]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/delayed-inode.c
Btrfs: fix lots of orphan inodes when the space is not enough
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / delayed-inode.c
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
27
28 static struct kmem_cache *delayed_node_cache;
29
30 int __init btrfs_delayed_inode_init(void)
31 {
32 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40 }
41
42 void btrfs_delayed_inode_exit(void)
43 {
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46 }
47
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51 {
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65 memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
66 }
67
68 static inline int btrfs_is_continuous_delayed_item(
69 struct btrfs_delayed_item *item1,
70 struct btrfs_delayed_item *item2)
71 {
72 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
73 item1->key.objectid == item2->key.objectid &&
74 item1->key.type == item2->key.type &&
75 item1->key.offset + 1 == item2->key.offset)
76 return 1;
77 return 0;
78 }
79
80 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
81 struct btrfs_root *root)
82 {
83 return root->fs_info->delayed_root;
84 }
85
86 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
87 {
88 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
89 struct btrfs_root *root = btrfs_inode->root;
90 u64 ino = btrfs_ino(inode);
91 struct btrfs_delayed_node *node;
92
93 node = ACCESS_ONCE(btrfs_inode->delayed_node);
94 if (node) {
95 atomic_inc(&node->refs);
96 return node;
97 }
98
99 spin_lock(&root->inode_lock);
100 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
101 if (node) {
102 if (btrfs_inode->delayed_node) {
103 atomic_inc(&node->refs); /* can be accessed */
104 BUG_ON(btrfs_inode->delayed_node != node);
105 spin_unlock(&root->inode_lock);
106 return node;
107 }
108 btrfs_inode->delayed_node = node;
109 atomic_inc(&node->refs); /* can be accessed */
110 atomic_inc(&node->refs); /* cached in the inode */
111 spin_unlock(&root->inode_lock);
112 return node;
113 }
114 spin_unlock(&root->inode_lock);
115
116 return NULL;
117 }
118
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 struct inode *inode)
122 {
123 struct btrfs_delayed_node *node;
124 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
125 struct btrfs_root *root = btrfs_inode->root;
126 u64 ino = btrfs_ino(inode);
127 int ret;
128
129 again:
130 node = btrfs_get_delayed_node(inode);
131 if (node)
132 return node;
133
134 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
135 if (!node)
136 return ERR_PTR(-ENOMEM);
137 btrfs_init_delayed_node(node, root, ino);
138
139 atomic_inc(&node->refs); /* cached in the btrfs inode */
140 atomic_inc(&node->refs); /* can be accessed */
141
142 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
143 if (ret) {
144 kmem_cache_free(delayed_node_cache, node);
145 return ERR_PTR(ret);
146 }
147
148 spin_lock(&root->inode_lock);
149 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 if (ret == -EEXIST) {
151 kmem_cache_free(delayed_node_cache, node);
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
154 goto again;
155 }
156 btrfs_inode->delayed_node = node;
157 spin_unlock(&root->inode_lock);
158 radix_tree_preload_end();
159
160 return node;
161 }
162
163 /*
164 * Call it when holding delayed_node->mutex
165 *
166 * If mod = 1, add this node into the prepared list.
167 */
168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
171 {
172 spin_lock(&root->lock);
173 if (node->in_list) {
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
181 atomic_inc(&node->refs); /* inserted into list */
182 root->nodes++;
183 node->in_list = 1;
184 }
185 spin_unlock(&root->lock);
186 }
187
188 /* Call it when holding delayed_node->mutex */
189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
191 {
192 spin_lock(&root->lock);
193 if (node->in_list) {
194 root->nodes--;
195 atomic_dec(&node->refs); /* not in the list */
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
199 node->in_list = 0;
200 }
201 spin_unlock(&root->lock);
202 }
203
204 struct btrfs_delayed_node *btrfs_first_delayed_node(
205 struct btrfs_delayed_root *delayed_root)
206 {
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
209
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
213
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
216 atomic_inc(&node->refs);
217 out:
218 spin_unlock(&delayed_root->lock);
219
220 return node;
221 }
222
223 struct btrfs_delayed_node *btrfs_next_delayed_node(
224 struct btrfs_delayed_node *node)
225 {
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
229
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
232 if (!node->in_list) { /* not in the list */
233 if (list_empty(&delayed_root->node_list))
234 goto out;
235 p = delayed_root->node_list.next;
236 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 goto out;
238 else
239 p = node->n_list.next;
240
241 next = list_entry(p, struct btrfs_delayed_node, n_list);
242 atomic_inc(&next->refs);
243 out:
244 spin_unlock(&delayed_root->lock);
245
246 return next;
247 }
248
249 static void __btrfs_release_delayed_node(
250 struct btrfs_delayed_node *delayed_node,
251 int mod)
252 {
253 struct btrfs_delayed_root *delayed_root;
254
255 if (!delayed_node)
256 return;
257
258 delayed_root = delayed_node->root->fs_info->delayed_root;
259
260 mutex_lock(&delayed_node->mutex);
261 if (delayed_node->count)
262 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 else
264 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 mutex_unlock(&delayed_node->mutex);
266
267 if (atomic_dec_and_test(&delayed_node->refs)) {
268 struct btrfs_root *root = delayed_node->root;
269 spin_lock(&root->inode_lock);
270 if (atomic_read(&delayed_node->refs) == 0) {
271 radix_tree_delete(&root->delayed_nodes_tree,
272 delayed_node->inode_id);
273 kmem_cache_free(delayed_node_cache, delayed_node);
274 }
275 spin_unlock(&root->inode_lock);
276 }
277 }
278
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 __btrfs_release_delayed_node(node, 0);
282 }
283
284 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
286 {
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 atomic_inc(&node->refs);
298 out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302 }
303
304 static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306 {
307 __btrfs_release_delayed_node(node, 1);
308 }
309
310 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 {
312 struct btrfs_delayed_item *item;
313 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314 if (item) {
315 item->data_len = data_len;
316 item->ins_or_del = 0;
317 item->bytes_reserved = 0;
318 item->delayed_node = NULL;
319 atomic_set(&item->refs, 1);
320 }
321 return item;
322 }
323
324 /*
325 * __btrfs_lookup_delayed_item - look up the delayed item by key
326 * @delayed_node: pointer to the delayed node
327 * @key: the key to look up
328 * @prev: used to store the prev item if the right item isn't found
329 * @next: used to store the next item if the right item isn't found
330 *
331 * Note: if we don't find the right item, we will return the prev item and
332 * the next item.
