]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ctree.h
Btrfs: fixup various fsx failures
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/fs.h>
5 #include <linux/buffer_head.h>
6 #include <linux/kobject.h>
7 #include "bit-radix.h"
8
9 struct btrfs_trans_handle;
10 struct btrfs_transaction;
11 extern struct kmem_cache *btrfs_trans_handle_cachep;
12 extern struct kmem_cache *btrfs_transaction_cachep;
13 extern struct kmem_cache *btrfs_bit_radix_cachep;
14 extern struct kmem_cache *btrfs_path_cachep;
15
16 #define BTRFS_MAGIC "_BtRfS_M"
17
18 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
19 #define BTRFS_DEV_TREE_OBJECTID 2ULL
20 #define BTRFS_EXTENT_TREE_OBJECTID 3ULL
21 #define BTRFS_FS_TREE_OBJECTID 4ULL
22 #define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
23 #define BTRFS_FIRST_FREE_OBJECTID 6ULL
24
25 /*
26 * we can actually store much bigger names, but lets not confuse the rest
27 * of linux
28 */
29 #define BTRFS_NAME_LEN 255
30
31 /* 32 bytes in various csum fields */
32 #define BTRFS_CSUM_SIZE 32
33 /* four bytes for CRC32 */
34 #define BTRFS_CRC32_SIZE 4
35 #define BTRFS_EMPTY_DIR_SIZE 6
36
37 /*
38 * the key defines the order in the tree, and so it also defines (optimal)
39 * block layout. objectid corresonds to the inode number. The flags
40 * tells us things about the object, and is a kind of stream selector.
41 * so for a given inode, keys with flags of 1 might refer to the inode
42 * data, flags of 2 may point to file data in the btree and flags == 3
43 * may point to extents.
44 *
45 * offset is the starting byte offset for this key in the stream.
46 *
47 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
48 * in cpu native order. Otherwise they are identical and their sizes
49 * should be the same (ie both packed)
50 */
51 struct btrfs_disk_key {
52 __le64 objectid;
53 __le32 flags;
54 __le64 offset;
55 } __attribute__ ((__packed__));
56
57 struct btrfs_key {
58 u64 objectid;
59 u32 flags;
60 u64 offset;
61 } __attribute__ ((__packed__));
62
63 /*
64 * every tree block (leaf or node) starts with this header.
65 */
66 struct btrfs_header {
67 u8 csum[BTRFS_CSUM_SIZE];
68 u8 fsid[16]; /* FS specific uuid */
69 __le64 blocknr; /* which block this node is supposed to live in */
70 __le64 generation;
71 __le64 owner;
72 __le16 nritems;
73 __le16 flags;
74 u8 level;
75 } __attribute__ ((__packed__));
76
77 #define BTRFS_MAX_LEVEL 8
78 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
79 sizeof(struct btrfs_header)) / \
80 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
81 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
82 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
83 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
84 sizeof(struct btrfs_item) - \
85 sizeof(struct btrfs_file_extent_item))
86
87 struct buffer_head;
88 /*
89 * the super block basically lists the main trees of the FS
90 * it currently lacks any block count etc etc
91 */
92 struct btrfs_super_block {
93 u8 csum[BTRFS_CSUM_SIZE];
94 /* the first 3 fields must match struct btrfs_header */
95 u8 fsid[16]; /* FS specific uuid */
96 __le64 blocknr; /* this block number */
97 __le64 magic;
98 __le32 blocksize;
99 __le64 generation;
100 __le64 root;
101 __le64 total_blocks;
102 __le64 blocks_used;
103 __le64 root_dir_objectid;
104 __le64 last_device_id;
105 /* fields below here vary with the underlying disk */
106 __le64 device_block_start;
107 __le64 device_num_blocks;
108 __le64 device_root;
109 __le64 device_id;
110 } __attribute__ ((__packed__));
111
112 /*
113 * A leaf is full of items. offset and size tell us where to find
114 * the item in the leaf (relative to the start of the data area)
115 */
116 struct btrfs_item {
117 struct btrfs_disk_key key;
118 __le32 offset;
119 __le16 size;
120 } __attribute__ ((__packed__));
121
122 /*
123 * leaves have an item area and a data area:
124 * [item0, item1....itemN] [free space] [dataN...data1, data0]
125 *
126 * The data is separate from the items to get the keys closer together
127 * during searches.
