]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/btrfs/disk-io.c
Btrfs: record first logical byte in memory
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49
50 #ifdef CONFIG_X86
51 #include <asm/cpufeature.h>
52 #endif
53
54 static struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void free_fs_root(struct btrfs_root *root);
57 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
58 int read_only);
59 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62 struct btrfs_root *root);
63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
65 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66 struct extent_io_tree *dirty_pages,
67 int mark);
68 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69 struct extent_io_tree *pinned_extents);
70
71 /*
72 * end_io_wq structs are used to do processing in task context when an IO is
73 * complete. This is used during reads to verify checksums, and it is used
74 * by writes to insert metadata for new file extents after IO is complete.
75 */
76 struct end_io_wq {
77 struct bio *bio;
78 bio_end_io_t *end_io;
79 void *private;
80 struct btrfs_fs_info *info;
81 int error;
82 int metadata;
83 struct list_head list;
84 struct btrfs_work work;
85 };
86
87 /*
88 * async submit bios are used to offload expensive checksumming
89 * onto the worker threads. They checksum file and metadata bios
90 * just before they are sent down the IO stack.
91 */
92 struct async_submit_bio {
93 struct inode *inode;
94 struct bio *bio;
95 struct list_head list;
96 extent_submit_bio_hook_t *submit_bio_start;
97 extent_submit_bio_hook_t *submit_bio_done;
98 int rw;
99 int mirror_num;
100 unsigned long bio_flags;
101 /*
102 * bio_offset is optional, can be used if the pages in the bio
103 * can't tell us where in the file the bio should go
104 */
105 u64 bio_offset;
106 struct btrfs_work work;
107 int error;
108 };
109
110 /*
111 * Lockdep class keys for extent_buffer->lock's in this root. For a given
112 * eb, the lockdep key is determined by the btrfs_root it belongs to and
113 * the level the eb occupies in the tree.
114 *
115 * Different roots are used for different purposes and may nest inside each
116 * other and they require separate keysets. As lockdep keys should be
117 * static, assign keysets according to the purpose of the root as indicated
118 * by btrfs_root->objectid. This ensures that all special purpose roots
119 * have separate keysets.
120 *
121 * Lock-nesting across peer nodes is always done with the immediate parent
122 * node locked thus preventing deadlock. As lockdep doesn't know this, use
123 * subclass to avoid triggering lockdep warning in such cases.
124 *
125 * The key is set by the readpage_end_io_hook after the buffer has passed
126 * csum validation but before the pages are unlocked. It is also set by
127 * btrfs_init_new_buffer on freshly allocated blocks.
128 *
129 * We also add a check to make sure the highest level of the tree is the
130 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
131 * needs update as well.
132 */
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 # if BTRFS_MAX_LEVEL != 8
135 # error
136 # endif
137
138 static struct btrfs_lockdep_keyset {
139 u64 id; /* root objectid */
140 const char *name_stem; /* lock name stem */
141 char names[BTRFS_MAX_LEVEL + 1][20];
142 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
143 } btrfs_lockdep_keysets[] = {
144 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
145 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
146 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
147 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
148 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
149 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
150 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
151 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
152 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
153 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
154 { .id = 0, .name_stem = "tree" },
155 };
156
157 void __init btrfs_init_lockdep(void)
158 {
159 int i, j;
160
161 /* initialize lockdep class names */
162 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164
165 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166 snprintf(ks->names[j], sizeof(ks->names[j]),
167 "btrfs-%s-%02d", ks->name_stem, j);
168 }
169 }
170
171 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172 int level)
173 {
174 struct btrfs_lockdep_keyset *ks;
175
176 BUG_ON(level >= ARRAY_SIZE(ks->keys));
177
178 /* find the matching keyset, id 0 is the default entry */
179 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180 if (ks->id == objectid)
181 break;
182
183 lockdep_set_class_and_name(&eb->lock,
184 &ks->keys[level], ks->names[level]);
185 }
186
187 #endif
188
189 /*
190 * extents on the btree inode are pretty simple, there's one extent
191 * that covers the entire device
192 */
193 static struct extent_map *btree_get_extent(struct inode *inode,
194 struct page *page, size_t pg_offset, u64 start, u64 len,
195 int create)
196 {
197 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198 struct extent_map *em;
199 int ret;
200
201 read_lock(&em_tree->lock);
202 em = lookup_extent_mapping(em_tree, start, len);
203 if (em) {
204 em->bdev =
205 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
206 read_unlock(&em_tree->lock);
207 goto out;
208 }
209 read_unlock(&em_tree->lock);
210
211 em = alloc_extent_map();
212 if (!em) {
213 em = ERR_PTR(-ENOMEM);
214 goto out;
215 }
216 em->start = 0;
217 em->len = (u64)-1;
218 em->block_len = (u64)-1;
219 em->block_start = 0;
220 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
221
222 write_lock(&em_tree->lock);
223 ret = add_extent_mapping(em_tree, em);
224 if (ret == -EEXIST) {
225 free_extent_map(em);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (!em)
228 em = ERR_PTR(-EIO);
229 } else if (ret) {
230 free_extent_map(em);
231 em = ERR_PTR(ret);
232 }
233 write_unlock(&em_tree->lock);
234
235 out:
236 return em;
237 }
238
239 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240 {
241 return crc32c(seed, data, len);
242 }
243
244 void btrfs_csum_final(u32 crc, char *result)
245 {
246 put_unaligned_le32(~crc, result);
247 }
248
249 /*
250 * compute the csum for a btree block, and either verify it or write it
251 * into the csum field of the block.
252 */
253 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254 int verify)
255 {
256 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
257 char *result = NULL;
258 unsigned long len;
259 unsigned long cur_len;
260 unsigned long offset = BTRFS_CSUM_SIZE;
261 char *kaddr;
262 unsigned long map_start;
263 unsigned long map_len;
264 int err;
265 u32 crc = ~(u32)0;
266 unsigned long inline_result;
267
268 len = buf->len - offset;
269 while (len > 0) {
270 err = map_private_extent_buffer(buf, offset, 32,
271 &kaddr, &map_start, &map_len);
272 if (err)
273 return 1;
274 cur_len = min(len, map_len - (offset - map_start));
275 crc = btrfs_csum_data(root, kaddr + offset - map_start,
276 crc, cur_len);
277 len -= cur_len;
278 offset += cur_len;
279 }
280 if (csum_size > sizeof(inline_result)) {
281 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282 if (!result)
283 return 1;
284 } else {
285 result = (char *)&inline_result;
286 }
287
288 btrfs_csum_final(crc, result);
289
290 if (verify) {
291 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
292 u32 val;
293 u32 found = 0;
294 memcpy(&found, result, csum_size);
295
296 read_extent_buffer(buf, &val, 0, csum_size);
297 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
298 "failed on %llu wanted %X found %X "
299 "level %d\n",
300 root->fs_info->sb->s_id,
301 (unsigned long long)buf->start, val, found,
302 btrfs_header_level(buf));
303 if (result != (char *)&inline_result)
304 kfree(result);
305 return 1;
306 }
307 } else {
308 write_extent_buffer(buf, result, 0, csum_size);
309 }
310 if (result != (char *)&inline_result)
311 kfree(result);
312 return 0;
313 }
314
315 /*
316 * we can't consider a given block up to date unless the transid of the
317 * block matches the transid in the parent node's pointer. This is how we
318 * detect blocks that either didn't get written at all or got written
319 * in the wrong place.
320 */
321 static int verify_parent_transid(struct extent_io_tree *io_tree,
322 struct extent_buffer *eb, u64 parent_transid,
323 int atomic)
324 {
325 struct extent_state *cached_state = NULL;
326 int ret;
327
328 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329 return 0;
330
331 if (atomic)
332 return -EAGAIN;
333
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state);
336 if (extent_buffer_uptodate(eb) &&
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
346 ret = 1;
347 clear_extent_buffer_uptodate(eb);
348 out:
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
351 return ret;
352 }
353
354 /*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
360 u64 start, u64 parent_transid)
361 {
362 struct extent_io_tree *io_tree;
363 int failed = 0;
364 int ret;
365 int num_copies = 0;
366 int mirror_num = 0;
367 int failed_mirror = 0;
368
369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 while (1) {
372 ret = read_extent_buffer_pages(io_tree, eb, start,
373 WAIT_COMPLETE,
374 btree_get_extent, mirror_num);
375 if (!ret) {
376 if (!verify_parent_transid(io_tree, eb,
377 parent_transid, 0))
378 break;
379 else
380 ret = -EIO;
381 }
382
383 /*
384 * This buffer's crc is fine, but its contents are corrupted, so
385 * there is no reason to read the other copies, they won't be
386 * any less wrong.
387 */
388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389 break;
390
391 num_copies = btrfs_num_copies(root->fs_info,
392 eb->start, eb->len);
393 if (num_copies == 1)
394 break;
395
396 if (!failed_mirror) {
397 failed = 1;
398 failed_mirror = eb->read_mirror;
399 }
400
401 mirror_num++;
402 if (mirror_num == failed_mirror)
403 mirror_num++;
404
405 if (mirror_num > num_copies)
406 break;
407 }
408
409 if (failed && !ret && failed_mirror)
410 repair_eb_io_failure(root, eb, failed_mirror);
411
412 return ret;
413 }
414
415 /*
416 * checksum a dirty tree block before IO. This has extra checks to make sure
417 * we only fill in the checksum field in the first page of a multi-page block
418 */
419
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422 struct extent_io_tree *tree;
423 u64 start = page_offset(page);
424 u64 found_start;
425 struct extent_buffer *eb;
426
427 tree = &BTRFS_I(page->mapping->host)->io_tree;
428
429 eb = (struct extent_buffer *)page->private;
430 if (page != eb->pages[0])
431 return 0;
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
434 WARN_ON(1);
435 return 0;
436 }
437 if (!PageUptodate(page)) {
438 WARN_ON(1);
439 return 0;
440 }
441 csum_tree_block(root, eb, 0);
442 return 0;
443 }
444
445 static int check_tree_block_fsid(struct btrfs_root *root,
446 struct extent_buffer *eb)
447 {
448 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449 u8 fsid[BTRFS_UUID_SIZE];
450 int ret = 1;
451
452 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453 BTRFS_FSID_SIZE);
454 while (fs_devices) {
455 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456 ret = 0;
457 break;
458 }
459 fs_devices = fs_devices->seed;
460 }
461 return ret;
462 }
463
464 #define CORRUPT(reason, eb, root, slot) \
465 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466 "root=%llu, slot=%d\n", reason, \
467 (unsigned long long)btrfs_header_bytenr(eb), \
468 (unsigned long long)root->objectid, slot)
469
470 static noinline int check_leaf(struct btrfs_root *root,
471 struct extent_buffer *leaf)
472 {
473 struct btrfs_key key;
474 struct btrfs_key leaf_key;
475 u32 nritems = btrfs_header_nritems(leaf);
476 int slot;
477
478 if (nritems == 0)
479 return 0;
480
481 /* Check the 0 item */
482 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483 BTRFS_LEAF_DATA_SIZE(root)) {
484 CORRUPT("invalid item offset size pair", leaf, root, 0);
485 return -EIO;
486 }
487
488 /*
489 * Check to make sure each items keys are in the correct order and their
490 * offsets make sense. We only have to loop through nritems-1 because
491 * we check the current slot against the next slot, which verifies the
492 * next slot's offset+size makes sense and that the current's slot
493 * offset is correct.
494 */
495 for (slot = 0; slot < nritems - 1; slot++) {
496 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499 /* Make sure the keys are in the right order */
500 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501 CORRUPT("bad key order", leaf, root, slot);
502 return -EIO;
503 }
504
505 /*
506 * Make sure the offset and ends are right, remember that the
507 * item data starts at the end of the leaf and grows towards the
508 * front.
509 */
510 if (btrfs_item_offset_nr(leaf, slot) !=
511 btrfs_item_end_nr(leaf, slot + 1)) {
512 CORRUPT("slot offset bad", leaf, root, slot);
513 return -EIO;
514 }
515
516 /*
517 * Check to make sure that we don't point outside of the leaf,
518 * just incase all the items are consistent to eachother, but
519 * all point outside of the leaf.
520 */
521 if (btrfs_item_end_nr(leaf, slot) >
522 BTRFS_LEAF_DATA_SIZE(root)) {
523 CORRUPT("slot end outside of leaf", leaf, root, slot);
524 return -EIO;
525 }
526 }
527
528 return 0;
529 }
530
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532 struct page *page, int max_walk)
533 {
534 struct extent_buffer *eb;
535 u64 start = page_offset(page);
536 u64 target = start;
537 u64 min_start;
538
539 if (start < max_walk)
540 min_start = 0;
541 else
542 min_start = start - max_walk;
543
544 while (start >= min_start) {
545 eb = find_extent_buffer(tree, start, 0);
546 if (eb) {
547 /*
548 * we found an extent buffer and it contains our page
549 * horray!
