]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/ctree.h
Merge branch 'misc-4.6' into for-chris-4.6
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/sizes.h>
39 #include "extent_io.h"
40 #include "extent_map.h"
41 #include "async-thread.h"
42
43 struct btrfs_trans_handle;
44 struct btrfs_transaction;
45 struct btrfs_pending_snapshot;
46 extern struct kmem_cache *btrfs_trans_handle_cachep;
47 extern struct kmem_cache *btrfs_transaction_cachep;
48 extern struct kmem_cache *btrfs_bit_radix_cachep;
49 extern struct kmem_cache *btrfs_path_cachep;
50 extern struct kmem_cache *btrfs_free_space_cachep;
51 struct btrfs_ordered_sum;
52
53 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
54 #define STATIC noinline
55 #else
56 #define STATIC static noinline
57 #endif
58
59 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
60
61 #define BTRFS_MAX_MIRRORS 3
62
63 #define BTRFS_MAX_LEVEL 8
64
65 #define BTRFS_COMPAT_EXTENT_TREE_V0
66
67 /* holds pointers to all of the tree roots */
68 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
69
70 /* stores information about which extents are in use, and reference counts */
71 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
72
73 /*
74 * chunk tree stores translations from logical -> physical block numbering
75 * the super block points to the chunk tree
76 */
77 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
78
79 /*
80 * stores information about which areas of a given device are in use.
81 * one per device. The tree of tree roots points to the device tree
82 */
83 #define BTRFS_DEV_TREE_OBJECTID 4ULL
84
85 /* one per subvolume, storing files and directories */
86 #define BTRFS_FS_TREE_OBJECTID 5ULL
87
88 /* directory objectid inside the root tree */
89 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
90
91 /* holds checksums of all the data extents */
92 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
93
94 /* holds quota configuration and tracking */
95 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
96
97 /* for storing items that use the BTRFS_UUID_KEY* types */
98 #define BTRFS_UUID_TREE_OBJECTID 9ULL
99
100 /* tracks free space in block groups. */
101 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
102
103 /* device stats in the device tree */
104 #define BTRFS_DEV_STATS_OBJECTID 0ULL
105
106 /* for storing balance parameters in the root tree */
107 #define BTRFS_BALANCE_OBJECTID -4ULL
108
109 /* orhpan objectid for tracking unlinked/truncated files */
110 #define BTRFS_ORPHAN_OBJECTID -5ULL
111
112 /* does write ahead logging to speed up fsyncs */
113 #define BTRFS_TREE_LOG_OBJECTID -6ULL
114 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
115
116 /* for space balancing */
117 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
118 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
119
120 /*
121 * extent checksums all have this objectid
122 * this allows them to share the logging tree
123 * for fsyncs
124 */
125 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
126
127 /* For storing free space cache */
128 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
129
130 /*
131 * The inode number assigned to the special inode for storing
132 * free ino cache
133 */
134 #define BTRFS_FREE_INO_OBJECTID -12ULL
135
136 /* dummy objectid represents multiple objectids */
137 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
138
139 /*
140 * All files have objectids in this range.
141 */
142 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
143 #define BTRFS_LAST_FREE_OBJECTID -256ULL
144 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
145
146
147 /*
148 * the device items go into the chunk tree. The key is in the form
149 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
150 */
151 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
152
153 #define BTRFS_BTREE_INODE_OBJECTID 1
154
155 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
156
157 #define BTRFS_DEV_REPLACE_DEVID 0ULL
158
159 /*
160 * the max metadata block size. This limit is somewhat artificial,
161 * but the memmove costs go through the roof for larger blocks.
162 */
163 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
164
165 /*
166 * we can actually store much bigger names, but lets not confuse the rest
167 * of linux
168 */
169 #define BTRFS_NAME_LEN 255
170
171 /*
172 * Theoretical limit is larger, but we keep this down to a sane
173 * value. That should limit greatly the possibility of collisions on
174 * inode ref items.
175 */
176 #define BTRFS_LINK_MAX 65535U
177
178 /* 32 bytes in various csum fields */
179 #define BTRFS_CSUM_SIZE 32
180
181 /* csum types */
182 #define BTRFS_CSUM_TYPE_CRC32 0
183
184 static const int btrfs_csum_sizes[] = { 4 };
185
186 /* four bytes for CRC32 */
187 #define BTRFS_EMPTY_DIR_SIZE 0
188
189 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
190 #define REQ_GET_READ_MIRRORS (1 << 30)
191
192 #define BTRFS_FT_UNKNOWN 0
193 #define BTRFS_FT_REG_FILE 1
194 #define BTRFS_FT_DIR 2
195 #define BTRFS_FT_CHRDEV 3
196 #define BTRFS_FT_BLKDEV 4
197 #define BTRFS_FT_FIFO 5
198 #define BTRFS_FT_SOCK 6
199 #define BTRFS_FT_SYMLINK 7
200 #define BTRFS_FT_XATTR 8
201 #define BTRFS_FT_MAX 9
202
203 /* ioprio of readahead is set to idle */
204 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
205
206 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M
207
208 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
209
210 /*
211 * The key defines the order in the tree, and so it also defines (optimal)
212 * block layout.
213 *
214 * objectid corresponds to the inode number.
215 *
216 * type tells us things about the object, and is a kind of stream selector.
217 * so for a given inode, keys with type of 1 might refer to the inode data,
218 * type of 2 may point to file data in the btree and type == 3 may point to
219 * extents.
220 *
221 * offset is the starting byte offset for this key in the stream.
222 *
223 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
224 * in cpu native order. Otherwise they are identical and their sizes
225 * should be the same (ie both packed)
226 */
227 struct btrfs_disk_key {
228 __le64 objectid;
229 u8 type;
230 __le64 offset;
231 } __attribute__ ((__packed__));
232
233 struct btrfs_key {
234 u64 objectid;
235 u8 type;
236 u64 offset;
237 } __attribute__ ((__packed__));
238
239 struct btrfs_mapping_tree {
240 struct extent_map_tree map_tree;
241 };
242
243 struct btrfs_dev_item {
244 /* the internal btrfs device id */
245 __le64 devid;
246
247 /* size of the device */
248 __le64 total_bytes;
249
250 /* bytes used */
251 __le64 bytes_used;
252
253 /* optimal io alignment for this device */
254 __le32 io_align;
255
256 /* optimal io width for this device */
257 __le32 io_width;
258
259 /* minimal io size for this device */
260 __le32 sector_size;
261
262 /* type and info about this device */
263 __le64 type;
264
265 /* expected generation for this device */
266 __le64 generation;
267
268 /*
269 * starting byte of this partition on the device,
270 * to allow for stripe alignment in the future
271 */
272 __le64 start_offset;
273
274 /* grouping information for allocation decisions */
275 __le32 dev_group;
276
277 /* seek speed 0-100 where 100 is fastest */
278 u8 seek_speed;
279
280 /* bandwidth 0-100 where 100 is fastest */
281 u8 bandwidth;
282
283 /* btrfs generated uuid for this device */
284 u8 uuid[BTRFS_UUID_SIZE];
285
286 /* uuid of FS who owns this device */
287 u8 fsid[BTRFS_UUID_SIZE];
288 } __attribute__ ((__packed__));
289
290 struct btrfs_stripe {
291 __le64 devid;
292 __le64 offset;
293 u8 dev_uuid[BTRFS_UUID_SIZE];
294 } __attribute__ ((__packed__));
295
296 struct btrfs_chunk {
297 /* size of this chunk in bytes */
298 __le64 length;
299
300 /* objectid of the root referencing this chunk */
301 __le64 owner;
302
303 __le64 stripe_len;
304 __le64 type;
305
306 /* optimal io alignment for this chunk */
307 __le32 io_align;
308
309 /* optimal io width for this chunk */
310 __le32 io_width;
311
312 /* minimal io size for this chunk */
313 __le32 sector_size;
314
315 /* 2^16 stripes is quite a lot, a second limit is the size of a single
316 * item in the btree
317 */
318 __le16 num_stripes;
319
320 /* sub stripes only matter for raid10 */
321 __le16 sub_stripes;
322 struct btrfs_stripe stripe;
323 /* additional stripes go here */
324 } __attribute__ ((__packed__));
325
326 #define BTRFS_FREE_SPACE_EXTENT 1
327 #define BTRFS_FREE_SPACE_BITMAP 2
328
329 struct btrfs_free_space_entry {
330 __le64 offset;
331 __le64 bytes;
332 u8 type;
333 } __attribute__ ((__packed__));
334
335 struct btrfs_free_space_header {
336 struct btrfs_disk_key location;
337 __le64 generation;
338 __le64 num_entries;
339 __le64 num_bitmaps;
340 } __attribute__ ((__packed__));
341
342 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
343 {
344 BUG_ON(num_stripes == 0);
345 return sizeof(struct btrfs_chunk) +
346 sizeof(struct btrfs_stripe) * (num_stripes - 1);
347 }
348
349 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
350 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
351
352 /*
353 * File system states
354 */
355 #define BTRFS_FS_STATE_ERROR 0
356 #define BTRFS_FS_STATE_REMOUNTING 1
357 #define BTRFS_FS_STATE_TRANS_ABORTED 2
358 #define BTRFS_FS_STATE_DEV_REPLACING 3
359
360 /* Super block flags */
361 /* Errors detected */
362 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
363
364 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
365 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
366
367 #define BTRFS_BACKREF_REV_MAX 256
368 #define BTRFS_BACKREF_REV_SHIFT 56
369 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
370 BTRFS_BACKREF_REV_SHIFT)
371
372 #define BTRFS_OLD_BACKREF_REV 0
373 #define BTRFS_MIXED_BACKREF_REV 1
374
375 /*
376 * every tree block (leaf or node) starts with this header.
377 */
378 struct btrfs_header {
379 /* these first four must match the super block */
380 u8 csum[BTRFS_CSUM_SIZE];
381 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
382 __le64 bytenr; /* which block this node is supposed to live in */
383 __le64 flags;
384
385 /* allowed to be different from the super from here on down */
386 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
387 __le64 generation;
388 __le64 owner;
389 __le32 nritems;
390 u8 level;
391 } __attribute__ ((__packed__));
392
393 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
394 sizeof(struct btrfs_header)) / \
395 sizeof(struct btrfs_key_ptr))
396 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
397 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
398 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
399 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
400 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
401 sizeof(struct btrfs_item) - \
402 BTRFS_FILE_EXTENT_INLINE_DATA_START)
403 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
404 sizeof(struct btrfs_item) -\
405 sizeof(struct btrfs_dir_item))
406
407
408 /*
409 * this is a very generous portion of the super block, giving us
410 * room to translate 14 chunks with 3 stripes each.
411 */
412 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
413 #define BTRFS_LABEL_SIZE 256
414
415 /*
416 * just in case we somehow lose the roots and are not able to mount,
417 * we store an array of the roots from previous transactions
418 * in the super.
419 */
420 #define BTRFS_NUM_BACKUP_ROOTS 4
421 struct btrfs_root_backup {
422 __le64 tree_root;
423 __le64 tree_root_gen;
424
425 __le64 chunk_root;
426 __le64 chunk_root_gen;
427
428 __le64 extent_root;
429 __le64 extent_root_gen;
430
431 __le64 fs_root;
432 __le64 fs_root_gen;
433
434 __le64 dev_root;
435 __le64 dev_root_gen;
436
437 __le64 csum_root;
438 __le64 csum_root_gen;
439
440 __le64 total_bytes;
441 __le64 bytes_used;
442 __le64 num_devices;
443 /* future */
444 __le64 unused_64[4];
445
446 u8 tree_root_level;
447 u8 chunk_root_level;
448 u8 extent_root_level;
449 u8 fs_root_level;
450 u8 dev_root_level;
451 u8 csum_root_level;
452 /* future and to align */
453 u8 unused_8[10];
454 } __attribute__ ((__packed__));
455
456 /*
457 * the super block basically lists the main trees of the FS
458 * it currently lacks any block count etc etc
459 */
460 struct btrfs_super_block {
461 u8 csum[BTRFS_CSUM_SIZE];
462 /* the first 4 fields must match struct btrfs_header */
463 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
464 __le64 bytenr; /* this block number */
465 __le64 flags;
466
467 /* allowed to be different from the btrfs_header from here own down */
468 __le64 magic;
469 __le64 generation;
470 __le64 root;
471 __le64 chunk_root;
472 __le64 log_root;
473
474 /* this will help find the new super based on the log root */
475 __le64 log_root_transid;
476 __le64 total_bytes;
477 __le64 bytes_used;
478 __le64 root_dir_objectid;
479 __le64 num_devices;
480 __le32 sectorsize;
481 __le32 nodesize;
482 __le32 __unused_leafsize;
483 __le32 stripesize;
484 __le32 sys_chunk_array_size;
485 __le64 chunk_root_generation;
486 __le64 compat_flags;
487 __le64 compat_ro_flags;
488 __le64 incompat_flags;
489 __le16 csum_type;
490 u8 root_level;
491 u8 chunk_root_level;
492 u8 log_root_level;
493 struct btrfs_dev_item dev_item;
494
495 char label[BTRFS_LABEL_SIZE];
496
497 __le64 cache_generation;
498 __le64 uuid_tree_generation;
499
500 /* future expansion */
501 __le64 reserved[30];
502 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
503 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
504 } __attribute__ ((__packed__));
505
506 /*
507 * Compat flags that we support. If any incompat flags are set other than the
508 * ones specified below then we will fail to mount
509 */
510 #define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE (1ULL << 0)
511
512 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
513 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
514 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
515 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
516 /*
517 * some patches floated around with a second compression method
518 * lets save that incompat here for when they do get in
519 * Note we don't actually support it, we're just reserving the
520 * number
521 */
522 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
523
524 /*
525 * older kernels tried to do bigger metadata blocks, but the
526 * code was pretty buggy. Lets not let them try anymore.
527 */
528 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
529
530 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
531 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
532 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
533 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
534
535 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
536 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
537 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
538
539 #define BTRFS_FEATURE_COMPAT_RO_SUPP \
540 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE)
541
542 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
543 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
544
545 #define BTRFS_FEATURE_INCOMPAT_SUPP \
546 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
547 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
548 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
549 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
550 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
551 BTRFS_FEATURE_INCOMPAT_RAID56 | \
552 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
553 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
554 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
555
556 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
557 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
558 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
559
560 /*
561 * A leaf is full of items. offset and size tell us where to find
562 * the item in the leaf (relative to the start of the data area)
563 */
564 struct btrfs_item {
565 struct btrfs_disk_key key;
566 __le32 offset;
567 __le32 size;
568 } __attribute__ ((__packed__));
569
570 /*
571 * leaves have an item area and a data area:
572 * [item0, item1....itemN] [free space] [dataN...data1, data0]
573 *
574 * The data is separate from the items to get the keys closer together
575 * during searches.
576 */
577 struct btrfs_leaf {
578 struct btrfs_header header;
579 struct btrfs_item items[];
580 } __attribute__ ((__packed__));
581
582 /*
583 * all non-leaf blocks are nodes, they hold only keys and pointers to
584 * other blocks
585 */
586 struct btrfs_key_ptr {
587 struct btrfs_disk_key key;
588 __le64 blockptr;
589 __le64 generation;
590 } __attribute__ ((__packed__));
591
592 struct btrfs_node {
593 struct btrfs_header header;
594 struct btrfs_key_ptr ptrs[];
595 } __attribute__ ((__packed__));
596
597 /*
598 * btrfs_paths remember the path taken from the root down to the leaf.
599 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
600 * to any other levels that are present.
601 *
602 * The slots array records the index of the item or block pointer
603 * used while walking the tree.