333 */
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335 struct rb_root *root,
336 struct btrfs_key *key,
337 struct btrfs_delayed_item **prev,
338 struct btrfs_delayed_item **next)
339 {
340 struct rb_node *node, *prev_node = NULL;
341 struct btrfs_delayed_item *delayed_item = NULL;
342 int ret = 0;
343
344 node = root->rb_node;
345
346 while (node) {
347 delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 rb_node);
349 prev_node = node;
350 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351 if (ret < 0)
352 node = node->rb_right;
353 else if (ret > 0)
354 node = node->rb_left;
355 else
356 return delayed_item;
357 }
358
359 if (prev) {
360 if (!prev_node)
361 *prev = NULL;
362 else if (ret < 0)
363 *prev = delayed_item;
364 else if ((node = rb_prev(prev_node)) != NULL) {
365 *prev = rb_entry(node, struct btrfs_delayed_item,
366 rb_node);
367 } else
368 *prev = NULL;
369 }
370
371 if (next) {
372 if (!prev_node)
373 *next = NULL;
374 else if (ret > 0)
375 *next = delayed_item;
376 else if ((node = rb_next(prev_node)) != NULL) {
377 *next = rb_entry(node, struct btrfs_delayed_item,
378 rb_node);
379 } else
380 *next = NULL;
381 }
382 return NULL;
383 }
384
385 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386 struct btrfs_delayed_node *delayed_node,
387 struct btrfs_key *key)
388 {
389 struct btrfs_delayed_item *item;
390
391 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
392 NULL, NULL);
393 return item;
394 }
395
396 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
397 struct btrfs_delayed_node *delayed_node,
398 struct btrfs_key *key)
399 {
400 struct btrfs_delayed_item *item;
401
402 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
403 NULL, NULL);
404 return item;
405 }
406
407 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
408 struct btrfs_delayed_node *delayed_node,
409 struct btrfs_key *key)
410 {
411 struct btrfs_delayed_item *item, *next;
412
413 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
414 NULL, &next);
415 if (!item)
416 item = next;
417
418 return item;
419 }
420
421 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
422 struct btrfs_delayed_node *delayed_node,
423 struct btrfs_key *key)
424 {
425 struct btrfs_delayed_item *item, *next;
426
427 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
428 NULL, &next);
429 if (!item)
430 item = next;
431
432 return item;
433 }
434
435 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
436 struct btrfs_delayed_item *ins,
437 int action)
438 {
439 struct rb_node **p, *node;
440 struct rb_node *parent_node = NULL;
441 struct rb_root *root;
442 struct btrfs_delayed_item *item;
443 int cmp;
444
445 if (action == BTRFS_DELAYED_INSERTION_ITEM)
446 root = &delayed_node->ins_root;
447 else if (action == BTRFS_DELAYED_DELETION_ITEM)
448 root = &delayed_node->del_root;
449 else
450 BUG();
451 p = &root->rb_node;
452 node = &ins->rb_node;
453
454 while (*p) {
455 parent_node = *p;
456 item = rb_entry(parent_node, struct btrfs_delayed_item,
457 rb_node);
458
459 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
460 if (cmp < 0)
461 p = &(*p)->rb_right;
462 else if (cmp > 0)
463 p = &(*p)->rb_left;
464 else
465 return -EEXIST;
466 }
467
468 rb_link_node(node, parent_node, p);
469 rb_insert_color(node, root);
470 ins->delayed_node = delayed_node;
471 ins->ins_or_del = action;
472
473 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
474 action == BTRFS_DELAYED_INSERTION_ITEM &&
475 ins->key.offset >= delayed_node->index_cnt)
476 delayed_node->index_cnt = ins->key.offset + 1;
477
478 delayed_node->count++;
479 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
480 return 0;
481 }
482
483 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
484 struct btrfs_delayed_item *item)
485 {
486 return __btrfs_add_delayed_item(node, item,
487 BTRFS_DELAYED_INSERTION_ITEM);
488 }
489
490 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
491 struct btrfs_delayed_item *item)
492 {
493 return __btrfs_add_delayed_item(node, item,
494 BTRFS_DELAYED_DELETION_ITEM);
495 }
496
497 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
498 {
499 struct rb_root *root;
500 struct btrfs_delayed_root *delayed_root;
501
502 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
503
504 BUG_ON(!delayed_root);
505 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
506 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
507
508 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
509 root = &delayed_item->delayed_node->ins_root;
510 else
511 root = &delayed_item->delayed_node->del_root;
512
513 rb_erase(&delayed_item->rb_node, root);
514 delayed_item->delayed_node->count--;
515 if (atomic_dec_return(&delayed_root->items) <
516 BTRFS_DELAYED_BACKGROUND &&
517 waitqueue_active(&delayed_root->wait))
518 wake_up(&delayed_root->wait);
519 }
520
521 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
522 {
523 if (item) {
524 __btrfs_remove_delayed_item(item);
525 if (atomic_dec_and_test(&item->refs))
526 kfree(item);
527 }
528 }
529
530 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
531 struct btrfs_delayed_node *delayed_node)
532 {
533 struct rb_node *p;
534 struct btrfs_delayed_item *item = NULL;
535
536 p = rb_first(&delayed_node->ins_root);
537 if (p)
538 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
539
540 return item;
541 }
542
543 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
544 struct btrfs_delayed_node *delayed_node)
545 {
546 struct rb_node *p;
547 struct btrfs_delayed_item *item = NULL;
548
549 p = rb_first(&delayed_node->del_root);
550 if (p)
551 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
552
553 return item;
554 }
555
556 struct btrfs_delayed_item *__btrfs_next_delayed_item(
557 struct btrfs_delayed_item *item)
558 {
559 struct rb_node *p;
560 struct btrfs_delayed_item *next = NULL;
561
562 p = rb_next(&item->rb_node);
563 if (p)
564 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
565
566 return next;
567 }
568
569 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
570 u64 root_id)
571 {
572 struct btrfs_key root_key;
573
574 if (root->objectid == root_id)
575 return root;
576
577 root_key.objectid = root_id;
578 root_key.type = BTRFS_ROOT_ITEM_KEY;
579 root_key.offset = (u64)-1;
580 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
581 }
582
583 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_delayed_item *item)
586 {
587 struct btrfs_block_rsv *src_rsv;
588 struct btrfs_block_rsv *dst_rsv;
589 u64 num_bytes;
590 int ret;
591
592 if (!trans->bytes_reserved)
593 return 0;
594
595 src_rsv = trans->block_rsv;
596 dst_rsv = &root->fs_info->delayed_block_rsv;
597
598 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
600 if (!ret) {
601 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
602 item->key.objectid,
603 num_bytes, 1);
604 item->bytes_reserved = num_bytes;
605 }
606
607 return ret;
608 }
609
610 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
611 struct btrfs_delayed_item *item)
612 {
613 struct btrfs_block_rsv *rsv;
614
615 if (!item->bytes_reserved)
616 return;
617
618 rsv = &root->fs_info->delayed_block_rsv;
619 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
620 item->key.objectid, item->bytes_reserved,
621 0);
622 btrfs_block_rsv_release(root, rsv,
623 item->bytes_reserved);
624 }
625
626 static int btrfs_delayed_inode_reserve_metadata(
627 struct btrfs_trans_handle *trans,
628 struct btrfs_root *root,
629 struct inode *inode,
630 struct btrfs_delayed_node *node)
631 {
632 struct btrfs_block_rsv *src_rsv;
633 struct btrfs_block_rsv *dst_rsv;
634 u64 num_bytes;
635 int ret;
636 bool release = false;
637
638 src_rsv = trans->block_rsv;
639 dst_rsv = &root->fs_info->delayed_block_rsv;
640
641 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
642
643 /*
644 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
645 * which doesn't reserve space for speed. This is a problem since we
646 * still need to reserve space for this update, so try to reserve the
647 * space.