550 */
551 if (eb->start <= target &&
552 eb->start + eb->len > target)
553 return eb;
554
555 /* we found an extent buffer that wasn't for us */
556 free_extent_buffer(eb);
557 return NULL;
558 }
559 if (start == 0)
560 break;
561 start -= PAGE_CACHE_SIZE;
562 }
563 return NULL;
564 }
565
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567 struct extent_state *state, int mirror)
568 {
569 struct extent_io_tree *tree;
570 u64 found_start;
571 int found_level;
572 struct extent_buffer *eb;
573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574 int ret = 0;
575 int reads_done;
576
577 if (!page->private)
578 goto out;
579
580 tree = &BTRFS_I(page->mapping->host)->io_tree;
581 eb = (struct extent_buffer *)page->private;
582
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
589 if (!reads_done)
590 goto err;
591
592 eb->read_mirror = mirror;
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
598 found_start = btrfs_header_bytenr(eb);
599 if (found_start != eb->start) {
600 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
601 "%llu %llu\n",
602 (unsigned long long)found_start,
603 (unsigned long long)eb->start);
604 ret = -EIO;
605 goto err;
606 }
607 if (check_tree_block_fsid(root, eb)) {
608 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
609 (unsigned long long)eb->start);
610 ret = -EIO;
611 goto err;
612 }
613 found_level = btrfs_header_level(eb);
614
615 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616 eb, found_level);
617
618 ret = csum_tree_block(root, eb, 1);
619 if (ret) {
620 ret = -EIO;
621 goto err;
622 }
623
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
629 if (found_level == 0 && check_leaf(root, eb)) {
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
633
634 if (!ret)
635 set_extent_buffer_uptodate(eb);
636 err:
637 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639 btree_readahead_hook(root, eb, eb->start, ret);
640 }
641
642 if (ret)
643 clear_extent_buffer_uptodate(eb);
644 free_extent_buffer(eb);
645 out:
646 return ret;
647 }
648
649 static int btree_io_failed_hook(struct page *page, int failed_mirror)
650 {
651 struct extent_buffer *eb;
652 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
654 eb = (struct extent_buffer *)page->private;
655 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
656 eb->read_mirror = failed_mirror;
657 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, -EIO);
659 return -EIO; /* we fixed nothing */
660 }
661
662 static void end_workqueue_bio(struct bio *bio, int err)
663 {
664 struct end_io_wq *end_io_wq = bio->bi_private;
665 struct btrfs_fs_info *fs_info;
666
667 fs_info = end_io_wq->info;
668 end_io_wq->error = err;
669 end_io_wq->work.func = end_workqueue_fn;
670 end_io_wq->work.flags = 0;
671
672 if (bio->bi_rw & REQ_WRITE) {
673 if (end_io_wq->metadata == 1)
674 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 &end_io_wq->work);
676 else if (end_io_wq->metadata == 2)
677 btrfs_queue_worker(&fs_info->endio_freespace_worker,
678 &end_io_wq->work);
679 else
680 btrfs_queue_worker(&fs_info->endio_write_workers,
681 &end_io_wq->work);
682 } else {
683 if (end_io_wq->metadata)
684 btrfs_queue_worker(&fs_info->endio_meta_workers,
685 &end_io_wq->work);
686 else
687 btrfs_queue_worker(&fs_info->endio_workers,
688 &end_io_wq->work);
689 }
690 }
691
692 /*
693 * For the metadata arg you want
694 *
695 * 0 - if data
696 * 1 - if normal metadta
697 * 2 - if writing to the free space cache area
698 */
699 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700 int metadata)
701 {
702 struct end_io_wq *end_io_wq;
703 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704 if (!end_io_wq)
705 return -ENOMEM;
706
707 end_io_wq->private = bio->bi_private;
708 end_io_wq->end_io = bio->bi_end_io;
709 end_io_wq->info = info;
710 end_io_wq->error = 0;
711 end_io_wq->bio = bio;
712 end_io_wq->metadata = metadata;
713
714 bio->bi_private = end_io_wq;
715 bio->bi_end_io = end_workqueue_bio;
716 return 0;
717 }
718
719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
720 {
721 unsigned long limit = min_t(unsigned long,
722 info->workers.max_workers,
723 info->fs_devices->open_devices);
724 return 256 * limit;
725 }
726
727 static void run_one_async_start(struct btrfs_work *work)
728 {
729 struct async_submit_bio *async;
730 int ret;
731
732 async = container_of(work, struct async_submit_bio, work);
733 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734 async->mirror_num, async->bio_flags,
735 async->bio_offset);
736 if (ret)
737 async->error = ret;
738 }
739
740 static void run_one_async_done(struct btrfs_work *work)
741 {
742 struct btrfs_fs_info *fs_info;
743 struct async_submit_bio *async;
744 int limit;
745
746 async = container_of(work, struct async_submit_bio, work);
747 fs_info = BTRFS_I(async->inode)->root->fs_info;
748
749 limit = btrfs_async_submit_limit(fs_info);
750 limit = limit * 2 / 3;
751
752 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
753 waitqueue_active(&fs_info->async_submit_wait))
754 wake_up(&fs_info->async_submit_wait);
755
756 /* If an error occured we just want to clean up the bio and move on */
757 if (async->error) {
758 bio_endio(async->bio, async->error);
759 return;
760 }
761
762 async->submit_bio_done(async->inode, async->rw, async->bio,
763 async->mirror_num, async->bio_flags,
764 async->bio_offset);
765 }
766
767 static void run_one_async_free(struct btrfs_work *work)
768 {
769 struct async_submit_bio *async;
770
771 async = container_of(work, struct async_submit_bio, work);
772 kfree(async);
773 }
774
775 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776 int rw, struct bio *bio, int mirror_num,
777 unsigned long bio_flags,
778 u64 bio_offset,
779 extent_submit_bio_hook_t *submit_bio_start,
780 extent_submit_bio_hook_t *submit_bio_done)
781 {
782 struct async_submit_bio *async;
783
784 async = kmalloc(sizeof(*async), GFP_NOFS);
785 if (!async)
786 return -ENOMEM;
787
788 async->inode = inode;
789 async->rw = rw;
790 async->bio = bio;
791 async->mirror_num = mirror_num;
792 async->submit_bio_start = submit_bio_start;
793 async->submit_bio_done = submit_bio_done;
794
795 async->work.func = run_one_async_start;
796 async->work.ordered_func = run_one_async_done;
797 async->work.ordered_free = run_one_async_free;
798
799 async->work.flags = 0;
800 async->bio_flags = bio_flags;
801 async->bio_offset = bio_offset;
802
803 async->error = 0;
804
805 atomic_inc(&fs_info->nr_async_submits);
806
807 if (rw & REQ_SYNC)
808 btrfs_set_work_high_prio(&async->work);
809
810 btrfs_queue_worker(&fs_info->workers, &async->work);
811
812 while (atomic_read(&fs_info->async_submit_draining) &&
813 atomic_read(&fs_info->nr_async_submits)) {
814 wait_event(fs_info->async_submit_wait,
815 (atomic_read(&fs_info->nr_async_submits) == 0));
816 }
817
818 return 0;
819 }
820
821 static int btree_csum_one_bio(struct bio *bio)
822 {
823 struct bio_vec *bvec = bio->bi_io_vec;
824 int bio_index = 0;
825 struct btrfs_root *root;
826 int ret = 0;
827
828 WARN_ON(bio->bi_vcnt <= 0);
829 while (bio_index < bio->bi_vcnt) {
830 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
831 ret = csum_dirty_buffer(root, bvec->bv_page);
832 if (ret)
833 break;
834 bio_index++;
835 bvec++;
836 }
837 return ret;
838 }
839
840 static int __btree_submit_bio_start(struct inode *inode, int rw,
841 struct bio *bio, int mirror_num,
842 unsigned long bio_flags,
843 u64 bio_offset)
844 {
845 /*
846 * when we're called for a write, we're already in the async
847 * submission context. Just jump into btrfs_map_bio
848 */
849 return btree_csum_one_bio(bio);
850 }
851
852 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
853 int mirror_num, unsigned long bio_flags,
854 u64 bio_offset)
855 {
856 int ret;
857
858 /*
859 * when we're called for a write, we're already in the async
860 * submission context. Just jump into btrfs_map_bio
861 */
862 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863 if (ret)
864 bio_endio(bio, ret);
865 return ret;
866 }
867
868 static int check_async_write(struct inode *inode, unsigned long bio_flags)
869 {
870 if (bio_flags & EXTENT_BIO_TREE_LOG)
871 return 0;
872 #ifdef CONFIG_X86
873 if (cpu_has_xmm4_2)
874 return 0;
875 #endif
876 return 1;
877 }
878
879 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
880 int mirror_num, unsigned long bio_flags,
881 u64 bio_offset)
882 {
883 int async = check_async_write(inode, bio_flags);
884 int ret;
885
886 if (!(rw & REQ_WRITE)) {
887 /*
888 * called for a read, do the setup so that checksum validation
889 * can happen in the async kernel threads
890 */
891 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892 bio, 1);
893 if (ret)
894 goto out_w_error;
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896 mirror_num, 0);
897 } else if (!async) {
898 ret = btree_csum_one_bio(bio);
899 if (ret)
900 goto out_w_error;
901 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902 mirror_num, 0);
903 } else {
904 /*
905 * kthread helpers are used to submit writes so that
906 * checksumming can happen in parallel across all CPUs
907 */
908 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909 inode, rw, bio, mirror_num, 0,
910 bio_offset,
911 __btree_submit_bio_start,
912 __btree_submit_bio_done);
913 }
914
915 if (ret) {
916 out_w_error:
917 bio_endio(bio, ret);
918 }
919 return ret;
920 }
921
922 #ifdef CONFIG_MIGRATION
923 static int btree_migratepage(struct address_space *mapping,
924 struct page *newpage, struct page *page,
925 enum migrate_mode mode)
926 {
927 /*
928 * we can't safely write a btree page from here,
929 * we haven't done the locking hook
930 */
931 if (PageDirty(page))
932 return -EAGAIN;
933 /*
934 * Buffers may be managed in a filesystem specific way.
935 * We must have no buffers or drop them.
936 */
937 if (page_has_private(page) &&
938 !try_to_release_page(page, GFP_KERNEL))
939 return -EAGAIN;
940 return migrate_page(mapping, newpage, page, mode);
941 }
942 #endif
943
944
945 static int btree_writepages(struct address_space *mapping,
946 struct writeback_control *wbc)
947 {
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(mapping->host)->io_tree;
950 if (wbc->sync_mode == WB_SYNC_NONE) {
951 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
952 u64 num_dirty;
953 unsigned long thresh = 32 * 1024 * 1024;
954
955 if (wbc->for_kupdate)
956 return 0;
957
958 /* this is a bit racy, but that's ok */
959 num_dirty = root->fs_info->dirty_metadata_bytes;
960 if (num_dirty < thresh)
961 return 0;
962 }
963 return btree_write_cache_pages(mapping, wbc);
964 }
965
966 static int btree_readpage(struct file *file, struct page *page)
967 {
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 return extent_read_full_page(tree, page, btree_get_extent, 0);
971 }
972
973 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
974 {
975 if (PageWriteback(page) || PageDirty(page))
976 return 0;
977 /*
978 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979 * slab allocation from alloc_extent_state down the callchain where
980 * it'd hit a BUG_ON as those flags are not allowed.
981 */
982 gfp_flags &= ~GFP_SLAB_BUG_MASK;
983
984 return try_release_extent_buffer(page, gfp_flags);
985 }
986
987 static void btree_invalidatepage(struct page *page, unsigned long offset)
988 {
989 struct extent_io_tree *tree;
990 tree = &BTRFS_I(page->mapping->host)->io_tree;
991 extent_invalidatepage(tree, page, offset);
992 btree_releasepage(page, GFP_NOFS);
993 if (PagePrivate(page)) {
994 printk(KERN_WARNING "btrfs warning page private not zero "
995 "on page %llu\n", (unsigned long long)page_offset(page));
996 ClearPagePrivate(page);
997 set_page_private(page, 0);
998 page_cache_release(page);
999 }
1000 }
1001
1002 static int btree_set_page_dirty(struct page *page)
1003 {
1004 #ifdef DEBUG
1005 struct extent_buffer *eb;
1006
1007 BUG_ON(!PagePrivate(page));
1008 eb = (struct extent_buffer *)page->private;
1009 BUG_ON(!eb);
1010 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1011 BUG_ON(!atomic_read(&eb->refs));
1012 btrfs_assert_tree_locked(eb);
1013 #endif
1014 return __set_page_dirty_nobuffers(page);
1015 }
1016
1017 static const struct address_space_operations btree_aops = {
1018 .readpage = btree_readpage,
1019 .writepages = btree_writepages,
1020 .releasepage = btree_releasepage,
1021 .invalidatepage = btree_invalidatepage,
1022 #ifdef CONFIG_MIGRATION
1023 .migratepage = btree_migratepage,
1024 #endif
1025 .set_page_dirty = btree_set_page_dirty,
1026 };
1027
1028 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029 u64 parent_transid)
1030 {
1031 struct extent_buffer *buf = NULL;
1032 struct inode *btree_inode = root->fs_info->btree_inode;
1033 int ret = 0;
1034
1035 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1036 if (!buf)
1037 return 0;
1038 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1039 buf, 0, WAIT_NONE, btree_get_extent, 0);
1040 free_extent_buffer(buf);
1041 return ret;
1042 }
1043
1044 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1045 int mirror_num, struct extent_buffer **eb)
1046 {
1047 struct extent_buffer *buf = NULL;
1048 struct inode *btree_inode = root->fs_info->btree_inode;
1049 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1050 int ret;
1051
1052 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1053 if (!buf)
1054 return 0;
1055
1056 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1057
1058 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1059 btree_get_extent, mirror_num);
1060 if (ret) {
1061 free_extent_buffer(buf);
1062 return ret;
1063 }
1064
1065 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1066 free_extent_buffer(buf);
1067 return -EIO;
1068 } else if (extent_buffer_uptodate(buf)) {
1069 *eb = buf;
1070 } else {
1071 free_extent_buffer(buf);
1072 }
1073 return 0;
1074 }
1075
1076 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1077 u64 bytenr, u32 blocksize)
1078 {
1079 struct inode *btree_inode = root->fs_info->btree_inode;
1080 struct extent_buffer *eb;
1081 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1082 bytenr, blocksize);
1083 return eb;
1084 }
1085
1086 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1087 u64 bytenr, u32 blocksize)
1088 {
1089 struct inode *btree_inode = root->fs_info->btree_inode;
1090 struct extent_buffer *eb;
1091
1092 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1093 bytenr, blocksize);
1094 return eb;
1095 }
1096
1097
1098 int btrfs_write_tree_block(struct extent_buffer *buf)
1099 {
1100 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1101 buf->start + buf->len - 1);
1102 }
1103
1104 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1105 {
1106 return filemap_fdatawait_range(buf->pages[0]->mapping,
1107 buf->start, buf->start + buf->len - 1);
1108 }
1109
