]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/ctree.h
btrfs: do not start relocation until in progress drops are done
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ctree.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51
52 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
53
54 /*
55 * Maximum number of mirrors that can be available for all profiles counting
56 * the target device of dev-replace as one. During an active device replace
57 * procedure, the target device of the copy operation is a mirror for the
58 * filesystem data as well that can be used to read data in order to repair
59 * read errors on other disks.
60 *
61 * Current value is derived from RAID1C4 with 4 copies.
62 */
63 #define BTRFS_MAX_MIRRORS (4 + 1)
64
65 #define BTRFS_MAX_LEVEL 8
66
67 #define BTRFS_OLDEST_GENERATION 0ULL
68
69 /*
70 * we can actually store much bigger names, but lets not confuse the rest
71 * of linux
72 */
73 #define BTRFS_NAME_LEN 255
74
75 /*
76 * Theoretical limit is larger, but we keep this down to a sane
77 * value. That should limit greatly the possibility of collisions on
78 * inode ref items.
79 */
80 #define BTRFS_LINK_MAX 65535U
81
82 #define BTRFS_EMPTY_DIR_SIZE 0
83
84 /* ioprio of readahead is set to idle */
85 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
86
87 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M
88
89 /*
90 * Use large batch size to reduce overhead of metadata updates. On the reader
91 * side, we only read it when we are close to ENOSPC and the read overhead is
92 * mostly related to the number of CPUs, so it is OK to use arbitrary large
93 * value here.
94 */
95 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
96
97 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
98
99 /*
100 * Deltas are an effective way to populate global statistics. Give macro names
101 * to make it clear what we're doing. An example is discard_extents in
102 * btrfs_free_space_ctl.
103 */
104 #define BTRFS_STAT_NR_ENTRIES 2
105 #define BTRFS_STAT_CURR 0
106 #define BTRFS_STAT_PREV 1
107
108 /*
109 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
110 */
111 static inline u32 count_max_extents(u64 size)
112 {
113 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
114 }
115
116 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
117 {
118 BUG_ON(num_stripes == 0);
119 return sizeof(struct btrfs_chunk) +
120 sizeof(struct btrfs_stripe) * (num_stripes - 1);
121 }
122
123 /*
124 * Runtime (in-memory) states of filesystem
125 */
126 enum {
127 /* Global indicator of serious filesystem errors */
128 BTRFS_FS_STATE_ERROR,
129 /*
130 * Filesystem is being remounted, allow to skip some operations, like
131 * defrag
132 */
133 BTRFS_FS_STATE_REMOUNTING,
134 /* Filesystem in RO mode */
135 BTRFS_FS_STATE_RO,
136 /* Track if a transaction abort has been reported on this filesystem */
137 BTRFS_FS_STATE_TRANS_ABORTED,
138 /*
139 * Bio operations should be blocked on this filesystem because a source
140 * or target device is being destroyed as part of a device replace
141 */
142 BTRFS_FS_STATE_DEV_REPLACING,
143 /* The btrfs_fs_info created for self-tests */
144 BTRFS_FS_STATE_DUMMY_FS_INFO,
145 };
146
147 #define BTRFS_BACKREF_REV_MAX 256
148 #define BTRFS_BACKREF_REV_SHIFT 56
149 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
150 BTRFS_BACKREF_REV_SHIFT)
151
152 #define BTRFS_OLD_BACKREF_REV 0
153 #define BTRFS_MIXED_BACKREF_REV 1
154
155 /*
156 * every tree block (leaf or node) starts with this header.
157 */
158 struct btrfs_header {
159 /* these first four must match the super block */
160 u8 csum[BTRFS_CSUM_SIZE];
161 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
162 __le64 bytenr; /* which block this node is supposed to live in */
163 __le64 flags;
164
165 /* allowed to be different from the super from here on down */
166 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
167 __le64 generation;
168 __le64 owner;
169 __le32 nritems;
170 u8 level;
171 } __attribute__ ((__packed__));
172
173 /*
174 * this is a very generous portion of the super block, giving us
175 * room to translate 14 chunks with 3 stripes each.
176 */
177 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
178
179 /*
180 * just in case we somehow lose the roots and are not able to mount,
181 * we store an array of the roots from previous transactions
182 * in the super.
183 */
184 #define BTRFS_NUM_BACKUP_ROOTS 4
185 struct btrfs_root_backup {
186 __le64 tree_root;
187 __le64 tree_root_gen;
188
189 __le64 chunk_root;
190 __le64 chunk_root_gen;
191
192 __le64 extent_root;
193 __le64 extent_root_gen;
194
195 __le64 fs_root;
196 __le64 fs_root_gen;
197
198 __le64 dev_root;
199 __le64 dev_root_gen;
200
201 __le64 csum_root;
202 __le64 csum_root_gen;
203
204 __le64 total_bytes;
205 __le64 bytes_used;
206 __le64 num_devices;
207 /* future */
208 __le64 unused_64[4];
209
210 u8 tree_root_level;
211 u8 chunk_root_level;
212 u8 extent_root_level;
213 u8 fs_root_level;
214 u8 dev_root_level;
215 u8 csum_root_level;
216 /* future and to align */
217 u8 unused_8[10];
218 } __attribute__ ((__packed__));
219
220 /*
221 * the super block basically lists the main trees of the FS
222 * it currently lacks any block count etc etc
223 */
224 struct btrfs_super_block {
225 /* the first 4 fields must match struct btrfs_header */
226 u8 csum[BTRFS_CSUM_SIZE];
227 /* FS specific UUID, visible to user */
228 u8 fsid[BTRFS_FSID_SIZE];
229 __le64 bytenr; /* this block number */
230 __le64 flags;
231
232 /* allowed to be different from the btrfs_header from here own down */
233 __le64 magic;
234 __le64 generation;
235 __le64 root;
236 __le64 chunk_root;
237 __le64 log_root;
238
239 /* this will help find the new super based on the log root */
240 __le64 log_root_transid;
241 __le64 total_bytes;
242 __le64 bytes_used;
243 __le64 root_dir_objectid;
244 __le64 num_devices;
245 __le32 sectorsize;
246 __le32 nodesize;
247 __le32 __unused_leafsize;
248 __le32 stripesize;
249 __le32 sys_chunk_array_size;
250 __le64 chunk_root_generation;
251 __le64 compat_flags;
252 __le64 compat_ro_flags;
253 __le64 incompat_flags;
254 __le16 csum_type;
255 u8 root_level;
256 u8 chunk_root_level;
257 u8 log_root_level;
258 struct btrfs_dev_item dev_item;
259
260 char label[BTRFS_LABEL_SIZE];
261
262 __le64 cache_generation;
263 __le64 uuid_tree_generation;
264
265 /* the UUID written into btree blocks */
266 u8 metadata_uuid[BTRFS_FSID_SIZE];
267
268 /* future expansion */
269 __le64 reserved[28];
270 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
271 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
272 } __attribute__ ((__packed__));
273
274 /*
275 * Compat flags that we support. If any incompat flags are set other than the
276 * ones specified below then we will fail to mount
277 */
278 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
279 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
280 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
281
282 #define BTRFS_FEATURE_COMPAT_RO_SUPP \
283 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
284 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
285 BTRFS_FEATURE_COMPAT_RO_VERITY)
286
287 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
288 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
289
290 #define BTRFS_FEATURE_INCOMPAT_SUPP \
291 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
292 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
293 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
294 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
295 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
296 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
297 BTRFS_FEATURE_INCOMPAT_RAID56 | \
298 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
299 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
300 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
301 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
302 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
303 BTRFS_FEATURE_INCOMPAT_ZONED)
304
305 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
306 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
307 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
308
309 /*
310 * A leaf is full of items. offset and size tell us where to find
311 * the item in the leaf (relative to the start of the data area)
312 */
313 struct btrfs_item {
314 struct btrfs_disk_key key;
315 __le32 offset;
316 __le32 size;
317 } __attribute__ ((__packed__));
318
319 /*
320 * leaves have an item area and a data area:
321 * [item0, item1....itemN] [free space] [dataN...data1, data0]
322 *
323 * The data is separate from the items to get the keys closer together
324 * during searches.
325 */
326 struct btrfs_leaf {
327 struct btrfs_header header;
328 struct btrfs_item items[];
329 } __attribute__ ((__packed__));
330
331 /*
332 * all non-leaf blocks are nodes, they hold only keys and pointers to
333 * other blocks
334 */
335 struct btrfs_key_ptr {
336 struct btrfs_disk_key key;
337 __le64 blockptr;
338 __le64 generation;
339 } __attribute__ ((__packed__));
340
341 struct btrfs_node {
342 struct btrfs_header header;
343 struct btrfs_key_ptr ptrs[];
344 } __attribute__ ((__packed__));
345
346 /* Read ahead values for struct btrfs_path.reada */
347 enum {
348 READA_NONE,
349 READA_BACK,
350 READA_FORWARD,
351 /*
352 * Similar to READA_FORWARD but unlike it:
353 *
354 * 1) It will trigger readahead even for leaves that are not close to
355 * each other on disk;
356 * 2) It also triggers readahead for nodes;
357 * 3) During a search, even when a node or leaf is already in memory, it
358 * will still trigger readahead for other nodes and leaves that follow
359 * it.
360 *
361 * This is meant to be used only when we know we are iterating over the
362 * entire tree or a very large part of it.
363 */
364 READA_FORWARD_ALWAYS,
365 };
366
367 /*
368 * btrfs_paths remember the path taken from the root down to the leaf.
369 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
370 * to any other levels that are present.
371 *
372 * The slots array records the index of the item or block pointer
373 * used while walking the tree.
374 */
375 struct btrfs_path {
376 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
377 int slots[BTRFS_MAX_LEVEL];
378 /* if there is real range locking, this locks field will change */
379 u8 locks[BTRFS_MAX_LEVEL];
380 u8 reada;
381 /* keep some upper locks as we walk down */
382 u8 lowest_level;
383
384 /*
385 * set by btrfs_split_item, tells search_slot to keep all locks
386 * and to force calls to keep space in the nodes
387 */
388 unsigned int search_for_split:1;
389 unsigned int keep_locks:1;
390 unsigned int skip_locking:1;
391 unsigned int search_commit_root:1;
392 unsigned int need_commit_sem:1;
393 unsigned int skip_release_on_error:1;
394 /*
395 * Indicate that new item (btrfs_search_slot) is extending already
396 * existing item and ins_len contains only the data size and not item
397 * header (ie. sizeof(struct btrfs_item) is not included).
398 */
399 unsigned int search_for_extension:1;
400 };
401 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
402 sizeof(struct btrfs_item))
403 struct btrfs_dev_replace {
404 u64 replace_state; /* see #define above */
405 time64_t time_started; /* seconds since 1-Jan-1970 */
406 time64_t time_stopped; /* seconds since 1-Jan-1970 */
407 atomic64_t num_write_errors;
408 atomic64_t num_uncorrectable_read_errors;
409
410 u64 cursor_left;
411 u64 committed_cursor_left;
412 u64 cursor_left_last_write_of_item;
413 u64 cursor_right;
414
415 u64 cont_reading_from_srcdev_mode; /* see #define above */
416
417 int is_valid;
418 int item_needs_writeback;
419 struct btrfs_device *srcdev;
420 struct btrfs_device *tgtdev;
421
422 struct mutex lock_finishing_cancel_unmount;
423 struct rw_semaphore rwsem;
424
425 struct btrfs_scrub_progress scrub_progress;
426
427 struct percpu_counter bio_counter;
428 wait_queue_head_t replace_wait;
429 };
430
431 /*
432 * free clusters are used to claim free space in relatively large chunks,
433 * allowing us to do less seeky writes. They are used for all metadata
434 * allocations. In ssd_spread mode they are also used for data allocations.
435 */
436 struct btrfs_free_cluster {
437 spinlock_t lock;
438 spinlock_t refill_lock;
439 struct rb_root root;
440
441 /* largest extent in this cluster */
442 u64 max_size;
443
444 /* first extent starting offset */
445 u64 window_start;
446
447 /* We did a full search and couldn't create a cluster */
448 bool fragmented;
449
450 struct btrfs_block_group *block_group;
451 /*
452 * when a cluster is allocated from a block group, we put the
453 * cluster onto a list in the block group so that it can
454 * be freed before the block group is freed.
455 */
456 struct list_head block_group_list;
457 };
458
459 enum btrfs_caching_type {
460 BTRFS_CACHE_NO,
461 BTRFS_CACHE_STARTED,
462 BTRFS_CACHE_FAST,
463 BTRFS_CACHE_FINISHED,
464 BTRFS_CACHE_ERROR,
465 };
466
467 /*
468 * Tree to record all locked full stripes of a RAID5/6 block group
469 */
470 struct btrfs_full_stripe_locks_tree {
471 struct rb_root root;
472 struct mutex lock;
473 };
474
475 /* Discard control. */
476 /*
477 * Async discard uses multiple lists to differentiate the discard filter
478 * parameters. Index 0 is for completely free block groups where we need to
479 * ensure the entire block group is trimmed without being lossy. Indices
480 * afterwards represent monotonically decreasing discard filter sizes to
481 * prioritize what should be discarded next.
