]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/ctree.h
Merge tag 'mac80211-for-john-2014-10-23' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include "extent_io.h"
39 #include "extent_map.h"
40 #include "async-thread.h"
41
42 struct btrfs_trans_handle;
43 struct btrfs_transaction;
44 struct btrfs_pending_snapshot;
45 extern struct kmem_cache *btrfs_trans_handle_cachep;
46 extern struct kmem_cache *btrfs_transaction_cachep;
47 extern struct kmem_cache *btrfs_bit_radix_cachep;
48 extern struct kmem_cache *btrfs_path_cachep;
49 extern struct kmem_cache *btrfs_free_space_cachep;
50 struct btrfs_ordered_sum;
51
52 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
53 #define STATIC noinline
54 #else
55 #define STATIC static noinline
56 #endif
57
58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
59
60 #define BTRFS_MAX_MIRRORS 3
61
62 #define BTRFS_MAX_LEVEL 8
63
64 #define BTRFS_COMPAT_EXTENT_TREE_V0
65
66 /* holds pointers to all of the tree roots */
67 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
68
69 /* stores information about which extents are in use, and reference counts */
70 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
71
72 /*
73 * chunk tree stores translations from logical -> physical block numbering
74 * the super block points to the chunk tree
75 */
76 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
77
78 /*
79 * stores information about which areas of a given device are in use.
80 * one per device. The tree of tree roots points to the device tree
81 */
82 #define BTRFS_DEV_TREE_OBJECTID 4ULL
83
84 /* one per subvolume, storing files and directories */
85 #define BTRFS_FS_TREE_OBJECTID 5ULL
86
87 /* directory objectid inside the root tree */
88 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
89
90 /* holds checksums of all the data extents */
91 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
92
93 /* holds quota configuration and tracking */
94 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
95
96 /* for storing items that use the BTRFS_UUID_KEY* types */
97 #define BTRFS_UUID_TREE_OBJECTID 9ULL
98
99 /* for storing balance parameters in the root tree */
100 #define BTRFS_BALANCE_OBJECTID -4ULL
101
102 /* orhpan objectid for tracking unlinked/truncated files */
103 #define BTRFS_ORPHAN_OBJECTID -5ULL
104
105 /* does write ahead logging to speed up fsyncs */
106 #define BTRFS_TREE_LOG_OBJECTID -6ULL
107 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
108
109 /* for space balancing */
110 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
111 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
112
113 /*
114 * extent checksums all have this objectid
115 * this allows them to share the logging tree
116 * for fsyncs
117 */
118 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
119
120 /* For storing free space cache */
121 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
122
123 /*
124 * The inode number assigned to the special inode for storing
125 * free ino cache
126 */
127 #define BTRFS_FREE_INO_OBJECTID -12ULL
128
129 /* dummy objectid represents multiple objectids */
130 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
131
132 /*
133 * All files have objectids in this range.
134 */
135 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
136 #define BTRFS_LAST_FREE_OBJECTID -256ULL
137 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
138
139
140 /*
141 * the device items go into the chunk tree. The key is in the form
142 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
143 */
144 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
145
146 #define BTRFS_BTREE_INODE_OBJECTID 1
147
148 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
149
150 #define BTRFS_DEV_REPLACE_DEVID 0ULL
151
152 /*
153 * the max metadata block size. This limit is somewhat artificial,
154 * but the memmove costs go through the roof for larger blocks.
155 */
156 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
157
158 /*
159 * we can actually store much bigger names, but lets not confuse the rest
160 * of linux
161 */
162 #define BTRFS_NAME_LEN 255
163
164 /*
165 * Theoretical limit is larger, but we keep this down to a sane
166 * value. That should limit greatly the possibility of collisions on
167 * inode ref items.
168 */
169 #define BTRFS_LINK_MAX 65535U
170
171 /* 32 bytes in various csum fields */
172 #define BTRFS_CSUM_SIZE 32
173
174 /* csum types */
175 #define BTRFS_CSUM_TYPE_CRC32 0
176
177 static int btrfs_csum_sizes[] = { 4, 0 };
178
179 /* four bytes for CRC32 */
180 #define BTRFS_EMPTY_DIR_SIZE 0
181
182 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
183 #define REQ_GET_READ_MIRRORS (1 << 30)
184
185 #define BTRFS_FT_UNKNOWN 0
186 #define BTRFS_FT_REG_FILE 1
187 #define BTRFS_FT_DIR 2
188 #define BTRFS_FT_CHRDEV 3
189 #define BTRFS_FT_BLKDEV 4
190 #define BTRFS_FT_FIFO 5
191 #define BTRFS_FT_SOCK 6
192 #define BTRFS_FT_SYMLINK 7
193 #define BTRFS_FT_XATTR 8
194 #define BTRFS_FT_MAX 9
195
196 /* ioprio of readahead is set to idle */
197 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
198
199 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
200
201 /*
202 * The key defines the order in the tree, and so it also defines (optimal)
203 * block layout.
204 *
205 * objectid corresponds to the inode number.
206 *
207 * type tells us things about the object, and is a kind of stream selector.
208 * so for a given inode, keys with type of 1 might refer to the inode data,
209 * type of 2 may point to file data in the btree and type == 3 may point to
210 * extents.
211 *
212 * offset is the starting byte offset for this key in the stream.
213 *
214 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
215 * in cpu native order. Otherwise they are identical and their sizes
216 * should be the same (ie both packed)
217 */
218 struct btrfs_disk_key {
219 __le64 objectid;
220 u8 type;
221 __le64 offset;
222 } __attribute__ ((__packed__));
223
224 struct btrfs_key {
225 u64 objectid;
226 u8 type;
227 u64 offset;
228 } __attribute__ ((__packed__));
229
230 struct btrfs_mapping_tree {
231 struct extent_map_tree map_tree;
232 };
233
234 struct btrfs_dev_item {
235 /* the internal btrfs device id */
236 __le64 devid;
237
238 /* size of the device */
239 __le64 total_bytes;
240
241 /* bytes used */
242 __le64 bytes_used;
243
244 /* optimal io alignment for this device */
245 __le32 io_align;
246
247 /* optimal io width for this device */
248 __le32 io_width;
249
250 /* minimal io size for this device */
251 __le32 sector_size;
252
253 /* type and info about this device */
254 __le64 type;
255
256 /* expected generation for this device */
257 __le64 generation;
258
259 /*
260 * starting byte of this partition on the device,
261 * to allow for stripe alignment in the future
262 */
263 __le64 start_offset;
264
265 /* grouping information for allocation decisions */
266 __le32 dev_group;
267
268 /* seek speed 0-100 where 100 is fastest */
269 u8 seek_speed;
270
271 /* bandwidth 0-100 where 100 is fastest */
272 u8 bandwidth;
273
274 /* btrfs generated uuid for this device */
275 u8 uuid[BTRFS_UUID_SIZE];
276
277 /* uuid of FS who owns this device */
278 u8 fsid[BTRFS_UUID_SIZE];
279 } __attribute__ ((__packed__));
280
281 struct btrfs_stripe {
282 __le64 devid;
283 __le64 offset;
284 u8 dev_uuid[BTRFS_UUID_SIZE];
285 } __attribute__ ((__packed__));
286
287 struct btrfs_chunk {
288 /* size of this chunk in bytes */
289 __le64 length;
290
291 /* objectid of the root referencing this chunk */
292 __le64 owner;
293
294 __le64 stripe_len;
295 __le64 type;
296
297 /* optimal io alignment for this chunk */
298 __le32 io_align;
299
300 /* optimal io width for this chunk */
301 __le32 io_width;
302
303 /* minimal io size for this chunk */
304 __le32 sector_size;
305
306 /* 2^16 stripes is quite a lot, a second limit is the size of a single
307 * item in the btree
308 */
309 __le16 num_stripes;
310
311 /* sub stripes only matter for raid10 */
312 __le16 sub_stripes;
313 struct btrfs_stripe stripe;
314 /* additional stripes go here */
315 } __attribute__ ((__packed__));
316
317 #define BTRFS_FREE_SPACE_EXTENT 1
318 #define BTRFS_FREE_SPACE_BITMAP 2
319
320 struct btrfs_free_space_entry {
321 __le64 offset;
322 __le64 bytes;
323 u8 type;
324 } __attribute__ ((__packed__));
325
326 struct btrfs_free_space_header {
327 struct btrfs_disk_key location;
328 __le64 generation;
329 __le64 num_entries;
330 __le64 num_bitmaps;
331 } __attribute__ ((__packed__));
332
333 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
334 {
335 BUG_ON(num_stripes == 0);
336 return sizeof(struct btrfs_chunk) +
337 sizeof(struct btrfs_stripe) * (num_stripes - 1);
338 }
339
340 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
341 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
342
343 /*
344 * File system states
345 */
346 #define BTRFS_FS_STATE_ERROR 0
347 #define BTRFS_FS_STATE_REMOUNTING 1
348 #define BTRFS_FS_STATE_TRANS_ABORTED 2
349 #define BTRFS_FS_STATE_DEV_REPLACING 3
350
351 /* Super block flags */
352 /* Errors detected */
353 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
354
355 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
356 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
357
358 #define BTRFS_BACKREF_REV_MAX 256
359 #define BTRFS_BACKREF_REV_SHIFT 56
360 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
361 BTRFS_BACKREF_REV_SHIFT)
362
363 #define BTRFS_OLD_BACKREF_REV 0
364 #define BTRFS_MIXED_BACKREF_REV 1
365
366 /*
367 * every tree block (leaf or node) starts with this header.
368 */
369 struct btrfs_header {
370 /* these first four must match the super block */
371 u8 csum[BTRFS_CSUM_SIZE];
372 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
373 __le64 bytenr; /* which block this node is supposed to live in */
374 __le64 flags;
375
376 /* allowed to be different from the super from here on down */
377 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
378 __le64 generation;
379 __le64 owner;
380 __le32 nritems;
381 u8 level;
382 } __attribute__ ((__packed__));
383
384 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
385 sizeof(struct btrfs_header)) / \
386 sizeof(struct btrfs_key_ptr))
387 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
388 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
389 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
390 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
391 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
392 sizeof(struct btrfs_item) - \
393 BTRFS_FILE_EXTENT_INLINE_DATA_START)
394 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
395 sizeof(struct btrfs_item) -\
396 sizeof(struct btrfs_dir_item))
397
398
399 /*
400 * this is a very generous portion of the super block, giving us
401 * room to translate 14 chunks with 3 stripes each.
402 */
403 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
404 #define BTRFS_LABEL_SIZE 256
405
406 /*
407 * just in case we somehow lose the roots and are not able to mount,
408 * we store an array of the roots from previous transactions
409 * in the super.
410 */
411 #define BTRFS_NUM_BACKUP_ROOTS 4
412 struct btrfs_root_backup {
413 __le64 tree_root;
414 __le64 tree_root_gen;
415
416 __le64 chunk_root;
417 __le64 chunk_root_gen;
418
419 __le64 extent_root;
420 __le64 extent_root_gen;
421
422 __le64 fs_root;
423 __le64 fs_root_gen;
424
425 __le64 dev_root;
426 __le64 dev_root_gen;
427
428 __le64 csum_root;
429 __le64 csum_root_gen;
430
431 __le64 total_bytes;
432 __le64 bytes_used;
433 __le64 num_devices;
434 /* future */
435 __le64 unused_64[4];
436
437 u8 tree_root_level;
438 u8 chunk_root_level;
439 u8 extent_root_level;
440 u8 fs_root_level;
441 u8 dev_root_level;
442 u8 csum_root_level;
443 /* future and to align */
444 u8 unused_8[10];
445 } __attribute__ ((__packed__));
446
447 /*
448 * the super block basically lists the main trees of the FS
449 * it currently lacks any block count etc etc
450 */
451 struct btrfs_super_block {
452 u8 csum[BTRFS_CSUM_SIZE];
453 /* the first 4 fields must match struct btrfs_header */
454 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
455 __le64 bytenr; /* this block number */
456 __le64 flags;
457
458 /* allowed to be different from the btrfs_header from here own down */
459 __le64 magic;
460 __le64 generation;
461 __le64 root;
462 __le64 chunk_root;
463 __le64 log_root;
464
465 /* this will help find the new super based on the log root */
466 __le64 log_root_transid;
467 __le64 total_bytes;
468 __le64 bytes_used;
469 __le64 root_dir_objectid;
470 __le64 num_devices;
471 __le32 sectorsize;
472 __le32 nodesize;
473 __le32 __unused_leafsize;
474 __le32 stripesize;
475 __le32 sys_chunk_array_size;
476 __le64 chunk_root_generation;
477 __le64 compat_flags;
478 __le64 compat_ro_flags;
479 __le64 incompat_flags;
480 __le16 csum_type;
481 u8 root_level;
482 u8 chunk_root_level;
483 u8 log_root_level;
484 struct btrfs_dev_item dev_item;
485
486 char label[BTRFS_LABEL_SIZE];
487
488 __le64 cache_generation;
489 __le64 uuid_tree_generation;
490
491 /* future expansion */
492 __le64 reserved[30];
493 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
494 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
495 } __attribute__ ((__packed__));
496
497 /*
498 * Compat flags that we support. If any incompat flags are set other than the
499 * ones specified below then we will fail to mount
500 */
501 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
502 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
503 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
504 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
505 /*
506 * some patches floated around with a second compression method
507 * lets save that incompat here for when they do get in
508 * Note we don't actually support it, we're just reserving the
509 * number
510 */
511 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
512
513 /*
514 * older kernels tried to do bigger metadata blocks, but the
515 * code was pretty buggy. Lets not let them try anymore.
516 */
517 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
518
519 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
520 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
521 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
522 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
523
524 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
525 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
526 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
527 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
528 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
529 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
530
531 #define BTRFS_FEATURE_INCOMPAT_SUPP \
532 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
533 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
534 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
535 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
536 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
537 BTRFS_FEATURE_INCOMPAT_RAID56 | \
538 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
539 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
540 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
541
542 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
543 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
544 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
545
546 /*
547 * A leaf is full of items. offset and size tell us where to find
548 * the item in the leaf (relative to the start of the data area)
549 */
550 struct btrfs_item {
551 struct btrfs_disk_key key;
552 __le32 offset;
553 __le32 size;
554 } __attribute__ ((__packed__));
555
556 /*
557 * leaves have an item area and a data area:
558 * [item0, item1....itemN] [free space] [dataN...data1, data0]
559 *
560 * The data is separate from the items to get the keys closer together
561 * during searches.
562 */
563 struct btrfs_leaf {
564 struct btrfs_header header;
565 struct btrfs_item items[];
566 } __attribute__ ((__packed__));
567
568 /*
569 * all non-leaf blocks are nodes, they hold only keys and pointers to
570 * other blocks
571 */
572 struct btrfs_key_ptr {
573 struct btrfs_disk_key key;
574 __le64 blockptr;
575 __le64 generation;
576 } __attribute__ ((__packed__));
577
578 struct btrfs_node {
579 struct btrfs_header header;
580 struct btrfs_key_ptr ptrs[];
581 } __attribute__ ((__packed__));
582
583 /*
584 * btrfs_paths remember the path taken from the root down to the leaf.