648 *
649 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
650 * we're accounted for.
651 */
652 if (!src_rsv || (!trans->bytes_reserved &&
653 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
654 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
655 BTRFS_RESERVE_NO_FLUSH);
656 /*
657 * Since we're under a transaction reserve_metadata_bytes could
658 * try to commit the transaction which will make it return
659 * EAGAIN to make us stop the transaction we have, so return
660 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
661 */
662 if (ret == -EAGAIN)
663 ret = -ENOSPC;
664 if (!ret) {
665 node->bytes_reserved = num_bytes;
666 trace_btrfs_space_reservation(root->fs_info,
667 "delayed_inode",
668 btrfs_ino(inode),
669 num_bytes, 1);
670 }
671 return ret;
672 } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
673 spin_lock(&BTRFS_I(inode)->lock);
674 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
675 &BTRFS_I(inode)->runtime_flags)) {
676 spin_unlock(&BTRFS_I(inode)->lock);
677 release = true;
678 goto migrate;
679 }
680 spin_unlock(&BTRFS_I(inode)->lock);
681
682 /* Ok we didn't have space pre-reserved. This shouldn't happen
683 * too often but it can happen if we do delalloc to an existing
684 * inode which gets dirtied because of the time update, and then
685 * isn't touched again until after the transaction commits and
686 * then we try to write out the data. First try to be nice and
687 * reserve something strictly for us. If not be a pain and try
688 * to steal from the delalloc block rsv.
689 */
690 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
691 BTRFS_RESERVE_NO_FLUSH);
692 if (!ret)
693 goto out;
694
695 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
696 if (!ret)
697 goto out;
698
699 /*
700 * Ok this is a problem, let's just steal from the global rsv
701 * since this really shouldn't happen that often.
702 */
703 WARN_ON(1);
704 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
705 dst_rsv, num_bytes);
706 goto out;
707 }
708
709 migrate:
710 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
711
712 out:
713 /*
714 * Migrate only takes a reservation, it doesn't touch the size of the
715 * block_rsv. This is to simplify people who don't normally have things
716 * migrated from their block rsv. If they go to release their
717 * reservation, that will decrease the size as well, so if migrate
718 * reduced size we'd end up with a negative size. But for the
719 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
720 * but we could in fact do this reserve/migrate dance several times
721 * between the time we did the original reservation and we'd clean it
722 * up. So to take care of this, release the space for the meta
723 * reservation here. I think it may be time for a documentation page on
724 * how block rsvs. work.
725 */
726 if (!ret) {
727 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
728 btrfs_ino(inode), num_bytes, 1);
729 node->bytes_reserved = num_bytes;
730 }
731
732 if (release) {
733 trace_btrfs_space_reservation(root->fs_info, "delalloc",
734 btrfs_ino(inode), num_bytes, 0);
735 btrfs_block_rsv_release(root, src_rsv, num_bytes);
736 }
737
738 return ret;
739 }
740
741 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
742 struct btrfs_delayed_node *node)
743 {
744 struct btrfs_block_rsv *rsv;
745
746 if (!node->bytes_reserved)
747 return;
748
749 rsv = &root->fs_info->delayed_block_rsv;
750 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
751 node->inode_id, node->bytes_reserved, 0);
752 btrfs_block_rsv_release(root, rsv,
753 node->bytes_reserved);
754 node->bytes_reserved = 0;
755 }
756
757 /*
758 * This helper will insert some continuous items into the same leaf according
759 * to the free space of the leaf.
760 */
761 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
762 struct btrfs_root *root,
763 struct btrfs_path *path,
764 struct btrfs_delayed_item *item)
765 {
766 struct btrfs_delayed_item *curr, *next;
767 int free_space;
768 int total_data_size = 0, total_size = 0;
769 struct extent_buffer *leaf;
770 char *data_ptr;
771 struct btrfs_key *keys;
772 u32 *data_size;
773 struct list_head head;
774 int slot;
775 int nitems;
776 int i;
777 int ret = 0;
778
779 BUG_ON(!path->nodes[0]);
780
781 leaf = path->nodes[0];
782 free_space = btrfs_leaf_free_space(root, leaf);
783 INIT_LIST_HEAD(&head);
784
785 next = item;
786 nitems = 0;
787
788 /*
789 * count the number of the continuous items that we can insert in batch
790 */
791 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
792 free_space) {
793 total_data_size += next->data_len;
794 total_size += next->data_len + sizeof(struct btrfs_item);
795 list_add_tail(&next->tree_list, &head);
796 nitems++;
797
798 curr = next;
799 next = __btrfs_next_delayed_item(curr);
800 if (!next)
801 break;
802
803 if (!btrfs_is_continuous_delayed_item(curr, next))
804 break;
805 }
806
807 if (!nitems) {
808 ret = 0;
809 goto out;
810 }
811
812 /*
813 * we need allocate some memory space, but it might cause the task
814 * to sleep, so we set all locked nodes in the path to blocking locks
815 * first.