482 */
483 #define BTRFS_NR_DISCARD_LISTS 3
484 #define BTRFS_DISCARD_INDEX_UNUSED 0
485 #define BTRFS_DISCARD_INDEX_START 1
486
487 struct btrfs_discard_ctl {
488 struct workqueue_struct *discard_workers;
489 struct delayed_work work;
490 spinlock_t lock;
491 struct btrfs_block_group *block_group;
492 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
493 u64 prev_discard;
494 u64 prev_discard_time;
495 atomic_t discardable_extents;
496 atomic64_t discardable_bytes;
497 u64 max_discard_size;
498 u64 delay_ms;
499 u32 iops_limit;
500 u32 kbps_limit;
501 u64 discard_extent_bytes;
502 u64 discard_bitmap_bytes;
503 atomic64_t discard_bytes_saved;
504 };
505
506 enum btrfs_orphan_cleanup_state {
507 ORPHAN_CLEANUP_STARTED = 1,
508 ORPHAN_CLEANUP_DONE = 2,
509 };
510
511 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
512
513 /* fs_info */
514 struct reloc_control;
515 struct btrfs_device;
516 struct btrfs_fs_devices;
517 struct btrfs_balance_control;
518 struct btrfs_delayed_root;
519
520 /*
521 * Block group or device which contains an active swapfile. Used for preventing
522 * unsafe operations while a swapfile is active.
523 *
524 * These are sorted on (ptr, inode) (note that a block group or device can
525 * contain more than one swapfile). We compare the pointer values because we
526 * don't actually care what the object is, we just need a quick check whether
527 * the object exists in the rbtree.
528 */
529 struct btrfs_swapfile_pin {
530 struct rb_node node;
531 void *ptr;
532 struct inode *inode;
533 /*
534 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
535 * points to a struct btrfs_device.
536 */
537 bool is_block_group;
538 /*
539 * Only used when 'is_block_group' is true and it is the number of
540 * extents used by a swapfile for this block group ('ptr' field).
541 */
542 int bg_extent_count;
543 };
544
545 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
546
547 enum {
548 BTRFS_FS_BARRIER,
549 BTRFS_FS_CLOSING_START,
550 BTRFS_FS_CLOSING_DONE,
551 BTRFS_FS_LOG_RECOVERING,
552 BTRFS_FS_OPEN,
553 BTRFS_FS_QUOTA_ENABLED,
554 BTRFS_FS_UPDATE_UUID_TREE_GEN,
555 BTRFS_FS_CREATING_FREE_SPACE_TREE,
556 BTRFS_FS_BTREE_ERR,
557 BTRFS_FS_LOG1_ERR,
558 BTRFS_FS_LOG2_ERR,
559 BTRFS_FS_QUOTA_OVERRIDE,
560 /* Used to record internally whether fs has been frozen */
561 BTRFS_FS_FROZEN,
562 /*
563 * Indicate that balance has been set up from the ioctl and is in the
564 * main phase. The fs_info::balance_ctl is initialized.
565 */
566 BTRFS_FS_BALANCE_RUNNING,
567
568 /*
569 * Indicate that relocation of a chunk has started, it's set per chunk
570 * and is toggled between chunks.
571 * Set, tested and cleared while holding fs_info::send_reloc_lock.
572 */
573 BTRFS_FS_RELOC_RUNNING,
574
575 /* Indicate that the cleaner thread is awake and doing something. */
576 BTRFS_FS_CLEANER_RUNNING,
577
578 /*
579 * The checksumming has an optimized version and is considered fast,
580 * so we don't need to offload checksums to workqueues.
581 */
582 BTRFS_FS_CSUM_IMPL_FAST,
583
584 /* Indicate that the discard workqueue can service discards. */
585 BTRFS_FS_DISCARD_RUNNING,
586
587 /* Indicate that we need to cleanup space cache v1 */
588 BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
589
590 /* Indicate that we can't trust the free space tree for caching yet */
591 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
592
593 /* Indicate whether there are any tree modification log users */
594 BTRFS_FS_TREE_MOD_LOG_USERS,
595
596 /* Indicate we have half completed snapshot deletions pending. */
597 BTRFS_FS_UNFINISHED_DROPS,
598
599 #if BITS_PER_LONG == 32
600 /* Indicate if we have error/warn message printed on 32bit systems */
601 BTRFS_FS_32BIT_ERROR,
602 BTRFS_FS_32BIT_WARN,
603 #endif
604 };
605
606 /*
607 * Exclusive operations (device replace, resize, device add/remove, balance)
608 */
609 enum btrfs_exclusive_operation {
610 BTRFS_EXCLOP_NONE,
611 BTRFS_EXCLOP_BALANCE,
612 BTRFS_EXCLOP_DEV_ADD,
613 BTRFS_EXCLOP_DEV_REMOVE,
614 BTRFS_EXCLOP_DEV_REPLACE,
615 BTRFS_EXCLOP_RESIZE,
616 BTRFS_EXCLOP_SWAP_ACTIVATE,
617 };
618
619 struct btrfs_fs_info {
620 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
621 unsigned long flags;
622 struct btrfs_root *extent_root;
623 struct btrfs_root *tree_root;
624 struct btrfs_root *chunk_root;
625 struct btrfs_root *dev_root;
626 struct btrfs_root *fs_root;
627 struct btrfs_root *csum_root;
628 struct btrfs_root *quota_root;
629 struct btrfs_root *uuid_root;
630 struct btrfs_root *free_space_root;
631 struct btrfs_root *data_reloc_root;
632
633 /* the log root tree is a directory of all the other log roots */
634 struct btrfs_root *log_root_tree;
635
636 spinlock_t fs_roots_radix_lock;
637 struct radix_tree_root fs_roots_radix;
638
639 /* block group cache stuff */
640 spinlock_t block_group_cache_lock;
641 u64 first_logical_byte;
642 struct rb_root block_group_cache_tree;
643
644 /* keep track of unallocated space */
645 atomic64_t free_chunk_space;
646
647 /* Track ranges which are used by log trees blocks/logged data extents */
648 struct extent_io_tree excluded_extents;
649
650 /* logical->physical extent mapping */
651 struct extent_map_tree mapping_tree;
652
653 /*
654 * block reservation for extent, checksum, root tree and
655 * delayed dir index item
656 */
657 struct btrfs_block_rsv global_block_rsv;
658 /* block reservation for metadata operations */
659 struct btrfs_block_rsv trans_block_rsv;
660 /* block reservation for chunk tree */
661 struct btrfs_block_rsv chunk_block_rsv;
662 /* block reservation for delayed operations */
663 struct btrfs_block_rsv delayed_block_rsv;
664 /* block reservation for delayed refs */
665 struct btrfs_block_rsv delayed_refs_rsv;
666
667 struct btrfs_block_rsv empty_block_rsv;
668
669 u64 generation;
670 u64 last_trans_committed;
671 u64 avg_delayed_ref_runtime;
672
673 /*
674 * this is updated to the current trans every time a full commit
675 * is required instead of the faster short fsync log commits
676 */
677 u64 last_trans_log_full_commit;
678 unsigned long mount_opt;
679 /*
680 * Track requests for actions that need to be done during transaction
681 * commit (like for some mount options).
682 */
683 unsigned long pending_changes;
684 unsigned long compress_type:4;
685 unsigned int compress_level;
686 u32 commit_interval;
687 /*
688 * It is a suggestive number, the read side is safe even it gets a
689 * wrong number because we will write out the data into a regular
690 * extent. The write side(mount/remount) is under ->s_umount lock,
691 * so it is also safe.
692 */
693 u64 max_inline;
694
695 struct btrfs_transaction *running_transaction;
696 wait_queue_head_t transaction_throttle;
697 wait_queue_head_t transaction_wait;
698 wait_queue_head_t transaction_blocked_wait;
699 wait_queue_head_t async_submit_wait;
700
701 /*
702 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
703 * when they are updated.
704 *
705 * Because we do not clear the flags for ever, so we needn't use
706 * the lock on the read side.
707 *
708 * We also needn't use the lock when we mount the fs, because
709 * there is no other task which will update the flag.
710 */
711 spinlock_t super_lock;
712 struct btrfs_super_block *super_copy;
713 struct btrfs_super_block *super_for_commit;
714 struct super_block *sb;
715 struct inode *btree_inode;
716 struct mutex tree_log_mutex;
717 struct mutex transaction_kthread_mutex;
718 struct mutex cleaner_mutex;
719 struct mutex chunk_mutex;
720
721 /*
722 * this is taken to make sure we don't set block groups ro after
723 * the free space cache has been allocated on them
724 */
725 struct mutex ro_block_group_mutex;
726
727 /* this is used during read/modify/write to make sure
728 * no two ios are trying to mod the same stripe at the same
729 * time
730 */
731 struct btrfs_stripe_hash_table *stripe_hash_table;
732
733 /*
734 * this protects the ordered operations list only while we are
735 * processing all of the entries on it. This way we make
736 * sure the commit code doesn't find the list temporarily empty
737 * because another function happens to be doing non-waiting preflush
738 * before jumping into the main commit.
739 */
740 struct mutex ordered_operations_mutex;
741
742 struct rw_semaphore commit_root_sem;
743
744 struct rw_semaphore cleanup_work_sem;
745
746 struct rw_semaphore subvol_sem;
747
748 spinlock_t trans_lock;
749 /*
750 * the reloc mutex goes with the trans lock, it is taken
751 * during commit to protect us from the relocation code
752 */
753 struct mutex reloc_mutex;
754
755 struct list_head trans_list;
756 struct list_head dead_roots;
757 struct list_head caching_block_groups;
758
759 spinlock_t delayed_iput_lock;
760 struct list_head delayed_iputs;
761 atomic_t nr_delayed_iputs;
762 wait_queue_head_t delayed_iputs_wait;
763
764 atomic64_t tree_mod_seq;
765
766 /* this protects tree_mod_log and tree_mod_seq_list */
767 rwlock_t tree_mod_log_lock;
768 struct rb_root tree_mod_log;
769 struct list_head tree_mod_seq_list;
770
771 atomic_t async_delalloc_pages;
772
773 /*
774 * this is used to protect the following list -- ordered_roots.
775 */
776 spinlock_t ordered_root_lock;
777
778 /*
779 * all fs/file tree roots in which there are data=ordered extents
780 * pending writeback are added into this list.
781 *
782 * these can span multiple transactions and basically include
783 * every dirty data page that isn't from nodatacow
784 */
785 struct list_head ordered_roots;
786
787 struct mutex delalloc_root_mutex;
788 spinlock_t delalloc_root_lock;
789 /* all fs/file tree roots that have delalloc inodes. */
790 struct list_head delalloc_roots;
791
792 /*
793 * there is a pool of worker threads for checksumming during writes
794 * and a pool for checksumming after reads. This is because readers
795 * can run with FS locks held, and the writers may be waiting for
796 * those locks. We don't want ordering in the pending list to cause
797 * deadlocks, and so the two are serviced separately.
798 *
799 * A third pool does submit_bio to avoid deadlocking with the other
800 * two
801 */
802 struct btrfs_workqueue *workers;
803 struct btrfs_workqueue *delalloc_workers;
804 struct btrfs_workqueue *flush_workers;
805 struct btrfs_workqueue *endio_workers;
806 struct btrfs_workqueue *endio_meta_workers;
807 struct btrfs_workqueue *endio_raid56_workers;
808 struct btrfs_workqueue *rmw_workers;
809 struct btrfs_workqueue *endio_meta_write_workers;
810 struct btrfs_workqueue *endio_write_workers;
811 struct btrfs_workqueue *endio_freespace_worker;
812 struct btrfs_workqueue *caching_workers;
813 struct btrfs_workqueue *readahead_workers;
814
815 /*
816 * fixup workers take dirty pages that didn't properly go through
817 * the cow mechanism and make them safe to write. It happens
818 * for the sys_munmap function call path
819 */
820 struct btrfs_workqueue *fixup_workers;
821 struct btrfs_workqueue *delayed_workers;
822
823 struct task_struct *transaction_kthread;
824 struct task_struct *cleaner_kthread;
825 u32 thread_pool_size;
826
827 struct kobject *space_info_kobj;
828 struct kobject *qgroups_kobj;
829
830 /* used to keep from writing metadata until there is a nice batch */
831 struct percpu_counter dirty_metadata_bytes;
832 struct percpu_counter delalloc_bytes;
833 struct percpu_counter ordered_bytes;
834 s32 dirty_metadata_batch;
835 s32 delalloc_batch;
836
837 struct list_head dirty_cowonly_roots;
838
839 struct btrfs_fs_devices *fs_devices;
840
841 /*
842 * The space_info list is effectively read only after initial
843 * setup. It is populated at mount time and cleaned up after
844 * all block groups are removed. RCU is used to protect it.
845 */
846 struct list_head space_info;
847
848 struct btrfs_space_info *data_sinfo;
849
850 struct reloc_control *reloc_ctl;
851
852 /* data_alloc_cluster is only used in ssd_spread mode */
853 struct btrfs_free_cluster data_alloc_cluster;
854
855 /* all metadata allocations go through this cluster */
856 struct btrfs_free_cluster meta_alloc_cluster;
857
858 /* auto defrag inodes go here */
859 spinlock_t defrag_inodes_lock;
860 struct rb_root defrag_inodes;
861 atomic_t defrag_running;
862
863 /* Used to protect avail_{data, metadata, system}_alloc_bits */
864 seqlock_t profiles_lock;
865 /*
866 * these three are in extended format (availability of single
867 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
868 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
869 */
870 u64 avail_data_alloc_bits;
871 u64 avail_metadata_alloc_bits;
872 u64 avail_system_alloc_bits;
873
874 /* restriper state */
875 spinlock_t balance_lock;
876 struct mutex balance_mutex;
877 atomic_t balance_pause_req;
878 atomic_t balance_cancel_req;
879 struct btrfs_balance_control *balance_ctl;
880 wait_queue_head_t balance_wait_q;
881
882 /* Cancellation requests for chunk relocation */
883 atomic_t reloc_cancel_req;
884
885 u32 data_chunk_allocations;
886 u32 metadata_ratio;
887
888 void *bdev_holder;
889
890 /* private scrub information */
891 struct mutex scrub_lock;
892 atomic_t scrubs_running;
893 atomic_t scrub_pause_req;
894 atomic_t scrubs_paused;
895 atomic_t scrub_cancel_req;
896 wait_queue_head_t scrub_pause_wait;
897 /*
898 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
899 * running.