1110 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1111 u32 blocksize, u64 parent_transid)
1112 {
1113 struct extent_buffer *buf = NULL;
1114 int ret;
1115
1116 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1117 if (!buf)
1118 return NULL;
1119
1120 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1121 return buf;
1122
1123 }
1124
1125 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1126 struct extent_buffer *buf)
1127 {
1128 if (btrfs_header_generation(buf) ==
1129 root->fs_info->running_transaction->transid) {
1130 btrfs_assert_tree_locked(buf);
1131
1132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1133 spin_lock(&root->fs_info->delalloc_lock);
1134 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1135 root->fs_info->dirty_metadata_bytes -= buf->len;
1136 else {
1137 spin_unlock(&root->fs_info->delalloc_lock);
1138 btrfs_panic(root->fs_info, -EOVERFLOW,
1139 "Can't clear %lu bytes from "
1140 " dirty_mdatadata_bytes (%llu)",
1141 buf->len,
1142 root->fs_info->dirty_metadata_bytes);
1143 }
1144 spin_unlock(&root->fs_info->delalloc_lock);
1145
1146 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1147 btrfs_set_lock_blocking(buf);
1148 clear_extent_buffer_dirty(buf);
1149 }
1150 }
1151 }
1152
1153 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1154 u32 stripesize, struct btrfs_root *root,
1155 struct btrfs_fs_info *fs_info,
1156 u64 objectid)
1157 {
1158 root->node = NULL;
1159 root->commit_root = NULL;
1160 root->sectorsize = sectorsize;
1161 root->nodesize = nodesize;
1162 root->leafsize = leafsize;
1163 root->stripesize = stripesize;
1164 root->ref_cows = 0;
1165 root->track_dirty = 0;
1166 root->in_radix = 0;
1167 root->orphan_item_inserted = 0;
1168 root->orphan_cleanup_state = 0;
1169
1170 root->objectid = objectid;
1171 root->last_trans = 0;
1172 root->highest_objectid = 0;
1173 root->name = NULL;
1174 root->inode_tree = RB_ROOT;
1175 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1176 root->block_rsv = NULL;
1177 root->orphan_block_rsv = NULL;
1178
1179 INIT_LIST_HEAD(&root->dirty_list);
1180 INIT_LIST_HEAD(&root->root_list);
1181 INIT_LIST_HEAD(&root->logged_list[0]);
1182 INIT_LIST_HEAD(&root->logged_list[1]);
1183 spin_lock_init(&root->orphan_lock);
1184 spin_lock_init(&root->inode_lock);
1185 spin_lock_init(&root->accounting_lock);
1186 spin_lock_init(&root->log_extents_lock[0]);
1187 spin_lock_init(&root->log_extents_lock[1]);
1188 mutex_init(&root->objectid_mutex);
1189 mutex_init(&root->log_mutex);
1190 init_waitqueue_head(&root->log_writer_wait);
1191 init_waitqueue_head(&root->log_commit_wait[0]);
1192 init_waitqueue_head(&root->log_commit_wait[1]);
1193 atomic_set(&root->log_commit[0], 0);
1194 atomic_set(&root->log_commit[1], 0);
1195 atomic_set(&root->log_writers, 0);
1196 atomic_set(&root->log_batch, 0);
1197 atomic_set(&root->orphan_inodes, 0);
1198 root->log_transid = 0;
1199 root->last_log_commit = 0;
1200 extent_io_tree_init(&root->dirty_log_pages,
1201 fs_info->btree_inode->i_mapping);
1202
1203 memset(&root->root_key, 0, sizeof(root->root_key));
1204 memset(&root->root_item, 0, sizeof(root->root_item));
1205 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1206 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1207 root->defrag_trans_start = fs_info->generation;
1208 init_completion(&root->kobj_unregister);
1209 root->defrag_running = 0;
1210 root->root_key.objectid = objectid;
1211 root->anon_dev = 0;
1212
1213 spin_lock_init(&root->root_item_lock);
1214 }
1215
1216 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1217 struct btrfs_fs_info *fs_info,
1218 u64 objectid,
1219 struct btrfs_root *root)
1220 {
1221 int ret;
1222 u32 blocksize;
1223 u64 generation;
1224
1225 __setup_root(tree_root->nodesize, tree_root->leafsize,
1226 tree_root->sectorsize, tree_root->stripesize,
1227 root, fs_info, objectid);
1228 ret = btrfs_find_last_root(tree_root, objectid,
1229 &root->root_item, &root->root_key);
1230 if (ret > 0)
1231 return -ENOENT;
1232 else if (ret < 0)
1233 return ret;
1234
1235 generation = btrfs_root_generation(&root->root_item);
1236 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1237 root->commit_root = NULL;
1238 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1239 blocksize, generation);
1240 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1241 free_extent_buffer(root->node);
1242 root->node = NULL;
1243 return -EIO;
1244 }
1245 root->commit_root = btrfs_root_node(root);
1246 return 0;
1247 }
1248
1249 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1250 {
1251 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1252 if (root)
1253 root->fs_info = fs_info;
1254 return root;
1255 }
1256
1257 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1258 struct btrfs_fs_info *fs_info,
1259 u64 objectid)
1260 {
1261 struct extent_buffer *leaf;
1262 struct btrfs_root *tree_root = fs_info->tree_root;
1263 struct btrfs_root *root;
1264 struct btrfs_key key;
1265 int ret = 0;
1266 u64 bytenr;
1267
1268 root = btrfs_alloc_root(fs_info);
1269 if (!root)
1270 return ERR_PTR(-ENOMEM);
1271
1272 __setup_root(tree_root->nodesize, tree_root->leafsize,
1273 tree_root->sectorsize, tree_root->stripesize,
1274 root, fs_info, objectid);
1275 root->root_key.objectid = objectid;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = 0;
1278
1279 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280 0, objectid, NULL, 0, 0, 0);
1281 if (IS_ERR(leaf)) {
1282 ret = PTR_ERR(leaf);
1283 goto fail;
1284 }
1285
1286 bytenr = leaf->start;
1287 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1288 btrfs_set_header_bytenr(leaf, leaf->start);
1289 btrfs_set_header_generation(leaf, trans->transid);
1290 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1291 btrfs_set_header_owner(leaf, objectid);
1292 root->node = leaf;
1293
1294 write_extent_buffer(leaf, fs_info->fsid,
1295 (unsigned long)btrfs_header_fsid(leaf),
1296 BTRFS_FSID_SIZE);
1297 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1298 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1299 BTRFS_UUID_SIZE);
1300 btrfs_mark_buffer_dirty(leaf);
1301
1302 root->commit_root = btrfs_root_node(root);
1303 root->track_dirty = 1;
1304
1305
1306 root->root_item.flags = 0;
1307 root->root_item.byte_limit = 0;
1308 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309 btrfs_set_root_generation(&root->root_item, trans->transid);
1310 btrfs_set_root_level(&root->root_item, 0);
1311 btrfs_set_root_refs(&root->root_item, 1);
1312 btrfs_set_root_used(&root->root_item, leaf->len);
1313 btrfs_set_root_last_snapshot(&root->root_item, 0);
1314 btrfs_set_root_dirid(&root->root_item, 0);
1315 root->root_item.drop_level = 0;
1316
1317 key.objectid = objectid;
1318 key.type = BTRFS_ROOT_ITEM_KEY;
1319 key.offset = 0;
1320 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1321 if (ret)
1322 goto fail;
1323
1324 btrfs_tree_unlock(leaf);
1325
1326 fail:
1327 if (ret)
1328 return ERR_PTR(ret);
1329
1330 return root;
1331 }
1332
1333 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1334 struct btrfs_fs_info *fs_info)
1335 {
1336 struct btrfs_root *root;
1337 struct btrfs_root *tree_root = fs_info->tree_root;
1338 struct extent_buffer *leaf;
1339
1340 root = btrfs_alloc_root(fs_info);
1341 if (!root)
1342 return ERR_PTR(-ENOMEM);
1343
1344 __setup_root(tree_root->nodesize, tree_root->leafsize,
1345 tree_root->sectorsize, tree_root->stripesize,
1346 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1347
1348 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1349 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1350 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1351 /*
1352 * log trees do not get reference counted because they go away
1353 * before a real commit is actually done. They do store pointers
1354 * to file data extents, and those reference counts still get
1355 * updated (along with back refs to the log tree).
1356 */
1357 root->ref_cows = 0;
1358
1359 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1360 BTRFS_TREE_LOG_OBJECTID, NULL,
1361 0, 0, 0);
1362 if (IS_ERR(leaf)) {
1363 kfree(root);
1364 return ERR_CAST(leaf);
1365 }
1366
1367 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1368 btrfs_set_header_bytenr(leaf, leaf->start);
1369 btrfs_set_header_generation(leaf, trans->transid);
1370 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1371 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1372 root->node = leaf;
1373
1374 write_extent_buffer(root->node, root->fs_info->fsid,
1375 (unsigned long)btrfs_header_fsid(root->node),
1376 BTRFS_FSID_SIZE);
1377 btrfs_mark_buffer_dirty(root->node);
1378 btrfs_tree_unlock(root->node);
1379 return root;
1380 }
1381
1382 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1383 struct btrfs_fs_info *fs_info)
1384 {
1385 struct btrfs_root *log_root;
1386
1387 log_root = alloc_log_tree(trans, fs_info);
1388 if (IS_ERR(log_root))
1389 return PTR_ERR(log_root);
1390 WARN_ON(fs_info->log_root_tree);
1391 fs_info->log_root_tree = log_root;
1392 return 0;
1393 }
1394
1395 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root)
1397 {
1398 struct btrfs_root *log_root;
1399 struct btrfs_inode_item *inode_item;
1400
1401 log_root = alloc_log_tree(trans, root->fs_info);
1402 if (IS_ERR(log_root))
1403 return PTR_ERR(log_root);
1404
1405 log_root->last_trans = trans->transid;
1406 log_root->root_key.offset = root->root_key.objectid;
1407
1408 inode_item = &log_root->root_item.inode;
1409 inode_item->generation = cpu_to_le64(1);
1410 inode_item->size = cpu_to_le64(3);
1411 inode_item->nlink = cpu_to_le32(1);
1412 inode_item->nbytes = cpu_to_le64(root->leafsize);
1413 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1414
1415 btrfs_set_root_node(&log_root->root_item, log_root->node);
1416
1417 WARN_ON(root->log_root);
1418 root->log_root = log_root;
1419 root->log_transid = 0;
1420 root->last_log_commit = 0;
1421 return 0;
1422 }
1423
1424 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1425 struct btrfs_key *location)
1426 {
1427 struct btrfs_root *root;
1428 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1429 struct btrfs_path *path;
1430 struct extent_buffer *l;
1431 u64 generation;
1432 u32 blocksize;
1433 int ret = 0;
1434 int slot;
1435
1436 root = btrfs_alloc_root(fs_info);
1437 if (!root)
1438 return ERR_PTR(-ENOMEM);
1439 if (location->offset == (u64)-1) {
1440 ret = find_and_setup_root(tree_root, fs_info,
1441 location->objectid, root);
1442 if (ret) {
1443 kfree(root);
1444 return ERR_PTR(ret);
1445 }
1446 goto out;
1447 }
1448
1449 __setup_root(tree_root->nodesize, tree_root->leafsize,
1450 tree_root->sectorsize, tree_root->stripesize,
1451 root, fs_info, location->objectid);
1452
1453 path = btrfs_alloc_path();
1454 if (!path) {
1455 kfree(root);
1456 return ERR_PTR(-ENOMEM);
1457 }
1458 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1459 if (ret == 0) {
1460 l = path->nodes[0];
1461 slot = path->slots[0];
1462 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1463 memcpy(&root->root_key, location, sizeof(*location));
1464 }
1465 btrfs_free_path(path);
1466 if (ret) {
1467 kfree(root);
1468 if (ret > 0)
1469 ret = -ENOENT;
1470 return ERR_PTR(ret);
1471 }
1472
1473 generation = btrfs_root_generation(&root->root_item);
1474 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1475 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1476 blocksize, generation);
1477 root->commit_root = btrfs_root_node(root);
1478 BUG_ON(!root->node); /* -ENOMEM */
1479 out:
1480 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1481 root->ref_cows = 1;
1482 btrfs_check_and_init_root_item(&root->root_item);
1483 }
1484
1485 return root;
1486 }
1487
1488 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1489 struct btrfs_key *location)
1490 {
1491 struct btrfs_root *root;
1492 int ret;
1493
1494 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1495 return fs_info->tree_root;
1496 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1497 return fs_info->extent_root;
1498 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1499 return fs_info->chunk_root;
1500 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1501 return fs_info->dev_root;
1502 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1503 return fs_info->csum_root;
1504 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1505 return fs_info->quota_root ? fs_info->quota_root :
1506 ERR_PTR(-ENOENT);
1507 again:
1508 spin_lock(&fs_info->fs_roots_radix_lock);
1509 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1510 (unsigned long)location->objectid);
1511 spin_unlock(&fs_info->fs_roots_radix_lock);
1512 if (root)
1513 return root;
1514
1515 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1516 if (IS_ERR(root))
1517 return root;
1518
1519 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1520 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1521 GFP_NOFS);
1522 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1523 ret = -ENOMEM;
1524 goto fail;
1525 }
1526
1527 btrfs_init_free_ino_ctl(root);
1528 mutex_init(&root->fs_commit_mutex);
1529 spin_lock_init(&root->cache_lock);
1530 init_waitqueue_head(&root->cache_wait);
1531
1532 ret = get_anon_bdev(&root->anon_dev);
1533 if (ret)
1534 goto fail;
1535
1536 if (btrfs_root_refs(&root->root_item) == 0) {
1537 ret = -ENOENT;
1538 goto fail;
1539 }
1540
1541 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1542 if (ret < 0)
1543 goto fail;
1544 if (ret == 0)
1545 root->orphan_item_inserted = 1;
1546
1547 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1548 if (ret)
1549 goto fail;
1550
1551 spin_lock(&fs_info->fs_roots_radix_lock);
1552 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553 (unsigned long)root->root_key.objectid,
1554 root);
1555 if (ret == 0)
1556 root->in_radix = 1;
1557
1558 spin_unlock(&fs_info->fs_roots_radix_lock);
1559 radix_tree_preload_end();
1560 if (ret) {
1561 if (ret == -EEXIST) {
1562 free_fs_root(root);
1563 goto again;
1564 }
1565 goto fail;
1566 }
1567
1568 ret = btrfs_find_dead_roots(fs_info->tree_root,
1569 root->root_key.objectid);
1570 WARN_ON(ret);
1571 return root;
1572 fail:
1573 free_fs_root(root);
1574 return ERR_PTR(ret);
1575 }
1576
1577 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1578 {
1579 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1580 int ret = 0;
1581 struct btrfs_device *device;
1582 struct backing_dev_info *bdi;
1583
1584 rcu_read_lock();
1585 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1586 if (!device->bdev)
1587 continue;
1588 bdi = blk_get_backing_dev_info(device->bdev);
1589 if (bdi && bdi_congested(bdi, bdi_bits)) {
1590 ret = 1;
1591 break;
1592 }
1593 }
1594 rcu_read_unlock();
1595 return ret;
1596 }
1597
1598 /*
1599 * If this fails, caller must call bdi_destroy() to get rid of the
1600 * bdi again.
