FREE_INO_OBJECTID -12ULL
133
134 /* dummy objectid represents multiple objectids */
135 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
136
137 /*
138 * All files have objectids in this range.
139 */
140 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
141 #define BTRFS_LAST_FREE_OBJECTID -256ULL
142 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
143
144
145 /*
146 * the device items go into the chunk tree. The key is in the form
147 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
148 */
149 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
150
151 #define BTRFS_BTREE_INODE_OBJECTID 1
152
153 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
154
155 #define BTRFS_DEV_REPLACE_DEVID 0ULL
156
157 /*
158 * the max metadata block size. This limit is somewhat artificial,
159 * but the memmove costs go through the roof for larger blocks.
160 */
161 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
162
163 /*
164 * we can actually store much bigger names, but lets not confuse the rest
165 * of linux
166 */
167 #define BTRFS_NAME_LEN 255
168
169 /*
170 * Theoretical limit is larger, but we keep this down to a sane
171 * value. That should limit greatly the possibility of collisions on
172 * inode ref items.
173 */
174 #define BTRFS_LINK_MAX 65535U
175
176 /* 32 bytes in various csum fields */
177 #define BTRFS_CSUM_SIZE 32
178
179 /* csum types */
180 #define BTRFS_CSUM_TYPE_CRC32 0
181
182 static int btrfs_csum_sizes[] = { 4, 0 };
183
184 /* four bytes for CRC32 */
185 #define BTRFS_EMPTY_DIR_SIZE 0
186
187 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
188 #define REQ_GET_READ_MIRRORS (1 << 30)
189
190 #define BTRFS_FT_UNKNOWN 0
191 #define BTRFS_FT_REG_FILE 1
192 #define BTRFS_FT_DIR 2
193 #define BTRFS_FT_CHRDEV 3
194 #define BTRFS_FT_BLKDEV 4
195 #define BTRFS_FT_FIFO 5
196 #define BTRFS_FT_SOCK 6
197 #define BTRFS_FT_SYMLINK 7
198 #define BTRFS_FT_XATTR 8
199 #define BTRFS_FT_MAX 9
200
201 /* ioprio of readahead is set to idle */
202 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
203
204 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
205
206 /*
207 * The key defines the order in the tree, and so it also defines (optimal)
208 * block layout.
209 *
210 * objectid corresponds to the inode number.
211 *
212 * type tells us things about the object, and is a kind of stream selector.
213 * so for a given inode, keys with type of 1 might refer to the inode data,
214 * type of 2 may point to file data in the btree and type == 3 may point to
215 * extents.
216 *
217 * offset is the starting byte offset for this key in the stream.
218 *
219 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
220 * in cpu native order. Otherwise they are identical and their sizes
221 * should be the same (ie both packed)
222 */
223 struct btrfs_disk_key {
224 __le64 objectid;
225 u8 type;
226 __le64 offset;
227 } __attribute__ ((__packed__));
228
229 struct btrfs_key {
230 u64 objectid;
231 u8 type;
232 u64 offset;
233 } __attribute__ ((__packed__));
234
235 struct btrfs_mapping_tree {
236 struct extent_map_tree map_tree;
237 };
238
239 struct btrfs_dev_item {
240 /* the internal btrfs device id */
241 __le64 devid;
242
243 /* size of the device */
244 __le64 total_bytes;
245
246 /* bytes used */
247 __le64 bytes_used;
248
249 /* optimal io alignment for this device */
250 __le32 io_align;
251
252 /* optimal io width for this device */
253 __le32 io_width;
254
255 /* minimal io size for this device */
256 __le32 sector_size;
257
258 /* type and info about this device */
259 __le64 type;
260
261 /* expected generation for this device */
262 __le64 generation;
263
264 /*
265 * starting byte of this partition on the device,
266 * to allow for stripe alignment in the future
267 */
268 __le64 start_offset;
269
270 /* grouping information for allocation decisions */
271 __le32 dev_group;
272
273 /* seek speed 0-100 where 100 is fastest */
274 u8 seek_speed;
275
276 /* bandwidth 0-100 where 100 is fastest */
277 u8 bandwidth;
278
279 /* btrfs generated uuid for this device */
280 u8 uuid[BTRFS_UUID_SIZE];
281
282 /* uuid of FS who owns this device */
283 u8 fsid[BTRFS_UUID_SIZE];
284 } __attribute__ ((__packed__));
285
286 struct btrfs_stripe {
287 __le64 devid;
288 __le64 offset;
289 u8 dev_uuid[BTRFS_UUID_SIZE];
290 } __attribute__ ((__packed__));
291
292 struct btrfs_chunk {
293 /* size of this chunk in bytes */
294 __le64 length;
295
296 /* objectid of the root referencing this chunk */
297 __le64 owner;
298
299 __le64 stripe_len;
300 __le64 type;
301
302 /* optimal io alignment for this chunk */
303 __le32 io_align;
304
305 /* optimal io width for this chunk */
306 __le32 io_width;
307
308 /* minimal io size for this chunk */
309 __le32 sector_size;
310
311 /* 2^16 stripes is quite a lot, a second limit is the size of a single
312 * item in the btree
313 */
314 __le16 num_stripes;
315
316 /* sub stripes only matter for raid10 */
317 __le16 sub_stripes;
318 struct btrfs_stripe stripe;
319 /* additional stripes go here */
320 } __attribute__ ((__packed__));
321
322 #define BTRFS_FREE_SPACE_EXTENT 1
323 #define BTRFS_FREE_SPACE_BITMAP 2
324
325 struct btrfs_free_space_entry {
326 __le64 offset;
327 __le64 bytes;
328 u8 type;
329 } __attribute__ ((__packed__));
330
331 struct btrfs_free_space_header {
332 struct btrfs_disk_key location;
333 __le64 generation;
334 __le64 num_entries;
335 __le64 num_bitmaps;
336 } __attribute__ ((__packed__));
337
338 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
339 {
340 BUG_ON(num_stripes == 0);
341 return sizeof(struct btrfs_chunk) +
342 sizeof(struct btrfs_stripe) * (num_stripes - 1);
343 }
344
345 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
346 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
347
348 /*
349 * File system states
350 */
351 #define BTRFS_FS_STATE_ERROR 0
352 #define BTRFS_FS_STATE_REMOUNTING 1
353 #define BTRFS_FS_STATE_TRANS_ABORTED 2
354 #define BTRFS_FS_STATE_DEV_REPLACING 3
355
356 /* Super block flags */
357 /* Errors detected */
358 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
359
360 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
361 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
362
363 #define BTRFS_BACKREF_REV_MAX 256
364 #define BTRFS_BACKREF_REV_SHIFT 56
365 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
366 BTRFS_BACKREF_REV_SHIFT)
367
368 #define BTRFS_OLD_BACKREF_REV 0
369 #define BTRFS_MIXED_BACKREF_REV 1
370
371 /*
372 * every tree block (leaf or node) starts with this header.
373 */
374 struct btrfs_header {
375 /* these first four must match the super block */
376 u8 csum[BTRFS_CSUM_SIZE];
377 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
378 __le64 bytenr; /* which block this node is supposed to live in */
379 __le64 flags;
380
381 /* allowed to be different from the super from here on down */
382 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
383 __le64 generation;
384 __le64 owner;
385 __le32 nritems;
386 u8 level;
387 } __attribute__ ((__packed__));
388
389 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
390 sizeof(struct btrfs_header)) / \
391 sizeof(struct btrfs_key_ptr))
392 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
393 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
394 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
395 sizeof(struct btrfs_item) - \
396 sizeof(struct btrfs_file_extent_item))
397 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
398 sizeof(struct btrfs_item) -\
399 sizeof(struct btrfs_dir_item))
400
401
402 /*
403 * this is a very generous portion of the super block, giving us
404 * room to translate 14 chunks with 3 stripes each.
405 */
406 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
407 #define BTRFS_LABEL_SIZE 256
408
409 /*
410 * just in case we somehow lose the roots and are not able to mount,
411 * we store an array of the roots from previous transactions
412 * in the super.
413 */
414 #define BTRFS_NUM_BACKUP_ROOTS 4
415 struct btrfs_root_backup {
416 __le64 tree_root;
417 __le64 tree_root_gen;
418
419 __le64 chunk_root;
420 __le64 chunk_root_gen;
421
422 __le64 extent_root;
423 __le64 extent_root_gen;
424
425 __le64 fs_root;
426 __le64 fs_root_gen;
427
428 __le64 dev_root;
429 __le64 dev_root_gen;
430
431 __le64 csum_root;
432 __le64 csum_root_gen;
433
434 __le64 total_bytes;
435 __le64 bytes_used;
436 __le64 num_devices;
437 /* future */
438 __le64 unused_64[4];
439
440 u8 tree_root_level;
441 u8 chunk_root_level;
442 u8 extent_root_level;
443 u8 fs_root_level;
444 u8 dev_root_level;
445 u8 csum_root_level;
446 /* future and to align */
447 u8 unused_8[10];
448 } __attribute__ ((__packed__));
449
450 /*
451 * the super block basically lists the main trees of the FS
452 * it currently lacks any block count etc etc
453 */
454 struct btrfs_super_block {
455 u8 csum[BTRFS_CSUM_SIZE];
456 /* the first 4 fields must match struct btrfs_header */
457 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
458 __le64 bytenr; /* this block number */
459 __le64 flags;
460
461 /* allowed to be different from the btrfs_header from here own down */
462 __le64 magic;
463 __le64 generation;
464 __le64 root;
465 __le64 chunk_root;
466 __le64 log_root;
467
468 /* this will help find the new super based on the log root */
469 __le64 log_root_transid;
470 __le64 total_bytes;
471 __le64 bytes_used;
472 __le64 root_dir_objectid;
473 __le64 num_devices;
474 __le32 sectorsize;
475 __le32 nodesize;
476 __le32 leafsize;
477 __le32 stripesize;
478 __le32 sys_chunk_array_size;
479 __le64 chunk_root_generation;
480 __le64 compat_flags;
481 __le64 compat_ro_flags;
482 __le64 incompat_flags;
483 __le16 csum_type;
484 u8 root_level;
485 u8 chunk_root_level;
486 u8 log_root_level;
487 struct btrfs_dev_item dev_item;
488
489 char label[BTRFS_LABEL_SIZE];
490
491 __le64 cache_generation;
492 __le64 uuid_tree_generation;
493
494 /* future expansion */
495 __le64 reserved[30];
496 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
497 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
498 } __attribute__ ((__packed__));
499
500 /*
501 * Compat flags that we support. If any incompat flags are set other than the
502 * ones specified below then we will fail to mount
503 */
504 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
505 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
506 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
507 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
508 /*
509 * some patches floated around with a second compression method
510 * lets save that incompat here for when they do get in
511 * Note we don't actually support it, we're just reserving the
512 * number
513 */
514 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
515
516 /*
517 * older kernels tried to do bigger metadata blocks, but the
518 * code was pretty buggy. Lets not let them try anymore.
519 */
520 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
521
522 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
523 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
524 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
525 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
526
527 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
528 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
529 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
530 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
531 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
532 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
533
534 #define BTRFS_FEATURE_INCOMPAT_SUPP \
535 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
536 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
537 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
538 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
539 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
540 BTRFS_FEATURE_INCOMPAT_RAID56 | \
541 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
542 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
543 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
544
545 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
546 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
547 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
548
549 /*
550 * A leaf is full of items. offset and size tell us where to find
551 * the item in the leaf (relative to the start of the data area)
552 */
553 struct btrfs_item {
554 struct btrfs_disk_key key;
555 __le32 offset;
556 __le32 size;
557 } __attribute__ ((__packed__));
558
559 /*
560 * leaves have an item area and a data area:
561 * [item0, item1....itemN] [free space] [dataN...data1, data0]
562 *
563 * The data is separate from the items to get the keys closer together
564 * during searches.
565 */
566 struct btrfs_leaf {
567 struct btrfs_header header;
568 struct btrfs_item items[];
569 } __attribute__ ((__packed__));
570
571 /*
572 * all non-leaf blocks are nodes, they hold only keys and pointers to
573 * other blocks
574 */
575 struct btrfs_key_ptr {
576 struct btrfs_disk_key key;
577 __le64 blockptr;
578 __le64 generation;
579 } __attribute__ ((__packed__));
580
581 struct btrfs_node {
582 struct btrfs_header header;
583 struct btrfs_key_ptr ptrs[];
584 } __attribute__ ((__packed__));
585
586 /*
587 * btrfs_paths remember the path taken from the root down to the leaf.
588 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
589 * to any other levels that are present.
590 *
591 * The slots array records the index of the item or block pointer
592 * used while walking the tree.