128 */
129 struct btrfs_leaf {
130 struct btrfs_header header;
131 struct btrfs_item items[];
132 } __attribute__ ((__packed__));
133
134 /*
135 * all non-leaf blocks are nodes, they hold only keys and pointers to
136 * other blocks
137 */
138 struct btrfs_key_ptr {
139 struct btrfs_disk_key key;
140 __le64 blockptr;
141 } __attribute__ ((__packed__));
142
143 struct btrfs_node {
144 struct btrfs_header header;
145 struct btrfs_key_ptr ptrs[];
146 } __attribute__ ((__packed__));
147
148 /*
149 * btrfs_paths remember the path taken from the root down to the leaf.
150 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
151 * to any other levels that are present.
152 *
153 * The slots array records the index of the item or block pointer
154 * used while walking the tree.
155 */
156 struct btrfs_path {
157 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
158 int slots[BTRFS_MAX_LEVEL];
159 };
160
161 /*
162 * items in the extent btree are used to record the objectid of the
163 * owner of the block and the number of references
164 */
165 struct btrfs_extent_item {
166 __le32 refs;
167 __le64 owner;
168 } __attribute__ ((__packed__));
169
170 struct btrfs_inode_timespec {
171 __le64 sec;
172 __le32 nsec;
173 } __attribute__ ((__packed__));
174
175 /*
176 * there is no padding here on purpose. If you want to extent the inode,
177 * make a new item type
178 */
179 struct btrfs_inode_item {
180 __le64 generation;
181 __le64 size;
182 __le64 nblocks;
183 __le64 block_group;
184 __le32 nlink;
185 __le32 uid;
186 __le32 gid;
187 __le32 mode;
188 __le32 rdev;
189 __le16 flags;
190 __le16 compat_flags;
191 struct btrfs_inode_timespec atime;
192 struct btrfs_inode_timespec ctime;
193 struct btrfs_inode_timespec mtime;
194 struct btrfs_inode_timespec otime;
195 } __attribute__ ((__packed__));
196
197 struct btrfs_dir_item {
198 struct btrfs_disk_key location;
199 __le16 flags;
200 __le16 name_len;
201 u8 type;
202 } __attribute__ ((__packed__));
203
204 struct btrfs_root_item {
205 struct btrfs_inode_item inode;
206 __le64 root_dirid;
207 __le64 blocknr;
208 __le32 flags;
209 __le64 block_limit;
210 __le64 blocks_used;
211 __le32 refs;
212 } __attribute__ ((__packed__));
213
214 #define BTRFS_FILE_EXTENT_REG 0
215 #define BTRFS_FILE_EXTENT_INLINE 1
216
217 struct btrfs_file_extent_item {
218 __le64 generation;
219 u8 type;
220 /*
221 * disk space consumed by the extent, checksum blocks are included
222 * in these numbers
223 */
224 __le64 disk_blocknr;
225 __le64 disk_num_blocks;
226 /*
227 * the logical offset in file blocks (no csums)
228 * this extent record is for. This allows a file extent to point
229 * into the middle of an existing extent on disk, sharing it
230 * between two snapshots (useful if some bytes in the middle of the
231 * extent have changed
232 */
233 __le64 offset;
234 /*
235 * the logical number of file blocks (no csums included)
236 */
237 __le64 num_blocks;
238 } __attribute__ ((__packed__));
239
240 struct btrfs_csum_item {
241 u8 csum;
242 } __attribute__ ((__packed__));
243
244 struct btrfs_device_item {
245 __le16 pathlen;
246 __le64 device_id;
247 } __attribute__ ((__packed__));
248
249 /* tag for the radix tree of block groups in ram */
250 #define BTRFS_BLOCK_GROUP_DIRTY 0
251 #define BTRFS_BLOCK_GROUP_AVAIL 1
252 #define BTRFS_BLOCK_GROUP_HINTS 8
253 #define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
254 struct btrfs_block_group_item {
255 __le64 used;
256 } __attribute__ ((__packed__));
257
258 struct btrfs_block_group_cache {
259 struct btrfs_key key;
260 struct btrfs_block_group_item item;
261 struct radix_tree_root *radix;
262 u64 first_free;
263 u64 last_alloc;
264 u64 pinned;
265 u64 last_prealloc;
266 int data;
267 int cached;
268 };
269
270 struct crypto_hash;
271 struct btrfs_fs_info {
272 struct btrfs_root *extent_root;
273 struct btrfs_root *tree_root;
274 struct btrfs_root *dev_root;
275 struct radix_tree_root fs_roots_radix;
276 struct radix_tree_root pending_del_radix;
277 struct radix_tree_root pinned_radix;
278 struct radix_tree_root dev_radix;
279 struct radix_tree_root block_group_radix;
280 struct radix_tree_root block_group_data_radix;
281 struct radix_tree_root extent_map_radix;
282
283 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
284 int extent_tree_insert_nr;
285 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
286 int extent_tree_prealloc_nr;
287
288 u64 generation;
289 struct btrfs_transaction *running_transaction;
290 struct btrfs_super_block *disk_super;
291 struct buffer_head *sb_buffer;
292 struct super_block *sb;
293 struct inode *btree_inode;
294 struct mutex trans_mutex;
295 struct mutex fs_mutex;
296 struct list_head trans_list;
297 struct crypto_hash *hash_tfm;
298 spinlock_t hash_lock;
299 int do_barriers;
300 struct kobject kobj;
301 };
302
303 /*
304 * in ram representation of the tree. extent_root is used for all allocations
305 * and for the extent tree extent_root root.
