]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/delayed-inode.c
Merge tag 'tty-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / delayed-inode.c
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
29
30 static struct kmem_cache *delayed_node_cache;
31
32 int __init btrfs_delayed_inode_init(void)
33 {
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
36 0,
37 SLAB_MEM_SPREAD,
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
42 }
43
44 void btrfs_delayed_inode_exit(void)
45 {
46 kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
52 {
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 refcount_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62
63 static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
66 {
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
71 return 1;
72 return 0;
73 }
74
75 static struct btrfs_delayed_node *btrfs_get_delayed_node(
76 struct btrfs_inode *btrfs_inode)
77 {
78 struct btrfs_root *root = btrfs_inode->root;
79 u64 ino = btrfs_ino(btrfs_inode);
80 struct btrfs_delayed_node *node;
81
82 node = READ_ONCE(btrfs_inode->delayed_node);
83 if (node) {
84 refcount_inc(&node->refs);
85 return node;
86 }
87
88 spin_lock(&root->inode_lock);
89 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 if (node) {
91 if (btrfs_inode->delayed_node) {
92 refcount_inc(&node->refs); /* can be accessed */
93 BUG_ON(btrfs_inode->delayed_node != node);
94 spin_unlock(&root->inode_lock);
95 return node;
96 }
97 btrfs_inode->delayed_node = node;
98 /* can be accessed and cached in the inode */
99 refcount_add(2, &node->refs);
100 spin_unlock(&root->inode_lock);
101 return node;
102 }
103 spin_unlock(&root->inode_lock);
104
105 return NULL;
106 }
107
108 /* Will return either the node or PTR_ERR(-ENOMEM) */
109 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110 struct btrfs_inode *btrfs_inode)
111 {
112 struct btrfs_delayed_node *node;
113 struct btrfs_root *root = btrfs_inode->root;
114 u64 ino = btrfs_ino(btrfs_inode);
115 int ret;
116
117 again:
118 node = btrfs_get_delayed_node(btrfs_inode);
119 if (node)
120 return node;
121
122 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
123 if (!node)
124 return ERR_PTR(-ENOMEM);
125 btrfs_init_delayed_node(node, root, ino);
126
127 /* cached in the btrfs inode and can be accessed */
128 refcount_set(&node->refs, 2);
129
130 ret = radix_tree_preload(GFP_NOFS);
131 if (ret) {
132 kmem_cache_free(delayed_node_cache, node);
133 return ERR_PTR(ret);
134 }
135
136 spin_lock(&root->inode_lock);
137 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
138 if (ret == -EEXIST) {
139 spin_unlock(&root->inode_lock);
140 kmem_cache_free(delayed_node_cache, node);
141 radix_tree_preload_end();
142 goto again;
143 }
144 btrfs_inode->delayed_node = node;
145 spin_unlock(&root->inode_lock);
146 radix_tree_preload_end();
147
148 return node;
149 }
150
151 /*
152 * Call it when holding delayed_node->mutex
153 *
154 * If mod = 1, add this node into the prepared list.
155 */
156 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
157 struct btrfs_delayed_node *node,
158 int mod)
159 {
160 spin_lock(&root->lock);
161 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
162 if (!list_empty(&node->p_list))
163 list_move_tail(&node->p_list, &root->prepare_list);
164 else if (mod)
165 list_add_tail(&node->p_list, &root->prepare_list);
166 } else {
167 list_add_tail(&node->n_list, &root->node_list);
168 list_add_tail(&node->p_list, &root->prepare_list);
169 refcount_inc(&node->refs); /* inserted into list */
170 root->nodes++;
171 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
172 }
173 spin_unlock(&root->lock);
174 }
175
176 /* Call it when holding delayed_node->mutex */
177 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
178 struct btrfs_delayed_node *node)
179 {
180 spin_lock(&root->lock);
181 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
182 root->nodes--;
183 refcount_dec(&node->refs); /* not in the list */
184 list_del_init(&node->n_list);
185 if (!list_empty(&node->p_list))
186 list_del_init(&node->p_list);
187 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
188 }
189 spin_unlock(&root->lock);
190 }
191
192 static struct btrfs_delayed_node *btrfs_first_delayed_node(
193 struct btrfs_delayed_root *delayed_root)
194 {
195 struct list_head *p;
196 struct btrfs_delayed_node *node = NULL;
197
198 spin_lock(&delayed_root->lock);
199 if (list_empty(&delayed_root->node_list))
200 goto out;
201
202 p = delayed_root->node_list.next;
203 node = list_entry(p, struct btrfs_delayed_node, n_list);
204 refcount_inc(&node->refs);
205 out:
206 spin_unlock(&delayed_root->lock);
207
208 return node;
209 }
210
211 static struct btrfs_delayed_node *btrfs_next_delayed_node(
212 struct btrfs_delayed_node *node)
213 {
214 struct btrfs_delayed_root *delayed_root;
215 struct list_head *p;
216 struct btrfs_delayed_node *next = NULL;
217
218 delayed_root = node->root->fs_info->delayed_root;
219 spin_lock(&delayed_root->lock);
220 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221 /* not in the list */
222 if (list_empty(&delayed_root->node_list))
223 goto out;
224 p = delayed_root->node_list.next;
225 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
226 goto out;
227 else
228 p = node->n_list.next;
229
230 next = list_entry(p, struct btrfs_delayed_node, n_list);
231 refcount_inc(&next->refs);
232 out:
233 spin_unlock(&delayed_root->lock);
234
235 return next;
236 }
237
238 static void __btrfs_release_delayed_node(
239 struct btrfs_delayed_node *delayed_node,
240 int mod)
241 {
242 struct btrfs_delayed_root *delayed_root;
243
244 if (!delayed_node)
245 return;
246
247 delayed_root = delayed_node->root->fs_info->delayed_root;
248
249 mutex_lock(&delayed_node->mutex);
250 if (delayed_node->count)
251 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
252 else
253 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
254 mutex_unlock(&delayed_node->mutex);
255
256 if (refcount_dec_and_test(&delayed_node->refs)) {
257 bool free = false;
258 struct btrfs_root *root = delayed_node->root;
259 spin_lock(&root->inode_lock);
260 if (refcount_read(&delayed_node->refs) == 0) {
261 radix_tree_delete(&root->delayed_nodes_tree,
262 delayed_node->inode_id);
263 free = true;
264 }
265 spin_unlock(&root->inode_lock);
266 if (free)
267 kmem_cache_free(delayed_node_cache, delayed_node);
268 }
269 }
270
271 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
272 {
273 __btrfs_release_delayed_node(node, 0);
274 }
275
276 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
277 struct btrfs_delayed_root *delayed_root)
278 {
279 struct list_head *p;
280 struct btrfs_delayed_node *node = NULL;
281
282 spin_lock(&delayed_root->lock);
283 if (list_empty(&delayed_root->prepare_list))
284 goto out;
285
286 p = delayed_root->prepare_list.next;
287 list_del_init(p);
288 node = list_entry(p, struct btrfs_delayed_node, p_list);
289 refcount_inc(&node->refs);
290 out:
291 spin_unlock(&delayed_root->lock);
292
293 return node;
294 }
295
296 static inline void btrfs_release_prepared_delayed_node(
297 struct btrfs_delayed_node *node)
298 {
299 __btrfs_release_delayed_node(node, 1);
300 }
301
302 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
303 {
304 struct btrfs_delayed_item *item;
305 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
306 if (item) {
307 item->data_len = data_len;
308 item->ins_or_del = 0;
309 item->bytes_reserved = 0;
310 item->delayed_node = NULL;
311 refcount_set(&item->refs, 1);
312 }
313 return item;
314 }
315
316 /*
317 * __btrfs_lookup_delayed_item - look up the delayed item by key
318 * @delayed_node: pointer to the delayed node
319 * @key: the key to look up
320 * @prev: used to store the prev item if the right item isn't found
321 * @next: used to store the next item if the right item isn't found
322 *
323 * Note: if we don't find the right item, we will return the prev item and
324 * the next item.