593 */
594 struct btrfs_path {
595 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
596 int slots[BTRFS_MAX_LEVEL];
597 /* if there is real range locking, this locks field will change */
598 int locks[BTRFS_MAX_LEVEL];
599 int reada;
600 /* keep some upper locks as we walk down */
601 int lowest_level;
602
603 /*
604 * set by btrfs_split_item, tells search_slot to keep all locks
605 * and to force calls to keep space in the nodes
606 */
607 unsigned int search_for_split:1;
608 unsigned int keep_locks:1;
609 unsigned int skip_locking:1;
610 unsigned int leave_spinning:1;
611 unsigned int search_commit_root:1;
612 };
613
614 /*
615 * items in the extent btree are used to record the objectid of the
616 * owner of the block and the number of references
617 */
618
619 struct btrfs_extent_item {
620 __le64 refs;
621 __le64 generation;
622 __le64 flags;
623 } __attribute__ ((__packed__));
624
625 struct btrfs_extent_item_v0 {
626 __le32 refs;
627 } __attribute__ ((__packed__));
628
629 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
630 sizeof(struct btrfs_item))
631
632 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
633 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
634
635 /* following flags only apply to tree blocks */
636
637 /* use full backrefs for extent pointers in the block */
638 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
639
640 /*
641 * this flag is only used internally by scrub and may be changed at any time
642 * it is only declared here to avoid collisions
643 */
644 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
645
646 struct btrfs_tree_block_info {
647 struct btrfs_disk_key key;
648 u8 level;
649 } __attribute__ ((__packed__));
650
651 struct btrfs_extent_data_ref {
652 __le64 root;
653 __le64 objectid;
654 __le64 offset;
655 __le32 count;
656 } __attribute__ ((__packed__));
657
658 struct btrfs_shared_data_ref {
659 __le32 count;
660 } __attribute__ ((__packed__));
661
662 struct btrfs_extent_inline_ref {
663 u8 type;
664 __le64 offset;
665 } __attribute__ ((__packed__));
666
667 /* old style backrefs item */
668 struct btrfs_extent_ref_v0 {
669 __le64 root;
670 __le64 generation;
671 __le64 objectid;
672 __le32 count;
673 } __attribute__ ((__packed__));
674
675
676 /* dev extents record free space on individual devices. The owner
677 * field points back to the chunk allocation mapping tree that allocated
678 * the extent. The chunk tree uuid field is a way to double check the owner
679 */
680 struct btrfs_dev_extent {
681 __le64 chunk_tree;
682 __le64 chunk_objectid;
683 __le64 chunk_offset;
684 __le64 length;
685 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
686 } __attribute__ ((__packed__));
687
688 struct btrfs_inode_ref {
689 __le64 index;
690 __le16 name_len;
691 /* name goes here */
692 } __attribute__ ((__packed__));
693
694 struct btrfs_inode_extref {
695 __le64 parent_objectid;
696 __le64 index;
697 __le16 name_len;
698 __u8 name[0];
699 /* name goes here */
700 } __attribute__ ((__packed__));
701
702 struct btrfs_timespec {
703 __le64 sec;
704 __le32 nsec;
705 } __attribute__ ((__packed__));
706
707 enum btrfs_compression_type {
708 BTRFS_COMPRESS_NONE = 0,
709 BTRFS_COMPRESS_ZLIB = 1,
710 BTRFS_COMPRESS_LZO = 2,
711 BTRFS_COMPRESS_TYPES = 2,
712 BTRFS_COMPRESS_LAST = 3,
713 };
714
715 struct btrfs_inode_item {
716 /* nfs style generation number */
717 __le64 generation;
718 /* transid that last touched this inode */
719 __le64 transid;
720 __le64 size;
721 __le64 nbytes;
722 __le64 block_group;
723 __le32 nlink;
724 __le32 uid;
725 __le32 gid;
726 __le32 mode;
727 __le64 rdev;
728 __le64 flags;
729
730 /* modification sequence number for NFS */
731 __le64 sequence;
732
733 /*
734 * a little future expansion, for more than this we can
735 * just grow the inode item and version it
736 */
737 __le64 reserved[4];
738 struct btrfs_timespec atime;
739 struct btrfs_timespec ctime;
740 struct btrfs_timespec mtime;
741 struct btrfs_timespec otime;
742 } __attribute__ ((__packed__));
743
744 struct btrfs_dir_log_item {
745 __le64 end;
746 } __attribute__ ((__packed__));
747
748 struct btrfs_dir_item {
749 struct btrfs_disk_key location;
750 __le64 transid;
751 __le16 data_len;
752 __le16 name_len;
753 u8 type;
754 } __attribute__ ((__packed__));
755
756 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
757
758 struct btrfs_root_item {
759 struct btrfs_inode_item inode;
760 __le64 generation;
761 __le64 root_dirid;
762 __le64 bytenr;
763 __le64 byte_limit;
764 __le64 bytes_used;
765 __le64 last_snapshot;
766 __le64 flags;
767 __le32 refs;
768 struct btrfs_disk_key drop_progress;
769 u8 drop_level;
770 u8 level;
771
772 /*
773 * The following fields appear after subvol_uuids+subvol_times
774 * were introduced.
775 */
776
777 /*
778 * This generation number is used to test if the new fields are valid
779 * and up to date while reading the root item. Everytime the root item
780 * is written out, the "generation" field is copied into this field. If
781 * anyone ever mounted the fs with an older kernel, we will have
782 * mismatching generation values here and thus must invalidate the
783 * new fields. See btrfs_update_root and btrfs_find_last_root for
784 * details.
785 * the offset of generation_v2 is also used as the start for the memset
786 * when invalidating the fields.
787 */
788 __le64 generation_v2;
789 u8 uuid[BTRFS_UUID_SIZE];
790 u8 parent_uuid[BTRFS_UUID_SIZE];
791 u8 received_uuid[BTRFS_UUID_SIZE];
792 __le64 ctransid; /* updated when an inode changes */
793 __le64 otransid; /* trans when created */
794 __le64 stransid; /* trans when sent. non-zero for received subvol */
795 __le64 rtransid; /* trans when received. non-zero for received subvol */
796 struct btrfs_timespec ctime;
797 struct btrfs_timespec otime;
798 struct btrfs_timespec stime;
799 struct btrfs_timespec rtime;
800 __le64 reserved[8]; /* for future */
801 } __attribute__ ((__packed__));
802
803 /*
804 * this is used for both forward and backward root refs
805 */
806 struct btrfs_root_ref {
807 __le64 dirid;
808 __le64 sequence;
809 __le16 name_len;
810 } __attribute__ ((__packed__));
811
812 struct btrfs_disk_balance_args {
813 /*
814 * profiles to operate on, single is denoted by
815 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
816 */
817 __le64 profiles;
818
819 /* usage filter */
820 __le64 usage;
821
822 /* devid filter */
823 __le64 devid;
824
825 /* devid subset filter [pstart..pend) */
826 __le64 pstart;
827 __le64 pend;
828
829 /* btrfs virtual address space subset filter [vstart..vend) */
830 __le64 vstart;
831 __le64 vend;
832
833 /*
834 * profile to convert to, single is denoted by
835 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
836 */
837 __le64 target;
838
839 /* BTRFS_BALANCE_ARGS_* */
840 __le64 flags;
841
842 __le64 unused[8];
843 } __attribute__ ((__packed__));
844
845 /*
846 * store balance parameters to disk so that balance can be properly
847 * resumed after crash or unmount
848 */
849 struct btrfs_balance_item {
850 /* BTRFS_BALANCE_* */
851 __le64 flags;
852
853 struct btrfs_disk_balance_args data;
854 struct btrfs_disk_balance_args meta;
855 struct btrfs_disk_balance_args sys;
856
857 __le64 unused[4];
858 } __attribute__ ((__packed__));
859
860 #define BTRFS_FILE_EXTENT_INLINE 0
861 #define BTRFS_FILE_EXTENT_REG 1
862 #define BTRFS_FILE_EXTENT_PREALLOC 2
863
864 struct btrfs_file_extent_item {
865 /*
866 * transaction id that created this extent
867 */
868 __le64 generation;
869 /*
870 * max number of bytes to hold this extent in ram
871 * when we split a compressed extent we can't know how big
872 * each of the resulting pieces will be. So, this is
873 * an upper limit on the size of the extent in ram instead of
874 * an exact limit.
875 */
876 __le64 ram_bytes;
877
878 /*
879 * 32 bits for the various ways we might encode the data,
880 * including compression and encryption. If any of these
881 * are set to something a given disk format doesn't understand
882 * it is treated like an incompat flag for reading and writing,
883 * but not for stat.
884 */
885 u8 compression;
886 u8 encryption;
887 __le16 other_encoding; /* spare for later use */
888
889 /* are we inline data or a real extent? */
890 u8 type;
891
892 /*
893 * disk space consumed by the extent, checksum blocks are included
894 * in these numbers
895 */
896 __le64 disk_bytenr;
897 __le64 disk_num_bytes;
898 /*
899 * the logical offset in file blocks (no csums)
900 * this extent record is for. This allows a file extent to point
901 * into the middle of an existing extent on disk, sharing it
902 * between two snapshots (useful if some bytes in the middle of the
903 * extent have changed
904 */
905 __le64 offset;
906 /*
907 * the logical number of file blocks (no csums included). This
908 * always reflects the size uncompressed and without encoding.
909 */
910 __le64 num_bytes;
911
912 } __attribute__ ((__packed__));
913
914 struct btrfs_csum_item {
915 u8 csum;
916 } __attribute__ ((__packed__));
917
918 struct btrfs_dev_stats_item {
919 /*
920 * grow this item struct at the end for future enhancements and keep
921 * the existing values unchanged
922 */
923 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
924 } __attribute__ ((__packed__));
925
926 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
927 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
928 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
929 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
930 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
931 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
932 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
933
934 struct btrfs_dev_replace {
935 u64 replace_state; /* see #define above */
936 u64 time_started; /* seconds since 1-Jan-1970 */
937 u64 time_stopped; /* seconds since 1-Jan-1970 */
938 atomic64_t num_write_errors;
939 atomic64_t num_uncorrectable_read_errors;
940
941 u64 cursor_left;
942 u64 committed_cursor_left;
943 u64 cursor_left_last_write_of_item;
944 u64 cursor_right;
945
946 u64 cont_reading_from_srcdev_mode; /* see #define above */
947
948 int is_valid;
949 int item_needs_writeback;
950 struct btrfs_device *srcdev;
951 struct btrfs_device *tgtdev;
952
953 pid_t lock_owner;
954 atomic_t nesting_level;
955 struct mutex lock_finishing_cancel_unmount;
956 struct mutex lock_management_lock;
957 struct mutex lock;
958
959 struct btrfs_scrub_progress scrub_progress;
960 };
961
962 struct btrfs_dev_replace_item {
963 /*
964 * grow this item struct at the end for future enhancements and keep
965 * the existing values unchanged
966 */
967 __le64 src_devid;
968 __le64 cursor_left;
969 __le64 cursor_right;
970 __le64 cont_reading_from_srcdev_mode;
971
972 __le64 replace_state;
973 __le64 time_started;
974 __le64 time_stopped;
975 __le64 num_write_errors;
976 __le64 num_uncorrectable_read_errors;
977 } __attribute__ ((__packed__));
978
979 /* different types of block groups (and chunks) */
980 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
981 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
982 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
983 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
984 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
985 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
986 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
987 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
988 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
989 #define BTRFS_BLOCK_GROUP_RESERVED BTRFS_AVAIL_ALLOC_BIT_SINGLE
990
991 enum btrfs_raid_types {
992 BTRFS_RAID_RAID10,
993 BTRFS_RAID_RAID1,
994 BTRFS_RAID_DUP,
995 BTRFS_RAID_RAID0,
996 BTRFS_RAID_SINGLE,
997 BTRFS_RAID_RAID5,
998 BTRFS_RAID_RAID6,
999 BTRFS_NR_RAID_TYPES
1000 };
1001
1002 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1003 BTRFS_BLOCK_GROUP_SYSTEM | \
1004 BTRFS_BLOCK_GROUP_METADATA)
1005
1006 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1007 BTRFS_BLOCK_GROUP_RAID1 | \
1008 BTRFS_BLOCK_GROUP_RAID5 | \
1009 BTRFS_BLOCK_GROUP_RAID6 | \
1010 BTRFS_BLOCK_GROUP_DUP | \
1011 BTRFS_BLOCK_GROUP_RAID10)
1012 /*
1013 * We need a bit for restriper to be able to tell when chunks of type
1014 * SINGLE are available. This "extended" profile format is used in
1015 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1016 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1017 * to avoid remappings between two formats in future.
1018 */
1019 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1020
1021 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1022 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1023
1024 static inline u64 chunk_to_extended(u64 flags)
1025 {
1026 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1027 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1028
1029 return flags;
1030 }
1031 static inline u64 extended_to_chunk(u64 flags)
1032 {
1033 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1034 }
1035
1036 struct btrfs_block_group_item {
1037 __le64 used;
1038 __le64 chunk_objectid;
1039 __le64 flags;
1040 } __attribute__ ((__packed__));
1041
1042 /*
1043 * is subvolume quota turned on?
1044 */
1045 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1046 /*
1047 * RESCAN is set during the initialization phase
1048 */
1049 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1050 /*
1051 * Some qgroup entries are known to be out of date,
1052 * either because the configuration has changed in a way that
1053 * makes a rescan necessary, or because the fs has been mounted
1054 * with a non-qgroup-aware version.
1055 * Turning qouta off and on again makes it inconsistent, too.
1056 */
1057 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1058
1059 #define BTRFS_QGROUP_STATUS_VERSION 1
1060
1061 struct btrfs_qgroup_status_item {
1062 __le64 version;
1063 /*
1064 * the generation is updated during every commit. As older
1065 * versions of btrfs are not aware of qgroups, it will be
1066 * possible to detect inconsistencies by checking the
1067 * generation on mount time
1068 */
1069 __le64 generation;
1070
1071 /* flag definitions see above */
1072 __le64 flags;
1073
1074 /*
1075 * only used during scanning to record the progress
1076 * of the scan. It contains a logical address
1077 */
1078 __le64 rescan;
1079 } __attribute__ ((__packed__));
1080
1081 struct btrfs_qgroup_info_item {
1082 __le64 generation;
1083 __le64 rfer;
1084 __le64 rfer_cmpr;
1085 __le64 excl;
1086 __le64 excl_cmpr;
1087 } __attribute__ ((__packed__));
1088
1089 /* flags definition for qgroup limits */
1090 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1091 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1092 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1093 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1094 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1095 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1096
1097 struct btrfs_qgroup_limit_item {
1098 /*
1099 * only updated when any of the other values change
1100 */
1101 __le64 flags;
1102 __le64 max_rfer;
1103 __le64 max_excl;
1104 __le64 rsv_rfer;
1105 __le64 rsv_excl;
1106 } __attribute__ ((__packed__));
1107
1108 struct btrfs_space_info {
1109 spinlock_t lock;
1110
1111 u64 total_bytes; /* total bytes in the space,
1112 this doesn't take mirrors into account */
1113 u64 bytes_used; /* total bytes used,
1114 this doesn't take mirrors into account */
1115 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1116 transaction finishes */
1117 u64 bytes_reserved; /* total bytes the allocator has reserved for
1118 current allocations */
1119 u64 bytes_may_use; /* number of bytes that may be used for
1120 delalloc/allocations */
1121 u64 bytes_readonly; /* total bytes that are read only */
1122
1123 unsigned int full:1; /* indicates that we cannot allocate any more
1124 chunks for this space */
1125 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1126
1127 unsigned int flush:1; /* set if we are trying to make space */
1128
1129 unsigned int force_alloc; /* set if we need to force a chunk
1130 alloc for this space */
1131
1132 u64 disk_used; /* total bytes used on disk */
1133 u64 disk_total; /* total bytes on disk, takes mirrors into
1134 account */
1135
1136 u64 flags;
1137
1138 /*
1139 * bytes_pinned is kept in line with what is actually pinned, as in
1140 * we've called update_block_group and dropped the bytes_used counter
1141 * and increased the bytes_pinned counter. However this means that
1142 * bytes_pinned does not reflect the bytes that will be pinned once the
1143 * delayed refs are flushed, so this counter is inc'ed everytime we call
1144 * btrfs_free_extent so it is a realtime count of what will be freed
1145 * once the transaction is committed. It will be zero'ed everytime the
1146 * transaction commits.
