]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/discard.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / discard.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
14
15 /*
16 * This contains the logic to handle async discard.
17 *
18 * Async discard manages trimming of free space outside of transaction commit.
19 * Discarding is done by managing the block_groups on a LRU list based on free
20 * space recency. Two passes are used to first prioritize discarding extents
21 * and then allow for trimming in the bitmap the best opportunity to coalesce.
22 * The block_groups are maintained on multiple lists to allow for multiple
23 * passes with different discard filter requirements. A delayed work item is
24 * used to manage discarding with timeout determined by a max of the delay
25 * incurred by the iops rate limit, the byte rate limit, and the max delay of
26 * BTRFS_DISCARD_MAX_DELAY.
27 *
28 * Note, this only keeps track of block_groups that are explicitly for data.
29 * Mixed block_groups are not supported.
30 *
31 * The first list is special to manage discarding of fully free block groups.
32 * This is necessary because we issue a final trim for a full free block group
33 * after forgetting it. When a block group becomes unused, instead of directly
34 * being added to the unused_bgs list, we add it to this first list. Then
35 * from there, if it becomes fully discarded, we place it onto the unused_bgs
36 * list.
37 *
38 * The in-memory free space cache serves as the backing state for discard.
39 * Consequently this means there is no persistence. We opt to load all the
40 * block groups in as not discarded, so the mount case degenerates to the
41 * crashing case.
42 *
43 * As the free space cache uses bitmaps, there exists a tradeoff between
44 * ease/efficiency for find_free_extent() and the accuracy of discard state.
45 * Here we opt to let untrimmed regions merge with everything while only letting
46 * trimmed regions merge with other trimmed regions. This can cause
47 * overtrimming, but the coalescing benefit seems to be worth it. Additionally,
48 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap,
49 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in,
50 * this resets the state and we will retry trimming the whole bitmap. This is a
51 * tradeoff between discard state accuracy and the cost of accounting.
52 */
53
54 /* This is an initial delay to give some chance for block reuse */
55 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC)
56 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC)
57
58 /* Target completion latency of discarding all discardable extents */
59 #define BTRFS_DISCARD_TARGET_MSEC (6 * 60 * 60UL * MSEC_PER_SEC)
60 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL)
61 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL)
62 #define BTRFS_DISCARD_MAX_IOPS (10U)
63
64 /* Montonically decreasing minimum length filters after index 0 */
65 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
66 0,
67 BTRFS_ASYNC_DISCARD_MAX_FILTER,
68 BTRFS_ASYNC_DISCARD_MIN_FILTER
69 };
70
71 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
72 struct btrfs_block_group *block_group)
73 {
74 return &discard_ctl->discard_list[block_group->discard_index];
75 }
76
77 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
78 struct btrfs_block_group *block_group)
79 {
80 if (!btrfs_run_discard_work(discard_ctl))
81 return;
82
83 if (list_empty(&block_group->discard_list) ||
84 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
85 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
86 block_group->discard_index = BTRFS_DISCARD_INDEX_START;
87 block_group->discard_eligible_time = (ktime_get_ns() +
88 BTRFS_DISCARD_DELAY);
89 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
90 }
91
92 list_move_tail(&block_group->discard_list,
93 get_discard_list(discard_ctl, block_group));
94 }
95
96 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
97 struct btrfs_block_group *block_group)
98 {
99 if (!btrfs_is_block_group_data_only(block_group))
100 return;
101
102 spin_lock(&discard_ctl->lock);
103 __add_to_discard_list(discard_ctl, block_group);
104 spin_unlock(&discard_ctl->lock);
105 }
106
107 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
108 struct btrfs_block_group *block_group)
109 {
110 spin_lock(&discard_ctl->lock);
111
112 if (!btrfs_run_discard_work(discard_ctl)) {
113 spin_unlock(&discard_ctl->lock);
114 return;
115 }
116
117 list_del_init(&block_group->discard_list);
118
119 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
120 block_group->discard_eligible_time = (ktime_get_ns() +
121 BTRFS_DISCARD_UNUSED_DELAY);
122 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
123 list_add_tail(&block_group->discard_list,
124 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
125
126 spin_unlock(&discard_ctl->lock);
127 }
128
129 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
130 struct btrfs_block_group *block_group)
131 {
132 bool running = false;
133
134 spin_lock(&discard_ctl->lock);
135
136 if (block_group == discard_ctl->block_group) {
137 running = true;
138 discard_ctl->block_group = NULL;
139 }
140
141 block_group->discard_eligible_time = 0;
142 list_del_init(&block_group->discard_list);
143
144 spin_unlock(&discard_ctl->lock);
145
146 return running;
147 }
148
149 /**
150 * find_next_block_group - find block_group that's up next for discarding
151 * @discard_ctl: discard control
152 * @now: current time
153 *
154 * Iterate over the discard lists to find the next block_group up for
155 * discarding checking the discard_eligible_time of block_group.