604 */
605 enum { READA_NONE = 0, READA_BACK, READA_FORWARD };
606 struct btrfs_path {
607 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
608 int slots[BTRFS_MAX_LEVEL];
609 /* if there is real range locking, this locks field will change */
610 u8 locks[BTRFS_MAX_LEVEL];
611 u8 reada;
612 /* keep some upper locks as we walk down */
613 u8 lowest_level;
614
615 /*
616 * set by btrfs_split_item, tells search_slot to keep all locks
617 * and to force calls to keep space in the nodes
618 */
619 unsigned int search_for_split:1;
620 unsigned int keep_locks:1;
621 unsigned int skip_locking:1;
622 unsigned int leave_spinning:1;
623 unsigned int search_commit_root:1;
624 unsigned int need_commit_sem:1;
625 unsigned int skip_release_on_error:1;
626 };
627
628 /*
629 * items in the extent btree are used to record the objectid of the
630 * owner of the block and the number of references
631 */
632
633 struct btrfs_extent_item {
634 __le64 refs;
635 __le64 generation;
636 __le64 flags;
637 } __attribute__ ((__packed__));
638
639 struct btrfs_extent_item_v0 {
640 __le32 refs;
641 } __attribute__ ((__packed__));
642
643 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
644 sizeof(struct btrfs_item))
645
646 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
647 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
648
649 /* following flags only apply to tree blocks */
650
651 /* use full backrefs for extent pointers in the block */
652 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
653
654 /*
655 * this flag is only used internally by scrub and may be changed at any time
656 * it is only declared here to avoid collisions
657 */
658 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
659
660 struct btrfs_tree_block_info {
661 struct btrfs_disk_key key;
662 u8 level;
663 } __attribute__ ((__packed__));
664
665 struct btrfs_extent_data_ref {
666 __le64 root;
667 __le64 objectid;
668 __le64 offset;
669 __le32 count;
670 } __attribute__ ((__packed__));
671
672 struct btrfs_shared_data_ref {
673 __le32 count;
674 } __attribute__ ((__packed__));
675
676 struct btrfs_extent_inline_ref {
677 u8 type;
678 __le64 offset;
679 } __attribute__ ((__packed__));
680
681 /* old style backrefs item */
682 struct btrfs_extent_ref_v0 {
683 __le64 root;
684 __le64 generation;
685 __le64 objectid;
686 __le32 count;
687 } __attribute__ ((__packed__));
688
689
690 /* dev extents record free space on individual devices. The owner
691 * field points back to the chunk allocation mapping tree that allocated
692 * the extent. The chunk tree uuid field is a way to double check the owner
693 */
694 struct btrfs_dev_extent {
695 __le64 chunk_tree;
696 __le64 chunk_objectid;
697 __le64 chunk_offset;
698 __le64 length;
699 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
700 } __attribute__ ((__packed__));
701
702 struct btrfs_inode_ref {
703 __le64 index;
704 __le16 name_len;
705 /* name goes here */
706 } __attribute__ ((__packed__));
707
708 struct btrfs_inode_extref {
709 __le64 parent_objectid;
710 __le64 index;
711 __le16 name_len;
712 __u8 name[0];
713 /* name goes here */
714 } __attribute__ ((__packed__));
715
716 struct btrfs_timespec {
717 __le64 sec;
718 __le32 nsec;
719 } __attribute__ ((__packed__));
720
721 enum btrfs_compression_type {
722 BTRFS_COMPRESS_NONE = 0,
723 BTRFS_COMPRESS_ZLIB = 1,
724 BTRFS_COMPRESS_LZO = 2,
725 BTRFS_COMPRESS_TYPES = 2,
726 BTRFS_COMPRESS_LAST = 3,
727 };
728
729 struct btrfs_inode_item {
730 /* nfs style generation number */
731 __le64 generation;
732 /* transid that last touched this inode */
733 __le64 transid;
734 __le64 size;
735 __le64 nbytes;
736 __le64 block_group;
737 __le32 nlink;
738 __le32 uid;
739 __le32 gid;
740 __le32 mode;
741 __le64 rdev;
742 __le64 flags;
743
744 /* modification sequence number for NFS */
745 __le64 sequence;
746
747 /*
748 * a little future expansion, for more than this we can
749 * just grow the inode item and version it
750 */
751 __le64 reserved[4];
752 struct btrfs_timespec atime;
753 struct btrfs_timespec ctime;
754 struct btrfs_timespec mtime;
755 struct btrfs_timespec otime;
756 } __attribute__ ((__packed__));
757
758 struct btrfs_dir_log_item {
759 __le64 end;
760 } __attribute__ ((__packed__));
761
762 struct btrfs_dir_item {
763 struct btrfs_disk_key location;
764 __le64 transid;
765 __le16 data_len;
766 __le16 name_len;
767 u8 type;
768 } __attribute__ ((__packed__));
769
770 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
771
772 /*
773 * Internal in-memory flag that a subvolume has been marked for deletion but
774 * still visible as a directory
775 */
776 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
777
778 struct btrfs_root_item {
779 struct btrfs_inode_item inode;
780 __le64 generation;
781 __le64 root_dirid;
782 __le64 bytenr;
783 __le64 byte_limit;
784 __le64 bytes_used;
785 __le64 last_snapshot;
786 __le64 flags;
787 __le32 refs;
788 struct btrfs_disk_key drop_progress;
789 u8 drop_level;
790 u8 level;
791
792 /*
793 * The following fields appear after subvol_uuids+subvol_times
794 * were introduced.
795 */
796
797 /*
798 * This generation number is used to test if the new fields are valid
799 * and up to date while reading the root item. Everytime the root item
800 * is written out, the "generation" field is copied into this field. If
801 * anyone ever mounted the fs with an older kernel, we will have
802 * mismatching generation values here and thus must invalidate the
803 * new fields. See btrfs_update_root and btrfs_find_last_root for
804 * details.
805 * the offset of generation_v2 is also used as the start for the memset
806 * when invalidating the fields.
807 */
808 __le64 generation_v2;
809 u8 uuid[BTRFS_UUID_SIZE];
810 u8 parent_uuid[BTRFS_UUID_SIZE];
811 u8 received_uuid[BTRFS_UUID_SIZE];
812 __le64 ctransid; /* updated when an inode changes */
813 __le64 otransid; /* trans when created */
814 __le64 stransid; /* trans when sent. non-zero for received subvol */
815 __le64 rtransid; /* trans when received. non-zero for received subvol */
816 struct btrfs_timespec ctime;
817 struct btrfs_timespec otime;
818 struct btrfs_timespec stime;
819 struct btrfs_timespec rtime;
820 __le64 reserved[8]; /* for future */
821 } __attribute__ ((__packed__));
822
823 /*
824 * this is used for both forward and backward root refs
825 */
826 struct btrfs_root_ref {
827 __le64 dirid;
828 __le64 sequence;
829 __le16 name_len;
830 } __attribute__ ((__packed__));
831
832 struct btrfs_disk_balance_args {
833 /*
834 * profiles to operate on, single is denoted by
835 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
836 */
837 __le64 profiles;
838
839 /*
840 * usage filter
841 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
842 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
843 */
844 union {
845 __le64 usage;
846 struct {
847 __le32 usage_min;
848 __le32 usage_max;
849 };
850 };
851
852 /* devid filter */
853 __le64 devid;
854
855 /* devid subset filter [pstart..pend) */
856 __le64 pstart;
857 __le64 pend;
858
859 /* btrfs virtual address space subset filter [vstart..vend) */
860 __le64 vstart;
861 __le64 vend;
862
863 /*
864 * profile to convert to, single is denoted by
865 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
866 */
867 __le64 target;
868
869 /* BTRFS_BALANCE_ARGS_* */
870 __le64 flags;
871
872 /*
873 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
874 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
875 * and maximum
876 */
877 union {
878 __le64 limit;
879 struct {
880 __le32 limit_min;
881 __le32 limit_max;
882 };
883 };
884
885 /*
886 * Process chunks that cross stripes_min..stripes_max devices,
887 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
888 */
889 __le32 stripes_min;
890 __le32 stripes_max;
891
892 __le64 unused[6];
893 } __attribute__ ((__packed__));
894
895 /*
896 * store balance parameters to disk so that balance can be properly
897 * resumed after crash or unmount
898 */
899 struct btrfs_balance_item {
900 /* BTRFS_BALANCE_* */
901 __le64 flags;
902
903 struct btrfs_disk_balance_args data;
904 struct btrfs_disk_balance_args meta;
905 struct btrfs_disk_balance_args sys;
906
907 __le64 unused[4];
908 } __attribute__ ((__packed__));
909
910 #define BTRFS_FILE_EXTENT_INLINE 0
911 #define BTRFS_FILE_EXTENT_REG 1
912 #define BTRFS_FILE_EXTENT_PREALLOC 2
913
914 struct btrfs_file_extent_item {
915 /*
916 * transaction id that created this extent
917 */
918 __le64 generation;
919 /*
920 * max number of bytes to hold this extent in ram
921 * when we split a compressed extent we can't know how big
922 * each of the resulting pieces will be. So, this is
923 * an upper limit on the size of the extent in ram instead of
924 * an exact limit.
925 */
926 __le64 ram_bytes;
927
928 /*
929 * 32 bits for the various ways we might encode the data,
930 * including compression and encryption. If any of these
931 * are set to something a given disk format doesn't understand
932 * it is treated like an incompat flag for reading and writing,
933 * but not for stat.
934 */
935 u8 compression;
936 u8 encryption;
937 __le16 other_encoding; /* spare for later use */
938
939 /* are we inline data or a real extent? */
940 u8 type;
941
942 /*
943 * disk space consumed by the extent, checksum blocks are included
944 * in these numbers
945 *
946 * At this offset in the structure, the inline extent data start.
947 */
948 __le64 disk_bytenr;
949 __le64 disk_num_bytes;
950 /*
951 * the logical offset in file blocks (no csums)
952 * this extent record is for. This allows a file extent to point
953 * into the middle of an existing extent on disk, sharing it
954 * between two snapshots (useful if some bytes in the middle of the
955 * extent have changed
956 */
957 __le64 offset;
958 /*
959 * the logical number of file blocks (no csums included). This
960 * always reflects the size uncompressed and without encoding.
961 */
962 __le64 num_bytes;
963
964 } __attribute__ ((__packed__));
965
966 struct btrfs_csum_item {
967 u8 csum;
968 } __attribute__ ((__packed__));
969
970 struct btrfs_dev_stats_item {
971 /*
972 * grow this item struct at the end for future enhancements and keep
973 * the existing values unchanged
974 */
975 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
976 } __attribute__ ((__packed__));
977
978 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
979 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
980 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
981 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
982 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
983 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
984 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
985
986 struct btrfs_dev_replace {
987 u64 replace_state; /* see #define above */
988 u64 time_started; /* seconds since 1-Jan-1970 */
989 u64 time_stopped; /* seconds since 1-Jan-1970 */
990 atomic64_t num_write_errors;
991 atomic64_t num_uncorrectable_read_errors;
992
993 u64 cursor_left;
994 u64 committed_cursor_left;
995 u64 cursor_left_last_write_of_item;
996 u64 cursor_right;
997
998 u64 cont_reading_from_srcdev_mode; /* see #define above */
999
1000 int is_valid;
1001 int item_needs_writeback;
1002 struct btrfs_device *srcdev;
1003 struct btrfs_device *tgtdev;
1004
1005 pid_t lock_owner;
1006 atomic_t nesting_level;
1007 struct mutex lock_finishing_cancel_unmount;
1008 rwlock_t lock;
1009 atomic_t read_locks;
1010 atomic_t blocking_readers;
1011 wait_queue_head_t read_lock_wq;
1012
1013 struct btrfs_scrub_progress scrub_progress;
1014 };
1015
1016 struct btrfs_dev_replace_item {
1017 /*
1018 * grow this item struct at the end for future enhancements and keep
1019 * the existing values unchanged
1020 */
1021 __le64 src_devid;
1022 __le64 cursor_left;
1023 __le64 cursor_right;
1024 __le64 cont_reading_from_srcdev_mode;
1025
1026 __le64 replace_state;
1027 __le64 time_started;
1028 __le64 time_stopped;
1029 __le64 num_write_errors;
1030 __le64 num_uncorrectable_read_errors;
1031 } __attribute__ ((__packed__));
1032
1033 /* different types of block groups (and chunks) */
1034 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
1035 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
1036 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
1037 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
1038 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
1039 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
1040 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
1041 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
1042 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
1043 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1044 BTRFS_SPACE_INFO_GLOBAL_RSV)
1045
1046 enum btrfs_raid_types {
1047 BTRFS_RAID_RAID10,
1048 BTRFS_RAID_RAID1,
1049 BTRFS_RAID_DUP,
1050 BTRFS_RAID_RAID0,
1051 BTRFS_RAID_SINGLE,
1052 BTRFS_RAID_RAID5,
1053 BTRFS_RAID_RAID6,
1054 BTRFS_NR_RAID_TYPES
1055 };
1056
1057 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1058 BTRFS_BLOCK_GROUP_SYSTEM | \
1059 BTRFS_BLOCK_GROUP_METADATA)
1060
1061 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1062 BTRFS_BLOCK_GROUP_RAID1 | \
1063 BTRFS_BLOCK_GROUP_RAID5 | \
1064 BTRFS_BLOCK_GROUP_RAID6 | \
1065 BTRFS_BLOCK_GROUP_DUP | \
1066 BTRFS_BLOCK_GROUP_RAID10)
1067 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
1068 BTRFS_BLOCK_GROUP_RAID6)
1069
1070 /*
1071 * We need a bit for restriper to be able to tell when chunks of type
1072 * SINGLE are available. This "extended" profile format is used in
1073 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1074 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1075 * to avoid remappings between two formats in future.
1076 */
1077 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1078
1079 /*
1080 * A fake block group type that is used to communicate global block reserve
1081 * size to userspace via the SPACE_INFO ioctl.
1082 */
1083 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1084
1085 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1086 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1087
1088 static inline u64 chunk_to_extended(u64 flags)
1089 {
1090 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1091 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1092
1093 return flags;
1094 }
1095 static inline u64 extended_to_chunk(u64 flags)
1096 {
1097 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1098 }
1099
1100 struct btrfs_block_group_item {
1101 __le64 used;
1102 __le64 chunk_objectid;
1103 __le64 flags;
1104 } __attribute__ ((__packed__));
1105
1106 struct btrfs_free_space_info {
1107 __le32 extent_count;
1108 __le32 flags;
1109 } __attribute__ ((__packed__));
1110
1111 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1112
1113 #define BTRFS_QGROUP_LEVEL_SHIFT 48
1114 static inline u64 btrfs_qgroup_level(u64 qgroupid)
1115 {
1116 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
1117 }
1118
1119 /*
1120 * is subvolume quota turned on?
1121 */
1122 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1123 /*
1124 * RESCAN is set during the initialization phase
1125 */
1126 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1127 /*
1128 * Some qgroup entries are known to be out of date,
1129 * either because the configuration has changed in a way that
1130 * makes a rescan necessary, or because the fs has been mounted
1131 * with a non-qgroup-aware version.
1132 * Turning qouta off and on again makes it inconsistent, too.
1133 */
1134 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1135
1136 #define BTRFS_QGROUP_STATUS_VERSION 1
1137
1138 struct btrfs_qgroup_status_item {
1139 __le64 version;
1140 /*
1141 * the generation is updated during every commit. As older
1142 * versions of btrfs are not aware of qgroups, it will be
1143 * possible to detect inconsistencies by checking the
1144 * generation on mount time
1145 */
1146 __le64 generation;
1147
1148 /* flag definitions see above */
1149 __le64 flags;
1150
1151 /*
1152 * only used during scanning to record the progress
1153 * of the scan. It contains a logical address
1154 */
1155 __le64 rescan;
1156 } __attribute__ ((__packed__));
1157
1158 struct btrfs_qgroup_info_item {
1159 __le64 generation;
1160 __le64 rfer;
1161 __le64 rfer_cmpr;
1162 __le64 excl;
1163 __le64 excl_cmpr;
1164 } __attribute__ ((__packed__));
1165
1166 /* flags definition for qgroup limits */
1167 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1168 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1169 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1170 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1171 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1172 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1173
1174 struct btrfs_qgroup_limit_item {
1175 /*
1176 * only updated when any of the other values change
1177 */
1178 __le64 flags;
1179 __le64 max_rfer;
1180 __le64 max_excl;
1181 __le64 rsv_rfer;
1182 __le64 rsv_excl;
1183 } __attribute__ ((__packed__));
1184
1185 /* For raid type sysfs entries */
1186 struct raid_kobject {
1187 int raid_type;
1188 struct kobject kobj;
1189 };
1190
1191 struct btrfs_space_info {
1192 spinlock_t lock;
1193
1194 u64 total_bytes; /* total bytes in the space,
1195 this doesn't take mirrors into account */
1196 u64 bytes_used; /* total bytes used,
1197 this doesn't take mirrors into account */
1198 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1199 transaction finishes */
1200 u64 bytes_reserved; /* total bytes the allocator has reserved for
1201 current allocations */
1202 u64 bytes_may_use; /* number of bytes that may be used for
1203 delalloc/allocations */
1204 u64 bytes_readonly; /* total bytes that are read only */
1205
1206 u64 max_extent_size; /* This will hold the maximum extent size of
1207 the space info if we had an ENOSPC in the
1208 allocator. */
1209
1210 unsigned int full:1; /* indicates that we cannot allocate any more
1211 chunks for this space */
1212 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1213
1214 unsigned int flush:1; /* set if we are trying to make space */
1215
1216 unsigned int force_alloc; /* set if we need to force a chunk
1217 alloc for this space */
1218
1219 u64 disk_used; /* total bytes used on disk */
1220 u64 disk_total; /* total bytes on disk, takes mirrors into
1221 account */
1222
1223 u64 flags;
1224
1225 /*
1226 * bytes_pinned is kept in line with what is actually pinned, as in
1227 * we've called update_block_group and dropped the bytes_used counter
1228 * and increased the bytes_pinned counter. However this means that
1229 * bytes_pinned does not reflect the bytes that will be pinned once the
1230 * delayed refs are flushed, so this counter is inc'ed everytime we call
1231 * btrfs_free_extent so it is a realtime count of what will be freed
1232 * once the transaction is committed. It will be zero'ed everytime the
1233 * transaction commits.