1147 */
1148 struct percpu_counter total_bytes_pinned;
1149
1150 struct list_head list;
1151
1152 struct rw_semaphore groups_sem;
1153 /* for block groups in our same type */
1154 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1155 wait_queue_head_t wait;
1156
1157 struct kobject kobj;
1158 struct kobject block_group_kobjs[BTRFS_NR_RAID_TYPES];
1159 };
1160
1161 #define BTRFS_BLOCK_RSV_GLOBAL 1
1162 #define BTRFS_BLOCK_RSV_DELALLOC 2
1163 #define BTRFS_BLOCK_RSV_TRANS 3
1164 #define BTRFS_BLOCK_RSV_CHUNK 4
1165 #define BTRFS_BLOCK_RSV_DELOPS 5
1166 #define BTRFS_BLOCK_RSV_EMPTY 6
1167 #define BTRFS_BLOCK_RSV_TEMP 7
1168
1169 struct btrfs_block_rsv {
1170 u64 size;
1171 u64 reserved;
1172 struct btrfs_space_info *space_info;
1173 spinlock_t lock;
1174 unsigned short full;
1175 unsigned short type;
1176 unsigned short failfast;
1177 };
1178
1179 /*
1180 * free clusters are used to claim free space in relatively large chunks,
1181 * allowing us to do less seeky writes. They are used for all metadata
1182 * allocations and data allocations in ssd mode.
1183 */
1184 struct btrfs_free_cluster {
1185 spinlock_t lock;
1186 spinlock_t refill_lock;
1187 struct rb_root root;
1188
1189 /* largest extent in this cluster */
1190 u64 max_size;
1191
1192 /* first extent starting offset */
1193 u64 window_start;
1194
1195 struct btrfs_block_group_cache *block_group;
1196 /*
1197 * when a cluster is allocated from a block group, we put the
1198 * cluster onto a list in the block group so that it can
1199 * be freed before the block group is freed.
1200 */
1201 struct list_head block_group_list;
1202 };
1203
1204 enum btrfs_caching_type {
1205 BTRFS_CACHE_NO = 0,
1206 BTRFS_CACHE_STARTED = 1,
1207 BTRFS_CACHE_FAST = 2,
1208 BTRFS_CACHE_FINISHED = 3,
1209 BTRFS_CACHE_ERROR = 4,
1210 };
1211
1212 enum btrfs_disk_cache_state {
1213 BTRFS_DC_WRITTEN = 0,
1214 BTRFS_DC_ERROR = 1,
1215 BTRFS_DC_CLEAR = 2,
1216 BTRFS_DC_SETUP = 3,
1217 BTRFS_DC_NEED_WRITE = 4,
1218 };
1219
1220 struct btrfs_caching_control {
1221 struct list_head list;
1222 struct mutex mutex;
1223 wait_queue_head_t wait;
1224 struct btrfs_work work;
1225 struct btrfs_block_group_cache *block_group;
1226 u64 progress;
1227 atomic_t count;
1228 };
1229
1230 struct btrfs_block_group_cache {
1231 struct btrfs_key key;
1232 struct btrfs_block_group_item item;
1233 struct btrfs_fs_info *fs_info;
1234 struct inode *inode;
1235 spinlock_t lock;
1236 u64 pinned;
1237 u64 reserved;
1238 u64 bytes_super;
1239 u64 flags;
1240 u64 sectorsize;
1241 u64 cache_generation;
1242
1243 /* for raid56, this is a full stripe, without parity */
1244 unsigned long full_stripe_len;
1245
1246 unsigned int ro:1;
1247 unsigned int dirty:1;
1248 unsigned int iref:1;
1249
1250 int disk_cache_state;
1251
1252 /* cache tracking stuff */
1253 int cached;
1254 struct btrfs_caching_control *caching_ctl;
1255 u64 last_byte_to_unpin;
1256
1257 struct btrfs_space_info *space_info;
1258
1259 /* free space cache stuff */
1260 struct btrfs_free_space_ctl *free_space_ctl;
1261
1262 /* block group cache stuff */
1263 struct rb_node cache_node;
1264
1265 /* for block groups in the same raid type */
1266 struct list_head list;
1267
1268 /* usage count */
1269 atomic_t count;
1270
1271 /* List of struct btrfs_free_clusters for this block group.
1272 * Today it will only have one thing on it, but that may change
1273 */
1274 struct list_head cluster_list;
1275
1276 /* For delayed block group creation */
1277 struct list_head new_bg_list;
1278 };
1279
1280 /* delayed seq elem */
1281 struct seq_list {
1282 struct list_head list;
1283 u64 seq;
1284 };
1285
1286 enum btrfs_orphan_cleanup_state {
1287 ORPHAN_CLEANUP_STARTED = 1,
1288 ORPHAN_CLEANUP_DONE = 2,
1289 };
1290
1291 /* used by the raid56 code to lock stripes for read/modify/write */
1292 struct btrfs_stripe_hash {
1293 struct list_head hash_list;
1294 wait_queue_head_t wait;
1295 spinlock_t lock;
1296 };
1297
1298 /* used by the raid56 code to lock stripes for read/modify/write */
1299 struct btrfs_stripe_hash_table {
1300 struct list_head stripe_cache;
1301 spinlock_t cache_lock;
1302 int cache_size;
1303 struct btrfs_stripe_hash table[];
1304 };
1305
1306 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1307
1308 /* fs_info */
1309 struct reloc_control;
1310 struct btrfs_device;
1311 struct btrfs_fs_devices;
1312 struct btrfs_balance_control;
1313 struct btrfs_delayed_root;
1314 struct btrfs_fs_info {
1315 u8 fsid[BTRFS_FSID_SIZE];
1316 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1317 struct btrfs_root *extent_root;
1318 struct btrfs_root *tree_root;
1319 struct btrfs_root *chunk_root;
1320 struct btrfs_root *dev_root;
1321 struct btrfs_root *fs_root;
1322 struct btrfs_root *csum_root;
1323 struct btrfs_root *quota_root;
1324 struct btrfs_root *uuid_root;
1325
1326 /* the log root tree is a directory of all the other log roots */
1327 struct btrfs_root *log_root_tree;
1328
1329 spinlock_t fs_roots_radix_lock;
1330 struct radix_tree_root fs_roots_radix;
1331
1332 /* block group cache stuff */
1333 spinlock_t block_group_cache_lock;
1334 u64 first_logical_byte;
1335 struct rb_root block_group_cache_tree;
1336
1337 /* keep track of unallocated space */
1338 spinlock_t free_chunk_lock;
1339 u64 free_chunk_space;
1340
1341 struct extent_io_tree freed_extents[2];
1342 struct extent_io_tree *pinned_extents;
1343
1344 /* logical->physical extent mapping */
1345 struct btrfs_mapping_tree mapping_tree;
1346
1347 /*
1348 * block reservation for extent, checksum, root tree and
1349 * delayed dir index item
1350 */
1351 struct btrfs_block_rsv global_block_rsv;
1352 /* block reservation for delay allocation */
1353 struct btrfs_block_rsv delalloc_block_rsv;
1354 /* block reservation for metadata operations */
1355 struct btrfs_block_rsv trans_block_rsv;
1356 /* block reservation for chunk tree */
1357 struct btrfs_block_rsv chunk_block_rsv;
1358 /* block reservation for delayed operations */
1359 struct btrfs_block_rsv delayed_block_rsv;
1360
1361 struct btrfs_block_rsv empty_block_rsv;
1362
1363 u64 generation;
1364 u64 last_trans_committed;
1365 u64 avg_delayed_ref_runtime;
1366
1367 /*
1368 * this is updated to the current trans every time a full commit
1369 * is required instead of the faster short fsync log commits
1370 */
1371 u64 last_trans_log_full_commit;
1372 unsigned long mount_opt;
1373 unsigned long compress_type:4;
1374 int commit_interval;
1375 /*
1376 * It is a suggestive number, the read side is safe even it gets a
1377 * wrong number because we will write out the data into a regular
1378 * extent. The write side(mount/remount) is under ->s_umount lock,
1379 * so it is also safe.
1380 */
1381 u64 max_inline;
1382 /*
1383 * Protected by ->chunk_mutex and sb->s_umount.
1384 *
1385 * The reason that we use two lock to protect it is because only
1386 * remount and mount operations can change it and these two operations
1387 * are under sb->s_umount, but the read side (chunk allocation) can not
1388 * acquire sb->s_umount or the deadlock would happen. So we use two
1389 * locks to protect it. On the write side, we must acquire two locks,
1390 * and on the read side, we just need acquire one of them.
1391 */
1392 u64 alloc_start;
1393 struct btrfs_transaction *running_transaction;
1394 wait_queue_head_t transaction_throttle;
1395 wait_queue_head_t transaction_wait;
1396 wait_queue_head_t transaction_blocked_wait;
1397 wait_queue_head_t async_submit_wait;
1398
1399 /*
1400 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1401 * when they are updated.
1402 *
1403 * Because we do not clear the flags for ever, so we needn't use
1404 * the lock on the read side.
1405 *
1406 * We also needn't use the lock when we mount the fs, because
1407 * there is no other task which will update the flag.
1408 */
1409 spinlock_t super_lock;
1410 struct btrfs_super_block *super_copy;
1411 struct btrfs_super_block *super_for_commit;
1412 struct block_device *__bdev;
1413 struct super_block *sb;
1414 struct inode *btree_inode;
1415 struct backing_dev_info bdi;
1416 struct mutex tree_log_mutex;
1417 struct mutex transaction_kthread_mutex;
1418 struct mutex cleaner_mutex;
1419 struct mutex chunk_mutex;
1420 struct mutex volume_mutex;
1421
1422 /* this is used during read/modify/write to make sure
1423 * no two ios are trying to mod the same stripe at the same
1424 * time
1425 */
1426 struct btrfs_stripe_hash_table *stripe_hash_table;
1427
1428 /*
1429 * this protects the ordered operations list only while we are
1430 * processing all of the entries on it. This way we make
1431 * sure the commit code doesn't find the list temporarily empty
1432 * because another function happens to be doing non-waiting preflush
1433 * before jumping into the main commit.
1434 */
1435 struct mutex ordered_operations_mutex;
1436
1437 /*
1438 * Same as ordered_operations_mutex except this is for ordered extents
1439 * and not the operations.
1440 */
1441 struct mutex ordered_extent_flush_mutex;
1442
1443 struct rw_semaphore extent_commit_sem;
1444
1445 struct rw_semaphore cleanup_work_sem;
1446
1447 struct rw_semaphore subvol_sem;
1448 struct srcu_struct subvol_srcu;
1449
1450 spinlock_t trans_lock;
1451 /*
1452 * the reloc mutex goes with the trans lock, it is taken
1453 * during commit to protect us from the relocation code
1454 */
1455 struct mutex reloc_mutex;
1456
1457 struct list_head trans_list;
1458 struct list_head dead_roots;
1459 struct list_head caching_block_groups;
1460
1461 spinlock_t delayed_iput_lock;
1462 struct list_head delayed_iputs;
1463
1464 /* this protects tree_mod_seq_list */
1465 spinlock_t tree_mod_seq_lock;
1466 atomic64_t tree_mod_seq;
1467 struct list_head tree_mod_seq_list;
1468
1469 /* this protects tree_mod_log */
1470 rwlock_t tree_mod_log_lock;
1471 struct rb_root tree_mod_log;
1472
1473 atomic_t nr_async_submits;
1474 atomic_t async_submit_draining;
1475 atomic_t nr_async_bios;
1476 atomic_t async_delalloc_pages;
1477 atomic_t open_ioctl_trans;
1478
1479 /*
1480 * this is used to protect the following list -- ordered_roots.
1481 */
1482 spinlock_t ordered_root_lock;
1483
1484 /*
1485 * all fs/file tree roots in which there are data=ordered extents
1486 * pending writeback are added into this list.
1487 *
1488 * these can span multiple transactions and basically include
1489 * every dirty data page that isn't from nodatacow
1490 */
1491 struct list_head ordered_roots;
1492
1493 spinlock_t delalloc_root_lock;
1494 /* all fs/file tree roots that have delalloc inodes. */
1495 struct list_head delalloc_roots;
1496
1497 /*
1498 * there is a pool of worker threads for checksumming during writes
1499 * and a pool for checksumming after reads. This is because readers
1500 * can run with FS locks held, and the writers may be waiting for
1501 * those locks. We don't want ordering in the pending list to cause
1502 * deadlocks, and so the two are serviced separately.
1503 *
1504 * A third pool does submit_bio to avoid deadlocking with the other
1505 * two
1506 */
1507 struct btrfs_workers generic_worker;
1508 struct btrfs_workqueue_struct *workers;
1509 struct btrfs_workqueue_struct *delalloc_workers;
1510 struct btrfs_workers flush_workers;
1511 struct btrfs_workers endio_workers;
1512 struct btrfs_workers endio_meta_workers;
1513 struct btrfs_workers endio_raid56_workers;
1514 struct btrfs_workers rmw_workers;
1515 struct btrfs_workers endio_meta_write_workers;
1516 struct btrfs_workers endio_write_workers;
1517 struct btrfs_workers endio_freespace_worker;
1518 struct btrfs_workqueue_struct *submit_workers;
1519 struct btrfs_workers caching_workers;
1520 struct btrfs_workers readahead_workers;
1521
1522 /*
1523 * fixup workers take dirty pages that didn't properly go through
1524 * the cow mechanism and make them safe to write. It happens
1525 * for the sys_munmap function call path
1526 */
1527 struct btrfs_workers fixup_workers;
1528 struct btrfs_workers delayed_workers;
1529 struct task_struct *transaction_kthread;
1530 struct task_struct *cleaner_kthread;
1531 int thread_pool_size;
1532
1533 struct kobject super_kobj;
1534 struct kobject *space_info_kobj;
1535 struct kobject *device_dir_kobj;
1536 struct completion kobj_unregister;
1537 int do_barriers;
1538 int closing;
1539 int log_root_recovering;
1540
1541 u64 total_pinned;
1542
1543 /* used to keep from writing metadata until there is a nice batch */
1544 struct percpu_counter dirty_metadata_bytes;
1545 struct percpu_counter delalloc_bytes;
1546 s32 dirty_metadata_batch;
1547 s32 delalloc_batch;
1548
1549 struct list_head dirty_cowonly_roots;
1550
1551 struct btrfs_fs_devices *fs_devices;
1552
1553 /*
1554 * the space_info list is almost entirely read only. It only changes
1555 * when we add a new raid type to the FS, and that happens
1556 * very rarely. RCU is used to protect it.