156 */
157 static struct btrfs_block_group *find_next_block_group(
158 struct btrfs_discard_ctl *discard_ctl,
159 u64 now)
160 {
161 struct btrfs_block_group *ret_block_group = NULL, *block_group;
162 int i;
163
164 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
165 struct list_head *discard_list = &discard_ctl->discard_list[i];
166
167 if (!list_empty(discard_list)) {
168 block_group = list_first_entry(discard_list,
169 struct btrfs_block_group,
170 discard_list);
171
172 if (!ret_block_group)
173 ret_block_group = block_group;
174
175 if (ret_block_group->discard_eligible_time < now)
176 break;
177
178 if (ret_block_group->discard_eligible_time >
179 block_group->discard_eligible_time)
180 ret_block_group = block_group;
181 }
182 }
183
184 return ret_block_group;
185 }
186
187 /**
188 * peek_discard_list - wrap find_next_block_group()
189 * @discard_ctl: discard control
190 * @discard_state: the discard_state of the block_group after state management
191 * @discard_index: the discard_index of the block_group after state management
192 *
193 * This wraps find_next_block_group() and sets the block_group to be in use.
194 * discard_state's control flow is managed here. Variables related to
195 * discard_state are reset here as needed (eg discard_cursor). @discard_state
196 * and @discard_index are remembered as it may change while we're discarding,
197 * but we want the discard to execute in the context determined here.
198 */
199 static struct btrfs_block_group *peek_discard_list(
200 struct btrfs_discard_ctl *discard_ctl,
201 enum btrfs_discard_state *discard_state,
202 int *discard_index, u64 now)
203 {
204 struct btrfs_block_group *block_group;
205
206 spin_lock(&discard_ctl->lock);
207 again:
208 block_group = find_next_block_group(discard_ctl, now);
209
210 if (block_group && now >= block_group->discard_eligible_time) {
211 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
212 block_group->used != 0) {
213 if (btrfs_is_block_group_data_only(block_group))
214 __add_to_discard_list(discard_ctl, block_group);
215 else
216 list_del_init(&block_group->discard_list);
217 goto again;
218 }
219 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
220 block_group->discard_cursor = block_group->start;
221 block_group->discard_state = BTRFS_DISCARD_EXTENTS;
222 }
223 discard_ctl->block_group = block_group;
224 }
225 if (block_group) {
226 *discard_state = block_group->discard_state;
227 *discard_index = block_group->discard_index;
228 }
229 spin_unlock(&discard_ctl->lock);
230
231 return block_group;
232 }
233
234 /**
235 * btrfs_discard_check_filter - updates a block groups filters
236 * @block_group: block group of interest
237 * @bytes: recently freed region size after coalescing
238 *
239 * Async discard maintains multiple lists with progressively smaller filters
240 * to prioritize discarding based on size. Should a free space that matches
241 * a larger filter be returned to the free_space_cache, prioritize that discard
242 * by moving @block_group to the proper filter.
243 */
244 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
245 u64 bytes)
246 {
247 struct btrfs_discard_ctl *discard_ctl;
248
249 if (!block_group ||
250 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
251 return;
252
253 discard_ctl = &block_group->fs_info->discard_ctl;
254
255 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
256 bytes >= discard_minlen[block_group->discard_index - 1]) {
257 int i;
258
259 remove_from_discard_list(discard_ctl, block_group);
260
261 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
262 i++) {
263 if (bytes >= discard_minlen[i]) {
264 block_group->discard_index = i;
265 add_to_discard_list(discard_ctl, block_group);
266 break;
267 }
268 }
269 }
270 }
271
272 /**
273 * btrfs_update_discard_index - moves a block group along the discard lists
274 * @discard_ctl: discard control
275 * @block_group: block_group of interest
276 *
277 * Increment @block_group's discard_index. If it falls of the list, let it be.
278 * Otherwise add it back to the appropriate list.
279 */
280 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
281 struct btrfs_block_group *block_group)
282 {
283 block_group->discard_index++;
284 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
285 block_group->discard_index = 1;
286 return;
287 }
288
289 add_to_discard_list(discard_ctl, block_group);
290 }
291
292 /**
293 * btrfs_discard_cancel_work - remove a block_group from the discard lists
294 * @discard_ctl: discard control
295 * @block_group: block_group of interest
296 *
297 * This removes @block_group from the discard lists. If necessary, it waits on
298 * the current work and then reschedules the delayed work.