1234 */
1235 struct percpu_counter total_bytes_pinned;
1236
1237 struct list_head list;
1238 /* Protected by the spinlock 'lock'. */
1239 struct list_head ro_bgs;
1240
1241 struct rw_semaphore groups_sem;
1242 /* for block groups in our same type */
1243 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1244 wait_queue_head_t wait;
1245
1246 struct kobject kobj;
1247 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1248 };
1249
1250 #define BTRFS_BLOCK_RSV_GLOBAL 1
1251 #define BTRFS_BLOCK_RSV_DELALLOC 2
1252 #define BTRFS_BLOCK_RSV_TRANS 3
1253 #define BTRFS_BLOCK_RSV_CHUNK 4
1254 #define BTRFS_BLOCK_RSV_DELOPS 5
1255 #define BTRFS_BLOCK_RSV_EMPTY 6
1256 #define BTRFS_BLOCK_RSV_TEMP 7
1257
1258 struct btrfs_block_rsv {
1259 u64 size;
1260 u64 reserved;
1261 struct btrfs_space_info *space_info;
1262 spinlock_t lock;
1263 unsigned short full;
1264 unsigned short type;
1265 unsigned short failfast;
1266 };
1267
1268 /*
1269 * free clusters are used to claim free space in relatively large chunks,
1270 * allowing us to do less seeky writes. They are used for all metadata
1271 * allocations and data allocations in ssd mode.
1272 */
1273 struct btrfs_free_cluster {
1274 spinlock_t lock;
1275 spinlock_t refill_lock;
1276 struct rb_root root;
1277
1278 /* largest extent in this cluster */
1279 u64 max_size;
1280
1281 /* first extent starting offset */
1282 u64 window_start;
1283
1284 /* We did a full search and couldn't create a cluster */
1285 bool fragmented;
1286
1287 struct btrfs_block_group_cache *block_group;
1288 /*
1289 * when a cluster is allocated from a block group, we put the
1290 * cluster onto a list in the block group so that it can
1291 * be freed before the block group is freed.
1292 */
1293 struct list_head block_group_list;
1294 };
1295
1296 enum btrfs_caching_type {
1297 BTRFS_CACHE_NO = 0,
1298 BTRFS_CACHE_STARTED = 1,
1299 BTRFS_CACHE_FAST = 2,
1300 BTRFS_CACHE_FINISHED = 3,
1301 BTRFS_CACHE_ERROR = 4,
1302 };
1303
1304 enum btrfs_disk_cache_state {
1305 BTRFS_DC_WRITTEN = 0,
1306 BTRFS_DC_ERROR = 1,
1307 BTRFS_DC_CLEAR = 2,
1308 BTRFS_DC_SETUP = 3,
1309 };
1310
1311 struct btrfs_caching_control {
1312 struct list_head list;
1313 struct mutex mutex;
1314 wait_queue_head_t wait;
1315 struct btrfs_work work;
1316 struct btrfs_block_group_cache *block_group;
1317 u64 progress;
1318 atomic_t count;
1319 };
1320
1321 /* Once caching_thread() finds this much free space, it will wake up waiters. */
1322 #define CACHING_CTL_WAKE_UP (1024 * 1024 * 2)
1323
1324 struct btrfs_io_ctl {
1325 void *cur, *orig;
1326 struct page *page;
1327 struct page **pages;
1328 struct btrfs_root *root;
1329 struct inode *inode;
1330 unsigned long size;
1331 int index;
1332 int num_pages;
1333 int entries;
1334 int bitmaps;
1335 unsigned check_crcs:1;
1336 };
1337
1338 struct btrfs_block_group_cache {
1339 struct btrfs_key key;
1340 struct btrfs_block_group_item item;
1341 struct btrfs_fs_info *fs_info;
1342 struct inode *inode;
1343 spinlock_t lock;
1344 u64 pinned;
1345 u64 reserved;
1346 u64 delalloc_bytes;
1347 u64 bytes_super;
1348 u64 flags;
1349 u64 cache_generation;
1350 u32 sectorsize;
1351
1352 /*
1353 * If the free space extent count exceeds this number, convert the block
1354 * group to bitmaps.
1355 */
1356 u32 bitmap_high_thresh;
1357
1358 /*
1359 * If the free space extent count drops below this number, convert the
1360 * block group back to extents.
1361 */
1362 u32 bitmap_low_thresh;
1363
1364 /*
1365 * It is just used for the delayed data space allocation because
1366 * only the data space allocation and the relative metadata update
1367 * can be done cross the transaction.
1368 */
1369 struct rw_semaphore data_rwsem;
1370
1371 /* for raid56, this is a full stripe, without parity */
1372 unsigned long full_stripe_len;
1373
1374 unsigned int ro;
1375 unsigned int iref:1;
1376 unsigned int has_caching_ctl:1;
1377 unsigned int removed:1;
1378
1379 int disk_cache_state;
1380
1381 /* cache tracking stuff */
1382 int cached;
1383 struct btrfs_caching_control *caching_ctl;
1384 u64 last_byte_to_unpin;
1385
1386 struct btrfs_space_info *space_info;
1387
1388 /* free space cache stuff */
1389 struct btrfs_free_space_ctl *free_space_ctl;
1390
1391 /* block group cache stuff */
1392 struct rb_node cache_node;
1393
1394 /* for block groups in the same raid type */
1395 struct list_head list;
1396
1397 /* usage count */
1398 atomic_t count;
1399
1400 /* List of struct btrfs_free_clusters for this block group.
1401 * Today it will only have one thing on it, but that may change
1402 */
1403 struct list_head cluster_list;
1404
1405 /* For delayed block group creation or deletion of empty block groups */
1406 struct list_head bg_list;
1407
1408 /* For read-only block groups */
1409 struct list_head ro_list;
1410
1411 atomic_t trimming;
1412
1413 /* For dirty block groups */
1414 struct list_head dirty_list;
1415 struct list_head io_list;
1416
1417 struct btrfs_io_ctl io_ctl;
1418
1419 /* Lock for free space tree operations. */
1420 struct mutex free_space_lock;
1421
1422 /*
1423 * Does the block group need to be added to the free space tree?
1424 * Protected by free_space_lock.
1425 */
1426 int needs_free_space;
1427 };
1428
1429 /* delayed seq elem */
1430 struct seq_list {
1431 struct list_head list;
1432 u64 seq;
1433 };
1434
1435 #define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 }
1436
1437 enum btrfs_orphan_cleanup_state {
1438 ORPHAN_CLEANUP_STARTED = 1,
1439 ORPHAN_CLEANUP_DONE = 2,
1440 };
1441
1442 /* used by the raid56 code to lock stripes for read/modify/write */
1443 struct btrfs_stripe_hash {
1444 struct list_head hash_list;
1445 wait_queue_head_t wait;
1446 spinlock_t lock;
1447 };
1448
1449 /* used by the raid56 code to lock stripes for read/modify/write */
1450 struct btrfs_stripe_hash_table {
1451 struct list_head stripe_cache;
1452 spinlock_t cache_lock;
1453 int cache_size;
1454 struct btrfs_stripe_hash table[];
1455 };
1456
1457 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1458
1459 void btrfs_init_async_reclaim_work(struct work_struct *work);
1460
1461 /* fs_info */
1462 struct reloc_control;
1463 struct btrfs_device;
1464 struct btrfs_fs_devices;
1465 struct btrfs_balance_control;
1466 struct btrfs_delayed_root;
1467 struct btrfs_fs_info {
1468 u8 fsid[BTRFS_FSID_SIZE];
1469 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1470 struct btrfs_root *extent_root;
1471 struct btrfs_root *tree_root;
1472 struct btrfs_root *chunk_root;
1473 struct btrfs_root *dev_root;
1474 struct btrfs_root *fs_root;
1475 struct btrfs_root *csum_root;
1476 struct btrfs_root *quota_root;
1477 struct btrfs_root *uuid_root;
1478 struct btrfs_root *free_space_root;
1479
1480 /* the log root tree is a directory of all the other log roots */
1481 struct btrfs_root *log_root_tree;
1482
1483 spinlock_t fs_roots_radix_lock;
1484 struct radix_tree_root fs_roots_radix;
1485
1486 /* block group cache stuff */
1487 spinlock_t block_group_cache_lock;
1488 u64 first_logical_byte;
1489 struct rb_root block_group_cache_tree;
1490
1491 /* keep track of unallocated space */
1492 spinlock_t free_chunk_lock;
1493 u64 free_chunk_space;
1494
1495 struct extent_io_tree freed_extents[2];
1496 struct extent_io_tree *pinned_extents;
1497
1498 /* logical->physical extent mapping */
1499 struct btrfs_mapping_tree mapping_tree;
1500
1501 /*
1502 * block reservation for extent, checksum, root tree and
1503 * delayed dir index item
1504 */
1505 struct btrfs_block_rsv global_block_rsv;
1506 /* block reservation for delay allocation */
1507 struct btrfs_block_rsv delalloc_block_rsv;
1508 /* block reservation for metadata operations */
1509 struct btrfs_block_rsv trans_block_rsv;
1510 /* block reservation for chunk tree */
1511 struct btrfs_block_rsv chunk_block_rsv;
1512 /* block reservation for delayed operations */
1513 struct btrfs_block_rsv delayed_block_rsv;
1514
1515 struct btrfs_block_rsv empty_block_rsv;
1516
1517 u64 generation;
1518 u64 last_trans_committed;
1519 u64 avg_delayed_ref_runtime;
1520
1521 /*
1522 * this is updated to the current trans every time a full commit
1523 * is required instead of the faster short fsync log commits
1524 */
1525 u64 last_trans_log_full_commit;
1526 unsigned long mount_opt;
1527 /*
1528 * Track requests for actions that need to be done during transaction
1529 * commit (like for some mount options).
1530 */
1531 unsigned long pending_changes;
1532 unsigned long compress_type:4;
1533 int commit_interval;
1534 /*
1535 * It is a suggestive number, the read side is safe even it gets a
1536 * wrong number because we will write out the data into a regular
1537 * extent. The write side(mount/remount) is under ->s_umount lock,
1538 * so it is also safe.
1539 */
1540 u64 max_inline;
1541 /*
1542 * Protected by ->chunk_mutex and sb->s_umount.
1543 *
1544 * The reason that we use two lock to protect it is because only
1545 * remount and mount operations can change it and these two operations
1546 * are under sb->s_umount, but the read side (chunk allocation) can not
1547 * acquire sb->s_umount or the deadlock would happen. So we use two
1548 * locks to protect it. On the write side, we must acquire two locks,
1549 * and on the read side, we just need acquire one of them.
1550 */
1551 u64 alloc_start;
1552 struct btrfs_transaction *running_transaction;
1553 wait_queue_head_t transaction_throttle;
1554 wait_queue_head_t transaction_wait;
1555 wait_queue_head_t transaction_blocked_wait;
1556 wait_queue_head_t async_submit_wait;
1557
1558 /*
1559 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1560 * when they are updated.
1561 *
1562 * Because we do not clear the flags for ever, so we needn't use
1563 * the lock on the read side.
1564 *
1565 * We also needn't use the lock when we mount the fs, because
1566 * there is no other task which will update the flag.
1567 */
1568 spinlock_t super_lock;
1569 struct btrfs_super_block *super_copy;
1570 struct btrfs_super_block *super_for_commit;
1571 struct block_device *__bdev;
1572 struct super_block *sb;
1573 struct inode *btree_inode;
1574 struct backing_dev_info bdi;
1575 struct mutex tree_log_mutex;
1576 struct mutex transaction_kthread_mutex;
1577 struct mutex cleaner_mutex;
1578 struct mutex chunk_mutex;
1579 struct mutex volume_mutex;
1580
1581 /*
1582 * this is taken to make sure we don't set block groups ro after
1583 * the free space cache has been allocated on them
1584 */
1585 struct mutex ro_block_group_mutex;
1586
1587 /* this is used during read/modify/write to make sure
1588 * no two ios are trying to mod the same stripe at the same
1589 * time
1590 */
1591 struct btrfs_stripe_hash_table *stripe_hash_table;
1592
1593 /*
1594 * this protects the ordered operations list only while we are
1595 * processing all of the entries on it. This way we make
1596 * sure the commit code doesn't find the list temporarily empty
1597 * because another function happens to be doing non-waiting preflush
1598 * before jumping into the main commit.
1599 */
1600 struct mutex ordered_operations_mutex;
1601
1602 struct rw_semaphore commit_root_sem;
1603
1604 struct rw_semaphore cleanup_work_sem;
1605
1606 struct rw_semaphore subvol_sem;
1607 struct srcu_struct subvol_srcu;
1608
1609 spinlock_t trans_lock;
1610 /*
1611 * the reloc mutex goes with the trans lock, it is taken
1612 * during commit to protect us from the relocation code
1613 */
1614 struct mutex reloc_mutex;
1615
1616 struct list_head trans_list;
1617 struct list_head dead_roots;
1618 struct list_head caching_block_groups;
1619
1620 spinlock_t delayed_iput_lock;
1621 struct list_head delayed_iputs;
1622 struct mutex cleaner_delayed_iput_mutex;
1623
1624 /* this protects tree_mod_seq_list */
1625 spinlock_t tree_mod_seq_lock;
1626 atomic64_t tree_mod_seq;
1627 struct list_head tree_mod_seq_list;
1628
1629 /* this protects tree_mod_log */
1630 rwlock_t tree_mod_log_lock;
1631 struct rb_root tree_mod_log;
1632
1633 atomic_t nr_async_submits;
1634 atomic_t async_submit_draining;
1635 atomic_t nr_async_bios;
1636 atomic_t async_delalloc_pages;
1637 atomic_t open_ioctl_trans;
1638
1639 /*
1640 * this is used to protect the following list -- ordered_roots.
1641 */
1642 spinlock_t ordered_root_lock;
1643
1644 /*
1645 * all fs/file tree roots in which there are data=ordered extents
1646 * pending writeback are added into this list.
1647 *
1648 * these can span multiple transactions and basically include
1649 * every dirty data page that isn't from nodatacow
1650 */
1651 struct list_head ordered_roots;
1652
1653 struct mutex delalloc_root_mutex;
1654 spinlock_t delalloc_root_lock;
1655 /* all fs/file tree roots that have delalloc inodes. */
1656 struct list_head delalloc_roots;
1657
1658 /*
1659 * there is a pool of worker threads for checksumming during writes
1660 * and a pool for checksumming after reads. This is because readers
1661 * can run with FS locks held, and the writers may be waiting for
1662 * those locks. We don't want ordering in the pending list to cause
1663 * deadlocks, and so the two are serviced separately.
1664 *
1665 * A third pool does submit_bio to avoid deadlocking with the other
1666 * two
1667 */
1668 struct btrfs_workqueue *workers;
1669 struct btrfs_workqueue *delalloc_workers;
1670 struct btrfs_workqueue *flush_workers;
1671 struct btrfs_workqueue *endio_workers;
1672 struct btrfs_workqueue *endio_meta_workers;
1673 struct btrfs_workqueue *endio_raid56_workers;
1674 struct btrfs_workqueue *endio_repair_workers;
1675 struct btrfs_workqueue *rmw_workers;
1676 struct btrfs_workqueue *endio_meta_write_workers;
1677 struct btrfs_workqueue *endio_write_workers;
1678 struct btrfs_workqueue *endio_freespace_worker;
1679 struct btrfs_workqueue *submit_workers;
1680 struct btrfs_workqueue *caching_workers;
1681 struct btrfs_workqueue *readahead_workers;
1682
1683 /*
1684 * fixup workers take dirty pages that didn't properly go through
1685 * the cow mechanism and make them safe to write. It happens
1686 * for the sys_munmap function call path
1687 */
1688 struct btrfs_workqueue *fixup_workers;
1689 struct btrfs_workqueue *delayed_workers;
1690
1691 /* the extent workers do delayed refs on the extent allocation tree */
1692 struct btrfs_workqueue *extent_workers;
1693 struct task_struct *transaction_kthread;
1694 struct task_struct *cleaner_kthread;
1695 int thread_pool_size;
1696
1697 struct kobject *space_info_kobj;
1698 int do_barriers;
1699 int closing;
1700 int log_root_recovering;
1701 int open;
1702
1703 u64 total_pinned;
1704
1705 /* used to keep from writing metadata until there is a nice batch */
1706 struct percpu_counter dirty_metadata_bytes;
1707 struct percpu_counter delalloc_bytes;
1708 s32 dirty_metadata_batch;
1709 s32 delalloc_batch;
1710
1711 struct list_head dirty_cowonly_roots;
1712
1713 struct btrfs_fs_devices *fs_devices;
1714
1715 /*
1716 * the space_info list is almost entirely read only. It only changes
1717 * when we add a new raid type to the FS, and that happens
1718 * very rarely. RCU is used to protect it.