1557 */
1558 struct list_head space_info;
1559
1560 struct btrfs_space_info *data_sinfo;
1561
1562 struct reloc_control *reloc_ctl;
1563
1564 /* data_alloc_cluster is only used in ssd mode */
1565 struct btrfs_free_cluster data_alloc_cluster;
1566
1567 /* all metadata allocations go through this cluster */
1568 struct btrfs_free_cluster meta_alloc_cluster;
1569
1570 /* auto defrag inodes go here */
1571 spinlock_t defrag_inodes_lock;
1572 struct rb_root defrag_inodes;
1573 atomic_t defrag_running;
1574
1575 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1576 seqlock_t profiles_lock;
1577 /*
1578 * these three are in extended format (availability of single
1579 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1580 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1581 */
1582 u64 avail_data_alloc_bits;
1583 u64 avail_metadata_alloc_bits;
1584 u64 avail_system_alloc_bits;
1585
1586 /* restriper state */
1587 spinlock_t balance_lock;
1588 struct mutex balance_mutex;
1589 atomic_t balance_running;
1590 atomic_t balance_pause_req;
1591 atomic_t balance_cancel_req;
1592 struct btrfs_balance_control *balance_ctl;
1593 wait_queue_head_t balance_wait_q;
1594
1595 unsigned data_chunk_allocations;
1596 unsigned metadata_ratio;
1597
1598 void *bdev_holder;
1599
1600 /* private scrub information */
1601 struct mutex scrub_lock;
1602 atomic_t scrubs_running;
1603 atomic_t scrub_pause_req;
1604 atomic_t scrubs_paused;
1605 atomic_t scrub_cancel_req;
1606 wait_queue_head_t scrub_pause_wait;
1607 int scrub_workers_refcnt;
1608 struct btrfs_workers scrub_workers;
1609 struct btrfs_workers scrub_wr_completion_workers;
1610 struct btrfs_workers scrub_nocow_workers;
1611
1612 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1613 u32 check_integrity_print_mask;
1614 #endif
1615 /*
1616 * quota information
1617 */
1618 unsigned int quota_enabled:1;
1619
1620 /*
1621 * quota_enabled only changes state after a commit. This holds the
1622 * next state.
1623 */
1624 unsigned int pending_quota_state:1;
1625
1626 /* is qgroup tracking in a consistent state? */
1627 u64 qgroup_flags;
1628
1629 /* holds configuration and tracking. Protected by qgroup_lock */
1630 struct rb_root qgroup_tree;
1631 spinlock_t qgroup_lock;
1632
1633 /*
1634 * used to avoid frequently calling ulist_alloc()/ulist_free()
1635 * when doing qgroup accounting, it must be protected by qgroup_lock.
1636 */
1637 struct ulist *qgroup_ulist;
1638
1639 /* protect user change for quota operations */
1640 struct mutex qgroup_ioctl_lock;
1641
1642 /* list of dirty qgroups to be written at next commit */
1643 struct list_head dirty_qgroups;
1644
1645 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1646 u64 qgroup_seq;
1647
1648 /* qgroup rescan items */
1649 struct mutex qgroup_rescan_lock; /* protects the progress item */
1650 struct btrfs_key qgroup_rescan_progress;
1651 struct btrfs_workers qgroup_rescan_workers;
1652 struct completion qgroup_rescan_completion;
1653 struct btrfs_work qgroup_rescan_work;
1654
1655 /* filesystem state */
1656 unsigned long fs_state;
1657
1658 struct btrfs_delayed_root *delayed_root;
1659
1660 /* readahead tree */
1661 spinlock_t reada_lock;
1662 struct radix_tree_root reada_tree;
1663
1664 /* Extent buffer radix tree */
1665 spinlock_t buffer_lock;
1666 struct radix_tree_root buffer_radix;
1667
1668 /* next backup root to be overwritten */
1669 int backup_root_index;
1670
1671 int num_tolerated_disk_barrier_failures;
1672
1673 /* device replace state */
1674 struct btrfs_dev_replace dev_replace;
1675
1676 atomic_t mutually_exclusive_operation_running;
1677
1678 struct percpu_counter bio_counter;
1679 wait_queue_head_t replace_wait;
1680
1681 struct semaphore uuid_tree_rescan_sem;
1682 unsigned int update_uuid_tree_gen:1;
1683 };
1684
1685 /*
1686 * in ram representation of the tree. extent_root is used for all allocations
1687 * and for the extent tree extent_root root.
1688 */
1689 struct btrfs_root {
1690 struct extent_buffer *node;
1691
1692 struct extent_buffer *commit_root;
1693 struct btrfs_root *log_root;
1694 struct btrfs_root *reloc_root;
1695
1696 struct btrfs_root_item root_item;
1697 struct btrfs_key root_key;
1698 struct btrfs_fs_info *fs_info;
1699 struct extent_io_tree dirty_log_pages;
1700
1701 struct kobject root_kobj;
1702 struct completion kobj_unregister;
1703 struct mutex objectid_mutex;
1704
1705 spinlock_t accounting_lock;
1706 struct btrfs_block_rsv *block_rsv;
1707
1708 /* free ino cache stuff */
1709 struct mutex fs_commit_mutex;
1710 struct btrfs_free_space_ctl *free_ino_ctl;
1711 enum btrfs_caching_type cached;
1712 spinlock_t cache_lock;
1713 wait_queue_head_t cache_wait;
1714 struct btrfs_free_space_ctl *free_ino_pinned;
1715 u64 cache_progress;
1716 struct inode *cache_inode;
1717
1718 struct mutex log_mutex;
1719 wait_queue_head_t log_writer_wait;
1720 wait_queue_head_t log_commit_wait[2];
1721 struct list_head log_ctxs[2];
1722 atomic_t log_writers;
1723 atomic_t log_commit[2];
1724 atomic_t log_batch;
1725 int log_transid;
1726 /* No matter the commit succeeds or not*/
1727 int log_transid_committed;
1728 /* Just be updated when the commit succeeds. */
1729 int last_log_commit;
1730 pid_t log_start_pid;
1731 bool log_multiple_pids;
1732
1733 u64 objectid;
1734 u64 last_trans;
1735
1736 /* data allocations are done in sectorsize units */
1737 u32 sectorsize;
1738
1739 /* node allocations are done in nodesize units */
1740 u32 nodesize;
1741
1742 /* leaf allocations are done in leafsize units */
1743 u32 leafsize;
1744
1745 u32 stripesize;
1746
1747 u32 type;
1748
1749 u64 highest_objectid;
1750
1751 /* btrfs_record_root_in_trans is a multi-step process,
1752 * and it can race with the balancing code. But the
1753 * race is very small, and only the first time the root
1754 * is added to each transaction. So in_trans_setup
1755 * is used to tell us when more checks are required
1756 */
1757 unsigned long in_trans_setup;
1758 int ref_cows;
1759 int track_dirty;
1760 int in_radix;
1761 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1762 int dummy_root;
1763 #endif
1764 u64 defrag_trans_start;
1765 struct btrfs_key defrag_progress;
1766 struct btrfs_key defrag_max;
1767 int defrag_running;
1768 char *name;
1769
1770 /* the dirty list is only used by non-reference counted roots */
1771 struct list_head dirty_list;
1772
1773 struct list_head root_list;
1774
1775 spinlock_t log_extents_lock[2];
1776 struct list_head logged_list[2];
1777
1778 spinlock_t orphan_lock;
1779 atomic_t orphan_inodes;
1780 struct btrfs_block_rsv *orphan_block_rsv;
1781 int orphan_item_inserted;
1782 int orphan_cleanup_state;
1783
1784 spinlock_t inode_lock;
1785 /* red-black tree that keeps track of in-memory inodes */
1786 struct rb_root inode_tree;
1787
1788 /*
1789 * radix tree that keeps track of delayed nodes of every inode,
1790 * protected by inode_lock
1791 */
1792 struct radix_tree_root delayed_nodes_tree;
1793 /*
1794 * right now this just gets used so that a root has its own devid
1795 * for stat. It may be used for more later
1796 */
1797 dev_t anon_dev;
1798
1799 int force_cow;
1800
1801 spinlock_t root_item_lock;
1802 atomic_t refs;
1803
1804 spinlock_t delalloc_lock;
1805 /*
1806 * all of the inodes that have delalloc bytes. It is possible for
1807 * this list to be empty even when there is still dirty data=ordered
1808 * extents waiting to finish IO.
1809 */
1810 struct list_head delalloc_inodes;
1811 struct list_head delalloc_root;
1812 u64 nr_delalloc_inodes;
1813 /*
1814 * this is used by the balancing code to wait for all the pending
1815 * ordered extents
1816 */
1817 spinlock_t ordered_extent_lock;
1818
1819 /*
1820 * all of the data=ordered extents pending writeback
1821 * these can span multiple transactions and basically include
1822 * every dirty data page that isn't from nodatacow
1823 */
1824 struct list_head ordered_extents;
1825 struct list_head ordered_root;
1826 u64 nr_ordered_extents;
1827
1828 /*
1829 * Number of currently running SEND ioctls to prevent
1830 * manipulation with the read-only status via SUBVOL_SETFLAGS
1831 */
1832 int send_in_progress;
1833 };
1834
1835 struct btrfs_ioctl_defrag_range_args {
1836 /* start of the defrag operation */
1837 __u64 start;
1838
1839 /* number of bytes to defrag, use (u64)-1 to say all */
1840 __u64 len;
1841
1842 /*
1843 * flags for the operation, which can include turning
1844 * on compression for this one defrag
1845 */
1846 __u64 flags;
1847
1848 /*
1849 * any extent bigger than this will be considered
1850 * already defragged. Use 0 to take the kernel default
1851 * Use 1 to say every single extent must be rewritten
1852 */
1853 __u32 extent_thresh;
1854
1855 /*
1856 * which compression method to use if turning on compression
1857 * for this defrag operation. If unspecified, zlib will
1858 * be used
1859 */
1860 __u32 compress_type;
1861
1862 /* spare for later */
1863 __u32 unused[4];
1864 };
1865
1866
1867 /*
1868 * inode items have the data typically returned from stat and store other
1869 * info about object characteristics. There is one for every file and dir in
1870 * the FS
1871 */
1872 #define BTRFS_INODE_ITEM_KEY 1
1873 #define BTRFS_INODE_REF_KEY 12
1874 #define BTRFS_INODE_EXTREF_KEY 13
1875 #define BTRFS_XATTR_ITEM_KEY 24
1876 #define BTRFS_ORPHAN_ITEM_KEY 48
1877 /* reserve 2-15 close to the inode for later flexibility */
1878
1879 /*
1880 * dir items are the name -> inode pointers in a directory. There is one
1881 * for every name in a directory.
1882 */
1883 #define BTRFS_DIR_LOG_ITEM_KEY 60
1884 #define BTRFS_DIR_LOG_INDEX_KEY 72
1885 #define BTRFS_DIR_ITEM_KEY 84
1886 #define BTRFS_DIR_INDEX_KEY 96
1887 /*
1888 * extent data is for file data
1889 */
1890 #define BTRFS_EXTENT_DATA_KEY 108
1891
1892 /*
1893 * extent csums are stored in a separate tree and hold csums for
1894 * an entire extent on disk.
1895 */
1896 #define BTRFS_EXTENT_CSUM_KEY 128
1897
1898 /*
1899 * root items point to tree roots. They are typically in the root
1900 * tree used by the super block to find all the other trees
1901 */
1902 #define BTRFS_ROOT_ITEM_KEY 132
1903
1904 /*
1905 * root backrefs tie subvols and snapshots to the directory entries that
1906 * reference them
1907 */
1908 #define BTRFS_ROOT_BACKREF_KEY 144
1909
1910 /*
1911 * root refs make a fast index for listing all of the snapshots and
1912 * subvolumes referenced by a given root. They point directly to the
1913 * directory item in the root that references the subvol
1914 */
1915 #define BTRFS_ROOT_REF_KEY 156
1916
1917 /*
1918 * extent items are in the extent map tree. These record which blocks
1919 * are used, and how many references there are to each block
1920 */
1921 #define BTRFS_EXTENT_ITEM_KEY 168
1922
1923 /*
1924 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
1925 * the length, so we save the level in key->offset instead of the length.
1926 */
1927 #define BTRFS_METADATA_ITEM_KEY 169
1928
1929 #define BTRFS_TREE_BLOCK_REF_KEY 176
1930
1931 #define BTRFS_EXTENT_DATA_REF_KEY 178
1932
1933 #define BTRFS_EXTENT_REF_V0_KEY 180
1934
1935 #define BTRFS_SHARED_BLOCK_REF_KEY 182
1936
1937 #define BTRFS_SHARED_DATA_REF_KEY 184
1938
1939 /*
1940 * block groups give us hints into the extent allocation trees. Which
1941 * blocks are free etc etc
1942 */
1943 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1944
1945 #define BTRFS_DEV_EXTENT_KEY 204
1946 #define BTRFS_DEV_ITEM_KEY 216
1947 #define BTRFS_CHUNK_ITEM_KEY 228
1948
1949 /*
1950 * Records the overall state of the qgroups.
1951 * There's only one instance of this key present,
1952 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
1953 */
1954 #define BTRFS_QGROUP_STATUS_KEY 240
1955 /*
1956 * Records the currently used space of the qgroup.
1957 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
1958 */
1959 #define BTRFS_QGROUP_INFO_KEY 242
1960 /*
1961 * Contains the user configured limits for the qgroup.
1962 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
1963 */
1964 #define BTRFS_QGROUP_LIMIT_KEY 244
1965 /*
1966 * Records the child-parent relationship of qgroups. For
1967 * each relation, 2 keys are present:
1968 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
1969 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
1970 */
1971 #define BTRFS_QGROUP_RELATION_KEY 246
1972
1973 #define BTRFS_BALANCE_ITEM_KEY 248
1974
1975 /*
1976 * Persistantly stores the io stats in the device tree.
1977 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
1978 */
1979 #define BTRFS_DEV_STATS_KEY 249
1980
1981 /*
1982 * Persistantly stores the device replace state in the device tree.
1983 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
1984 */
1985 #define BTRFS_DEV_REPLACE_KEY 250
1986
1987 /*
1988 * Stores items that allow to quickly map UUIDs to something else.
1989 * These items are part of the filesystem UUID tree.