816 */
817 btrfs_set_path_blocking(path);
818
819 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
820 if (!keys) {
821 ret = -ENOMEM;
822 goto out;
823 }
824
825 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
826 if (!data_size) {
827 ret = -ENOMEM;
828 goto error;
829 }
830
831 /* get keys of all the delayed items */
832 i = 0;
833 list_for_each_entry(next, &head, tree_list) {
834 keys[i] = next->key;
835 data_size[i] = next->data_len;
836 i++;
837 }
838
839 /* reset all the locked nodes in the patch to spinning locks. */
840 btrfs_clear_path_blocking(path, NULL, 0);
841
842 /* insert the keys of the items */
843 setup_items_for_insert(trans, root, path, keys, data_size,
844 total_data_size, total_size, nitems);
845
846 /* insert the dir index items */
847 slot = path->slots[0];
848 list_for_each_entry_safe(curr, next, &head, tree_list) {
849 data_ptr = btrfs_item_ptr(leaf, slot, char);
850 write_extent_buffer(leaf, &curr->data,
851 (unsigned long)data_ptr,
852 curr->data_len);
853 slot++;
854
855 btrfs_delayed_item_release_metadata(root, curr);
856
857 list_del(&curr->tree_list);
858 btrfs_release_delayed_item(curr);
859 }
860
861 error:
862 kfree(data_size);
863 kfree(keys);
864 out:
865 return ret;
866 }
867
868 /*
869 * This helper can just do simple insertion that needn't extend item for new
870 * data, such as directory name index insertion, inode insertion.
871 */
872 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
873 struct btrfs_root *root,
874 struct btrfs_path *path,
875 struct btrfs_delayed_item *delayed_item)
876 {
877 struct extent_buffer *leaf;
878 struct btrfs_item *item;
879 char *ptr;
880 int ret;
881
882 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
883 delayed_item->data_len);
884 if (ret < 0 && ret != -EEXIST)
885 return ret;
886
887 leaf = path->nodes[0];
888
889 item = btrfs_item_nr(leaf, path->slots[0]);
890 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
891
892 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
893 delayed_item->data_len);
894 btrfs_mark_buffer_dirty(leaf);
895
896 btrfs_delayed_item_release_metadata(root, delayed_item);
897 return 0;
898 }
899
900 /*
901 * we insert an item first, then if there are some continuous items, we try
902 * to insert those items into the same leaf.
903 */
904 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
905 struct btrfs_path *path,
906 struct btrfs_root *root,
907 struct btrfs_delayed_node *node)
908 {
909 struct btrfs_delayed_item *curr, *prev;
910 int ret = 0;
911
912 do_again:
913 mutex_lock(&node->mutex);
914 curr = __btrfs_first_delayed_insertion_item(node);
915 if (!curr)
916 goto insert_end;
917
918 ret = btrfs_insert_delayed_item(trans, root, path, curr);
919 if (ret < 0) {
920 btrfs_release_path(path);
921 goto insert_end;
922 }
923
924 prev = curr;
925 curr = __btrfs_next_delayed_item(prev);
926 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
927 /* insert the continuous items into the same leaf */
928 path->slots[0]++;
929 btrfs_batch_insert_items(trans, root, path, curr);
930 }
931 btrfs_release_delayed_item(prev);
932 btrfs_mark_buffer_dirty(path->nodes[0]);
933
934 btrfs_release_path(path);
935 mutex_unlock(&node->mutex);
936 goto do_again;
937
938 insert_end:
939 mutex_unlock(&node->mutex);
940 return ret;
941 }
942
943 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 struct btrfs_path *path,
946 struct btrfs_delayed_item *item)
947 {
948 struct btrfs_delayed_item *curr, *next;
949 struct extent_buffer *leaf;
950 struct btrfs_key key;
951 struct list_head head;
952 int nitems, i, last_item;
953 int ret = 0;
954
955 BUG_ON(!path->nodes[0]);
956
957 leaf = path->nodes[0];
958
959 i = path->slots[0];
960 last_item = btrfs_header_nritems(leaf) - 1;
961 if (i > last_item)
962 return -ENOENT; /* FIXME: Is errno suitable? */
963
964 next = item;
965 INIT_LIST_HEAD(&head);
966 btrfs_item_key_to_cpu(leaf, &key, i);
967 nitems = 0;
968 /*
969 * count the number of the dir index items that we can delete in batch
970 */
971 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
972 list_add_tail(&next->tree_list, &head);
973 nitems++;
974
975 curr = next;
976 next = __btrfs_next_delayed_item(curr);
977 if (!next)
978 break;
979
980 if (!btrfs_is_continuous_delayed_item(curr, next))
981 break;
982
983 i++;
984 if (i > last_item)
985 break;
986 btrfs_item_key_to_cpu(leaf, &key, i);
987 }
988
989 if (!nitems)
990 return 0;
991
992 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
993 if (ret)
994 goto out;
995
996 list_for_each_entry_safe(curr, next, &head, tree_list) {
997 btrfs_delayed_item_release_metadata(root, curr);
998 list_del(&curr->tree_list);
999 btrfs_release_delayed_item(curr);
1000 }
1001
1002 out:
1003 return ret;
1004 }
1005
1006 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1007 struct btrfs_path *path,
1008 struct btrfs_root *root,
1009 struct btrfs_delayed_node *node)
1010 {
1011 struct btrfs_delayed_item *curr, *prev;
1012 int ret = 0;
1013
1014 do_again:
1015 mutex_lock(&node->mutex);
1016 curr = __btrfs_first_delayed_deletion_item(node);
1017 if (!curr)
1018 goto delete_fail;
1019
1020 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1021 if (ret < 0)
1022 goto delete_fail;
1023 else if (ret > 0) {
1024 /*
1025 * can't find the item which the node points to, so this node
1026 * is invalid, just drop it.