585 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
586 * to any other levels that are present.
587 *
588 * The slots array records the index of the item or block pointer
589 * used while walking the tree.
590 */
591 struct btrfs_path {
592 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
593 int slots[BTRFS_MAX_LEVEL];
594 /* if there is real range locking, this locks field will change */
595 int locks[BTRFS_MAX_LEVEL];
596 int reada;
597 /* keep some upper locks as we walk down */
598 int lowest_level;
599
600 /*
601 * set by btrfs_split_item, tells search_slot to keep all locks
602 * and to force calls to keep space in the nodes
603 */
604 unsigned int search_for_split:1;
605 unsigned int keep_locks:1;
606 unsigned int skip_locking:1;
607 unsigned int leave_spinning:1;
608 unsigned int search_commit_root:1;
609 unsigned int need_commit_sem:1;
610 };
611
612 /*
613 * items in the extent btree are used to record the objectid of the
614 * owner of the block and the number of references
615 */
616
617 struct btrfs_extent_item {
618 __le64 refs;
619 __le64 generation;
620 __le64 flags;
621 } __attribute__ ((__packed__));
622
623 struct btrfs_extent_item_v0 {
624 __le32 refs;
625 } __attribute__ ((__packed__));
626
627 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
628 sizeof(struct btrfs_item))
629
630 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
631 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
632
633 /* following flags only apply to tree blocks */
634
635 /* use full backrefs for extent pointers in the block */
636 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
637
638 /*
639 * this flag is only used internally by scrub and may be changed at any time
640 * it is only declared here to avoid collisions
641 */
642 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
643
644 struct btrfs_tree_block_info {
645 struct btrfs_disk_key key;
646 u8 level;
647 } __attribute__ ((__packed__));
648
649 struct btrfs_extent_data_ref {
650 __le64 root;
651 __le64 objectid;
652 __le64 offset;
653 __le32 count;
654 } __attribute__ ((__packed__));
655
656 struct btrfs_shared_data_ref {
657 __le32 count;
658 } __attribute__ ((__packed__));
659
660 struct btrfs_extent_inline_ref {
661 u8 type;
662 __le64 offset;
663 } __attribute__ ((__packed__));
664
665 /* old style backrefs item */
666 struct btrfs_extent_ref_v0 {
667 __le64 root;
668 __le64 generation;
669 __le64 objectid;
670 __le32 count;
671 } __attribute__ ((__packed__));
672
673
674 /* dev extents record free space on individual devices. The owner
675 * field points back to the chunk allocation mapping tree that allocated
676 * the extent. The chunk tree uuid field is a way to double check the owner
677 */
678 struct btrfs_dev_extent {
679 __le64 chunk_tree;
680 __le64 chunk_objectid;
681 __le64 chunk_offset;
682 __le64 length;
683 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
684 } __attribute__ ((__packed__));
685
686 struct btrfs_inode_ref {
687 __le64 index;
688 __le16 name_len;
689 /* name goes here */
690 } __attribute__ ((__packed__));
691
692 struct btrfs_inode_extref {
693 __le64 parent_objectid;
694 __le64 index;
695 __le16 name_len;
696 __u8 name[0];
697 /* name goes here */
698 } __attribute__ ((__packed__));
699
700 struct btrfs_timespec {
701 __le64 sec;
702 __le32 nsec;
703 } __attribute__ ((__packed__));
704
705 enum btrfs_compression_type {
706 BTRFS_COMPRESS_NONE = 0,
707 BTRFS_COMPRESS_ZLIB = 1,
708 BTRFS_COMPRESS_LZO = 2,
709 BTRFS_COMPRESS_TYPES = 2,
710 BTRFS_COMPRESS_LAST = 3,
711 };
712
713 struct btrfs_inode_item {
714 /* nfs style generation number */
715 __le64 generation;
716 /* transid that last touched this inode */
717 __le64 transid;
718 __le64 size;
719 __le64 nbytes;
720 __le64 block_group;
721 __le32 nlink;
722 __le32 uid;
723 __le32 gid;
724 __le32 mode;
725 __le64 rdev;
726 __le64 flags;
727
728 /* modification sequence number for NFS */
729 __le64 sequence;
730
731 /*
732 * a little future expansion, for more than this we can
733 * just grow the inode item and version it
734 */
735 __le64 reserved[4];
736 struct btrfs_timespec atime;
737 struct btrfs_timespec ctime;
738 struct btrfs_timespec mtime;
739 struct btrfs_timespec otime;
740 } __attribute__ ((__packed__));
741
742 struct btrfs_dir_log_item {
743 __le64 end;
744 } __attribute__ ((__packed__));
745
746 struct btrfs_dir_item {
747 struct btrfs_disk_key location;
748 __le64 transid;
749 __le16 data_len;
750 __le16 name_len;
751 u8 type;
752 } __attribute__ ((__packed__));
753
754 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
755
756 /*
757 * Internal in-memory flag that a subvolume has been marked for deletion but
758 * still visible as a directory
759 */
760 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
761
762 struct btrfs_root_item {
763 struct btrfs_inode_item inode;
764 __le64 generation;
765 __le64 root_dirid;
766 __le64 bytenr;
767 __le64 byte_limit;
768 __le64 bytes_used;
769 __le64 last_snapshot;
770 __le64 flags;
771 __le32 refs;
772 struct btrfs_disk_key drop_progress;
773 u8 drop_level;
774 u8 level;
775
776 /*
777 * The following fields appear after subvol_uuids+subvol_times
778 * were introduced.
779 */
780
781 /*
782 * This generation number is used to test if the new fields are valid
783 * and up to date while reading the root item. Everytime the root item
784 * is written out, the "generation" field is copied into this field. If
785 * anyone ever mounted the fs with an older kernel, we will have
786 * mismatching generation values here and thus must invalidate the
787 * new fields. See btrfs_update_root and btrfs_find_last_root for
788 * details.
789 * the offset of generation_v2 is also used as the start for the memset
790 * when invalidating the fields.
791 */
792 __le64 generation_v2;
793 u8 uuid[BTRFS_UUID_SIZE];
794 u8 parent_uuid[BTRFS_UUID_SIZE];
795 u8 received_uuid[BTRFS_UUID_SIZE];
796 __le64 ctransid; /* updated when an inode changes */
797 __le64 otransid; /* trans when created */
798 __le64 stransid; /* trans when sent. non-zero for received subvol */
799 __le64 rtransid; /* trans when received. non-zero for received subvol */
800 struct btrfs_timespec ctime;
801 struct btrfs_timespec otime;
802 struct btrfs_timespec stime;
803 struct btrfs_timespec rtime;
804 __le64 reserved[8]; /* for future */
805 } __attribute__ ((__packed__));
806
807 /*
808 * this is used for both forward and backward root refs
809 */
810 struct btrfs_root_ref {
811 __le64 dirid;
812 __le64 sequence;
813 __le16 name_len;
814 } __attribute__ ((__packed__));
815
816 struct btrfs_disk_balance_args {
817 /*
818 * profiles to operate on, single is denoted by
819 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
820 */
821 __le64 profiles;
822
823 /* usage filter */
824 __le64 usage;
825
826 /* devid filter */
827 __le64 devid;
828
829 /* devid subset filter [pstart..pend) */
830 __le64 pstart;
831 __le64 pend;
832
833 /* btrfs virtual address space subset filter [vstart..vend) */
834 __le64 vstart;
835 __le64 vend;
836
837 /*
838 * profile to convert to, single is denoted by
839 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
840 */
841 __le64 target;
842
843 /* BTRFS_BALANCE_ARGS_* */
844 __le64 flags;
845
846 /* BTRFS_BALANCE_ARGS_LIMIT value */
847 __le64 limit;
848
849 __le64 unused[7];
850 } __attribute__ ((__packed__));
851
852 /*
853 * store balance parameters to disk so that balance can be properly
854 * resumed after crash or unmount
855 */
856 struct btrfs_balance_item {
857 /* BTRFS_BALANCE_* */
858 __le64 flags;
859
860 struct btrfs_disk_balance_args data;
861 struct btrfs_disk_balance_args meta;
862 struct btrfs_disk_balance_args sys;
863
864 __le64 unused[4];
865 } __attribute__ ((__packed__));
866
867 #define BTRFS_FILE_EXTENT_INLINE 0
868 #define BTRFS_FILE_EXTENT_REG 1
869 #define BTRFS_FILE_EXTENT_PREALLOC 2
870
871 struct btrfs_file_extent_item {
872 /*
873 * transaction id that created this extent
874 */
875 __le64 generation;
876 /*
877 * max number of bytes to hold this extent in ram
878 * when we split a compressed extent we can't know how big
879 * each of the resulting pieces will be. So, this is
880 * an upper limit on the size of the extent in ram instead of
881 * an exact limit.
882 */
883 __le64 ram_bytes;
884
885 /*
886 * 32 bits for the various ways we might encode the data,
887 * including compression and encryption. If any of these
888 * are set to something a given disk format doesn't understand
889 * it is treated like an incompat flag for reading and writing,
890 * but not for stat.
891 */
892 u8 compression;
893 u8 encryption;
894 __le16 other_encoding; /* spare for later use */
895
896 /* are we inline data or a real extent? */
897 u8 type;
898
899 /*
900 * disk space consumed by the extent, checksum blocks are included
901 * in these numbers
902 *
903 * At this offset in the structure, the inline extent data start.
904 */
905 __le64 disk_bytenr;
906 __le64 disk_num_bytes;
907 /*
908 * the logical offset in file blocks (no csums)
909 * this extent record is for. This allows a file extent to point
910 * into the middle of an existing extent on disk, sharing it
911 * between two snapshots (useful if some bytes in the middle of the
912 * extent have changed
913 */
914 __le64 offset;
915 /*
916 * the logical number of file blocks (no csums included). This
917 * always reflects the size uncompressed and without encoding.
918 */
919 __le64 num_bytes;
920
921 } __attribute__ ((__packed__));
922
923 struct btrfs_csum_item {
924 u8 csum;
925 } __attribute__ ((__packed__));
926
927 struct btrfs_dev_stats_item {
928 /*
929 * grow this item struct at the end for future enhancements and keep
930 * the existing values unchanged
931 */
932 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
933 } __attribute__ ((__packed__));
934
935 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
936 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
937 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
938 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
939 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
940 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
941 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
942
943 struct btrfs_dev_replace {
944 u64 replace_state; /* see #define above */
945 u64 time_started; /* seconds since 1-Jan-1970 */
946 u64 time_stopped; /* seconds since 1-Jan-1970 */
947 atomic64_t num_write_errors;
948 atomic64_t num_uncorrectable_read_errors;
949
950 u64 cursor_left;
951 u64 committed_cursor_left;
952 u64 cursor_left_last_write_of_item;
953 u64 cursor_right;
954
955 u64 cont_reading_from_srcdev_mode; /* see #define above */
956
957 int is_valid;
958 int item_needs_writeback;
959 struct btrfs_device *srcdev;
960 struct btrfs_device *tgtdev;
961
962 pid_t lock_owner;
963 atomic_t nesting_level;
964 struct mutex lock_finishing_cancel_unmount;
965 struct mutex lock_management_lock;
966 struct mutex lock;
967
968 struct btrfs_scrub_progress scrub_progress;
969 };
970
971 struct btrfs_dev_replace_item {
972 /*
973 * grow this item struct at the end for future enhancements and keep
974 * the existing values unchanged
975 */
976 __le64 src_devid;
977 __le64 cursor_left;
978 __le64 cursor_right;
979 __le64 cont_reading_from_srcdev_mode;
980
981 __le64 replace_state;
982 __le64 time_started;
983 __le64 time_stopped;
984 __le64 num_write_errors;
985 __le64 num_uncorrectable_read_errors;
986 } __attribute__ ((__packed__));
987
988 /* different types of block groups (and chunks) */
989 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
990 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
991 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
992 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
993 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
994 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
995 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
996 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
997 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
998 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
999 BTRFS_SPACE_INFO_GLOBAL_RSV)
1000
1001 enum btrfs_raid_types {
1002 BTRFS_RAID_RAID10,
1003 BTRFS_RAID_RAID1,
1004 BTRFS_RAID_DUP,
1005 BTRFS_RAID_RAID0,
1006 BTRFS_RAID_SINGLE,
1007 BTRFS_RAID_RAID5,
1008 BTRFS_RAID_RAID6,
1009 BTRFS_NR_RAID_TYPES
1010 };
1011
1012 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1013 BTRFS_BLOCK_GROUP_SYSTEM | \
1014 BTRFS_BLOCK_GROUP_METADATA)
1015
1016 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1017 BTRFS_BLOCK_GROUP_RAID1 | \
1018 BTRFS_BLOCK_GROUP_RAID5 | \
1019 BTRFS_BLOCK_GROUP_RAID6 | \
1020 BTRFS_BLOCK_GROUP_DUP | \
1021 BTRFS_BLOCK_GROUP_RAID10)
1022 /*
1023 * We need a bit for restriper to be able to tell when chunks of type
1024 * SINGLE are available. This "extended" profile format is used in
1025 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1026 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1027 * to avoid remappings between two formats in future.
1028 */
1029 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1030
1031 /*
1032 * A fake block group type that is used to communicate global block reserve
1033 * size to userspace via the SPACE_INFO ioctl.
1034 */
1035 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1036
1037 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1038 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1039
1040 static inline u64 chunk_to_extended(u64 flags)
1041 {
1042 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1043 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1044
1045 return flags;
1046 }
1047 static inline u64 extended_to_chunk(u64 flags)
1048 {
1049 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1050 }
1051
1052 struct btrfs_block_group_item {
1053 __le64 used;
1054 __le64 chunk_objectid;
1055 __le64 flags;
1056 } __attribute__ ((__packed__));
1057
1058 /*
1059 * is subvolume quota turned on?
1060 */
1061 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1062 /*
1063 * RESCAN is set during the initialization phase
1064 */
1065 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1066 /*
1067 * Some qgroup entries are known to be out of date,
1068 * either because the configuration has changed in a way that
1069 * makes a rescan necessary, or because the fs has been mounted
1070 * with a non-qgroup-aware version.
1071 * Turning qouta off and on again makes it inconsistent, too.