325 */
326 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
327 struct rb_root *root,
328 struct btrfs_key *key,
329 struct btrfs_delayed_item **prev,
330 struct btrfs_delayed_item **next)
331 {
332 struct rb_node *node, *prev_node = NULL;
333 struct btrfs_delayed_item *delayed_item = NULL;
334 int ret = 0;
335
336 node = root->rb_node;
337
338 while (node) {
339 delayed_item = rb_entry(node, struct btrfs_delayed_item,
340 rb_node);
341 prev_node = node;
342 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
343 if (ret < 0)
344 node = node->rb_right;
345 else if (ret > 0)
346 node = node->rb_left;
347 else
348 return delayed_item;
349 }
350
351 if (prev) {
352 if (!prev_node)
353 *prev = NULL;
354 else if (ret < 0)
355 *prev = delayed_item;
356 else if ((node = rb_prev(prev_node)) != NULL) {
357 *prev = rb_entry(node, struct btrfs_delayed_item,
358 rb_node);
359 } else
360 *prev = NULL;
361 }
362
363 if (next) {
364 if (!prev_node)
365 *next = NULL;
366 else if (ret > 0)
367 *next = delayed_item;
368 else if ((node = rb_next(prev_node)) != NULL) {
369 *next = rb_entry(node, struct btrfs_delayed_item,
370 rb_node);
371 } else
372 *next = NULL;
373 }
374 return NULL;
375 }
376
377 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
378 struct btrfs_delayed_node *delayed_node,
379 struct btrfs_key *key)
380 {
381 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
382 NULL, NULL);
383 }
384
385 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
386 struct btrfs_delayed_item *ins,
387 int action)
388 {
389 struct rb_node **p, *node;
390 struct rb_node *parent_node = NULL;
391 struct rb_root *root;
392 struct btrfs_delayed_item *item;
393 int cmp;
394
395 if (action == BTRFS_DELAYED_INSERTION_ITEM)
396 root = &delayed_node->ins_root;
397 else if (action == BTRFS_DELAYED_DELETION_ITEM)
398 root = &delayed_node->del_root;
399 else
400 BUG();
401 p = &root->rb_node;
402 node = &ins->rb_node;
403
404 while (*p) {
405 parent_node = *p;
406 item = rb_entry(parent_node, struct btrfs_delayed_item,
407 rb_node);
408
409 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
410 if (cmp < 0)
411 p = &(*p)->rb_right;
412 else if (cmp > 0)
413 p = &(*p)->rb_left;
414 else
415 return -EEXIST;
416 }
417
418 rb_link_node(node, parent_node, p);
419 rb_insert_color(node, root);
420 ins->delayed_node = delayed_node;
421 ins->ins_or_del = action;
422
423 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
424 action == BTRFS_DELAYED_INSERTION_ITEM &&
425 ins->key.offset >= delayed_node->index_cnt)
426 delayed_node->index_cnt = ins->key.offset + 1;
427
428 delayed_node->count++;
429 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
430 return 0;
431 }
432
433 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
434 struct btrfs_delayed_item *item)
435 {
436 return __btrfs_add_delayed_item(node, item,
437 BTRFS_DELAYED_INSERTION_ITEM);
438 }
439
440 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
441 struct btrfs_delayed_item *item)
442 {
443 return __btrfs_add_delayed_item(node, item,
444 BTRFS_DELAYED_DELETION_ITEM);
445 }
446
447 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
448 {
449 int seq = atomic_inc_return(&delayed_root->items_seq);
450
451 /*
452 * atomic_dec_return implies a barrier for waitqueue_active
453 */
454 if ((atomic_dec_return(&delayed_root->items) <
455 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
456 waitqueue_active(&delayed_root->wait))
457 wake_up(&delayed_root->wait);
458 }
459
460 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
461 {
462 struct rb_root *root;
463 struct btrfs_delayed_root *delayed_root;
464
465 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
466
467 BUG_ON(!delayed_root);
468 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
469 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
470
471 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
472 root = &delayed_item->delayed_node->ins_root;
473 else
474 root = &delayed_item->delayed_node->del_root;
475
476 rb_erase(&delayed_item->rb_node, root);
477 delayed_item->delayed_node->count--;
478
479 finish_one_item(delayed_root);
480 }
481
482 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
483 {
484 if (item) {
485 __btrfs_remove_delayed_item(item);
486 if (refcount_dec_and_test(&item->refs))
487 kfree(item);
488 }
489 }
490
491 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
492 struct btrfs_delayed_node *delayed_node)
493 {
494 struct rb_node *p;
495 struct btrfs_delayed_item *item = NULL;
496
497 p = rb_first(&delayed_node->ins_root);
498 if (p)
499 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
500
501 return item;
502 }
503
504 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
505 struct btrfs_delayed_node *delayed_node)
506 {
507 struct rb_node *p;
508 struct btrfs_delayed_item *item = NULL;
509
510 p = rb_first(&delayed_node->del_root);
511 if (p)
512 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
513
514 return item;
515 }
516
517 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
518 struct btrfs_delayed_item *item)
519 {
520 struct rb_node *p;
521 struct btrfs_delayed_item *next = NULL;
522
523 p = rb_next(&item->rb_node);
524 if (p)
525 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
526
527 return next;
528 }
529
530 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
531 struct btrfs_fs_info *fs_info,
532 struct btrfs_delayed_item *item)
533 {
534 struct btrfs_block_rsv *src_rsv;
535 struct btrfs_block_rsv *dst_rsv;
536 u64 num_bytes;
537 int ret;
538
539 if (!trans->bytes_reserved)
540 return 0;
541
542 src_rsv = trans->block_rsv;
543 dst_rsv = &fs_info->delayed_block_rsv;
544
545 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
546 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
547 if (!ret) {
548 trace_btrfs_space_reservation(fs_info, "delayed_item",
549 item->key.objectid,
550 num_bytes, 1);
551 item->bytes_reserved = num_bytes;
552 }
553
554 return ret;
555 }
556
557 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
558 struct btrfs_delayed_item *item)
559 {
560 struct btrfs_block_rsv *rsv;
561
562 if (!item->bytes_reserved)
563 return;
564
565 rsv = &fs_info->delayed_block_rsv;
566 trace_btrfs_space_reservation(fs_info, "delayed_item",
567 item->key.objectid, item->bytes_reserved,
568 0);
569 btrfs_block_rsv_release(fs_info, rsv,
570 item->bytes_reserved);
571 }
572
573 static int btrfs_delayed_inode_reserve_metadata(
574 struct btrfs_trans_handle *trans,
575 struct btrfs_root *root,
576 struct btrfs_inode *inode,
577 struct btrfs_delayed_node *node)
578 {
579 struct btrfs_fs_info *fs_info = root->fs_info;
580 struct btrfs_block_rsv *src_rsv;
581 struct btrfs_block_rsv *dst_rsv;
582 u64 num_bytes;
583 int ret;
584 bool release = false;
585
586 src_rsv = trans->block_rsv;
587 dst_rsv = &fs_info->delayed_block_rsv;
588
589 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
590
591 /*
592 * If our block_rsv is the delalloc block reserve then check and see if
593 * we have our extra reservation for updating the inode. If not fall
594 * through and try to reserve space quickly.