1027 */
1028 prev = curr;
1029 curr = __btrfs_next_delayed_item(prev);
1030 btrfs_release_delayed_item(prev);
1031 ret = 0;
1032 btrfs_release_path(path);
1033 if (curr) {
1034 mutex_unlock(&node->mutex);
1035 goto do_again;
1036 } else
1037 goto delete_fail;
1038 }
1039
1040 btrfs_batch_delete_items(trans, root, path, curr);
1041 btrfs_release_path(path);
1042 mutex_unlock(&node->mutex);
1043 goto do_again;
1044
1045 delete_fail:
1046 btrfs_release_path(path);
1047 mutex_unlock(&node->mutex);
1048 return ret;
1049 }
1050
1051 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1052 {
1053 struct btrfs_delayed_root *delayed_root;
1054
1055 if (delayed_node && delayed_node->inode_dirty) {
1056 BUG_ON(!delayed_node->root);
1057 delayed_node->inode_dirty = 0;
1058 delayed_node->count--;
1059
1060 delayed_root = delayed_node->root->fs_info->delayed_root;
1061 if (atomic_dec_return(&delayed_root->items) <
1062 BTRFS_DELAYED_BACKGROUND &&
1063 waitqueue_active(&delayed_root->wait))
1064 wake_up(&delayed_root->wait);
1065 }
1066 }
1067
1068 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root,
1070 struct btrfs_path *path,
1071 struct btrfs_delayed_node *node)
1072 {
1073 struct btrfs_key key;
1074 struct btrfs_inode_item *inode_item;
1075 struct extent_buffer *leaf;
1076 int ret;
1077
1078 key.objectid = node->inode_id;
1079 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1080 key.offset = 0;
1081
1082 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1083 if (ret > 0) {
1084 btrfs_release_path(path);
1085 return -ENOENT;
1086 } else if (ret < 0) {
1087 return ret;
1088 }
1089
1090 btrfs_unlock_up_safe(path, 1);
1091 leaf = path->nodes[0];
1092 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1093 struct btrfs_inode_item);
1094 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1095 sizeof(struct btrfs_inode_item));
1096 btrfs_mark_buffer_dirty(leaf);
1097 btrfs_release_path(path);
1098
1099 btrfs_delayed_inode_release_metadata(root, node);
1100 btrfs_release_delayed_inode(node);
1101
1102 return 0;
1103 }
1104
1105 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 struct btrfs_delayed_node *node)
1109 {
1110 int ret;
1111
1112 mutex_lock(&node->mutex);
1113 if (!node->inode_dirty) {
1114 mutex_unlock(&node->mutex);
1115 return 0;
1116 }
1117
1118 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1119 mutex_unlock(&node->mutex);
1120 return ret;
1121 }
1122
1123 static inline int
1124 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1125 struct btrfs_path *path,
1126 struct btrfs_delayed_node *node)
1127 {
1128 int ret;
1129
1130 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1131 if (ret)
1132 return ret;
1133
1134 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1135 if (ret)
1136 return ret;
1137
1138 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1139 return ret;
1140 }
1141
1142 /*
1143 * Called when committing the transaction.
1144 * Returns 0 on success.
1145 * Returns < 0 on error and returns with an aborted transaction with any
1146 * outstanding delayed items cleaned up.
1147 */
1148 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1149 struct btrfs_root *root, int nr)
1150 {
1151 struct btrfs_delayed_root *delayed_root;
1152 struct btrfs_delayed_node *curr_node, *prev_node;
1153 struct btrfs_path *path;
1154 struct btrfs_block_rsv *block_rsv;
1155 int ret = 0;
1156 bool count = (nr > 0);
1157
1158 if (trans->aborted)
1159 return -EIO;
1160
1161 path = btrfs_alloc_path();
1162 if (!path)
1163 return -ENOMEM;
1164 path->leave_spinning = 1;
1165
1166 block_rsv = trans->block_rsv;
1167 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1168
1169 delayed_root = btrfs_get_delayed_root(root);
1170
1171 curr_node = btrfs_first_delayed_node(delayed_root);
1172 while (curr_node && (!count || (count && nr--))) {
1173 ret = __btrfs_commit_inode_delayed_items(trans, path,
1174 curr_node);
1175 if (ret) {
1176 btrfs_release_delayed_node(curr_node);
1177 curr_node = NULL;
1178 btrfs_abort_transaction(trans, root, ret);
1179 break;
1180 }
1181
1182 prev_node = curr_node;
1183 curr_node = btrfs_next_delayed_node(curr_node);
1184 btrfs_release_delayed_node(prev_node);
1185 }
1186
1187 if (curr_node)
1188 btrfs_release_delayed_node(curr_node);
1189 btrfs_free_path(path);
1190 trans->block_rsv = block_rsv;
1191
1192 return ret;
1193 }
1194
1195 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1196 struct btrfs_root *root)
1197 {
1198 return __btrfs_run_delayed_items(trans, root, -1);
1199 }
1200
1201 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1202 struct btrfs_root *root, int nr)
1203 {
1204 return __btrfs_run_delayed_items(trans, root, nr);
1205 }
1206
1207 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1208 struct inode *inode)
1209 {
1210 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1211 struct btrfs_path *path;
1212 struct btrfs_block_rsv *block_rsv;
1213 int ret;
1214
1215 if (!delayed_node)
1216 return 0;
1217
1218 mutex_lock(&delayed_node->mutex);
1219 if (!delayed_node->count) {
1220 mutex_unlock(&delayed_node->mutex);
1221 btrfs_release_delayed_node(delayed_node);
1222 return 0;
1223 }
1224 mutex_unlock(&delayed_node->mutex);
1225
1226 path = btrfs_alloc_path();
1227 if (!path)
1228 return -ENOMEM;
1229 path->leave_spinning = 1;
1230
1231 block_rsv = trans->block_rsv;
1232 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1233
1234 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1235
1236 btrfs_release_delayed_node(delayed_node);
1237 btrfs_free_path(path);
1238 trans->block_rsv = block_rsv;
1239
1240 return ret;
1241 }
1242
1243 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1244 {
1245 struct btrfs_trans_handle *trans;
1246 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1247 struct btrfs_path *path;
1248 struct btrfs_block_rsv *block_rsv;
1249 int ret;
1250
1251 if (!delayed_node)
1252 return 0;
1253
1254 mutex_lock(&delayed_node->mutex);
1255 if (!delayed_node->inode_dirty) {
1256 mutex_unlock(&delayed_node->mutex);
1257 btrfs_release_delayed_node(delayed_node);
1258 return 0;
1259 }
1260 mutex_unlock(&delayed_node->mutex);
1261
1262 trans = btrfs_join_transaction(delayed_node->root);
1263 if (IS_ERR(trans)) {
1264 ret = PTR_ERR(trans);
1265 goto out;
1266 }
1267
1268 path = btrfs_alloc_path();
1269 if (!path) {
1270 ret = -ENOMEM;
1271 goto trans_out;
1272 }
1273 path->leave_spinning = 1;
1274
1275 block_rsv = trans->block_rsv;
1276 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1277
1278 mutex_lock(&delayed_node->mutex);
1279 if (delayed_node->inode_dirty)
1280 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1281 path, delayed_node);
1282 else
1283 ret = 0;
1284 mutex_unlock(&delayed_node->mutex);
1285
1286 btrfs_free_path(path);
1287 trans->block_rsv = block_rsv;
1288 trans_out:
1289 btrfs_end_transaction(trans, delayed_node->root);
1290 btrfs_btree_balance_dirty(delayed_node->root);
1291 out:
1292 btrfs_release_delayed_node(delayed_node);
1293
1294 return ret;
1295 }
1296
1297 void btrfs_remove_delayed_node(struct inode *inode)
1298 {
1299 struct btrfs_delayed_node *delayed_node;
1300
1301 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1302 if (!delayed_node)
1303 return;
1304
1305 BTRFS_I(inode)->delayed_node = NULL;
1306 btrfs_release_delayed_node(delayed_node);
1307 }
1308
1309 struct btrfs_async_delayed_node {
1310 struct btrfs_root *root;
1311 struct btrfs_delayed_node *delayed_node;
1312 struct btrfs_work work;
1313 };
1314
1315 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1316 {
1317 struct btrfs_async_delayed_node *async_node;
1318 struct btrfs_trans_handle *trans;
1319 struct btrfs_path *path;
1320 struct btrfs_delayed_node *delayed_node = NULL;
1321 struct btrfs_root *root;
1322 struct btrfs_block_rsv *block_rsv;
1323 int need_requeue = 0;
1324
1325 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1326
1327 path = btrfs_alloc_path();
1328 if (!path)
1329 goto out;
1330 path->leave_spinning = 1;
1331
1332 delayed_node = async_node->delayed_node;
1333 root = delayed_node->root;
1334
1335 trans = btrfs_join_transaction(root);
1336 if (IS_ERR(trans))
1337 goto free_path;
1338
1339 block_rsv = trans->block_rsv;
1340 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1341
1342 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1343 /*
1344 * Maybe new delayed items have been inserted, so we need requeue
1345 * the work. Besides that, we must dequeue the empty delayed nodes
1346 * to avoid the race between delayed items balance and the worker.