900 */
901 refcount_t scrub_workers_refcnt;
902 struct btrfs_workqueue *scrub_workers;
903 struct btrfs_workqueue *scrub_wr_completion_workers;
904 struct btrfs_workqueue *scrub_parity_workers;
905
906 struct btrfs_discard_ctl discard_ctl;
907
908 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
909 u32 check_integrity_print_mask;
910 #endif
911 /* is qgroup tracking in a consistent state? */
912 u64 qgroup_flags;
913
914 /* holds configuration and tracking. Protected by qgroup_lock */
915 struct rb_root qgroup_tree;
916 spinlock_t qgroup_lock;
917
918 /*
919 * used to avoid frequently calling ulist_alloc()/ulist_free()
920 * when doing qgroup accounting, it must be protected by qgroup_lock.
921 */
922 struct ulist *qgroup_ulist;
923
924 /*
925 * Protect user change for quota operations. If a transaction is needed,
926 * it must be started before locking this lock.
927 */
928 struct mutex qgroup_ioctl_lock;
929
930 /* list of dirty qgroups to be written at next commit */
931 struct list_head dirty_qgroups;
932
933 /* used by qgroup for an efficient tree traversal */
934 u64 qgroup_seq;
935
936 /* qgroup rescan items */
937 struct mutex qgroup_rescan_lock; /* protects the progress item */
938 struct btrfs_key qgroup_rescan_progress;
939 struct btrfs_workqueue *qgroup_rescan_workers;
940 struct completion qgroup_rescan_completion;
941 struct btrfs_work qgroup_rescan_work;
942 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
943
944 /* filesystem state */
945 unsigned long fs_state;
946
947 struct btrfs_delayed_root *delayed_root;
948
949 /* readahead tree */
950 spinlock_t reada_lock;
951 struct radix_tree_root reada_tree;
952
953 /* readahead works cnt */
954 atomic_t reada_works_cnt;
955
956 /* Extent buffer radix tree */
957 spinlock_t buffer_lock;
958 /* Entries are eb->start / sectorsize */
959 struct radix_tree_root buffer_radix;
960
961 /* next backup root to be overwritten */
962 int backup_root_index;
963
964 /* device replace state */
965 struct btrfs_dev_replace dev_replace;
966
967 struct semaphore uuid_tree_rescan_sem;
968
969 /* Used to reclaim the metadata space in the background. */
970 struct work_struct async_reclaim_work;
971 struct work_struct async_data_reclaim_work;
972 struct work_struct preempt_reclaim_work;
973
974 /* Reclaim partially filled block groups in the background */
975 struct work_struct reclaim_bgs_work;
976 struct list_head reclaim_bgs;
977 int bg_reclaim_threshold;
978
979 spinlock_t unused_bgs_lock;
980 struct list_head unused_bgs;
981 struct mutex unused_bg_unpin_mutex;
982 /* Protect block groups that are going to be deleted */
983 struct mutex reclaim_bgs_lock;
984
985 /* Cached block sizes */
986 u32 nodesize;
987 u32 sectorsize;
988 /* ilog2 of sectorsize, use to avoid 64bit division */
989 u32 sectorsize_bits;
990 u32 csum_size;
991 u32 csums_per_leaf;
992 u32 stripesize;
993
994 /* Block groups and devices containing active swapfiles. */
995 spinlock_t swapfile_pins_lock;
996 struct rb_root swapfile_pins;
997
998 struct crypto_shash *csum_shash;
999
1000 spinlock_t send_reloc_lock;
1001 /*
1002 * Number of send operations in progress.
1003 * Updated while holding fs_info::send_reloc_lock.
1004 */
1005 int send_in_progress;
1006
1007 /* Type of exclusive operation running, protected by super_lock */
1008 enum btrfs_exclusive_operation exclusive_operation;
1009
1010 /*
1011 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1012 * if the mode is enabled
1013 */
1014 union {
1015 u64 zone_size;
1016 u64 zoned;
1017 };
1018
1019 struct mutex zoned_meta_io_lock;
1020 spinlock_t treelog_bg_lock;
1021 u64 treelog_bg;
1022
1023 /*
1024 * Start of the dedicated data relocation block group, protected by
1025 * relocation_bg_lock.
1026 */
1027 spinlock_t relocation_bg_lock;
1028 u64 data_reloc_bg;
1029
1030 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1031 spinlock_t ref_verify_lock;
1032 struct rb_root block_tree;
1033 #endif
1034
1035 #ifdef CONFIG_BTRFS_DEBUG
1036 struct kobject *debug_kobj;
1037 struct kobject *discard_debug_kobj;
1038 struct list_head allocated_roots;
1039
1040 spinlock_t eb_leak_lock;
1041 struct list_head allocated_ebs;
1042 #endif
1043 };
1044
1045 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1046 {
1047 return sb->s_fs_info;
1048 }
1049
1050 /*
1051 * The state of btrfs root
1052 */
1053 enum {
1054 /*
1055 * btrfs_record_root_in_trans is a multi-step process, and it can race
1056 * with the balancing code. But the race is very small, and only the
1057 * first time the root is added to each transaction. So IN_TRANS_SETUP
1058 * is used to tell us when more checks are required
1059 */
1060 BTRFS_ROOT_IN_TRANS_SETUP,
1061
1062 /*
1063 * Set if tree blocks of this root can be shared by other roots.
1064 * Only subvolume trees and their reloc trees have this bit set.
1065 * Conflicts with TRACK_DIRTY bit.
1066 *
1067 * This affects two things:
1068 *
1069 * - How balance works
1070 * For shareable roots, we need to use reloc tree and do path
1071 * replacement for balance, and need various pre/post hooks for
1072 * snapshot creation to handle them.
1073 *
1074 * While for non-shareable trees, we just simply do a tree search
1075 * with COW.
1076 *
1077 * - How dirty roots are tracked
1078 * For shareable roots, btrfs_record_root_in_trans() is needed to
1079 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
1080 * don't need to set this manually.
1081 */
1082 BTRFS_ROOT_SHAREABLE,
1083 BTRFS_ROOT_TRACK_DIRTY,
1084 BTRFS_ROOT_IN_RADIX,
1085 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1086 BTRFS_ROOT_DEFRAG_RUNNING,
1087 BTRFS_ROOT_FORCE_COW,
1088 BTRFS_ROOT_MULTI_LOG_TASKS,
1089 BTRFS_ROOT_DIRTY,
1090 BTRFS_ROOT_DELETING,
1091
1092 /*
1093 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1094 *
1095 * Set for the subvolume tree owning the reloc tree.
1096 */
1097 BTRFS_ROOT_DEAD_RELOC_TREE,
1098 /* Mark dead root stored on device whose cleanup needs to be resumed */
1099 BTRFS_ROOT_DEAD_TREE,
1100 /* The root has a log tree. Used for subvolume roots and the tree root. */
1101 BTRFS_ROOT_HAS_LOG_TREE,
1102 /* Qgroup flushing is in progress */
1103 BTRFS_ROOT_QGROUP_FLUSHING,
1104 /* This root has a drop operation that was started previously. */
1105 BTRFS_ROOT_UNFINISHED_DROP,
1106 };
1107
1108 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1109 {
1110 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1111 }
1112
1113 /*
1114 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1115 * code. For detail check comment in fs/btrfs/qgroup.c.
1116 */
1117 struct btrfs_qgroup_swapped_blocks {
1118 spinlock_t lock;
1119 /* RM_EMPTY_ROOT() of above blocks[] */
1120 bool swapped;
1121 struct rb_root blocks[BTRFS_MAX_LEVEL];
1122 };
1123
1124 /*
1125 * in ram representation of the tree. extent_root is used for all allocations
1126 * and for the extent tree extent_root root.
1127 */
1128 struct btrfs_root {
1129 struct extent_buffer *node;
1130
1131 struct extent_buffer *commit_root;
1132 struct btrfs_root *log_root;
1133 struct btrfs_root *reloc_root;
1134
1135 unsigned long state;
1136 struct btrfs_root_item root_item;
1137 struct btrfs_key root_key;
1138 struct btrfs_fs_info *fs_info;
1139 struct extent_io_tree dirty_log_pages;
1140
1141 struct mutex objectid_mutex;
1142
1143 spinlock_t accounting_lock;
1144 struct btrfs_block_rsv *block_rsv;
1145
1146 struct mutex log_mutex;
1147 wait_queue_head_t log_writer_wait;
1148 wait_queue_head_t log_commit_wait[2];
1149 struct list_head log_ctxs[2];
1150 /* Used only for log trees of subvolumes, not for the log root tree */
1151 atomic_t log_writers;
1152 atomic_t log_commit[2];
1153 /* Used only for log trees of subvolumes, not for the log root tree */
1154 atomic_t log_batch;
1155 int log_transid;
1156 /* No matter the commit succeeds or not*/
1157 int log_transid_committed;
1158 /* Just be updated when the commit succeeds. */
1159 int last_log_commit;
1160 pid_t log_start_pid;
1161
1162 u64 last_trans;
1163
1164 u32 type;
1165
1166 u64 free_objectid;
1167
1168 struct btrfs_key defrag_progress;
1169 struct btrfs_key defrag_max;
1170
1171 /* The dirty list is only used by non-shareable roots */
1172 struct list_head dirty_list;
1173
1174 struct list_head root_list;
1175
1176 spinlock_t log_extents_lock[2];
1177 struct list_head logged_list[2];
1178
1179 int orphan_cleanup_state;
1180
1181 spinlock_t inode_lock;
1182 /* red-black tree that keeps track of in-memory inodes */
1183 struct rb_root inode_tree;
1184
1185 /*
1186 * radix tree that keeps track of delayed nodes of every inode,
1187 * protected by inode_lock
1188 */
1189 struct radix_tree_root delayed_nodes_tree;
1190 /*
1191 * right now this just gets used so that a root has its own devid
1192 * for stat. It may be used for more later
1193 */
1194 dev_t anon_dev;
1195
1196 spinlock_t root_item_lock;
1197 refcount_t refs;
1198
1199 struct mutex delalloc_mutex;
1200 spinlock_t delalloc_lock;
1201 /*
1202 * all of the inodes that have delalloc bytes. It is possible for
1203 * this list to be empty even when there is still dirty data=ordered
1204 * extents waiting to finish IO.
1205 */
1206 struct list_head delalloc_inodes;
1207 struct list_head delalloc_root;
1208 u64 nr_delalloc_inodes;
1209
1210 struct mutex ordered_extent_mutex;
1211 /*
1212 * this is used by the balancing code to wait for all the pending
1213 * ordered extents
1214 */
1215 spinlock_t ordered_extent_lock;
1216
1217 /*
1218 * all of the data=ordered extents pending writeback
1219 * these can span multiple transactions and basically include
1220 * every dirty data page that isn't from nodatacow
1221 */
1222 struct list_head ordered_extents;
1223 struct list_head ordered_root;
1224 u64 nr_ordered_extents;
1225
1226 /*
1227 * Not empty if this subvolume root has gone through tree block swap
1228 * (relocation)
1229 *
1230 * Will be used by reloc_control::dirty_subvol_roots.
1231 */
1232 struct list_head reloc_dirty_list;
1233
1234 /*
1235 * Number of currently running SEND ioctls to prevent
1236 * manipulation with the read-only status via SUBVOL_SETFLAGS
1237 */
1238 int send_in_progress;
1239 /*
1240 * Number of currently running deduplication operations that have a
1241 * destination inode belonging to this root. Protected by the lock
1242 * root_item_lock.
1243 */
1244 int dedupe_in_progress;
1245 /* For exclusion of snapshot creation and nocow writes */
1246 struct btrfs_drew_lock snapshot_lock;
1247
1248 atomic_t snapshot_force_cow;
1249
1250 /* For qgroup metadata reserved space */
1251 spinlock_t qgroup_meta_rsv_lock;
1252 u64 qgroup_meta_rsv_pertrans;
1253 u64 qgroup_meta_rsv_prealloc;
1254 wait_queue_head_t qgroup_flush_wait;
1255
1256 /* Number of active swapfiles */
1257 atomic_t nr_swapfiles;
1258
1259 /* Record pairs of swapped blocks for qgroup */
1260 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1261
1262 /* Used only by log trees, when logging csum items */
1263 struct extent_io_tree log_csum_range;
1264
1265 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1266 u64 alloc_bytenr;
1267 #endif
1268
1269 #ifdef CONFIG_BTRFS_DEBUG
1270 struct list_head leak_list;
1271 #endif
1272 };
1273
1274 /*
1275 * Structure that conveys information about an extent that is going to replace
1276 * all the extents in a file range.
1277 */
1278 struct btrfs_replace_extent_info {
1279 u64 disk_offset;
1280 u64 disk_len;
1281 u64 data_offset;
1282 u64 data_len;
1283 u64 file_offset;
1284 /* Pointer to a file extent item of type regular or prealloc. */
1285 char *extent_buf;
1286 /*
1287 * Set to true when attempting to replace a file range with a new extent
1288 * described by this structure, set to false when attempting to clone an
1289 * existing extent into a file range.
1290 */
1291 bool is_new_extent;
1292 /* Meaningful only if is_new_extent is true. */
1293 int qgroup_reserved;
1294 /*
1295 * Meaningful only if is_new_extent is true.
1296 * Used to track how many extent items we have already inserted in a
1297 * subvolume tree that refer to the extent described by this structure,
1298 * so that we know when to create a new delayed ref or update an existing
1299 * one.
1300 */
1301 int insertions;
1302 };
1303
1304 /* Arguments for btrfs_drop_extents() */
1305 struct btrfs_drop_extents_args {
1306 /* Input parameters */
1307
1308 /*
1309 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1310 * If 'replace_extent' is true, this must not be NULL. Also the path
1311 * is always released except if 'replace_extent' is true and
1312 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1313 * the path is kept locked.