595 *
596 * We used to try and steal from the delalloc block rsv or the global
597 * reserve, but we'd steal a full reservation, which isn't kind. We are
598 * here through delalloc which means we've likely just cowed down close
599 * to the leaf that contains the inode, so we would steal less just
600 * doing the fallback inode update, so if we do end up having to steal
601 * from the global block rsv we hopefully only steal one or two blocks
602 * worth which is less likely to hurt us.
603 */
604 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
605 spin_lock(&inode->lock);
606 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
607 &inode->runtime_flags))
608 release = true;
609 else
610 src_rsv = NULL;
611 spin_unlock(&inode->lock);
612 }
613
614 /*
615 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 * which doesn't reserve space for speed. This is a problem since we
617 * still need to reserve space for this update, so try to reserve the
618 * space.
619 *
620 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 * we're accounted for.
622 */
623 if (!src_rsv || (!trans->bytes_reserved &&
624 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
626 BTRFS_RESERVE_NO_FLUSH);
627 /*
628 * Since we're under a transaction reserve_metadata_bytes could
629 * try to commit the transaction which will make it return
630 * EAGAIN to make us stop the transaction we have, so return
631 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
632 */
633 if (ret == -EAGAIN)
634 ret = -ENOSPC;
635 if (!ret) {
636 node->bytes_reserved = num_bytes;
637 trace_btrfs_space_reservation(fs_info,
638 "delayed_inode",
639 btrfs_ino(inode),
640 num_bytes, 1);
641 }
642 return ret;
643 }
644
645 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
646
647 /*
648 * Migrate only takes a reservation, it doesn't touch the size of the
649 * block_rsv. This is to simplify people who don't normally have things
650 * migrated from their block rsv. If they go to release their
651 * reservation, that will decrease the size as well, so if migrate
652 * reduced size we'd end up with a negative size. But for the
653 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
654 * but we could in fact do this reserve/migrate dance several times
655 * between the time we did the original reservation and we'd clean it
656 * up. So to take care of this, release the space for the meta
657 * reservation here. I think it may be time for a documentation page on
658 * how block rsvs. work.
659 */
660 if (!ret) {
661 trace_btrfs_space_reservation(fs_info, "delayed_inode",
662 btrfs_ino(inode), num_bytes, 1);
663 node->bytes_reserved = num_bytes;
664 }
665
666 if (release) {
667 trace_btrfs_space_reservation(fs_info, "delalloc",
668 btrfs_ino(inode), num_bytes, 0);
669 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
670 }
671
672 return ret;
673 }
674
675 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
676 struct btrfs_delayed_node *node)
677 {
678 struct btrfs_block_rsv *rsv;
679
680 if (!node->bytes_reserved)
681 return;
682
683 rsv = &fs_info->delayed_block_rsv;
684 trace_btrfs_space_reservation(fs_info, "delayed_inode",
685 node->inode_id, node->bytes_reserved, 0);
686 btrfs_block_rsv_release(fs_info, rsv,
687 node->bytes_reserved);
688 node->bytes_reserved = 0;
689 }
690
691 /*
692 * This helper will insert some continuous items into the same leaf according
693 * to the free space of the leaf.
694 */
695 static int btrfs_batch_insert_items(struct btrfs_root *root,
696 struct btrfs_path *path,
697 struct btrfs_delayed_item *item)
698 {
699 struct btrfs_fs_info *fs_info = root->fs_info;
700 struct btrfs_delayed_item *curr, *next;
701 int free_space;
702 int total_data_size = 0, total_size = 0;
703 struct extent_buffer *leaf;
704 char *data_ptr;
705 struct btrfs_key *keys;
706 u32 *data_size;
707 struct list_head head;
708 int slot;
709 int nitems;
710 int i;
711 int ret = 0;
712
713 BUG_ON(!path->nodes[0]);
714
715 leaf = path->nodes[0];
716 free_space = btrfs_leaf_free_space(fs_info, leaf);
717 INIT_LIST_HEAD(&head);
718
719 next = item;
720 nitems = 0;
721
722 /*
723 * count the number of the continuous items that we can insert in batch
724 */
725 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
726 free_space) {
727 total_data_size += next->data_len;
728 total_size += next->data_len + sizeof(struct btrfs_item);
729 list_add_tail(&next->tree_list, &head);
730 nitems++;
731
732 curr = next;
733 next = __btrfs_next_delayed_item(curr);
734 if (!next)
735 break;
736
737 if (!btrfs_is_continuous_delayed_item(curr, next))
738 break;
739 }
740
741 if (!nitems) {
742 ret = 0;
743 goto out;
744 }
745
746 /*
747 * we need allocate some memory space, but it might cause the task
748 * to sleep, so we set all locked nodes in the path to blocking locks
749 * first.