306 */
307 struct btrfs_root {
308 struct buffer_head *node;
309 struct buffer_head *commit_root;
310 struct btrfs_root_item root_item;
311 struct btrfs_key root_key;
312 struct btrfs_fs_info *fs_info;
313 struct inode *inode;
314 u64 objectid;
315 u64 last_trans;
316 u32 blocksize;
317 int ref_cows;
318 u32 type;
319 u64 highest_inode;
320 u64 last_inode_alloc;
321 };
322
323 /* the lower bits in the key flags defines the item type */
324 #define BTRFS_KEY_TYPE_MAX 256
325 #define BTRFS_KEY_TYPE_SHIFT 24
326 #define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
327 BTRFS_KEY_TYPE_SHIFT)
328
329 /*
330 * inode items have the data typically returned from stat and store other
331 * info about object characteristics. There is one for every file and dir in
332 * the FS
333 */
334 #define BTRFS_INODE_ITEM_KEY 1
335
336 /* reserve 2-15 close to the inode for later flexibility */
337
338 /*
339 * dir items are the name -> inode pointers in a directory. There is one
340 * for every name in a directory.
341 */
342 #define BTRFS_DIR_ITEM_KEY 16
343 #define BTRFS_DIR_INDEX_KEY 17
344 /*
345 * extent data is for file data
346 */
347 #define BTRFS_EXTENT_DATA_KEY 18
348 /*
349 * csum items have the checksums for data in the extents
350 */
351 #define BTRFS_CSUM_ITEM_KEY 19
352
353 /* reserve 20-31 for other file stuff */
354
355 /*
356 * root items point to tree roots. There are typically in the root
357 * tree used by the super block to find all the other trees
358 */
359 #define BTRFS_ROOT_ITEM_KEY 32
360 /*
361 * extent items are in the extent map tree. These record which blocks
362 * are used, and how many references there are to each block
363 */
364 #define BTRFS_EXTENT_ITEM_KEY 33
365
366 /*
367 * block groups give us hints into the extent allocation trees. Which
368 * blocks are free etc etc
369 */
370 #define BTRFS_BLOCK_GROUP_ITEM_KEY 34
371
372 /*
373 * dev items list the devices that make up the FS
374 */
375 #define BTRFS_DEV_ITEM_KEY 35
376
377 /*
378 * string items are for debugging. They just store a short string of
379 * data in the FS
380 */
381 #define BTRFS_STRING_ITEM_KEY 253
382
383
384 static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
385 {
386 return le64_to_cpu(bi->used);
387 }
388
389 static inline void btrfs_set_block_group_used(struct
390 btrfs_block_group_item *bi,
391 u64 val)
392 {
393 bi->used = cpu_to_le64(val);
394 }
395
396 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
397 {
398 return le64_to_cpu(i->generation);
399 }
400
401 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
402 u64 val)
403 {
404 i->generation = cpu_to_le64(val);
405 }
406
407 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
408 {
409 return le64_to_cpu(i->size);
410 }
411
412 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
413 {
414 i->size = cpu_to_le64(val);
415 }
416
417 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
418 {
419 return le64_to_cpu(i->nblocks);
420 }
421
422 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
423 {
424 i->nblocks = cpu_to_le64(val);
425 }
426
427 static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
428 {
429 return le64_to_cpu(i->block_group);
430 }
431
432 static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
433 u64 val)
434 {
435 i->block_group = cpu_to_le64(val);
436 }
437
438 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
439 {
440 return le32_to_cpu(i->nlink);
441 }
442
443 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
444 {
445 i->nlink = cpu_to_le32(val);
446 }
447
448 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
449 {
450 return le32_to_cpu(i->uid);
451 }
452
453 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
454 {
455 i->uid = cpu_to_le32(val);
456 }
457
458 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
459 {
460 return le32_to_cpu(i->gid);
461 }
462
463 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
464 {
465 i->gid = cpu_to_le32(val);
466 }
467
468 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
469 {
470 return le32_to_cpu(i->mode);
471 }
472
473 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
474 {
475 i->mode = cpu_to_le32(val);
476 }
477
478 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
479 {
480 return le32_to_cpu(i->rdev);
481 }
482
483 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
484 {
485 i->rdev = cpu_to_le32(val);
486 }
487
488 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
489 {
490 return le16_to_cpu(i->flags);
491 }
492
493 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
494 {
495 i->flags = cpu_to_le16(val);
496 }
497
498 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
499 {
500 return le16_to_cpu(i->compat_flags);