299 */
300 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
301 struct btrfs_block_group *block_group)
302 {
303 if (remove_from_discard_list(discard_ctl, block_group)) {
304 cancel_delayed_work_sync(&discard_ctl->work);
305 btrfs_discard_schedule_work(discard_ctl, true);
306 }
307 }
308
309 /**
310 * btrfs_discard_queue_work - handles queuing the block_groups
311 * @discard_ctl: discard control
312 * @block_group: block_group of interest
313 *
314 * This maintains the LRU order of the discard lists.
315 */
316 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
317 struct btrfs_block_group *block_group)
318 {
319 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
320 return;
321
322 if (block_group->used == 0)
323 add_to_discard_unused_list(discard_ctl, block_group);
324 else
325 add_to_discard_list(discard_ctl, block_group);
326
327 if (!delayed_work_pending(&discard_ctl->work))
328 btrfs_discard_schedule_work(discard_ctl, false);
329 }
330
331 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
332 u64 now, bool override)
333 {
334 struct btrfs_block_group *block_group;
335
336 if (!btrfs_run_discard_work(discard_ctl))
337 return;
338 if (!override && delayed_work_pending(&discard_ctl->work))
339 return;
340
341 block_group = find_next_block_group(discard_ctl, now);
342 if (block_group) {
343 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
344 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
345
346 /*
347 * A single delayed workqueue item is responsible for
348 * discarding, so we can manage the bytes rate limit by keeping
349 * track of the previous discard.
350 */
351 if (kbps_limit && discard_ctl->prev_discard) {
352 u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
353 u64 bps_delay = div64_u64(discard_ctl->prev_discard *
354 NSEC_PER_SEC, bps_limit);
355
356 delay = max(delay, bps_delay);
357 }
358
359 /*
360 * This timeout is to hopefully prevent immediate discarding
361 * in a recently allocated block group.
362 */
363 if (now < block_group->discard_eligible_time) {
364 u64 bg_timeout = block_group->discard_eligible_time - now;
365
366 delay = max(delay, bg_timeout);
367 }
368
369 if (override && discard_ctl->prev_discard) {
370 u64 elapsed = now - discard_ctl->prev_discard_time;
371
372 if (delay > elapsed)
373 delay -= elapsed;
374 else
375 delay = 0;
376 }
377
378 mod_delayed_work(discard_ctl->discard_workers,
379 &discard_ctl->work, nsecs_to_jiffies(delay));
380 }
381 }
382
383 /*
384 * btrfs_discard_schedule_work - responsible for scheduling the discard work
385 * @discard_ctl: discard control
386 * @override: override the current timer
387 *
388 * Discards are issued by a delayed workqueue item. @override is used to
389 * update the current delay as the baseline delay interval is reevaluated on
390 * transaction commit. This is also maxed with any other rate limit.
391 */
392 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
393 bool override)
394 {
395 const u64 now = ktime_get_ns();
396
397 spin_lock(&discard_ctl->lock);
398 __btrfs_discard_schedule_work(discard_ctl, now, override);
399 spin_unlock(&discard_ctl->lock);
400 }
401
402 /**
403 * btrfs_finish_discard_pass - determine next step of a block_group
404 * @discard_ctl: discard control
405 * @block_group: block_group of interest
406 *
407 * This determines the next step for a block group after it's finished going
408 * through a pass on a discard list. If it is unused and fully trimmed, we can
409 * mark it unused and send it to the unused_bgs path. Otherwise, pass it onto
410 * the appropriate filter list or let it fall off.
411 */
412 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
413 struct btrfs_block_group *block_group)
414 {
415 remove_from_discard_list(discard_ctl, block_group);
416
417 if (block_group->used == 0) {
418 if (btrfs_is_free_space_trimmed(block_group))
419 btrfs_mark_bg_unused(block_group);
420 else
421 add_to_discard_unused_list(discard_ctl, block_group);
422 } else {
423 btrfs_update_discard_index(discard_ctl, block_group);
424 }
425 }
426
427 /**
428 * btrfs_discard_workfn - discard work function
429 * @work: work
430 *
431 * This finds the next block_group to start discarding and then discards a
432 * single region. It does this in a two-pass fashion: first extents and second
433 * bitmaps. Completely discarded block groups are sent to the unused_bgs path.