750 */
751 btrfs_set_path_blocking(path);
752
753 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
754 if (!keys) {
755 ret = -ENOMEM;
756 goto out;
757 }
758
759 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
760 if (!data_size) {
761 ret = -ENOMEM;
762 goto error;
763 }
764
765 /* get keys of all the delayed items */
766 i = 0;
767 list_for_each_entry(next, &head, tree_list) {
768 keys[i] = next->key;
769 data_size[i] = next->data_len;
770 i++;
771 }
772
773 /* reset all the locked nodes in the patch to spinning locks. */
774 btrfs_clear_path_blocking(path, NULL, 0);
775
776 /* insert the keys of the items */
777 setup_items_for_insert(root, path, keys, data_size,
778 total_data_size, total_size, nitems);
779
780 /* insert the dir index items */
781 slot = path->slots[0];
782 list_for_each_entry_safe(curr, next, &head, tree_list) {
783 data_ptr = btrfs_item_ptr(leaf, slot, char);
784 write_extent_buffer(leaf, &curr->data,
785 (unsigned long)data_ptr,
786 curr->data_len);
787 slot++;
788
789 btrfs_delayed_item_release_metadata(fs_info, curr);
790
791 list_del(&curr->tree_list);
792 btrfs_release_delayed_item(curr);
793 }
794
795 error:
796 kfree(data_size);
797 kfree(keys);
798 out:
799 return ret;
800 }
801
802 /*
803 * This helper can just do simple insertion that needn't extend item for new
804 * data, such as directory name index insertion, inode insertion.
805 */
806 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
807 struct btrfs_root *root,
808 struct btrfs_path *path,
809 struct btrfs_delayed_item *delayed_item)
810 {
811 struct btrfs_fs_info *fs_info = root->fs_info;
812 struct extent_buffer *leaf;
813 char *ptr;
814 int ret;
815
816 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
817 delayed_item->data_len);
818 if (ret < 0 && ret != -EEXIST)
819 return ret;
820
821 leaf = path->nodes[0];
822
823 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
824
825 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
826 delayed_item->data_len);
827 btrfs_mark_buffer_dirty(leaf);
828
829 btrfs_delayed_item_release_metadata(fs_info, delayed_item);
830 return 0;
831 }
832
833 /*
834 * we insert an item first, then if there are some continuous items, we try
835 * to insert those items into the same leaf.
836 */
837 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
838 struct btrfs_path *path,
839 struct btrfs_root *root,
840 struct btrfs_delayed_node *node)
841 {
842 struct btrfs_delayed_item *curr, *prev;
843 int ret = 0;
844
845 do_again:
846 mutex_lock(&node->mutex);
847 curr = __btrfs_first_delayed_insertion_item(node);
848 if (!curr)
849 goto insert_end;
850
851 ret = btrfs_insert_delayed_item(trans, root, path, curr);
852 if (ret < 0) {
853 btrfs_release_path(path);
854 goto insert_end;
855 }
856
857 prev = curr;
858 curr = __btrfs_next_delayed_item(prev);
859 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
860 /* insert the continuous items into the same leaf */
861 path->slots[0]++;
862 btrfs_batch_insert_items(root, path, curr);
863 }
864 btrfs_release_delayed_item(prev);
865 btrfs_mark_buffer_dirty(path->nodes[0]);
866
867 btrfs_release_path(path);
868 mutex_unlock(&node->mutex);
869 goto do_again;
870
871 insert_end:
872 mutex_unlock(&node->mutex);
873 return ret;
874 }
875
876 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
877 struct btrfs_root *root,
878 struct btrfs_path *path,
879 struct btrfs_delayed_item *item)
880 {
881 struct btrfs_fs_info *fs_info = root->fs_info;
882 struct btrfs_delayed_item *curr, *next;
883 struct extent_buffer *leaf;
884 struct btrfs_key key;
885 struct list_head head;
886 int nitems, i, last_item;
887 int ret = 0;
888
889 BUG_ON(!path->nodes[0]);
890
891 leaf = path->nodes[0];
892
893 i = path->slots[0];
894 last_item = btrfs_header_nritems(leaf) - 1;
895 if (i > last_item)
896 return -ENOENT; /* FIXME: Is errno suitable? */
897
898 next = item;
899 INIT_LIST_HEAD(&head);
900 btrfs_item_key_to_cpu(leaf, &key, i);
901 nitems = 0;
902 /*
903 * count the number of the dir index items that we can delete in batch
904 */
905 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
906 list_add_tail(&next->tree_list, &head);
907 nitems++;
908
909 curr = next;
910 next = __btrfs_next_delayed_item(curr);
911 if (!next)
912 break;
913
914 if (!btrfs_is_continuous_delayed_item(curr, next))
915 break;
916
917 i++;
918 if (i > last_item)
919 break;
920 btrfs_item_key_to_cpu(leaf, &key, i);
921 }
922
923 if (!nitems)
924 return 0;
925
926 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
927 if (ret)
928 goto out;
929
930 list_for_each_entry_safe(curr, next, &head, tree_list) {
931 btrfs_delayed_item_release_metadata(fs_info, curr);
932 list_del(&curr->tree_list);
933 btrfs_release_delayed_item(curr);
934 }
935
936 out:
937 return ret;
938 }
939
940 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
941 struct btrfs_path *path,
942 struct btrfs_root *root,
943 struct btrfs_delayed_node *node)
944 {
945 struct btrfs_delayed_item *curr, *prev;
946 int ret = 0;
947
948 do_again:
949 mutex_lock(&node->mutex);
950 curr = __btrfs_first_delayed_deletion_item(node);
951 if (!curr)
952 goto delete_fail;
953
954 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
955 if (ret < 0)
956 goto delete_fail;
957 else if (ret > 0) {
958 /*
959 * can't find the item which the node points to, so this node
960 * is invalid, just drop it.
961 */
962 prev = curr;
963 curr = __btrfs_next_delayed_item(prev);
964 btrfs_release_delayed_item(prev);
965 ret = 0;
966 btrfs_release_path(path);
967 if (curr) {
968 mutex_unlock(&node->mutex);
969 goto do_again;
970 } else
971 goto delete_fail;
972 }
973
974 btrfs_batch_delete_items(trans, root, path, curr);
975 btrfs_release_path(path);
976 mutex_unlock(&node->mutex);
977 goto do_again;
978
979 delete_fail:
980 btrfs_release_path(path);
981 mutex_unlock(&node->mutex);
982 return ret;
983 }
984
985 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
986 {
987 struct btrfs_delayed_root *delayed_root;
988
989 if (delayed_node &&
990 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
991 BUG_ON(!delayed_node->root);
992 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
993 delayed_node->count--;
994
995 delayed_root = delayed_node->root->fs_info->delayed_root;
996 finish_one_item(delayed_root);
997 }
998 }
999
1000 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1001 {
1002 struct btrfs_delayed_root *delayed_root;
1003
1004 ASSERT(delayed_node->root);
1005 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1006 delayed_node->count--;
1007
1008 delayed_root = delayed_node->root->fs_info->delayed_root;
1009 finish_one_item(delayed_root);
1010 }
1011
1012 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1013 struct btrfs_root *root,
1014 struct btrfs_path *path,
1015 struct btrfs_delayed_node *node)
1016 {
1017 struct btrfs_fs_info *fs_info = root->fs_info;
1018 struct btrfs_key key;
1019 struct btrfs_inode_item *inode_item;
1020 struct extent_buffer *leaf;
1021 int mod;
1022 int ret;
1023
1024 key.objectid = node->inode_id;
1025 key.type = BTRFS_INODE_ITEM_KEY;
1026 key.offset = 0;
1027
1028 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029 mod = -1;
1030 else
1031 mod = 1;
1032
1033 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1034 if (ret > 0) {
1035 btrfs_release_path(path);
1036 return -ENOENT;
1037 } else if (ret < 0) {
1038 return ret;
1039 }
1040
1041 leaf = path->nodes[0];
1042 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1043 struct btrfs_inode_item);
1044 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1045 sizeof(struct btrfs_inode_item));
1046 btrfs_mark_buffer_dirty(leaf);
1047
1048 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1049 goto no_iref;
1050
1051 path->slots[0]++;
1052 if (path->slots[0] >= btrfs_header_nritems(leaf))
1053 goto search;
1054 again:
1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 if (key.objectid != node->inode_id)
1057 goto out;
1058
1059 if (key.type != BTRFS_INODE_REF_KEY &&
1060 key.type != BTRFS_INODE_EXTREF_KEY)
1061 goto out;
1062
1063 /*
1064 * Delayed iref deletion is for the inode who has only one link,
1065 * so there is only one iref. The case that several irefs are
1066 * in the same item doesn't exist.