1990 * The key is built like this:
1991 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
1992 */
1993 #if BTRFS_UUID_SIZE != 16
1994 #error "UUID items require BTRFS_UUID_SIZE == 16!"
1995 #endif
1996 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
1997 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
1998 * received subvols */
1999
2000 /*
2001 * string items are for debugging. They just store a short string of
2002 * data in the FS
2003 */
2004 #define BTRFS_STRING_ITEM_KEY 253
2005
2006 /*
2007 * Flags for mount options.
2008 *
2009 * Note: don't forget to add new options to btrfs_show_options()
2010 */
2011 #define BTRFS_MOUNT_NODATASUM (1 << 0)
2012 #define BTRFS_MOUNT_NODATACOW (1 << 1)
2013 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
2014 #define BTRFS_MOUNT_SSD (1 << 3)
2015 #define BTRFS_MOUNT_DEGRADED (1 << 4)
2016 #define BTRFS_MOUNT_COMPRESS (1 << 5)
2017 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
2018 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2019 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2020 #define BTRFS_MOUNT_NOSSD (1 << 9)
2021 #define BTRFS_MOUNT_DISCARD (1 << 10)
2022 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2023 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2024 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2025 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2026 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2027 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2028 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2029 #define BTRFS_MOUNT_RECOVERY (1 << 18)
2030 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2031 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2032 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2033 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2034 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2035 #define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24)
2036
2037 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2038
2039 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2040 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2041 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2042 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2043 BTRFS_MOUNT_##opt)
2044 /*
2045 * Inode flags
2046 */
2047 #define BTRFS_INODE_NODATASUM (1 << 0)
2048 #define BTRFS_INODE_NODATACOW (1 << 1)
2049 #define BTRFS_INODE_READONLY (1 << 2)
2050 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2051 #define BTRFS_INODE_PREALLOC (1 << 4)
2052 #define BTRFS_INODE_SYNC (1 << 5)
2053 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2054 #define BTRFS_INODE_APPEND (1 << 7)
2055 #define BTRFS_INODE_NODUMP (1 << 8)
2056 #define BTRFS_INODE_NOATIME (1 << 9)
2057 #define BTRFS_INODE_DIRSYNC (1 << 10)
2058 #define BTRFS_INODE_COMPRESS (1 << 11)
2059
2060 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2061
2062 struct btrfs_map_token {
2063 struct extent_buffer *eb;
2064 char *kaddr;
2065 unsigned long offset;
2066 };
2067
2068 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2069 {
2070 token->kaddr = NULL;
2071 }
2072
2073 /* some macros to generate set/get funcs for the struct fields. This
2074 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2075 * one for u8:
2076 */
2077 #define le8_to_cpu(v) (v)
2078 #define cpu_to_le8(v) (v)
2079 #define __le8 u8
2080
2081 #define read_eb_member(eb, ptr, type, member, result) ( \
2082 read_extent_buffer(eb, (char *)(result), \
2083 ((unsigned long)(ptr)) + \
2084 offsetof(type, member), \
2085 sizeof(((type *)0)->member)))
2086
2087 #define write_eb_member(eb, ptr, type, member, result) ( \
2088 write_extent_buffer(eb, (char *)(result), \
2089 ((unsigned long)(ptr)) + \
2090 offsetof(type, member), \
2091 sizeof(((type *)0)->member)))
2092
2093 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2094 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2095 unsigned long off, \
2096 struct btrfs_map_token *token); \
2097 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2098 unsigned long off, u##bits val, \
2099 struct btrfs_map_token *token); \
2100 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2101 unsigned long off) \
2102 { \
2103 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2104 } \
2105 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2106 unsigned long off, u##bits val) \
2107 { \
2108 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2109 }
2110
2111 DECLARE_BTRFS_SETGET_BITS(8)
2112 DECLARE_BTRFS_SETGET_BITS(16)
2113 DECLARE_BTRFS_SETGET_BITS(32)
2114 DECLARE_BTRFS_SETGET_BITS(64)
2115
2116 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2117 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2118 { \
2119 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2120 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2121 } \
2122 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2123 u##bits val) \
2124 { \
2125 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2126 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2127 } \
2128 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2129 struct btrfs_map_token *token) \
2130 { \
2131 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2132 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2133 } \
2134 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2135 type *s, u##bits val, \
2136 struct btrfs_map_token *token) \
2137 { \
2138 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2139 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2140 }
2141
2142 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2143 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2144 { \
2145 type *p = page_address(eb->pages[0]); \
2146 u##bits res = le##bits##_to_cpu(p->member); \
2147 return res; \
2148 } \
2149 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2150 u##bits val) \
2151 { \
2152 type *p = page_address(eb->pages[0]); \
2153 p->member = cpu_to_le##bits(val); \
2154 }
2155
2156 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2157 static inline u##bits btrfs_##name(type *s) \
2158 { \
2159 return le##bits##_to_cpu(s->member); \
2160 } \
2161 static inline void btrfs_set_##name(type *s, u##bits val) \
2162 { \
2163 s->member = cpu_to_le##bits(val); \
2164 }
2165
2166 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2167 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2168 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2169 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2170 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2171 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2172 start_offset, 64);
2173 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2174 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2175 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2176 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2177 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2178 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2179
2180 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2181 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2182 total_bytes, 64);
2183 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2184 bytes_used, 64);
2185 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2186 io_align, 32);
2187 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2188 io_width, 32);
2189 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2190 sector_size, 32);
2191 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2192 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2193 dev_group, 32);
2194 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2195 seek_speed, 8);
2196 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2197 bandwidth, 8);
2198 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2199 generation, 64);
2200
2201 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2202 {
2203 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2204 }
2205
2206 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2207 {
2208 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2209 }
2210
2211 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2212 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2213 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2214 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2215 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2216 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2217 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2218 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2219 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2220 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2221 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2222
2223 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2224 {
2225 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2226 }
2227
2228 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2229 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2230 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2231 stripe_len, 64);
2232 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2233 io_align, 32);
2234 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2235 io_width, 32);
2236 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2237 sector_size, 32);
2238 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2239 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2240 num_stripes, 16);
2241 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2242 sub_stripes, 16);
2243 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2244 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2245
2246 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2247 int nr)
2248 {
2249 unsigned long offset = (unsigned long)c;
2250 offset += offsetof(struct btrfs_chunk, stripe);
2251 offset += nr * sizeof(struct btrfs_stripe);
2252 return (struct btrfs_stripe *)offset;
2253 }
2254
2255 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2256 {
2257 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2258 }
2259
2260 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2261 struct btrfs_chunk *c, int nr)
2262 {
2263 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2264 }
2265
2266 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2267 struct btrfs_chunk *c, int nr)
2268 {
2269 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2270 }
2271
2272 /* struct btrfs_block_group_item */
2273 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2274 used, 64);
2275 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2276 used, 64);
2277 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2278 struct btrfs_block_group_item, chunk_objectid, 64);
2279
2280 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2281 struct btrfs_block_group_item, chunk_objectid, 64);
2282 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2283 struct btrfs_block_group_item, flags, 64);
2284 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2285 struct btrfs_block_group_item, flags, 64);
2286
2287 /* struct btrfs_inode_ref */
2288 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2289 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2290
2291 /* struct btrfs_inode_extref */
2292 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2293 parent_objectid, 64);
2294 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2295 name_len, 16);
2296 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2297
2298 /* struct btrfs_inode_item */
2299 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2300 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2301 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2302 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2303 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2304 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2305 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2306 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2307 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2308 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2309 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2310 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2311 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2312 generation, 64);
2313 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2314 sequence, 64);
2315 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2316 transid, 64);
2317 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2318 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2319 nbytes, 64);
2320 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2321 block_group, 64);
2322 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2323 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2324 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2325 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2326 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2327 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2328
2329 static inline struct btrfs_timespec *
2330 btrfs_inode_atime(struct btrfs_inode_item *inode_item)
2331 {
2332 unsigned long ptr = (unsigned long)inode_item;
2333 ptr += offsetof(struct btrfs_inode_item, atime);
2334 return (struct btrfs_timespec *)ptr;
2335 }
2336
2337 static inline struct btrfs_timespec *
2338 btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
2339 {
2340 unsigned long ptr = (unsigned long)inode_item;
2341 ptr += offsetof(struct btrfs_inode_item, mtime);
2342 return (struct btrfs_timespec *)ptr;
2343 }
2344
2345 static inline struct btrfs_timespec *
2346 btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
2347 {
2348 unsigned long ptr = (unsigned long)inode_item;
2349 ptr += offsetof(struct btrfs_inode_item, ctime);
2350 return (struct btrfs_timespec *)ptr;
2351 }
2352
2353 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2354 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2355 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2356 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2357
2358 /* struct btrfs_dev_extent */
2359 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2360 chunk_tree, 64);
2361 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2362 chunk_objectid, 64);
2363 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2364 chunk_offset, 64);
2365 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2366
2367 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2368 {
2369 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2370 return (unsigned long)dev + ptr;
2371 }
2372
2373 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2374 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2375 generation, 64);
2376 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2377
2378 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2379
2380
2381 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2382
2383 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2384 struct btrfs_tree_block_info *item,
2385 struct btrfs_disk_key *key)
2386 {
2387 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2388 }
2389
2390 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2391 struct btrfs_tree_block_info *item,
2392 struct btrfs_disk_key *key)
2393 {
2394 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2395 }
2396
2397 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2398 root, 64);
2399 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2400 objectid, 64);
2401 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2402 offset, 64);
2403 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2404 count, 32);
2405
2406 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2407 count, 32);
2408
2409 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2410 type, 8);
2411 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2412 offset, 64);
2413
2414 static inline u32 btrfs_extent_inline_ref_size(int type)
2415 {
2416 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2417 type == BTRFS_SHARED_BLOCK_REF_KEY)
2418 return sizeof(struct btrfs_extent_inline_ref);
2419 if (type == BTRFS_SHARED_DATA_REF_KEY)
2420 return sizeof(struct btrfs_shared_data_ref) +
2421 sizeof(struct btrfs_extent_inline_ref);
2422 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2423 return sizeof(struct btrfs_extent_data_ref) +
2424 offsetof(struct btrfs_extent_inline_ref, offset);
2425 BUG();
2426 return 0;
2427 }
2428
2429 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2430 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2431 generation, 64);
2432 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2433 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2434
2435 /* struct btrfs_node */
2436 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2437 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2438 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2439 blockptr, 64);
2440 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2441 generation, 64);
2442
2443 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2444 {
2445 unsigned long ptr;
2446 ptr = offsetof(struct btrfs_node, ptrs) +
2447 sizeof(struct btrfs_key_ptr) * nr;
2448 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2449 }
2450
2451 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2452 int nr, u64 val)
2453 {
2454 unsigned long ptr;
2455 ptr = offsetof(struct btrfs_node, ptrs) +
2456 sizeof(struct btrfs_key_ptr) * nr;
2457 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2458 }
2459
2460 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2461 {
2462 unsigned long ptr;
2463 ptr = offsetof(struct btrfs_node, ptrs) +
2464 sizeof(struct btrfs_key_ptr) * nr;
2465 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2466 }
2467
2468 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2469 int nr, u64 val)
2470 {
2471 unsigned long ptr;
2472 ptr = offsetof(struct btrfs_node, ptrs) +
2473 sizeof(struct btrfs_key_ptr) * nr;
2474 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2475 }
2476
2477 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2478 {
2479 return offsetof(struct btrfs_node, ptrs) +
2480 sizeof(struct btrfs_key_ptr) * nr;
2481 }
2482
2483 void btrfs_node_key(struct extent_buffer *eb,
2484 struct btrfs_disk_key *disk_key, int nr);
2485
2486 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2487 struct btrfs_disk_key *disk_key, int nr)
2488 {
2489 unsigned long ptr;
2490 ptr = btrfs_node_key_ptr_offset(nr);
2491 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2492 struct btrfs_key_ptr, key, disk_key);
2493 }
2494
2495 /* struct btrfs_item */
2496 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2497 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2498 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2499 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2500
2501 static inline unsigned long btrfs_item_nr_offset(int nr)
2502 {
2503 return offsetof(struct btrfs_leaf, items) +
2504 sizeof(struct btrfs_item) * nr;
2505 }
2506
2507 static inline struct btrfs_item *btrfs_item_nr(int nr)
2508 {
2509 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2510 }
2511
2512 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2513 struct btrfs_item *item)
2514 {
2515 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2516 }
2517
2518 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2519 {
2520 return btrfs_item_end(eb, btrfs_item_nr(nr));
2521 }
2522
2523 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2524 {
2525 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2526 }
2527
2528 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2529 {
2530 return btrfs_item_size(eb, btrfs_item_nr(nr));
2531 }
2532
2533 static inline void btrfs_item_key(struct extent_buffer *eb,
2534 struct btrfs_disk_key *disk_key, int nr)
2535 {
2536 struct btrfs_item *item = btrfs_item_nr(nr);
2537 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2538 }
2539
2540 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2541 struct btrfs_disk_key *disk_key, int nr)
2542 {
2543 struct btrfs_item *item = btrfs_item_nr(nr);
2544 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2545 }
2546
2547 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2548
2549 /*
2550 * struct btrfs_root_ref
2551 */
2552 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2553 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2554 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2555
2556 /* struct btrfs_dir_item */
2557 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2558 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2559 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2560 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2561 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2562 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2563 data_len, 16);
2564 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2565 name_len, 16);
2566 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2567 transid, 64);
2568
2569 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2570 struct btrfs_dir_item *item,
2571 struct btrfs_disk_key *key)
2572 {
2573 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2574 }
2575
2576 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2577 struct btrfs_dir_item *item,
2578 struct btrfs_disk_key *key)