1072 */
1073 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1074
1075 #define BTRFS_QGROUP_STATUS_VERSION 1
1076
1077 struct btrfs_qgroup_status_item {
1078 __le64 version;
1079 /*
1080 * the generation is updated during every commit. As older
1081 * versions of btrfs are not aware of qgroups, it will be
1082 * possible to detect inconsistencies by checking the
1083 * generation on mount time
1084 */
1085 __le64 generation;
1086
1087 /* flag definitions see above */
1088 __le64 flags;
1089
1090 /*
1091 * only used during scanning to record the progress
1092 * of the scan. It contains a logical address
1093 */
1094 __le64 rescan;
1095 } __attribute__ ((__packed__));
1096
1097 struct btrfs_qgroup_info_item {
1098 __le64 generation;
1099 __le64 rfer;
1100 __le64 rfer_cmpr;
1101 __le64 excl;
1102 __le64 excl_cmpr;
1103 } __attribute__ ((__packed__));
1104
1105 /* flags definition for qgroup limits */
1106 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1107 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1108 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1109 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1110 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1111 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1112
1113 struct btrfs_qgroup_limit_item {
1114 /*
1115 * only updated when any of the other values change
1116 */
1117 __le64 flags;
1118 __le64 max_rfer;
1119 __le64 max_excl;
1120 __le64 rsv_rfer;
1121 __le64 rsv_excl;
1122 } __attribute__ ((__packed__));
1123
1124 /* For raid type sysfs entries */
1125 struct raid_kobject {
1126 int raid_type;
1127 struct kobject kobj;
1128 };
1129
1130 struct btrfs_space_info {
1131 spinlock_t lock;
1132
1133 u64 total_bytes; /* total bytes in the space,
1134 this doesn't take mirrors into account */
1135 u64 bytes_used; /* total bytes used,
1136 this doesn't take mirrors into account */
1137 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1138 transaction finishes */
1139 u64 bytes_reserved; /* total bytes the allocator has reserved for
1140 current allocations */
1141 u64 bytes_may_use; /* number of bytes that may be used for
1142 delalloc/allocations */
1143 u64 bytes_readonly; /* total bytes that are read only */
1144
1145 unsigned int full:1; /* indicates that we cannot allocate any more
1146 chunks for this space */
1147 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1148
1149 unsigned int flush:1; /* set if we are trying to make space */
1150
1151 unsigned int force_alloc; /* set if we need to force a chunk
1152 alloc for this space */
1153
1154 u64 disk_used; /* total bytes used on disk */
1155 u64 disk_total; /* total bytes on disk, takes mirrors into
1156 account */
1157
1158 u64 flags;
1159
1160 /*
1161 * bytes_pinned is kept in line with what is actually pinned, as in
1162 * we've called update_block_group and dropped the bytes_used counter
1163 * and increased the bytes_pinned counter. However this means that
1164 * bytes_pinned does not reflect the bytes that will be pinned once the
1165 * delayed refs are flushed, so this counter is inc'ed everytime we call
1166 * btrfs_free_extent so it is a realtime count of what will be freed
1167 * once the transaction is committed. It will be zero'ed everytime the
1168 * transaction commits.
1169 */
1170 struct percpu_counter total_bytes_pinned;
1171
1172 struct list_head list;
1173
1174 struct rw_semaphore groups_sem;
1175 /* for block groups in our same type */
1176 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1177 wait_queue_head_t wait;
1178
1179 struct kobject kobj;
1180 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1181 };
1182
1183 #define BTRFS_BLOCK_RSV_GLOBAL 1
1184 #define BTRFS_BLOCK_RSV_DELALLOC 2
1185 #define BTRFS_BLOCK_RSV_TRANS 3
1186 #define BTRFS_BLOCK_RSV_CHUNK 4
1187 #define BTRFS_BLOCK_RSV_DELOPS 5
1188 #define BTRFS_BLOCK_RSV_EMPTY 6
1189 #define BTRFS_BLOCK_RSV_TEMP 7
1190
1191 struct btrfs_block_rsv {
1192 u64 size;
1193 u64 reserved;
1194 struct btrfs_space_info *space_info;
1195 spinlock_t lock;
1196 unsigned short full;
1197 unsigned short type;
1198 unsigned short failfast;
1199 };
1200
1201 /*
1202 * free clusters are used to claim free space in relatively large chunks,
1203 * allowing us to do less seeky writes. They are used for all metadata
1204 * allocations and data allocations in ssd mode.
1205 */
1206 struct btrfs_free_cluster {
1207 spinlock_t lock;
1208 spinlock_t refill_lock;
1209 struct rb_root root;
1210
1211 /* largest extent in this cluster */
1212 u64 max_size;
1213
1214 /* first extent starting offset */
1215 u64 window_start;
1216
1217 struct btrfs_block_group_cache *block_group;
1218 /*
1219 * when a cluster is allocated from a block group, we put the
1220 * cluster onto a list in the block group so that it can
1221 * be freed before the block group is freed.
1222 */
1223 struct list_head block_group_list;
1224 };
1225
1226 enum btrfs_caching_type {
1227 BTRFS_CACHE_NO = 0,
1228 BTRFS_CACHE_STARTED = 1,
1229 BTRFS_CACHE_FAST = 2,
1230 BTRFS_CACHE_FINISHED = 3,
1231 BTRFS_CACHE_ERROR = 4,
1232 };
1233
1234 enum btrfs_disk_cache_state {
1235 BTRFS_DC_WRITTEN = 0,
1236 BTRFS_DC_ERROR = 1,
1237 BTRFS_DC_CLEAR = 2,
1238 BTRFS_DC_SETUP = 3,
1239 BTRFS_DC_NEED_WRITE = 4,
1240 };
1241
1242 struct btrfs_caching_control {
1243 struct list_head list;
1244 struct mutex mutex;
1245 wait_queue_head_t wait;
1246 struct btrfs_work work;
1247 struct btrfs_block_group_cache *block_group;
1248 u64 progress;
1249 atomic_t count;
1250 };
1251
1252 struct btrfs_block_group_cache {
1253 struct btrfs_key key;
1254 struct btrfs_block_group_item item;
1255 struct btrfs_fs_info *fs_info;
1256 struct inode *inode;
1257 spinlock_t lock;
1258 u64 pinned;
1259 u64 reserved;
1260 u64 delalloc_bytes;
1261 u64 bytes_super;
1262 u64 flags;
1263 u64 sectorsize;
1264 u64 cache_generation;
1265
1266 /*
1267 * It is just used for the delayed data space allocation because
1268 * only the data space allocation and the relative metadata update
1269 * can be done cross the transaction.
1270 */
1271 struct rw_semaphore data_rwsem;
1272
1273 /* for raid56, this is a full stripe, without parity */
1274 unsigned long full_stripe_len;
1275
1276 unsigned int ro:1;
1277 unsigned int dirty:1;
1278 unsigned int iref:1;
1279
1280 int disk_cache_state;
1281
1282 /* cache tracking stuff */
1283 int cached;
1284 struct btrfs_caching_control *caching_ctl;
1285 u64 last_byte_to_unpin;
1286
1287 struct btrfs_space_info *space_info;
1288
1289 /* free space cache stuff */
1290 struct btrfs_free_space_ctl *free_space_ctl;
1291
1292 /* block group cache stuff */
1293 struct rb_node cache_node;
1294
1295 /* for block groups in the same raid type */
1296 struct list_head list;
1297
1298 /* usage count */
1299 atomic_t count;
1300
1301 /* List of struct btrfs_free_clusters for this block group.
1302 * Today it will only have one thing on it, but that may change
1303 */
1304 struct list_head cluster_list;
1305
1306 /* For delayed block group creation or deletion of empty block groups */
1307 struct list_head bg_list;
1308 };
1309
1310 /* delayed seq elem */
1311 struct seq_list {
1312 struct list_head list;
1313 u64 seq;
1314 };
1315
1316 enum btrfs_orphan_cleanup_state {
1317 ORPHAN_CLEANUP_STARTED = 1,
1318 ORPHAN_CLEANUP_DONE = 2,
1319 };
1320
1321 /* used by the raid56 code to lock stripes for read/modify/write */
1322 struct btrfs_stripe_hash {
1323 struct list_head hash_list;
1324 wait_queue_head_t wait;
1325 spinlock_t lock;
1326 };
1327
1328 /* used by the raid56 code to lock stripes for read/modify/write */
1329 struct btrfs_stripe_hash_table {
1330 struct list_head stripe_cache;
1331 spinlock_t cache_lock;
1332 int cache_size;
1333 struct btrfs_stripe_hash table[];
1334 };
1335
1336 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1337
1338 void btrfs_init_async_reclaim_work(struct work_struct *work);
1339
1340 /* fs_info */
1341 struct reloc_control;
1342 struct btrfs_device;
1343 struct btrfs_fs_devices;
1344 struct btrfs_balance_control;
1345 struct btrfs_delayed_root;
1346 struct btrfs_fs_info {
1347 u8 fsid[BTRFS_FSID_SIZE];
1348 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1349 struct btrfs_root *extent_root;
1350 struct btrfs_root *tree_root;
1351 struct btrfs_root *chunk_root;
1352 struct btrfs_root *dev_root;
1353 struct btrfs_root *fs_root;
1354 struct btrfs_root *csum_root;
1355 struct btrfs_root *quota_root;
1356 struct btrfs_root *uuid_root;
1357
1358 /* the log root tree is a directory of all the other log roots */
1359 struct btrfs_root *log_root_tree;
1360
1361 spinlock_t fs_roots_radix_lock;
1362 struct radix_tree_root fs_roots_radix;
1363
1364 /* block group cache stuff */
1365 spinlock_t block_group_cache_lock;
1366 u64 first_logical_byte;
1367 struct rb_root block_group_cache_tree;
1368
1369 /* keep track of unallocated space */
1370 spinlock_t free_chunk_lock;
1371 u64 free_chunk_space;
1372
1373 struct extent_io_tree freed_extents[2];
1374 struct extent_io_tree *pinned_extents;
1375
1376 /* logical->physical extent mapping */
1377 struct btrfs_mapping_tree mapping_tree;
1378
1379 /*
1380 * block reservation for extent, checksum, root tree and
1381 * delayed dir index item
1382 */
1383 struct btrfs_block_rsv global_block_rsv;
1384 /* block reservation for delay allocation */
1385 struct btrfs_block_rsv delalloc_block_rsv;
1386 /* block reservation for metadata operations */
1387 struct btrfs_block_rsv trans_block_rsv;
1388 /* block reservation for chunk tree */
1389 struct btrfs_block_rsv chunk_block_rsv;
1390 /* block reservation for delayed operations */
1391 struct btrfs_block_rsv delayed_block_rsv;
1392
1393 struct btrfs_block_rsv empty_block_rsv;
1394
1395 u64 generation;
1396 u64 last_trans_committed;
1397 u64 avg_delayed_ref_runtime;
1398
1399 /*
1400 * this is updated to the current trans every time a full commit
1401 * is required instead of the faster short fsync log commits
1402 */
1403 u64 last_trans_log_full_commit;
1404 unsigned long mount_opt;
1405 unsigned long compress_type:4;
1406 int commit_interval;
1407 /*
1408 * It is a suggestive number, the read side is safe even it gets a
1409 * wrong number because we will write out the data into a regular
1410 * extent. The write side(mount/remount) is under ->s_umount lock,
1411 * so it is also safe.
1412 */
1413 u64 max_inline;
1414 /*
1415 * Protected by ->chunk_mutex and sb->s_umount.
1416 *
1417 * The reason that we use two lock to protect it is because only
1418 * remount and mount operations can change it and these two operations
1419 * are under sb->s_umount, but the read side (chunk allocation) can not
1420 * acquire sb->s_umount or the deadlock would happen. So we use two
1421 * locks to protect it. On the write side, we must acquire two locks,
1422 * and on the read side, we just need acquire one of them.
1423 */
1424 u64 alloc_start;
1425 struct btrfs_transaction *running_transaction;
1426 wait_queue_head_t transaction_throttle;
1427 wait_queue_head_t transaction_wait;
1428 wait_queue_head_t transaction_blocked_wait;
1429 wait_queue_head_t async_submit_wait;
1430
1431 /*
1432 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1433 * when they are updated.
1434 *
1435 * Because we do not clear the flags for ever, so we needn't use
1436 * the lock on the read side.
1437 *
1438 * We also needn't use the lock when we mount the fs, because
1439 * there is no other task which will update the flag.
1440 */
1441 spinlock_t super_lock;
1442 struct btrfs_super_block *super_copy;
1443 struct btrfs_super_block *super_for_commit;
1444 struct block_device *__bdev;
1445 struct super_block *sb;
1446 struct inode *btree_inode;
1447 struct backing_dev_info bdi;
1448 struct mutex tree_log_mutex;
1449 struct mutex transaction_kthread_mutex;
1450 struct mutex cleaner_mutex;
1451 struct mutex chunk_mutex;
1452 struct mutex volume_mutex;
1453
1454 /* this is used during read/modify/write to make sure
1455 * no two ios are trying to mod the same stripe at the same
1456 * time
1457 */
1458 struct btrfs_stripe_hash_table *stripe_hash_table;
1459
1460 /*
1461 * this protects the ordered operations list only while we are
1462 * processing all of the entries on it. This way we make
1463 * sure the commit code doesn't find the list temporarily empty
1464 * because another function happens to be doing non-waiting preflush
1465 * before jumping into the main commit.
1466 */
1467 struct mutex ordered_operations_mutex;
1468
1469 /*
1470 * Same as ordered_operations_mutex except this is for ordered extents
1471 * and not the operations.
1472 */
1473 struct mutex ordered_extent_flush_mutex;
1474
1475 struct rw_semaphore commit_root_sem;
1476
1477 struct rw_semaphore cleanup_work_sem;
1478
1479 struct rw_semaphore subvol_sem;
1480 struct srcu_struct subvol_srcu;
1481
1482 spinlock_t trans_lock;
1483 /*
1484 * the reloc mutex goes with the trans lock, it is taken
1485 * during commit to protect us from the relocation code
1486 */
1487 struct mutex reloc_mutex;
1488
1489 struct list_head trans_list;
1490 struct list_head dead_roots;
1491 struct list_head caching_block_groups;
1492
1493 spinlock_t delayed_iput_lock;
1494 struct list_head delayed_iputs;
1495
1496 /* this protects tree_mod_seq_list */
1497 spinlock_t tree_mod_seq_lock;
1498 atomic64_t tree_mod_seq;
1499 struct list_head tree_mod_seq_list;
1500
1501 /* this protects tree_mod_log */
1502 rwlock_t tree_mod_log_lock;
1503 struct rb_root tree_mod_log;
1504
1505 atomic_t nr_async_submits;
1506 atomic_t async_submit_draining;
1507 atomic_t nr_async_bios;
1508 atomic_t async_delalloc_pages;
1509 atomic_t open_ioctl_trans;
1510
1511 /*
1512 * this is used to protect the following list -- ordered_roots.
1513 */
1514 spinlock_t ordered_root_lock;
1515
1516 /*
1517 * all fs/file tree roots in which there are data=ordered extents
1518 * pending writeback are added into this list.
1519 *
1520 * these can span multiple transactions and basically include
1521 * every dirty data page that isn't from nodatacow
1522 */
1523 struct list_head ordered_roots;
1524
1525 struct mutex delalloc_root_mutex;
1526 spinlock_t delalloc_root_lock;
1527 /* all fs/file tree roots that have delalloc inodes. */
1528 struct list_head delalloc_roots;
1529
1530 /*
1531 * there is a pool of worker threads for checksumming during writes
1532 * and a pool for checksumming after reads. This is because readers
1533 * can run with FS locks held, and the writers may be waiting for
1534 * those locks. We don't want ordering in the pending list to cause
1535 * deadlocks, and so the two are serviced separately.