501 }
502
503 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
504 u16 val)
505 {
506 i->compat_flags = cpu_to_le16(val);
507 }
508
509 static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
510 {
511 return le64_to_cpu(ts->sec);
512 }
513
514 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
515 u64 val)
516 {
517 ts->sec = cpu_to_le64(val);
518 }
519
520 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
521 {
522 return le32_to_cpu(ts->nsec);
523 }
524
525 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
526 u32 val)
527 {
528 ts->nsec = cpu_to_le32(val);
529 }
530
531 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
532 {
533 return le32_to_cpu(ei->refs);
534 }
535
536 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
537 {
538 ei->refs = cpu_to_le32(val);
539 }
540
541 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
542 {
543 return le64_to_cpu(ei->owner);
544 }
545
546 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
547 {
548 ei->owner = cpu_to_le64(val);
549 }
550
551 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
552 {
553 return le64_to_cpu(n->ptrs[nr].blockptr);
554 }
555
556
557 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
558 u64 val)
559 {
560 n->ptrs[nr].blockptr = cpu_to_le64(val);
561 }
562
563 static inline u32 btrfs_item_offset(struct btrfs_item *item)
564 {
565 return le32_to_cpu(item->offset);
566 }
567
568 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
569 {
570 item->offset = cpu_to_le32(val);
571 }
572
573 static inline u32 btrfs_item_end(struct btrfs_item *item)
574 {
575 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
576 }
577
578 static inline u16 btrfs_item_size(struct btrfs_item *item)
579 {
580 return le16_to_cpu(item->size);
581 }
582
583 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
584 {
585 item->size = cpu_to_le16(val);
586 }
587
588 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
589 {
590 return le16_to_cpu(d->flags);
591 }
592
593 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
594 {
595 d->flags = cpu_to_le16(val);
596 }
597
598 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
599 {
600 return d->type;
601 }
602
603 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
604 {
605 d->type = val;
606 }
607
608 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
609 {
610 return le16_to_cpu(d->name_len);
611 }
612
613 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
614 {
615 d->name_len = cpu_to_le16(val);
616 }
617
618 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
619 struct btrfs_disk_key *disk)
620 {
621 cpu->offset = le64_to_cpu(disk->offset);
622 cpu->flags = le32_to_cpu(disk->flags);
623 cpu->objectid = le64_to_cpu(disk->objectid);
624 }
625
626 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
627 struct btrfs_key *cpu)
628 {
629 disk->offset = cpu_to_le64(cpu->offset);
630 disk->flags = cpu_to_le32(cpu->flags);
631 disk->objectid = cpu_to_le64(cpu->objectid);
632 }
633
634 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
635 {
636 return le64_to_cpu(disk->objectid);
637 }
638
639 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
640 u64 val)
641 {
642 disk->objectid = cpu_to_le64(val);
643 }
644
645 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
646 {
647 return le64_to_cpu(disk->offset);
648 }
649
650 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
651 u64 val)
652 {
653 disk->offset = cpu_to_le64(val);
654 }
655
656 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
657 {
658 return le32_to_cpu(disk->flags);
659 }
660
661 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
662 u32 val)
663 {
664 disk->flags = cpu_to_le32(val);
665 }
666
667 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
668 {
669 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
670 }
671
672 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
673 u32 val)
674 {
675 u32 flags = btrfs_disk_key_flags(key);
676 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
677 val = val << BTRFS_KEY_TYPE_SHIFT;
678 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
679 btrfs_set_disk_key_flags(key, flags);
680 }
681
682 static inline u32 btrfs_key_type(struct btrfs_key *key)
683 {
684 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
685 }
686
687 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
688 {
689 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
690 val = val << BTRFS_KEY_TYPE_SHIFT;
691 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
692 }
693
694 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
695 {
696 return le64_to_cpu(h->blocknr);
697 }
698
699 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