1601 */
1602 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1603 {
1604 int err;
1605
1606 bdi->capabilities = BDI_CAP_MAP_COPY;
1607 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1608 if (err)
1609 return err;
1610
1611 bdi->ra_pages = default_backing_dev_info.ra_pages;
1612 bdi->congested_fn = btrfs_congested_fn;
1613 bdi->congested_data = info;
1614 return 0;
1615 }
1616
1617 /*
1618 * called by the kthread helper functions to finally call the bio end_io
1619 * functions. This is where read checksum verification actually happens
1620 */
1621 static void end_workqueue_fn(struct btrfs_work *work)
1622 {
1623 struct bio *bio;
1624 struct end_io_wq *end_io_wq;
1625 struct btrfs_fs_info *fs_info;
1626 int error;
1627
1628 end_io_wq = container_of(work, struct end_io_wq, work);
1629 bio = end_io_wq->bio;
1630 fs_info = end_io_wq->info;
1631
1632 error = end_io_wq->error;
1633 bio->bi_private = end_io_wq->private;
1634 bio->bi_end_io = end_io_wq->end_io;
1635 kfree(end_io_wq);
1636 bio_endio(bio, error);
1637 }
1638
1639 static int cleaner_kthread(void *arg)
1640 {
1641 struct btrfs_root *root = arg;
1642
1643 do {
1644 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1645 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1646 btrfs_run_delayed_iputs(root);
1647 btrfs_clean_old_snapshots(root);
1648 mutex_unlock(&root->fs_info->cleaner_mutex);
1649 btrfs_run_defrag_inodes(root->fs_info);
1650 }
1651
1652 if (!try_to_freeze()) {
1653 set_current_state(TASK_INTERRUPTIBLE);
1654 if (!kthread_should_stop())
1655 schedule();
1656 __set_current_state(TASK_RUNNING);
1657 }
1658 } while (!kthread_should_stop());
1659 return 0;
1660 }
1661
1662 static int transaction_kthread(void *arg)
1663 {
1664 struct btrfs_root *root = arg;
1665 struct btrfs_trans_handle *trans;
1666 struct btrfs_transaction *cur;
1667 u64 transid;
1668 unsigned long now;
1669 unsigned long delay;
1670 bool cannot_commit;
1671
1672 do {
1673 cannot_commit = false;
1674 delay = HZ * 30;
1675 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1676
1677 spin_lock(&root->fs_info->trans_lock);
1678 cur = root->fs_info->running_transaction;
1679 if (!cur) {
1680 spin_unlock(&root->fs_info->trans_lock);
1681 goto sleep;
1682 }
1683
1684 now = get_seconds();
1685 if (!cur->blocked &&
1686 (now < cur->start_time || now - cur->start_time < 30)) {
1687 spin_unlock(&root->fs_info->trans_lock);
1688 delay = HZ * 5;
1689 goto sleep;
1690 }
1691 transid = cur->transid;
1692 spin_unlock(&root->fs_info->trans_lock);
1693
1694 /* If the file system is aborted, this will always fail. */
1695 trans = btrfs_attach_transaction(root);
1696 if (IS_ERR(trans)) {
1697 if (PTR_ERR(trans) != -ENOENT)
1698 cannot_commit = true;
1699 goto sleep;
1700 }
1701 if (transid == trans->transid) {
1702 btrfs_commit_transaction(trans, root);
1703 } else {
1704 btrfs_end_transaction(trans, root);
1705 }
1706 sleep:
1707 wake_up_process(root->fs_info->cleaner_kthread);
1708 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1709
1710 if (!try_to_freeze()) {
1711 set_current_state(TASK_INTERRUPTIBLE);
1712 if (!kthread_should_stop() &&
1713 (!btrfs_transaction_blocked(root->fs_info) ||
1714 cannot_commit))
1715 schedule_timeout(delay);
1716 __set_current_state(TASK_RUNNING);
1717 }
1718 } while (!kthread_should_stop());
1719 return 0;
1720 }
1721
1722 /*
1723 * this will find the highest generation in the array of
1724 * root backups. The index of the highest array is returned,
1725 * or -1 if we can't find anything.
1726 *
1727 * We check to make sure the array is valid by comparing the
1728 * generation of the latest root in the array with the generation
1729 * in the super block. If they don't match we pitch it.
1730 */
1731 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1732 {
1733 u64 cur;
1734 int newest_index = -1;
1735 struct btrfs_root_backup *root_backup;
1736 int i;
1737
1738 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1739 root_backup = info->super_copy->super_roots + i;
1740 cur = btrfs_backup_tree_root_gen(root_backup);
1741 if (cur == newest_gen)
1742 newest_index = i;
1743 }
1744
1745 /* check to see if we actually wrapped around */
1746 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1747 root_backup = info->super_copy->super_roots;
1748 cur = btrfs_backup_tree_root_gen(root_backup);
1749 if (cur == newest_gen)
1750 newest_index = 0;
1751 }
1752 return newest_index;
1753 }
1754
1755
1756 /*
1757 * find the oldest backup so we know where to store new entries
1758 * in the backup array. This will set the backup_root_index
1759 * field in the fs_info struct
1760 */
1761 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1762 u64 newest_gen)
1763 {
1764 int newest_index = -1;
1765
1766 newest_index = find_newest_super_backup(info, newest_gen);
1767 /* if there was garbage in there, just move along */
1768 if (newest_index == -1) {
1769 info->backup_root_index = 0;
1770 } else {
1771 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1772 }
1773 }
1774
1775 /*
1776 * copy all the root pointers into the super backup array.
1777 * this will bump the backup pointer by one when it is
1778 * done
1779 */
1780 static void backup_super_roots(struct btrfs_fs_info *info)
1781 {
1782 int next_backup;
1783 struct btrfs_root_backup *root_backup;
1784 int last_backup;
1785
1786 next_backup = info->backup_root_index;
1787 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1788 BTRFS_NUM_BACKUP_ROOTS;
1789
1790 /*
1791 * just overwrite the last backup if we're at the same generation
1792 * this happens only at umount
1793 */
1794 root_backup = info->super_for_commit->super_roots + last_backup;
1795 if (btrfs_backup_tree_root_gen(root_backup) ==
1796 btrfs_header_generation(info->tree_root->node))
1797 next_backup = last_backup;
1798
1799 root_backup = info->super_for_commit->super_roots + next_backup;
1800
1801 /*
1802 * make sure all of our padding and empty slots get zero filled
1803 * regardless of which ones we use today
1804 */
1805 memset(root_backup, 0, sizeof(*root_backup));
1806
1807 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1808
1809 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1810 btrfs_set_backup_tree_root_gen(root_backup,
1811 btrfs_header_generation(info->tree_root->node));
1812
1813 btrfs_set_backup_tree_root_level(root_backup,
1814 btrfs_header_level(info->tree_root->node));
1815
1816 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1817 btrfs_set_backup_chunk_root_gen(root_backup,
1818 btrfs_header_generation(info->chunk_root->node));
1819 btrfs_set_backup_chunk_root_level(root_backup,
1820 btrfs_header_level(info->chunk_root->node));
1821
1822 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1823 btrfs_set_backup_extent_root_gen(root_backup,
1824 btrfs_header_generation(info->extent_root->node));
1825 btrfs_set_backup_extent_root_level(root_backup,
1826 btrfs_header_level(info->extent_root->node));
1827
1828 /*
1829 * we might commit during log recovery, which happens before we set
1830 * the fs_root. Make sure it is valid before we fill it in.
1831 */
1832 if (info->fs_root && info->fs_root->node) {
1833 btrfs_set_backup_fs_root(root_backup,
1834 info->fs_root->node->start);
1835 btrfs_set_backup_fs_root_gen(root_backup,
1836 btrfs_header_generation(info->fs_root->node));
1837 btrfs_set_backup_fs_root_level(root_backup,
1838 btrfs_header_level(info->fs_root->node));
1839 }
1840
1841 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1842 btrfs_set_backup_dev_root_gen(root_backup,
1843 btrfs_header_generation(info->dev_root->node));
1844 btrfs_set_backup_dev_root_level(root_backup,
1845 btrfs_header_level(info->dev_root->node));
1846
1847 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1848 btrfs_set_backup_csum_root_gen(root_backup,
1849 btrfs_header_generation(info->csum_root->node));
1850 btrfs_set_backup_csum_root_level(root_backup,
1851 btrfs_header_level(info->csum_root->node));
1852
1853 btrfs_set_backup_total_bytes(root_backup,
1854 btrfs_super_total_bytes(info->super_copy));
1855 btrfs_set_backup_bytes_used(root_backup,
1856 btrfs_super_bytes_used(info->super_copy));
1857 btrfs_set_backup_num_devices(root_backup,
1858 btrfs_super_num_devices(info->super_copy));
1859
1860 /*
1861 * if we don't copy this out to the super_copy, it won't get remembered
1862 * for the next commit
1863 */
1864 memcpy(&info->super_copy->super_roots,
1865 &info->super_for_commit->super_roots,
1866 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1867 }
1868
1869 /*
1870 * this copies info out of the root backup array and back into
1871 * the in-memory super block. It is meant to help iterate through
1872 * the array, so you send it the number of backups you've already
1873 * tried and the last backup index you used.
1874 *
1875 * this returns -1 when it has tried all the backups
1876 */
1877 static noinline int next_root_backup(struct btrfs_fs_info *info,
1878 struct btrfs_super_block *super,
1879 int *num_backups_tried, int *backup_index)
1880 {
1881 struct btrfs_root_backup *root_backup;
1882 int newest = *backup_index;
1883
1884 if (*num_backups_tried == 0) {
1885 u64 gen = btrfs_super_generation(super);
1886
1887 newest = find_newest_super_backup(info, gen);
1888 if (newest == -1)
1889 return -1;
1890
1891 *backup_index = newest;
1892 *num_backups_tried = 1;
1893 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1894 /* we've tried all the backups, all done */
1895 return -1;
1896 } else {
1897 /* jump to the next oldest backup */
1898 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1899 BTRFS_NUM_BACKUP_ROOTS;
1900 *backup_index = newest;
1901 *num_backups_tried += 1;
1902 }
1903 root_backup = super->super_roots + newest;
1904
1905 btrfs_set_super_generation(super,
1906 btrfs_backup_tree_root_gen(root_backup));
1907 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1908 btrfs_set_super_root_level(super,
1909 btrfs_backup_tree_root_level(root_backup));
1910 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1911
1912 /*
1913 * fixme: the total bytes and num_devices need to match or we should
1914 * need a fsck
1915 */
1916 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1917 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1918 return 0;
1919 }
1920
1921 /* helper to cleanup tree roots */
1922 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1923 {
1924 free_extent_buffer(info->tree_root->node);
1925 free_extent_buffer(info->tree_root->commit_root);
1926 free_extent_buffer(info->dev_root->node);
1927 free_extent_buffer(info->dev_root->commit_root);
1928 free_extent_buffer(info->extent_root->node);
1929 free_extent_buffer(info->extent_root->commit_root);
1930 free_extent_buffer(info->csum_root->node);
1931 free_extent_buffer(info->csum_root->commit_root);
1932 if (info->quota_root) {
1933 free_extent_buffer(info->quota_root->node);
1934 free_extent_buffer(info->quota_root->commit_root);
1935 }
1936
1937 info->tree_root->node = NULL;
1938 info->tree_root->commit_root = NULL;
1939 info->dev_root->node = NULL;
1940 info->dev_root->commit_root = NULL;
1941 info->extent_root->node = NULL;
1942 info->extent_root->commit_root = NULL;
1943 info->csum_root->node = NULL;
1944 info->csum_root->commit_root = NULL;
1945 if (info->quota_root) {
1946 info->quota_root->node = NULL;
1947 info->quota_root->commit_root = NULL;
1948 }
1949
1950 if (chunk_root) {
1951 free_extent_buffer(info->chunk_root->node);
1952 free_extent_buffer(info->chunk_root->commit_root);
1953 info->chunk_root->node = NULL;
1954 info->chunk_root->commit_root = NULL;
1955 }
1956 }
1957
1958
1959 int open_ctree(struct super_block *sb,
1960 struct btrfs_fs_devices *fs_devices,
1961 char *options)
1962 {
1963 u32 sectorsize;
1964 u32 nodesize;
1965 u32 leafsize;
1966 u32 blocksize;
1967 u32 stripesize;
1968 u64 generation;
1969 u64 features;
1970 struct btrfs_key location;
1971 struct buffer_head *bh;
1972 struct btrfs_super_block *disk_super;
1973 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1974 struct btrfs_root *tree_root;
1975 struct btrfs_root *extent_root;
1976 struct btrfs_root *csum_root;
1977 struct btrfs_root *chunk_root;
1978 struct btrfs_root *dev_root;
1979 struct btrfs_root *quota_root;
1980 struct btrfs_root *log_tree_root;
1981 int ret;
1982 int err = -EINVAL;
1983 int num_backups_tried = 0;
1984 int backup_index = 0;
1985
1986 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1987 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1988 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1989 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1990 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1991 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1992
1993 if (!tree_root || !extent_root || !csum_root ||
1994 !chunk_root || !dev_root || !quota_root) {
1995 err = -ENOMEM;
1996 goto fail;
1997 }
1998
1999 ret = init_srcu_struct(&fs_info->subvol_srcu);
2000 if (ret) {
2001 err = ret;
2002 goto fail;
2003 }
2004
2005 ret = setup_bdi(fs_info, &fs_info->bdi);
2006 if (ret) {
2007 err = ret;
2008 goto fail_srcu;
2009 }
2010
2011 fs_info->btree_inode = new_inode(sb);
2012 if (!fs_info->btree_inode) {
2013 err = -ENOMEM;
2014 goto fail_bdi;
2015 }
2016
2017 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2018
2019 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2020 INIT_LIST_HEAD(&fs_info->trans_list);
2021 INIT_LIST_HEAD(&fs_info->dead_roots);
2022 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2023 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2024 INIT_LIST_HEAD(&fs_info->ordered_operations);
2025 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2026 spin_lock_init(&fs_info->delalloc_lock);
2027 spin_lock_init(&fs_info->trans_lock);
2028 spin_lock_init(&fs_info->fs_roots_radix_lock);
2029 spin_lock_init(&fs_info->delayed_iput_lock);
2030 spin_lock_init(&fs_info->defrag_inodes_lock);
2031 spin_lock_init(&fs_info->free_chunk_lock);
2032 spin_lock_init(&fs_info->tree_mod_seq_lock);
2033 rwlock_init(&fs_info->tree_mod_log_lock);
2034 mutex_init(&fs_info->reloc_mutex);
2035
2036 init_completion(&fs_info->kobj_unregister);
2037 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2038 INIT_LIST_HEAD(&fs_info->space_info);
2039 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2040 btrfs_mapping_init(&fs_info->mapping_tree);
2041 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2042 BTRFS_BLOCK_RSV_GLOBAL);
2043 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2044 BTRFS_BLOCK_RSV_DELALLOC);
2045 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2046 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2047 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2048 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2049 BTRFS_BLOCK_RSV_DELOPS);
2050 atomic_set(&fs_info->nr_async_submits, 0);
2051 atomic_set(&fs_info->async_delalloc_pages, 0);
2052 atomic_set(&fs_info->async_submit_draining, 0);
2053 atomic_set(&fs_info->nr_async_bios, 0);
2054 atomic_set(&fs_info->defrag_running, 0);
2055 atomic_set(&fs_info->tree_mod_seq, 0);
2056 fs_info->sb = sb;
2057 fs_info->max_inline = 8192 * 1024;
2058 fs_info->metadata_ratio = 0;
2059 fs_info->defrag_inodes = RB_ROOT;
2060 fs_info->trans_no_join = 0;
2061 fs_info->free_chunk_space = 0;
2062 fs_info->tree_mod_log = RB_ROOT;
2063
2064 /* readahead state */
2065 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2066 spin_lock_init(&fs_info->reada_lock);
2067
2068 fs_info->thread_pool_size = min_t(unsigned long,
2069 num_online_cpus() + 2, 8);
2070
2071 INIT_LIST_HEAD(&fs_info->ordered_extents);
2072 spin_lock_init(&fs_info->ordered_extent_lock);
2073 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2074 GFP_NOFS);
2075 if (!fs_info->delayed_root) {
2076 err = -ENOMEM;
2077 goto fail_iput;
2078 }
2079 btrfs_init_delayed_root(fs_info->delayed_root);
2080
2081 mutex_init(&fs_info->scrub_lock);
2082 atomic_set(&fs_info->scrubs_running, 0);
2083 atomic_set(&fs_info->scrub_pause_req, 0);
2084 atomic_set(&fs_info->scrubs_paused, 0);
2085 atomic_set(&fs_info->scrub_cancel_req, 0);
2086 init_waitqueue_head(&fs_info->scrub_pause_wait);
2087 init_rwsem(&fs_info->scrub_super_lock);
2088 fs_info->scrub_workers_refcnt = 0;
2089 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2090 fs_info->check_integrity_print_mask = 0;
2091 #endif
2092
2093 spin_lock_init(&fs_info->balance_lock);
2094 mutex_init(&fs_info->balance_mutex);
2095 atomic_set(&fs_info->balance_running, 0);
2096 atomic_set(&fs_info->balance_pause_req, 0);
2097 atomic_set(&fs_info->balance_cancel_req, 0);
2098 fs_info->balance_ctl = NULL;
2099 init_waitqueue_head(&fs_info->balance_wait_q);
2100
2101 sb->s_blocksize = 4096;
2102 sb->s_blocksize_bits = blksize_bits(4096);
2103 sb->s_bdi = &fs_info->bdi;
2104
2105 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2106 set_nlink(fs_info->btree_inode, 1);
2107 /*
2108 * we set the i_size on the btree inode to the max possible int.