1536 *
1537 * A third pool does submit_bio to avoid deadlocking with the other
1538 * two
1539 */
1540 struct btrfs_workqueue *workers;
1541 struct btrfs_workqueue *delalloc_workers;
1542 struct btrfs_workqueue *flush_workers;
1543 struct btrfs_workqueue *endio_workers;
1544 struct btrfs_workqueue *endio_meta_workers;
1545 struct btrfs_workqueue *endio_raid56_workers;
1546 struct btrfs_workqueue *endio_repair_workers;
1547 struct btrfs_workqueue *rmw_workers;
1548 struct btrfs_workqueue *endio_meta_write_workers;
1549 struct btrfs_workqueue *endio_write_workers;
1550 struct btrfs_workqueue *endio_freespace_worker;
1551 struct btrfs_workqueue *submit_workers;
1552 struct btrfs_workqueue *caching_workers;
1553 struct btrfs_workqueue *readahead_workers;
1554
1555 /*
1556 * fixup workers take dirty pages that didn't properly go through
1557 * the cow mechanism and make them safe to write. It happens
1558 * for the sys_munmap function call path
1559 */
1560 struct btrfs_workqueue *fixup_workers;
1561 struct btrfs_workqueue *delayed_workers;
1562
1563 /* the extent workers do delayed refs on the extent allocation tree */
1564 struct btrfs_workqueue *extent_workers;
1565 struct task_struct *transaction_kthread;
1566 struct task_struct *cleaner_kthread;
1567 int thread_pool_size;
1568
1569 struct kobject super_kobj;
1570 struct kobject *space_info_kobj;
1571 struct kobject *device_dir_kobj;
1572 struct completion kobj_unregister;
1573 int do_barriers;
1574 int closing;
1575 int log_root_recovering;
1576 int open;
1577
1578 u64 total_pinned;
1579
1580 /* used to keep from writing metadata until there is a nice batch */
1581 struct percpu_counter dirty_metadata_bytes;
1582 struct percpu_counter delalloc_bytes;
1583 s32 dirty_metadata_batch;
1584 s32 delalloc_batch;
1585
1586 struct list_head dirty_cowonly_roots;
1587
1588 struct btrfs_fs_devices *fs_devices;
1589
1590 /*
1591 * the space_info list is almost entirely read only. It only changes
1592 * when we add a new raid type to the FS, and that happens
1593 * very rarely. RCU is used to protect it.
1594 */
1595 struct list_head space_info;
1596
1597 struct btrfs_space_info *data_sinfo;
1598
1599 struct reloc_control *reloc_ctl;
1600
1601 /* data_alloc_cluster is only used in ssd mode */
1602 struct btrfs_free_cluster data_alloc_cluster;
1603
1604 /* all metadata allocations go through this cluster */
1605 struct btrfs_free_cluster meta_alloc_cluster;
1606
1607 /* auto defrag inodes go here */
1608 spinlock_t defrag_inodes_lock;
1609 struct rb_root defrag_inodes;
1610 atomic_t defrag_running;
1611
1612 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1613 seqlock_t profiles_lock;
1614 /*
1615 * these three are in extended format (availability of single
1616 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1617 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1618 */
1619 u64 avail_data_alloc_bits;
1620 u64 avail_metadata_alloc_bits;
1621 u64 avail_system_alloc_bits;
1622
1623 /* restriper state */
1624 spinlock_t balance_lock;
1625 struct mutex balance_mutex;
1626 atomic_t balance_running;
1627 atomic_t balance_pause_req;
1628 atomic_t balance_cancel_req;
1629 struct btrfs_balance_control *balance_ctl;
1630 wait_queue_head_t balance_wait_q;
1631
1632 unsigned data_chunk_allocations;
1633 unsigned metadata_ratio;
1634
1635 void *bdev_holder;
1636
1637 /* private scrub information */
1638 struct mutex scrub_lock;
1639 atomic_t scrubs_running;
1640 atomic_t scrub_pause_req;
1641 atomic_t scrubs_paused;
1642 atomic_t scrub_cancel_req;
1643 wait_queue_head_t scrub_pause_wait;
1644 int scrub_workers_refcnt;
1645 struct btrfs_workqueue *scrub_workers;
1646 struct btrfs_workqueue *scrub_wr_completion_workers;
1647 struct btrfs_workqueue *scrub_nocow_workers;
1648
1649 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1650 u32 check_integrity_print_mask;
1651 #endif
1652 /*
1653 * quota information
1654 */
1655 unsigned int quota_enabled:1;
1656
1657 /*
1658 * quota_enabled only changes state after a commit. This holds the
1659 * next state.
1660 */
1661 unsigned int pending_quota_state:1;
1662
1663 /* is qgroup tracking in a consistent state? */
1664 u64 qgroup_flags;
1665
1666 /* holds configuration and tracking. Protected by qgroup_lock */
1667 struct rb_root qgroup_tree;
1668 struct rb_root qgroup_op_tree;
1669 spinlock_t qgroup_lock;
1670 spinlock_t qgroup_op_lock;
1671 atomic_t qgroup_op_seq;
1672
1673 /*
1674 * used to avoid frequently calling ulist_alloc()/ulist_free()
1675 * when doing qgroup accounting, it must be protected by qgroup_lock.
1676 */
1677 struct ulist *qgroup_ulist;
1678
1679 /* protect user change for quota operations */
1680 struct mutex qgroup_ioctl_lock;
1681
1682 /* list of dirty qgroups to be written at next commit */
1683 struct list_head dirty_qgroups;
1684
1685 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1686 u64 qgroup_seq;
1687
1688 /* qgroup rescan items */
1689 struct mutex qgroup_rescan_lock; /* protects the progress item */
1690 struct btrfs_key qgroup_rescan_progress;
1691 struct btrfs_workqueue *qgroup_rescan_workers;
1692 struct completion qgroup_rescan_completion;
1693 struct btrfs_work qgroup_rescan_work;
1694
1695 /* filesystem state */
1696 unsigned long fs_state;
1697
1698 struct btrfs_delayed_root *delayed_root;
1699
1700 /* readahead tree */
1701 spinlock_t reada_lock;
1702 struct radix_tree_root reada_tree;
1703
1704 /* Extent buffer radix tree */
1705 spinlock_t buffer_lock;
1706 struct radix_tree_root buffer_radix;
1707
1708 /* next backup root to be overwritten */
1709 int backup_root_index;
1710
1711 int num_tolerated_disk_barrier_failures;
1712
1713 /* device replace state */
1714 struct btrfs_dev_replace dev_replace;
1715
1716 atomic_t mutually_exclusive_operation_running;
1717
1718 struct percpu_counter bio_counter;
1719 wait_queue_head_t replace_wait;
1720
1721 struct semaphore uuid_tree_rescan_sem;
1722 unsigned int update_uuid_tree_gen:1;
1723
1724 /* Used to reclaim the metadata space in the background. */
1725 struct work_struct async_reclaim_work;
1726
1727 spinlock_t unused_bgs_lock;
1728 struct list_head unused_bgs;
1729
1730 /* For btrfs to record security options */
1731 struct security_mnt_opts security_opts;
1732 };
1733
1734 struct btrfs_subvolume_writers {
1735 struct percpu_counter counter;
1736 wait_queue_head_t wait;
1737 };
1738
1739 /*
1740 * The state of btrfs root
1741 */
1742 /*
1743 * btrfs_record_root_in_trans is a multi-step process,
1744 * and it can race with the balancing code. But the
1745 * race is very small, and only the first time the root
1746 * is added to each transaction. So IN_TRANS_SETUP
1747 * is used to tell us when more checks are required
1748 */
1749 #define BTRFS_ROOT_IN_TRANS_SETUP 0
1750 #define BTRFS_ROOT_REF_COWS 1
1751 #define BTRFS_ROOT_TRACK_DIRTY 2
1752 #define BTRFS_ROOT_IN_RADIX 3
1753 #define BTRFS_ROOT_DUMMY_ROOT 4
1754 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5
1755 #define BTRFS_ROOT_DEFRAG_RUNNING 6
1756 #define BTRFS_ROOT_FORCE_COW 7
1757 #define BTRFS_ROOT_MULTI_LOG_TASKS 8
1758
1759 /*
1760 * in ram representation of the tree. extent_root is used for all allocations
1761 * and for the extent tree extent_root root.
1762 */
1763 struct btrfs_root {
1764 struct extent_buffer *node;
1765
1766 struct extent_buffer *commit_root;
1767 struct btrfs_root *log_root;
1768 struct btrfs_root *reloc_root;
1769
1770 unsigned long state;
1771 struct btrfs_root_item root_item;
1772 struct btrfs_key root_key;
1773 struct btrfs_fs_info *fs_info;
1774 struct extent_io_tree dirty_log_pages;
1775
1776 struct kobject root_kobj;
1777 struct completion kobj_unregister;
1778 struct mutex objectid_mutex;
1779
1780 spinlock_t accounting_lock;
1781 struct btrfs_block_rsv *block_rsv;
1782
1783 /* free ino cache stuff */
1784 struct btrfs_free_space_ctl *free_ino_ctl;
1785 enum btrfs_caching_type ino_cache_state;
1786 spinlock_t ino_cache_lock;
1787 wait_queue_head_t ino_cache_wait;
1788 struct btrfs_free_space_ctl *free_ino_pinned;
1789 u64 ino_cache_progress;
1790 struct inode *ino_cache_inode;
1791
1792 struct mutex log_mutex;
1793 wait_queue_head_t log_writer_wait;
1794 wait_queue_head_t log_commit_wait[2];
1795 struct list_head log_ctxs[2];
1796 atomic_t log_writers;
1797 atomic_t log_commit[2];
1798 atomic_t log_batch;
1799 int log_transid;
1800 /* No matter the commit succeeds or not*/
1801 int log_transid_committed;
1802 /* Just be updated when the commit succeeds. */
1803 int last_log_commit;
1804 pid_t log_start_pid;
1805
1806 u64 objectid;
1807 u64 last_trans;
1808
1809 /* data allocations are done in sectorsize units */
1810 u32 sectorsize;
1811
1812 /* node allocations are done in nodesize units */
1813 u32 nodesize;
1814
1815 u32 stripesize;
1816
1817 u32 type;
1818
1819 u64 highest_objectid;
1820
1821 /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1822 u64 alloc_bytenr;
1823
1824 u64 defrag_trans_start;
1825 struct btrfs_key defrag_progress;
1826 struct btrfs_key defrag_max;
1827 char *name;
1828
1829 /* the dirty list is only used by non-reference counted roots */
1830 struct list_head dirty_list;
1831
1832 struct list_head root_list;
1833
1834 spinlock_t log_extents_lock[2];
1835 struct list_head logged_list[2];
1836
1837 spinlock_t orphan_lock;
1838 atomic_t orphan_inodes;
1839 struct btrfs_block_rsv *orphan_block_rsv;
1840 int orphan_cleanup_state;
1841
1842 spinlock_t inode_lock;
1843 /* red-black tree that keeps track of in-memory inodes */
1844 struct rb_root inode_tree;
1845
1846 /*
1847 * radix tree that keeps track of delayed nodes of every inode,
1848 * protected by inode_lock
1849 */
1850 struct radix_tree_root delayed_nodes_tree;
1851 /*
1852 * right now this just gets used so that a root has its own devid
1853 * for stat. It may be used for more later
1854 */
1855 dev_t anon_dev;
1856
1857 spinlock_t root_item_lock;
1858 atomic_t refs;
1859
1860 struct mutex delalloc_mutex;
1861 spinlock_t delalloc_lock;
1862 /*
1863 * all of the inodes that have delalloc bytes. It is possible for
1864 * this list to be empty even when there is still dirty data=ordered
1865 * extents waiting to finish IO.
1866 */
1867 struct list_head delalloc_inodes;
1868 struct list_head delalloc_root;
1869 u64 nr_delalloc_inodes;
1870
1871 struct mutex ordered_extent_mutex;
1872 /*
1873 * this is used by the balancing code to wait for all the pending
1874 * ordered extents
1875 */
1876 spinlock_t ordered_extent_lock;
1877
1878 /*
1879 * all of the data=ordered extents pending writeback
1880 * these can span multiple transactions and basically include
1881 * every dirty data page that isn't from nodatacow
1882 */
1883 struct list_head ordered_extents;
1884 struct list_head ordered_root;
1885 u64 nr_ordered_extents;
1886
1887 /*
1888 * Number of currently running SEND ioctls to prevent
1889 * manipulation with the read-only status via SUBVOL_SETFLAGS
1890 */
1891 int send_in_progress;
1892 struct btrfs_subvolume_writers *subv_writers;
1893 atomic_t will_be_snapshoted;
1894 };
1895
1896 struct btrfs_ioctl_defrag_range_args {
1897 /* start of the defrag operation */
1898 __u64 start;
1899
1900 /* number of bytes to defrag, use (u64)-1 to say all */
1901 __u64 len;
1902
1903 /*
1904 * flags for the operation, which can include turning
1905 * on compression for this one defrag
1906 */
1907 __u64 flags;
1908
1909 /*
1910 * any extent bigger than this will be considered
1911 * already defragged. Use 0 to take the kernel default
1912 * Use 1 to say every single extent must be rewritten
1913 */
1914 __u32 extent_thresh;
1915
1916 /*
1917 * which compression method to use if turning on compression
1918 * for this defrag operation. If unspecified, zlib will
1919 * be used
1920 */
1921 __u32 compress_type;
1922
1923 /* spare for later */
1924 __u32 unused[4];
1925 };
1926
1927
1928 /*
1929 * inode items have the data typically returned from stat and store other
1930 * info about object characteristics. There is one for every file and dir in
1931 * the FS
1932 */
1933 #define BTRFS_INODE_ITEM_KEY 1
1934 #define BTRFS_INODE_REF_KEY 12
1935 #define BTRFS_INODE_EXTREF_KEY 13
1936 #define BTRFS_XATTR_ITEM_KEY 24
1937 #define BTRFS_ORPHAN_ITEM_KEY 48
1938 /* reserve 2-15 close to the inode for later flexibility */
1939
1940 /*
1941 * dir items are the name -> inode pointers in a directory. There is one
1942 * for every name in a directory.
1943 */
1944 #define BTRFS_DIR_LOG_ITEM_KEY 60
1945 #define BTRFS_DIR_LOG_INDEX_KEY 72
1946 #define BTRFS_DIR_ITEM_KEY 84
1947 #define BTRFS_DIR_INDEX_KEY 96
1948 /*
1949 * extent data is for file data
1950 */
1951 #define BTRFS_EXTENT_DATA_KEY 108
1952
1953 /*
1954 * extent csums are stored in a separate tree and hold csums for
1955 * an entire extent on disk.