2579 {
2580 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2581 }
2582
2583 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2584 num_entries, 64);
2585 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2586 num_bitmaps, 64);
2587 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2588 generation, 64);
2589
2590 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2591 struct btrfs_free_space_header *h,
2592 struct btrfs_disk_key *key)
2593 {
2594 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2595 }
2596
2597 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2598 struct btrfs_free_space_header *h,
2599 struct btrfs_disk_key *key)
2600 {
2601 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2602 }
2603
2604 /* struct btrfs_disk_key */
2605 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2606 objectid, 64);
2607 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2608 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2609
2610 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2611 struct btrfs_disk_key *disk)
2612 {
2613 cpu->offset = le64_to_cpu(disk->offset);
2614 cpu->type = disk->type;
2615 cpu->objectid = le64_to_cpu(disk->objectid);
2616 }
2617
2618 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2619 struct btrfs_key *cpu)
2620 {
2621 disk->offset = cpu_to_le64(cpu->offset);
2622 disk->type = cpu->type;
2623 disk->objectid = cpu_to_le64(cpu->objectid);
2624 }
2625
2626 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2627 struct btrfs_key *key, int nr)
2628 {
2629 struct btrfs_disk_key disk_key;
2630 btrfs_node_key(eb, &disk_key, nr);
2631 btrfs_disk_key_to_cpu(key, &disk_key);
2632 }
2633
2634 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2635 struct btrfs_key *key, int nr)
2636 {
2637 struct btrfs_disk_key disk_key;
2638 btrfs_item_key(eb, &disk_key, nr);
2639 btrfs_disk_key_to_cpu(key, &disk_key);
2640 }
2641
2642 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2643 struct btrfs_dir_item *item,
2644 struct btrfs_key *key)
2645 {
2646 struct btrfs_disk_key disk_key;
2647 btrfs_dir_item_key(eb, item, &disk_key);
2648 btrfs_disk_key_to_cpu(key, &disk_key);
2649 }
2650
2651
2652 static inline u8 btrfs_key_type(struct btrfs_key *key)
2653 {
2654 return key->type;
2655 }
2656
2657 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2658 {
2659 key->type = val;
2660 }
2661
2662 /* struct btrfs_header */
2663 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2664 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2665 generation, 64);
2666 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2667 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2668 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2669 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2670 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2671 generation, 64);
2672 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2673 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2674 nritems, 32);
2675 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2676
2677 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2678 {
2679 return (btrfs_header_flags(eb) & flag) == flag;
2680 }
2681
2682 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2683 {
2684 u64 flags = btrfs_header_flags(eb);
2685 btrfs_set_header_flags(eb, flags | flag);
2686 return (flags & flag) == flag;
2687 }
2688
2689 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2690 {
2691 u64 flags = btrfs_header_flags(eb);
2692 btrfs_set_header_flags(eb, flags & ~flag);
2693 return (flags & flag) == flag;
2694 }
2695
2696 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2697 {
2698 u64 flags = btrfs_header_flags(eb);
2699 return flags >> BTRFS_BACKREF_REV_SHIFT;
2700 }
2701
2702 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2703 int rev)
2704 {
2705 u64 flags = btrfs_header_flags(eb);
2706 flags &= ~BTRFS_BACKREF_REV_MASK;
2707 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2708 btrfs_set_header_flags(eb, flags);
2709 }
2710
2711 static inline unsigned long btrfs_header_fsid(void)
2712 {
2713 return offsetof(struct btrfs_header, fsid);
2714 }
2715
2716 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2717 {
2718 return offsetof(struct btrfs_header, chunk_tree_uuid);
2719 }
2720
2721 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2722 {
2723 return btrfs_header_level(eb) == 0;
2724 }
2725
2726 /* struct btrfs_root_item */
2727 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2728 generation, 64);
2729 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2730 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2731 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2732
2733 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2734 generation, 64);
2735 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2736 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2737 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2738 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2739 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2740 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2741 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2742 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2743 last_snapshot, 64);
2744 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2745 generation_v2, 64);
2746 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2747 ctransid, 64);
2748 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2749 otransid, 64);
2750 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2751 stransid, 64);
2752 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2753 rtransid, 64);
2754
2755 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2756 {
2757 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2758 }
2759
2760 /* struct btrfs_root_backup */
2761 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2762 tree_root, 64);
2763 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2764 tree_root_gen, 64);
2765 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2766 tree_root_level, 8);
2767
2768 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2769 chunk_root, 64);
2770 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2771 chunk_root_gen, 64);
2772 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2773 chunk_root_level, 8);
2774
2775 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2776 extent_root, 64);
2777 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2778 extent_root_gen, 64);
2779 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2780 extent_root_level, 8);
2781
2782 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2783 fs_root, 64);
2784 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2785 fs_root_gen, 64);
2786 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2787 fs_root_level, 8);
2788
2789 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2790 dev_root, 64);
2791 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2792 dev_root_gen, 64);
2793 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2794 dev_root_level, 8);
2795
2796 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2797 csum_root, 64);
2798 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2799 csum_root_gen, 64);
2800 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2801 csum_root_level, 8);
2802 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2803 total_bytes, 64);
2804 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2805 bytes_used, 64);
2806 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2807 num_devices, 64);
2808
2809 /* struct btrfs_balance_item */
2810 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2811
2812 static inline void btrfs_balance_data(struct extent_buffer *eb,
2813 struct btrfs_balance_item *bi,
2814 struct btrfs_disk_balance_args *ba)
2815 {
2816 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2817 }
2818
2819 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2820 struct btrfs_balance_item *bi,
2821 struct btrfs_disk_balance_args *ba)
2822 {
2823 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2824 }
2825
2826 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2827 struct btrfs_balance_item *bi,
2828 struct btrfs_disk_balance_args *ba)
2829 {
2830 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2831 }
2832
2833 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2834 struct btrfs_balance_item *bi,
2835 struct btrfs_disk_balance_args *ba)
2836 {
2837 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2838 }
2839
2840 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2841 struct btrfs_balance_item *bi,
2842 struct btrfs_disk_balance_args *ba)
2843 {
2844 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2845 }
2846
2847 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2848 struct btrfs_balance_item *bi,
2849 struct btrfs_disk_balance_args *ba)
2850 {
2851 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2852 }
2853
2854 static inline void
2855 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2856 struct btrfs_disk_balance_args *disk)
2857 {
2858 memset(cpu, 0, sizeof(*cpu));
2859
2860 cpu->profiles = le64_to_cpu(disk->profiles);
2861 cpu->usage = le64_to_cpu(disk->usage);
2862 cpu->devid = le64_to_cpu(disk->devid);
2863 cpu->pstart = le64_to_cpu(disk->pstart);
2864 cpu->pend = le64_to_cpu(disk->pend);
2865 cpu->vstart = le64_to_cpu(disk->vstart);
2866 cpu->vend = le64_to_cpu(disk->vend);
2867 cpu->target = le64_to_cpu(disk->target);
2868 cpu->flags = le64_to_cpu(disk->flags);
2869 }
2870
2871 static inline void
2872 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2873 struct btrfs_balance_args *cpu)
2874 {
2875 memset(disk, 0, sizeof(*disk));
2876
2877 disk->profiles = cpu_to_le64(cpu->profiles);
2878 disk->usage = cpu_to_le64(cpu->usage);
2879 disk->devid = cpu_to_le64(cpu->devid);
2880 disk->pstart = cpu_to_le64(cpu->pstart);
2881 disk->pend = cpu_to_le64(cpu->pend);
2882 disk->vstart = cpu_to_le64(cpu->vstart);
2883 disk->vend = cpu_to_le64(cpu->vend);
2884 disk->target = cpu_to_le64(cpu->target);
2885 disk->flags = cpu_to_le64(cpu->flags);
2886 }
2887
2888 /* struct btrfs_super_block */
2889 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2890 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2891 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2892 generation, 64);
2893 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2894 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2895 struct btrfs_super_block, sys_chunk_array_size, 32);
2896 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2897 struct btrfs_super_block, chunk_root_generation, 64);
2898 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2899 root_level, 8);
2900 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2901 chunk_root, 64);
2902 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2903 chunk_root_level, 8);
2904 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2905 log_root, 64);
2906 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2907 log_root_transid, 64);
2908 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2909 log_root_level, 8);
2910 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2911 total_bytes, 64);
2912 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2913 bytes_used, 64);
2914 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2915 sectorsize, 32);
2916 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2917 nodesize, 32);
2918 BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
2919 leafsize, 32);
2920 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2921 stripesize, 32);
2922 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2923 root_dir_objectid, 64);
2924 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2925 num_devices, 64);
2926 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2927 compat_flags, 64);
2928 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2929 compat_ro_flags, 64);
2930 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2931 incompat_flags, 64);
2932 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2933 csum_type, 16);
2934 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2935 cache_generation, 64);
2936 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2937 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2938 uuid_tree_generation, 64);
2939
2940 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2941 {
2942 u16 t = btrfs_super_csum_type(s);
2943 /*
2944 * csum type is validated at mount time
2945 */
2946 return btrfs_csum_sizes[t];
2947 }
2948
2949 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2950 {
2951 return offsetof(struct btrfs_leaf, items);
2952 }
2953
2954 /* struct btrfs_file_extent_item */
2955 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2956 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2957 struct btrfs_file_extent_item, disk_bytenr, 64);
2958 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2959 struct btrfs_file_extent_item, offset, 64);
2960 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2961 struct btrfs_file_extent_item, generation, 64);
2962 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2963 struct btrfs_file_extent_item, num_bytes, 64);
2964 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2965 struct btrfs_file_extent_item, disk_num_bytes, 64);
2966 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2967 struct btrfs_file_extent_item, compression, 8);
2968
2969 static inline unsigned long
2970 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
2971 {
2972 unsigned long offset = (unsigned long)e;
2973 offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
2974 return offset;
2975 }
2976
2977 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2978 {
2979 return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
2980 }
2981
2982 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2983 disk_bytenr, 64);
2984 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2985 generation, 64);
2986 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2987 disk_num_bytes, 64);
2988 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2989 offset, 64);
2990 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2991 num_bytes, 64);
2992 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2993 ram_bytes, 64);
2994 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2995 compression, 8);
2996 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2997 encryption, 8);
2998 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2999 other_encoding, 16);
3000
3001 /*
3002 * this returns the number of bytes used by the item on disk, minus the
3003 * size of any extent headers. If a file is compressed on disk, this is
3004 * the compressed size
3005 */
3006 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3007 struct btrfs_item *e)
3008 {
3009 unsigned long offset;
3010 offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
3011 return btrfs_item_size(eb, e) - offset;
3012 }
3013
3014 /* this returns the number of file bytes represented by the inline item.
3015 * If an item is compressed, this is the uncompressed size
3016 */
3017 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3018 int slot,
3019 struct btrfs_file_extent_item *fi)
3020 {
3021 struct btrfs_map_token token;
3022
3023 btrfs_init_map_token(&token);
3024 /*
3025 * return the space used on disk if this item isn't
3026 * compressed or encoded
3027 */
3028 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3029 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3030 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3031 return btrfs_file_extent_inline_item_len(eb,
3032 btrfs_item_nr(slot));
3033 }
3034
3035 /* otherwise use the ram bytes field */
3036 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3037 }
3038
3039
3040 /* btrfs_dev_stats_item */
3041 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3042 struct btrfs_dev_stats_item *ptr,
3043 int index)
3044 {
3045 u64 val;
3046
3047 read_extent_buffer(eb, &val,
3048 offsetof(struct btrfs_dev_stats_item, values) +
3049 ((unsigned long)ptr) + (index * sizeof(u64)),
3050 sizeof(val));
3051 return val;
3052 }
3053
3054 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3055 struct btrfs_dev_stats_item *ptr,
3056 int index, u64 val)
3057 {
3058 write_extent_buffer(eb, &val,
3059 offsetof(struct btrfs_dev_stats_item, values) +
3060 ((unsigned long)ptr) + (index * sizeof(u64)),
3061 sizeof(val));
3062 }
3063
3064 /* btrfs_qgroup_status_item */
3065 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3066 generation, 64);
3067 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3068 version, 64);
3069 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3070 flags, 64);
3071 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3072 rescan, 64);
3073
3074 /* btrfs_qgroup_info_item */
3075 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3076 generation, 64);
3077 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3078 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3079 rfer_cmpr, 64);
3080 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3081 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3082 excl_cmpr, 64);
3083
3084 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3085 struct btrfs_qgroup_info_item, generation, 64);
3086 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3087 rfer, 64);
3088 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3089 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3090 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3091 excl, 64);
3092 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3093 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3094
3095 /* btrfs_qgroup_limit_item */
3096 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3097 flags, 64);
3098 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3099 max_rfer, 64);
3100 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3101 max_excl, 64);
3102 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3103 rsv_rfer, 64);
3104 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3105 rsv_excl, 64);
3106
3107 /* btrfs_dev_replace_item */
3108 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3109 struct btrfs_dev_replace_item, src_devid, 64);
3110 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3111 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3112 64);
3113 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3114 replace_state, 64);
3115 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3116 time_started, 64);
3117 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3118 time_stopped, 64);
3119 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3120 num_write_errors, 64);
3121 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3122 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3123 64);
3124 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3125 cursor_left, 64);
3126 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3127 cursor_right, 64);
3128
3129 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3130 struct btrfs_dev_replace_item, src_devid, 64);
3131 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3132 struct btrfs_dev_replace_item,
3133 cont_reading_from_srcdev_mode, 64);
3134 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3135 struct btrfs_dev_replace_item, replace_state, 64);
3136 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3137 struct btrfs_dev_replace_item, time_started, 64);
3138 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3139 struct btrfs_dev_replace_item, time_stopped, 64);
3140 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3141 struct btrfs_dev_replace_item, num_write_errors, 64);
3142 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3143 struct btrfs_dev_replace_item,
3144 num_uncorrectable_read_errors, 64);
3145 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3146 struct btrfs_dev_replace_item, cursor_left, 64);
3147 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3148 struct btrfs_dev_replace_item, cursor_right, 64);
3149
3150 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3151 {
3152 return sb->s_fs_info;
3153 }
3154
3155 static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
3156 {
3157 if (level == 0)
3158 return root->leafsize;
3159 return root->nodesize;
3160 }
3161
3162 /* helper function to cast into the data area of the leaf. */
3163 #define btrfs_item_ptr(leaf, slot, type) \
3164 ((type *)(btrfs_leaf_data(leaf) + \
3165 btrfs_item_offset_nr(leaf, slot)))
3166
3167 #define btrfs_item_ptr_offset(leaf, slot) \
3168 ((unsigned long)(btrfs_leaf_data(leaf) + \
3169 btrfs_item_offset_nr(leaf, slot)))
3170
3171 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3172 {
3173 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3174 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3175 }
3176
3177 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3178 {
3179 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3180 }
3181
3182 /* extent-tree.c */
3183 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3184 unsigned num_items)
3185 {
3186 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3187 2 * num_items;
3188 }
3189
3190 /*
3191 * Doing a truncate won't result in new nodes or leaves, just what we need for
3192 * COW.