1314 */
1315 struct btrfs_path *path;
1316 /* Start offset of the range to drop extents from */
1317 u64 start;
1318 /* End (exclusive, last byte + 1) of the range to drop extents from */
1319 u64 end;
1320 /* If true drop all the extent maps in the range */
1321 bool drop_cache;
1322 /*
1323 * If true it means we want to insert a new extent after dropping all
1324 * the extents in the range. If this is true, the 'extent_item_size'
1325 * parameter must be set as well and the 'extent_inserted' field will
1326 * be set to true by btrfs_drop_extents() if it could insert the new
1327 * extent.
1328 * Note: when this is set to true the path must not be NULL.
1329 */
1330 bool replace_extent;
1331 /*
1332 * Used if 'replace_extent' is true. Size of the file extent item to
1333 * insert after dropping all existing extents in the range
1334 */
1335 u32 extent_item_size;
1336
1337 /* Output parameters */
1338
1339 /*
1340 * Set to the minimum between the input parameter 'end' and the end
1341 * (exclusive, last byte + 1) of the last dropped extent. This is always
1342 * set even if btrfs_drop_extents() returns an error.
1343 */
1344 u64 drop_end;
1345 /*
1346 * The number of allocated bytes found in the range. This can be smaller
1347 * than the range's length when there are holes in the range.
1348 */
1349 u64 bytes_found;
1350 /*
1351 * Only set if 'replace_extent' is true. Set to true if we were able
1352 * to insert a replacement extent after dropping all extents in the
1353 * range, otherwise set to false by btrfs_drop_extents().
1354 * Also, if btrfs_drop_extents() has set this to true it means it
1355 * returned with the path locked, otherwise if it has set this to
1356 * false it has returned with the path released.
1357 */
1358 bool extent_inserted;
1359 };
1360
1361 struct btrfs_file_private {
1362 void *filldir_buf;
1363 };
1364
1365
1366 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1367 {
1368
1369 return info->nodesize - sizeof(struct btrfs_header);
1370 }
1371
1372 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1373
1374 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1375 {
1376 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1377 }
1378
1379 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1380 {
1381 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1382 }
1383
1384 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1385 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
1386 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1387 {
1388 return BTRFS_MAX_ITEM_SIZE(info) -
1389 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1390 }
1391
1392 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1393 {
1394 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1395 }
1396
1397 /*
1398 * Flags for mount options.
1399 *
1400 * Note: don't forget to add new options to btrfs_show_options()
1401 */
1402 enum {
1403 BTRFS_MOUNT_NODATASUM = (1UL << 0),
1404 BTRFS_MOUNT_NODATACOW = (1UL << 1),
1405 BTRFS_MOUNT_NOBARRIER = (1UL << 2),
1406 BTRFS_MOUNT_SSD = (1UL << 3),
1407 BTRFS_MOUNT_DEGRADED = (1UL << 4),
1408 BTRFS_MOUNT_COMPRESS = (1UL << 5),
1409 BTRFS_MOUNT_NOTREELOG = (1UL << 6),
1410 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
1411 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
1412 BTRFS_MOUNT_NOSSD = (1UL << 9),
1413 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
1414 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
1415 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
1416 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
1417 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
1418 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
1419 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
1420 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
1421 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
1422 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
1423 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
1424 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
1425 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
1426 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
1427 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
1428 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
1429 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
1430 BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
1431 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
1432 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
1433 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
1434 };
1435
1436 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1437 #define BTRFS_DEFAULT_MAX_INLINE (2048)
1438
1439 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1440 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1441 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1442 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1443 BTRFS_MOUNT_##opt)
1444
1445 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1446 do { \
1447 if (!btrfs_test_opt(fs_info, opt)) \
1448 btrfs_info(fs_info, fmt, ##args); \
1449 btrfs_set_opt(fs_info->mount_opt, opt); \
1450 } while (0)
1451
1452 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1453 do { \
1454 if (btrfs_test_opt(fs_info, opt)) \
1455 btrfs_info(fs_info, fmt, ##args); \
1456 btrfs_clear_opt(fs_info->mount_opt, opt); \
1457 } while (0)
1458
1459 /*
1460 * Requests for changes that need to be done during transaction commit.
1461 *
1462 * Internal mount options that are used for special handling of the real
1463 * mount options (eg. cannot be set during remount and have to be set during
1464 * transaction commit)
1465 */
1466
1467 #define BTRFS_PENDING_COMMIT (0)
1468
1469 #define btrfs_test_pending(info, opt) \
1470 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1471 #define btrfs_set_pending(info, opt) \
1472 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1473 #define btrfs_clear_pending(info, opt) \
1474 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1475
1476 /*
1477 * Helpers for setting pending mount option changes.
1478 *
1479 * Expects corresponding macros
1480 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1481 */
1482 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1483 do { \
1484 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1485 btrfs_info((info), fmt, ##args); \
1486 btrfs_set_pending((info), SET_##opt); \
1487 btrfs_clear_pending((info), CLEAR_##opt); \
1488 } \
1489 } while(0)
1490
1491 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1492 do { \
1493 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1494 btrfs_info((info), fmt, ##args); \
1495 btrfs_set_pending((info), CLEAR_##opt); \
1496 btrfs_clear_pending((info), SET_##opt); \
1497 } \
1498 } while(0)
1499
1500 /*
1501 * Inode flags
1502 */
1503 #define BTRFS_INODE_NODATASUM (1U << 0)
1504 #define BTRFS_INODE_NODATACOW (1U << 1)
1505 #define BTRFS_INODE_READONLY (1U << 2)
1506 #define BTRFS_INODE_NOCOMPRESS (1U << 3)
1507 #define BTRFS_INODE_PREALLOC (1U << 4)
1508 #define BTRFS_INODE_SYNC (1U << 5)
1509 #define BTRFS_INODE_IMMUTABLE (1U << 6)
1510 #define BTRFS_INODE_APPEND (1U << 7)
1511 #define BTRFS_INODE_NODUMP (1U << 8)
1512 #define BTRFS_INODE_NOATIME (1U << 9)
1513 #define BTRFS_INODE_DIRSYNC (1U << 10)
1514 #define BTRFS_INODE_COMPRESS (1U << 11)
1515
1516 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31)
1517
1518 #define BTRFS_INODE_FLAG_MASK \
1519 (BTRFS_INODE_NODATASUM | \
1520 BTRFS_INODE_NODATACOW | \
1521 BTRFS_INODE_READONLY | \
1522 BTRFS_INODE_NOCOMPRESS | \
1523 BTRFS_INODE_PREALLOC | \
1524 BTRFS_INODE_SYNC | \
1525 BTRFS_INODE_IMMUTABLE | \
1526 BTRFS_INODE_APPEND | \
1527 BTRFS_INODE_NODUMP | \
1528 BTRFS_INODE_NOATIME | \
1529 BTRFS_INODE_DIRSYNC | \
1530 BTRFS_INODE_COMPRESS | \
1531 BTRFS_INODE_ROOT_ITEM_INIT)
1532
1533 #define BTRFS_INODE_RO_VERITY (1U << 0)
1534
1535 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY)
1536
1537 struct btrfs_map_token {
1538 struct extent_buffer *eb;
1539 char *kaddr;
1540 unsigned long offset;
1541 };
1542
1543 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1544 ((bytes) >> (fs_info)->sectorsize_bits)
1545
1546 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1547 struct extent_buffer *eb)
1548 {
1549 token->eb = eb;
1550 token->kaddr = page_address(eb->pages[0]);
1551 token->offset = 0;
1552 }
1553
1554 /* some macros to generate set/get functions for the struct fields. This
1555 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1556 * one for u8:
1557 */
1558 #define le8_to_cpu(v) (v)
1559 #define cpu_to_le8(v) (v)
1560 #define __le8 u8
1561
1562 static inline u8 get_unaligned_le8(const void *p)
1563 {
1564 return *(u8 *)p;
1565 }
1566
1567 static inline void put_unaligned_le8(u8 val, void *p)
1568 {
1569 *(u8 *)p = val;
1570 }
1571
1572 #define read_eb_member(eb, ptr, type, member, result) (\
1573 read_extent_buffer(eb, (char *)(result), \
1574 ((unsigned long)(ptr)) + \
1575 offsetof(type, member), \
1576 sizeof(((type *)0)->member)))
1577
1578 #define write_eb_member(eb, ptr, type, member, result) (\
1579 write_extent_buffer(eb, (char *)(result), \
1580 ((unsigned long)(ptr)) + \
1581 offsetof(type, member), \
1582 sizeof(((type *)0)->member)))
1583
1584 #define DECLARE_BTRFS_SETGET_BITS(bits) \
1585 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1586 const void *ptr, unsigned long off); \
1587 void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1588 const void *ptr, unsigned long off, \
1589 u##bits val); \
1590 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1591 const void *ptr, unsigned long off); \
1592 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1593 unsigned long off, u##bits val);
1594
1595 DECLARE_BTRFS_SETGET_BITS(8)
1596 DECLARE_BTRFS_SETGET_BITS(16)
1597 DECLARE_BTRFS_SETGET_BITS(32)
1598 DECLARE_BTRFS_SETGET_BITS(64)
1599
1600 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1601 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1602 const type *s) \
1603 { \
1604 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1605 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1606 } \
1607 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1608 u##bits val) \
1609 { \
1610 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1611 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1612 } \
1613 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1614 const type *s) \
1615 { \
1616 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1617 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1618 } \
1619 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1620 type *s, u##bits val) \
1621 { \
1622 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1623 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1624 }
1625
1626 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1627 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1628 { \
1629 const type *p = page_address(eb->pages[0]) + \
1630 offset_in_page(eb->start); \
1631 return get_unaligned_le##bits(&p->member); \
1632 } \
1633 static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1634 u##bits val) \
1635 { \
1636 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1637 put_unaligned_le##bits(val, &p->member); \
1638 }
1639
1640 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1641 static inline u##bits btrfs_##name(const type *s) \
1642 { \
1643 return get_unaligned_le##bits(&s->member); \
1644 } \
1645 static inline void btrfs_set_##name(type *s, u##bits val) \
1646 { \
1647 put_unaligned_le##bits(val, &s->member); \
1648 }
1649
1650 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1651 struct btrfs_dev_item *s)
1652 {
1653 BUILD_BUG_ON(sizeof(u64) !=
1654 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1655 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1656 total_bytes));
1657 }
1658 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1659 struct btrfs_dev_item *s,
1660 u64 val)
1661 {
1662 BUILD_BUG_ON(sizeof(u64) !=
1663 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1664 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1665 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1666 }
1667
1668
1669 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1670 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1671 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1672 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1673 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1674 start_offset, 64);
1675 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1676 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1677 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1678 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1679 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1680 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1681
1682 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1683 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1684 total_bytes, 64);
1685 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1686 bytes_used, 64);
1687 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1688 io_align, 32);
1689 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1690 io_width, 32);
1691 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1692 sector_size, 32);
1693 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1694 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1695 dev_group, 32);
1696 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1697 seek_speed, 8);
1698 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1699 bandwidth, 8);
1700 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1701 generation, 64);
1702
1703 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1704 {
1705 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1706 }
1707
1708 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1709 {
1710 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1711 }
1712
1713 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1714 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1715 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1716 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1717 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1718 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1719 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1720 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1721 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1722 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1723 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1724
1725 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1726 {
1727 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1728 }
1729
1730 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1731 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1732 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1733 stripe_len, 64);
1734 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1735 io_align, 32);
1736 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1737 io_width, 32);
1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1739 sector_size, 32);
1740 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1741 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1742 num_stripes, 16);
1743 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1744 sub_stripes, 16);
1745 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1746 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1747
1748 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1749 int nr)
1750 {
1751 unsigned long offset = (unsigned long)c;
1752 offset += offsetof(struct btrfs_chunk, stripe);
1753 offset += nr * sizeof(struct btrfs_stripe);
1754 return (struct btrfs_stripe *)offset;
1755 }
1756
1757 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1758 {
1759 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1760 }
1761
1762 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1763 struct btrfs_chunk *c, int nr)
1764 {
1765 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1766 }
1767
1768 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1769 struct btrfs_chunk *c, int nr)
1770 {
1771 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1772 }
1773
1774 /* struct btrfs_block_group_item */
1775 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1776 used, 64);
1777 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1778 used, 64);
1779 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1780 struct btrfs_block_group_item, chunk_objectid, 64);
1781
1782 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1783 struct btrfs_block_group_item, chunk_objectid, 64);
1784 BTRFS_SETGET_FUNCS(block_group_flags,
1785 struct btrfs_block_group_item, flags, 64);
1786 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1787 struct btrfs_block_group_item, flags, 64);
1788
1789 /* struct btrfs_free_space_info */
1790 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1791 extent_count, 32);
1792 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1793
1794 /* struct btrfs_inode_ref */
1795 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1796 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1797
1798 /* struct btrfs_inode_extref */
1799 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1800 parent_objectid, 64);
1801 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1802 name_len, 16);
1803 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1804
1805 /* struct btrfs_inode_item */
1806 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1807 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1808 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1809 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1810 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1811 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1812 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1813 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1814 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1815 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1816 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1817 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1818 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1819 generation, 64);
1820 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1821 sequence, 64);
1822 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1823 transid, 64);
1824 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1825 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1826 nbytes, 64);
1827 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1828 block_group, 64);
1829 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1830 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1831 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1832 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1833 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1834 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1835 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1836 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1837 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1838 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1839
1840 /* struct btrfs_dev_extent */
1841 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1842 chunk_tree, 64);
1843 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1844 chunk_objectid, 64);
1845 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1846 chunk_offset, 64);
1847 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1848 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1849 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1850 generation, 64);
1851 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1852
1853 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1854
1855 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1856 struct btrfs_tree_block_info *item,
1857 struct btrfs_disk_key *key)
1858 {
1859 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1860 }