1719 */
1720 struct list_head space_info;
1721
1722 struct btrfs_space_info *data_sinfo;
1723
1724 struct reloc_control *reloc_ctl;
1725
1726 /* data_alloc_cluster is only used in ssd mode */
1727 struct btrfs_free_cluster data_alloc_cluster;
1728
1729 /* all metadata allocations go through this cluster */
1730 struct btrfs_free_cluster meta_alloc_cluster;
1731
1732 /* auto defrag inodes go here */
1733 spinlock_t defrag_inodes_lock;
1734 struct rb_root defrag_inodes;
1735 atomic_t defrag_running;
1736
1737 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1738 seqlock_t profiles_lock;
1739 /*
1740 * these three are in extended format (availability of single
1741 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1742 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1743 */
1744 u64 avail_data_alloc_bits;
1745 u64 avail_metadata_alloc_bits;
1746 u64 avail_system_alloc_bits;
1747
1748 /* restriper state */
1749 spinlock_t balance_lock;
1750 struct mutex balance_mutex;
1751 atomic_t balance_running;
1752 atomic_t balance_pause_req;
1753 atomic_t balance_cancel_req;
1754 struct btrfs_balance_control *balance_ctl;
1755 wait_queue_head_t balance_wait_q;
1756
1757 unsigned data_chunk_allocations;
1758 unsigned metadata_ratio;
1759
1760 void *bdev_holder;
1761
1762 /* private scrub information */
1763 struct mutex scrub_lock;
1764 atomic_t scrubs_running;
1765 atomic_t scrub_pause_req;
1766 atomic_t scrubs_paused;
1767 atomic_t scrub_cancel_req;
1768 wait_queue_head_t scrub_pause_wait;
1769 int scrub_workers_refcnt;
1770 struct btrfs_workqueue *scrub_workers;
1771 struct btrfs_workqueue *scrub_wr_completion_workers;
1772 struct btrfs_workqueue *scrub_nocow_workers;
1773 struct btrfs_workqueue *scrub_parity_workers;
1774
1775 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1776 u32 check_integrity_print_mask;
1777 #endif
1778 /*
1779 * quota information
1780 */
1781 unsigned int quota_enabled:1;
1782
1783 /*
1784 * quota_enabled only changes state after a commit. This holds the
1785 * next state.
1786 */
1787 unsigned int pending_quota_state:1;
1788
1789 /* is qgroup tracking in a consistent state? */
1790 u64 qgroup_flags;
1791
1792 /* holds configuration and tracking. Protected by qgroup_lock */
1793 struct rb_root qgroup_tree;
1794 struct rb_root qgroup_op_tree;
1795 spinlock_t qgroup_lock;
1796 spinlock_t qgroup_op_lock;
1797 atomic_t qgroup_op_seq;
1798
1799 /*
1800 * used to avoid frequently calling ulist_alloc()/ulist_free()
1801 * when doing qgroup accounting, it must be protected by qgroup_lock.
1802 */
1803 struct ulist *qgroup_ulist;
1804
1805 /* protect user change for quota operations */
1806 struct mutex qgroup_ioctl_lock;
1807
1808 /* list of dirty qgroups to be written at next commit */
1809 struct list_head dirty_qgroups;
1810
1811 /* used by qgroup for an efficient tree traversal */
1812 u64 qgroup_seq;
1813
1814 /* qgroup rescan items */
1815 struct mutex qgroup_rescan_lock; /* protects the progress item */
1816 struct btrfs_key qgroup_rescan_progress;
1817 struct btrfs_workqueue *qgroup_rescan_workers;
1818 struct completion qgroup_rescan_completion;
1819 struct btrfs_work qgroup_rescan_work;
1820
1821 /* filesystem state */
1822 unsigned long fs_state;
1823
1824 struct btrfs_delayed_root *delayed_root;
1825
1826 /* readahead tree */
1827 spinlock_t reada_lock;
1828 struct radix_tree_root reada_tree;
1829
1830 /* readahead works cnt */
1831 atomic_t reada_works_cnt;
1832
1833 /* Extent buffer radix tree */
1834 spinlock_t buffer_lock;
1835 struct radix_tree_root buffer_radix;
1836
1837 /* next backup root to be overwritten */
1838 int backup_root_index;
1839
1840 int num_tolerated_disk_barrier_failures;
1841
1842 /* device replace state */
1843 struct btrfs_dev_replace dev_replace;
1844
1845 atomic_t mutually_exclusive_operation_running;
1846
1847 struct percpu_counter bio_counter;
1848 wait_queue_head_t replace_wait;
1849
1850 struct semaphore uuid_tree_rescan_sem;
1851 unsigned int update_uuid_tree_gen:1;
1852
1853 /* Used to reclaim the metadata space in the background. */
1854 struct work_struct async_reclaim_work;
1855
1856 spinlock_t unused_bgs_lock;
1857 struct list_head unused_bgs;
1858 struct mutex unused_bg_unpin_mutex;
1859 struct mutex delete_unused_bgs_mutex;
1860
1861 /* For btrfs to record security options */
1862 struct security_mnt_opts security_opts;
1863
1864 /*
1865 * Chunks that can't be freed yet (under a trim/discard operation)
1866 * and will be latter freed. Protected by fs_info->chunk_mutex.
1867 */
1868 struct list_head pinned_chunks;
1869
1870 int creating_free_space_tree;
1871 };
1872
1873 struct btrfs_subvolume_writers {
1874 struct percpu_counter counter;
1875 wait_queue_head_t wait;
1876 };
1877
1878 /*
1879 * The state of btrfs root
1880 */
1881 /*
1882 * btrfs_record_root_in_trans is a multi-step process,
1883 * and it can race with the balancing code. But the
1884 * race is very small, and only the first time the root
1885 * is added to each transaction. So IN_TRANS_SETUP
1886 * is used to tell us when more checks are required
1887 */
1888 #define BTRFS_ROOT_IN_TRANS_SETUP 0
1889 #define BTRFS_ROOT_REF_COWS 1
1890 #define BTRFS_ROOT_TRACK_DIRTY 2
1891 #define BTRFS_ROOT_IN_RADIX 3
1892 #define BTRFS_ROOT_DUMMY_ROOT 4
1893 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5
1894 #define BTRFS_ROOT_DEFRAG_RUNNING 6
1895 #define BTRFS_ROOT_FORCE_COW 7
1896 #define BTRFS_ROOT_MULTI_LOG_TASKS 8
1897 #define BTRFS_ROOT_DIRTY 9
1898
1899 /*
1900 * in ram representation of the tree. extent_root is used for all allocations
1901 * and for the extent tree extent_root root.
1902 */
1903 struct btrfs_root {
1904 struct extent_buffer *node;
1905
1906 struct extent_buffer *commit_root;
1907 struct btrfs_root *log_root;
1908 struct btrfs_root *reloc_root;
1909
1910 unsigned long state;
1911 struct btrfs_root_item root_item;
1912 struct btrfs_key root_key;
1913 struct btrfs_fs_info *fs_info;
1914 struct extent_io_tree dirty_log_pages;
1915
1916 struct mutex objectid_mutex;
1917
1918 spinlock_t accounting_lock;
1919 struct btrfs_block_rsv *block_rsv;
1920
1921 /* free ino cache stuff */
1922 struct btrfs_free_space_ctl *free_ino_ctl;
1923 enum btrfs_caching_type ino_cache_state;
1924 spinlock_t ino_cache_lock;
1925 wait_queue_head_t ino_cache_wait;
1926 struct btrfs_free_space_ctl *free_ino_pinned;
1927 u64 ino_cache_progress;
1928 struct inode *ino_cache_inode;
1929
1930 struct mutex log_mutex;
1931 wait_queue_head_t log_writer_wait;
1932 wait_queue_head_t log_commit_wait[2];
1933 struct list_head log_ctxs[2];
1934 atomic_t log_writers;
1935 atomic_t log_commit[2];
1936 atomic_t log_batch;
1937 int log_transid;
1938 /* No matter the commit succeeds or not*/
1939 int log_transid_committed;
1940 /* Just be updated when the commit succeeds. */
1941 int last_log_commit;
1942 pid_t log_start_pid;
1943
1944 u64 objectid;
1945 u64 last_trans;
1946
1947 /* data allocations are done in sectorsize units */
1948 u32 sectorsize;
1949
1950 /* node allocations are done in nodesize units */
1951 u32 nodesize;
1952
1953 u32 stripesize;
1954
1955 u32 type;
1956
1957 u64 highest_objectid;
1958
1959 /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1960 u64 alloc_bytenr;
1961
1962 u64 defrag_trans_start;
1963 struct btrfs_key defrag_progress;
1964 struct btrfs_key defrag_max;
1965 char *name;
1966
1967 /* the dirty list is only used by non-reference counted roots */
1968 struct list_head dirty_list;
1969
1970 struct list_head root_list;
1971
1972 spinlock_t log_extents_lock[2];
1973 struct list_head logged_list[2];
1974
1975 spinlock_t orphan_lock;
1976 atomic_t orphan_inodes;
1977 struct btrfs_block_rsv *orphan_block_rsv;
1978 int orphan_cleanup_state;
1979
1980 spinlock_t inode_lock;
1981 /* red-black tree that keeps track of in-memory inodes */
1982 struct rb_root inode_tree;
1983
1984 /*
1985 * radix tree that keeps track of delayed nodes of every inode,
1986 * protected by inode_lock
1987 */
1988 struct radix_tree_root delayed_nodes_tree;
1989 /*
1990 * right now this just gets used so that a root has its own devid
1991 * for stat. It may be used for more later
1992 */
1993 dev_t anon_dev;
1994
1995 spinlock_t root_item_lock;
1996 atomic_t refs;
1997
1998 struct mutex delalloc_mutex;
1999 spinlock_t delalloc_lock;
2000 /*
2001 * all of the inodes that have delalloc bytes. It is possible for
2002 * this list to be empty even when there is still dirty data=ordered
2003 * extents waiting to finish IO.
2004 */
2005 struct list_head delalloc_inodes;
2006 struct list_head delalloc_root;
2007 u64 nr_delalloc_inodes;
2008
2009 struct mutex ordered_extent_mutex;
2010 /*
2011 * this is used by the balancing code to wait for all the pending
2012 * ordered extents
2013 */
2014 spinlock_t ordered_extent_lock;
2015
2016 /*
2017 * all of the data=ordered extents pending writeback
2018 * these can span multiple transactions and basically include
2019 * every dirty data page that isn't from nodatacow
2020 */
2021 struct list_head ordered_extents;
2022 struct list_head ordered_root;
2023 u64 nr_ordered_extents;
2024
2025 /*
2026 * Number of currently running SEND ioctls to prevent
2027 * manipulation with the read-only status via SUBVOL_SETFLAGS
2028 */
2029 int send_in_progress;
2030 struct btrfs_subvolume_writers *subv_writers;
2031 atomic_t will_be_snapshoted;
2032
2033 /* For qgroup metadata space reserve */
2034 atomic_t qgroup_meta_rsv;
2035 };
2036
2037 struct btrfs_ioctl_defrag_range_args {
2038 /* start of the defrag operation */
2039 __u64 start;
2040
2041 /* number of bytes to defrag, use (u64)-1 to say all */
2042 __u64 len;
2043
2044 /*
2045 * flags for the operation, which can include turning
2046 * on compression for this one defrag
2047 */
2048 __u64 flags;
2049
2050 /*
2051 * any extent bigger than this will be considered
2052 * already defragged. Use 0 to take the kernel default
2053 * Use 1 to say every single extent must be rewritten
2054 */
2055 __u32 extent_thresh;
2056
2057 /*
2058 * which compression method to use if turning on compression
2059 * for this defrag operation. If unspecified, zlib will
2060 * be used
2061 */
2062 __u32 compress_type;
2063
2064 /* spare for later */
2065 __u32 unused[4];
2066 };
2067
2068
2069 /*
2070 * inode items have the data typically returned from stat and store other
2071 * info about object characteristics. There is one for every file and dir in
2072 * the FS
2073 */
2074 #define BTRFS_INODE_ITEM_KEY 1
2075 #define BTRFS_INODE_REF_KEY 12
2076 #define BTRFS_INODE_EXTREF_KEY 13
2077 #define BTRFS_XATTR_ITEM_KEY 24
2078 #define BTRFS_ORPHAN_ITEM_KEY 48
2079 /* reserve 2-15 close to the inode for later flexibility */
2080
2081 /*
2082 * dir items are the name -> inode pointers in a directory. There is one
2083 * for every name in a directory.
2084 */
2085 #define BTRFS_DIR_LOG_ITEM_KEY 60
2086 #define BTRFS_DIR_LOG_INDEX_KEY 72
2087 #define BTRFS_DIR_ITEM_KEY 84
2088 #define BTRFS_DIR_INDEX_KEY 96
2089 /*
2090 * extent data is for file data
2091 */
2092 #define BTRFS_EXTENT_DATA_KEY 108
2093
2094 /*
2095 * extent csums are stored in a separate tree and hold csums for
2096 * an entire extent on disk.
2097 */
2098 #define BTRFS_EXTENT_CSUM_KEY 128
2099
2100 /*
2101 * root items point to tree roots. They are typically in the root
2102 * tree used by the super block to find all the other trees
2103 */
2104 #define BTRFS_ROOT_ITEM_KEY 132
2105
2106 /*
2107 * root backrefs tie subvols and snapshots to the directory entries that
2108 * reference them
2109 */
2110 #define BTRFS_ROOT_BACKREF_KEY 144
2111
2112 /*
2113 * root refs make a fast index for listing all of the snapshots and
2114 * subvolumes referenced by a given root. They point directly to the
2115 * directory item in the root that references the subvol
2116 */
2117 #define BTRFS_ROOT_REF_KEY 156
2118
2119 /*
2120 * extent items are in the extent map tree. These record which blocks
2121 * are used, and how many references there are to each block
2122 */
2123 #define BTRFS_EXTENT_ITEM_KEY 168
2124
2125 /*
2126 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
2127 * the length, so we save the level in key->offset instead of the length.
2128 */
2129 #define BTRFS_METADATA_ITEM_KEY 169
2130
2131 #define BTRFS_TREE_BLOCK_REF_KEY 176
2132
2133 #define BTRFS_EXTENT_DATA_REF_KEY 178
2134
2135 #define BTRFS_EXTENT_REF_V0_KEY 180
2136
2137 #define BTRFS_SHARED_BLOCK_REF_KEY 182
2138
2139 #define BTRFS_SHARED_DATA_REF_KEY 184
2140
2141 /*
2142 * block groups give us hints into the extent allocation trees. Which
2143 * blocks are free etc etc
2144 */
2145 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
2146
2147 /*
2148 * Every block group is represented in the free space tree by a free space info
2149 * item, which stores some accounting information. It is keyed on
2150 * (block_group_start, FREE_SPACE_INFO, block_group_length).
2151 */
2152 #define BTRFS_FREE_SPACE_INFO_KEY 198
2153
2154 /*
2155 * A free space extent tracks an extent of space that is free in a block group.
2156 * It is keyed on (start, FREE_SPACE_EXTENT, length).
2157 */
2158 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
2159
2160 /*
2161 * When a block group becomes very fragmented, we convert it to use bitmaps
2162 * instead of extents. A free space bitmap is keyed on
2163 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
2164 * (length / sectorsize) bits.
2165 */
2166 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
2167
2168 #define BTRFS_DEV_EXTENT_KEY 204
2169 #define BTRFS_DEV_ITEM_KEY 216
2170 #define BTRFS_CHUNK_ITEM_KEY 228
2171
2172 /*
2173 * Records the overall state of the qgroups.
2174 * There's only one instance of this key present,
2175 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2176 */
2177 #define BTRFS_QGROUP_STATUS_KEY 240
2178 /*
2179 * Records the currently used space of the qgroup.
2180 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2181 */
2182 #define BTRFS_QGROUP_INFO_KEY 242
2183 /*
2184 * Contains the user configured limits for the qgroup.
2185 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2186 */
2187 #define BTRFS_QGROUP_LIMIT_KEY 244
2188 /*
2189 * Records the child-parent relationship of qgroups. For
2190 * each relation, 2 keys are present:
2191 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2192 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2193 */
2194 #define BTRFS_QGROUP_RELATION_KEY 246
2195
2196 /*
2197 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
2198 */
2199 #define BTRFS_BALANCE_ITEM_KEY 248
2200
2201 /*
2202 * The key type for tree items that are stored persistently, but do not need to
2203 * exist for extended period of time. The items can exist in any tree.