2109 * the real end of the address space is determined by all of
2110 * the devices in the system
2111 */
2112 fs_info->btree_inode->i_size = OFFSET_MAX;
2113 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2114 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2115
2116 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2117 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2118 fs_info->btree_inode->i_mapping);
2119 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2120 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2121
2122 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2125 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2126 sizeof(struct btrfs_key));
2127 set_bit(BTRFS_INODE_DUMMY,
2128 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2129 insert_inode_hash(fs_info->btree_inode);
2130
2131 spin_lock_init(&fs_info->block_group_cache_lock);
2132 fs_info->block_group_cache_tree = RB_ROOT;
2133 fs_info->first_logical_byte = (u64)-1;
2134
2135 extent_io_tree_init(&fs_info->freed_extents[0],
2136 fs_info->btree_inode->i_mapping);
2137 extent_io_tree_init(&fs_info->freed_extents[1],
2138 fs_info->btree_inode->i_mapping);
2139 fs_info->pinned_extents = &fs_info->freed_extents[0];
2140 fs_info->do_barriers = 1;
2141
2142
2143 mutex_init(&fs_info->ordered_operations_mutex);
2144 mutex_init(&fs_info->tree_log_mutex);
2145 mutex_init(&fs_info->chunk_mutex);
2146 mutex_init(&fs_info->transaction_kthread_mutex);
2147 mutex_init(&fs_info->cleaner_mutex);
2148 mutex_init(&fs_info->volume_mutex);
2149 init_rwsem(&fs_info->extent_commit_sem);
2150 init_rwsem(&fs_info->cleanup_work_sem);
2151 init_rwsem(&fs_info->subvol_sem);
2152 fs_info->dev_replace.lock_owner = 0;
2153 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2154 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2155 mutex_init(&fs_info->dev_replace.lock_management_lock);
2156 mutex_init(&fs_info->dev_replace.lock);
2157
2158 spin_lock_init(&fs_info->qgroup_lock);
2159 fs_info->qgroup_tree = RB_ROOT;
2160 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2161 fs_info->qgroup_seq = 1;
2162 fs_info->quota_enabled = 0;
2163 fs_info->pending_quota_state = 0;
2164
2165 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2166 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2167
2168 init_waitqueue_head(&fs_info->transaction_throttle);
2169 init_waitqueue_head(&fs_info->transaction_wait);
2170 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2171 init_waitqueue_head(&fs_info->async_submit_wait);
2172
2173 __setup_root(4096, 4096, 4096, 4096, tree_root,
2174 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2175
2176 invalidate_bdev(fs_devices->latest_bdev);
2177 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2178 if (!bh) {
2179 err = -EINVAL;
2180 goto fail_alloc;
2181 }
2182
2183 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2184 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2185 sizeof(*fs_info->super_for_commit));
2186 brelse(bh);
2187
2188 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2189
2190 disk_super = fs_info->super_copy;
2191 if (!btrfs_super_root(disk_super))
2192 goto fail_alloc;
2193
2194 /* check FS state, whether FS is broken. */
2195 fs_info->fs_state |= btrfs_super_flags(disk_super);
2196
2197 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2198 if (ret) {
2199 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2200 err = ret;
2201 goto fail_alloc;
2202 }
2203
2204 /*
2205 * run through our array of backup supers and setup
2206 * our ring pointer to the oldest one
2207 */
2208 generation = btrfs_super_generation(disk_super);
2209 find_oldest_super_backup(fs_info, generation);
2210
2211 /*
2212 * In the long term, we'll store the compression type in the super
2213 * block, and it'll be used for per file compression control.
2214 */
2215 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2216
2217 ret = btrfs_parse_options(tree_root, options);
2218 if (ret) {
2219 err = ret;
2220 goto fail_alloc;
2221 }
2222
2223 features = btrfs_super_incompat_flags(disk_super) &
2224 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2225 if (features) {
2226 printk(KERN_ERR "BTRFS: couldn't mount because of "
2227 "unsupported optional features (%Lx).\n",
2228 (unsigned long long)features);
2229 err = -EINVAL;
2230 goto fail_alloc;
2231 }
2232
2233 if (btrfs_super_leafsize(disk_super) !=
2234 btrfs_super_nodesize(disk_super)) {
2235 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2236 "blocksizes don't match. node %d leaf %d\n",
2237 btrfs_super_nodesize(disk_super),
2238 btrfs_super_leafsize(disk_super));
2239 err = -EINVAL;
2240 goto fail_alloc;
2241 }
2242 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2243 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2244 "blocksize (%d) was too large\n",
2245 btrfs_super_leafsize(disk_super));
2246 err = -EINVAL;
2247 goto fail_alloc;
2248 }
2249
2250 features = btrfs_super_incompat_flags(disk_super);
2251 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2252 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2253 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2254
2255 /*
2256 * flag our filesystem as having big metadata blocks if
2257 * they are bigger than the page size
2258 */
2259 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2260 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2261 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2262 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2263 }
2264
2265 nodesize = btrfs_super_nodesize(disk_super);
2266 leafsize = btrfs_super_leafsize(disk_super);
2267 sectorsize = btrfs_super_sectorsize(disk_super);
2268 stripesize = btrfs_super_stripesize(disk_super);
2269
2270 /*
2271 * mixed block groups end up with duplicate but slightly offset
2272 * extent buffers for the same range. It leads to corruptions
2273 */
2274 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2275 (sectorsize != leafsize)) {
2276 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2277 "are not allowed for mixed block groups on %s\n",
2278 sb->s_id);
2279 goto fail_alloc;
2280 }
2281
2282 btrfs_set_super_incompat_flags(disk_super, features);
2283
2284 features = btrfs_super_compat_ro_flags(disk_super) &
2285 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2286 if (!(sb->s_flags & MS_RDONLY) && features) {
2287 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2288 "unsupported option features (%Lx).\n",
2289 (unsigned long long)features);
2290 err = -EINVAL;
2291 goto fail_alloc;
2292 }
2293
2294 btrfs_init_workers(&fs_info->generic_worker,
2295 "genwork", 1, NULL);
2296
2297 btrfs_init_workers(&fs_info->workers, "worker",
2298 fs_info->thread_pool_size,
2299 &fs_info->generic_worker);
2300
2301 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2302 fs_info->thread_pool_size,
2303 &fs_info->generic_worker);
2304
2305 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2306 fs_info->thread_pool_size,
2307 &fs_info->generic_worker);
2308
2309 btrfs_init_workers(&fs_info->submit_workers, "submit",
2310 min_t(u64, fs_devices->num_devices,
2311 fs_info->thread_pool_size),
2312 &fs_info->generic_worker);
2313
2314 btrfs_init_workers(&fs_info->caching_workers, "cache",
2315 2, &fs_info->generic_worker);
2316
2317 /* a higher idle thresh on the submit workers makes it much more
2318 * likely that bios will be send down in a sane order to the
2319 * devices
2320 */
2321 fs_info->submit_workers.idle_thresh = 64;
2322
2323 fs_info->workers.idle_thresh = 16;
2324 fs_info->workers.ordered = 1;
2325
2326 fs_info->delalloc_workers.idle_thresh = 2;
2327 fs_info->delalloc_workers.ordered = 1;
2328
2329 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2330 &fs_info->generic_worker);
2331 btrfs_init_workers(&fs_info->endio_workers, "endio",
2332 fs_info->thread_pool_size,
2333 &fs_info->generic_worker);
2334 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2335 fs_info->thread_pool_size,
2336 &fs_info->generic_worker);
2337 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2338 "endio-meta-write", fs_info->thread_pool_size,
2339 &fs_info->generic_worker);
2340 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2341 fs_info->thread_pool_size,
2342 &fs_info->generic_worker);
2343 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2344 1, &fs_info->generic_worker);
2345 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2346 fs_info->thread_pool_size,
2347 &fs_info->generic_worker);
2348 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2349 fs_info->thread_pool_size,
2350 &fs_info->generic_worker);
2351
2352 /*
2353 * endios are largely parallel and should have a very
2354 * low idle thresh
2355 */
2356 fs_info->endio_workers.idle_thresh = 4;
2357 fs_info->endio_meta_workers.idle_thresh = 4;
2358
2359 fs_info->endio_write_workers.idle_thresh = 2;
2360 fs_info->endio_meta_write_workers.idle_thresh = 2;
2361 fs_info->readahead_workers.idle_thresh = 2;
2362
2363 /*
2364 * btrfs_start_workers can really only fail because of ENOMEM so just
2365 * return -ENOMEM if any of these fail.