1956 */
1957 #define BTRFS_EXTENT_CSUM_KEY 128
1958
1959 /*
1960 * root items point to tree roots. They are typically in the root
1961 * tree used by the super block to find all the other trees
1962 */
1963 #define BTRFS_ROOT_ITEM_KEY 132
1964
1965 /*
1966 * root backrefs tie subvols and snapshots to the directory entries that
1967 * reference them
1968 */
1969 #define BTRFS_ROOT_BACKREF_KEY 144
1970
1971 /*
1972 * root refs make a fast index for listing all of the snapshots and
1973 * subvolumes referenced by a given root. They point directly to the
1974 * directory item in the root that references the subvol
1975 */
1976 #define BTRFS_ROOT_REF_KEY 156
1977
1978 /*
1979 * extent items are in the extent map tree. These record which blocks
1980 * are used, and how many references there are to each block
1981 */
1982 #define BTRFS_EXTENT_ITEM_KEY 168
1983
1984 /*
1985 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
1986 * the length, so we save the level in key->offset instead of the length.
1987 */
1988 #define BTRFS_METADATA_ITEM_KEY 169
1989
1990 #define BTRFS_TREE_BLOCK_REF_KEY 176
1991
1992 #define BTRFS_EXTENT_DATA_REF_KEY 178
1993
1994 #define BTRFS_EXTENT_REF_V0_KEY 180
1995
1996 #define BTRFS_SHARED_BLOCK_REF_KEY 182
1997
1998 #define BTRFS_SHARED_DATA_REF_KEY 184
1999
2000 /*
2001 * block groups give us hints into the extent allocation trees. Which
2002 * blocks are free etc etc
2003 */
2004 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
2005
2006 #define BTRFS_DEV_EXTENT_KEY 204
2007 #define BTRFS_DEV_ITEM_KEY 216
2008 #define BTRFS_CHUNK_ITEM_KEY 228
2009
2010 /*
2011 * Records the overall state of the qgroups.
2012 * There's only one instance of this key present,
2013 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2014 */
2015 #define BTRFS_QGROUP_STATUS_KEY 240
2016 /*
2017 * Records the currently used space of the qgroup.
2018 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2019 */
2020 #define BTRFS_QGROUP_INFO_KEY 242
2021 /*
2022 * Contains the user configured limits for the qgroup.
2023 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2024 */
2025 #define BTRFS_QGROUP_LIMIT_KEY 244
2026 /*
2027 * Records the child-parent relationship of qgroups. For
2028 * each relation, 2 keys are present:
2029 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2030 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2031 */
2032 #define BTRFS_QGROUP_RELATION_KEY 246
2033
2034 #define BTRFS_BALANCE_ITEM_KEY 248
2035
2036 /*
2037 * Persistantly stores the io stats in the device tree.
2038 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
2039 */
2040 #define BTRFS_DEV_STATS_KEY 249
2041
2042 /*
2043 * Persistantly stores the device replace state in the device tree.
2044 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2045 */
2046 #define BTRFS_DEV_REPLACE_KEY 250
2047
2048 /*
2049 * Stores items that allow to quickly map UUIDs to something else.
2050 * These items are part of the filesystem UUID tree.
2051 * The key is built like this:
2052 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2053 */
2054 #if BTRFS_UUID_SIZE != 16
2055 #error "UUID items require BTRFS_UUID_SIZE == 16!"
2056 #endif
2057 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2058 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2059 * received subvols */
2060
2061 /*
2062 * string items are for debugging. They just store a short string of
2063 * data in the FS
2064 */
2065 #define BTRFS_STRING_ITEM_KEY 253
2066
2067 /*
2068 * Flags for mount options.
2069 *
2070 * Note: don't forget to add new options to btrfs_show_options()
2071 */
2072 #define BTRFS_MOUNT_NODATASUM (1 << 0)
2073 #define BTRFS_MOUNT_NODATACOW (1 << 1)
2074 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
2075 #define BTRFS_MOUNT_SSD (1 << 3)
2076 #define BTRFS_MOUNT_DEGRADED (1 << 4)
2077 #define BTRFS_MOUNT_COMPRESS (1 << 5)
2078 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
2079 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2080 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2081 #define BTRFS_MOUNT_NOSSD (1 << 9)
2082 #define BTRFS_MOUNT_DISCARD (1 << 10)
2083 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2084 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2085 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2086 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2087 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2088 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2089 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2090 #define BTRFS_MOUNT_RECOVERY (1 << 18)
2091 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2092 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2093 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2094 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2095 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2096 #define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24)
2097
2098 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2099 #define BTRFS_DEFAULT_MAX_INLINE (8192)
2100
2101 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2102 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2103 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2104 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2105 BTRFS_MOUNT_##opt)
2106 #define btrfs_set_and_info(root, opt, fmt, args...) \
2107 { \
2108 if (!btrfs_test_opt(root, opt)) \
2109 btrfs_info(root->fs_info, fmt, ##args); \
2110 btrfs_set_opt(root->fs_info->mount_opt, opt); \
2111 }
2112
2113 #define btrfs_clear_and_info(root, opt, fmt, args...) \
2114 { \
2115 if (btrfs_test_opt(root, opt)) \
2116 btrfs_info(root->fs_info, fmt, ##args); \
2117 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
2118 }
2119
2120 /*
2121 * Inode flags
2122 */
2123 #define BTRFS_INODE_NODATASUM (1 << 0)
2124 #define BTRFS_INODE_NODATACOW (1 << 1)
2125 #define BTRFS_INODE_READONLY (1 << 2)
2126 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2127 #define BTRFS_INODE_PREALLOC (1 << 4)
2128 #define BTRFS_INODE_SYNC (1 << 5)
2129 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2130 #define BTRFS_INODE_APPEND (1 << 7)
2131 #define BTRFS_INODE_NODUMP (1 << 8)
2132 #define BTRFS_INODE_NOATIME (1 << 9)
2133 #define BTRFS_INODE_DIRSYNC (1 << 10)
2134 #define BTRFS_INODE_COMPRESS (1 << 11)
2135
2136 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2137
2138 struct btrfs_map_token {
2139 struct extent_buffer *eb;
2140 char *kaddr;
2141 unsigned long offset;
2142 };
2143
2144 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2145 {
2146 token->kaddr = NULL;
2147 }
2148
2149 /* some macros to generate set/get funcs for the struct fields. This
2150 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2151 * one for u8:
2152 */
2153 #define le8_to_cpu(v) (v)
2154 #define cpu_to_le8(v) (v)
2155 #define __le8 u8
2156
2157 #define read_eb_member(eb, ptr, type, member, result) ( \
2158 read_extent_buffer(eb, (char *)(result), \
2159 ((unsigned long)(ptr)) + \
2160 offsetof(type, member), \
2161 sizeof(((type *)0)->member)))
2162
2163 #define write_eb_member(eb, ptr, type, member, result) ( \
2164 write_extent_buffer(eb, (char *)(result), \
2165 ((unsigned long)(ptr)) + \
2166 offsetof(type, member), \
2167 sizeof(((type *)0)->member)))
2168
2169 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2170 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2171 unsigned long off, \
2172 struct btrfs_map_token *token); \
2173 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2174 unsigned long off, u##bits val, \
2175 struct btrfs_map_token *token); \
2176 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2177 unsigned long off) \
2178 { \
2179 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2180 } \
2181 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2182 unsigned long off, u##bits val) \
2183 { \
2184 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2185 }
2186
2187 DECLARE_BTRFS_SETGET_BITS(8)
2188 DECLARE_BTRFS_SETGET_BITS(16)
2189 DECLARE_BTRFS_SETGET_BITS(32)
2190 DECLARE_BTRFS_SETGET_BITS(64)
2191
2192 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2193 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2194 { \
2195 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2196 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2197 } \
2198 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2199 u##bits val) \
2200 { \
2201 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2202 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2203 } \
2204 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2205 struct btrfs_map_token *token) \
2206 { \
2207 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2208 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2209 } \
2210 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2211 type *s, u##bits val, \
2212 struct btrfs_map_token *token) \
2213 { \
2214 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2215 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2216 }
2217
2218 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2219 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2220 { \
2221 type *p = page_address(eb->pages[0]); \
2222 u##bits res = le##bits##_to_cpu(p->member); \
2223 return res; \
2224 } \
2225 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2226 u##bits val) \
2227 { \
2228 type *p = page_address(eb->pages[0]); \
2229 p->member = cpu_to_le##bits(val); \
2230 }
2231
2232 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2233 static inline u##bits btrfs_##name(type *s) \
2234 { \
2235 return le##bits##_to_cpu(s->member); \
2236 } \
2237 static inline void btrfs_set_##name(type *s, u##bits val) \
2238 { \
2239 s->member = cpu_to_le##bits(val); \
2240 }
2241
2242 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2243 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2244 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2245 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2246 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2247 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2248 start_offset, 64);
2249 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2250 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2251 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2252 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2253 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2254 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2255
2256 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2257 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2258 total_bytes, 64);
2259 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2260 bytes_used, 64);
2261 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2262 io_align, 32);
2263 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2264 io_width, 32);
2265 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2266 sector_size, 32);
2267 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2268 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2269 dev_group, 32);
2270 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2271 seek_speed, 8);
2272 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2273 bandwidth, 8);
2274 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2275 generation, 64);
2276
2277 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2278 {
2279 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2280 }
2281
2282 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2283 {
2284 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2285 }
2286
2287 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2288 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2289 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2290 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2291 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2292 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2293 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2294 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2295 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2296 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2297 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2298
2299 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2300 {
2301 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2302 }
2303
2304 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2305 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2306 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2307 stripe_len, 64);
2308 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2309 io_align, 32);
2310 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2311 io_width, 32);
2312 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2313 sector_size, 32);
2314 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2315 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2316 num_stripes, 16);
2317 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2318 sub_stripes, 16);
2319 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2320 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2321
2322 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2323 int nr)
2324 {
2325 unsigned long offset = (unsigned long)c;
2326 offset += offsetof(struct btrfs_chunk, stripe);
2327 offset += nr * sizeof(struct btrfs_stripe);
2328 return (struct btrfs_stripe *)offset;
2329 }
2330
2331 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2332 {
2333 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2334 }
2335
2336 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2337 struct btrfs_chunk *c, int nr)
2338 {
2339 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2340 }
2341
2342 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2343 struct btrfs_chunk *c, int nr)
2344 {
2345 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2346 }
2347
2348 /* struct btrfs_block_group_item */
2349 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2350 used, 64);
2351 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2352 used, 64);
2353 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2354 struct btrfs_block_group_item, chunk_objectid, 64);
2355
2356 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2357 struct btrfs_block_group_item, chunk_objectid, 64);
2358 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2359 struct btrfs_block_group_item, flags, 64);
2360 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2361 struct btrfs_block_group_item, flags, 64);
2362
2363 /* struct btrfs_inode_ref */
2364 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2365 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2366
2367 /* struct btrfs_inode_extref */
2368 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2369 parent_objectid, 64);
2370 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2371 name_len, 16);
2372 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2373
2374 /* struct btrfs_inode_item */
2375 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2376 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2377 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2378 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2379 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2380 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2381 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2382 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2383 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2384 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2385 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2386 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2387 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2388 generation, 64);
2389 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2390 sequence, 64);
2391 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2392 transid, 64);
2393 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2394 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2395 nbytes, 64);
2396 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2397 block_group, 64);
2398 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2399 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2400 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2401 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2402 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2403 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2404
2405 static inline struct btrfs_timespec *
2406 btrfs_inode_atime(struct btrfs_inode_item *inode_item)
2407 {
2408 unsigned long ptr = (unsigned long)inode_item;
2409 ptr += offsetof(struct btrfs_inode_item, atime);
2410 return (struct btrfs_timespec *)ptr;
2411 }
2412
2413 static inline struct btrfs_timespec *
2414 btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
2415 {
2416 unsigned long ptr = (unsigned long)inode_item;
2417 ptr += offsetof(struct btrfs_inode_item, mtime);
2418 return (struct btrfs_timespec *)ptr;
2419 }
2420
2421 static inline struct btrfs_timespec *
2422 btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
2423 {
2424 unsigned long ptr = (unsigned long)inode_item;
2425 ptr += offsetof(struct btrfs_inode_item, ctime);
2426 return (struct btrfs_timespec *)ptr;
2427 }
2428
2429 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2430 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2431 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2432 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2433
2434 /* struct btrfs_dev_extent */
2435 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2436 chunk_tree, 64);
2437 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2438 chunk_objectid, 64);
2439 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2440 chunk_offset, 64);
2441 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2442
2443 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2444 {
2445 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2446 return (unsigned long)dev + ptr;
2447 }
2448
2449 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2450 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2451 generation, 64);
2452 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2453
2454 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2455
2456
2457 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2458
2459 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2460 struct btrfs_tree_block_info *item,
2461 struct btrfs_disk_key *key)
2462 {
2463 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2464 }
2465
2466 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2467 struct btrfs_tree_block_info *item,
2468 struct btrfs_disk_key *key)
2469 {
2470 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2471 }
2472
2473 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2474 root, 64);
2475 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2476 objectid, 64);
2477 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2478 offset, 64);
2479 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2480 count, 32);
2481
2482 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2483 count, 32);
2484
2485 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2486 type, 8);
2487 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2488 offset, 64);
2489
2490 static inline u32 btrfs_extent_inline_ref_size(int type)
2491 {
2492 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2493 type == BTRFS_SHARED_BLOCK_REF_KEY)
2494 return sizeof(struct btrfs_extent_inline_ref);
2495 if (type == BTRFS_SHARED_DATA_REF_KEY)
2496 return sizeof(struct btrfs_shared_data_ref) +
2497 sizeof(struct btrfs_extent_inline_ref);
2498 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2499 return sizeof(struct btrfs_extent_data_ref) +
2500 offsetof(struct btrfs_extent_inline_ref, offset);
2501 BUG();
2502 return 0;
2503 }
2504