1861
1862 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1863 struct btrfs_tree_block_info *item,
1864 struct btrfs_disk_key *key)
1865 {
1866 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1867 }
1868
1869 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1870 root, 64);
1871 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1872 objectid, 64);
1873 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1874 offset, 64);
1875 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1876 count, 32);
1877
1878 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1879 count, 32);
1880
1881 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1882 type, 8);
1883 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1884 offset, 64);
1885
1886 static inline u32 btrfs_extent_inline_ref_size(int type)
1887 {
1888 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1889 type == BTRFS_SHARED_BLOCK_REF_KEY)
1890 return sizeof(struct btrfs_extent_inline_ref);
1891 if (type == BTRFS_SHARED_DATA_REF_KEY)
1892 return sizeof(struct btrfs_shared_data_ref) +
1893 sizeof(struct btrfs_extent_inline_ref);
1894 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1895 return sizeof(struct btrfs_extent_data_ref) +
1896 offsetof(struct btrfs_extent_inline_ref, offset);
1897 return 0;
1898 }
1899
1900 /* struct btrfs_node */
1901 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1902 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1903 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1904 blockptr, 64);
1905 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1906 generation, 64);
1907
1908 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1909 {
1910 unsigned long ptr;
1911 ptr = offsetof(struct btrfs_node, ptrs) +
1912 sizeof(struct btrfs_key_ptr) * nr;
1913 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1914 }
1915
1916 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1917 int nr, u64 val)
1918 {
1919 unsigned long ptr;
1920 ptr = offsetof(struct btrfs_node, ptrs) +
1921 sizeof(struct btrfs_key_ptr) * nr;
1922 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1923 }
1924
1925 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1926 {
1927 unsigned long ptr;
1928 ptr = offsetof(struct btrfs_node, ptrs) +
1929 sizeof(struct btrfs_key_ptr) * nr;
1930 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1931 }
1932
1933 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1934 int nr, u64 val)
1935 {
1936 unsigned long ptr;
1937 ptr = offsetof(struct btrfs_node, ptrs) +
1938 sizeof(struct btrfs_key_ptr) * nr;
1939 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1940 }
1941
1942 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1943 {
1944 return offsetof(struct btrfs_node, ptrs) +
1945 sizeof(struct btrfs_key_ptr) * nr;
1946 }
1947
1948 void btrfs_node_key(const struct extent_buffer *eb,
1949 struct btrfs_disk_key *disk_key, int nr);
1950
1951 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1952 struct btrfs_disk_key *disk_key, int nr)
1953 {
1954 unsigned long ptr;
1955 ptr = btrfs_node_key_ptr_offset(nr);
1956 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1957 struct btrfs_key_ptr, key, disk_key);
1958 }
1959
1960 /* struct btrfs_item */
1961 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1962 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1963 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1964 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1965
1966 static inline unsigned long btrfs_item_nr_offset(int nr)
1967 {
1968 return offsetof(struct btrfs_leaf, items) +
1969 sizeof(struct btrfs_item) * nr;
1970 }
1971
1972 static inline struct btrfs_item *btrfs_item_nr(int nr)
1973 {
1974 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1975 }
1976
1977 static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1978 struct btrfs_item *item)
1979 {
1980 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1981 }
1982
1983 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1984 {
1985 return btrfs_item_end(eb, btrfs_item_nr(nr));
1986 }
1987
1988 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1989 {
1990 return btrfs_item_offset(eb, btrfs_item_nr(nr));
1991 }
1992
1993 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1994 {
1995 return btrfs_item_size(eb, btrfs_item_nr(nr));
1996 }
1997
1998 static inline void btrfs_item_key(const struct extent_buffer *eb,
1999 struct btrfs_disk_key *disk_key, int nr)
2000 {
2001 struct btrfs_item *item = btrfs_item_nr(nr);
2002 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2003 }
2004
2005 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2006 struct btrfs_disk_key *disk_key, int nr)
2007 {
2008 struct btrfs_item *item = btrfs_item_nr(nr);
2009 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2010 }
2011
2012 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2013
2014 /*
2015 * struct btrfs_root_ref
2016 */
2017 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2018 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2019 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2020
2021 /* struct btrfs_dir_item */
2022 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2023 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2024 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2025 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2026 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2027 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2028 data_len, 16);
2029 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2030 name_len, 16);
2031 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2032 transid, 64);
2033
2034 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2035 const struct btrfs_dir_item *item,
2036 struct btrfs_disk_key *key)
2037 {
2038 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2039 }
2040
2041 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2042 struct btrfs_dir_item *item,
2043 const struct btrfs_disk_key *key)
2044 {
2045 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2046 }
2047
2048 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2049 num_entries, 64);
2050 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2051 num_bitmaps, 64);
2052 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2053 generation, 64);
2054
2055 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2056 const struct btrfs_free_space_header *h,
2057 struct btrfs_disk_key *key)
2058 {
2059 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2060 }
2061
2062 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2063 struct btrfs_free_space_header *h,
2064 const struct btrfs_disk_key *key)
2065 {
2066 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2067 }
2068
2069 /* struct btrfs_disk_key */
2070 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2071 objectid, 64);
2072 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2073 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2074
2075 #ifdef __LITTLE_ENDIAN
2076
2077 /*
2078 * Optimized helpers for little-endian architectures where CPU and on-disk
2079 * structures have the same endianness and we can skip conversions.
2080 */
2081
2082 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2083 const struct btrfs_disk_key *disk_key)
2084 {
2085 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2086 }
2087
2088 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2089 const struct btrfs_key *cpu_key)
2090 {
2091 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2092 }
2093
2094 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2095 struct btrfs_key *cpu_key, int nr)
2096 {
2097 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2098
2099 btrfs_node_key(eb, disk_key, nr);
2100 }
2101
2102 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2103 struct btrfs_key *cpu_key, int nr)
2104 {
2105 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2106
2107 btrfs_item_key(eb, disk_key, nr);
2108 }
2109
2110 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2111 const struct btrfs_dir_item *item,
2112 struct btrfs_key *cpu_key)
2113 {
2114 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2115
2116 btrfs_dir_item_key(eb, item, disk_key);
2117 }
2118
2119 #else
2120
2121 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2122 const struct btrfs_disk_key *disk)
2123 {
2124 cpu->offset = le64_to_cpu(disk->offset);
2125 cpu->type = disk->type;
2126 cpu->objectid = le64_to_cpu(disk->objectid);
2127 }
2128
2129 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2130 const struct btrfs_key *cpu)
2131 {
2132 disk->offset = cpu_to_le64(cpu->offset);
2133 disk->type = cpu->type;
2134 disk->objectid = cpu_to_le64(cpu->objectid);
2135 }
2136
2137 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2138 struct btrfs_key *key, int nr)
2139 {
2140 struct btrfs_disk_key disk_key;
2141 btrfs_node_key(eb, &disk_key, nr);
2142 btrfs_disk_key_to_cpu(key, &disk_key);
2143 }
2144
2145 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2146 struct btrfs_key *key, int nr)
2147 {
2148 struct btrfs_disk_key disk_key;
2149 btrfs_item_key(eb, &disk_key, nr);
2150 btrfs_disk_key_to_cpu(key, &disk_key);
2151 }
2152
2153 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2154 const struct btrfs_dir_item *item,
2155 struct btrfs_key *key)
2156 {
2157 struct btrfs_disk_key disk_key;
2158 btrfs_dir_item_key(eb, item, &disk_key);
2159 btrfs_disk_key_to_cpu(key, &disk_key);
2160 }
2161
2162 #endif
2163
2164 /* struct btrfs_header */
2165 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2166 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2167 generation, 64);
2168 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2169 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2170 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2171 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2172 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2173 generation, 64);
2174 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2175 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2176 nritems, 32);
2177 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2178
2179 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2180 {
2181 return (btrfs_header_flags(eb) & flag) == flag;
2182 }
2183
2184 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2185 {
2186 u64 flags = btrfs_header_flags(eb);
2187 btrfs_set_header_flags(eb, flags | flag);
2188 }
2189
2190 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2191 {
2192 u64 flags = btrfs_header_flags(eb);
2193 btrfs_set_header_flags(eb, flags & ~flag);
2194 }
2195
2196 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2197 {
2198 u64 flags = btrfs_header_flags(eb);
2199 return flags >> BTRFS_BACKREF_REV_SHIFT;
2200 }
2201
2202 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2203 int rev)
2204 {
2205 u64 flags = btrfs_header_flags(eb);
2206 flags &= ~BTRFS_BACKREF_REV_MASK;
2207 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2208 btrfs_set_header_flags(eb, flags);
2209 }
2210
2211 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2212 {
2213 return btrfs_header_level(eb) == 0;
2214 }
2215
2216 /* struct btrfs_root_item */
2217 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2218 generation, 64);
2219 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2220 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2221 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2222
2223 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2224 generation, 64);
2225 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2226 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2227 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2228 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2229 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2230 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2231 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2232 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2233 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2234 last_snapshot, 64);
2235 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2236 generation_v2, 64);
2237 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2238 ctransid, 64);
2239 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2240 otransid, 64);
2241 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2242 stransid, 64);
2243 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2244 rtransid, 64);
2245
2246 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2247 {
2248 /* Byte-swap the constant at compile time, root_item::flags is LE */
2249 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2250 }
2251
2252 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2253 {
2254 /* Byte-swap the constant at compile time, root_item::flags is LE */
2255 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2256 }
2257
2258 /* struct btrfs_root_backup */
2259 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2260 tree_root, 64);
2261 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2262 tree_root_gen, 64);
2263 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2264 tree_root_level, 8);
2265
2266 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2267 chunk_root, 64);
2268 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2269 chunk_root_gen, 64);
2270 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2271 chunk_root_level, 8);
2272
2273 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2274 extent_root, 64);
2275 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2276 extent_root_gen, 64);
2277 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2278 extent_root_level, 8);
2279
2280 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2281 fs_root, 64);
2282 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2283 fs_root_gen, 64);
2284 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2285 fs_root_level, 8);
2286
2287 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2288 dev_root, 64);
2289 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2290 dev_root_gen, 64);
2291 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2292 dev_root_level, 8);
2293
2294 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2295 csum_root, 64);
2296 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2297 csum_root_gen, 64);
2298 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2299 csum_root_level, 8);
2300 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2301 total_bytes, 64);
2302 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2303 bytes_used, 64);
2304 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2305 num_devices, 64);
2306
2307 /* struct btrfs_balance_item */
2308 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2309
2310 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2311 const struct btrfs_balance_item *bi,
2312 struct btrfs_disk_balance_args *ba)
2313 {
2314 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2315 }
2316
2317 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2318 struct btrfs_balance_item *bi,
2319 const struct btrfs_disk_balance_args *ba)
2320 {
2321 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2322 }
2323
2324 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2325 const struct btrfs_balance_item *bi,
2326 struct btrfs_disk_balance_args *ba)
2327 {
2328 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2329 }
2330
2331 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2332 struct btrfs_balance_item *bi,
2333 const struct btrfs_disk_balance_args *ba)
2334 {
2335 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2336 }
2337
2338 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2339 const struct btrfs_balance_item *bi,
2340 struct btrfs_disk_balance_args *ba)
2341 {
2342 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2343 }
2344
2345 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2346 struct btrfs_balance_item *bi,
2347 const struct btrfs_disk_balance_args *ba)
2348 {
2349 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2350 }
2351
2352 static inline void
2353 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2354 const struct btrfs_disk_balance_args *disk)
2355 {
2356 memset(cpu, 0, sizeof(*cpu));
2357
2358 cpu->profiles = le64_to_cpu(disk->profiles);
2359 cpu->usage = le64_to_cpu(disk->usage);
2360 cpu->devid = le64_to_cpu(disk->devid);
2361 cpu->pstart = le64_to_cpu(disk->pstart);
2362 cpu->pend = le64_to_cpu(disk->pend);
2363 cpu->vstart = le64_to_cpu(disk->vstart);
2364 cpu->vend = le64_to_cpu(disk->vend);
2365 cpu->target = le64_to_cpu(disk->target);
2366 cpu->flags = le64_to_cpu(disk->flags);
2367 cpu->limit = le64_to_cpu(disk->limit);
2368 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2369 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2370 }
2371
2372 static inline void
2373 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2374 const struct btrfs_balance_args *cpu)
2375 {
2376 memset(disk, 0, sizeof(*disk));
2377
2378 disk->profiles = cpu_to_le64(cpu->profiles);
2379 disk->usage = cpu_to_le64(cpu->usage);
2380 disk->devid = cpu_to_le64(cpu->devid);
2381 disk->pstart = cpu_to_le64(cpu->pstart);
2382 disk->pend = cpu_to_le64(cpu->pend);
2383 disk->vstart = cpu_to_le64(cpu->vstart);
2384 disk->vend = cpu_to_le64(cpu->vend);
2385 disk->target = cpu_to_le64(cpu->target);
2386 disk->flags = cpu_to_le64(cpu->flags);
2387 disk->limit = cpu_to_le64(cpu->limit);
2388 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2389 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2390 }
2391
2392 /* struct btrfs_super_block */
2393 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2394 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2395 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2396 generation, 64);
2397 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2398 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2399 struct btrfs_super_block, sys_chunk_array_size, 32);
2400 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2401 struct btrfs_super_block, chunk_root_generation, 64);
2402 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2403 root_level, 8);
2404 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2405 chunk_root, 64);
2406 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2407 chunk_root_level, 8);
2408 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2409 log_root, 64);
2410 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2411 log_root_transid, 64);
2412 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2413 log_root_level, 8);
2414 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2415 total_bytes, 64);
2416 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2417 bytes_used, 64);
2418 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2419 sectorsize, 32);
2420 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2421 nodesize, 32);
2422 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2423 stripesize, 32);
2424 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2425 root_dir_objectid, 64);
2426 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2427 num_devices, 64);
2428 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2429 compat_flags, 64);
2430 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2431 compat_ro_flags, 64);
2432 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2433 incompat_flags, 64);
2434 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2435 csum_type, 16);
2436 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2437 cache_generation, 64);
2438 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2439 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2440 uuid_tree_generation, 64);
2441
2442 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2443 const char *btrfs_super_csum_name(u16 csum_type);
2444 const char *btrfs_super_csum_driver(u16 csum_type);
2445 size_t __attribute_const__ btrfs_get_num_csums(void);
2446
2447
2448 /*
2449 * The leaf data grows from end-to-front in the node.