1067 */
1068 btrfs_del_item(trans, root, path);
1069 out:
1070 btrfs_release_delayed_iref(node);
1071 no_iref:
1072 btrfs_release_path(path);
1073 err_out:
1074 btrfs_delayed_inode_release_metadata(fs_info, node);
1075 btrfs_release_delayed_inode(node);
1076
1077 return ret;
1078
1079 search:
1080 btrfs_release_path(path);
1081
1082 key.type = BTRFS_INODE_EXTREF_KEY;
1083 key.offset = -1;
1084 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1085 if (ret < 0)
1086 goto err_out;
1087 ASSERT(ret);
1088
1089 ret = 0;
1090 leaf = path->nodes[0];
1091 path->slots[0]--;
1092 goto again;
1093 }
1094
1095 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 struct btrfs_delayed_node *node)
1099 {
1100 int ret;
1101
1102 mutex_lock(&node->mutex);
1103 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1104 mutex_unlock(&node->mutex);
1105 return 0;
1106 }
1107
1108 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1109 mutex_unlock(&node->mutex);
1110 return ret;
1111 }
1112
1113 static inline int
1114 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1115 struct btrfs_path *path,
1116 struct btrfs_delayed_node *node)
1117 {
1118 int ret;
1119
1120 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1121 if (ret)
1122 return ret;
1123
1124 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1125 if (ret)
1126 return ret;
1127
1128 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1129 return ret;
1130 }
1131
1132 /*
1133 * Called when committing the transaction.
1134 * Returns 0 on success.
1135 * Returns < 0 on error and returns with an aborted transaction with any
1136 * outstanding delayed items cleaned up.
1137 */
1138 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1139 struct btrfs_fs_info *fs_info, int nr)
1140 {
1141 struct btrfs_delayed_root *delayed_root;
1142 struct btrfs_delayed_node *curr_node, *prev_node;
1143 struct btrfs_path *path;
1144 struct btrfs_block_rsv *block_rsv;
1145 int ret = 0;
1146 bool count = (nr > 0);
1147
1148 if (trans->aborted)
1149 return -EIO;
1150
1151 path = btrfs_alloc_path();
1152 if (!path)
1153 return -ENOMEM;
1154 path->leave_spinning = 1;
1155
1156 block_rsv = trans->block_rsv;
1157 trans->block_rsv = &fs_info->delayed_block_rsv;
1158
1159 delayed_root = fs_info->delayed_root;
1160
1161 curr_node = btrfs_first_delayed_node(delayed_root);
1162 while (curr_node && (!count || (count && nr--))) {
1163 ret = __btrfs_commit_inode_delayed_items(trans, path,
1164 curr_node);
1165 if (ret) {
1166 btrfs_release_delayed_node(curr_node);
1167 curr_node = NULL;
1168 btrfs_abort_transaction(trans, ret);
1169 break;
1170 }
1171
1172 prev_node = curr_node;
1173 curr_node = btrfs_next_delayed_node(curr_node);
1174 btrfs_release_delayed_node(prev_node);
1175 }
1176
1177 if (curr_node)
1178 btrfs_release_delayed_node(curr_node);
1179 btrfs_free_path(path);
1180 trans->block_rsv = block_rsv;
1181
1182 return ret;
1183 }
1184
1185 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1186 struct btrfs_fs_info *fs_info)
1187 {
1188 return __btrfs_run_delayed_items(trans, fs_info, -1);
1189 }
1190
1191 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1192 struct btrfs_fs_info *fs_info, int nr)
1193 {
1194 return __btrfs_run_delayed_items(trans, fs_info, nr);
1195 }
1196
1197 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1198 struct btrfs_inode *inode)
1199 {
1200 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1201 struct btrfs_path *path;
1202 struct btrfs_block_rsv *block_rsv;
1203 int ret;
1204
1205 if (!delayed_node)
1206 return 0;
1207
1208 mutex_lock(&delayed_node->mutex);
1209 if (!delayed_node->count) {
1210 mutex_unlock(&delayed_node->mutex);
1211 btrfs_release_delayed_node(delayed_node);
1212 return 0;
1213 }
1214 mutex_unlock(&delayed_node->mutex);
1215
1216 path = btrfs_alloc_path();
1217 if (!path) {
1218 btrfs_release_delayed_node(delayed_node);
1219 return -ENOMEM;
1220 }
1221 path->leave_spinning = 1;
1222
1223 block_rsv = trans->block_rsv;
1224 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1225
1226 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1227
1228 btrfs_release_delayed_node(delayed_node);
1229 btrfs_free_path(path);
1230 trans->block_rsv = block_rsv;
1231
1232 return ret;
1233 }
1234
1235 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1236 {
1237 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1238 struct btrfs_trans_handle *trans;
1239 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1240 struct btrfs_path *path;
1241 struct btrfs_block_rsv *block_rsv;
1242 int ret;
1243
1244 if (!delayed_node)
1245 return 0;
1246
1247 mutex_lock(&delayed_node->mutex);
1248 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1249 mutex_unlock(&delayed_node->mutex);
1250 btrfs_release_delayed_node(delayed_node);
1251 return 0;
1252 }
1253 mutex_unlock(&delayed_node->mutex);
1254
1255 trans = btrfs_join_transaction(delayed_node->root);
1256 if (IS_ERR(trans)) {
1257 ret = PTR_ERR(trans);
1258 goto out;
1259 }
1260
1261 path = btrfs_alloc_path();
1262 if (!path) {
1263 ret = -ENOMEM;
1264 goto trans_out;
1265 }
1266 path->leave_spinning = 1;
1267
1268 block_rsv = trans->block_rsv;
1269 trans->block_rsv = &fs_info->delayed_block_rsv;
1270
1271 mutex_lock(&delayed_node->mutex);
1272 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1273 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1274 path, delayed_node);
1275 else
1276 ret = 0;
1277 mutex_unlock(&delayed_node->mutex);
1278
1279 btrfs_free_path(path);
1280 trans->block_rsv = block_rsv;
1281 trans_out:
1282 btrfs_end_transaction(trans);
1283 btrfs_btree_balance_dirty(fs_info);
1284 out:
1285 btrfs_release_delayed_node(delayed_node);
1286
1287 return ret;
1288 }
1289
1290 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1291 {
1292 struct btrfs_delayed_node *delayed_node;
1293
1294 delayed_node = READ_ONCE(inode->delayed_node);
1295 if (!delayed_node)
1296 return;
1297
1298 inode->delayed_node = NULL;
1299 btrfs_release_delayed_node(delayed_node);
1300 }
1301
1302 struct btrfs_async_delayed_work {
1303 struct btrfs_delayed_root *delayed_root;
1304 int nr;
1305 struct btrfs_work work;
1306 };
1307
1308 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1309 {
1310 struct btrfs_async_delayed_work *async_work;
1311 struct btrfs_delayed_root *delayed_root;
1312 struct btrfs_trans_handle *trans;
1313 struct btrfs_path *path;