2204 *
2205 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
2206 *
2207 * Existing items:
2208 *
2209 * - balance status item
2210 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
2211 */
2212 #define BTRFS_TEMPORARY_ITEM_KEY 248
2213
2214 /*
2215 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
2216 */
2217 #define BTRFS_DEV_STATS_KEY 249
2218
2219 /*
2220 * The key type for tree items that are stored persistently and usually exist
2221 * for a long period, eg. filesystem lifetime. The item kinds can be status
2222 * information, stats or preference values. The item can exist in any tree.
2223 *
2224 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
2225 *
2226 * Existing items:
2227 *
2228 * - device statistics, store IO stats in the device tree, one key for all
2229 * stats
2230 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
2231 */
2232 #define BTRFS_PERSISTENT_ITEM_KEY 249
2233
2234 /*
2235 * Persistantly stores the device replace state in the device tree.
2236 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2237 */
2238 #define BTRFS_DEV_REPLACE_KEY 250
2239
2240 /*
2241 * Stores items that allow to quickly map UUIDs to something else.
2242 * These items are part of the filesystem UUID tree.
2243 * The key is built like this:
2244 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2245 */
2246 #if BTRFS_UUID_SIZE != 16
2247 #error "UUID items require BTRFS_UUID_SIZE == 16!"
2248 #endif
2249 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2250 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2251 * received subvols */
2252
2253 /*
2254 * string items are for debugging. They just store a short string of
2255 * data in the FS
2256 */
2257 #define BTRFS_STRING_ITEM_KEY 253
2258
2259 /*
2260 * Flags for mount options.
2261 *
2262 * Note: don't forget to add new options to btrfs_show_options()
2263 */
2264 #define BTRFS_MOUNT_NODATASUM (1 << 0)
2265 #define BTRFS_MOUNT_NODATACOW (1 << 1)
2266 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
2267 #define BTRFS_MOUNT_SSD (1 << 3)
2268 #define BTRFS_MOUNT_DEGRADED (1 << 4)
2269 #define BTRFS_MOUNT_COMPRESS (1 << 5)
2270 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
2271 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2272 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2273 #define BTRFS_MOUNT_NOSSD (1 << 9)
2274 #define BTRFS_MOUNT_DISCARD (1 << 10)
2275 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2276 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2277 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2278 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2279 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2280 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2281 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2282 #define BTRFS_MOUNT_USEBACKUPROOT (1 << 18)
2283 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2284 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2285 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2286 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2287 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2288 #define BTRFS_MOUNT_FRAGMENT_DATA (1 << 24)
2289 #define BTRFS_MOUNT_FRAGMENT_METADATA (1 << 25)
2290 #define BTRFS_MOUNT_FREE_SPACE_TREE (1 << 26)
2291 #define BTRFS_MOUNT_NOLOGREPLAY (1 << 27)
2292
2293 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2294 #define BTRFS_DEFAULT_MAX_INLINE (2048)
2295
2296 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2297 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2298 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2299 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2300 BTRFS_MOUNT_##opt)
2301
2302 #define btrfs_set_and_info(root, opt, fmt, args...) \
2303 { \
2304 if (!btrfs_test_opt(root, opt)) \
2305 btrfs_info(root->fs_info, fmt, ##args); \
2306 btrfs_set_opt(root->fs_info->mount_opt, opt); \
2307 }
2308
2309 #define btrfs_clear_and_info(root, opt, fmt, args...) \
2310 { \
2311 if (btrfs_test_opt(root, opt)) \
2312 btrfs_info(root->fs_info, fmt, ##args); \
2313 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
2314 }
2315
2316 #ifdef CONFIG_BTRFS_DEBUG
2317 static inline int
2318 btrfs_should_fragment_free_space(struct btrfs_root *root,
2319 struct btrfs_block_group_cache *block_group)
2320 {
2321 return (btrfs_test_opt(root, FRAGMENT_METADATA) &&
2322 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
2323 (btrfs_test_opt(root, FRAGMENT_DATA) &&
2324 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2325 }
2326 #endif
2327
2328 /*
2329 * Requests for changes that need to be done during transaction commit.
2330 *
2331 * Internal mount options that are used for special handling of the real
2332 * mount options (eg. cannot be set during remount and have to be set during
2333 * transaction commit)
2334 */
2335
2336 #define BTRFS_PENDING_SET_INODE_MAP_CACHE (0)
2337 #define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE (1)
2338 #define BTRFS_PENDING_COMMIT (2)
2339
2340 #define btrfs_test_pending(info, opt) \
2341 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2342 #define btrfs_set_pending(info, opt) \
2343 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2344 #define btrfs_clear_pending(info, opt) \
2345 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2346
2347 /*
2348 * Helpers for setting pending mount option changes.
2349 *
2350 * Expects corresponding macros
2351 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
2352 */
2353 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
2354 do { \
2355 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
2356 btrfs_info((info), fmt, ##args); \
2357 btrfs_set_pending((info), SET_##opt); \
2358 btrfs_clear_pending((info), CLEAR_##opt); \
2359 } \
2360 } while(0)
2361
2362 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
2363 do { \
2364 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
2365 btrfs_info((info), fmt, ##args); \
2366 btrfs_set_pending((info), CLEAR_##opt); \
2367 btrfs_clear_pending((info), SET_##opt); \
2368 } \
2369 } while(0)
2370
2371 /*
2372 * Inode flags
2373 */
2374 #define BTRFS_INODE_NODATASUM (1 << 0)
2375 #define BTRFS_INODE_NODATACOW (1 << 1)
2376 #define BTRFS_INODE_READONLY (1 << 2)
2377 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2378 #define BTRFS_INODE_PREALLOC (1 << 4)
2379 #define BTRFS_INODE_SYNC (1 << 5)
2380 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2381 #define BTRFS_INODE_APPEND (1 << 7)
2382 #define BTRFS_INODE_NODUMP (1 << 8)
2383 #define BTRFS_INODE_NOATIME (1 << 9)
2384 #define BTRFS_INODE_DIRSYNC (1 << 10)
2385 #define BTRFS_INODE_COMPRESS (1 << 11)
2386
2387 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2388
2389 struct btrfs_map_token {
2390 struct extent_buffer *eb;
2391 char *kaddr;
2392 unsigned long offset;
2393 };
2394
2395 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
2396 ((bytes) >> (fs_info)->sb->s_blocksize_bits)
2397
2398 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2399 {
2400 token->kaddr = NULL;
2401 }
2402
2403 /* some macros to generate set/get funcs for the struct fields. This
2404 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2405 * one for u8:
2406 */
2407 #define le8_to_cpu(v) (v)
2408 #define cpu_to_le8(v) (v)
2409 #define __le8 u8
2410
2411 #define read_eb_member(eb, ptr, type, member, result) ( \
2412 read_extent_buffer(eb, (char *)(result), \
2413 ((unsigned long)(ptr)) + \
2414 offsetof(type, member), \
2415 sizeof(((type *)0)->member)))
2416
2417 #define write_eb_member(eb, ptr, type, member, result) ( \
2418 write_extent_buffer(eb, (char *)(result), \
2419 ((unsigned long)(ptr)) + \
2420 offsetof(type, member), \
2421 sizeof(((type *)0)->member)))
2422
2423 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2424 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2425 unsigned long off, \
2426 struct btrfs_map_token *token); \
2427 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2428 unsigned long off, u##bits val, \
2429 struct btrfs_map_token *token); \
2430 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2431 unsigned long off) \
2432 { \
2433 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2434 } \
2435 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2436 unsigned long off, u##bits val) \
2437 { \
2438 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2439 }
2440
2441 DECLARE_BTRFS_SETGET_BITS(8)
2442 DECLARE_BTRFS_SETGET_BITS(16)
2443 DECLARE_BTRFS_SETGET_BITS(32)
2444 DECLARE_BTRFS_SETGET_BITS(64)
2445
2446 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2447 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2448 { \
2449 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2450 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2451 } \
2452 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2453 u##bits val) \
2454 { \
2455 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2456 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2457 } \
2458 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2459 struct btrfs_map_token *token) \
2460 { \
2461 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2462 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2463 } \
2464 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2465 type *s, u##bits val, \
2466 struct btrfs_map_token *token) \
2467 { \
2468 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2469 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2470 }
2471
2472 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2473 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2474 { \
2475 type *p = page_address(eb->pages[0]); \
2476 u##bits res = le##bits##_to_cpu(p->member); \
2477 return res; \
2478 } \
2479 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2480 u##bits val) \
2481 { \
2482 type *p = page_address(eb->pages[0]); \
2483 p->member = cpu_to_le##bits(val); \
2484 }
2485
2486 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2487 static inline u##bits btrfs_##name(type *s) \
2488 { \
2489 return le##bits##_to_cpu(s->member); \
2490 } \
2491 static inline void btrfs_set_##name(type *s, u##bits val) \
2492 { \
2493 s->member = cpu_to_le##bits(val); \
2494 }
2495
2496 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2497 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2498 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2499 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2500 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2501 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2502 start_offset, 64);
2503 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2504 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2505 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2506 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2507 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2508 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2509
2510 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2511 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2512 total_bytes, 64);
2513 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2514 bytes_used, 64);
2515 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2516 io_align, 32);
2517 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2518 io_width, 32);
2519 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2520 sector_size, 32);
2521 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2522 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2523 dev_group, 32);
2524 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2525 seek_speed, 8);
2526 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2527 bandwidth, 8);
2528 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2529 generation, 64);
2530
2531 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2532 {
2533 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2534 }
2535
2536 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2537 {
2538 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2539 }
2540
2541 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2542 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2543 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2544 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2545 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2546 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2547 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2548 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2549 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2550 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2551 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2552
2553 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2554 {
2555 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2556 }
2557
2558 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2559 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2560 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2561 stripe_len, 64);
2562 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2563 io_align, 32);
2564 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2565 io_width, 32);
2566 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2567 sector_size, 32);
2568 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2569 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2570 num_stripes, 16);
2571 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2572 sub_stripes, 16);
2573 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2574 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2575
2576 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2577 int nr)
2578 {
2579 unsigned long offset = (unsigned long)c;
2580 offset += offsetof(struct btrfs_chunk, stripe);
2581 offset += nr * sizeof(struct btrfs_stripe);
2582 return (struct btrfs_stripe *)offset;
2583 }
2584
2585 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2586 {
2587 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2588 }
2589
2590 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2591 struct btrfs_chunk *c, int nr)
2592 {
2593 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2594 }
2595
2596 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2597 struct btrfs_chunk *c, int nr)
2598 {
2599 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2600 }
2601
2602 /* struct btrfs_block_group_item */
2603 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2604 used, 64);
2605 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2606 used, 64);
2607 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2608 struct btrfs_block_group_item, chunk_objectid, 64);
2609
2610 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2611 struct btrfs_block_group_item, chunk_objectid, 64);
2612 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2613 struct btrfs_block_group_item, flags, 64);
2614 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2615 struct btrfs_block_group_item, flags, 64);
2616
2617 /* struct btrfs_free_space_info */
2618 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
2619 extent_count, 32);
2620 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
2621
2622 /* struct btrfs_inode_ref */
2623 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2624 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2625
2626 /* struct btrfs_inode_extref */
2627 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2628 parent_objectid, 64);
2629 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2630 name_len, 16);
2631 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2632
2633 /* struct btrfs_inode_item */
2634 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2635 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2636 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2637 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2638 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2639 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2640 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2641 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2642 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2643 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2644 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2645 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2646 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2647 generation, 64);
2648 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2649 sequence, 64);
2650 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2651 transid, 64);
2652 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2653 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2654 nbytes, 64);
2655 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2656 block_group, 64);
2657 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2658 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2659 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2660 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2661 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2662 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2663 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2664 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2665 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2666 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2667
2668 /* struct btrfs_dev_extent */
2669 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2670 chunk_tree, 64);
2671 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2672 chunk_objectid, 64);
2673 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2674 chunk_offset, 64);
2675 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2676
2677 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2678 {
2679 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2680 return (unsigned long)dev + ptr;
2681 }
2682
2683 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2684 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2685 generation, 64);
2686 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2687
2688 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2689
2690
2691 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2692
2693 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2694 struct btrfs_tree_block_info *item,
2695 struct btrfs_disk_key *key)
2696 {
2697 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2698 }
2699
2700 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2701 struct btrfs_tree_block_info *item,
2702 struct btrfs_disk_key *key)
2703 {
2704 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2705 }
2706
2707 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2708 root, 64);
2709 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2710 objectid, 64);
2711 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2712 offset, 64);
2713 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2714 count, 32);
2715
2716 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2717 count, 32);
2718
2719 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2720 type, 8);
2721 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2722 offset, 64);
2723
2724 static inline u32 btrfs_extent_inline_ref_size(int type)
2725 {
2726 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2727 type == BTRFS_SHARED_BLOCK_REF_KEY)
2728 return sizeof(struct btrfs_extent_inline_ref);
2729 if (type == BTRFS_SHARED_DATA_REF_KEY)
2730 return sizeof(struct btrfs_shared_data_ref) +
2731 sizeof(struct btrfs_extent_inline_ref);
2732 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2733 return sizeof(struct btrfs_extent_data_ref) +
2734 offsetof(struct btrfs_extent_inline_ref, offset);
2735 BUG();
2736 return 0;
2737 }
2738
2739 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2740 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2741 generation, 64);
2742 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2743 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2744
2745 /* struct btrfs_node */
2746 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2747 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2748 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2749 blockptr, 64);
2750 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2751 generation, 64);
2752
2753 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2754 {
2755 unsigned long ptr;
2756 ptr = offsetof(struct btrfs_node, ptrs) +
2757 sizeof(struct btrfs_key_ptr) * nr;
2758 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2759 }
2760
2761 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2762 int nr, u64 val)
2763 {
2764 unsigned long ptr;
2765 ptr = offsetof(struct btrfs_node, ptrs) +
2766 sizeof(struct btrfs_key_ptr) * nr;
2767 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2768 }
2769
2770 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2771 {
2772 unsigned long ptr;
2773 ptr = offsetof(struct btrfs_node, ptrs) +
2774 sizeof(struct btrfs_key_ptr) * nr;
2775 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2776 }
2777
2778 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2779 int nr, u64 val)
2780 {
2781 unsigned long ptr;
2782 ptr = offsetof(struct btrfs_node, ptrs) +
2783 sizeof(struct btrfs_key_ptr) * nr;
2784 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2785 }
2786
2787 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2788 {
2789 return offsetof(struct btrfs_node, ptrs) +
2790 sizeof(struct btrfs_key_ptr) * nr;
2791 }
2792
2793 void btrfs_node_key(struct extent_buffer *eb,
2794 struct btrfs_disk_key *disk_key, int nr);
2795
2796 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2797 struct btrfs_disk_key *disk_key, int nr)
2798 {
2799 unsigned long ptr;
2800 ptr = btrfs_node_key_ptr_offset(nr);
2801 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2802 struct btrfs_key_ptr, key, disk_key);
2803 }
2804
2805 /* struct btrfs_item */
2806 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2807 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2808 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2809 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2810
2811 static inline unsigned long btrfs_item_nr_offset(int nr)
2812 {
2813 return offsetof(struct btrfs_leaf, items) +
2814 sizeof(struct btrfs_item) * nr;
2815 }
2816
2817 static inline struct btrfs_item *btrfs_item_nr(int nr)
2818 {
2819 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2820 }
2821
2822 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2823 struct btrfs_item *item)
2824 {
2825 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2826 }
2827
2828 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2829 {
2830 return btrfs_item_end(eb, btrfs_item_nr(nr));
2831 }
2832
2833 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2834 {
2835 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2836 }
2837
2838 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2839 {
2840 return btrfs_item_size(eb, btrfs_item_nr(nr));