2366 */
2367 ret = btrfs_start_workers(&fs_info->workers);
2368 ret |= btrfs_start_workers(&fs_info->generic_worker);
2369 ret |= btrfs_start_workers(&fs_info->submit_workers);
2370 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2371 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2372 ret |= btrfs_start_workers(&fs_info->endio_workers);
2373 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2374 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2375 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2376 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2377 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2378 ret |= btrfs_start_workers(&fs_info->caching_workers);
2379 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2380 ret |= btrfs_start_workers(&fs_info->flush_workers);
2381 if (ret) {
2382 err = -ENOMEM;
2383 goto fail_sb_buffer;
2384 }
2385
2386 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2387 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2388 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2389
2390 tree_root->nodesize = nodesize;
2391 tree_root->leafsize = leafsize;
2392 tree_root->sectorsize = sectorsize;
2393 tree_root->stripesize = stripesize;
2394
2395 sb->s_blocksize = sectorsize;
2396 sb->s_blocksize_bits = blksize_bits(sectorsize);
2397
2398 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2399 sizeof(disk_super->magic))) {
2400 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2401 goto fail_sb_buffer;
2402 }
2403
2404 if (sectorsize != PAGE_SIZE) {
2405 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2406 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2407 goto fail_sb_buffer;
2408 }
2409
2410 mutex_lock(&fs_info->chunk_mutex);
2411 ret = btrfs_read_sys_array(tree_root);
2412 mutex_unlock(&fs_info->chunk_mutex);
2413 if (ret) {
2414 printk(KERN_WARNING "btrfs: failed to read the system "
2415 "array on %s\n", sb->s_id);
2416 goto fail_sb_buffer;
2417 }
2418
2419 blocksize = btrfs_level_size(tree_root,
2420 btrfs_super_chunk_root_level(disk_super));
2421 generation = btrfs_super_chunk_root_generation(disk_super);
2422
2423 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2424 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2425
2426 chunk_root->node = read_tree_block(chunk_root,
2427 btrfs_super_chunk_root(disk_super),
2428 blocksize, generation);
2429 BUG_ON(!chunk_root->node); /* -ENOMEM */
2430 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2431 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2432 sb->s_id);
2433 goto fail_tree_roots;
2434 }
2435 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2436 chunk_root->commit_root = btrfs_root_node(chunk_root);
2437
2438 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2439 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2440 BTRFS_UUID_SIZE);
2441
2442 ret = btrfs_read_chunk_tree(chunk_root);
2443 if (ret) {
2444 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2445 sb->s_id);
2446 goto fail_tree_roots;
2447 }
2448
2449 /*
2450 * keep the device that is marked to be the target device for the
2451 * dev_replace procedure
2452 */
2453 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2454
2455 if (!fs_devices->latest_bdev) {
2456 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2457 sb->s_id);
2458 goto fail_tree_roots;
2459 }
2460
2461 retry_root_backup:
2462 blocksize = btrfs_level_size(tree_root,
2463 btrfs_super_root_level(disk_super));
2464 generation = btrfs_super_generation(disk_super);
2465
2466 tree_root->node = read_tree_block(tree_root,
2467 btrfs_super_root(disk_super),
2468 blocksize, generation);
2469 if (!tree_root->node ||
2470 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2471 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2472 sb->s_id);
2473
2474 goto recovery_tree_root;
2475 }
2476
2477 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2478 tree_root->commit_root = btrfs_root_node(tree_root);
2479
2480 ret = find_and_setup_root(tree_root, fs_info,
2481 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2482 if (ret)
2483 goto recovery_tree_root;
2484 extent_root->track_dirty = 1;
2485
2486 ret = find_and_setup_root(tree_root, fs_info,
2487 BTRFS_DEV_TREE_OBJECTID, dev_root);
2488 if (ret)
2489 goto recovery_tree_root;
2490 dev_root->track_dirty = 1;
2491
2492 ret = find_and_setup_root(tree_root, fs_info,
2493 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2494 if (ret)
2495 goto recovery_tree_root;
2496 csum_root->track_dirty = 1;
2497
2498 ret = find_and_setup_root(tree_root, fs_info,
2499 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2500 if (ret) {
2501 kfree(quota_root);
2502 quota_root = fs_info->quota_root = NULL;
2503 } else {
2504 quota_root->track_dirty = 1;
2505 fs_info->quota_enabled = 1;
2506 fs_info->pending_quota_state = 1;
2507 }
2508
2509 fs_info->generation = generation;
2510 fs_info->last_trans_committed = generation;
2511
2512 ret = btrfs_recover_balance(fs_info);
2513 if (ret) {
2514 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2515 goto fail_block_groups;
2516 }
2517
2518 ret = btrfs_init_dev_stats(fs_info);
2519 if (ret) {
2520 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2521 ret);
2522 goto fail_block_groups;
2523 }
2524
2525 ret = btrfs_init_dev_replace(fs_info);
2526 if (ret) {
2527 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2528 goto fail_block_groups;
2529 }
2530
2531 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2532
2533 ret = btrfs_init_space_info(fs_info);
2534 if (ret) {
2535 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2536 goto fail_block_groups;
2537 }
2538
2539 ret = btrfs_read_block_groups(extent_root);
2540 if (ret) {
2541 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2542 goto fail_block_groups;
2543 }
2544 fs_info->num_tolerated_disk_barrier_failures =
2545 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2546 if (fs_info->fs_devices->missing_devices >
2547 fs_info->num_tolerated_disk_barrier_failures &&
2548 !(sb->s_flags & MS_RDONLY)) {
2549 printk(KERN_WARNING
2550 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2551 goto fail_block_groups;
2552 }
2553
2554 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2555 "btrfs-cleaner");
2556 if (IS_ERR(fs_info->cleaner_kthread))
2557 goto fail_block_groups;
2558
2559 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2560 tree_root,
2561 "btrfs-transaction");
2562 if (IS_ERR(fs_info->transaction_kthread))
2563 goto fail_cleaner;
2564
2565 if (!btrfs_test_opt(tree_root, SSD) &&
2566 !btrfs_test_opt(tree_root, NOSSD) &&
2567 !fs_info->fs_devices->rotating) {
2568 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2569 "mode\n");
2570 btrfs_set_opt(fs_info->mount_opt, SSD);
2571 }
2572
2573 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2574 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2575 ret = btrfsic_mount(tree_root, fs_devices,
2576 btrfs_test_opt(tree_root,
2577 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2578 1 : 0,
2579 fs_info->check_integrity_print_mask);
2580 if (ret)
2581 printk(KERN_WARNING "btrfs: failed to initialize"
2582 " integrity check module %s\n", sb->s_id);
2583 }
2584 #endif
2585 ret = btrfs_read_qgroup_config(fs_info);
2586 if (ret)
2587 goto fail_trans_kthread;
2588
2589 /* do not make disk changes in broken FS */
2590 if (btrfs_super_log_root(disk_super) != 0) {
2591 u64 bytenr = btrfs_super_log_root(disk_super);
2592
2593 if (fs_devices->rw_devices == 0) {
2594 printk(KERN_WARNING "Btrfs log replay required "
2595 "on RO media\n");
2596 err = -EIO;
2597 goto fail_qgroup;
2598 }
2599 blocksize =
2600 btrfs_level_size(tree_root,
2601 btrfs_super_log_root_level(disk_super));
2602
2603 log_tree_root = btrfs_alloc_root(fs_info);
2604 if (!log_tree_root) {
2605 err = -ENOMEM;
2606 goto fail_qgroup;
2607 }
2608
2609 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2610 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2611
2612 log_tree_root->node = read_tree_block(tree_root, bytenr,
2613 blocksize,
2614 generation + 1);
2615 /* returns with log_tree_root freed on success */
2616 ret = btrfs_recover_log_trees(log_tree_root);
2617 if (ret) {
2618 btrfs_error(tree_root->fs_info, ret,
2619 "Failed to recover log tree");
2620 free_extent_buffer(log_tree_root->node);
2621 kfree(log_tree_root);
2622 goto fail_trans_kthread;
2623 }
2624
2625 if (sb->s_flags & MS_RDONLY) {
2626 ret = btrfs_commit_super(tree_root);
2627 if (ret)
2628 goto fail_trans_kthread;
2629 }
2630 }
2631
2632 ret = btrfs_find_orphan_roots(tree_root);
2633 if (ret)
2634 goto fail_trans_kthread;
2635
2636 if (!(sb->s_flags & MS_RDONLY)) {
2637 ret = btrfs_cleanup_fs_roots(fs_info);
2638 if (ret)
2639 goto fail_trans_kthread;
2640
2641 ret = btrfs_recover_relocation(tree_root);
2642 if (ret < 0) {
2643 printk(KERN_WARNING
2644 "btrfs: failed to recover relocation\n");
2645 err = -EINVAL;
2646 goto fail_qgroup;
2647 }
2648 }
2649
2650 location.objectid = BTRFS_FS_TREE_OBJECTID;
2651 location.type = BTRFS_ROOT_ITEM_KEY;
2652 location.offset = (u64)-1;
2653
2654 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2655 if (!fs_info->fs_root)
2656 goto fail_qgroup;
2657 if (IS_ERR(fs_info->fs_root)) {
2658 err = PTR_ERR(fs_info->fs_root);
2659 goto fail_qgroup;
2660 }
2661
2662 if (sb->s_flags & MS_RDONLY)
2663 return 0;
2664
2665 down_read(&fs_info->cleanup_work_sem);
2666 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2667 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2668 up_read(&fs_info->cleanup_work_sem);
2669 close_ctree(tree_root);
2670 return ret;
2671 }
2672 up_read(&fs_info->cleanup_work_sem);
2673
2674 ret = btrfs_resume_balance_async(fs_info);
2675 if (ret) {
2676 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2677 close_ctree(tree_root);
2678 return ret;
2679 }
2680
2681 ret = btrfs_resume_dev_replace_async(fs_info);
2682 if (ret) {
2683 pr_warn("btrfs: failed to resume dev_replace\n");
2684 close_ctree(tree_root);
2685 return ret;
2686 }
2687
2688 return 0;
2689
2690 fail_qgroup:
2691 btrfs_free_qgroup_config(fs_info);
2692 fail_trans_kthread:
2693 kthread_stop(fs_info->transaction_kthread);
2694 fail_cleaner:
2695 kthread_stop(fs_info->cleaner_kthread);
2696
2697 /*
2698 * make sure we're done with the btree inode before we stop our
2699 * kthreads
2700 */
2701 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2702 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2703
2704 fail_block_groups:
2705 btrfs_free_block_groups(fs_info);
2706
2707 fail_tree_roots:
2708 free_root_pointers(fs_info, 1);
2709
2710 fail_sb_buffer:
2711 btrfs_stop_workers(&fs_info->generic_worker);
2712 btrfs_stop_workers(&fs_info->readahead_workers);
2713 btrfs_stop_workers(&fs_info->fixup_workers);
2714 btrfs_stop_workers(&fs_info->delalloc_workers);
2715 btrfs_stop_workers(&fs_info->workers);
2716 btrfs_stop_workers(&fs_info->endio_workers);
2717 btrfs_stop_workers(&fs_info->endio_meta_workers);
2718 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2719 btrfs_stop_workers(&fs_info->endio_write_workers);
2720 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2721 btrfs_stop_workers(&fs_info->submit_workers);
2722 btrfs_stop_workers(&fs_info->delayed_workers);
2723 btrfs_stop_workers(&fs_info->caching_workers);
2724 btrfs_stop_workers(&fs_info->flush_workers);
2725 fail_alloc:
2726 fail_iput:
2727 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2728
2729 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2730 iput(fs_info->btree_inode);
2731 fail_bdi:
2732 bdi_destroy(&fs_info->bdi);
2733 fail_srcu:
2734 cleanup_srcu_struct(&fs_info->subvol_srcu);
2735 fail:
2736 btrfs_close_devices(fs_info->fs_devices);
2737 return err;
2738
2739 recovery_tree_root:
2740 if (!btrfs_test_opt(tree_root, RECOVERY))
2741 goto fail_tree_roots;
2742
2743 free_root_pointers(fs_info, 0);
2744
2745 /* don't use the log in recovery mode, it won't be valid */
2746 btrfs_set_super_log_root(disk_super, 0);
2747
2748 /* we can't trust the free space cache either */
2749 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2750
2751 ret = next_root_backup(fs_info, fs_info->super_copy,
2752 &num_backups_tried, &backup_index);
2753 if (ret == -1)
2754 goto fail_block_groups;
2755 goto retry_root_backup;
2756 }
2757
2758 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2759 {
2760 if (uptodate) {
2761 set_buffer_uptodate(bh);
2762 } else {
2763 struct btrfs_device *device = (struct btrfs_device *)
2764 bh->b_private;
2765
2766 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2767 "I/O error on %s\n",
2768 rcu_str_deref(device->name));
2769 /* note, we dont' set_buffer_write_io_error because we have
2770 * our own ways of dealing with the IO errors
2771 */
2772 clear_buffer_uptodate(bh);
2773 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2774 }
2775 unlock_buffer(bh);
2776 put_bh(bh);
2777 }
2778
2779 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2780 {
2781 struct buffer_head *bh;
2782 struct buffer_head *latest = NULL;
2783 struct btrfs_super_block *super;
2784 int i;
2785 u64 transid = 0;
2786 u64 bytenr;
2787
2788 /* we would like to check all the supers, but that would make
2789 * a btrfs mount succeed after a mkfs from a different FS.
2790 * So, we need to add a special mount option to scan for
2791 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2792 */
2793 for (i = 0; i < 1; i++) {
2794 bytenr = btrfs_sb_offset(i);
2795 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2796 break;
2797 bh = __bread(bdev, bytenr / 4096, 4096);
2798 if (!bh)
2799 continue;
2800
2801 super = (struct btrfs_super_block *)bh->b_data;
2802 if (btrfs_super_bytenr(super) != bytenr ||
2803 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2804 sizeof(super->magic))) {
2805 brelse(bh);
2806 continue;
2807 }
2808
2809 if (!latest || btrfs_super_generation(super) > transid) {
2810 brelse(latest);
2811 latest = bh;
2812 transid = btrfs_super_generation(super);
2813 } else {
2814 brelse(bh);
2815 }
2816 }
2817 return latest;
2818 }
2819
2820 /*
2821 * this should be called twice, once with wait == 0 and
2822 * once with wait == 1. When wait == 0 is done, all the buffer heads
2823 * we write are pinned.
2824 *
2825 * They are released when wait == 1 is done.
2826 * max_mirrors must be the same for both runs, and it indicates how
2827 * many supers on this one device should be written.
2828 *
2829 * max_mirrors == 0 means to write them all.
2830 */
2831 static int write_dev_supers(struct btrfs_device *device,
2832 struct btrfs_super_block *sb,
2833 int do_barriers, int wait, int max_mirrors)
2834 {
2835 struct buffer_head *bh;
2836 int i;
2837 int ret;
2838 int errors = 0;
2839 u32 crc;
2840 u64 bytenr;
2841
2842 if (max_mirrors == 0)
2843 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2844
2845 for (i = 0; i < max_mirrors; i++) {
2846 bytenr = btrfs_sb_offset(i);
2847 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2848 break;
2849
2850 if (wait) {
2851 bh = __find_get_block(device->bdev, bytenr / 4096,
2852 BTRFS_SUPER_INFO_SIZE);
2853 BUG_ON(!bh);
2854 wait_on_buffer(bh);
2855 if (!buffer_uptodate(bh))
2856 errors++;
2857
2858 /* drop our reference */
2859 brelse(bh);
2860
2861 /* drop the reference from the wait == 0 run */
2862 brelse(bh);
2863 continue;
2864 } else {
2865 btrfs_set_super_bytenr(sb, bytenr);
2866
2867 crc = ~(u32)0;
2868 crc = btrfs_csum_data(NULL, (char *)sb +
2869 BTRFS_CSUM_SIZE, crc,
2870 BTRFS_SUPER_INFO_SIZE -
2871 BTRFS_CSUM_SIZE);
2872 btrfs_csum_final(crc, sb->csum);
2873
2874 /*
2875 * one reference for us, and we leave it for the
2876 * caller
2877 */
2878 bh = __getblk(device->bdev, bytenr / 4096,
2879 BTRFS_SUPER_INFO_SIZE);
2880 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2881
2882 /* one reference for submit_bh */
2883 get_bh(bh);
2884
2885 set_buffer_uptodate(bh);
2886 lock_buffer(bh);
2887 bh->b_end_io = btrfs_end_buffer_write_sync;
2888 bh->b_private = device;
2889 }
2890
2891 /*
2892 * we fua the first super. The others we allow
2893 * to go down lazy.
2894 */
2895 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2896 if (ret)
2897 errors++;
2898 }
2899 return errors < i ? 0 : -1;
2900 }
2901
2902 /*
2903 * endio for the write_dev_flush, this will wake anyone waiting
2904 * for the barrier when it is done
2905 */
2906 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2907 {
2908 if (err) {
2909 if (err == -EOPNOTSUPP)
2910 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2911 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2912 }
2913 if (bio->bi_private)
2914 complete(bio->bi_private);
2915 bio_put(bio);
2916 }
2917
2918 /*
2919 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2920 * sent down. With wait == 1, it waits for the previous flush.