3193 */
3194 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3195 unsigned num_items)
3196 {
3197 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3198 num_items;
3199 }
3200
3201 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3202 struct btrfs_root *root);
3203 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3204 struct btrfs_root *root);
3205 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3206 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3207 struct btrfs_root *root, unsigned long count);
3208 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
3209 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3210 struct btrfs_root *root, u64 bytenr,
3211 u64 offset, int metadata, u64 *refs, u64 *flags);
3212 int btrfs_pin_extent(struct btrfs_root *root,
3213 u64 bytenr, u64 num, int reserved);
3214 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3215 u64 bytenr, u64 num_bytes);
3216 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3217 struct extent_buffer *eb);
3218 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3219 struct btrfs_root *root,
3220 u64 objectid, u64 offset, u64 bytenr);
3221 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3222 struct btrfs_fs_info *info,
3223 u64 bytenr);
3224 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3225 int get_block_group_index(struct btrfs_block_group_cache *cache);
3226 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3227 struct btrfs_root *root, u32 blocksize,
3228 u64 parent, u64 root_objectid,
3229 struct btrfs_disk_key *key, int level,
3230 u64 hint, u64 empty_size);
3231 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *root,
3233 struct extent_buffer *buf,
3234 u64 parent, int last_ref);
3235 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3236 struct btrfs_root *root,
3237 u64 root_objectid, u64 owner,
3238 u64 offset, struct btrfs_key *ins);
3239 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3240 struct btrfs_root *root,
3241 u64 root_objectid, u64 owner, u64 offset,
3242 struct btrfs_key *ins);
3243 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3244 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3245 struct btrfs_key *ins, int is_data);
3246 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3247 struct extent_buffer *buf, int full_backref, int for_cow);
3248 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3249 struct extent_buffer *buf, int full_backref, int for_cow);
3250 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3251 struct btrfs_root *root,
3252 u64 bytenr, u64 num_bytes, u64 flags,
3253 int level, int is_data);
3254 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3255 struct btrfs_root *root,
3256 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3257 u64 owner, u64 offset, int for_cow);
3258
3259 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
3260 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3261 u64 start, u64 len);
3262 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *root);
3264 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *root);
3266 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *root,
3268 u64 bytenr, u64 num_bytes, u64 parent,
3269 u64 root_objectid, u64 owner, u64 offset, int for_cow);
3270
3271 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3272 struct btrfs_root *root);
3273 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3274 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3275 int btrfs_read_block_groups(struct btrfs_root *root);
3276 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3277 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3278 struct btrfs_root *root, u64 bytes_used,
3279 u64 type, u64 chunk_objectid, u64 chunk_offset,
3280 u64 size);
3281 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root, u64 group_start);
3283 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3284 struct btrfs_root *root);
3285 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3286 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3287
3288 enum btrfs_reserve_flush_enum {
3289 /* If we are in the transaction, we can't flush anything.*/
3290 BTRFS_RESERVE_NO_FLUSH,
3291 /*
3292 * Flushing delalloc may cause deadlock somewhere, in this
3293 * case, use FLUSH LIMIT
3294 */
3295 BTRFS_RESERVE_FLUSH_LIMIT,
3296 BTRFS_RESERVE_FLUSH_ALL,
3297 };
3298
3299 int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3300 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3301 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3302 struct btrfs_root *root);
3303 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3304 struct inode *inode);
3305 void btrfs_orphan_release_metadata(struct inode *inode);
3306 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3307 struct btrfs_block_rsv *rsv,
3308 int nitems,
3309 u64 *qgroup_reserved, bool use_global_rsv);
3310 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3311 struct btrfs_block_rsv *rsv,
3312 u64 qgroup_reserved);
3313 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3314 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3315 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3316 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3317 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3318 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3319 unsigned short type);
3320 void btrfs_free_block_rsv(struct btrfs_root *root,
3321 struct btrfs_block_rsv *rsv);
3322 int btrfs_block_rsv_add(struct btrfs_root *root,
3323 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3324 enum btrfs_reserve_flush_enum flush);
3325 int btrfs_block_rsv_check(struct btrfs_root *root,
3326 struct btrfs_block_rsv *block_rsv, int min_factor);
3327 int btrfs_block_rsv_refill(struct btrfs_root *root,
3328 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3329 enum btrfs_reserve_flush_enum flush);
3330 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3331 struct btrfs_block_rsv *dst_rsv,
3332 u64 num_bytes);
3333 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3334 struct btrfs_block_rsv *dest, u64 num_bytes,
3335 int min_factor);
3336 void btrfs_block_rsv_release(struct btrfs_root *root,
3337 struct btrfs_block_rsv *block_rsv,
3338 u64 num_bytes);
3339 int btrfs_set_block_group_ro(struct btrfs_root *root,
3340 struct btrfs_block_group_cache *cache);
3341 void btrfs_set_block_group_rw(struct btrfs_root *root,
3342 struct btrfs_block_group_cache *cache);
3343 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3344 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3345 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3346 u64 start, u64 end);
3347 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
3348 u64 num_bytes, u64 *actual_bytes);
3349 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3350 struct btrfs_root *root, u64 type);
3351 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3352
3353 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3354 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3355 struct btrfs_fs_info *fs_info);
3356 int __get_raid_index(u64 flags);
3357 /* ctree.c */
3358 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3359 int level, int *slot);
3360 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3361 int btrfs_previous_item(struct btrfs_root *root,
3362 struct btrfs_path *path, u64 min_objectid,
3363 int type);
3364 int btrfs_previous_extent_item(struct btrfs_root *root,
3365 struct btrfs_path *path, u64 min_objectid);
3366 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3367 struct btrfs_key *new_key);
3368 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3369 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3370 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3371 struct btrfs_key *key, int lowest_level,
3372 u64 min_trans);
3373 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3374 struct btrfs_path *path,
3375 u64 min_trans);
3376 enum btrfs_compare_tree_result {
3377 BTRFS_COMPARE_TREE_NEW,
3378 BTRFS_COMPARE_TREE_DELETED,
3379 BTRFS_COMPARE_TREE_CHANGED,
3380 BTRFS_COMPARE_TREE_SAME,
3381 };
3382 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3383 struct btrfs_root *right_root,
3384 struct btrfs_path *left_path,
3385 struct btrfs_path *right_path,
3386 struct btrfs_key *key,
3387 enum btrfs_compare_tree_result result,
3388 void *ctx);
3389 int btrfs_compare_trees(struct btrfs_root *left_root,
3390 struct btrfs_root *right_root,
3391 btrfs_changed_cb_t cb, void *ctx);
3392 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3393 struct btrfs_root *root, struct extent_buffer *buf,
3394 struct extent_buffer *parent, int parent_slot,
3395 struct extent_buffer **cow_ret);
3396 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3397 struct btrfs_root *root,
3398 struct extent_buffer *buf,
3399 struct extent_buffer **cow_ret, u64 new_root_objectid);
3400 int btrfs_block_can_be_shared(struct btrfs_root *root,
3401 struct extent_buffer *buf);
3402 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3403 u32 data_size);
3404 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3405 u32 new_size, int from_end);
3406 int btrfs_split_item(struct btrfs_trans_handle *trans,
3407 struct btrfs_root *root,
3408 struct btrfs_path *path,
3409 struct btrfs_key *new_key,
3410 unsigned long split_offset);
3411 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3412 struct btrfs_root *root,
3413 struct btrfs_path *path,
3414 struct btrfs_key *new_key);
3415 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3416 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3417 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3418 *root, struct btrfs_key *key, struct btrfs_path *p, int
3419 ins_len, int cow);
3420 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3421 struct btrfs_path *p, u64 time_seq);
3422 int btrfs_search_slot_for_read(struct btrfs_root *root,
3423 struct btrfs_key *key, struct btrfs_path *p,
3424 int find_higher, int return_any);
3425 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3426 struct btrfs_root *root, struct extent_buffer *parent,
3427 int start_slot, u64 *last_ret,
3428 struct btrfs_key *progress);
3429 void btrfs_release_path(struct btrfs_path *p);
3430 struct btrfs_path *btrfs_alloc_path(void);
3431 void btrfs_free_path(struct btrfs_path *p);
3432 void btrfs_set_path_blocking(struct btrfs_path *p);
3433 void btrfs_clear_path_blocking(struct btrfs_path *p,
3434 struct extent_buffer *held, int held_rw);
3435 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3436
3437 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3438 struct btrfs_path *path, int slot, int nr);
3439 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3440 struct btrfs_root *root,
3441 struct btrfs_path *path)
3442 {
3443 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3444 }
3445
3446 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3447 struct btrfs_key *cpu_key, u32 *data_size,
3448 u32 total_data, u32 total_size, int nr);
3449 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3450 *root, struct btrfs_key *key, void *data, u32 data_size);
3451 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3452 struct btrfs_root *root,
3453 struct btrfs_path *path,
3454 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3455
3456 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3457 struct btrfs_root *root,
3458 struct btrfs_path *path,
3459 struct btrfs_key *key,
3460 u32 data_size)
3461 {
3462 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3463 }
3464
3465 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3466 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3467 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3468 u64 time_seq);
3469 static inline int btrfs_next_old_item(struct btrfs_root *root,
3470 struct btrfs_path *p, u64 time_seq)
3471 {
3472 ++p->slots[0];
3473 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3474 return btrfs_next_old_leaf(root, p, time_seq);
3475 return 0;
3476 }
3477 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3478 {
3479 return btrfs_next_old_item(root, p, 0);
3480 }
3481 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3482 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3483 struct btrfs_block_rsv *block_rsv,
3484 int update_ref, int for_reloc);
3485 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3486 struct btrfs_root *root,
3487 struct extent_buffer *node,
3488 struct extent_buffer *parent);
3489 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3490 {
3491 /*
3492 * Get synced with close_ctree()
3493 */
3494 smp_mb();
3495 return fs_info->closing;
3496 }
3497
3498 /*
3499 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3500 * anything except sleeping. This function is used to check the status of
3501 * the fs.
3502 */
3503 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3504 {
3505 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3506 btrfs_fs_closing(root->fs_info));
3507 }
3508
3509 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3510 {
3511 kfree(fs_info->balance_ctl);
3512 kfree(fs_info->delayed_root);
3513 kfree(fs_info->extent_root);
3514 kfree(fs_info->tree_root);
3515 kfree(fs_info->chunk_root);
3516 kfree(fs_info->dev_root);
3517 kfree(fs_info->csum_root);
3518 kfree(fs_info->quota_root);
3519 kfree(fs_info->uuid_root);
3520 kfree(fs_info->super_copy);
3521 kfree(fs_info->super_for_commit);
3522 kfree(fs_info);
3523 }
3524
3525 /* tree mod log functions from ctree.c */
3526 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3527 struct seq_list *elem);
3528 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3529 struct seq_list *elem);
3530 u64 btrfs_tree_mod_seq_prev(u64 seq);
3531 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3532
3533 /* root-item.c */
3534 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3535 struct btrfs_path *path,
3536 u64 root_id, u64 ref_id);
3537 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3538 struct btrfs_root *tree_root,
3539 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3540 const char *name, int name_len);
3541 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3542 struct btrfs_root *tree_root,
3543 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3544 const char *name, int name_len);
3545 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3546 struct btrfs_key *key);
3547 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3548 *root, struct btrfs_key *key, struct btrfs_root_item
3549 *item);
3550 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3551 struct btrfs_root *root,
3552 struct btrfs_key *key,
3553 struct btrfs_root_item *item);
3554 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3555 struct btrfs_path *path, struct btrfs_root_item *root_item,
3556 struct btrfs_key *root_key);
3557 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3558 void btrfs_set_root_node(struct btrfs_root_item *item,
3559 struct extent_buffer *node);
3560 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3561 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3562 struct btrfs_root *root);
3563
3564 /* uuid-tree.c */
3565 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3566 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3567 u64 subid);
3568 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3569 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3570 u64 subid);
3571 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3572 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3573 u64));
3574
3575 /* dir-item.c */
3576 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3577 const char *name, int name_len);
3578 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3579 struct btrfs_root *root, const char *name,
3580 int name_len, struct inode *dir,
3581 struct btrfs_key *location, u8 type, u64 index);
3582 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root,
3584 struct btrfs_path *path, u64 dir,
3585 const char *name, int name_len,
3586 int mod);
3587 struct btrfs_dir_item *
3588 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3589 struct btrfs_root *root,
3590 struct btrfs_path *path, u64 dir,
3591 u64 objectid, const char *name, int name_len,
3592 int mod);
3593 struct btrfs_dir_item *
3594 btrfs_search_dir_index_item(struct btrfs_root *root,
3595 struct btrfs_path *path, u64 dirid,
3596 const char *name, int name_len);
3597 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3598 struct btrfs_root *root,
3599 struct btrfs_path *path,
3600 struct btrfs_dir_item *di);
3601 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3602 struct btrfs_root *root,
3603 struct btrfs_path *path, u64 objectid,
3604 const char *name, u16 name_len,
3605 const void *data, u16 data_len);
3606 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3607 struct btrfs_root *root,
3608 struct btrfs_path *path, u64 dir,
3609 const char *name, u16 name_len,
3610 int mod);
3611 int verify_dir_item(struct btrfs_root *root,
3612 struct extent_buffer *leaf,
3613 struct btrfs_dir_item *dir_item);
3614
3615 /* orphan.c */
3616 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3617 struct btrfs_root *root, u64 offset);
3618 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3619 struct btrfs_root *root, u64 offset);
3620 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3621
3622 /* inode-item.c */
3623 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3624 struct btrfs_root *root,
3625 const char *name, int name_len,
3626 u64 inode_objectid, u64 ref_objectid, u64 index);
3627 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3628 struct btrfs_root *root,
3629 const char *name, int name_len,
3630 u64 inode_objectid, u64 ref_objectid, u64 *index);
3631 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3632 struct btrfs_root *root,
3633 struct btrfs_path *path, u64 objectid);