2450 * this returns the address of the start of the last item,
2451 * which is the stop of the leaf data stack
2452 */
2453 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2454 {
2455 u32 nr = btrfs_header_nritems(leaf);
2456
2457 if (nr == 0)
2458 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2459 return btrfs_item_offset_nr(leaf, nr - 1);
2460 }
2461
2462 /* struct btrfs_file_extent_item */
2463 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2464 type, 8);
2465 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2466 struct btrfs_file_extent_item, disk_bytenr, 64);
2467 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2468 struct btrfs_file_extent_item, offset, 64);
2469 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2470 struct btrfs_file_extent_item, generation, 64);
2471 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2472 struct btrfs_file_extent_item, num_bytes, 64);
2473 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2474 struct btrfs_file_extent_item, ram_bytes, 64);
2475 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2476 struct btrfs_file_extent_item, disk_num_bytes, 64);
2477 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2478 struct btrfs_file_extent_item, compression, 8);
2479
2480 static inline unsigned long
2481 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2482 {
2483 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2484 }
2485
2486 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2487 {
2488 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2489 }
2490
2491 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2492 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2493 disk_bytenr, 64);
2494 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2495 generation, 64);
2496 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2497 disk_num_bytes, 64);
2498 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2499 offset, 64);
2500 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2501 num_bytes, 64);
2502 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2503 ram_bytes, 64);
2504 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2505 compression, 8);
2506 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2507 encryption, 8);
2508 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2509 other_encoding, 16);
2510
2511 /*
2512 * this returns the number of bytes used by the item on disk, minus the
2513 * size of any extent headers. If a file is compressed on disk, this is
2514 * the compressed size
2515 */
2516 static inline u32 btrfs_file_extent_inline_item_len(
2517 const struct extent_buffer *eb,
2518 struct btrfs_item *e)
2519 {
2520 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2521 }
2522
2523 /* btrfs_qgroup_status_item */
2524 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2525 generation, 64);
2526 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2527 version, 64);
2528 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2529 flags, 64);
2530 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2531 rescan, 64);
2532
2533 /* btrfs_qgroup_info_item */
2534 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2535 generation, 64);
2536 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2537 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2538 rfer_cmpr, 64);
2539 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2540 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2541 excl_cmpr, 64);
2542
2543 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2544 struct btrfs_qgroup_info_item, generation, 64);
2545 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2546 rfer, 64);
2547 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2548 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2549 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2550 excl, 64);
2551 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2552 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2553
2554 /* btrfs_qgroup_limit_item */
2555 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2556 flags, 64);
2557 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2558 max_rfer, 64);
2559 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2560 max_excl, 64);
2561 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2562 rsv_rfer, 64);
2563 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2564 rsv_excl, 64);
2565
2566 /* btrfs_dev_replace_item */
2567 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2568 struct btrfs_dev_replace_item, src_devid, 64);
2569 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2570 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2571 64);
2572 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2573 replace_state, 64);
2574 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2575 time_started, 64);
2576 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2577 time_stopped, 64);
2578 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2579 num_write_errors, 64);
2580 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2581 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2582 64);
2583 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2584 cursor_left, 64);
2585 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2586 cursor_right, 64);
2587
2588 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2589 struct btrfs_dev_replace_item, src_devid, 64);
2590 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2591 struct btrfs_dev_replace_item,
2592 cont_reading_from_srcdev_mode, 64);
2593 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2594 struct btrfs_dev_replace_item, replace_state, 64);
2595 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2596 struct btrfs_dev_replace_item, time_started, 64);
2597 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2598 struct btrfs_dev_replace_item, time_stopped, 64);
2599 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2600 struct btrfs_dev_replace_item, num_write_errors, 64);
2601 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2602 struct btrfs_dev_replace_item,
2603 num_uncorrectable_read_errors, 64);
2604 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2605 struct btrfs_dev_replace_item, cursor_left, 64);
2606 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2607 struct btrfs_dev_replace_item, cursor_right, 64);
2608
2609 /* helper function to cast into the data area of the leaf. */
2610 #define btrfs_item_ptr(leaf, slot, type) \
2611 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2612 btrfs_item_offset_nr(leaf, slot)))
2613
2614 #define btrfs_item_ptr_offset(leaf, slot) \
2615 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2616 btrfs_item_offset_nr(leaf, slot)))
2617
2618 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2619 {
2620 return crc32c(crc, address, length);
2621 }
2622
2623 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2624 {
2625 put_unaligned_le32(~crc, result);
2626 }
2627
2628 static inline u64 btrfs_name_hash(const char *name, int len)
2629 {
2630 return crc32c((u32)~1, name, len);
2631 }
2632
2633 /*
2634 * Figure the key offset of an extended inode ref
2635 */
2636 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2637 int len)
2638 {
2639 return (u64) crc32c(parent_objectid, name, len);
2640 }
2641
2642 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2643 {
2644 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2645 }
2646
2647 /* extent-tree.c */
2648
2649 enum btrfs_inline_ref_type {
2650 BTRFS_REF_TYPE_INVALID,
2651 BTRFS_REF_TYPE_BLOCK,
2652 BTRFS_REF_TYPE_DATA,
2653 BTRFS_REF_TYPE_ANY,
2654 };
2655
2656 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2657 struct btrfs_extent_inline_ref *iref,
2658 enum btrfs_inline_ref_type is_data);
2659 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2660
2661 /*
2662 * Take the number of bytes to be checksummmed and figure out how many leaves
2663 * it would require to store the csums for that many bytes.
2664 */
2665 static inline u64 btrfs_csum_bytes_to_leaves(
2666 const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2667 {
2668 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2669
2670 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2671 }
2672
2673 /*
2674 * Use this if we would be adding new items, as we could split nodes as we cow
2675 * down the tree.
2676 */
2677 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2678 unsigned num_items)
2679 {
2680 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2681 }
2682
2683 /*
2684 * Doing a truncate or a modification won't result in new nodes or leaves, just
2685 * what we need for COW.
2686 */
2687 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2688 unsigned num_items)
2689 {
2690 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2691 }
2692
2693 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2694 u64 start, u64 num_bytes);
2695 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2696 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2697 unsigned long count);
2698 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2699 struct btrfs_delayed_ref_root *delayed_refs,
2700 struct btrfs_delayed_ref_head *head);
2701 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2702 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2703 struct btrfs_fs_info *fs_info, u64 bytenr,
2704 u64 offset, int metadata, u64 *refs, u64 *flags);
2705 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2706 int reserved);
2707 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2708 u64 bytenr, u64 num_bytes);
2709 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2710 int btrfs_cross_ref_exist(struct btrfs_root *root,
2711 u64 objectid, u64 offset, u64 bytenr, bool strict);
2712 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2713 struct btrfs_root *root,
2714 u64 parent, u64 root_objectid,
2715 const struct btrfs_disk_key *key,
2716 int level, u64 hint,
2717 u64 empty_size,
2718 enum btrfs_lock_nesting nest);
2719 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2720 struct btrfs_root *root,
2721 struct extent_buffer *buf,
2722 u64 parent, int last_ref);
2723 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root, u64 owner,
2725 u64 offset, u64 ram_bytes,
2726 struct btrfs_key *ins);
2727 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2728 u64 root_objectid, u64 owner, u64 offset,
2729 struct btrfs_key *ins);
2730 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2731 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2732 struct btrfs_key *ins, int is_data, int delalloc);
2733 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2734 struct extent_buffer *buf, int full_backref);
2735 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2736 struct extent_buffer *buf, int full_backref);
2737 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2738 struct extent_buffer *eb, u64 flags,
2739 int level, int is_data);
2740 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2741
2742 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2743 u64 start, u64 len, int delalloc);
2744 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2745 u64 len);
2746 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2747 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2748 struct btrfs_ref *generic_ref);
2749
2750 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2751
2752 /*
2753 * Different levels for to flush space when doing space reservations.
2754 *
2755 * The higher the level, the more methods we try to reclaim space.
2756 */
2757 enum btrfs_reserve_flush_enum {
2758 /* If we are in the transaction, we can't flush anything.*/
2759 BTRFS_RESERVE_NO_FLUSH,
2760
2761 /*
2762 * Flush space by:
2763 * - Running delayed inode items
2764 * - Allocating a new chunk
2765 */
2766 BTRFS_RESERVE_FLUSH_LIMIT,
2767
2768 /*
2769 * Flush space by:
2770 * - Running delayed inode items
2771 * - Running delayed refs
2772 * - Running delalloc and waiting for ordered extents
2773 * - Allocating a new chunk
2774 */
2775 BTRFS_RESERVE_FLUSH_EVICT,
2776
2777 /*
2778 * Flush space by above mentioned methods and by:
2779 * - Running delayed iputs
2780 * - Committing transaction
2781 *
2782 * Can be interrupted by a fatal signal.
2783 */
2784 BTRFS_RESERVE_FLUSH_DATA,
2785 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2786 BTRFS_RESERVE_FLUSH_ALL,
2787
2788 /*
2789 * Pretty much the same as FLUSH_ALL, but can also steal space from
2790 * global rsv.
2791 *
2792 * Can be interrupted by a fatal signal.
2793 */
2794 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2795 };
2796
2797 enum btrfs_flush_state {
2798 FLUSH_DELAYED_ITEMS_NR = 1,
2799 FLUSH_DELAYED_ITEMS = 2,
2800 FLUSH_DELAYED_REFS_NR = 3,
2801 FLUSH_DELAYED_REFS = 4,
2802 FLUSH_DELALLOC = 5,
2803 FLUSH_DELALLOC_WAIT = 6,
2804 FLUSH_DELALLOC_FULL = 7,
2805 ALLOC_CHUNK = 8,
2806 ALLOC_CHUNK_FORCE = 9,
2807 RUN_DELAYED_IPUTS = 10,
2808 COMMIT_TRANS = 11,
2809 };
2810
2811 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2812 struct btrfs_block_rsv *rsv,
2813 int nitems, bool use_global_rsv);
2814 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2815 struct btrfs_block_rsv *rsv);
2816 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2817
2818 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2819 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2820 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2821 u64 start, u64 end);
2822 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2823 u64 num_bytes, u64 *actual_bytes);
2824 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2825
2826 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2827 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2828 struct btrfs_fs_info *fs_info);
2829 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2830 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2831 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2832
2833 /* ctree.c */
2834 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2835 int *slot);
2836 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2837 int btrfs_previous_item(struct btrfs_root *root,
2838 struct btrfs_path *path, u64 min_objectid,
2839 int type);
2840 int btrfs_previous_extent_item(struct btrfs_root *root,
2841 struct btrfs_path *path, u64 min_objectid);
2842 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2843 struct btrfs_path *path,
2844 const struct btrfs_key *new_key);
2845 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2846 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2847 struct btrfs_key *key, int lowest_level,
2848 u64 min_trans);
2849 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2850 struct btrfs_path *path,
2851 u64 min_trans);
2852 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2853 int slot);
2854
2855 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2856 struct btrfs_root *root, struct extent_buffer *buf,
2857 struct extent_buffer *parent, int parent_slot,
2858 struct extent_buffer **cow_ret,
2859 enum btrfs_lock_nesting nest);
2860 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2861 struct btrfs_root *root,
2862 struct extent_buffer *buf,
2863 struct extent_buffer **cow_ret, u64 new_root_objectid);
2864 int btrfs_block_can_be_shared(struct btrfs_root *root,
2865 struct extent_buffer *buf);
2866 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2867 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2868 int btrfs_split_item(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root,
2870 struct btrfs_path *path,
2871 const struct btrfs_key *new_key,
2872 unsigned long split_offset);
2873 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2874 struct btrfs_root *root,
2875 struct btrfs_path *path,
2876 const struct btrfs_key *new_key);
2877 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2878 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2879 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2880 const struct btrfs_key *key, struct btrfs_path *p,
2881 int ins_len, int cow);
2882 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2883 struct btrfs_path *p, u64 time_seq);
2884 int btrfs_search_slot_for_read(struct btrfs_root *root,
2885 const struct btrfs_key *key,
2886 struct btrfs_path *p, int find_higher,
2887 int return_any);
2888 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2889 struct btrfs_root *root, struct extent_buffer *parent,
2890 int start_slot, u64 *last_ret,
2891 struct btrfs_key *progress);
2892 void btrfs_release_path(struct btrfs_path *p);
2893 struct btrfs_path *btrfs_alloc_path(void);
2894 void btrfs_free_path(struct btrfs_path *p);
2895
2896 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2897 struct btrfs_path *path, int slot, int nr);
2898 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2899 struct btrfs_root *root,
2900 struct btrfs_path *path)
2901 {
2902 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2903 }
2904
2905 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2906 const struct btrfs_key *cpu_key, u32 *data_size,
2907 int nr);
2908 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2909 const struct btrfs_key *key, void *data, u32 data_size);
2910 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2911 struct btrfs_root *root,
2912 struct btrfs_path *path,
2913 const struct btrfs_key *cpu_key, u32 *data_size,
2914 int nr);
2915
2916 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2917 struct btrfs_root *root,
2918 struct btrfs_path *path,
2919 const struct btrfs_key *key,
2920 u32 data_size)
2921 {
2922 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
2923 }
2924
2925 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2926 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2927 u64 time_seq);
2928
2929 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2930 struct btrfs_path *path);
2931
2932 static inline int btrfs_next_old_item(struct btrfs_root *root,
2933 struct btrfs_path *p, u64 time_seq)
2934 {
2935 ++p->slots[0];
2936 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2937 return btrfs_next_old_leaf(root, p, time_seq);
2938 return 0;
2939 }
2940
2941 /*
2942 * Search the tree again to find a leaf with greater keys.