2921 *
2922 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2923 * capable
2924 */
2925 static int write_dev_flush(struct btrfs_device *device, int wait)
2926 {
2927 struct bio *bio;
2928 int ret = 0;
2929
2930 if (device->nobarriers)
2931 return 0;
2932
2933 if (wait) {
2934 bio = device->flush_bio;
2935 if (!bio)
2936 return 0;
2937
2938 wait_for_completion(&device->flush_wait);
2939
2940 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2941 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2942 rcu_str_deref(device->name));
2943 device->nobarriers = 1;
2944 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2945 ret = -EIO;
2946 btrfs_dev_stat_inc_and_print(device,
2947 BTRFS_DEV_STAT_FLUSH_ERRS);
2948 }
2949
2950 /* drop the reference from the wait == 0 run */
2951 bio_put(bio);
2952 device->flush_bio = NULL;
2953
2954 return ret;
2955 }
2956
2957 /*
2958 * one reference for us, and we leave it for the
2959 * caller
2960 */
2961 device->flush_bio = NULL;
2962 bio = bio_alloc(GFP_NOFS, 0);
2963 if (!bio)
2964 return -ENOMEM;
2965
2966 bio->bi_end_io = btrfs_end_empty_barrier;
2967 bio->bi_bdev = device->bdev;
2968 init_completion(&device->flush_wait);
2969 bio->bi_private = &device->flush_wait;
2970 device->flush_bio = bio;
2971
2972 bio_get(bio);
2973 btrfsic_submit_bio(WRITE_FLUSH, bio);
2974
2975 return 0;
2976 }
2977
2978 /*
2979 * send an empty flush down to each device in parallel,
2980 * then wait for them
2981 */
2982 static int barrier_all_devices(struct btrfs_fs_info *info)
2983 {
2984 struct list_head *head;
2985 struct btrfs_device *dev;
2986 int errors_send = 0;
2987 int errors_wait = 0;
2988 int ret;
2989
2990 /* send down all the barriers */
2991 head = &info->fs_devices->devices;
2992 list_for_each_entry_rcu(dev, head, dev_list) {
2993 if (!dev->bdev) {
2994 errors_send++;
2995 continue;
2996 }
2997 if (!dev->in_fs_metadata || !dev->writeable)
2998 continue;
2999
3000 ret = write_dev_flush(dev, 0);
3001 if (ret)
3002 errors_send++;
3003 }
3004
3005 /* wait for all the barriers */
3006 list_for_each_entry_rcu(dev, head, dev_list) {
3007 if (!dev->bdev) {
3008 errors_wait++;
3009 continue;
3010 }
3011 if (!dev->in_fs_metadata || !dev->writeable)
3012 continue;
3013
3014 ret = write_dev_flush(dev, 1);
3015 if (ret)
3016 errors_wait++;
3017 }
3018 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3019 errors_wait > info->num_tolerated_disk_barrier_failures)
3020 return -EIO;
3021 return 0;
3022 }
3023
3024 int btrfs_calc_num_tolerated_disk_barrier_failures(
3025 struct btrfs_fs_info *fs_info)
3026 {
3027 struct btrfs_ioctl_space_info space;
3028 struct btrfs_space_info *sinfo;
3029 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3030 BTRFS_BLOCK_GROUP_SYSTEM,
3031 BTRFS_BLOCK_GROUP_METADATA,
3032 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3033 int num_types = 4;
3034 int i;
3035 int c;
3036 int num_tolerated_disk_barrier_failures =
3037 (int)fs_info->fs_devices->num_devices;
3038
3039 for (i = 0; i < num_types; i++) {
3040 struct btrfs_space_info *tmp;
3041
3042 sinfo = NULL;
3043 rcu_read_lock();
3044 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3045 if (tmp->flags == types[i]) {
3046 sinfo = tmp;
3047 break;
3048 }
3049 }
3050 rcu_read_unlock();
3051
3052 if (!sinfo)
3053 continue;
3054
3055 down_read(&sinfo->groups_sem);
3056 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3057 if (!list_empty(&sinfo->block_groups[c])) {
3058 u64 flags;
3059
3060 btrfs_get_block_group_info(
3061 &sinfo->block_groups[c], &space);
3062 if (space.total_bytes == 0 ||
3063 space.used_bytes == 0)
3064 continue;
3065 flags = space.flags;
3066 /*
3067 * return
3068 * 0: if dup, single or RAID0 is configured for
3069 * any of metadata, system or data, else
3070 * 1: if RAID5 is configured, or if RAID1 or
3071 * RAID10 is configured and only two mirrors
3072 * are used, else
3073 * 2: if RAID6 is configured, else
3074 * num_mirrors - 1: if RAID1 or RAID10 is
3075 * configured and more than
3076 * 2 mirrors are used.
3077 */
3078 if (num_tolerated_disk_barrier_failures > 0 &&
3079 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3080 BTRFS_BLOCK_GROUP_RAID0)) ||
3081 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3082 == 0)))
3083 num_tolerated_disk_barrier_failures = 0;
3084 else if (num_tolerated_disk_barrier_failures > 1
3085 &&
3086 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3087 BTRFS_BLOCK_GROUP_RAID10)))
3088 num_tolerated_disk_barrier_failures = 1;
3089 }
3090 }
3091 up_read(&sinfo->groups_sem);
3092 }
3093
3094 return num_tolerated_disk_barrier_failures;
3095 }
3096
3097 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3098 {
3099 struct list_head *head;
3100 struct btrfs_device *dev;
3101 struct btrfs_super_block *sb;
3102 struct btrfs_dev_item *dev_item;
3103 int ret;
3104 int do_barriers;
3105 int max_errors;
3106 int total_errors = 0;
3107 u64 flags;
3108
3109 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3110 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3111 backup_super_roots(root->fs_info);
3112
3113 sb = root->fs_info->super_for_commit;
3114 dev_item = &sb->dev_item;
3115
3116 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3117 head = &root->fs_info->fs_devices->devices;
3118
3119 if (do_barriers) {
3120 ret = barrier_all_devices(root->fs_info);
3121 if (ret) {
3122 mutex_unlock(
3123 &root->fs_info->fs_devices->device_list_mutex);
3124 btrfs_error(root->fs_info, ret,
3125 "errors while submitting device barriers.");
3126 return ret;
3127 }
3128 }
3129
3130 list_for_each_entry_rcu(dev, head, dev_list) {
3131 if (!dev->bdev) {
3132 total_errors++;
3133 continue;
3134 }
3135 if (!dev->in_fs_metadata || !dev->writeable)
3136 continue;
3137
3138 btrfs_set_stack_device_generation(dev_item, 0);
3139 btrfs_set_stack_device_type(dev_item, dev->type);
3140 btrfs_set_stack_device_id(dev_item, dev->devid);
3141 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3142 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3143 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3144 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3145 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3146 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3147 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3148
3149 flags = btrfs_super_flags(sb);
3150 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3151
3152 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3153 if (ret)
3154 total_errors++;
3155 }
3156 if (total_errors > max_errors) {
3157 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3158 total_errors);
3159
3160 /* This shouldn't happen. FUA is masked off if unsupported */
3161 BUG();
3162 }
3163
3164 total_errors = 0;
3165 list_for_each_entry_rcu(dev, head, dev_list) {
3166 if (!dev->bdev)
3167 continue;
3168 if (!dev->in_fs_metadata || !dev->writeable)
3169 continue;
3170
3171 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3172 if (ret)
3173 total_errors++;
3174 }
3175 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3176 if (total_errors > max_errors) {
3177 btrfs_error(root->fs_info, -EIO,
3178 "%d errors while writing supers", total_errors);
3179 return -EIO;
3180 }
3181 return 0;
3182 }
3183
3184 int write_ctree_super(struct btrfs_trans_handle *trans,
3185 struct btrfs_root *root, int max_mirrors)
3186 {
3187 int ret;
3188
3189 ret = write_all_supers(root, max_mirrors);
3190 return ret;
3191 }
3192
3193 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3194 {
3195 spin_lock(&fs_info->fs_roots_radix_lock);
3196 radix_tree_delete(&fs_info->fs_roots_radix,
3197 (unsigned long)root->root_key.objectid);
3198 spin_unlock(&fs_info->fs_roots_radix_lock);
3199
3200 if (btrfs_root_refs(&root->root_item) == 0)
3201 synchronize_srcu(&fs_info->subvol_srcu);
3202
3203 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3204 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3205 free_fs_root(root);
3206 }
3207
3208 static void free_fs_root(struct btrfs_root *root)
3209 {
3210 iput(root->cache_inode);
3211 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3212 if (root->anon_dev)
3213 free_anon_bdev(root->anon_dev);
3214 free_extent_buffer(root->node);
3215 free_extent_buffer(root->commit_root);
3216 kfree(root->free_ino_ctl);
3217 kfree(root->free_ino_pinned);
3218 kfree(root->name);
3219 kfree(root);
3220 }
3221
3222 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3223 {
3224 int ret;
3225 struct btrfs_root *gang[8];
3226 int i;
3227
3228 while (!list_empty(&fs_info->dead_roots)) {
3229 gang[0] = list_entry(fs_info->dead_roots.next,
3230 struct btrfs_root, root_list);
3231 list_del(&gang[0]->root_list);
3232
3233 if (gang[0]->in_radix) {
3234 btrfs_free_fs_root(fs_info, gang[0]);
3235 } else {
3236 free_extent_buffer(gang[0]->node);
3237 free_extent_buffer(gang[0]->commit_root);
3238 kfree(gang[0]);
3239 }
3240 }
3241
3242 while (1) {
3243 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3244 (void **)gang, 0,
3245 ARRAY_SIZE(gang));
3246 if (!ret)
3247 break;
3248 for (i = 0; i < ret; i++)
3249 btrfs_free_fs_root(fs_info, gang[i]);
3250 }
3251 }
3252
3253 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3254 {
3255 u64 root_objectid = 0;
3256 struct btrfs_root *gang[8];
3257 int i;
3258 int ret;
3259
3260 while (1) {
3261 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3262 (void **)gang, root_objectid,
3263 ARRAY_SIZE(gang));
3264 if (!ret)
3265 break;
3266
3267 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3268 for (i = 0; i < ret; i++) {
3269 int err;
3270
3271 root_objectid = gang[i]->root_key.objectid;
3272 err = btrfs_orphan_cleanup(gang[i]);
3273 if (err)
3274 return err;
3275 }
3276 root_objectid++;
3277 }
3278 return 0;
3279 }
3280
3281 int btrfs_commit_super(struct btrfs_root *root)
3282 {
3283 struct btrfs_trans_handle *trans;
3284 int ret;
3285
3286 mutex_lock(&root->fs_info->cleaner_mutex);
3287 btrfs_run_delayed_iputs(root);
3288 btrfs_clean_old_snapshots(root);
3289 mutex_unlock(&root->fs_info->cleaner_mutex);
3290
3291 /* wait until ongoing cleanup work done */
3292 down_write(&root->fs_info->cleanup_work_sem);
3293 up_write(&root->fs_info->cleanup_work_sem);
3294
3295 trans = btrfs_join_transaction(root);
3296 if (IS_ERR(trans))
3297 return PTR_ERR(trans);
3298 ret = btrfs_commit_transaction(trans, root);
3299 if (ret)
3300 return ret;
3301 /* run commit again to drop the original snapshot */
3302 trans = btrfs_join_transaction(root);
3303 if (IS_ERR(trans))
3304 return PTR_ERR(trans);
3305 ret = btrfs_commit_transaction(trans, root);
3306 if (ret)
3307 return ret;
3308 ret = btrfs_write_and_wait_transaction(NULL, root);
3309 if (ret) {
3310 btrfs_error(root->fs_info, ret,
3311 "Failed to sync btree inode to disk.");
3312 return ret;
3313 }
3314
3315 ret = write_ctree_super(NULL, root, 0);
3316 return ret;
3317 }
3318
3319 int close_ctree(struct btrfs_root *root)
3320 {
3321 struct btrfs_fs_info *fs_info = root->fs_info;
3322 int ret;
3323
3324 fs_info->closing = 1;
3325 smp_mb();
3326
3327 /* pause restriper - we want to resume on mount */
3328 btrfs_pause_balance(fs_info);
3329
3330 btrfs_dev_replace_suspend_for_unmount(fs_info);
3331
3332 btrfs_scrub_cancel(fs_info);
3333
3334 /* wait for any defraggers to finish */
3335 wait_event(fs_info->transaction_wait,
3336 (atomic_read(&fs_info->defrag_running) == 0));
3337
3338 /* clear out the rbtree of defraggable inodes */
3339 btrfs_cleanup_defrag_inodes(fs_info);
3340
3341 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3342 ret = btrfs_commit_super(root);
3343 if (ret)
3344 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3345 }
3346
3347 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3348 btrfs_error_commit_super(root);
3349
3350 btrfs_put_block_group_cache(fs_info);
3351
3352 kthread_stop(fs_info->transaction_kthread);
3353 kthread_stop(fs_info->cleaner_kthread);
3354
3355 fs_info->closing = 2;
3356 smp_mb();
3357
3358 btrfs_free_qgroup_config(root->fs_info);
3359
3360 if (fs_info->delalloc_bytes) {
3361 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3362 (unsigned long long)fs_info->delalloc_bytes);
3363 }
3364
3365 free_extent_buffer(fs_info->extent_root->node);
3366 free_extent_buffer(fs_info->extent_root->commit_root);
3367 free_extent_buffer(fs_info->tree_root->node);
3368 free_extent_buffer(fs_info->tree_root->commit_root);
3369 free_extent_buffer(fs_info->chunk_root->node);
3370 free_extent_buffer(fs_info->chunk_root->commit_root);
3371 free_extent_buffer(fs_info->dev_root->node);
3372 free_extent_buffer(fs_info->dev_root->commit_root);
3373 free_extent_buffer(fs_info->csum_root->node);
3374 free_extent_buffer(fs_info->csum_root->commit_root);
3375 if (fs_info->quota_root) {
3376 free_extent_buffer(fs_info->quota_root->node);
3377 free_extent_buffer(fs_info->quota_root->commit_root);
3378 }
3379
3380 btrfs_free_block_groups(fs_info);
3381
3382 del_fs_roots(fs_info);
3383
3384 iput(fs_info->btree_inode);
3385
3386 btrfs_stop_workers(&fs_info->generic_worker);
3387 btrfs_stop_workers(&fs_info->fixup_workers);
3388 btrfs_stop_workers(&fs_info->delalloc_workers);
3389 btrfs_stop_workers(&fs_info->workers);
3390 btrfs_stop_workers(&fs_info->endio_workers);
3391 btrfs_stop_workers(&fs_info->endio_meta_workers);
3392 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3393 btrfs_stop_workers(&fs_info->endio_write_workers);
3394 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3395 btrfs_stop_workers(&fs_info->submit_workers);
3396 btrfs_stop_workers(&fs_info->delayed_workers);
3397 btrfs_stop_workers(&fs_info->caching_workers);
3398 btrfs_stop_workers(&fs_info->readahead_workers);
3399 btrfs_stop_workers(&fs_info->flush_workers);