2505 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2506 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2507 generation, 64);
2508 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2509 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2510
2511 /* struct btrfs_node */
2512 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2513 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2514 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2515 blockptr, 64);
2516 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2517 generation, 64);
2518
2519 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2520 {
2521 unsigned long ptr;
2522 ptr = offsetof(struct btrfs_node, ptrs) +
2523 sizeof(struct btrfs_key_ptr) * nr;
2524 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2525 }
2526
2527 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2528 int nr, u64 val)
2529 {
2530 unsigned long ptr;
2531 ptr = offsetof(struct btrfs_node, ptrs) +
2532 sizeof(struct btrfs_key_ptr) * nr;
2533 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2534 }
2535
2536 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2537 {
2538 unsigned long ptr;
2539 ptr = offsetof(struct btrfs_node, ptrs) +
2540 sizeof(struct btrfs_key_ptr) * nr;
2541 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2542 }
2543
2544 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2545 int nr, u64 val)
2546 {
2547 unsigned long ptr;
2548 ptr = offsetof(struct btrfs_node, ptrs) +
2549 sizeof(struct btrfs_key_ptr) * nr;
2550 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2551 }
2552
2553 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2554 {
2555 return offsetof(struct btrfs_node, ptrs) +
2556 sizeof(struct btrfs_key_ptr) * nr;
2557 }
2558
2559 void btrfs_node_key(struct extent_buffer *eb,
2560 struct btrfs_disk_key *disk_key, int nr);
2561
2562 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2563 struct btrfs_disk_key *disk_key, int nr)
2564 {
2565 unsigned long ptr;
2566 ptr = btrfs_node_key_ptr_offset(nr);
2567 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2568 struct btrfs_key_ptr, key, disk_key);
2569 }
2570
2571 /* struct btrfs_item */
2572 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2573 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2574 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2575 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2576
2577 static inline unsigned long btrfs_item_nr_offset(int nr)
2578 {
2579 return offsetof(struct btrfs_leaf, items) +
2580 sizeof(struct btrfs_item) * nr;
2581 }
2582
2583 static inline struct btrfs_item *btrfs_item_nr(int nr)
2584 {
2585 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2586 }
2587
2588 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2589 struct btrfs_item *item)
2590 {
2591 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2592 }
2593
2594 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2595 {
2596 return btrfs_item_end(eb, btrfs_item_nr(nr));
2597 }
2598
2599 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2600 {
2601 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2602 }
2603
2604 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2605 {
2606 return btrfs_item_size(eb, btrfs_item_nr(nr));
2607 }
2608
2609 static inline void btrfs_item_key(struct extent_buffer *eb,
2610 struct btrfs_disk_key *disk_key, int nr)
2611 {
2612 struct btrfs_item *item = btrfs_item_nr(nr);
2613 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2614 }
2615
2616 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2617 struct btrfs_disk_key *disk_key, int nr)
2618 {
2619 struct btrfs_item *item = btrfs_item_nr(nr);
2620 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2621 }
2622
2623 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2624
2625 /*
2626 * struct btrfs_root_ref
2627 */
2628 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2629 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2630 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2631
2632 /* struct btrfs_dir_item */
2633 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2634 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2635 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2636 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2637 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2638 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2639 data_len, 16);
2640 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2641 name_len, 16);
2642 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2643 transid, 64);
2644
2645 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2646 struct btrfs_dir_item *item,
2647 struct btrfs_disk_key *key)
2648 {
2649 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2650 }
2651
2652 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2653 struct btrfs_dir_item *item,
2654 struct btrfs_disk_key *key)
2655 {
2656 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2657 }
2658
2659 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2660 num_entries, 64);
2661 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2662 num_bitmaps, 64);
2663 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2664 generation, 64);
2665
2666 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2667 struct btrfs_free_space_header *h,
2668 struct btrfs_disk_key *key)
2669 {
2670 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2671 }
2672
2673 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2674 struct btrfs_free_space_header *h,
2675 struct btrfs_disk_key *key)
2676 {
2677 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2678 }
2679
2680 /* struct btrfs_disk_key */
2681 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2682 objectid, 64);
2683 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2684 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2685
2686 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2687 struct btrfs_disk_key *disk)
2688 {
2689 cpu->offset = le64_to_cpu(disk->offset);
2690 cpu->type = disk->type;
2691 cpu->objectid = le64_to_cpu(disk->objectid);
2692 }
2693
2694 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2695 struct btrfs_key *cpu)
2696 {
2697 disk->offset = cpu_to_le64(cpu->offset);
2698 disk->type = cpu->type;
2699 disk->objectid = cpu_to_le64(cpu->objectid);
2700 }
2701
2702 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2703 struct btrfs_key *key, int nr)
2704 {
2705 struct btrfs_disk_key disk_key;
2706 btrfs_node_key(eb, &disk_key, nr);
2707 btrfs_disk_key_to_cpu(key, &disk_key);
2708 }
2709
2710 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2711 struct btrfs_key *key, int nr)
2712 {
2713 struct btrfs_disk_key disk_key;
2714 btrfs_item_key(eb, &disk_key, nr);
2715 btrfs_disk_key_to_cpu(key, &disk_key);
2716 }
2717
2718 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2719 struct btrfs_dir_item *item,
2720 struct btrfs_key *key)
2721 {
2722 struct btrfs_disk_key disk_key;
2723 btrfs_dir_item_key(eb, item, &disk_key);
2724 btrfs_disk_key_to_cpu(key, &disk_key);
2725 }
2726
2727
2728 static inline u8 btrfs_key_type(struct btrfs_key *key)
2729 {
2730 return key->type;
2731 }
2732
2733 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2734 {
2735 key->type = val;
2736 }
2737
2738 /* struct btrfs_header */
2739 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2740 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2741 generation, 64);
2742 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2743 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2744 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2745 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2746 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2747 generation, 64);
2748 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2749 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2750 nritems, 32);
2751 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2752
2753 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2754 {
2755 return (btrfs_header_flags(eb) & flag) == flag;
2756 }
2757
2758 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2759 {
2760 u64 flags = btrfs_header_flags(eb);
2761 btrfs_set_header_flags(eb, flags | flag);
2762 return (flags & flag) == flag;
2763 }
2764
2765 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2766 {
2767 u64 flags = btrfs_header_flags(eb);
2768 btrfs_set_header_flags(eb, flags & ~flag);
2769 return (flags & flag) == flag;
2770 }
2771
2772 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2773 {
2774 u64 flags = btrfs_header_flags(eb);
2775 return flags >> BTRFS_BACKREF_REV_SHIFT;
2776 }
2777
2778 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2779 int rev)
2780 {
2781 u64 flags = btrfs_header_flags(eb);
2782 flags &= ~BTRFS_BACKREF_REV_MASK;
2783 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2784 btrfs_set_header_flags(eb, flags);
2785 }
2786
2787 static inline unsigned long btrfs_header_fsid(void)
2788 {
2789 return offsetof(struct btrfs_header, fsid);
2790 }
2791
2792 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2793 {
2794 return offsetof(struct btrfs_header, chunk_tree_uuid);
2795 }
2796
2797 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2798 {
2799 return btrfs_header_level(eb) == 0;
2800 }
2801
2802 /* struct btrfs_root_item */
2803 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2804 generation, 64);
2805 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2806 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2807 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2808
2809 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2810 generation, 64);
2811 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2812 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2813 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2814 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2815 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2816 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2817 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2818 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2819 last_snapshot, 64);
2820 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2821 generation_v2, 64);
2822 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2823 ctransid, 64);
2824 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2825 otransid, 64);
2826 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2827 stransid, 64);
2828 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2829 rtransid, 64);
2830
2831 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2832 {
2833 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2834 }
2835
2836 static inline bool btrfs_root_dead(struct btrfs_root *root)
2837 {
2838 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2839 }
2840
2841 /* struct btrfs_root_backup */
2842 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2843 tree_root, 64);
2844 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2845 tree_root_gen, 64);
2846 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2847 tree_root_level, 8);
2848
2849 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2850 chunk_root, 64);
2851 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2852 chunk_root_gen, 64);
2853 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2854 chunk_root_level, 8);
2855
2856 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2857 extent_root, 64);
2858 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2859 extent_root_gen, 64);
2860 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2861 extent_root_level, 8);
2862
2863 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2864 fs_root, 64);
2865 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2866 fs_root_gen, 64);
2867 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2868 fs_root_level, 8);
2869
2870 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2871 dev_root, 64);
2872 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2873 dev_root_gen, 64);
2874 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2875 dev_root_level, 8);
2876
2877 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2878 csum_root, 64);
2879 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2880 csum_root_gen, 64);
2881 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2882 csum_root_level, 8);
2883 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2884 total_bytes, 64);
2885 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2886 bytes_used, 64);
2887 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2888 num_devices, 64);
2889
2890 /* struct btrfs_balance_item */
2891 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2892
2893 static inline void btrfs_balance_data(struct extent_buffer *eb,
2894 struct btrfs_balance_item *bi,
2895 struct btrfs_disk_balance_args *ba)
2896 {
2897 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2898 }
2899
2900 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2901 struct btrfs_balance_item *bi,
2902 struct btrfs_disk_balance_args *ba)
2903 {
2904 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2905 }
2906
2907 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2908 struct btrfs_balance_item *bi,
2909 struct btrfs_disk_balance_args *ba)
2910 {
2911 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2912 }
2913
2914 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2915 struct btrfs_balance_item *bi,
2916 struct btrfs_disk_balance_args *ba)
2917 {
2918 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2919 }
2920
2921 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2922 struct btrfs_balance_item *bi,
2923 struct btrfs_disk_balance_args *ba)
2924 {
2925 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2926 }
2927
2928 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2929 struct btrfs_balance_item *bi,
2930 struct btrfs_disk_balance_args *ba)
2931 {
2932 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2933 }
2934
2935 static inline void
2936 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2937 struct btrfs_disk_balance_args *disk)
2938 {
2939 memset(cpu, 0, sizeof(*cpu));
2940
2941 cpu->profiles = le64_to_cpu(disk->profiles);
2942 cpu->usage = le64_to_cpu(disk->usage);
2943 cpu->devid = le64_to_cpu(disk->devid);
2944 cpu->pstart = le64_to_cpu(disk->pstart);
2945 cpu->pend = le64_to_cpu(disk->pend);
2946 cpu->vstart = le64_to_cpu(disk->vstart);
2947 cpu->vend = le64_to_cpu(disk->vend);
2948 cpu->target = le64_to_cpu(disk->target);
2949 cpu->flags = le64_to_cpu(disk->flags);
2950 cpu->limit = le64_to_cpu(disk->limit);
2951 }
2952
2953 static inline void
2954 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2955 struct btrfs_balance_args *cpu)
2956 {
2957 memset(disk, 0, sizeof(*disk));
2958
2959 disk->profiles = cpu_to_le64(cpu->profiles);
2960 disk->usage = cpu_to_le64(cpu->usage);
2961 disk->devid = cpu_to_le64(cpu->devid);
2962 disk->pstart = cpu_to_le64(cpu->pstart);
2963 disk->pend = cpu_to_le64(cpu->pend);
2964 disk->vstart = cpu_to_le64(cpu->vstart);
2965 disk->vend = cpu_to_le64(cpu->vend);
2966 disk->target = cpu_to_le64(cpu->target);
2967 disk->flags = cpu_to_le64(cpu->flags);
2968 disk->limit = cpu_to_le64(cpu->limit);
2969 }
2970
2971 /* struct btrfs_super_block */
2972 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2973 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2974 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2975 generation, 64);
2976 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2977 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2978 struct btrfs_super_block, sys_chunk_array_size, 32);
2979 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2980 struct btrfs_super_block, chunk_root_generation, 64);
2981 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2982 root_level, 8);
2983 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2984 chunk_root, 64);
2985 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2986 chunk_root_level, 8);
2987 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2988 log_root, 64);
2989 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2990 log_root_transid, 64);
2991 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2992 log_root_level, 8);
2993 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2994 total_bytes, 64);
2995 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2996 bytes_used, 64);
2997 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2998 sectorsize, 32);
2999 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
3000 nodesize, 32);
3001 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
3002 stripesize, 32);
3003 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
3004 root_dir_objectid, 64);
3005 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
3006 num_devices, 64);
3007 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
3008 compat_flags, 64);
3009 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
3010 compat_ro_flags, 64);
3011 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
3012 incompat_flags, 64);
3013 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3014 csum_type, 16);
3015 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3016 cache_generation, 64);
3017 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3018 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3019 uuid_tree_generation, 64);
3020
3021 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3022 {
3023 u16 t = btrfs_super_csum_type(s);
3024 /*
3025 * csum type is validated at mount time
3026 */
3027 return btrfs_csum_sizes[t];
3028 }
3029
3030 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3031 {
3032 return offsetof(struct btrfs_leaf, items);
3033 }
3034
3035 /* struct btrfs_file_extent_item */
3036 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3037 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3038 struct btrfs_file_extent_item, disk_bytenr, 64);
3039 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3040 struct btrfs_file_extent_item, offset, 64);
3041 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3042 struct btrfs_file_extent_item, generation, 64);
3043 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3044 struct btrfs_file_extent_item, num_bytes, 64);
3045 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3046 struct btrfs_file_extent_item, disk_num_bytes, 64);
3047 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3048 struct btrfs_file_extent_item, compression, 8);
3049
3050 static inline unsigned long
3051 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3052 {
3053 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
3054 }
3055
3056 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3057 {
3058 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
3059 }
3060
3061 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3062 disk_bytenr, 64);
3063 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3064 generation, 64);
3065 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3066 disk_num_bytes, 64);
3067 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3068 offset, 64);
3069 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3070 num_bytes, 64);
3071 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3072 ram_bytes, 64);
3073 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3074 compression, 8);
3075 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3076 encryption, 8);
3077 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3078 other_encoding, 16);
3079
3080 /*
3081 * this returns the number of bytes used by the item on disk, minus the
3082 * size of any extent headers. If a file is compressed on disk, this is
3083 * the compressed size
3084 */
3085 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3086 struct btrfs_item *e)
3087 {
3088 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
3089 }
3090
3091 /* this returns the number of file bytes represented by the inline item.