700 {
701 h->blocknr = cpu_to_le64(blocknr);
702 }
703
704 static inline u64 btrfs_header_generation(struct btrfs_header *h)
705 {
706 return le64_to_cpu(h->generation);
707 }
708
709 static inline void btrfs_set_header_generation(struct btrfs_header *h,
710 u64 val)
711 {
712 h->generation = cpu_to_le64(val);
713 }
714
715 static inline u64 btrfs_header_owner(struct btrfs_header *h)
716 {
717 return le64_to_cpu(h->owner);
718 }
719
720 static inline void btrfs_set_header_owner(struct btrfs_header *h,
721 u64 val)
722 {
723 h->owner = cpu_to_le64(val);
724 }
725
726 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
727 {
728 return le16_to_cpu(h->nritems);
729 }
730
731 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
732 {
733 h->nritems = cpu_to_le16(val);
734 }
735
736 static inline u16 btrfs_header_flags(struct btrfs_header *h)
737 {
738 return le16_to_cpu(h->flags);
739 }
740
741 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
742 {
743 h->flags = cpu_to_le16(val);
744 }
745
746 static inline int btrfs_header_level(struct btrfs_header *h)
747 {
748 return h->level;
749 }
750
751 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
752 {
753 BUG_ON(level > BTRFS_MAX_LEVEL);
754 h->level = level;
755 }
756
757 static inline int btrfs_is_leaf(struct btrfs_node *n)
758 {
759 return (btrfs_header_level(&n->header) == 0);
760 }
761
762 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
763 {
764 return le64_to_cpu(item->blocknr);
765 }
766
767 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
768 {
769 item->blocknr = cpu_to_le64(val);
770 }
771
772 static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
773 {
774 return le64_to_cpu(item->root_dirid);
775 }
776
777 static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
778 {
779 item->root_dirid = cpu_to_le64(val);
780 }
781
782 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
783 {
784 return le32_to_cpu(item->refs);
785 }
786
787 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
788 {
789 item->refs = cpu_to_le32(val);
790 }
791
792 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
793 {
794 return le64_to_cpu(s->blocknr);
795 }
796
797 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
798 {
799 s->blocknr = cpu_to_le64(val);
800 }
801
802 static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
803 {
804 return le64_to_cpu(s->generation);
805 }
806
807 static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
808 u64 val)
809 {
810 s->generation = cpu_to_le64(val);
811 }
812
813 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
814 {
815 return le64_to_cpu(s->root);
816 }
817
818 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
819 {
820 s->root = cpu_to_le64(val);
821 }
822
823 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
824 {
825 return le64_to_cpu(s->total_blocks);
826 }
827
828 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
829 u64 val)
830 {
831 s->total_blocks = cpu_to_le64(val);
832 }
833
834 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
835 {
836 return le64_to_cpu(s->blocks_used);
837 }
838
839 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
840 u64 val)
841 {
842 s->blocks_used = cpu_to_le64(val);
843 }
844
845 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
846 {
847 return le32_to_cpu(s->blocksize);
848 }
849
850 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
851 u32 val)
852 {
853 s->blocksize = cpu_to_le32(val);
854 }
855
856 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
857 {
858 return le64_to_cpu(s->root_dir_objectid);
859 }
860
861 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
862 val)
863 {
864 s->root_dir_objectid = cpu_to_le64(val);
865 }
866
867 static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
868 {
869 return le64_to_cpu(s->last_device_id);
870 }
871
872 static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
873 u64 val)
874 {
875 s->last_device_id = cpu_to_le64(val);
876 }
877
878 static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
879 {
880 return le64_to_cpu(s->device_id);
881 }
882
883 static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
884 u64 val)
885 {
886 s->device_id = cpu_to_le64(val);
887 }
888
889 static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
890 {
891 return le64_to_cpu(s->device_block_start);
892 }
893
894 static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
895 *s, u64 val)
896 {
897 s->device_block_start = cpu_to_le64(val);
898 }
899
900 static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
901 {
902 return le64_to_cpu(s->device_num_blocks);
903 }
904
905 static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