1347 * The race like this:
1348 * Task1 Worker thread
1349 * count == 0, needn't requeue
1350 * also needn't insert the
1351 * delayed node into prepare
1352 * list again.
1353 * add lots of delayed items
1354 * queue the delayed node
1355 * already in the list,
1356 * and not in the prepare
1357 * list, it means the delayed
1358 * node is being dealt with
1359 * by the worker.
1360 * do delayed items balance
1361 * the delayed node is being
1362 * dealt with by the worker
1363 * now, just wait.
1364 * the worker goto idle.
1365 * Task1 will sleep until the transaction is commited.
1366 */
1367 mutex_lock(&delayed_node->mutex);
1368 if (delayed_node->count)
1369 need_requeue = 1;
1370 else
1371 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1372 delayed_node);
1373 mutex_unlock(&delayed_node->mutex);
1374
1375 trans->block_rsv = block_rsv;
1376 btrfs_end_transaction_dmeta(trans, root);
1377 btrfs_btree_balance_dirty_nodelay(root);
1378 free_path:
1379 btrfs_free_path(path);
1380 out:
1381 if (need_requeue)
1382 btrfs_requeue_work(&async_node->work);
1383 else {
1384 btrfs_release_prepared_delayed_node(delayed_node);
1385 kfree(async_node);
1386 }
1387 }
1388
1389 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1390 struct btrfs_root *root, int all)
1391 {
1392 struct btrfs_async_delayed_node *async_node;
1393 struct btrfs_delayed_node *curr;
1394 int count = 0;
1395
1396 again:
1397 curr = btrfs_first_prepared_delayed_node(delayed_root);
1398 if (!curr)
1399 return 0;
1400
1401 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1402 if (!async_node) {
1403 btrfs_release_prepared_delayed_node(curr);
1404 return -ENOMEM;
1405 }
1406
1407 async_node->root = root;
1408 async_node->delayed_node = curr;
1409
1410 async_node->work.func = btrfs_async_run_delayed_node_done;
1411 async_node->work.flags = 0;
1412
1413 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1414 count++;
1415
1416 if (all || count < 4)
1417 goto again;
1418
1419 return 0;
1420 }
1421
1422 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1423 {
1424 struct btrfs_delayed_root *delayed_root;
1425 delayed_root = btrfs_get_delayed_root(root);
1426 WARN_ON(btrfs_first_delayed_node(delayed_root));
1427 }
1428
1429 void btrfs_balance_delayed_items(struct btrfs_root *root)
1430 {
1431 struct btrfs_delayed_root *delayed_root;
1432
1433 delayed_root = btrfs_get_delayed_root(root);
1434
1435 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1436 return;
1437
1438 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1439 int ret;
1440 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1441 if (ret)
1442 return;
1443
1444 wait_event_interruptible_timeout(
1445 delayed_root->wait,
1446 (atomic_read(&delayed_root->items) <
1447 BTRFS_DELAYED_BACKGROUND),
1448 HZ);
1449 return;
1450 }
1451
1452 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1453 }
1454
1455 /* Will return 0 or -ENOMEM */
1456 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1457 struct btrfs_root *root, const char *name,
1458 int name_len, struct inode *dir,
1459 struct btrfs_disk_key *disk_key, u8 type,
1460 u64 index)
1461 {
1462 struct btrfs_delayed_node *delayed_node;
1463 struct btrfs_delayed_item *delayed_item;
1464 struct btrfs_dir_item *dir_item;
1465 int ret;
1466
1467 delayed_node = btrfs_get_or_create_delayed_node(dir);
1468 if (IS_ERR(delayed_node))
1469 return PTR_ERR(delayed_node);
1470
1471 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1472 if (!delayed_item) {
1473 ret = -ENOMEM;
1474 goto release_node;
1475 }
1476
1477 delayed_item->key.objectid = btrfs_ino(dir);
1478 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1479 delayed_item->key.offset = index;
1480
1481 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1482 dir_item->location = *disk_key;
1483 dir_item->transid = cpu_to_le64(trans->transid);
1484 dir_item->data_len = 0;
1485 dir_item->name_len = cpu_to_le16(name_len);
1486 dir_item->type = type;
1487 memcpy((char *)(dir_item + 1), name, name_len);
1488
1489 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1490 /*
1491 * we have reserved enough space when we start a new transaction,
1492 * so reserving metadata failure is impossible
1493 */
1494 BUG_ON(ret);
1495
1496
1497 mutex_lock(&delayed_node->mutex);
1498 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1499 if (unlikely(ret)) {
1500 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1501 "the insertion tree of the delayed node"
1502 "(root id: %llu, inode id: %llu, errno: %d)\n",
1503 name,
1504 (unsigned long long)delayed_node->root->objectid,
1505 (unsigned long long)delayed_node->inode_id,
1506 ret);
1507 BUG();
1508 }
1509 mutex_unlock(&delayed_node->mutex);
1510
1511 release_node:
1512 btrfs_release_delayed_node(delayed_node);
1513 return ret;
1514 }
1515
1516 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1517 struct btrfs_delayed_node *node,
1518 struct btrfs_key *key)
1519 {
1520 struct btrfs_delayed_item *item;
1521
1522 mutex_lock(&node->mutex);
1523 item = __btrfs_lookup_delayed_insertion_item(node, key);
1524 if (!item) {
1525 mutex_unlock(&node->mutex);
1526 return 1;
1527 }
1528
1529 btrfs_delayed_item_release_metadata(root, item);
1530 btrfs_release_delayed_item(item);
1531 mutex_unlock(&node->mutex);
1532 return 0;
1533 }
1534
1535 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1536 struct btrfs_root *root, struct inode *dir,
1537 u64 index)
1538 {
1539 struct btrfs_delayed_node *node;
1540 struct btrfs_delayed_item *item;
1541 struct btrfs_key item_key;
1542 int ret;
1543
1544 node = btrfs_get_or_create_delayed_node(dir);
1545 if (IS_ERR(node))
1546 return PTR_ERR(node);
1547
1548 item_key.objectid = btrfs_ino(dir);
1549 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1550 item_key.offset = index;
1551
1552 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1553 if (!ret)
1554 goto end;
1555
1556 item = btrfs_alloc_delayed_item(0);
1557 if (!item) {
1558 ret = -ENOMEM;
1559 goto end;
1560 }
1561
1562 item->key = item_key;
1563
1564 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1565 /*
1566 * we have reserved enough space when we start a new transaction,
1567 * so reserving metadata failure is impossible.