2841 }
2842
2843 static inline void btrfs_item_key(struct extent_buffer *eb,
2844 struct btrfs_disk_key *disk_key, int nr)
2845 {
2846 struct btrfs_item *item = btrfs_item_nr(nr);
2847 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2848 }
2849
2850 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2851 struct btrfs_disk_key *disk_key, int nr)
2852 {
2853 struct btrfs_item *item = btrfs_item_nr(nr);
2854 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2855 }
2856
2857 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2858
2859 /*
2860 * struct btrfs_root_ref
2861 */
2862 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2863 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2864 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2865
2866 /* struct btrfs_dir_item */
2867 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2868 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2869 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2870 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2871 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2872 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2873 data_len, 16);
2874 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2875 name_len, 16);
2876 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2877 transid, 64);
2878
2879 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2880 struct btrfs_dir_item *item,
2881 struct btrfs_disk_key *key)
2882 {
2883 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2884 }
2885
2886 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2887 struct btrfs_dir_item *item,
2888 struct btrfs_disk_key *key)
2889 {
2890 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2891 }
2892
2893 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2894 num_entries, 64);
2895 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2896 num_bitmaps, 64);
2897 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2898 generation, 64);
2899
2900 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2901 struct btrfs_free_space_header *h,
2902 struct btrfs_disk_key *key)
2903 {
2904 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2905 }
2906
2907 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2908 struct btrfs_free_space_header *h,
2909 struct btrfs_disk_key *key)
2910 {
2911 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2912 }
2913
2914 /* struct btrfs_disk_key */
2915 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2916 objectid, 64);
2917 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2918 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2919
2920 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2921 struct btrfs_disk_key *disk)
2922 {
2923 cpu->offset = le64_to_cpu(disk->offset);
2924 cpu->type = disk->type;
2925 cpu->objectid = le64_to_cpu(disk->objectid);
2926 }
2927
2928 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2929 struct btrfs_key *cpu)
2930 {
2931 disk->offset = cpu_to_le64(cpu->offset);
2932 disk->type = cpu->type;
2933 disk->objectid = cpu_to_le64(cpu->objectid);
2934 }
2935
2936 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2937 struct btrfs_key *key, int nr)
2938 {
2939 struct btrfs_disk_key disk_key;
2940 btrfs_node_key(eb, &disk_key, nr);
2941 btrfs_disk_key_to_cpu(key, &disk_key);
2942 }
2943
2944 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2945 struct btrfs_key *key, int nr)
2946 {
2947 struct btrfs_disk_key disk_key;
2948 btrfs_item_key(eb, &disk_key, nr);
2949 btrfs_disk_key_to_cpu(key, &disk_key);
2950 }
2951
2952 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2953 struct btrfs_dir_item *item,
2954 struct btrfs_key *key)
2955 {
2956 struct btrfs_disk_key disk_key;
2957 btrfs_dir_item_key(eb, item, &disk_key);
2958 btrfs_disk_key_to_cpu(key, &disk_key);
2959 }
2960
2961
2962 static inline u8 btrfs_key_type(struct btrfs_key *key)
2963 {
2964 return key->type;
2965 }
2966
2967 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2968 {
2969 key->type = val;
2970 }
2971
2972 /* struct btrfs_header */
2973 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2974 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2975 generation, 64);
2976 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2977 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2978 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2979 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2980 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2981 generation, 64);
2982 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2983 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2984 nritems, 32);
2985 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2986
2987 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2988 {
2989 return (btrfs_header_flags(eb) & flag) == flag;
2990 }
2991
2992 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2993 {
2994 u64 flags = btrfs_header_flags(eb);
2995 btrfs_set_header_flags(eb, flags | flag);
2996 return (flags & flag) == flag;
2997 }
2998
2999 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
3000 {
3001 u64 flags = btrfs_header_flags(eb);
3002 btrfs_set_header_flags(eb, flags & ~flag);
3003 return (flags & flag) == flag;
3004 }
3005
3006 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
3007 {
3008 u64 flags = btrfs_header_flags(eb);
3009 return flags >> BTRFS_BACKREF_REV_SHIFT;
3010 }
3011
3012 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
3013 int rev)
3014 {
3015 u64 flags = btrfs_header_flags(eb);
3016 flags &= ~BTRFS_BACKREF_REV_MASK;
3017 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
3018 btrfs_set_header_flags(eb, flags);
3019 }
3020
3021 static inline unsigned long btrfs_header_fsid(void)
3022 {
3023 return offsetof(struct btrfs_header, fsid);
3024 }
3025
3026 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
3027 {
3028 return offsetof(struct btrfs_header, chunk_tree_uuid);
3029 }
3030
3031 static inline int btrfs_is_leaf(struct extent_buffer *eb)
3032 {
3033 return btrfs_header_level(eb) == 0;
3034 }
3035
3036 /* struct btrfs_root_item */
3037 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
3038 generation, 64);
3039 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
3040 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
3041 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
3042
3043 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
3044 generation, 64);
3045 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
3046 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
3047 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
3048 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
3049 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
3050 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
3051 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
3052 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
3053 last_snapshot, 64);
3054 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
3055 generation_v2, 64);
3056 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
3057 ctransid, 64);
3058 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
3059 otransid, 64);
3060 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
3061 stransid, 64);
3062 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
3063 rtransid, 64);
3064
3065 static inline bool btrfs_root_readonly(struct btrfs_root *root)
3066 {
3067 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
3068 }
3069
3070 static inline bool btrfs_root_dead(struct btrfs_root *root)
3071 {
3072 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
3073 }
3074
3075 /* struct btrfs_root_backup */
3076 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
3077 tree_root, 64);
3078 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
3079 tree_root_gen, 64);
3080 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
3081 tree_root_level, 8);
3082
3083 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
3084 chunk_root, 64);
3085 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
3086 chunk_root_gen, 64);
3087 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
3088 chunk_root_level, 8);
3089
3090 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
3091 extent_root, 64);
3092 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
3093 extent_root_gen, 64);
3094 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
3095 extent_root_level, 8);
3096
3097 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
3098 fs_root, 64);
3099 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
3100 fs_root_gen, 64);
3101 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
3102 fs_root_level, 8);
3103
3104 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
3105 dev_root, 64);
3106 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
3107 dev_root_gen, 64);
3108 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
3109 dev_root_level, 8);
3110
3111 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
3112 csum_root, 64);
3113 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
3114 csum_root_gen, 64);
3115 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
3116 csum_root_level, 8);
3117 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
3118 total_bytes, 64);
3119 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
3120 bytes_used, 64);
3121 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
3122 num_devices, 64);
3123
3124 /* struct btrfs_balance_item */
3125 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
3126
3127 static inline void btrfs_balance_data(struct extent_buffer *eb,
3128 struct btrfs_balance_item *bi,
3129 struct btrfs_disk_balance_args *ba)
3130 {
3131 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
3132 }
3133
3134 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
3135 struct btrfs_balance_item *bi,
3136 struct btrfs_disk_balance_args *ba)
3137 {
3138 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
3139 }
3140
3141 static inline void btrfs_balance_meta(struct extent_buffer *eb,
3142 struct btrfs_balance_item *bi,
3143 struct btrfs_disk_balance_args *ba)
3144 {
3145 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
3146 }
3147
3148 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
3149 struct btrfs_balance_item *bi,
3150 struct btrfs_disk_balance_args *ba)
3151 {
3152 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
3153 }
3154
3155 static inline void btrfs_balance_sys(struct extent_buffer *eb,
3156 struct btrfs_balance_item *bi,
3157 struct btrfs_disk_balance_args *ba)
3158 {
3159 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3160 }
3161
3162 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
3163 struct btrfs_balance_item *bi,
3164 struct btrfs_disk_balance_args *ba)
3165 {
3166 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3167 }
3168
3169 static inline void
3170 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3171 struct btrfs_disk_balance_args *disk)
3172 {
3173 memset(cpu, 0, sizeof(*cpu));
3174
3175 cpu->profiles = le64_to_cpu(disk->profiles);
3176 cpu->usage = le64_to_cpu(disk->usage);
3177 cpu->devid = le64_to_cpu(disk->devid);
3178 cpu->pstart = le64_to_cpu(disk->pstart);
3179 cpu->pend = le64_to_cpu(disk->pend);
3180 cpu->vstart = le64_to_cpu(disk->vstart);
3181 cpu->vend = le64_to_cpu(disk->vend);
3182 cpu->target = le64_to_cpu(disk->target);
3183 cpu->flags = le64_to_cpu(disk->flags);
3184 cpu->limit = le64_to_cpu(disk->limit);
3185 }
3186
3187 static inline void
3188 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3189 struct btrfs_balance_args *cpu)
3190 {
3191 memset(disk, 0, sizeof(*disk));
3192
3193 disk->profiles = cpu_to_le64(cpu->profiles);
3194 disk->usage = cpu_to_le64(cpu->usage);
3195 disk->devid = cpu_to_le64(cpu->devid);
3196 disk->pstart = cpu_to_le64(cpu->pstart);
3197 disk->pend = cpu_to_le64(cpu->pend);
3198 disk->vstart = cpu_to_le64(cpu->vstart);
3199 disk->vend = cpu_to_le64(cpu->vend);
3200 disk->target = cpu_to_le64(cpu->target);
3201 disk->flags = cpu_to_le64(cpu->flags);
3202 disk->limit = cpu_to_le64(cpu->limit);
3203 }
3204
3205 /* struct btrfs_super_block */
3206 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
3207 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
3208 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
3209 generation, 64);
3210 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
3211 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
3212 struct btrfs_super_block, sys_chunk_array_size, 32);
3213 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
3214 struct btrfs_super_block, chunk_root_generation, 64);
3215 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
3216 root_level, 8);
3217 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
3218 chunk_root, 64);
3219 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
3220 chunk_root_level, 8);
3221 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
3222 log_root, 64);
3223 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
3224 log_root_transid, 64);
3225 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
3226 log_root_level, 8);
3227 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
3228 total_bytes, 64);
3229 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
3230 bytes_used, 64);
3231 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
3232 sectorsize, 32);
3233 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
3234 nodesize, 32);
3235 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
3236 stripesize, 32);
3237 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
3238 root_dir_objectid, 64);
3239 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
3240 num_devices, 64);
3241 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
3242 compat_flags, 64);
3243 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
3244 compat_ro_flags, 64);
3245 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
3246 incompat_flags, 64);
3247 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3248 csum_type, 16);
3249 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3250 cache_generation, 64);
3251 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3252 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3253 uuid_tree_generation, 64);
3254
3255 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3256 {
3257 u16 t = btrfs_super_csum_type(s);
3258 /*
3259 * csum type is validated at mount time
3260 */
3261 return btrfs_csum_sizes[t];
3262 }
3263
3264 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3265 {
3266 return offsetof(struct btrfs_leaf, items);
3267 }
3268
3269 /* struct btrfs_file_extent_item */
3270 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3271 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3272 struct btrfs_file_extent_item, disk_bytenr, 64);
3273 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3274 struct btrfs_file_extent_item, offset, 64);
3275 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3276 struct btrfs_file_extent_item, generation, 64);
3277 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3278 struct btrfs_file_extent_item, num_bytes, 64);
3279 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3280 struct btrfs_file_extent_item, disk_num_bytes, 64);
3281 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3282 struct btrfs_file_extent_item, compression, 8);
3283
3284 static inline unsigned long
3285 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3286 {
3287 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
3288 }
3289
3290 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3291 {
3292 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
3293 }
3294
3295 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3296 disk_bytenr, 64);
3297 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3298 generation, 64);
3299 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3300 disk_num_bytes, 64);
3301 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3302 offset, 64);
3303 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3304 num_bytes, 64);
3305 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3306 ram_bytes, 64);
3307 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3308 compression, 8);
3309 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3310 encryption, 8);
3311 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3312 other_encoding, 16);
3313
3314 /*
3315 * this returns the number of bytes used by the item on disk, minus the
3316 * size of any extent headers. If a file is compressed on disk, this is
3317 * the compressed size
3318 */
3319 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3320 struct btrfs_item *e)
3321 {
3322 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
3323 }
3324
3325 /* this returns the number of file bytes represented by the inline item.
3326 * If an item is compressed, this is the uncompressed size
3327 */
3328 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3329 int slot,
3330 struct btrfs_file_extent_item *fi)
3331 {
3332 struct btrfs_map_token token;
3333
3334 btrfs_init_map_token(&token);
3335 /*
3336 * return the space used on disk if this item isn't
3337 * compressed or encoded
3338 */
3339 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3340 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3341 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3342 return btrfs_file_extent_inline_item_len(eb,
3343 btrfs_item_nr(slot));
3344 }
3345
3346 /* otherwise use the ram bytes field */
3347 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3348 }
3349
3350
3351 /* btrfs_dev_stats_item */
3352 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3353 struct btrfs_dev_stats_item *ptr,
3354 int index)
3355 {
3356 u64 val;
3357
3358 read_extent_buffer(eb, &val,
3359 offsetof(struct btrfs_dev_stats_item, values) +
3360 ((unsigned long)ptr) + (index * sizeof(u64)),
3361 sizeof(val));
3362 return val;
3363 }
3364
3365 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3366 struct btrfs_dev_stats_item *ptr,
3367 int index, u64 val)
3368 {
3369 write_extent_buffer(eb, &val,
3370 offsetof(struct btrfs_dev_stats_item, values) +
3371 ((unsigned long)ptr) + (index * sizeof(u64)),
3372 sizeof(val));
3373 }
3374
3375 /* btrfs_qgroup_status_item */
3376 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3377 generation, 64);
3378 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3379 version, 64);
3380 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3381 flags, 64);
3382 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3383 rescan, 64);
3384
3385 /* btrfs_qgroup_info_item */
3386 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3387 generation, 64);
3388 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3389 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3390 rfer_cmpr, 64);
3391 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3392 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3393 excl_cmpr, 64);
3394
3395 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3396 struct btrfs_qgroup_info_item, generation, 64);
3397 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3398 rfer, 64);
3399 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3400 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3401 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3402 excl, 64);
3403 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3404 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3405
3406 /* btrfs_qgroup_limit_item */
3407 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3408 flags, 64);
3409 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3410 max_rfer, 64);
3411 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3412 max_excl, 64);
3413 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3414 rsv_rfer, 64);
3415 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3416 rsv_excl, 64);
3417
3418 /* btrfs_dev_replace_item */
3419 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3420 struct btrfs_dev_replace_item, src_devid, 64);
3421 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3422 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3423 64);
3424 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3425 replace_state, 64);
3426 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3427 time_started, 64);
3428 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3429 time_stopped, 64);
3430 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3431 num_write_errors, 64);
3432 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3433 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3434 64);
3435 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3436 cursor_left, 64);
3437 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3438 cursor_right, 64);
3439
3440 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3441 struct btrfs_dev_replace_item, src_devid, 64);
3442 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3443 struct btrfs_dev_replace_item,
3444 cont_reading_from_srcdev_mode, 64);
3445 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3446 struct btrfs_dev_replace_item, replace_state, 64);
3447 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3448 struct btrfs_dev_replace_item, time_started, 64);
3449 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3450 struct btrfs_dev_replace_item, time_stopped, 64);
3451 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3452 struct btrfs_dev_replace_item, num_write_errors, 64);
3453 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3454 struct btrfs_dev_replace_item,
3455 num_uncorrectable_read_errors, 64);
3456 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3457 struct btrfs_dev_replace_item, cursor_left, 64);
3458 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3459 struct btrfs_dev_replace_item, cursor_right, 64);
3460
3461 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3462 {
3463 return sb->s_fs_info;
3464 }
3465
3466 /* helper function to cast into the data area of the leaf. */
3467 #define btrfs_item_ptr(leaf, slot, type) \
3468 ((type *)(btrfs_leaf_data(leaf) + \
3469 btrfs_item_offset_nr(leaf, slot)))
3470
3471 #define btrfs_item_ptr_offset(leaf, slot) \
3472 ((unsigned long)(btrfs_leaf_data(leaf) + \
3473 btrfs_item_offset_nr(leaf, slot)))
3474
3475 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3476 {
3477 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3478 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3479 }
3480
3481 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3482 {
3483 return mapping_gfp_constraint(mapping, ~__GFP_FS);
3484 }
3485
3486 /* extent-tree.c */
3487
3488 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes);
3489
3490 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3491 unsigned num_items)
3492 {
3493 return root->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
3494 }
3495
3496 /*
3497 * Doing a truncate won't result in new nodes or leaves, just what we need for
3498 * COW.