434 */
435 static void btrfs_discard_workfn(struct work_struct *work)
436 {
437 struct btrfs_discard_ctl *discard_ctl;
438 struct btrfs_block_group *block_group;
439 enum btrfs_discard_state discard_state;
440 int discard_index = 0;
441 u64 trimmed = 0;
442 u64 minlen = 0;
443 u64 now = ktime_get_ns();
444
445 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
446
447 block_group = peek_discard_list(discard_ctl, &discard_state,
448 &discard_index, now);
449 if (!block_group || !btrfs_run_discard_work(discard_ctl))
450 return;
451 if (now < block_group->discard_eligible_time) {
452 btrfs_discard_schedule_work(discard_ctl, false);
453 return;
454 }
455
456 /* Perform discarding */
457 minlen = discard_minlen[discard_index];
458
459 if (discard_state == BTRFS_DISCARD_BITMAPS) {
460 u64 maxlen = 0;
461
462 /*
463 * Use the previous levels minimum discard length as the max
464 * length filter. In the case something is added to make a
465 * region go beyond the max filter, the entire bitmap is set
466 * back to BTRFS_TRIM_STATE_UNTRIMMED.
467 */
468 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
469 maxlen = discard_minlen[discard_index - 1];
470
471 btrfs_trim_block_group_bitmaps(block_group, &trimmed,
472 block_group->discard_cursor,
473 btrfs_block_group_end(block_group),
474 minlen, maxlen, true);
475 discard_ctl->discard_bitmap_bytes += trimmed;
476 } else {
477 btrfs_trim_block_group_extents(block_group, &trimmed,
478 block_group->discard_cursor,
479 btrfs_block_group_end(block_group),
480 minlen, true);
481 discard_ctl->discard_extent_bytes += trimmed;
482 }
483
484 /* Determine next steps for a block_group */
485 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
486 if (discard_state == BTRFS_DISCARD_BITMAPS) {
487 btrfs_finish_discard_pass(discard_ctl, block_group);
488 } else {
489 block_group->discard_cursor = block_group->start;
490 spin_lock(&discard_ctl->lock);
491 if (block_group->discard_state !=
492 BTRFS_DISCARD_RESET_CURSOR)
493 block_group->discard_state =
494 BTRFS_DISCARD_BITMAPS;
495 spin_unlock(&discard_ctl->lock);
496 }
497 }
498
499 now = ktime_get_ns();
500 spin_lock(&discard_ctl->lock);
501 discard_ctl->prev_discard = trimmed;
502 discard_ctl->prev_discard_time = now;
503 discard_ctl->block_group = NULL;
504 __btrfs_discard_schedule_work(discard_ctl, now, false);
505 spin_unlock(&discard_ctl->lock);
506 }
507
508 /**
509 * btrfs_run_discard_work - determines if async discard should be running
510 * @discard_ctl: discard control
511 *
512 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
513 */
514 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
515 {
516 struct btrfs_fs_info *fs_info = container_of(discard_ctl,
517 struct btrfs_fs_info,
518 discard_ctl);
519
520 return (!(fs_info->sb->s_flags & SB_RDONLY) &&
521 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
522 }
523
524 /**
525 * btrfs_discard_calc_delay - recalculate the base delay
526 * @discard_ctl: discard control
527 *
528 * Recalculate the base delay which is based off the total number of
529 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms)
530 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
531 */
532 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
533 {
534 s32 discardable_extents;
535 s64 discardable_bytes;
536 u32 iops_limit;
537 unsigned long delay;
538
539 discardable_extents = atomic_read(&discard_ctl->discardable_extents);
540 if (!discardable_extents)
541 return;
542
543 spin_lock(&discard_ctl->lock);
544
545 /*
546 * The following is to fix a potential -1 discrepenancy that we're not
547 * sure how to reproduce. But given that this is the only place that
548 * utilizes these numbers and this is only called by from
549 * btrfs_finish_extent_commit() which is synchronized, we can correct
550 * here.
551 */
552 if (discardable_extents < 0)
553 atomic_add(-discardable_extents,
554 &discard_ctl->discardable_extents);
555
556 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
557 if (discardable_bytes < 0)
558 atomic64_add(-discardable_bytes,
559 &discard_ctl->discardable_bytes);
560
561 if (discardable_extents <= 0) {
562 spin_unlock(&discard_ctl->lock);
563 return;
564 }
565
566 iops_limit = READ_ONCE(discard_ctl->iops_limit);
567 if (iops_limit)
568 delay = MSEC_PER_SEC / iops_limit;
569 else
570 delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
571
572 delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
573 BTRFS_DISCARD_MAX_DELAY_MSEC);
574 discard_ctl->delay_ms = delay;
575
576 spin_unlock(&discard_ctl->lock);
577 }
578
579 /**
580 * btrfs_discard_update_discardable - propagate discard counters
581 * @block_group: block_group of interest
582 *
583 * This propagates deltas of counters up to the discard_ctl. It maintains a
584 * current counter and a previous counter passing the delta up to the global
585 * stat. Then the current counter value becomes the previous counter value.