3092 * If an item is compressed, this is the uncompressed size
3093 */
3094 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3095 int slot,
3096 struct btrfs_file_extent_item *fi)
3097 {
3098 struct btrfs_map_token token;
3099
3100 btrfs_init_map_token(&token);
3101 /*
3102 * return the space used on disk if this item isn't
3103 * compressed or encoded
3104 */
3105 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3106 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3107 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3108 return btrfs_file_extent_inline_item_len(eb,
3109 btrfs_item_nr(slot));
3110 }
3111
3112 /* otherwise use the ram bytes field */
3113 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3114 }
3115
3116
3117 /* btrfs_dev_stats_item */
3118 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3119 struct btrfs_dev_stats_item *ptr,
3120 int index)
3121 {
3122 u64 val;
3123
3124 read_extent_buffer(eb, &val,
3125 offsetof(struct btrfs_dev_stats_item, values) +
3126 ((unsigned long)ptr) + (index * sizeof(u64)),
3127 sizeof(val));
3128 return val;
3129 }
3130
3131 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3132 struct btrfs_dev_stats_item *ptr,
3133 int index, u64 val)
3134 {
3135 write_extent_buffer(eb, &val,
3136 offsetof(struct btrfs_dev_stats_item, values) +
3137 ((unsigned long)ptr) + (index * sizeof(u64)),
3138 sizeof(val));
3139 }
3140
3141 /* btrfs_qgroup_status_item */
3142 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3143 generation, 64);
3144 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3145 version, 64);
3146 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3147 flags, 64);
3148 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3149 rescan, 64);
3150
3151 /* btrfs_qgroup_info_item */
3152 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3153 generation, 64);
3154 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3155 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3156 rfer_cmpr, 64);
3157 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3158 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3159 excl_cmpr, 64);
3160
3161 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3162 struct btrfs_qgroup_info_item, generation, 64);
3163 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3164 rfer, 64);
3165 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3166 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3167 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3168 excl, 64);
3169 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3170 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3171
3172 /* btrfs_qgroup_limit_item */
3173 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3174 flags, 64);
3175 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3176 max_rfer, 64);
3177 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3178 max_excl, 64);
3179 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3180 rsv_rfer, 64);
3181 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3182 rsv_excl, 64);
3183
3184 /* btrfs_dev_replace_item */
3185 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3186 struct btrfs_dev_replace_item, src_devid, 64);
3187 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3188 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3189 64);
3190 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3191 replace_state, 64);
3192 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3193 time_started, 64);
3194 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3195 time_stopped, 64);
3196 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3197 num_write_errors, 64);
3198 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3199 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3200 64);
3201 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3202 cursor_left, 64);
3203 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3204 cursor_right, 64);
3205
3206 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3207 struct btrfs_dev_replace_item, src_devid, 64);
3208 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3209 struct btrfs_dev_replace_item,
3210 cont_reading_from_srcdev_mode, 64);
3211 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3212 struct btrfs_dev_replace_item, replace_state, 64);
3213 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3214 struct btrfs_dev_replace_item, time_started, 64);
3215 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3216 struct btrfs_dev_replace_item, time_stopped, 64);
3217 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3218 struct btrfs_dev_replace_item, num_write_errors, 64);
3219 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3220 struct btrfs_dev_replace_item,
3221 num_uncorrectable_read_errors, 64);
3222 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3223 struct btrfs_dev_replace_item, cursor_left, 64);
3224 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3225 struct btrfs_dev_replace_item, cursor_right, 64);
3226
3227 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3228 {
3229 return sb->s_fs_info;
3230 }
3231
3232 /* helper function to cast into the data area of the leaf. */
3233 #define btrfs_item_ptr(leaf, slot, type) \
3234 ((type *)(btrfs_leaf_data(leaf) + \
3235 btrfs_item_offset_nr(leaf, slot)))
3236
3237 #define btrfs_item_ptr_offset(leaf, slot) \
3238 ((unsigned long)(btrfs_leaf_data(leaf) + \
3239 btrfs_item_offset_nr(leaf, slot)))
3240
3241 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3242 {
3243 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3244 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3245 }
3246
3247 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3248 {
3249 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3250 }
3251
3252 /* extent-tree.c */
3253 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3254 unsigned num_items)
3255 {
3256 return (root->nodesize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3257 2 * num_items;
3258 }
3259
3260 /*
3261 * Doing a truncate won't result in new nodes or leaves, just what we need for
3262 * COW.
3263 */
3264 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3265 unsigned num_items)
3266 {
3267 return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3268 }
3269
3270 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3271 struct btrfs_root *root);
3272 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3273 struct btrfs_root *root);
3274 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3275 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3276 struct btrfs_root *root, unsigned long count);
3277 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3278 unsigned long count, int wait);
3279 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
3280 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3281 struct btrfs_root *root, u64 bytenr,
3282 u64 offset, int metadata, u64 *refs, u64 *flags);
3283 int btrfs_pin_extent(struct btrfs_root *root,
3284 u64 bytenr, u64 num, int reserved);
3285 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3286 u64 bytenr, u64 num_bytes);
3287 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3288 struct extent_buffer *eb);
3289 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3290 struct btrfs_root *root,
3291 u64 objectid, u64 offset, u64 bytenr);
3292 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3293 struct btrfs_fs_info *info,
3294 u64 bytenr);
3295 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3296 int get_block_group_index(struct btrfs_block_group_cache *cache);
3297 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *root, u64 parent,
3299 u64 root_objectid,
3300 struct btrfs_disk_key *key, int level,
3301 u64 hint, u64 empty_size);
3302 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3303 struct btrfs_root *root,
3304 struct extent_buffer *buf,
3305 u64 parent, int last_ref);
3306 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3307 struct btrfs_root *root,
3308 u64 root_objectid, u64 owner,
3309 u64 offset, struct btrfs_key *ins);
3310 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3311 struct btrfs_root *root,
3312 u64 root_objectid, u64 owner, u64 offset,
3313 struct btrfs_key *ins);
3314 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3315 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3316 struct btrfs_key *ins, int is_data, int delalloc);
3317 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3318 struct extent_buffer *buf, int full_backref);
3319 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3320 struct extent_buffer *buf, int full_backref);
3321 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3322 struct btrfs_root *root,
3323 u64 bytenr, u64 num_bytes, u64 flags,
3324 int level, int is_data);
3325 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root,
3327 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3328 u64 owner, u64 offset, int no_quota);
3329
3330 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3331 int delalloc);
3332 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3333 u64 start, u64 len);
3334 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3335 struct btrfs_root *root);
3336 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3337 struct btrfs_root *root);
3338 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3339 struct btrfs_root *root,
3340 u64 bytenr, u64 num_bytes, u64 parent,
3341 u64 root_objectid, u64 owner, u64 offset, int no_quota);
3342
3343 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3344 struct btrfs_root *root);
3345 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3346 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3347 int btrfs_read_block_groups(struct btrfs_root *root);
3348 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3349 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3350 struct btrfs_root *root, u64 bytes_used,
3351 u64 type, u64 chunk_objectid, u64 chunk_offset,
3352 u64 size);
3353 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3354 struct btrfs_root *root, u64 group_start);
3355 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
3356 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3357 struct btrfs_root *root);
3358 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3359 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3360
3361 enum btrfs_reserve_flush_enum {
3362 /* If we are in the transaction, we can't flush anything.*/
3363 BTRFS_RESERVE_NO_FLUSH,
3364 /*
3365 * Flushing delalloc may cause deadlock somewhere, in this
3366 * case, use FLUSH LIMIT
3367 */
3368 BTRFS_RESERVE_FLUSH_LIMIT,
3369 BTRFS_RESERVE_FLUSH_ALL,
3370 };
3371
3372 int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3373 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3374 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3375 struct btrfs_root *root);
3376 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3377 struct inode *inode);
3378 void btrfs_orphan_release_metadata(struct inode *inode);
3379 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3380 struct btrfs_block_rsv *rsv,
3381 int nitems,
3382 u64 *qgroup_reserved, bool use_global_rsv);
3383 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3384 struct btrfs_block_rsv *rsv,
3385 u64 qgroup_reserved);
3386 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3387 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3388 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3389 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3390 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3391 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3392 unsigned short type);
3393 void btrfs_free_block_rsv(struct btrfs_root *root,
3394 struct btrfs_block_rsv *rsv);
3395 int btrfs_block_rsv_add(struct btrfs_root *root,
3396 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3397 enum btrfs_reserve_flush_enum flush);
3398 int btrfs_block_rsv_check(struct btrfs_root *root,
3399 struct btrfs_block_rsv *block_rsv, int min_factor);
3400 int btrfs_block_rsv_refill(struct btrfs_root *root,
3401 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3402 enum btrfs_reserve_flush_enum flush);
3403 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3404 struct btrfs_block_rsv *dst_rsv,
3405 u64 num_bytes);
3406 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3407 struct btrfs_block_rsv *dest, u64 num_bytes,
3408 int min_factor);
3409 void btrfs_block_rsv_release(struct btrfs_root *root,
3410 struct btrfs_block_rsv *block_rsv,
3411 u64 num_bytes);
3412 int btrfs_set_block_group_ro(struct btrfs_root *root,
3413 struct btrfs_block_group_cache *cache);
3414 void btrfs_set_block_group_rw(struct btrfs_root *root,
3415 struct btrfs_block_group_cache *cache);
3416 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3417 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3418 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3419 u64 start, u64 end);
3420 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
3421 u64 num_bytes, u64 *actual_bytes);
3422 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3423 struct btrfs_root *root, u64 type);
3424 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3425
3426 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3427 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3428 struct btrfs_fs_info *fs_info);
3429 int __get_raid_index(u64 flags);
3430 int btrfs_start_nocow_write(struct btrfs_root *root);
3431 void btrfs_end_nocow_write(struct btrfs_root *root);
3432 /* ctree.c */
3433 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3434 int level, int *slot);
3435 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3436 int btrfs_previous_item(struct btrfs_root *root,
3437 struct btrfs_path *path, u64 min_objectid,
3438 int type);
3439 int btrfs_previous_extent_item(struct btrfs_root *root,
3440 struct btrfs_path *path, u64 min_objectid);
3441 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3442 struct btrfs_key *new_key);
3443 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3444 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3445 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3446 struct btrfs_key *key, int lowest_level,
3447 u64 min_trans);
3448 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3449 struct btrfs_path *path,
3450 u64 min_trans);
3451 enum btrfs_compare_tree_result {
3452 BTRFS_COMPARE_TREE_NEW,
3453 BTRFS_COMPARE_TREE_DELETED,
3454 BTRFS_COMPARE_TREE_CHANGED,
3455 BTRFS_COMPARE_TREE_SAME,
3456 };
3457 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3458 struct btrfs_root *right_root,
3459 struct btrfs_path *left_path,
3460 struct btrfs_path *right_path,
3461 struct btrfs_key *key,
3462 enum btrfs_compare_tree_result result,
3463 void *ctx);
3464 int btrfs_compare_trees(struct btrfs_root *left_root,
3465 struct btrfs_root *right_root,
3466 btrfs_changed_cb_t cb, void *ctx);
3467 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3468 struct btrfs_root *root, struct extent_buffer *buf,
3469 struct extent_buffer *parent, int parent_slot,
3470 struct extent_buffer **cow_ret);
3471 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3472 struct btrfs_root *root,
3473 struct extent_buffer *buf,
3474 struct extent_buffer **cow_ret, u64 new_root_objectid);
3475 int btrfs_block_can_be_shared(struct btrfs_root *root,
3476 struct extent_buffer *buf);
3477 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3478 u32 data_size);
3479 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3480 u32 new_size, int from_end);
3481 int btrfs_split_item(struct btrfs_trans_handle *trans,
3482 struct btrfs_root *root,
3483 struct btrfs_path *path,
3484 struct btrfs_key *new_key,
3485 unsigned long split_offset);
3486 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3487 struct btrfs_root *root,
3488 struct btrfs_path *path,
3489 struct btrfs_key *new_key);
3490 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3491 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3492 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3493 *root, struct btrfs_key *key, struct btrfs_path *p, int
3494 ins_len, int cow);
3495 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3496 struct btrfs_path *p, u64 time_seq);
3497 int btrfs_search_slot_for_read(struct btrfs_root *root,
3498 struct btrfs_key *key, struct btrfs_path *p,
3499 int find_higher, int return_any);
3500 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3501 struct btrfs_root *root, struct extent_buffer *parent,
3502 int start_slot, u64 *last_ret,
3503 struct btrfs_key *progress);
3504 void btrfs_release_path(struct btrfs_path *p);
3505 struct btrfs_path *btrfs_alloc_path(void);
3506 void btrfs_free_path(struct btrfs_path *p);
3507 void btrfs_set_path_blocking(struct btrfs_path *p);
3508 void btrfs_clear_path_blocking(struct btrfs_path *p,
3509 struct extent_buffer *held, int held_rw);
3510 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3511
3512 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3513 struct btrfs_path *path, int slot, int nr);
3514 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3515 struct btrfs_root *root,
3516 struct btrfs_path *path)
3517 {
3518 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3519 }
3520
3521 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3522 struct btrfs_key *cpu_key, u32 *data_size,
3523 u32 total_data, u32 total_size, int nr);
3524 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3525 *root, struct btrfs_key *key, void *data, u32 data_size);
3526 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3527 struct btrfs_root *root,
3528 struct btrfs_path *path,
3529 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3530
3531 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *root,
3533 struct btrfs_path *path,
3534 struct btrfs_key *key,
3535 u32 data_size)
3536 {
3537 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3538 }
3539
3540 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3541 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3542 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3543 u64 time_seq);
3544 static inline int btrfs_next_old_item(struct btrfs_root *root,
3545 struct btrfs_path *p, u64 time_seq)
3546 {
3547 ++p->slots[0];
3548 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3549 return btrfs_next_old_leaf(root, p, time_seq);
3550 return 0;
3551 }
3552 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3553 {
3554 return btrfs_next_old_item(root, p, 0);
3555 }
3556 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3557 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3558 struct btrfs_block_rsv *block_rsv,
3559 int update_ref, int for_reloc);
3560 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3561 struct btrfs_root *root,
3562 struct extent_buffer *node,
3563 struct extent_buffer *parent);
3564 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3565 {
3566 /*
3567 * Get synced with close_ctree()
3568 */
3569 smp_mb();
3570 return fs_info->closing;
3571 }
3572
3573 /*
3574 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3575 * anything except sleeping. This function is used to check the status of
3576 * the fs.