3499 */
3500 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3501 unsigned num_items)
3502 {
3503 return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3504 }
3505
3506 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3507 struct btrfs_root *root);
3508 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3509 struct btrfs_root *root);
3510 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3511 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root, unsigned long count);
3513 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3514 unsigned long count, int wait);
3515 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len);
3516 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3517 struct btrfs_root *root, u64 bytenr,
3518 u64 offset, int metadata, u64 *refs, u64 *flags);
3519 int btrfs_pin_extent(struct btrfs_root *root,
3520 u64 bytenr, u64 num, int reserved);
3521 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3522 u64 bytenr, u64 num_bytes);
3523 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3524 struct extent_buffer *eb);
3525 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *root,
3527 u64 objectid, u64 offset, u64 bytenr);
3528 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3529 struct btrfs_fs_info *info,
3530 u64 bytenr);
3531 void btrfs_get_block_group(struct btrfs_block_group_cache *cache);
3532 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3533 int get_block_group_index(struct btrfs_block_group_cache *cache);
3534 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *root, u64 parent,
3536 u64 root_objectid,
3537 struct btrfs_disk_key *key, int level,
3538 u64 hint, u64 empty_size);
3539 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3540 struct btrfs_root *root,
3541 struct extent_buffer *buf,
3542 u64 parent, int last_ref);
3543 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *root,
3545 u64 root_objectid, u64 owner,
3546 u64 offset, u64 ram_bytes,
3547 struct btrfs_key *ins);
3548 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3549 struct btrfs_root *root,
3550 u64 root_objectid, u64 owner, u64 offset,
3551 struct btrfs_key *ins);
3552 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3553 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3554 struct btrfs_key *ins, int is_data, int delalloc);
3555 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3556 struct extent_buffer *buf, int full_backref);
3557 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3558 struct extent_buffer *buf, int full_backref);
3559 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3560 struct btrfs_root *root,
3561 u64 bytenr, u64 num_bytes, u64 flags,
3562 int level, int is_data);
3563 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3564 struct btrfs_root *root,
3565 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3566 u64 owner, u64 offset);
3567
3568 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3569 int delalloc);
3570 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3571 u64 start, u64 len);
3572 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3573 struct btrfs_root *root);
3574 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3575 struct btrfs_root *root);
3576 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3577 struct btrfs_root *root,
3578 u64 bytenr, u64 num_bytes, u64 parent,
3579 u64 root_objectid, u64 owner, u64 offset);
3580
3581 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3582 struct btrfs_root *root);
3583 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3584 struct btrfs_root *root);
3585 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3586 struct btrfs_root *root);
3587 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3588 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3589 int btrfs_read_block_groups(struct btrfs_root *root);
3590 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3591 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3592 struct btrfs_root *root, u64 bytes_used,
3593 u64 type, u64 chunk_objectid, u64 chunk_offset,
3594 u64 size);
3595 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
3596 struct btrfs_fs_info *fs_info,
3597 const u64 chunk_offset);
3598 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3599 struct btrfs_root *root, u64 group_start,
3600 struct extent_map *em);
3601 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
3602 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache);
3603 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *cache);
3604 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3605 struct btrfs_root *root);
3606 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3607 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3608
3609 enum btrfs_reserve_flush_enum {
3610 /* If we are in the transaction, we can't flush anything.*/
3611 BTRFS_RESERVE_NO_FLUSH,
3612 /*
3613 * Flushing delalloc may cause deadlock somewhere, in this
3614 * case, use FLUSH LIMIT
3615 */
3616 BTRFS_RESERVE_FLUSH_LIMIT,
3617 BTRFS_RESERVE_FLUSH_ALL,
3618 };
3619
3620 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len);
3621 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes);
3622 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len);
3623 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
3624 u64 len);
3625 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3626 struct btrfs_root *root);
3627 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
3628 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3629 struct inode *inode);
3630 void btrfs_orphan_release_metadata(struct inode *inode);
3631 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3632 struct btrfs_block_rsv *rsv,
3633 int nitems,
3634 u64 *qgroup_reserved, bool use_global_rsv);
3635 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3636 struct btrfs_block_rsv *rsv,
3637 u64 qgroup_reserved);
3638 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3639 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3640 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len);
3641 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len);
3642 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3643 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3644 unsigned short type);
3645 void btrfs_free_block_rsv(struct btrfs_root *root,
3646 struct btrfs_block_rsv *rsv);
3647 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv);
3648 int btrfs_block_rsv_add(struct btrfs_root *root,
3649 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3650 enum btrfs_reserve_flush_enum flush);
3651 int btrfs_block_rsv_check(struct btrfs_root *root,
3652 struct btrfs_block_rsv *block_rsv, int min_factor);
3653 int btrfs_block_rsv_refill(struct btrfs_root *root,
3654 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3655 enum btrfs_reserve_flush_enum flush);
3656 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3657 struct btrfs_block_rsv *dst_rsv,
3658 u64 num_bytes);
3659 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3660 struct btrfs_block_rsv *dest, u64 num_bytes,
3661 int min_factor);
3662 void btrfs_block_rsv_release(struct btrfs_root *root,
3663 struct btrfs_block_rsv *block_rsv,
3664 u64 num_bytes);
3665 int btrfs_inc_block_group_ro(struct btrfs_root *root,
3666 struct btrfs_block_group_cache *cache);
3667 void btrfs_dec_block_group_ro(struct btrfs_root *root,
3668 struct btrfs_block_group_cache *cache);
3669 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3670 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3671 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3672 u64 start, u64 end);
3673 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
3674 u64 num_bytes, u64 *actual_bytes);
3675 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3676 struct btrfs_root *root, u64 type);
3677 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3678
3679 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3680 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3681 struct btrfs_fs_info *fs_info);
3682 int __get_raid_index(u64 flags);
3683 int btrfs_start_write_no_snapshoting(struct btrfs_root *root);
3684 void btrfs_end_write_no_snapshoting(struct btrfs_root *root);
3685 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
3686 void check_system_chunk(struct btrfs_trans_handle *trans,
3687 struct btrfs_root *root,
3688 const u64 type);
3689 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
3690 struct btrfs_fs_info *info, u64 start, u64 end);
3691
3692 /* ctree.c */
3693 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3694 int level, int *slot);
3695 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3696 int btrfs_previous_item(struct btrfs_root *root,
3697 struct btrfs_path *path, u64 min_objectid,
3698 int type);
3699 int btrfs_previous_extent_item(struct btrfs_root *root,
3700 struct btrfs_path *path, u64 min_objectid);
3701 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3702 struct btrfs_path *path,
3703 struct btrfs_key *new_key);
3704 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3705 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3706 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3707 struct btrfs_key *key, int lowest_level,
3708 u64 min_trans);
3709 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3710 struct btrfs_path *path,
3711 u64 min_trans);
3712 enum btrfs_compare_tree_result {
3713 BTRFS_COMPARE_TREE_NEW,
3714 BTRFS_COMPARE_TREE_DELETED,
3715 BTRFS_COMPARE_TREE_CHANGED,
3716 BTRFS_COMPARE_TREE_SAME,
3717 };
3718 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3719 struct btrfs_root *right_root,
3720 struct btrfs_path *left_path,
3721 struct btrfs_path *right_path,
3722 struct btrfs_key *key,
3723 enum btrfs_compare_tree_result result,
3724 void *ctx);
3725 int btrfs_compare_trees(struct btrfs_root *left_root,
3726 struct btrfs_root *right_root,
3727 btrfs_changed_cb_t cb, void *ctx);
3728 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *root, struct extent_buffer *buf,
3730 struct extent_buffer *parent, int parent_slot,
3731 struct extent_buffer **cow_ret);
3732 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3733 struct btrfs_root *root,
3734 struct extent_buffer *buf,
3735 struct extent_buffer **cow_ret, u64 new_root_objectid);
3736 int btrfs_block_can_be_shared(struct btrfs_root *root,
3737 struct extent_buffer *buf);
3738 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3739 u32 data_size);
3740 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3741 u32 new_size, int from_end);
3742 int btrfs_split_item(struct btrfs_trans_handle *trans,
3743 struct btrfs_root *root,
3744 struct btrfs_path *path,
3745 struct btrfs_key *new_key,
3746 unsigned long split_offset);
3747 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3748 struct btrfs_root *root,
3749 struct btrfs_path *path,
3750 struct btrfs_key *new_key);
3751 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3752 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3753 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3754 *root, struct btrfs_key *key, struct btrfs_path *p, int
3755 ins_len, int cow);
3756 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3757 struct btrfs_path *p, u64 time_seq);
3758 int btrfs_search_slot_for_read(struct btrfs_root *root,
3759 struct btrfs_key *key, struct btrfs_path *p,
3760 int find_higher, int return_any);
3761 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3762 struct btrfs_root *root, struct extent_buffer *parent,
3763 int start_slot, u64 *last_ret,
3764 struct btrfs_key *progress);
3765 void btrfs_release_path(struct btrfs_path *p);
3766 struct btrfs_path *btrfs_alloc_path(void);
3767 void btrfs_free_path(struct btrfs_path *p);
3768 void btrfs_set_path_blocking(struct btrfs_path *p);
3769 void btrfs_clear_path_blocking(struct btrfs_path *p,
3770 struct extent_buffer *held, int held_rw);
3771 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3772
3773 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3774 struct btrfs_path *path, int slot, int nr);
3775 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3776 struct btrfs_root *root,
3777 struct btrfs_path *path)
3778 {
3779 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3780 }
3781
3782 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3783 struct btrfs_key *cpu_key, u32 *data_size,
3784 u32 total_data, u32 total_size, int nr);
3785 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3786 *root, struct btrfs_key *key, void *data, u32 data_size);
3787 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3788 struct btrfs_root *root,
3789 struct btrfs_path *path,
3790 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3791
3792 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3793 struct btrfs_root *root,
3794 struct btrfs_path *path,
3795 struct btrfs_key *key,
3796 u32 data_size)
3797 {
3798 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3799 }
3800
3801 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3802 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3803 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3804 u64 time_seq);
3805 static inline int btrfs_next_old_item(struct btrfs_root *root,
3806 struct btrfs_path *p, u64 time_seq)
3807 {
3808 ++p->slots[0];
3809 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3810 return btrfs_next_old_leaf(root, p, time_seq);
3811 return 0;
3812 }
3813 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3814 {
3815 return btrfs_next_old_item(root, p, 0);
3816 }
3817 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3818 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3819 struct btrfs_block_rsv *block_rsv,
3820 int update_ref, int for_reloc);
3821 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3822 struct btrfs_root *root,
3823 struct extent_buffer *node,
3824 struct extent_buffer *parent);
3825 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3826 {
3827 /*
3828 * Get synced with close_ctree()
3829 */
3830 smp_mb();
3831 return fs_info->closing;
3832 }
3833
3834 /*
3835 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3836 * anything except sleeping. This function is used to check the status of
3837 * the fs.
3838 */
3839 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3840 {
3841 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3842 btrfs_fs_closing(root->fs_info));
3843 }
3844
3845 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3846 {
3847 kfree(fs_info->balance_ctl);
3848 kfree(fs_info->delayed_root);
3849 kfree(fs_info->extent_root);
3850 kfree(fs_info->tree_root);
3851 kfree(fs_info->chunk_root);
3852 kfree(fs_info->dev_root);
3853 kfree(fs_info->csum_root);
3854 kfree(fs_info->quota_root);
3855 kfree(fs_info->uuid_root);
3856 kfree(fs_info->free_space_root);
3857 kfree(fs_info->super_copy);
3858 kfree(fs_info->super_for_commit);
3859 security_free_mnt_opts(&fs_info->security_opts);
3860 kfree(fs_info);
3861 }
3862
3863 /* tree mod log functions from ctree.c */
3864 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3865 struct seq_list *elem);
3866 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3867 struct seq_list *elem);
3868 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3869
3870 /* root-item.c */
3871 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3872 struct btrfs_path *path,
3873 u64 root_id, u64 ref_id);
3874 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3875 struct btrfs_root *tree_root,
3876 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3877 const char *name, int name_len);
3878 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3879 struct btrfs_root *tree_root,
3880 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3881 const char *name, int name_len);
3882 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3883 struct btrfs_key *key);
3884 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3885 *root, struct btrfs_key *key, struct btrfs_root_item
3886 *item);
3887 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3888 struct btrfs_root *root,
3889 struct btrfs_key *key,
3890 struct btrfs_root_item *item);
3891 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3892 struct btrfs_path *path, struct btrfs_root_item *root_item,
3893 struct btrfs_key *root_key);
3894 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3895 void btrfs_set_root_node(struct btrfs_root_item *item,
3896 struct extent_buffer *node);
3897 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3898 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3899 struct btrfs_root *root);
3900
3901 /* uuid-tree.c */
3902 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3903 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3904 u64 subid);
3905 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3907 u64 subid);
3908 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3909 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3910 u64));
3911
3912 /* dir-item.c */
3913 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3914 const char *name, int name_len);
3915 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3916 struct btrfs_root *root, const char *name,
3917 int name_len, struct inode *dir,
3918 struct btrfs_key *location, u8 type, u64 index);
3919 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3920 struct btrfs_root *root,
3921 struct btrfs_path *path, u64 dir,
3922 const char *name, int name_len,
3923 int mod);
3924 struct btrfs_dir_item *
3925 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3926 struct btrfs_root *root,
3927 struct btrfs_path *path, u64 dir,
3928 u64 objectid, const char *name, int name_len,
3929 int mod);
3930 struct btrfs_dir_item *
3931 btrfs_search_dir_index_item(struct btrfs_root *root,
3932 struct btrfs_path *path, u64 dirid,
3933 const char *name, int name_len);
3934 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3935 struct btrfs_root *root,
3936 struct btrfs_path *path,
3937 struct btrfs_dir_item *di);
3938 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3939 struct btrfs_root *root,
3940 struct btrfs_path *path, u64 objectid,
3941 const char *name, u16 name_len,
3942 const void *data, u16 data_len);
3943 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3944 struct btrfs_root *root,
3945 struct btrfs_path *path, u64 dir,
3946 const char *name, u16 name_len,
3947 int mod);
3948 int verify_dir_item(struct btrfs_root *root,
3949 struct extent_buffer *leaf,
3950 struct btrfs_dir_item *dir_item);
3951 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
3952 struct btrfs_path *path,
3953 const char *name,
3954 int name_len);
3955
3956 /* orphan.c */
3957 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3958 struct btrfs_root *root, u64 offset);
3959 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3960 struct btrfs_root *root, u64 offset);
3961 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3962
3963 /* inode-item.c */
3964 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3965 struct btrfs_root *root,
3966 const char *name, int name_len,
3967 u64 inode_objectid, u64 ref_objectid, u64 index);
3968 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3969 struct btrfs_root *root,
3970 const char *name, int name_len,
3971 u64 inode_objectid, u64 ref_objectid, u64 *index);
3972 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3973 struct btrfs_root *root,
3974 struct btrfs_path *path, u64 objectid);
3975 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3976 *root, struct btrfs_path *path,
3977 struct btrfs_key *location, int mod);
3978
3979 struct btrfs_inode_extref *
3980 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3981 struct btrfs_root *root,
3982 struct btrfs_path *path,
3983 const char *name, int name_len,
3984 u64 inode_objectid, u64 ref_objectid, int ins_len,
3985 int cow);
3986
3987 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3988 u64 ref_objectid, const char *name,
3989 int name_len,
3990 struct btrfs_inode_extref **extref_ret);
3991
3992 /* file-item.c */
3993 struct btrfs_dio_private;
3994 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *root, u64 bytenr, u64 len);
3996 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3997 struct bio *bio, u32 *dst);
3998 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3999 struct bio *bio, u64 logical_offset);
4000 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
4001 struct btrfs_root *root,
4002 u64 objectid, u64 pos,
4003 u64 disk_offset, u64 disk_num_bytes,
4004 u64 num_bytes, u64 offset, u64 ram_bytes,
4005 u8 compression, u8 encryption, u16 other_encoding);
4006 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
4007 struct btrfs_root *root,
4008 struct btrfs_path *path, u64 objectid,
4009 u64 bytenr, int mod);
4010 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
4011 struct btrfs_root *root,
4012 struct btrfs_ordered_sum *sums);
4013 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
4014 struct bio *bio, u64 file_start, int contig);
4015 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
4016 struct list_head *list, int search_commit);
4017 void btrfs_extent_item_to_extent_map(struct inode *inode,
4018 const struct btrfs_path *path,
4019 struct btrfs_file_extent_item *fi,
4020 const bool new_inline,
4021 struct extent_map *em);
4022
4023 /* inode.c */
4024 struct btrfs_delalloc_work {
4025 struct inode *inode;
4026 int delay_iput;
4027 struct completion completion;
4028 struct list_head list;
4029 struct btrfs_work work;