1568 */
1569 BUG_ON(ret);
1570
1571 mutex_lock(&node->mutex);
1572 ret = __btrfs_add_delayed_deletion_item(node, item);
1573 if (unlikely(ret)) {
1574 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1575 "into the deletion tree of the delayed node"
1576 "(root id: %llu, inode id: %llu, errno: %d)\n",
1577 (unsigned long long)index,
1578 (unsigned long long)node->root->objectid,
1579 (unsigned long long)node->inode_id,
1580 ret);
1581 BUG();
1582 }
1583 mutex_unlock(&node->mutex);
1584 end:
1585 btrfs_release_delayed_node(node);
1586 return ret;
1587 }
1588
1589 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1590 {
1591 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1592
1593 if (!delayed_node)
1594 return -ENOENT;
1595
1596 /*
1597 * Since we have held i_mutex of this directory, it is impossible that
1598 * a new directory index is added into the delayed node and index_cnt
1599 * is updated now. So we needn't lock the delayed node.
1600 */
1601 if (!delayed_node->index_cnt) {
1602 btrfs_release_delayed_node(delayed_node);
1603 return -EINVAL;
1604 }
1605
1606 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1607 btrfs_release_delayed_node(delayed_node);
1608 return 0;
1609 }
1610
1611 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1612 struct list_head *del_list)
1613 {
1614 struct btrfs_delayed_node *delayed_node;
1615 struct btrfs_delayed_item *item;
1616
1617 delayed_node = btrfs_get_delayed_node(inode);
1618 if (!delayed_node)
1619 return;
1620
1621 mutex_lock(&delayed_node->mutex);
1622 item = __btrfs_first_delayed_insertion_item(delayed_node);
1623 while (item) {
1624 atomic_inc(&item->refs);
1625 list_add_tail(&item->readdir_list, ins_list);
1626 item = __btrfs_next_delayed_item(item);
1627 }
1628
1629 item = __btrfs_first_delayed_deletion_item(delayed_node);
1630 while (item) {
1631 atomic_inc(&item->refs);
1632 list_add_tail(&item->readdir_list, del_list);
1633 item = __btrfs_next_delayed_item(item);
1634 }
1635 mutex_unlock(&delayed_node->mutex);
1636 /*
1637 * This delayed node is still cached in the btrfs inode, so refs
1638 * must be > 1 now, and we needn't check it is going to be freed
1639 * or not.
1640 *
1641 * Besides that, this function is used to read dir, we do not
1642 * insert/delete delayed items in this period. So we also needn't
1643 * requeue or dequeue this delayed node.
1644 */
1645 atomic_dec(&delayed_node->refs);
1646 }
1647
1648 void btrfs_put_delayed_items(struct list_head *ins_list,
1649 struct list_head *del_list)
1650 {
1651 struct btrfs_delayed_item *curr, *next;
1652
1653 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1654 list_del(&curr->readdir_list);
1655 if (atomic_dec_and_test(&curr->refs))
1656 kfree(curr);
1657 }
1658
1659 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1660 list_del(&curr->readdir_list);
1661 if (atomic_dec_and_test(&curr->refs))
1662 kfree(curr);
1663 }
1664 }
1665
1666 int btrfs_should_delete_dir_index(struct list_head *del_list,
1667 u64 index)
1668 {
1669 struct btrfs_delayed_item *curr, *next;
1670 int ret;
1671
1672 if (list_empty(del_list))
1673 return 0;
1674
1675 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1676 if (curr->key.offset > index)
1677 break;
1678
1679 list_del(&curr->readdir_list);
1680 ret = (curr->key.offset == index);
1681
1682 if (atomic_dec_and_test(&curr->refs))
1683 kfree(curr);
1684
1685 if (ret)
1686 return 1;
1687 else
1688 continue;
1689 }
1690 return 0;
1691 }
1692
1693 /*
1694 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1695 *
1696 */
1697 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1698 filldir_t filldir,
1699 struct list_head *ins_list)
1700 {
1701 struct btrfs_dir_item *di;
1702 struct btrfs_delayed_item *curr, *next;
1703 struct btrfs_key location;
1704 char *name;
1705 int name_len;
1706 int over = 0;
1707 unsigned char d_type;
1708
1709 if (list_empty(ins_list))
1710 return 0;
1711
1712 /*
1713 * Changing the data of the delayed item is impossible. So
1714 * we needn't lock them. And we have held i_mutex of the
1715 * directory, nobody can delete any directory indexes now.