1314 struct btrfs_delayed_node *delayed_node = NULL;
1315 struct btrfs_root *root;
1316 struct btrfs_block_rsv *block_rsv;
1317 int total_done = 0;
1318
1319 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1320 delayed_root = async_work->delayed_root;
1321
1322 path = btrfs_alloc_path();
1323 if (!path)
1324 goto out;
1325
1326 again:
1327 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1328 goto free_path;
1329
1330 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1331 if (!delayed_node)
1332 goto free_path;
1333
1334 path->leave_spinning = 1;
1335 root = delayed_node->root;
1336
1337 trans = btrfs_join_transaction(root);
1338 if (IS_ERR(trans))
1339 goto release_path;
1340
1341 block_rsv = trans->block_rsv;
1342 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1343
1344 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1345
1346 trans->block_rsv = block_rsv;
1347 btrfs_end_transaction(trans);
1348 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1349
1350 release_path:
1351 btrfs_release_path(path);
1352 total_done++;
1353
1354 btrfs_release_prepared_delayed_node(delayed_node);
1355 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1356 total_done < async_work->nr)
1357 goto again;
1358
1359 free_path:
1360 btrfs_free_path(path);
1361 out:
1362 wake_up(&delayed_root->wait);
1363 kfree(async_work);
1364 }
1365
1366
1367 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1368 struct btrfs_fs_info *fs_info, int nr)
1369 {
1370 struct btrfs_async_delayed_work *async_work;
1371
1372 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1373 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1374 return 0;
1375
1376 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1377 if (!async_work)
1378 return -ENOMEM;
1379
1380 async_work->delayed_root = delayed_root;
1381 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1382 btrfs_async_run_delayed_root, NULL, NULL);
1383 async_work->nr = nr;
1384
1385 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1386 return 0;
1387 }
1388
1389 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1390 {
1391 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1392 }
1393
1394 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1395 {
1396 int val = atomic_read(&delayed_root->items_seq);
1397
1398 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1399 return 1;
1400
1401 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1402 return 1;
1403
1404 return 0;
1405 }
1406
1407 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1408 {
1409 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1410
1411 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1412 return;
1413
1414 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1415 int seq;
1416 int ret;
1417
1418 seq = atomic_read(&delayed_root->items_seq);
1419
1420 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1421 if (ret)
1422 return;
1423
1424 wait_event_interruptible(delayed_root->wait,
1425 could_end_wait(delayed_root, seq));
1426 return;
1427 }
1428
1429 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1430 }
1431
1432 /* Will return 0 or -ENOMEM */
1433 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1434 struct btrfs_fs_info *fs_info,
1435 const char *name, int name_len,
1436 struct btrfs_inode *dir,
1437 struct btrfs_disk_key *disk_key, u8 type,
1438 u64 index)
1439 {
1440 struct btrfs_delayed_node *delayed_node;
1441 struct btrfs_delayed_item *delayed_item;
1442 struct btrfs_dir_item *dir_item;
1443 int ret;
1444
1445 delayed_node = btrfs_get_or_create_delayed_node(dir);
1446 if (IS_ERR(delayed_node))
1447 return PTR_ERR(delayed_node);
1448
1449 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1450 if (!delayed_item) {
1451 ret = -ENOMEM;
1452 goto release_node;
1453 }
1454
1455 delayed_item->key.objectid = btrfs_ino(dir);
1456 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1457 delayed_item->key.offset = index;
1458
1459 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1460 dir_item->location = *disk_key;
1461 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1462 btrfs_set_stack_dir_data_len(dir_item, 0);
1463 btrfs_set_stack_dir_name_len(dir_item, name_len);
1464 btrfs_set_stack_dir_type(dir_item, type);
1465 memcpy((char *)(dir_item + 1), name, name_len);
1466
1467 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1468 /*
1469 * we have reserved enough space when we start a new transaction,
1470 * so reserving metadata failure is impossible
1471 */
1472 BUG_ON(ret);
1473
1474
1475 mutex_lock(&delayed_node->mutex);
1476 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477 if (unlikely(ret)) {
1478 btrfs_err(fs_info,
1479 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480 name_len, name, delayed_node->root->objectid,
1481 delayed_node->inode_id, ret);
1482 BUG();
1483 }
1484 mutex_unlock(&delayed_node->mutex);
1485
1486 release_node:
1487 btrfs_release_delayed_node(delayed_node);
1488 return ret;
1489 }
1490
1491 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492 struct btrfs_delayed_node *node,
1493 struct btrfs_key *key)
1494 {
1495 struct btrfs_delayed_item *item;
1496
1497 mutex_lock(&node->mutex);
1498 item = __btrfs_lookup_delayed_insertion_item(node, key);
1499 if (!item) {
1500 mutex_unlock(&node->mutex);
1501 return 1;
1502 }
1503
1504 btrfs_delayed_item_release_metadata(fs_info, item);
1505 btrfs_release_delayed_item(item);
1506 mutex_unlock(&node->mutex);
1507 return 0;
1508 }
1509
1510 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511 struct btrfs_fs_info *fs_info,
1512 struct btrfs_inode *dir, u64 index)
1513 {
1514 struct btrfs_delayed_node *node;
1515 struct btrfs_delayed_item *item;
1516 struct btrfs_key item_key;
1517 int ret;
1518
1519 node = btrfs_get_or_create_delayed_node(dir);
1520 if (IS_ERR(node))
1521 return PTR_ERR(node);
1522
1523 item_key.objectid = btrfs_ino(dir);
1524 item_key.type = BTRFS_DIR_INDEX_KEY;
1525 item_key.offset = index;
1526
1527 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1528 if (!ret)
1529 goto end;
1530
1531 item = btrfs_alloc_delayed_item(0);
1532 if (!item) {
1533 ret = -ENOMEM;
1534 goto end;
1535 }
1536
1537 item->key = item_key;
1538
1539 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1540 /*
1541 * we have reserved enough space when we start a new transaction,
1542 * so reserving metadata failure is impossible.