4030 };
4031
4032 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
4033 int delay_iput);
4034 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
4035
4036 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
4037 size_t pg_offset, u64 start, u64 len,
4038 int create);
4039 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
4040 u64 *orig_start, u64 *orig_block_len,
4041 u64 *ram_bytes);
4042
4043 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
4044 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
4045 #define ClearPageChecked ClearPageFsMisc
4046 #define SetPageChecked SetPageFsMisc
4047 #define PageChecked PageFsMisc
4048 #endif
4049
4050 /* This forces readahead on a given range of bytes in an inode */
4051 static inline void btrfs_force_ra(struct address_space *mapping,
4052 struct file_ra_state *ra, struct file *file,
4053 pgoff_t offset, unsigned long req_size)
4054 {
4055 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4056 }
4057
4058 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
4059 int btrfs_set_inode_index(struct inode *dir, u64 *index);
4060 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4061 struct btrfs_root *root,
4062 struct inode *dir, struct inode *inode,
4063 const char *name, int name_len);
4064 int btrfs_add_link(struct btrfs_trans_handle *trans,
4065 struct inode *parent_inode, struct inode *inode,
4066 const char *name, int name_len, int add_backref, u64 index);
4067 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4068 struct btrfs_root *root,
4069 struct inode *dir, u64 objectid,
4070 const char *name, int name_len);
4071 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4072 int front);
4073 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4074 struct btrfs_root *root,
4075 struct inode *inode, u64 new_size,
4076 u32 min_type);
4077
4078 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
4079 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
4080 int nr);
4081 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
4082 struct extent_state **cached_state);
4083 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4084 struct btrfs_root *new_root,
4085 struct btrfs_root *parent_root,
4086 u64 new_dirid);
4087 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
4088 size_t size, struct bio *bio,
4089 unsigned long bio_flags);
4090 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
4091 int btrfs_readpage(struct file *file, struct page *page);
4092 void btrfs_evict_inode(struct inode *inode);
4093 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
4094 struct inode *btrfs_alloc_inode(struct super_block *sb);
4095 void btrfs_destroy_inode(struct inode *inode);
4096 int btrfs_drop_inode(struct inode *inode);
4097 int btrfs_init_cachep(void);
4098 void btrfs_destroy_cachep(void);
4099 long btrfs_ioctl_trans_end(struct file *file);
4100 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4101 struct btrfs_root *root, int *was_new);
4102 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4103 size_t pg_offset, u64 start, u64 end,
4104 int create);
4105 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4106 struct btrfs_root *root,
4107 struct inode *inode);
4108 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4109 struct btrfs_root *root, struct inode *inode);
4110 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
4111 int btrfs_orphan_cleanup(struct btrfs_root *root);
4112 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
4113 struct btrfs_root *root);
4114 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
4115 void btrfs_invalidate_inodes(struct btrfs_root *root);
4116 void btrfs_add_delayed_iput(struct inode *inode);
4117 void btrfs_run_delayed_iputs(struct btrfs_root *root);
4118 int btrfs_prealloc_file_range(struct inode *inode, int mode,
4119 u64 start, u64 num_bytes, u64 min_size,
4120 loff_t actual_len, u64 *alloc_hint);
4121 int btrfs_prealloc_file_range_trans(struct inode *inode,
4122 struct btrfs_trans_handle *trans, int mode,
4123 u64 start, u64 num_bytes, u64 min_size,
4124 loff_t actual_len, u64 *alloc_hint);
4125 int btrfs_inode_check_errors(struct inode *inode);
4126 extern const struct dentry_operations btrfs_dentry_operations;
4127 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4128 void btrfs_test_inode_set_ops(struct inode *inode);
4129 #endif
4130
4131 /* ioctl.c */
4132 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
4133 void btrfs_update_iflags(struct inode *inode);
4134 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
4135 int btrfs_is_empty_uuid(u8 *uuid);
4136 int btrfs_defrag_file(struct inode *inode, struct file *file,
4137 struct btrfs_ioctl_defrag_range_args *range,
4138 u64 newer_than, unsigned long max_pages);
4139 void btrfs_get_block_group_info(struct list_head *groups_list,
4140 struct btrfs_ioctl_space_info *space);
4141 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4142 struct btrfs_ioctl_balance_args *bargs);
4143 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
4144 struct file *dst_file, u64 dst_loff);
4145
4146 /* file.c */
4147 int btrfs_auto_defrag_init(void);
4148 void btrfs_auto_defrag_exit(void);
4149 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
4150 struct inode *inode);
4151 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
4152 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
4153 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
4154 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
4155 int skip_pinned);
4156 extern const struct file_operations btrfs_file_operations;
4157 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
4158 struct btrfs_root *root, struct inode *inode,
4159 struct btrfs_path *path, u64 start, u64 end,
4160 u64 *drop_end, int drop_cache,
4161 int replace_extent,
4162 u32 extent_item_size,
4163 int *key_inserted);
4164 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
4165 struct btrfs_root *root, struct inode *inode, u64 start,
4166 u64 end, int drop_cache);
4167 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
4168 struct inode *inode, u64 start, u64 end);
4169 int btrfs_release_file(struct inode *inode, struct file *file);
4170 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
4171 struct page **pages, size_t num_pages,
4172 loff_t pos, size_t write_bytes,
4173 struct extent_state **cached);
4174 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
4175 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
4176 struct file *file_out, loff_t pos_out,
4177 size_t len, unsigned int flags);
4178 int btrfs_clone_file_range(struct file *file_in, loff_t pos_in,
4179 struct file *file_out, loff_t pos_out, u64 len);
4180
4181 /* tree-defrag.c */
4182 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
4183 struct btrfs_root *root);
4184
4185 /* sysfs.c */
4186 int btrfs_init_sysfs(void);
4187 void btrfs_exit_sysfs(void);
4188 int btrfs_sysfs_add_mounted(struct btrfs_fs_info *fs_info);
4189 void btrfs_sysfs_remove_mounted(struct btrfs_fs_info *fs_info);
4190
4191 /* xattr.c */
4192 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
4193
4194 /* super.c */
4195 int btrfs_parse_options(struct btrfs_root *root, char *options,
4196 unsigned long new_flags);
4197 int btrfs_sync_fs(struct super_block *sb, int wait);
4198
4199 #ifdef CONFIG_PRINTK
4200 __printf(2, 3)
4201 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
4202 #else
4203 static inline __printf(2, 3)
4204 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
4205 {
4206 }
4207 #endif
4208
4209 #define btrfs_emerg(fs_info, fmt, args...) \
4210 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
4211 #define btrfs_alert(fs_info, fmt, args...) \
4212 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
4213 #define btrfs_crit(fs_info, fmt, args...) \
4214 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
4215 #define btrfs_err(fs_info, fmt, args...) \
4216 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
4217 #define btrfs_warn(fs_info, fmt, args...) \
4218 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
4219 #define btrfs_notice(fs_info, fmt, args...) \
4220 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
4221 #define btrfs_info(fs_info, fmt, args...) \
4222 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
4223
4224 /*
4225 * Wrappers that use printk_in_rcu
4226 */
4227 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
4228 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
4229 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
4230 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
4231 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
4232 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
4233 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
4234 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
4235 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
4236 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
4237 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
4238 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
4239 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
4240 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
4241
4242 /*
4243 * Wrappers that use a ratelimited printk_in_rcu
4244 */
4245 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
4246 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
4247 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
4248 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
4249 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
4250 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
4251 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
4252 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
4253 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
4254 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
4255 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
4256 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
4257 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
4258 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
4259
4260 /*
4261 * Wrappers that use a ratelimited printk
4262 */
4263 #define btrfs_emerg_rl(fs_info, fmt, args...) \
4264 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
4265 #define btrfs_alert_rl(fs_info, fmt, args...) \
4266 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
4267 #define btrfs_crit_rl(fs_info, fmt, args...) \
4268 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
4269 #define btrfs_err_rl(fs_info, fmt, args...) \
4270 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
4271 #define btrfs_warn_rl(fs_info, fmt, args...) \
4272 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
4273 #define btrfs_notice_rl(fs_info, fmt, args...) \
4274 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
4275 #define btrfs_info_rl(fs_info, fmt, args...) \
4276 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
4277 #ifdef DEBUG
4278 #define btrfs_debug(fs_info, fmt, args...) \
4279 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
4280 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
4281 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
4282 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
4283 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
4284 #define btrfs_debug_rl(fs_info, fmt, args...) \
4285 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
4286 #else
4287 #define btrfs_debug(fs_info, fmt, args...) \
4288 no_printk(KERN_DEBUG fmt, ##args)
4289 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
4290 no_printk(KERN_DEBUG fmt, ##args)
4291 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
4292 no_printk(KERN_DEBUG fmt, ##args)
4293 #define btrfs_debug_rl(fs_info, fmt, args...) \
4294 no_printk(KERN_DEBUG fmt, ##args)
4295 #endif
4296
4297 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \
4298 do { \
4299 rcu_read_lock(); \
4300 btrfs_printk(fs_info, fmt, ##args); \
4301 rcu_read_unlock(); \
4302 } while (0)
4303
4304 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \
4305 do { \
4306 static DEFINE_RATELIMIT_STATE(_rs, \
4307 DEFAULT_RATELIMIT_INTERVAL, \
4308 DEFAULT_RATELIMIT_BURST); \
4309 if (__ratelimit(&_rs)) \
4310 btrfs_printk(fs_info, fmt, ##args); \
4311 } while (0)
4312
4313 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
4314 do { \
4315 rcu_read_lock(); \
4316 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
4317 rcu_read_unlock(); \
4318 } while (0)
4319
4320 #ifdef CONFIG_BTRFS_ASSERT
4321
4322 __cold
4323 static inline void assfail(char *expr, char *file, int line)
4324 {
4325 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
4326 expr, file, line);
4327 BUG();
4328 }
4329
4330 #define ASSERT(expr) \
4331 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
4332 #else
4333 #define ASSERT(expr) ((void)0)
4334 #endif
4335
4336 #define btrfs_assert()
4337 __printf(5, 6)
4338 __cold
4339 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
4340 unsigned int line, int errno, const char *fmt, ...);
4341
4342 const char *btrfs_decode_error(int errno);
4343
4344 __cold
4345 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
4346 struct btrfs_root *root, const char *function,
4347 unsigned int line, int errno);
4348
4349 #define btrfs_set_fs_incompat(__fs_info, opt) \
4350 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4351
4352 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
4353 u64 flag)
4354 {
4355 struct btrfs_super_block *disk_super;
4356 u64 features;
4357
4358 disk_super = fs_info->super_copy;
4359 features = btrfs_super_incompat_flags(disk_super);
4360 if (!(features & flag)) {
4361 spin_lock(&fs_info->super_lock);
4362 features = btrfs_super_incompat_flags(disk_super);
4363 if (!(features & flag)) {
4364 features |= flag;
4365 btrfs_set_super_incompat_flags(disk_super, features);
4366 btrfs_info(fs_info, "setting %llu feature flag",
4367 flag);
4368 }
4369 spin_unlock(&fs_info->super_lock);
4370 }
4371 }
4372
4373 #define btrfs_clear_fs_incompat(__fs_info, opt) \
4374 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4375
4376 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
4377 u64 flag)
4378 {
4379 struct btrfs_super_block *disk_super;
4380 u64 features;
4381
4382 disk_super = fs_info->super_copy;
4383 features = btrfs_super_incompat_flags(disk_super);
4384 if (features & flag) {
4385 spin_lock(&fs_info->super_lock);
4386 features = btrfs_super_incompat_flags(disk_super);
4387 if (features & flag) {
4388 features &= ~flag;
4389 btrfs_set_super_incompat_flags(disk_super, features);
4390 btrfs_info(fs_info, "clearing %llu feature flag",
4391 flag);
4392 }
4393 spin_unlock(&fs_info->super_lock);
4394 }
4395 }
4396
4397 #define btrfs_fs_incompat(fs_info, opt) \
4398 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4399
4400 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
4401 {
4402 struct btrfs_super_block *disk_super;
4403 disk_super = fs_info->super_copy;
4404 return !!(btrfs_super_incompat_flags(disk_super) & flag);
4405 }
4406
4407 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
4408 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4409
4410 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
4411 u64 flag)
4412 {
4413 struct btrfs_super_block *disk_super;
4414 u64 features;
4415
4416 disk_super = fs_info->super_copy;
4417 features = btrfs_super_compat_ro_flags(disk_super);
4418 if (!(features & flag)) {
4419 spin_lock(&fs_info->super_lock);
4420 features = btrfs_super_compat_ro_flags(disk_super);
4421 if (!(features & flag)) {
4422 features |= flag;
4423 btrfs_set_super_compat_ro_flags(disk_super, features);
4424 btrfs_info(fs_info, "setting %llu ro feature flag",
4425 flag);
4426 }
4427 spin_unlock(&fs_info->super_lock);
4428 }
4429 }
4430
4431 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
4432 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4433
4434 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
4435 u64 flag)
4436 {
4437 struct btrfs_super_block *disk_super;
4438 u64 features;
4439
4440 disk_super = fs_info->super_copy;
4441 features = btrfs_super_compat_ro_flags(disk_super);
4442 if (features & flag) {
4443 spin_lock(&fs_info->super_lock);
4444 features = btrfs_super_compat_ro_flags(disk_super);
4445 if (features & flag) {
4446 features &= ~flag;
4447 btrfs_set_super_compat_ro_flags(disk_super, features);
4448 btrfs_info(fs_info, "clearing %llu ro feature flag",
4449 flag);
4450 }
4451 spin_unlock(&fs_info->super_lock);
4452 }
4453 }
4454
4455 #define btrfs_fs_compat_ro(fs_info, opt) \
4456 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
4457
4458 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
4459 {
4460 struct btrfs_super_block *disk_super;
4461 disk_super = fs_info->super_copy;
4462 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
4463 }
4464
4465 /*
4466 * Call btrfs_abort_transaction as early as possible when an error condition is
4467 * detected, that way the exact line number is reported.
4468 */
4469 #define btrfs_abort_transaction(trans, root, errno) \
4470 do { \
4471 /* Report first abort since mount */ \
4472 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
4473 &((root)->fs_info->fs_state))) { \
4474 WARN(1, KERN_DEBUG \
4475 "BTRFS: Transaction aborted (error %d)\n", \
4476 (errno)); \
4477 } \
4478 __btrfs_abort_transaction((trans), (root), __func__, \
4479 __LINE__, (errno)); \
4480 } while (0)
4481
4482 #define btrfs_std_error(fs_info, errno, fmt, args...) \
4483 do { \
4484 __btrfs_std_error((fs_info), __func__, __LINE__, \
4485 (errno), fmt, ##args); \
4486 } while (0)
4487
4488 __printf(5, 6)
4489 __cold
4490 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4491 unsigned int line, int errno, const char *fmt, ...);
4492
4493 /*
4494 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4495 * will panic(). Otherwise we BUG() here.
4496 */
4497 #define btrfs_panic(fs_info, errno, fmt, args...) \
4498 do { \
4499 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
4500 BUG(); \
4501 } while (0)
4502
4503 /* acl.c */
4504 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
4505 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4506 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4507 int btrfs_init_acl(struct btrfs_trans_handle *trans,
4508 struct inode *inode, struct inode *dir);
4509 #else
4510 #define btrfs_get_acl NULL
4511 #define btrfs_set_acl NULL
4512 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4513 struct inode *inode, struct inode *dir)
4514 {
4515 return 0;
4516 }
4517 #endif
4518
4519 /* relocation.c */
4520 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4521 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4522 struct btrfs_root *root);
4523 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4524 struct btrfs_root *root);
4525 int btrfs_recover_relocation(struct btrfs_root *root);
4526 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4527 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4528 struct btrfs_root *root, struct extent_buffer *buf,
4529 struct extent_buffer *cow);
4530 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4531 u64 *bytes_to_reserve);
4532 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4533 struct btrfs_pending_snapshot *pending);
4534
4535 /* scrub.c */
4536 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4537 u64 end, struct btrfs_scrub_progress *progress,
4538 int readonly, int is_dev_replace);
4539 void btrfs_scrub_pause(struct btrfs_root *root);
4540 void btrfs_scrub_continue(struct btrfs_root *root);
4541 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4542 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4543 struct btrfs_device *dev);
4544 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4545 struct btrfs_scrub_progress *progress);
4546
4547 /* dev-replace.c */
4548 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4549 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4550 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4551
4552 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4553 {
4554 btrfs_bio_counter_sub(fs_info, 1);
4555 }
4556
4557 /* reada.c */
4558 struct reada_control {
4559 struct btrfs_root *root; /* tree to prefetch */
4560 struct btrfs_key key_start;
4561 struct btrfs_key key_end; /* exclusive */
4562 atomic_t elems;
4563 struct kref refcnt;
4564 wait_queue_head_t wait;
4565 };
4566 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4567 struct btrfs_key *start, struct btrfs_key *end);
4568 int btrfs_reada_wait(void *handle);
4569 void btrfs_reada_detach(void *handle);
4570 int btree_readahead_hook(struct btrfs_fs_info *fs_info,
4571 struct extent_buffer *eb, u64 start, int err);
4572
4573 static inline int is_fstree(u64 rootid)
4574 {
4575 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4576 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4577 !btrfs_qgroup_level(rootid)))
4578 return 1;
4579 return 0;
4580 }
4581
4582 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4583 {
4584 return signal_pending(current);
4585 }
4586
4587 /* Sanity test specific functions */
4588 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4589 void btrfs_test_destroy_inode(struct inode *inode);
4590 #endif
4591
4592 static inline int btrfs_test_is_dummy_root(struct btrfs_root *root)
4593 {
4594 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4595 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
4596 return 1;
4597 #endif
4598 return 0;
4599 }
4600
4601 #endif