2943 *
2944 * Returns 0 if it found something or 1 if there are no greater leaves.
2945 * Returns < 0 on error.
2946 */
2947 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2948 {
2949 return btrfs_next_old_leaf(root, path, 0);
2950 }
2951
2952 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2953 {
2954 return btrfs_next_old_item(root, p, 0);
2955 }
2956 int btrfs_leaf_free_space(struct extent_buffer *leaf);
2957 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
2958 int for_reloc);
2959 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2960 struct btrfs_root *root,
2961 struct extent_buffer *node,
2962 struct extent_buffer *parent);
2963 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2964 {
2965 /*
2966 * Do it this way so we only ever do one test_bit in the normal case.
2967 */
2968 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2969 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2970 return 2;
2971 return 1;
2972 }
2973 return 0;
2974 }
2975
2976 /*
2977 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2978 * anything except sleeping. This function is used to check the status of
2979 * the fs.
2980 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
2981 * since setting and checking for SB_RDONLY in the superblock's flags is not
2982 * atomic.
2983 */
2984 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2985 {
2986 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
2987 btrfs_fs_closing(fs_info);
2988 }
2989
2990 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
2991 {
2992 sb->s_flags |= SB_RDONLY;
2993 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
2994 }
2995
2996 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
2997 {
2998 sb->s_flags &= ~SB_RDONLY;
2999 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3000 }
3001
3002 /* root-item.c */
3003 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3004 u64 ref_id, u64 dirid, u64 sequence, const char *name,
3005 int name_len);
3006 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3007 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3008 int name_len);
3009 int btrfs_del_root(struct btrfs_trans_handle *trans,
3010 const struct btrfs_key *key);
3011 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3012 const struct btrfs_key *key,
3013 struct btrfs_root_item *item);
3014 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root,
3016 struct btrfs_key *key,
3017 struct btrfs_root_item *item);
3018 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3019 struct btrfs_path *path, struct btrfs_root_item *root_item,
3020 struct btrfs_key *root_key);
3021 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3022 void btrfs_set_root_node(struct btrfs_root_item *item,
3023 struct extent_buffer *node);
3024 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3025 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3026 struct btrfs_root *root);
3027
3028 /* uuid-tree.c */
3029 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3030 u64 subid);
3031 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3032 u64 subid);
3033 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3034
3035 /* dir-item.c */
3036 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3037 const char *name, int name_len);
3038 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3039 int name_len, struct btrfs_inode *dir,
3040 struct btrfs_key *location, u8 type, u64 index);
3041 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3042 struct btrfs_root *root,
3043 struct btrfs_path *path, u64 dir,
3044 const char *name, int name_len,
3045 int mod);
3046 struct btrfs_dir_item *
3047 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3048 struct btrfs_root *root,
3049 struct btrfs_path *path, u64 dir,
3050 u64 index, const char *name, int name_len,
3051 int mod);
3052 struct btrfs_dir_item *
3053 btrfs_search_dir_index_item(struct btrfs_root *root,
3054 struct btrfs_path *path, u64 dirid,
3055 const char *name, int name_len);
3056 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3057 struct btrfs_root *root,
3058 struct btrfs_path *path,
3059 struct btrfs_dir_item *di);
3060 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3061 struct btrfs_root *root,
3062 struct btrfs_path *path, u64 objectid,
3063 const char *name, u16 name_len,
3064 const void *data, u16 data_len);
3065 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 struct btrfs_path *path, u64 dir,
3068 const char *name, u16 name_len,
3069 int mod);
3070 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3071 struct btrfs_path *path,
3072 const char *name,
3073 int name_len);
3074
3075 /* orphan.c */
3076 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root, u64 offset);
3078 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3079 struct btrfs_root *root, u64 offset);
3080 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3081
3082 /* inode-item.c */
3083 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3084 struct btrfs_root *root,
3085 const char *name, int name_len,
3086 u64 inode_objectid, u64 ref_objectid, u64 index);
3087 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3088 struct btrfs_root *root,
3089 const char *name, int name_len,
3090 u64 inode_objectid, u64 ref_objectid, u64 *index);
3091 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3092 struct btrfs_root *root,
3093 struct btrfs_path *path, u64 objectid);
3094 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3095 *root, struct btrfs_path *path,
3096 struct btrfs_key *location, int mod);
3097
3098 struct btrfs_inode_extref *
3099 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3100 struct btrfs_root *root,
3101 struct btrfs_path *path,
3102 const char *name, int name_len,
3103 u64 inode_objectid, u64 ref_objectid, int ins_len,
3104 int cow);
3105
3106 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
3107 int slot, const char *name,
3108 int name_len);
3109 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
3110 struct extent_buffer *leaf, int slot, u64 ref_objectid,
3111 const char *name, int name_len);
3112 /* file-item.c */
3113 struct btrfs_dio_private;
3114 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3115 struct btrfs_root *root, u64 bytenr, u64 len);
3116 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3117 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3118 struct btrfs_root *root,
3119 u64 objectid, u64 pos,
3120 u64 disk_offset, u64 disk_num_bytes,
3121 u64 num_bytes, u64 offset, u64 ram_bytes,
3122 u8 compression, u8 encryption, u16 other_encoding);
3123 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3124 struct btrfs_root *root,
3125 struct btrfs_path *path, u64 objectid,
3126 u64 bytenr, int mod);
3127 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3128 struct btrfs_root *root,
3129 struct btrfs_ordered_sum *sums);
3130 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3131 u64 file_start, int contig);
3132 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3133 struct list_head *list, int search_commit);
3134 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3135 const struct btrfs_path *path,
3136 struct btrfs_file_extent_item *fi,
3137 const bool new_inline,
3138 struct extent_map *em);
3139 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3140 u64 len);
3141 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3142 u64 len);
3143 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3144 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3145
3146 /* inode.c */
3147 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3148 int mirror_num, unsigned long bio_flags);
3149 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3150 struct page *page, u64 start, u64 end);
3151 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3152 u64 start, u64 len);
3153 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3154 u64 *orig_start, u64 *orig_block_len,
3155 u64 *ram_bytes, bool strict);
3156
3157 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3158 struct btrfs_inode *inode);
3159 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3160 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3161 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3162 struct btrfs_root *root,
3163 struct btrfs_inode *dir, struct btrfs_inode *inode,
3164 const char *name, int name_len);
3165 int btrfs_add_link(struct btrfs_trans_handle *trans,
3166 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3167 const char *name, int name_len, int add_backref, u64 index);
3168 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3169 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3170 int front);
3171 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3172 struct btrfs_root *root,
3173 struct btrfs_inode *inode, u64 new_size,
3174 u32 min_type, u64 *extents_found);
3175
3176 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3177 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3178 bool in_reclaim_context);
3179 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3180 unsigned int extra_bits,
3181 struct extent_state **cached_state);
3182 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3183 struct btrfs_root *new_root,
3184 struct btrfs_root *parent_root,
3185 struct user_namespace *mnt_userns);
3186 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3187 unsigned *bits);
3188 void btrfs_clear_delalloc_extent(struct inode *inode,
3189 struct extent_state *state, unsigned *bits);
3190 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3191 struct extent_state *other);
3192 void btrfs_split_delalloc_extent(struct inode *inode,
3193 struct extent_state *orig, u64 split);
3194 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
3195 unsigned long bio_flags);
3196 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3197 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3198 int btrfs_readpage(struct file *file, struct page *page);
3199 void btrfs_evict_inode(struct inode *inode);
3200 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3201 struct inode *btrfs_alloc_inode(struct super_block *sb);
3202 void btrfs_destroy_inode(struct inode *inode);
3203 void btrfs_free_inode(struct inode *inode);
3204 int btrfs_drop_inode(struct inode *inode);
3205 int __init btrfs_init_cachep(void);
3206 void __cold btrfs_destroy_cachep(void);
3207 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3208 struct btrfs_root *root, struct btrfs_path *path);
3209 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3210 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3211 struct page *page, size_t pg_offset,
3212 u64 start, u64 end);
3213 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3214 struct btrfs_root *root, struct btrfs_inode *inode);
3215 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3216 struct btrfs_root *root, struct btrfs_inode *inode);
3217 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3218 struct btrfs_inode *inode);
3219 int btrfs_orphan_cleanup(struct btrfs_root *root);
3220 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3221 void btrfs_add_delayed_iput(struct inode *inode);
3222 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3223 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3224 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3225 u64 start, u64 num_bytes, u64 min_size,
3226 loff_t actual_len, u64 *alloc_hint);
3227 int btrfs_prealloc_file_range_trans(struct inode *inode,
3228 struct btrfs_trans_handle *trans, int mode,
3229 u64 start, u64 num_bytes, u64 min_size,
3230 loff_t actual_len, u64 *alloc_hint);
3231 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3232 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3233 struct writeback_control *wbc);
3234 int btrfs_writepage_cow_fixup(struct page *page);
3235 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3236 struct page *page, u64 start,
3237 u64 end, bool uptodate);
3238 extern const struct dentry_operations btrfs_dentry_operations;
3239 extern const struct iomap_ops btrfs_dio_iomap_ops;
3240 extern const struct iomap_dio_ops btrfs_dio_ops;
3241
3242 /* Inode locking type flags, by default the exclusive lock is taken */
3243 #define BTRFS_ILOCK_SHARED (1U << 0)
3244 #define BTRFS_ILOCK_TRY (1U << 1)
3245 #define BTRFS_ILOCK_MMAP (1U << 2)
3246
3247 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3248 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3249 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3250 const u64 add_bytes,
3251 const u64 del_bytes);
3252
3253 /* ioctl.c */
3254 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3255 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3256 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3257 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3258 struct dentry *dentry, struct fileattr *fa);
3259 int btrfs_ioctl_get_supported_features(void __user *arg);
3260 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3261 int __pure btrfs_is_empty_uuid(u8 *uuid);
3262 int btrfs_defrag_file(struct inode *inode, struct file *file,
3263 struct btrfs_ioctl_defrag_range_args *range,
3264 u64 newer_than, unsigned long max_pages);
3265 void btrfs_get_block_group_info(struct list_head *groups_list,
3266 struct btrfs_ioctl_space_info *space);
3267 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3268 struct btrfs_ioctl_balance_args *bargs);
3269 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3270 enum btrfs_exclusive_operation type);
3271 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3272 enum btrfs_exclusive_operation type);
3273 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3274 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3275
3276 /* file.c */
3277 int __init btrfs_auto_defrag_init(void);
3278 void __cold btrfs_auto_defrag_exit(void);
3279 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3280 struct btrfs_inode *inode);
3281 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3282 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3283 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3284 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3285 int skip_pinned);
3286 extern const struct file_operations btrfs_file_operations;
3287 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3288 struct btrfs_root *root, struct btrfs_inode *inode,
3289 struct btrfs_drop_extents_args *args);
3290 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3291 struct btrfs_path *path, const u64 start,
3292 const u64 end,
3293 struct btrfs_replace_extent_info *extent_info,
3294 struct btrfs_trans_handle **trans_out);
3295 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3296 struct btrfs_inode *inode, u64 start, u64 end);
3297 int btrfs_release_file(struct inode *inode, struct file *file);
3298 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3299 size_t num_pages, loff_t pos, size_t write_bytes,
3300 struct extent_state **cached, bool noreserve);
3301 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3302 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3303 size_t *write_bytes);
3304 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3305
3306 /* tree-defrag.c */
3307 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3308 struct btrfs_root *root);
3309
3310 /* super.c */
3311 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3312 unsigned long new_flags);
3313 int btrfs_sync_fs(struct super_block *sb, int wait);
3314 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3315 u64 subvol_objectid);
3316
3317 static inline __printf(2, 3) __cold
3318 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3319 {
3320 }
3321
3322 #ifdef CONFIG_PRINTK
3323 __printf(2, 3)
3324 __cold
3325 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3326 #else
3327 #define btrfs_printk(fs_info, fmt, args...) \
3328 btrfs_no_printk(fs_info, fmt, ##args)
3329 #endif
3330
3331 #define btrfs_emerg(fs_info, fmt, args...) \
3332 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3333 #define btrfs_alert(fs_info, fmt, args...) \
3334 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3335 #define btrfs_crit(fs_info, fmt, args...) \
3336 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3337 #define btrfs_err(fs_info, fmt, args...) \
3338 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3339 #define btrfs_warn(fs_info, fmt, args...) \
3340 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3341 #define btrfs_notice(fs_info, fmt, args...) \
3342 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3343 #define btrfs_info(fs_info, fmt, args...) \
3344 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3345
3346 /*
3347 * Wrappers that use printk_in_rcu
3348 */
3349 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3350 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3351 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3352 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3353 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3354 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3355 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3356 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3357 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3358 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3359 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3360 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3361 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3362 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3363
3364 /*
3365 * Wrappers that use a ratelimited printk_in_rcu
3366 */
3367 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3368 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3369 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3370 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3371 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3372 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3373 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3374 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3375 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3376 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3377 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3378 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3379 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3380 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3381
3382 /*
3383 * Wrappers that use a ratelimited printk
3384 */
3385 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3386 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3387 #define btrfs_alert_rl(fs_info, fmt, args...) \
3388 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3389 #define btrfs_crit_rl(fs_info, fmt, args...) \
3390 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3391 #define btrfs_err_rl(fs_info, fmt, args...) \
3392 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3393 #define btrfs_warn_rl(fs_info, fmt, args...) \
3394 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3395 #define btrfs_notice_rl(fs_info, fmt, args...) \
3396 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3397 #define btrfs_info_rl(fs_info, fmt, args...) \
3398 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3399
3400 #if defined(CONFIG_DYNAMIC_DEBUG)
3401 #define btrfs_debug(fs_info, fmt, args...) \
3402 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3403 fs_info, KERN_DEBUG fmt, ##args)
3404 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3405 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3406 fs_info, KERN_DEBUG fmt, ##args)
3407 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3408 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3409 fs_info, KERN_DEBUG fmt, ##args)
3410 #define btrfs_debug_rl(fs_info, fmt, args...) \
3411 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3412 fs_info, KERN_DEBUG fmt, ##args)
3413 #elif defined(DEBUG)
3414 #define btrfs_debug(fs_info, fmt, args...) \
3415 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3416 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3417 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3418 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3419 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3420 #define btrfs_debug_rl(fs_info, fmt, args...) \
3421 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3422 #else
3423 #define btrfs_debug(fs_info, fmt, args...) \
3424 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3425 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3426 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3427 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3428 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3429 #define btrfs_debug_rl(fs_info, fmt, args...) \
3430 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3431 #endif
3432
3433 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3434 do { \
3435 rcu_read_lock(); \
3436 btrfs_printk(fs_info, fmt, ##args); \
3437 rcu_read_unlock(); \
3438 } while (0)
3439
3440 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3441 do { \
3442 rcu_read_lock(); \
3443 btrfs_no_printk(fs_info, fmt, ##args); \
3444 rcu_read_unlock(); \
3445 } while (0)
3446
3447 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3448 do { \
3449 static DEFINE_RATELIMIT_STATE(_rs, \
3450 DEFAULT_RATELIMIT_INTERVAL, \
3451 DEFAULT_RATELIMIT_BURST); \
3452 if (__ratelimit(&_rs)) \
3453 btrfs_printk(fs_info, fmt, ##args); \
3454 } while (0)
3455
3456 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3457 do { \
3458 rcu_read_lock(); \
3459 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3460 rcu_read_unlock(); \
3461 } while (0)
3462
3463 #ifdef CONFIG_BTRFS_ASSERT
3464 __cold __noreturn
3465 static inline void assertfail(const char *expr, const char *file, int line)
3466 {
3467 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3468 BUG();
3469 }
3470
3471 #define ASSERT(expr) \
3472 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3473
3474 #else
3475 static inline void assertfail(const char *expr, const char* file, int line) { }
3476 #define ASSERT(expr) (void)(expr)
3477 #endif
3478
3479 #if BITS_PER_LONG == 32
3480 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3481 /*
3482 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3483 * addresses of extents.