1543 */
1544 BUG_ON(ret);
1545
1546 mutex_lock(&node->mutex);
1547 ret = __btrfs_add_delayed_deletion_item(node, item);
1548 if (unlikely(ret)) {
1549 btrfs_err(fs_info,
1550 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1551 index, node->root->objectid, node->inode_id, ret);
1552 BUG();
1553 }
1554 mutex_unlock(&node->mutex);
1555 end:
1556 btrfs_release_delayed_node(node);
1557 return ret;
1558 }
1559
1560 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1561 {
1562 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1563
1564 if (!delayed_node)
1565 return -ENOENT;
1566
1567 /*
1568 * Since we have held i_mutex of this directory, it is impossible that
1569 * a new directory index is added into the delayed node and index_cnt
1570 * is updated now. So we needn't lock the delayed node.
1571 */
1572 if (!delayed_node->index_cnt) {
1573 btrfs_release_delayed_node(delayed_node);
1574 return -EINVAL;
1575 }
1576
1577 inode->index_cnt = delayed_node->index_cnt;
1578 btrfs_release_delayed_node(delayed_node);
1579 return 0;
1580 }
1581
1582 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1583 struct list_head *ins_list,
1584 struct list_head *del_list)
1585 {
1586 struct btrfs_delayed_node *delayed_node;
1587 struct btrfs_delayed_item *item;
1588
1589 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1590 if (!delayed_node)
1591 return false;
1592
1593 /*
1594 * We can only do one readdir with delayed items at a time because of
1595 * item->readdir_list.
1596 */
1597 inode_unlock_shared(inode);
1598 inode_lock(inode);
1599
1600 mutex_lock(&delayed_node->mutex);
1601 item = __btrfs_first_delayed_insertion_item(delayed_node);
1602 while (item) {
1603 refcount_inc(&item->refs);
1604 list_add_tail(&item->readdir_list, ins_list);
1605 item = __btrfs_next_delayed_item(item);
1606 }
1607
1608 item = __btrfs_first_delayed_deletion_item(delayed_node);
1609 while (item) {
1610 refcount_inc(&item->refs);
1611 list_add_tail(&item->readdir_list, del_list);
1612 item = __btrfs_next_delayed_item(item);
1613 }
1614 mutex_unlock(&delayed_node->mutex);
1615 /*
1616 * This delayed node is still cached in the btrfs inode, so refs
1617 * must be > 1 now, and we needn't check it is going to be freed
1618 * or not.
1619 *
1620 * Besides that, this function is used to read dir, we do not
1621 * insert/delete delayed items in this period. So we also needn't
1622 * requeue or dequeue this delayed node.
1623 */
1624 refcount_dec(&delayed_node->refs);
1625
1626 return true;
1627 }
1628
1629 void btrfs_readdir_put_delayed_items(struct inode *inode,
1630 struct list_head *ins_list,
1631 struct list_head *del_list)
1632 {
1633 struct btrfs_delayed_item *curr, *next;
1634
1635 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1636 list_del(&curr->readdir_list);
1637 if (refcount_dec_and_test(&curr->refs))
1638 kfree(curr);
1639 }
1640
1641 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1642 list_del(&curr->readdir_list);
1643 if (refcount_dec_and_test(&curr->refs))
1644 kfree(curr);
1645 }
1646
1647 /*
1648 * The VFS is going to do up_read(), so we need to downgrade back to a
1649 * read lock.
1650 */
1651 downgrade_write(&inode->i_rwsem);
1652 }
1653
1654 int btrfs_should_delete_dir_index(struct list_head *del_list,
1655 u64 index)
1656 {
1657 struct btrfs_delayed_item *curr, *next;
1658 int ret;
1659
1660 if (list_empty(del_list))
1661 return 0;
1662
1663 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1664 if (curr->key.offset > index)
1665 break;
1666
1667 list_del(&curr->readdir_list);
1668 ret = (curr->key.offset == index);
1669
1670 if (refcount_dec_and_test(&curr->refs))
1671 kfree(curr);
1672
1673 if (ret)
1674 return 1;
1675 else
1676 continue;
1677 }
1678 return 0;
1679 }
1680
1681 /*
1682 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1683 *
1684 */
1685 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1686 struct list_head *ins_list)
1687 {
1688 struct btrfs_dir_item *di;
1689 struct btrfs_delayed_item *curr, *next;
1690 struct btrfs_key location;
1691 char *name;
1692 int name_len;
1693 int over = 0;
1694 unsigned char d_type;
1695
1696 if (list_empty(ins_list))
1697 return 0;
1698
1699 /*
1700 * Changing the data of the delayed item is impossible. So
1701 * we needn't lock them. And we have held i_mutex of the
1702 * directory, nobody can delete any directory indexes now.