906 *s, u64 val)
907 {
908 s->device_num_blocks = cpu_to_le64(val);
909 }
910
911 static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
912 {
913 return le64_to_cpu(s->device_root);
914 }
915
916 static inline void btrfs_set_super_device_root(struct btrfs_super_block
917 *s, u64 val)
918 {
919 s->device_root = cpu_to_le64(val);
920 }
921
922
923 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
924 {
925 return (u8 *)l->items;
926 }
927
928 static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
929 {
930 return e->type;
931 }
932 static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
933 u8 val)
934 {
935 e->type = val;
936 }
937
938 static inline char *btrfs_file_extent_inline_start(struct
939 btrfs_file_extent_item *e)
940 {
941 return (char *)(&e->disk_blocknr);
942 }
943
944 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
945 {
946 return (unsigned long)(&((struct
947 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
948 }
949
950 static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
951 {
952 struct btrfs_file_extent_item *fe = NULL;
953 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
954 }
955
956 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
957 *e)
958 {
959 return le64_to_cpu(e->disk_blocknr);
960 }
961
962 static inline void btrfs_set_file_extent_disk_blocknr(struct
963 btrfs_file_extent_item
964 *e, u64 val)
965 {
966 e->disk_blocknr = cpu_to_le64(val);
967 }
968
969 static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
970 {
971 return le64_to_cpu(e->generation);
972 }
973
974 static inline void btrfs_set_file_extent_generation(struct
975 btrfs_file_extent_item *e,
976 u64 val)
977 {
978 e->generation = cpu_to_le64(val);
979 }
980
981 static inline u64 btrfs_file_extent_disk_num_blocks(struct
982 btrfs_file_extent_item *e)
983 {
984 return le64_to_cpu(e->disk_num_blocks);
985 }
986
987 static inline void btrfs_set_file_extent_disk_num_blocks(struct
988 btrfs_file_extent_item
989 *e, u64 val)
990 {
991 e->disk_num_blocks = cpu_to_le64(val);
992 }
993
994 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
995 {
996 return le64_to_cpu(e->offset);
997 }
998
999 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
1000 *e, u64 val)
1001 {
1002 e->offset = cpu_to_le64(val);
1003 }
1004
1005 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
1006 *e)
1007 {
1008 return le64_to_cpu(e->num_blocks);
1009 }
1010
1011 static inline void btrfs_set_file_extent_num_blocks(struct
1012 btrfs_file_extent_item *e,
1013 u64 val)
1014 {
1015 e->num_blocks = cpu_to_le64(val);
1016 }
1017
1018 static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
1019 {
1020 return le16_to_cpu(d->pathlen);
1021 }
1022
1023 static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
1024 u16 val)
1025 {
1026 d->pathlen = cpu_to_le16(val);
1027 }
1028
1029 static inline u64 btrfs_device_id(struct btrfs_device_item *d)
1030 {
1031 return le64_to_cpu(d->device_id);
1032 }
1033
1034 static inline void btrfs_set_device_id(struct btrfs_device_item *d,
1035 u64 val)
1036 {
1037 d->device_id = cpu_to_le64(val);
1038 }
1039
1040 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
1041 {
1042 return sb->s_fs_info;
1043 }
1044
1045 static inline void btrfs_check_bounds(void *vptr, size_t len,
1046 void *vcontainer, size_t container_len)
1047 {
1048 char *ptr = vptr;
1049 char *container = vcontainer;
1050 WARN_ON(ptr < container);
1051 WARN_ON(ptr + len > container + container_len);
1052 }
1053
1054 static inline void btrfs_memcpy(struct btrfs_root *root,
1055 void *dst_block,
1056 void *dst, const void *src, size_t nr)
1057 {
1058 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1059 memcpy(dst, src, nr);
1060 }
1061
1062 static inline void btrfs_memmove(struct btrfs_root *root,
1063 void *dst_block,
1064 void *dst, void *src, size_t nr)
1065 {
1066 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1067 memmove(dst, src, nr);
1068 }
1069
1070 static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1071 {
1072 WARN_ON(!atomic_read(&bh->b_count));
1073 mark_buffer_dirty(bh);
1074 }
1075
1076 /* helper function to cast into the data area of the leaf. */
1077 #define btrfs_item_ptr(leaf, slot, type) \
1078 ((type *)(btrfs_leaf_data(leaf) + \
1079 btrfs_item_offset((leaf)->items + (slot))))
1080
1081 /* extent-tree.c */
1082 struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
1083 struct btrfs_block_group_cache
1084 *hint, u64 search_start,
1085 int data, int owner);
1086 int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root);
1088 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root, u64 hint);
1090 int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1091 struct btrfs_root *root, u64 owner,