3634 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3635 *root, struct btrfs_path *path,
3636 struct btrfs_key *location, int mod);
3637
3638 struct btrfs_inode_extref *
3639 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3640 struct btrfs_root *root,
3641 struct btrfs_path *path,
3642 const char *name, int name_len,
3643 u64 inode_objectid, u64 ref_objectid, int ins_len,
3644 int cow);
3645
3646 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3647 u64 ref_objectid, const char *name,
3648 int name_len,
3649 struct btrfs_inode_extref **extref_ret);
3650
3651 /* file-item.c */
3652 struct btrfs_dio_private;
3653 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3654 struct btrfs_root *root, u64 bytenr, u64 len);
3655 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3656 struct bio *bio, u32 *dst);
3657 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3658 struct btrfs_dio_private *dip, struct bio *bio,
3659 u64 logical_offset);
3660 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3661 struct btrfs_root *root,
3662 u64 objectid, u64 pos,
3663 u64 disk_offset, u64 disk_num_bytes,
3664 u64 num_bytes, u64 offset, u64 ram_bytes,
3665 u8 compression, u8 encryption, u16 other_encoding);
3666 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3667 struct btrfs_root *root,
3668 struct btrfs_path *path, u64 objectid,
3669 u64 bytenr, int mod);
3670 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3671 struct btrfs_root *root,
3672 struct btrfs_ordered_sum *sums);
3673 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3674 struct bio *bio, u64 file_start, int contig);
3675 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3676 struct list_head *list, int search_commit);
3677 /* inode.c */
3678 struct btrfs_delalloc_work {
3679 struct inode *inode;
3680 int wait;
3681 int delay_iput;
3682 struct completion completion;
3683 struct list_head list;
3684 struct btrfs_work work;
3685 };
3686
3687 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3688 int wait, int delay_iput);
3689 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3690
3691 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3692 size_t pg_offset, u64 start, u64 len,
3693 int create);
3694 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3695 u64 *orig_start, u64 *orig_block_len,
3696 u64 *ram_bytes);
3697
3698 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3699 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3700 #define ClearPageChecked ClearPageFsMisc
3701 #define SetPageChecked SetPageFsMisc
3702 #define PageChecked PageFsMisc
3703 #endif
3704
3705 /* This forces readahead on a given range of bytes in an inode */
3706 static inline void btrfs_force_ra(struct address_space *mapping,
3707 struct file_ra_state *ra, struct file *file,
3708 pgoff_t offset, unsigned long req_size)
3709 {
3710 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3711 }
3712
3713 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3714 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3715 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3716 struct btrfs_root *root,
3717 struct inode *dir, struct inode *inode,
3718 const char *name, int name_len);
3719 int btrfs_add_link(struct btrfs_trans_handle *trans,
3720 struct inode *parent_inode, struct inode *inode,
3721 const char *name, int name_len, int add_backref, u64 index);
3722 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3723 struct btrfs_root *root,
3724 struct inode *dir, u64 objectid,
3725 const char *name, int name_len);
3726 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3727 int front);
3728 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *root,
3730 struct inode *inode, u64 new_size,
3731 u32 min_type);
3732
3733 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3734 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput);
3735 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3736 struct extent_state **cached_state);
3737 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3738 struct btrfs_root *new_root,
3739 struct btrfs_root *parent_root,
3740 u64 new_dirid);
3741 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3742 size_t size, struct bio *bio,
3743 unsigned long bio_flags);
3744 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3745 int btrfs_readpage(struct file *file, struct page *page);
3746 void btrfs_evict_inode(struct inode *inode);
3747 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3748 struct inode *btrfs_alloc_inode(struct super_block *sb);
3749 void btrfs_destroy_inode(struct inode *inode);
3750 int btrfs_drop_inode(struct inode *inode);
3751 int btrfs_init_cachep(void);
3752 void btrfs_destroy_cachep(void);
3753 long btrfs_ioctl_trans_end(struct file *file);
3754 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3755 struct btrfs_root *root, int *was_new);
3756 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3757 size_t pg_offset, u64 start, u64 end,
3758 int create);
3759 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3760 struct btrfs_root *root,
3761 struct inode *inode);
3762 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3763 struct btrfs_root *root, struct inode *inode);
3764 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3765 int btrfs_orphan_cleanup(struct btrfs_root *root);
3766 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3767 struct btrfs_root *root);
3768 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3769 void btrfs_invalidate_inodes(struct btrfs_root *root);
3770 void btrfs_add_delayed_iput(struct inode *inode);
3771 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3772 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3773 u64 start, u64 num_bytes, u64 min_size,
3774 loff_t actual_len, u64 *alloc_hint);
3775 int btrfs_prealloc_file_range_trans(struct inode *inode,
3776 struct btrfs_trans_handle *trans, int mode,
3777 u64 start, u64 num_bytes, u64 min_size,
3778 loff_t actual_len, u64 *alloc_hint);
3779 extern const struct dentry_operations btrfs_dentry_operations;
3780
3781 /* ioctl.c */
3782 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3783 void btrfs_update_iflags(struct inode *inode);
3784 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3785 int btrfs_is_empty_uuid(u8 *uuid);
3786 int btrfs_defrag_file(struct inode *inode, struct file *file,
3787 struct btrfs_ioctl_defrag_range_args *range,
3788 u64 newer_than, unsigned long max_pages);
3789 void btrfs_get_block_group_info(struct list_head *groups_list,
3790 struct btrfs_ioctl_space_info *space);
3791 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3792 struct btrfs_ioctl_balance_args *bargs);
3793
3794
3795 /* file.c */
3796 int btrfs_auto_defrag_init(void);
3797 void btrfs_auto_defrag_exit(void);
3798 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3799 struct inode *inode);
3800 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3801 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3802 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3803 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3804 int skip_pinned);
3805 extern const struct file_operations btrfs_file_operations;
3806 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3807 struct btrfs_root *root, struct inode *inode,
3808 struct btrfs_path *path, u64 start, u64 end,
3809 u64 *drop_end, int drop_cache,
3810 int replace_extent,
3811 u32 extent_item_size,
3812 int *key_inserted);
3813 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3814 struct btrfs_root *root, struct inode *inode, u64 start,
3815 u64 end, int drop_cache);
3816 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3817 struct inode *inode, u64 start, u64 end);
3818 int btrfs_release_file(struct inode *inode, struct file *file);
3819 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3820 struct page **pages, size_t num_pages,
3821 loff_t pos, size_t write_bytes,
3822 struct extent_state **cached);
3823
3824 /* tree-defrag.c */
3825 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3826 struct btrfs_root *root);
3827
3828 /* sysfs.c */
3829 int btrfs_init_sysfs(void);
3830 void btrfs_exit_sysfs(void);
3831 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
3832 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
3833
3834 /* xattr.c */
3835 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3836
3837 /* super.c */
3838 int btrfs_parse_options(struct btrfs_root *root, char *options);
3839 int btrfs_sync_fs(struct super_block *sb, int wait);
3840
3841 #ifdef CONFIG_PRINTK
3842 __printf(2, 3)
3843 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3844 #else
3845 static inline __printf(2, 3)
3846 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3847 {
3848 }
3849 #endif
3850
3851 #define btrfs_emerg(fs_info, fmt, args...) \
3852 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3853 #define btrfs_alert(fs_info, fmt, args...) \
3854 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3855 #define btrfs_crit(fs_info, fmt, args...) \
3856 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3857 #define btrfs_err(fs_info, fmt, args...) \
3858 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3859 #define btrfs_warn(fs_info, fmt, args...) \
3860 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3861 #define btrfs_notice(fs_info, fmt, args...) \
3862 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3863 #define btrfs_info(fs_info, fmt, args...) \
3864 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3865
3866 #ifdef DEBUG
3867 #define btrfs_debug(fs_info, fmt, args...) \
3868 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3869 #else
3870 #define btrfs_debug(fs_info, fmt, args...) \
3871 no_printk(KERN_DEBUG fmt, ##args)
3872 #endif
3873
3874 #ifdef CONFIG_BTRFS_ASSERT
3875
3876 static inline void assfail(char *expr, char *file, int line)
3877 {
3878 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
3879 expr, file, line);
3880 BUG();
3881 }
3882
3883 #define ASSERT(expr) \
3884 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3885 #else
3886 #define ASSERT(expr) ((void)0)
3887 #endif
3888
3889 #define btrfs_assert()
3890 __printf(5, 6)
3891 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3892 unsigned int line, int errno, const char *fmt, ...);
3893
3894
3895 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3896 struct btrfs_root *root, const char *function,
3897 unsigned int line, int errno);
3898
3899 #define btrfs_set_fs_incompat(__fs_info, opt) \
3900 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3901
3902 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3903 u64 flag)
3904 {
3905 struct btrfs_super_block *disk_super;
3906 u64 features;
3907
3908 disk_super = fs_info->super_copy;
3909 features = btrfs_super_incompat_flags(disk_super);
3910 if (!(features & flag)) {
3911 spin_lock(&fs_info->super_lock);
3912 features = btrfs_super_incompat_flags(disk_super);
3913 if (!(features & flag)) {
3914 features |= flag;
3915 btrfs_set_super_incompat_flags(disk_super, features);
3916 btrfs_info(fs_info, "setting %llu feature flag",
3917 flag);
3918 }
3919 spin_unlock(&fs_info->super_lock);
3920 }
3921 }
3922
3923 #define btrfs_fs_incompat(fs_info, opt) \
3924 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3925
3926 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3927 {
3928 struct btrfs_super_block *disk_super;
3929 disk_super = fs_info->super_copy;
3930 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3931 }
3932
3933 /*
3934 * Call btrfs_abort_transaction as early as possible when an error condition is
3935 * detected, that way the exact line number is reported.
3936 */
3937
3938 #define btrfs_abort_transaction(trans, root, errno) \
3939 do { \
3940 __btrfs_abort_transaction(trans, root, __func__, \
3941 __LINE__, errno); \
3942 } while (0)
3943
3944 #define btrfs_std_error(fs_info, errno) \
3945 do { \
3946 if ((errno)) \
3947 __btrfs_std_error((fs_info), __func__, \
3948 __LINE__, (errno), NULL); \
3949 } while (0)
3950
3951 #define btrfs_error(fs_info, errno, fmt, args...) \
3952 do { \
3953 __btrfs_std_error((fs_info), __func__, __LINE__, \
3954 (errno), fmt, ##args); \
3955 } while (0)
3956
3957 __printf(5, 6)
3958 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3959 unsigned int line, int errno, const char *fmt, ...);
3960
3961 /*
3962 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3963 * will panic(). Otherwise we BUG() here.
3964 */
3965 #define btrfs_panic(fs_info, errno, fmt, args...) \
3966 do { \
3967 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3968 BUG(); \
3969 } while (0)
3970
3971 /* acl.c */
3972 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3973 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3974 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3975 struct inode *inode, struct inode *dir);
3976 int btrfs_acl_chmod(struct inode *inode);
3977 #else
3978 #define btrfs_get_acl NULL
3979 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3980 struct inode *inode, struct inode *dir)
3981 {
3982 return 0;
3983 }
3984 static inline int btrfs_acl_chmod(struct inode *inode)
3985 {
3986 return 0;
3987 }
3988 #endif
3989
3990 /* relocation.c */
3991 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
3992 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3993 struct btrfs_root *root);
3994 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *root);
3996 int btrfs_recover_relocation(struct btrfs_root *root);
3997 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
3998 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3999 struct btrfs_root *root, struct extent_buffer *buf,
4000 struct extent_buffer *cow);
4001 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4002 struct btrfs_pending_snapshot *pending,
4003 u64 *bytes_to_reserve);
4004 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4005 struct btrfs_pending_snapshot *pending);
4006
4007 /* scrub.c */
4008 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4009 u64 end, struct btrfs_scrub_progress *progress,
4010 int readonly, int is_dev_replace);
4011 void btrfs_scrub_pause(struct btrfs_root *root);
4012 void btrfs_scrub_continue(struct btrfs_root *root);
4013 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4014 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4015 struct btrfs_device *dev);
4016 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4017 struct btrfs_scrub_progress *progress);
4018
4019 /* dev-replace.c */
4020 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4021 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4022 void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info);
4023
4024 /* reada.c */
4025 struct reada_control {
4026 struct btrfs_root *root; /* tree to prefetch */
4027 struct btrfs_key key_start;
4028 struct btrfs_key key_end; /* exclusive */
4029 atomic_t elems;
4030 struct kref refcnt;
4031 wait_queue_head_t wait;
4032 };
4033 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4034 struct btrfs_key *start, struct btrfs_key *end);
4035 int btrfs_reada_wait(void *handle);
4036 void btrfs_reada_detach(void *handle);
4037 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4038 u64 start, int err);
4039
4040 /* qgroup.c */
4041 struct qgroup_update {
4042 struct list_head list;
4043 struct btrfs_delayed_ref_node *node;
4044 struct btrfs_delayed_extent_op *extent_op;
4045 };
4046
4047 int btrfs_quota_enable(struct btrfs_trans_handle *trans,
4048 struct btrfs_fs_info *fs_info);
4049 int btrfs_quota_disable(struct btrfs_trans_handle *trans,
4050 struct btrfs_fs_info *fs_info);
4051 int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info);
4052 void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info);
4053 int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info);
4054 int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans,
4055 struct btrfs_fs_info *fs_info, u64 src, u64 dst);
4056 int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans,
4057 struct btrfs_fs_info *fs_info, u64 src, u64 dst);
4058 int btrfs_create_qgroup(struct btrfs_trans_handle *trans,
4059 struct btrfs_fs_info *fs_info, u64 qgroupid,
4060 char *name);
4061 int btrfs_remove_qgroup(struct btrfs_trans_handle *trans,
4062 struct btrfs_fs_info *fs_info, u64 qgroupid);
4063 int btrfs_limit_qgroup(struct btrfs_trans_handle *trans,
4064 struct btrfs_fs_info *fs_info, u64 qgroupid,
4065 struct btrfs_qgroup_limit *limit);
4066 int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info);
4067 void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info);
4068 struct btrfs_delayed_extent_op;
4069 int btrfs_qgroup_record_ref(struct btrfs_trans_handle *trans,
4070 struct btrfs_delayed_ref_node *node,
4071 struct btrfs_delayed_extent_op *extent_op);
4072 int btrfs_qgroup_account_ref(struct btrfs_trans_handle *trans,
4073 struct btrfs_fs_info *fs_info,
4074 struct btrfs_delayed_ref_node *node,
4075 struct btrfs_delayed_extent_op *extent_op);
4076 int btrfs_run_qgroups(struct btrfs_trans_handle *trans,
4077 struct btrfs_fs_info *fs_info);
4078 int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans,
4079 struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid,
4080 struct btrfs_qgroup_inherit *inherit);
4081 int btrfs_qgroup_reserve(struct btrfs_root *root, u64 num_bytes);
4082 void btrfs_qgroup_free(struct btrfs_root *root, u64 num_bytes);
4083
4084 void assert_qgroups_uptodate(struct btrfs_trans_handle *trans);
4085
4086 static inline int is_fstree(u64 rootid)
4087 {
4088 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4089 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
4090 return 1;
4091 return 0;
4092 }
4093
4094 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4095 {
4096 return signal_pending(current);
4097 }
4098
4099 /* Sanity test specific functions */
4100 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4101 void btrfs_test_destroy_inode(struct inode *inode);
4102 #endif
4103
4104 #endif