586 */
587 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
588 {
589 struct btrfs_free_space_ctl *ctl;
590 struct btrfs_discard_ctl *discard_ctl;
591 s32 extents_delta;
592 s64 bytes_delta;
593
594 if (!block_group ||
595 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
596 !btrfs_is_block_group_data_only(block_group))
597 return;
598
599 ctl = block_group->free_space_ctl;
600 discard_ctl = &block_group->fs_info->discard_ctl;
601
602 lockdep_assert_held(&ctl->tree_lock);
603 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
604 ctl->discardable_extents[BTRFS_STAT_PREV];
605 if (extents_delta) {
606 atomic_add(extents_delta, &discard_ctl->discardable_extents);
607 ctl->discardable_extents[BTRFS_STAT_PREV] =
608 ctl->discardable_extents[BTRFS_STAT_CURR];
609 }
610
611 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
612 ctl->discardable_bytes[BTRFS_STAT_PREV];
613 if (bytes_delta) {
614 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
615 ctl->discardable_bytes[BTRFS_STAT_PREV] =
616 ctl->discardable_bytes[BTRFS_STAT_CURR];
617 }
618 }
619
620 /**
621 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
622 * @fs_info: fs_info of interest
623 *
624 * The unused_bgs list needs to be punted to the discard lists because the
625 * order of operations is changed. In the normal sychronous discard path, the
626 * block groups are trimmed via a single large trim in transaction commit. This
627 * is ultimately what we are trying to avoid with asynchronous discard. Thus,
628 * it must be done before going down the unused_bgs path.
629 */
630 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
631 {
632 struct btrfs_block_group *block_group, *next;
633
634 spin_lock(&fs_info->unused_bgs_lock);
635 /* We enabled async discard, so punt all to the queue */
636 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
637 bg_list) {
638 list_del_init(&block_group->bg_list);
639 btrfs_put_block_group(block_group);
640 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
641 }
642 spin_unlock(&fs_info->unused_bgs_lock);
643 }
644
645 /**
646 * btrfs_discard_purge_list - purge discard lists
647 * @discard_ctl: discard control
648 *
649 * If we are disabling async discard, we may have intercepted block groups that
650 * are completely free and ready for the unused_bgs path. As discarding will
651 * now happen in transaction commit or not at all, we can safely mark the
652 * corresponding block groups as unused and they will be sent on their merry
653 * way to the unused_bgs list.
654 */
655 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
656 {
657 struct btrfs_block_group *block_group, *next;
658 int i;
659
660 spin_lock(&discard_ctl->lock);
661 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
662 list_for_each_entry_safe(block_group, next,
663 &discard_ctl->discard_list[i],
664 discard_list) {
665 list_del_init(&block_group->discard_list);
666 spin_unlock(&discard_ctl->lock);
667 if (block_group->used == 0)
668 btrfs_mark_bg_unused(block_group);
669 spin_lock(&discard_ctl->lock);
670 }
671 }
672 spin_unlock(&discard_ctl->lock);
673 }
674
675 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
676 {
677 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
678 btrfs_discard_cleanup(fs_info);
679 return;
680 }
681
682 btrfs_discard_punt_unused_bgs_list(fs_info);
683
684 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
685 }
686
687 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
688 {
689 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
690 }
691
692 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
693 {
694 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
695 int i;
696
697 spin_lock_init(&discard_ctl->lock);
698 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
699
700 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
701 INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
702
703 discard_ctl->prev_discard = 0;
704 discard_ctl->prev_discard_time = 0;
705 atomic_set(&discard_ctl->discardable_extents, 0);
706 atomic64_set(&discard_ctl->discardable_bytes, 0);
707 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
708 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
709 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
710 discard_ctl->kbps_limit = 0;
711 discard_ctl->discard_extent_bytes = 0;
712 discard_ctl->discard_bitmap_bytes = 0;
713 atomic64_set(&discard_ctl->discard_bytes_saved, 0);
714 }
715
716 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
717 {
718 btrfs_discard_stop(fs_info);
719 cancel_delayed_work_sync(&fs_info->discard_ctl.work);
720 btrfs_discard_purge_list(&fs_info->discard_ctl);
721 }