1092 u64 num_blocks, u64 search_start,
1093 u64 search_end, struct btrfs_key *ins, int data);
1094 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1095 struct buffer_head *buf);
1096 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1097 *root, u64 blocknr, u64 num_blocks, int pin);
1098 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1099 btrfs_root *root);
1100 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1101 struct btrfs_root *root,
1102 u64 blocknr, u64 num_blocks);
1103 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root);
1105 int btrfs_free_block_groups(struct btrfs_fs_info *info);
1106 int btrfs_read_block_groups(struct btrfs_root *root);
1107 /* ctree.c */
1108 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1109 *root, struct btrfs_path *path, u32 data_size);
1110 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1111 struct btrfs_root *root,
1112 struct btrfs_path *path,
1113 u32 new_size);
1114 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1115 *root, struct btrfs_key *key, struct btrfs_path *p, int
1116 ins_len, int cow);
1117 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1118 struct btrfs_path *btrfs_alloc_path(void);
1119 void btrfs_free_path(struct btrfs_path *p);
1120 void btrfs_init_path(struct btrfs_path *p);
1121 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1122 struct btrfs_path *path);
1123 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1124 *root, struct btrfs_key *key, void *data, u32 data_size);
1125 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1126 *root, struct btrfs_path *path, struct btrfs_key
1127 *cpu_key, u32 data_size);
1128 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1129 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1130 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1131 *root, struct buffer_head *snap);
1132 /* root-item.c */
1133 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1134 struct btrfs_key *key);
1135 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1136 *root, struct btrfs_key *key, struct btrfs_root_item
1137 *item);
1138 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1139 *root, struct btrfs_key *key, struct btrfs_root_item
1140 *item);
1141 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1142 btrfs_root_item *item, struct btrfs_key *key);
1143 /* dir-item.c */
1144 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1145 *root, const char *name, int name_len, u64 dir,
1146 struct btrfs_key *location, u8 type);
1147 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1148 struct btrfs_root *root,
1149 struct btrfs_path *path, u64 dir,
1150 const char *name, int name_len,
1151 int mod);
1152 struct btrfs_dir_item *
1153 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1154 struct btrfs_root *root,
1155 struct btrfs_path *path, u64 dir,
1156 u64 objectid, const char *name, int name_len,
1157 int mod);
1158 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 const char *name, int name_len);
1161 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1162 struct btrfs_root *root,
1163 struct btrfs_path *path,
1164 struct btrfs_dir_item *di);
1165 /* inode-map.c */
1166 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1167 struct btrfs_root *fs_root,
1168 u64 dirid, u64 *objectid);
1169 int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1170
1171 /* inode-item.c */
1172 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1173 *root, u64 objectid, struct btrfs_inode_item
1174 *inode_item);
1175 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1176 *root, struct btrfs_path *path,
1177 struct btrfs_key *location, int mod);
1178
1179 /* file-item.c */
1180 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1181 struct btrfs_root *root,
1182 u64 objectid, u64 pos, u64 offset,
1183 u64 disk_num_blocks,
1184 u64 num_blocks);
1185 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1186 struct btrfs_root *root,
1187 struct btrfs_path *path, u64 objectid,
1188 u64 blocknr, int mod);
1189 int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1190 struct btrfs_root *root,
1191 u64 objectid, u64 offset,
1192 char *data, size_t len);
1193 int btrfs_csum_verify_file_block(struct btrfs_root *root,
1194 u64 objectid, u64 offset,
1195 char *data, size_t len);
1196 struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1197 struct btrfs_root *root,
1198 struct btrfs_path *path,
1199 u64 objectid, u64 offset,
1200 int cow);
1201 int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
1202 struct btrfs_root *root, struct btrfs_path *path,
1203 u64 isize);
1204 /* super.c */
1205 #endif