3577 */
3578 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3579 {
3580 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3581 btrfs_fs_closing(root->fs_info));
3582 }
3583
3584 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3585 {
3586 kfree(fs_info->balance_ctl);
3587 kfree(fs_info->delayed_root);
3588 kfree(fs_info->extent_root);
3589 kfree(fs_info->tree_root);
3590 kfree(fs_info->chunk_root);
3591 kfree(fs_info->dev_root);
3592 kfree(fs_info->csum_root);
3593 kfree(fs_info->quota_root);
3594 kfree(fs_info->uuid_root);
3595 kfree(fs_info->super_copy);
3596 kfree(fs_info->super_for_commit);
3597 security_free_mnt_opts(&fs_info->security_opts);
3598 kfree(fs_info);
3599 }
3600
3601 /* tree mod log functions from ctree.c */
3602 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3603 struct seq_list *elem);
3604 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3605 struct seq_list *elem);
3606 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3607
3608 /* root-item.c */
3609 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3610 struct btrfs_path *path,
3611 u64 root_id, u64 ref_id);
3612 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3613 struct btrfs_root *tree_root,
3614 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3615 const char *name, int name_len);
3616 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3617 struct btrfs_root *tree_root,
3618 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3619 const char *name, int name_len);
3620 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3621 struct btrfs_key *key);
3622 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3623 *root, struct btrfs_key *key, struct btrfs_root_item
3624 *item);
3625 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3626 struct btrfs_root *root,
3627 struct btrfs_key *key,
3628 struct btrfs_root_item *item);
3629 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3630 struct btrfs_path *path, struct btrfs_root_item *root_item,
3631 struct btrfs_key *root_key);
3632 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3633 void btrfs_set_root_node(struct btrfs_root_item *item,
3634 struct extent_buffer *node);
3635 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3636 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3637 struct btrfs_root *root);
3638
3639 /* uuid-tree.c */
3640 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3641 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3642 u64 subid);
3643 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3645 u64 subid);
3646 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3647 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3648 u64));
3649
3650 /* dir-item.c */
3651 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3652 const char *name, int name_len);
3653 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3654 struct btrfs_root *root, const char *name,
3655 int name_len, struct inode *dir,
3656 struct btrfs_key *location, u8 type, u64 index);
3657 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3658 struct btrfs_root *root,
3659 struct btrfs_path *path, u64 dir,
3660 const char *name, int name_len,
3661 int mod);
3662 struct btrfs_dir_item *
3663 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3664 struct btrfs_root *root,
3665 struct btrfs_path *path, u64 dir,
3666 u64 objectid, const char *name, int name_len,
3667 int mod);
3668 struct btrfs_dir_item *
3669 btrfs_search_dir_index_item(struct btrfs_root *root,
3670 struct btrfs_path *path, u64 dirid,
3671 const char *name, int name_len);
3672 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3673 struct btrfs_root *root,
3674 struct btrfs_path *path,
3675 struct btrfs_dir_item *di);
3676 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3677 struct btrfs_root *root,
3678 struct btrfs_path *path, u64 objectid,
3679 const char *name, u16 name_len,
3680 const void *data, u16 data_len);
3681 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3682 struct btrfs_root *root,
3683 struct btrfs_path *path, u64 dir,
3684 const char *name, u16 name_len,
3685 int mod);
3686 int verify_dir_item(struct btrfs_root *root,
3687 struct extent_buffer *leaf,
3688 struct btrfs_dir_item *dir_item);
3689
3690 /* orphan.c */
3691 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3692 struct btrfs_root *root, u64 offset);
3693 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3694 struct btrfs_root *root, u64 offset);
3695 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3696
3697 /* inode-item.c */
3698 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3699 struct btrfs_root *root,
3700 const char *name, int name_len,
3701 u64 inode_objectid, u64 ref_objectid, u64 index);
3702 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3703 struct btrfs_root *root,
3704 const char *name, int name_len,
3705 u64 inode_objectid, u64 ref_objectid, u64 *index);
3706 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3707 struct btrfs_root *root,
3708 struct btrfs_path *path, u64 objectid);
3709 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3710 *root, struct btrfs_path *path,
3711 struct btrfs_key *location, int mod);
3712
3713 struct btrfs_inode_extref *
3714 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3715 struct btrfs_root *root,
3716 struct btrfs_path *path,
3717 const char *name, int name_len,
3718 u64 inode_objectid, u64 ref_objectid, int ins_len,
3719 int cow);
3720
3721 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3722 u64 ref_objectid, const char *name,
3723 int name_len,
3724 struct btrfs_inode_extref **extref_ret);
3725
3726 /* file-item.c */
3727 struct btrfs_dio_private;
3728 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *root, u64 bytenr, u64 len);
3730 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3731 struct bio *bio, u32 *dst);
3732 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3733 struct bio *bio, u64 logical_offset);
3734 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3735 struct btrfs_root *root,
3736 u64 objectid, u64 pos,
3737 u64 disk_offset, u64 disk_num_bytes,
3738 u64 num_bytes, u64 offset, u64 ram_bytes,
3739 u8 compression, u8 encryption, u16 other_encoding);
3740 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3741 struct btrfs_root *root,
3742 struct btrfs_path *path, u64 objectid,
3743 u64 bytenr, int mod);
3744 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3745 struct btrfs_root *root,
3746 struct btrfs_ordered_sum *sums);
3747 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3748 struct bio *bio, u64 file_start, int contig);
3749 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3750 struct list_head *list, int search_commit);
3751 void btrfs_extent_item_to_extent_map(struct inode *inode,
3752 const struct btrfs_path *path,
3753 struct btrfs_file_extent_item *fi,
3754 const bool new_inline,
3755 struct extent_map *em);
3756
3757 /* inode.c */
3758 struct btrfs_delalloc_work {
3759 struct inode *inode;
3760 int wait;
3761 int delay_iput;
3762 struct completion completion;
3763 struct list_head list;
3764 struct btrfs_work work;
3765 };
3766
3767 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3768 int wait, int delay_iput);
3769 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3770
3771 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3772 size_t pg_offset, u64 start, u64 len,
3773 int create);
3774 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3775 u64 *orig_start, u64 *orig_block_len,
3776 u64 *ram_bytes);
3777
3778 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3779 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3780 #define ClearPageChecked ClearPageFsMisc
3781 #define SetPageChecked SetPageFsMisc
3782 #define PageChecked PageFsMisc
3783 #endif
3784
3785 /* This forces readahead on a given range of bytes in an inode */
3786 static inline void btrfs_force_ra(struct address_space *mapping,
3787 struct file_ra_state *ra, struct file *file,
3788 pgoff_t offset, unsigned long req_size)
3789 {
3790 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3791 }
3792
3793 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3794 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3795 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3796 struct btrfs_root *root,
3797 struct inode *dir, struct inode *inode,
3798 const char *name, int name_len);
3799 int btrfs_add_link(struct btrfs_trans_handle *trans,
3800 struct inode *parent_inode, struct inode *inode,
3801 const char *name, int name_len, int add_backref, u64 index);
3802 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3803 struct btrfs_root *root,
3804 struct inode *dir, u64 objectid,
3805 const char *name, int name_len);
3806 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3807 int front);
3808 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3809 struct btrfs_root *root,
3810 struct inode *inode, u64 new_size,
3811 u32 min_type);
3812
3813 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3814 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3815 int nr);
3816 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3817 struct extent_state **cached_state);
3818 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3819 struct btrfs_root *new_root,
3820 struct btrfs_root *parent_root,
3821 u64 new_dirid);
3822 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3823 size_t size, struct bio *bio,
3824 unsigned long bio_flags);
3825 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3826 int btrfs_readpage(struct file *file, struct page *page);
3827 void btrfs_evict_inode(struct inode *inode);
3828 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3829 struct inode *btrfs_alloc_inode(struct super_block *sb);
3830 void btrfs_destroy_inode(struct inode *inode);
3831 int btrfs_drop_inode(struct inode *inode);
3832 int btrfs_init_cachep(void);
3833 void btrfs_destroy_cachep(void);
3834 long btrfs_ioctl_trans_end(struct file *file);
3835 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3836 struct btrfs_root *root, int *was_new);
3837 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3838 size_t pg_offset, u64 start, u64 end,
3839 int create);
3840 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3841 struct btrfs_root *root,
3842 struct inode *inode);
3843 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3844 struct btrfs_root *root, struct inode *inode);
3845 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3846 int btrfs_orphan_cleanup(struct btrfs_root *root);
3847 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3848 struct btrfs_root *root);
3849 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3850 void btrfs_invalidate_inodes(struct btrfs_root *root);
3851 void btrfs_add_delayed_iput(struct inode *inode);
3852 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3853 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3854 u64 start, u64 num_bytes, u64 min_size,
3855 loff_t actual_len, u64 *alloc_hint);
3856 int btrfs_prealloc_file_range_trans(struct inode *inode,
3857 struct btrfs_trans_handle *trans, int mode,
3858 u64 start, u64 num_bytes, u64 min_size,
3859 loff_t actual_len, u64 *alloc_hint);
3860 extern const struct dentry_operations btrfs_dentry_operations;
3861
3862 /* ioctl.c */
3863 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3864 void btrfs_update_iflags(struct inode *inode);
3865 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3866 int btrfs_is_empty_uuid(u8 *uuid);
3867 int btrfs_defrag_file(struct inode *inode, struct file *file,
3868 struct btrfs_ioctl_defrag_range_args *range,
3869 u64 newer_than, unsigned long max_pages);
3870 void btrfs_get_block_group_info(struct list_head *groups_list,
3871 struct btrfs_ioctl_space_info *space);
3872 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3873 struct btrfs_ioctl_balance_args *bargs);
3874
3875
3876 /* file.c */
3877 int btrfs_auto_defrag_init(void);
3878 void btrfs_auto_defrag_exit(void);
3879 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3880 struct inode *inode);
3881 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3882 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3883 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3884 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3885 int skip_pinned);
3886 extern const struct file_operations btrfs_file_operations;
3887 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3888 struct btrfs_root *root, struct inode *inode,
3889 struct btrfs_path *path, u64 start, u64 end,
3890 u64 *drop_end, int drop_cache,
3891 int replace_extent,
3892 u32 extent_item_size,
3893 int *key_inserted);
3894 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3895 struct btrfs_root *root, struct inode *inode, u64 start,
3896 u64 end, int drop_cache);
3897 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3898 struct inode *inode, u64 start, u64 end);
3899 int btrfs_release_file(struct inode *inode, struct file *file);
3900 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3901 struct page **pages, size_t num_pages,
3902 loff_t pos, size_t write_bytes,
3903 struct extent_state **cached);
3904
3905 /* tree-defrag.c */
3906 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3907 struct btrfs_root *root);
3908
3909 /* sysfs.c */
3910 int btrfs_init_sysfs(void);
3911 void btrfs_exit_sysfs(void);
3912 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
3913 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
3914
3915 /* xattr.c */
3916 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3917
3918 /* super.c */
3919 int btrfs_parse_options(struct btrfs_root *root, char *options);
3920 int btrfs_sync_fs(struct super_block *sb, int wait);
3921
3922 #ifdef CONFIG_PRINTK
3923 __printf(2, 3)
3924 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3925 #else
3926 static inline __printf(2, 3)
3927 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3928 {
3929 }
3930 #endif
3931
3932 #define btrfs_emerg(fs_info, fmt, args...) \
3933 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3934 #define btrfs_alert(fs_info, fmt, args...) \
3935 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3936 #define btrfs_crit(fs_info, fmt, args...) \
3937 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3938 #define btrfs_err(fs_info, fmt, args...) \
3939 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3940 #define btrfs_warn(fs_info, fmt, args...) \
3941 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3942 #define btrfs_notice(fs_info, fmt, args...) \
3943 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3944 #define btrfs_info(fs_info, fmt, args...) \
3945 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3946
3947 #ifdef DEBUG
3948 #define btrfs_debug(fs_info, fmt, args...) \
3949 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3950 #else
3951 #define btrfs_debug(fs_info, fmt, args...) \
3952 no_printk(KERN_DEBUG fmt, ##args)
3953 #endif
3954
3955 #ifdef CONFIG_BTRFS_ASSERT
3956
3957 static inline void assfail(char *expr, char *file, int line)
3958 {
3959 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
3960 expr, file, line);
3961 BUG();
3962 }
3963
3964 #define ASSERT(expr) \
3965 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3966 #else
3967 #define ASSERT(expr) ((void)0)
3968 #endif
3969
3970 #define btrfs_assert()
3971 __printf(5, 6)
3972 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3973 unsigned int line, int errno, const char *fmt, ...);
3974
3975
3976 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3977 struct btrfs_root *root, const char *function,
3978 unsigned int line, int errno);
3979
3980 #define btrfs_set_fs_incompat(__fs_info, opt) \
3981 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3982
3983 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3984 u64 flag)
3985 {
3986 struct btrfs_super_block *disk_super;
3987 u64 features;
3988
3989 disk_super = fs_info->super_copy;
3990 features = btrfs_super_incompat_flags(disk_super);
3991 if (!(features & flag)) {
3992 spin_lock(&fs_info->super_lock);
3993 features = btrfs_super_incompat_flags(disk_super);
3994 if (!(features & flag)) {
3995 features |= flag;
3996 btrfs_set_super_incompat_flags(disk_super, features);
3997 btrfs_info(fs_info, "setting %llu feature flag",
3998 flag);
3999 }
4000 spin_unlock(&fs_info->super_lock);
4001 }
4002 }
4003
4004 #define btrfs_fs_incompat(fs_info, opt) \
4005 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4006
4007 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
4008 {
4009 struct btrfs_super_block *disk_super;
4010 disk_super = fs_info->super_copy;
4011 return !!(btrfs_super_incompat_flags(disk_super) & flag);
4012 }
4013
4014 /*
4015 * Call btrfs_abort_transaction as early as possible when an error condition is
4016 * detected, that way the exact line number is reported.
4017 */
4018
4019 #define btrfs_abort_transaction(trans, root, errno) \
4020 do { \
4021 __btrfs_abort_transaction(trans, root, __func__, \
4022 __LINE__, errno); \
4023 } while (0)
4024
4025 #define btrfs_std_error(fs_info, errno) \
4026 do { \
4027 if ((errno)) \
4028 __btrfs_std_error((fs_info), __func__, \
4029 __LINE__, (errno), NULL); \
4030 } while (0)
4031
4032 #define btrfs_error(fs_info, errno, fmt, args...) \
4033 do { \
4034 __btrfs_std_error((fs_info), __func__, __LINE__, \
4035 (errno), fmt, ##args); \
4036 } while (0)
4037
4038 __printf(5, 6)
4039 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4040 unsigned int line, int errno, const char *fmt, ...);
4041
4042 /*
4043 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4044 * will panic(). Otherwise we BUG() here.
4045 */
4046 #define btrfs_panic(fs_info, errno, fmt, args...) \
4047 do { \
4048 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
4049 BUG(); \
4050 } while (0)
4051
4052 /* acl.c */
4053 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
4054 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4055 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4056 int btrfs_init_acl(struct btrfs_trans_handle *trans,
4057 struct inode *inode, struct inode *dir);
4058 #else
4059 #define btrfs_get_acl NULL
4060 #define btrfs_set_acl NULL
4061 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4062 struct inode *inode, struct inode *dir)
4063 {
4064 return 0;
4065 }
4066 #endif
4067
4068 /* relocation.c */
4069 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4070 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4071 struct btrfs_root *root);
4072 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4073 struct btrfs_root *root);
4074 int btrfs_recover_relocation(struct btrfs_root *root);
4075 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4076 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4077 struct btrfs_root *root, struct extent_buffer *buf,
4078 struct extent_buffer *cow);
4079 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4080 struct btrfs_pending_snapshot *pending,
4081 u64 *bytes_to_reserve);
4082 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4083 struct btrfs_pending_snapshot *pending);
4084
4085 /* scrub.c */
4086 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4087 u64 end, struct btrfs_scrub_progress *progress,
4088 int readonly, int is_dev_replace);
4089 void btrfs_scrub_pause(struct btrfs_root *root);
4090 void btrfs_scrub_continue(struct btrfs_root *root);
4091 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4092 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4093 struct btrfs_device *dev);
4094 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4095 struct btrfs_scrub_progress *progress);
4096
4097 /* dev-replace.c */
4098 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4099 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4100 void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info);
4101
4102 /* reada.c */
4103 struct reada_control {
4104 struct btrfs_root *root; /* tree to prefetch */
4105 struct btrfs_key key_start;
4106 struct btrfs_key key_end; /* exclusive */
4107 atomic_t elems;
4108 struct kref refcnt;
4109 wait_queue_head_t wait;
4110 };
4111 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4112 struct btrfs_key *start, struct btrfs_key *end);
4113 int btrfs_reada_wait(void *handle);
4114 void btrfs_reada_detach(void *handle);
4115 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4116 u64 start, int err);
4117
4118 static inline int is_fstree(u64 rootid)
4119 {
4120 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4121 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
4122 return 1;
4123 return 0;
4124 }
4125
4126 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4127 {
4128 return signal_pending(current);
4129 }
4130
4131 /* Sanity test specific functions */
4132 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4133 void btrfs_test_destroy_inode(struct inode *inode);
4134 #endif
4135
4136 static inline int btrfs_test_is_dummy_root(struct btrfs_root *root)
4137 {
4138 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4139 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
4140 return 1;
4141 #endif
4142 return 0;
4143 }
4144
4145 #endif