3484 *
3485 * For 4K page size it's about 10T, for 64K it's 160T.
3486 */
3487 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3488 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3489 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3490 #endif
3491
3492 /*
3493 * Get the correct offset inside the page of extent buffer.
3494 *
3495 * @eb: target extent buffer
3496 * @start: offset inside the extent buffer
3497 *
3498 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3499 */
3500 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3501 unsigned long offset)
3502 {
3503 /*
3504 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3505 * to PAGE_SIZE, thus adding it won't cause any difference.
3506 *
3507 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3508 * to the eb, thus we have to take the eb->start into consideration.
3509 */
3510 return offset_in_page(offset + eb->start);
3511 }
3512
3513 static inline unsigned long get_eb_page_index(unsigned long offset)
3514 {
3515 /*
3516 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3517 *
3518 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3519 * and have ensured that all tree blocks are contained in one page,
3520 * thus we always get index == 0.
3521 */
3522 return offset >> PAGE_SHIFT;
3523 }
3524
3525 /*
3526 * Use that for functions that are conditionally exported for sanity tests but
3527 * otherwise static
3528 */
3529 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3530 #define EXPORT_FOR_TESTS static
3531 #else
3532 #define EXPORT_FOR_TESTS
3533 #endif
3534
3535 __cold
3536 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3537 {
3538 btrfs_err(fs_info,
3539 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3540 }
3541
3542 __printf(5, 6)
3543 __cold
3544 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3545 unsigned int line, int errno, const char *fmt, ...);
3546
3547 const char * __attribute_const__ btrfs_decode_error(int errno);
3548
3549 __cold
3550 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3551 const char *function,
3552 unsigned int line, int errno);
3553
3554 /*
3555 * Call btrfs_abort_transaction as early as possible when an error condition is
3556 * detected, that way the exact line number is reported.
3557 */
3558 #define btrfs_abort_transaction(trans, errno) \
3559 do { \
3560 /* Report first abort since mount */ \
3561 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3562 &((trans)->fs_info->fs_state))) { \
3563 if ((errno) != -EIO && (errno) != -EROFS) { \
3564 WARN(1, KERN_DEBUG \
3565 "BTRFS: Transaction aborted (error %d)\n", \
3566 (errno)); \
3567 } else { \
3568 btrfs_debug((trans)->fs_info, \
3569 "Transaction aborted (error %d)", \
3570 (errno)); \
3571 } \
3572 } \
3573 __btrfs_abort_transaction((trans), __func__, \
3574 __LINE__, (errno)); \
3575 } while (0)
3576
3577 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3578 do { \
3579 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3580 (errno), fmt, ##args); \
3581 } while (0)
3582
3583 __printf(5, 6)
3584 __cold
3585 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3586 unsigned int line, int errno, const char *fmt, ...);
3587 /*
3588 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3589 * will panic(). Otherwise we BUG() here.
3590 */
3591 #define btrfs_panic(fs_info, errno, fmt, args...) \
3592 do { \
3593 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3594 BUG(); \
3595 } while (0)
3596
3597
3598 /* compatibility and incompatibility defines */
3599
3600 #define btrfs_set_fs_incompat(__fs_info, opt) \
3601 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3602 #opt)
3603
3604 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3605 u64 flag, const char* name)
3606 {
3607 struct btrfs_super_block *disk_super;
3608 u64 features;
3609
3610 disk_super = fs_info->super_copy;
3611 features = btrfs_super_incompat_flags(disk_super);
3612 if (!(features & flag)) {
3613 spin_lock(&fs_info->super_lock);
3614 features = btrfs_super_incompat_flags(disk_super);
3615 if (!(features & flag)) {
3616 features |= flag;
3617 btrfs_set_super_incompat_flags(disk_super, features);
3618 btrfs_info(fs_info,
3619 "setting incompat feature flag for %s (0x%llx)",
3620 name, flag);
3621 }
3622 spin_unlock(&fs_info->super_lock);
3623 }
3624 }
3625
3626 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3627 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3628 #opt)
3629
3630 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3631 u64 flag, const char* name)
3632 {
3633 struct btrfs_super_block *disk_super;
3634 u64 features;
3635
3636 disk_super = fs_info->super_copy;
3637 features = btrfs_super_incompat_flags(disk_super);
3638 if (features & flag) {
3639 spin_lock(&fs_info->super_lock);
3640 features = btrfs_super_incompat_flags(disk_super);
3641 if (features & flag) {
3642 features &= ~flag;
3643 btrfs_set_super_incompat_flags(disk_super, features);
3644 btrfs_info(fs_info,
3645 "clearing incompat feature flag for %s (0x%llx)",
3646 name, flag);
3647 }
3648 spin_unlock(&fs_info->super_lock);
3649 }
3650 }
3651
3652 #define btrfs_fs_incompat(fs_info, opt) \
3653 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3654
3655 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3656 {
3657 struct btrfs_super_block *disk_super;
3658 disk_super = fs_info->super_copy;
3659 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3660 }
3661
3662 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3663 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3664 #opt)
3665
3666 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3667 u64 flag, const char *name)
3668 {
3669 struct btrfs_super_block *disk_super;
3670 u64 features;
3671
3672 disk_super = fs_info->super_copy;
3673 features = btrfs_super_compat_ro_flags(disk_super);
3674 if (!(features & flag)) {
3675 spin_lock(&fs_info->super_lock);
3676 features = btrfs_super_compat_ro_flags(disk_super);
3677 if (!(features & flag)) {
3678 features |= flag;
3679 btrfs_set_super_compat_ro_flags(disk_super, features);
3680 btrfs_info(fs_info,
3681 "setting compat-ro feature flag for %s (0x%llx)",
3682 name, flag);
3683 }
3684 spin_unlock(&fs_info->super_lock);
3685 }
3686 }
3687
3688 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3689 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3690 #opt)
3691
3692 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3693 u64 flag, const char *name)
3694 {
3695 struct btrfs_super_block *disk_super;
3696 u64 features;
3697
3698 disk_super = fs_info->super_copy;
3699 features = btrfs_super_compat_ro_flags(disk_super);
3700 if (features & flag) {
3701 spin_lock(&fs_info->super_lock);
3702 features = btrfs_super_compat_ro_flags(disk_super);
3703 if (features & flag) {
3704 features &= ~flag;
3705 btrfs_set_super_compat_ro_flags(disk_super, features);
3706 btrfs_info(fs_info,
3707 "clearing compat-ro feature flag for %s (0x%llx)",
3708 name, flag);
3709 }
3710 spin_unlock(&fs_info->super_lock);
3711 }
3712 }
3713
3714 #define btrfs_fs_compat_ro(fs_info, opt) \
3715 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3716
3717 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3718 {
3719 struct btrfs_super_block *disk_super;
3720 disk_super = fs_info->super_copy;
3721 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3722 }
3723
3724 /* acl.c */
3725 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3726 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3727 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3728 struct posix_acl *acl, int type);
3729 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3730 struct inode *inode, struct inode *dir);
3731 #else
3732 #define btrfs_get_acl NULL
3733 #define btrfs_set_acl NULL
3734 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3735 struct inode *inode, struct inode *dir)
3736 {
3737 return 0;
3738 }
3739 #endif
3740
3741 /* relocation.c */
3742 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3743 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3744 struct btrfs_root *root);
3745 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3746 struct btrfs_root *root);
3747 int btrfs_recover_relocation(struct btrfs_root *root);
3748 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3749 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3750 struct btrfs_root *root, struct extent_buffer *buf,
3751 struct extent_buffer *cow);
3752 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3753 u64 *bytes_to_reserve);
3754 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3755 struct btrfs_pending_snapshot *pending);
3756 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3757 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3758 u64 bytenr);
3759 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3760
3761 /* scrub.c */
3762 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3763 u64 end, struct btrfs_scrub_progress *progress,
3764 int readonly, int is_dev_replace);
3765 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3766 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3767 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3768 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3769 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3770 struct btrfs_scrub_progress *progress);
3771 static inline void btrfs_init_full_stripe_locks_tree(
3772 struct btrfs_full_stripe_locks_tree *locks_root)
3773 {
3774 locks_root->root = RB_ROOT;
3775 mutex_init(&locks_root->lock);
3776 }
3777
3778 /* dev-replace.c */
3779 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3780 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3781 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3782
3783 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3784 {
3785 btrfs_bio_counter_sub(fs_info, 1);
3786 }
3787
3788 /* reada.c */
3789 struct reada_control {
3790 struct btrfs_fs_info *fs_info; /* tree to prefetch */
3791 struct btrfs_key key_start;
3792 struct btrfs_key key_end; /* exclusive */
3793 atomic_t elems;
3794 struct kref refcnt;
3795 wait_queue_head_t wait;
3796 };
3797 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3798 struct btrfs_key *start, struct btrfs_key *end);
3799 int btrfs_reada_wait(void *handle);
3800 void btrfs_reada_detach(void *handle);
3801 int btree_readahead_hook(struct extent_buffer *eb, int err);
3802 void btrfs_reada_remove_dev(struct btrfs_device *dev);
3803 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev);
3804
3805 static inline int is_fstree(u64 rootid)
3806 {
3807 if (rootid == BTRFS_FS_TREE_OBJECTID ||
3808 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3809 !btrfs_qgroup_level(rootid)))
3810 return 1;
3811 return 0;
3812 }
3813
3814 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3815 {
3816 return signal_pending(current);
3817 }
3818
3819 /* verity.c */
3820 #ifdef CONFIG_FS_VERITY
3821
3822 extern const struct fsverity_operations btrfs_verityops;
3823 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3824
3825 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3826 encryption, 8);
3827 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3828 size, 64);
3829 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3830 struct btrfs_verity_descriptor_item, encryption, 8);
3831 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3832 struct btrfs_verity_descriptor_item, size, 64);
3833
3834 #else
3835
3836 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3837 {
3838 return 0;
3839 }
3840
3841 #endif
3842
3843 /* Sanity test specific functions */
3844 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3845 void btrfs_test_destroy_inode(struct inode *inode);
3846 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3847 {
3848 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3849 }
3850 #else
3851 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3852 {
3853 return 0;
3854 }
3855 #endif
3856
3857 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3858 {
3859 return fs_info->zoned != 0;
3860 }
3861
3862 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
3863 {
3864 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
3865 }
3866
3867 /*
3868 * We use page status Private2 to indicate there is an ordered extent with
3869 * unfinished IO.
3870 *
3871 * Rename the Private2 accessors to Ordered, to improve readability.
3872 */
3873 #define PageOrdered(page) PagePrivate2(page)
3874 #define SetPageOrdered(page) SetPagePrivate2(page)
3875 #define ClearPageOrdered(page) ClearPagePrivate2(page)
3876
3877 #endif