1716 */
1717 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1718 list_del(&curr->readdir_list);
1719
1720 if (curr->key.offset < filp->f_pos) {
1721 if (atomic_dec_and_test(&curr->refs))
1722 kfree(curr);
1723 continue;
1724 }
1725
1726 filp->f_pos = curr->key.offset;
1727
1728 di = (struct btrfs_dir_item *)curr->data;
1729 name = (char *)(di + 1);
1730 name_len = le16_to_cpu(di->name_len);
1731
1732 d_type = btrfs_filetype_table[di->type];
1733 btrfs_disk_key_to_cpu(&location, &di->location);
1734
1735 over = filldir(dirent, name, name_len, curr->key.offset,
1736 location.objectid, d_type);
1737
1738 if (atomic_dec_and_test(&curr->refs))
1739 kfree(curr);
1740
1741 if (over)
1742 return 1;
1743 }
1744 return 0;
1745 }
1746
1747 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1748 generation, 64);
1749 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1750 sequence, 64);
1751 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1752 transid, 64);
1753 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1754 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1755 nbytes, 64);
1756 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1757 block_group, 64);
1758 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1759 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1760 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1761 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1762 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1763 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1764
1765 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1766 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1767
1768 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1769 struct btrfs_inode_item *inode_item,
1770 struct inode *inode)
1771 {
1772 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1773 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1774 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1775 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1776 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1777 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1778 btrfs_set_stack_inode_generation(inode_item,
1779 BTRFS_I(inode)->generation);
1780 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1781 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1782 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1783 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1784 btrfs_set_stack_inode_block_group(inode_item, 0);
1785
1786 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1787 inode->i_atime.tv_sec);
1788 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1789 inode->i_atime.tv_nsec);
1790
1791 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1792 inode->i_mtime.tv_sec);
1793 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1794 inode->i_mtime.tv_nsec);
1795
1796 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1797 inode->i_ctime.tv_sec);
1798 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1799 inode->i_ctime.tv_nsec);
1800 }
1801
1802 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1803 {
1804 struct btrfs_delayed_node *delayed_node;
1805 struct btrfs_inode_item *inode_item;
1806 struct btrfs_timespec *tspec;
1807
1808 delayed_node = btrfs_get_delayed_node(inode);
1809 if (!delayed_node)
1810 return -ENOENT;
1811
1812 mutex_lock(&delayed_node->mutex);
1813 if (!delayed_node->inode_dirty) {
1814 mutex_unlock(&delayed_node->mutex);
1815 btrfs_release_delayed_node(delayed_node);
1816 return -ENOENT;
1817 }
1818
1819 inode_item = &delayed_node->inode_item;
1820
1821 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1822 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1823 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1824 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1825 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1826 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1827 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1828 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1829 inode->i_rdev = 0;
1830 *rdev = btrfs_stack_inode_rdev(inode_item);
1831 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1832
1833 tspec = btrfs_inode_atime(inode_item);
1834 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1835 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1836
1837 tspec = btrfs_inode_mtime(inode_item);
1838 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1839 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1840
1841 tspec = btrfs_inode_ctime(inode_item);
1842 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1843 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1844
1845 inode->i_generation = BTRFS_I(inode)->generation;
1846 BTRFS_I(inode)->index_cnt = (u64)-1;
1847
1848 mutex_unlock(&delayed_node->mutex);
1849 btrfs_release_delayed_node(delayed_node);
1850 return 0;
1851 }
1852
1853 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1854 struct btrfs_root *root, struct inode *inode)
1855 {
1856 struct btrfs_delayed_node *delayed_node;
1857 int ret = 0;
1858
1859 delayed_node = btrfs_get_or_create_delayed_node(inode);
1860 if (IS_ERR(delayed_node))
1861 return PTR_ERR(delayed_node);
1862
1863 mutex_lock(&delayed_node->mutex);
1864 if (delayed_node->inode_dirty) {
1865 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1866 goto release_node;
1867 }
1868
1869 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1870 delayed_node);
1871 if (ret)
1872 goto release_node;
1873
1874 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1875 delayed_node->inode_dirty = 1;
1876 delayed_node->count++;
1877 atomic_inc(&root->fs_info->delayed_root->items);
1878 release_node:
1879 mutex_unlock(&delayed_node->mutex);
1880 btrfs_release_delayed_node(delayed_node);
1881 return ret;
1882 }
1883
1884 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1885 {
1886 struct btrfs_root *root = delayed_node->root;
1887 struct btrfs_delayed_item *curr_item, *prev_item;
1888
1889 mutex_lock(&delayed_node->mutex);
1890 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1891 while (curr_item) {
1892 btrfs_delayed_item_release_metadata(root, curr_item);
1893 prev_item = curr_item;
1894 curr_item = __btrfs_next_delayed_item(prev_item);
1895 btrfs_release_delayed_item(prev_item);
1896 }
1897
1898 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1899 while (curr_item) {
1900 btrfs_delayed_item_release_metadata(root, curr_item);
1901 prev_item = curr_item;
1902 curr_item = __btrfs_next_delayed_item(prev_item);
1903 btrfs_release_delayed_item(prev_item);
1904 }
1905
1906 if (delayed_node->inode_dirty) {
1907 btrfs_delayed_inode_release_metadata(root, delayed_node);
1908 btrfs_release_delayed_inode(delayed_node);
1909 }
1910 mutex_unlock(&delayed_node->mutex);
1911 }
1912
1913 void btrfs_kill_delayed_inode_items(struct inode *inode)
1914 {
1915 struct btrfs_delayed_node *delayed_node;
1916
1917 delayed_node = btrfs_get_delayed_node(inode);
1918 if (!delayed_node)
1919 return;
1920
1921 __btrfs_kill_delayed_node(delayed_node);
1922 btrfs_release_delayed_node(delayed_node);
1923 }
1924
1925 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1926 {
1927 u64 inode_id = 0;
1928 struct btrfs_delayed_node *delayed_nodes[8];
1929 int i, n;
1930
1931 while (1) {
1932 spin_lock(&root->inode_lock);
1933 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1934 (void **)delayed_nodes, inode_id,
1935 ARRAY_SIZE(delayed_nodes));
1936 if (!n) {
1937 spin_unlock(&root->inode_lock);
1938 break;
1939 }
1940
1941 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1942
1943 for (i = 0; i < n; i++)
1944 atomic_inc(&delayed_nodes[i]->refs);
1945 spin_unlock(&root->inode_lock);
1946
1947 for (i = 0; i < n; i++) {
1948 __btrfs_kill_delayed_node(delayed_nodes[i]);
1949 btrfs_release_delayed_node(delayed_nodes[i]);
1950 }
1951 }
1952 }
1953
1954 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1955 {
1956 struct btrfs_delayed_root *delayed_root;
1957 struct btrfs_delayed_node *curr_node, *prev_node;
1958
1959 delayed_root = btrfs_get_delayed_root(root);
1960
1961 curr_node = btrfs_first_delayed_node(delayed_root);
1962 while (curr_node) {
1963 __btrfs_kill_delayed_node(curr_node);
1964
1965 prev_node = curr_node;
1966 curr_node = btrfs_next_delayed_node(curr_node);
1967 btrfs_release_delayed_node(prev_node);
1968 }
1969 }
1970