3400
3401 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3402 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3403 btrfsic_unmount(root, fs_info->fs_devices);
3404 #endif
3405
3406 btrfs_close_devices(fs_info->fs_devices);
3407 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3408
3409 bdi_destroy(&fs_info->bdi);
3410 cleanup_srcu_struct(&fs_info->subvol_srcu);
3411
3412 return 0;
3413 }
3414
3415 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3416 int atomic)
3417 {
3418 int ret;
3419 struct inode *btree_inode = buf->pages[0]->mapping->host;
3420
3421 ret = extent_buffer_uptodate(buf);
3422 if (!ret)
3423 return ret;
3424
3425 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3426 parent_transid, atomic);
3427 if (ret == -EAGAIN)
3428 return ret;
3429 return !ret;
3430 }
3431
3432 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3433 {
3434 return set_extent_buffer_uptodate(buf);
3435 }
3436
3437 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3438 {
3439 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3440 u64 transid = btrfs_header_generation(buf);
3441 int was_dirty;
3442
3443 btrfs_assert_tree_locked(buf);
3444 if (transid != root->fs_info->generation)
3445 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3446 "found %llu running %llu\n",
3447 (unsigned long long)buf->start,
3448 (unsigned long long)transid,
3449 (unsigned long long)root->fs_info->generation);
3450 was_dirty = set_extent_buffer_dirty(buf);
3451 if (!was_dirty) {
3452 spin_lock(&root->fs_info->delalloc_lock);
3453 root->fs_info->dirty_metadata_bytes += buf->len;
3454 spin_unlock(&root->fs_info->delalloc_lock);
3455 }
3456 }
3457
3458 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3459 int flush_delayed)
3460 {
3461 /*
3462 * looks as though older kernels can get into trouble with
3463 * this code, they end up stuck in balance_dirty_pages forever
3464 */
3465 u64 num_dirty;
3466 unsigned long thresh = 32 * 1024 * 1024;
3467
3468 if (current->flags & PF_MEMALLOC)
3469 return;
3470
3471 if (flush_delayed)
3472 btrfs_balance_delayed_items(root);
3473
3474 num_dirty = root->fs_info->dirty_metadata_bytes;
3475
3476 if (num_dirty > thresh) {
3477 balance_dirty_pages_ratelimited_nr(
3478 root->fs_info->btree_inode->i_mapping, 1);
3479 }
3480 return;
3481 }
3482
3483 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3484 {
3485 __btrfs_btree_balance_dirty(root, 1);
3486 }
3487
3488 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3489 {
3490 __btrfs_btree_balance_dirty(root, 0);
3491 }
3492
3493 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3494 {
3495 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3496 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3497 }
3498
3499 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3500 int read_only)
3501 {
3502 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3503 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3504 return -EINVAL;
3505 }
3506
3507 if (read_only)
3508 return 0;
3509
3510 return 0;
3511 }
3512
3513 void btrfs_error_commit_super(struct btrfs_root *root)
3514 {
3515 mutex_lock(&root->fs_info->cleaner_mutex);
3516 btrfs_run_delayed_iputs(root);
3517 mutex_unlock(&root->fs_info->cleaner_mutex);
3518
3519 down_write(&root->fs_info->cleanup_work_sem);
3520 up_write(&root->fs_info->cleanup_work_sem);
3521
3522 /* cleanup FS via transaction */
3523 btrfs_cleanup_transaction(root);
3524 }
3525
3526 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3527 {
3528 struct btrfs_inode *btrfs_inode;
3529 struct list_head splice;
3530
3531 INIT_LIST_HEAD(&splice);
3532
3533 mutex_lock(&root->fs_info->ordered_operations_mutex);
3534 spin_lock(&root->fs_info->ordered_extent_lock);
3535
3536 list_splice_init(&root->fs_info->ordered_operations, &splice);
3537 while (!list_empty(&splice)) {
3538 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3539 ordered_operations);
3540
3541 list_del_init(&btrfs_inode->ordered_operations);
3542
3543 btrfs_invalidate_inodes(btrfs_inode->root);
3544 }
3545
3546 spin_unlock(&root->fs_info->ordered_extent_lock);
3547 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3548 }
3549
3550 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3551 {
3552 struct list_head splice;
3553 struct btrfs_ordered_extent *ordered;
3554 struct inode *inode;
3555
3556 INIT_LIST_HEAD(&splice);
3557
3558 spin_lock(&root->fs_info->ordered_extent_lock);
3559
3560 list_splice_init(&root->fs_info->ordered_extents, &splice);
3561 while (!list_empty(&splice)) {
3562 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3563 root_extent_list);
3564
3565 list_del_init(&ordered->root_extent_list);
3566 atomic_inc(&ordered->refs);
3567
3568 /* the inode may be getting freed (in sys_unlink path). */
3569 inode = igrab(ordered->inode);
3570
3571 spin_unlock(&root->fs_info->ordered_extent_lock);
3572 if (inode)
3573 iput(inode);
3574
3575 atomic_set(&ordered->refs, 1);
3576 btrfs_put_ordered_extent(ordered);
3577
3578 spin_lock(&root->fs_info->ordered_extent_lock);
3579 }
3580
3581 spin_unlock(&root->fs_info->ordered_extent_lock);
3582 }
3583
3584 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3585 struct btrfs_root *root)
3586 {
3587 struct rb_node *node;
3588 struct btrfs_delayed_ref_root *delayed_refs;
3589 struct btrfs_delayed_ref_node *ref;
3590 int ret = 0;
3591
3592 delayed_refs = &trans->delayed_refs;
3593
3594 spin_lock(&delayed_refs->lock);
3595 if (delayed_refs->num_entries == 0) {
3596 spin_unlock(&delayed_refs->lock);
3597 printk(KERN_INFO "delayed_refs has NO entry\n");
3598 return ret;
3599 }
3600
3601 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3602 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3603
3604 atomic_set(&ref->refs, 1);
3605 if (btrfs_delayed_ref_is_head(ref)) {
3606 struct btrfs_delayed_ref_head *head;
3607
3608 head = btrfs_delayed_node_to_head(ref);
3609 if (!mutex_trylock(&head->mutex)) {
3610 atomic_inc(&ref->refs);
3611 spin_unlock(&delayed_refs->lock);
3612
3613 /* Need to wait for the delayed ref to run */
3614 mutex_lock(&head->mutex);
3615 mutex_unlock(&head->mutex);
3616 btrfs_put_delayed_ref(ref);
3617
3618 spin_lock(&delayed_refs->lock);
3619 continue;
3620 }
3621
3622 btrfs_free_delayed_extent_op(head->extent_op);
3623 delayed_refs->num_heads--;
3624 if (list_empty(&head->cluster))
3625 delayed_refs->num_heads_ready--;
3626 list_del_init(&head->cluster);
3627 }
3628 ref->in_tree = 0;
3629 rb_erase(&ref->rb_node, &delayed_refs->root);
3630 delayed_refs->num_entries--;
3631
3632 spin_unlock(&delayed_refs->lock);
3633 btrfs_put_delayed_ref(ref);
3634
3635 cond_resched();
3636 spin_lock(&delayed_refs->lock);
3637 }
3638
3639 spin_unlock(&delayed_refs->lock);
3640
3641 return ret;
3642 }
3643
3644 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3645 {
3646 struct btrfs_pending_snapshot *snapshot;
3647 struct list_head splice;
3648
3649 INIT_LIST_HEAD(&splice);
3650
3651 list_splice_init(&t->pending_snapshots, &splice);
3652
3653 while (!list_empty(&splice)) {
3654 snapshot = list_entry(splice.next,
3655 struct btrfs_pending_snapshot,
3656 list);
3657
3658 list_del_init(&snapshot->list);
3659
3660 kfree(snapshot);
3661 }
3662 }
3663
3664 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3665 {
3666 struct btrfs_inode *btrfs_inode;
3667 struct list_head splice;
3668
3669 INIT_LIST_HEAD(&splice);
3670
3671 spin_lock(&root->fs_info->delalloc_lock);
3672 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3673
3674 while (!list_empty(&splice)) {
3675 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3676 delalloc_inodes);
3677
3678 list_del_init(&btrfs_inode->delalloc_inodes);
3679
3680 btrfs_invalidate_inodes(btrfs_inode->root);
3681 }
3682
3683 spin_unlock(&root->fs_info->delalloc_lock);
3684 }
3685
3686 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3687 struct extent_io_tree *dirty_pages,
3688 int mark)
3689 {
3690 int ret;
3691 struct page *page;
3692 struct inode *btree_inode = root->fs_info->btree_inode;
3693 struct extent_buffer *eb;
3694 u64 start = 0;
3695 u64 end;
3696 u64 offset;
3697 unsigned long index;
3698
3699 while (1) {
3700 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3701 mark, NULL);
3702 if (ret)
3703 break;
3704
3705 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3706 while (start <= end) {
3707 index = start >> PAGE_CACHE_SHIFT;
3708 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3709 page = find_get_page(btree_inode->i_mapping, index);
3710 if (!page)
3711 continue;
3712 offset = page_offset(page);
3713
3714 spin_lock(&dirty_pages->buffer_lock);
3715 eb = radix_tree_lookup(
3716 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3717 offset >> PAGE_CACHE_SHIFT);
3718 spin_unlock(&dirty_pages->buffer_lock);
3719 if (eb)
3720 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3721 &eb->bflags);
3722 if (PageWriteback(page))
3723 end_page_writeback(page);
3724
3725 lock_page(page);
3726 if (PageDirty(page)) {
3727 clear_page_dirty_for_io(page);
3728 spin_lock_irq(&page->mapping->tree_lock);
3729 radix_tree_tag_clear(&page->mapping->page_tree,
3730 page_index(page),
3731 PAGECACHE_TAG_DIRTY);
3732 spin_unlock_irq(&page->mapping->tree_lock);
3733 }
3734
3735 unlock_page(page);
3736 page_cache_release(page);
3737 }
3738 }
3739
3740 return ret;
3741 }
3742
3743 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3744 struct extent_io_tree *pinned_extents)
3745 {
3746 struct extent_io_tree *unpin;
3747 u64 start;
3748 u64 end;
3749 int ret;
3750 bool loop = true;
3751
3752 unpin = pinned_extents;
3753 again:
3754 while (1) {
3755 ret = find_first_extent_bit(unpin, 0, &start, &end,
3756 EXTENT_DIRTY, NULL);
3757 if (ret)
3758 break;
3759
3760 /* opt_discard */
3761 if (btrfs_test_opt(root, DISCARD))
3762 ret = btrfs_error_discard_extent(root, start,
3763 end + 1 - start,
3764 NULL);
3765
3766 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3767 btrfs_error_unpin_extent_range(root, start, end);
3768 cond_resched();
3769 }
3770
3771 if (loop) {
3772 if (unpin == &root->fs_info->freed_extents[0])
3773 unpin = &root->fs_info->freed_extents[1];
3774 else
3775 unpin = &root->fs_info->freed_extents[0];
3776 loop = false;
3777 goto again;
3778 }
3779
3780 return 0;
3781 }
3782
3783 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3784 struct btrfs_root *root)
3785 {
3786 btrfs_destroy_delayed_refs(cur_trans, root);
3787 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3788 cur_trans->dirty_pages.dirty_bytes);
3789
3790 /* FIXME: cleanup wait for commit */
3791 cur_trans->in_commit = 1;
3792 cur_trans->blocked = 1;
3793 wake_up(&root->fs_info->transaction_blocked_wait);
3794
3795 cur_trans->blocked = 0;
3796 wake_up(&root->fs_info->transaction_wait);
3797
3798 cur_trans->commit_done = 1;
3799 wake_up(&cur_trans->commit_wait);
3800
3801 btrfs_destroy_delayed_inodes(root);
3802 btrfs_assert_delayed_root_empty(root);
3803
3804 btrfs_destroy_pending_snapshots(cur_trans);
3805
3806 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3807 EXTENT_DIRTY);
3808 btrfs_destroy_pinned_extent(root,
3809 root->fs_info->pinned_extents);
3810
3811 /*
3812 memset(cur_trans, 0, sizeof(*cur_trans));
3813 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3814 */
3815 }
3816
3817 int btrfs_cleanup_transaction(struct btrfs_root *root)
3818 {
3819 struct btrfs_transaction *t;
3820 LIST_HEAD(list);
3821
3822 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3823
3824 spin_lock(&root->fs_info->trans_lock);
3825 list_splice_init(&root->fs_info->trans_list, &list);
3826 root->fs_info->trans_no_join = 1;
3827 spin_unlock(&root->fs_info->trans_lock);
3828
3829 while (!list_empty(&list)) {
3830 t = list_entry(list.next, struct btrfs_transaction, list);
3831 if (!t)
3832 break;
3833
3834 btrfs_destroy_ordered_operations(root);
3835
3836 btrfs_destroy_ordered_extents(root);
3837
3838 btrfs_destroy_delayed_refs(t, root);
3839
3840 btrfs_block_rsv_release(root,
3841 &root->fs_info->trans_block_rsv,
3842 t->dirty_pages.dirty_bytes);
3843
3844 /* FIXME: cleanup wait for commit */
3845 t->in_commit = 1;
3846 t->blocked = 1;
3847 smp_mb();
3848 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3849 wake_up(&root->fs_info->transaction_blocked_wait);
3850
3851 t->blocked = 0;
3852 smp_mb();
3853 if (waitqueue_active(&root->fs_info->transaction_wait))
3854 wake_up(&root->fs_info->transaction_wait);
3855
3856 t->commit_done = 1;
3857 smp_mb();
3858 if (waitqueue_active(&t->commit_wait))
3859 wake_up(&t->commit_wait);
3860
3861 btrfs_destroy_delayed_inodes(root);
3862 btrfs_assert_delayed_root_empty(root);
3863
3864 btrfs_destroy_pending_snapshots(t);
3865
3866 btrfs_destroy_delalloc_inodes(root);
3867
3868 spin_lock(&root->fs_info->trans_lock);
3869 root->fs_info->running_transaction = NULL;
3870 spin_unlock(&root->fs_info->trans_lock);
3871
3872 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3873 EXTENT_DIRTY);
3874
3875 btrfs_destroy_pinned_extent(root,
3876 root->fs_info->pinned_extents);
3877
3878 atomic_set(&t->use_count, 0);
3879 list_del_init(&t->list);
3880 memset(t, 0, sizeof(*t));
3881 kmem_cache_free(btrfs_transaction_cachep, t);
3882 }
3883
3884 spin_lock(&root->fs_info->trans_lock);
3885 root->fs_info->trans_no_join = 0;
3886 spin_unlock(&root->fs_info->trans_lock);
3887 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3888
3889 return 0;
3890 }
3891
3892 static struct extent_io_ops btree_extent_io_ops = {
3893 .readpage_end_io_hook = btree_readpage_end_io_hook,
3894 .readpage_io_failed_hook = btree_io_failed_hook,
3895 .submit_bio_hook = btree_submit_bio_hook,
3896 /* note we're sharing with inode.c for the merge bio hook */
3897 .merge_bio_hook = btrfs_merge_bio_hook,
3898 };