1703 */
1704 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1705 list_del(&curr->readdir_list);
1706
1707 if (curr->key.offset < ctx->pos) {
1708 if (refcount_dec_and_test(&curr->refs))
1709 kfree(curr);
1710 continue;
1711 }
1712
1713 ctx->pos = curr->key.offset;
1714
1715 di = (struct btrfs_dir_item *)curr->data;
1716 name = (char *)(di + 1);
1717 name_len = btrfs_stack_dir_name_len(di);
1718
1719 d_type = btrfs_filetype_table[di->type];
1720 btrfs_disk_key_to_cpu(&location, &di->location);
1721
1722 over = !dir_emit(ctx, name, name_len,
1723 location.objectid, d_type);
1724
1725 if (refcount_dec_and_test(&curr->refs))
1726 kfree(curr);
1727
1728 if (over)
1729 return 1;
1730 }
1731 return 0;
1732 }
1733
1734 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1735 struct btrfs_inode_item *inode_item,
1736 struct inode *inode)
1737 {
1738 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1739 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1740 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1741 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1742 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1743 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1744 btrfs_set_stack_inode_generation(inode_item,
1745 BTRFS_I(inode)->generation);
1746 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1747 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1748 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1749 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1750 btrfs_set_stack_inode_block_group(inode_item, 0);
1751
1752 btrfs_set_stack_timespec_sec(&inode_item->atime,
1753 inode->i_atime.tv_sec);
1754 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1755 inode->i_atime.tv_nsec);
1756
1757 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1758 inode->i_mtime.tv_sec);
1759 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1760 inode->i_mtime.tv_nsec);
1761
1762 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1763 inode->i_ctime.tv_sec);
1764 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1765 inode->i_ctime.tv_nsec);
1766
1767 btrfs_set_stack_timespec_sec(&inode_item->otime,
1768 BTRFS_I(inode)->i_otime.tv_sec);
1769 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1770 BTRFS_I(inode)->i_otime.tv_nsec);
1771 }
1772
1773 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1774 {
1775 struct btrfs_delayed_node *delayed_node;
1776 struct btrfs_inode_item *inode_item;
1777
1778 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1779 if (!delayed_node)
1780 return -ENOENT;
1781
1782 mutex_lock(&delayed_node->mutex);
1783 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1784 mutex_unlock(&delayed_node->mutex);
1785 btrfs_release_delayed_node(delayed_node);
1786 return -ENOENT;
1787 }
1788
1789 inode_item = &delayed_node->inode_item;
1790
1791 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1792 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1793 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1794 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1795 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1796 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1797 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1798 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1799
1800 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1801 inode->i_rdev = 0;
1802 *rdev = btrfs_stack_inode_rdev(inode_item);
1803 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1804
1805 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1806 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1807
1808 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1809 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1810
1811 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1812 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1813
1814 BTRFS_I(inode)->i_otime.tv_sec =
1815 btrfs_stack_timespec_sec(&inode_item->otime);
1816 BTRFS_I(inode)->i_otime.tv_nsec =
1817 btrfs_stack_timespec_nsec(&inode_item->otime);
1818
1819 inode->i_generation = BTRFS_I(inode)->generation;
1820 BTRFS_I(inode)->index_cnt = (u64)-1;
1821
1822 mutex_unlock(&delayed_node->mutex);
1823 btrfs_release_delayed_node(delayed_node);
1824 return 0;
1825 }
1826
1827 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1828 struct btrfs_root *root, struct inode *inode)
1829 {
1830 struct btrfs_delayed_node *delayed_node;
1831 int ret = 0;
1832
1833 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1834 if (IS_ERR(delayed_node))
1835 return PTR_ERR(delayed_node);
1836
1837 mutex_lock(&delayed_node->mutex);
1838 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1839 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1840 goto release_node;
1841 }
1842
1843 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1844 delayed_node);
1845 if (ret)
1846 goto release_node;
1847
1848 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1849 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1850 delayed_node->count++;
1851 atomic_inc(&root->fs_info->delayed_root->items);
1852 release_node:
1853 mutex_unlock(&delayed_node->mutex);
1854 btrfs_release_delayed_node(delayed_node);
1855 return ret;
1856 }
1857
1858 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1859 {
1860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1861 struct btrfs_delayed_node *delayed_node;
1862
1863 /*
1864 * we don't do delayed inode updates during log recovery because it
1865 * leads to enospc problems. This means we also can't do
1866 * delayed inode refs
1867 */
1868 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1869 return -EAGAIN;
1870
1871 delayed_node = btrfs_get_or_create_delayed_node(inode);
1872 if (IS_ERR(delayed_node))
1873 return PTR_ERR(delayed_node);
1874
1875 /*
1876 * We don't reserve space for inode ref deletion is because:
1877 * - We ONLY do async inode ref deletion for the inode who has only
1878 * one link(i_nlink == 1), it means there is only one inode ref.
1879 * And in most case, the inode ref and the inode item are in the
1880 * same leaf, and we will deal with them at the same time.
1881 * Since we are sure we will reserve the space for the inode item,
1882 * it is unnecessary to reserve space for inode ref deletion.
1883 * - If the inode ref and the inode item are not in the same leaf,
1884 * We also needn't worry about enospc problem, because we reserve
1885 * much more space for the inode update than it needs.
1886 * - At the worst, we can steal some space from the global reservation.
1887 * It is very rare.
1888 */
1889 mutex_lock(&delayed_node->mutex);
1890 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1891 goto release_node;
1892
1893 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1894 delayed_node->count++;
1895 atomic_inc(&fs_info->delayed_root->items);
1896 release_node:
1897 mutex_unlock(&delayed_node->mutex);
1898 btrfs_release_delayed_node(delayed_node);
1899 return 0;
1900 }
1901
1902 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1903 {
1904 struct btrfs_root *root = delayed_node->root;
1905 struct btrfs_fs_info *fs_info = root->fs_info;
1906 struct btrfs_delayed_item *curr_item, *prev_item;
1907
1908 mutex_lock(&delayed_node->mutex);
1909 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1910 while (curr_item) {
1911 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1912 prev_item = curr_item;
1913 curr_item = __btrfs_next_delayed_item(prev_item);
1914 btrfs_release_delayed_item(prev_item);
1915 }
1916
1917 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1918 while (curr_item) {
1919 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1920 prev_item = curr_item;
1921 curr_item = __btrfs_next_delayed_item(prev_item);
1922 btrfs_release_delayed_item(prev_item);
1923 }
1924
1925 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1926 btrfs_release_delayed_iref(delayed_node);
1927
1928 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1929 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1930 btrfs_release_delayed_inode(delayed_node);
1931 }
1932 mutex_unlock(&delayed_node->mutex);
1933 }
1934
1935 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1936 {
1937 struct btrfs_delayed_node *delayed_node;
1938
1939 delayed_node = btrfs_get_delayed_node(inode);
1940 if (!delayed_node)
1941 return;
1942
1943 __btrfs_kill_delayed_node(delayed_node);
1944 btrfs_release_delayed_node(delayed_node);
1945 }
1946
1947 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1948 {
1949 u64 inode_id = 0;
1950 struct btrfs_delayed_node *delayed_nodes[8];
1951 int i, n;
1952
1953 while (1) {
1954 spin_lock(&root->inode_lock);
1955 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1956 (void **)delayed_nodes, inode_id,
1957 ARRAY_SIZE(delayed_nodes));
1958 if (!n) {
1959 spin_unlock(&root->inode_lock);
1960 break;
1961 }
1962
1963 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1964
1965 for (i = 0; i < n; i++)
1966 refcount_inc(&delayed_nodes[i]->refs);
1967 spin_unlock(&root->inode_lock);
1968
1969 for (i = 0; i < n; i++) {
1970 __btrfs_kill_delayed_node(delayed_nodes[i]);
1971 btrfs_release_delayed_node(delayed_nodes[i]);
1972 }
1973 }
1974 }
1975
1976 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1977 {
1978 struct btrfs_delayed_node *curr_node, *prev_node;
1979
1980 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1981 while (curr_node) {
1982 __btrfs_kill_delayed_node(curr_node);
1983
1984 prev_node = curr_node;
1985 curr_node = btrfs_next_delayed_node(curr_node);
1986 btrfs_release_delayed_node(prev_node);
1987 }
1988 }
1989