]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Merge branch 'for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
68 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
70 struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
73 struct extent_io_tree *dirty_pages,
74 int mark);
75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
76 struct extent_io_tree *pinned_extents);
77 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
78 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
79
80 /*
81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
82 * is complete. This is used during reads to verify checksums, and it is used
83 * by writes to insert metadata for new file extents after IO is complete.
84 */
85 struct btrfs_end_io_wq {
86 struct bio *bio;
87 bio_end_io_t *end_io;
88 void *private;
89 struct btrfs_fs_info *info;
90 int error;
91 enum btrfs_wq_endio_type metadata;
92 struct list_head list;
93 struct btrfs_work work;
94 };
95
96 static struct kmem_cache *btrfs_end_io_wq_cache;
97
98 int __init btrfs_end_io_wq_init(void)
99 {
100 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
101 sizeof(struct btrfs_end_io_wq),
102 0,
103 SLAB_MEM_SPREAD,
104 NULL);
105 if (!btrfs_end_io_wq_cache)
106 return -ENOMEM;
107 return 0;
108 }
109
110 void btrfs_end_io_wq_exit(void)
111 {
112 kmem_cache_destroy(btrfs_end_io_wq_cache);
113 }
114
115 /*
116 * async submit bios are used to offload expensive checksumming
117 * onto the worker threads. They checksum file and metadata bios
118 * just before they are sent down the IO stack.
119 */
120 struct async_submit_bio {
121 struct inode *inode;
122 struct bio *bio;
123 struct list_head list;
124 extent_submit_bio_hook_t *submit_bio_start;
125 extent_submit_bio_hook_t *submit_bio_done;
126 int mirror_num;
127 unsigned long bio_flags;
128 /*
129 * bio_offset is optional, can be used if the pages in the bio
130 * can't tell us where in the file the bio should go
131 */
132 u64 bio_offset;
133 struct btrfs_work work;
134 int error;
135 };
136
137 /*
138 * Lockdep class keys for extent_buffer->lock's in this root. For a given
139 * eb, the lockdep key is determined by the btrfs_root it belongs to and
140 * the level the eb occupies in the tree.
141 *
142 * Different roots are used for different purposes and may nest inside each
143 * other and they require separate keysets. As lockdep keys should be
144 * static, assign keysets according to the purpose of the root as indicated
145 * by btrfs_root->objectid. This ensures that all special purpose roots
146 * have separate keysets.
147 *
148 * Lock-nesting across peer nodes is always done with the immediate parent
149 * node locked thus preventing deadlock. As lockdep doesn't know this, use
150 * subclass to avoid triggering lockdep warning in such cases.
151 *
152 * The key is set by the readpage_end_io_hook after the buffer has passed
153 * csum validation but before the pages are unlocked. It is also set by
154 * btrfs_init_new_buffer on freshly allocated blocks.
155 *
156 * We also add a check to make sure the highest level of the tree is the
157 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
158 * needs update as well.
159 */
160 #ifdef CONFIG_DEBUG_LOCK_ALLOC
161 # if BTRFS_MAX_LEVEL != 8
162 # error
163 # endif
164
165 static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
167 const char *name_stem; /* lock name stem */
168 char names[BTRFS_MAX_LEVEL + 1][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
170 } btrfs_lockdep_keysets[] = {
171 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
174 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
175 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
176 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
177 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
178 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
179 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
180 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
181 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
182 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
183 { .id = 0, .name_stem = "tree" },
184 };
185
186 void __init btrfs_init_lockdep(void)
187 {
188 int i, j;
189
190 /* initialize lockdep class names */
191 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
192 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
193
194 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
195 snprintf(ks->names[j], sizeof(ks->names[j]),
196 "btrfs-%s-%02d", ks->name_stem, j);
197 }
198 }
199
200 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
201 int level)
202 {
203 struct btrfs_lockdep_keyset *ks;
204
205 BUG_ON(level >= ARRAY_SIZE(ks->keys));
206
207 /* find the matching keyset, id 0 is the default entry */
208 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
209 if (ks->id == objectid)
210 break;
211
212 lockdep_set_class_and_name(&eb->lock,
213 &ks->keys[level], ks->names[level]);
214 }
215
216 #endif
217
218 /*
219 * extents on the btree inode are pretty simple, there's one extent
220 * that covers the entire device
221 */
222 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
223 struct page *page, size_t pg_offset, u64 start, u64 len,
224 int create)
225 {
226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
227 struct extent_map_tree *em_tree = &inode->extent_tree;
228 struct extent_map *em;
229 int ret;
230
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev = fs_info->fs_devices->latest_bdev;
235 read_unlock(&em_tree->lock);
236 goto out;
237 }
238 read_unlock(&em_tree->lock);
239
240 em = alloc_extent_map();
241 if (!em) {
242 em = ERR_PTR(-ENOMEM);
243 goto out;
244 }
245 em->start = 0;
246 em->len = (u64)-1;
247 em->block_len = (u64)-1;
248 em->block_start = 0;
249 em->bdev = fs_info->fs_devices->latest_bdev;
250
251 write_lock(&em_tree->lock);
252 ret = add_extent_mapping(em_tree, em, 0);
253 if (ret == -EEXIST) {
254 free_extent_map(em);
255 em = lookup_extent_mapping(em_tree, start, len);
256 if (!em)
257 em = ERR_PTR(-EIO);
258 } else if (ret) {
259 free_extent_map(em);
260 em = ERR_PTR(ret);
261 }
262 write_unlock(&em_tree->lock);
263
264 out:
265 return em;
266 }
267
268 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
269 {
270 return btrfs_crc32c(seed, data, len);
271 }
272
273 void btrfs_csum_final(u32 crc, u8 *result)
274 {
275 put_unaligned_le32(~crc, result);
276 }
277
278 /*
279 * compute the csum for a btree block, and either verify it or write it
280 * into the csum field of the block.
281 */
282 static int csum_tree_block(struct btrfs_fs_info *fs_info,
283 struct extent_buffer *buf,
284 int verify)
285 {
286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
287 char *result = NULL;
288 unsigned long len;
289 unsigned long cur_len;
290 unsigned long offset = BTRFS_CSUM_SIZE;
291 char *kaddr;
292 unsigned long map_start;
293 unsigned long map_len;
294 int err;
295 u32 crc = ~(u32)0;
296 unsigned long inline_result;
297
298 len = buf->len - offset;
299 while (len > 0) {
300 err = map_private_extent_buffer(buf, offset, 32,
301 &kaddr, &map_start, &map_len);
302 if (err)
303 return err;
304 cur_len = min(len, map_len - (offset - map_start));
305 crc = btrfs_csum_data(kaddr + offset - map_start,
306 crc, cur_len);
307 len -= cur_len;
308 offset += cur_len;
309 }
310 if (csum_size > sizeof(inline_result)) {
311 result = kzalloc(csum_size, GFP_NOFS);
312 if (!result)
313 return -ENOMEM;
314 } else {
315 result = (char *)&inline_result;
316 }
317
318 btrfs_csum_final(crc, result);
319
320 if (verify) {
321 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
322 u32 val;
323 u32 found = 0;
324 memcpy(&found, result, csum_size);
325
326 read_extent_buffer(buf, &val, 0, csum_size);
327 btrfs_warn_rl(fs_info,
328 "%s checksum verify failed on %llu wanted %X found %X level %d",
329 fs_info->sb->s_id, buf->start,
330 val, found, btrfs_header_level(buf));
331 if (result != (char *)&inline_result)
332 kfree(result);
333 return -EUCLEAN;
334 }
335 } else {
336 write_extent_buffer(buf, result, 0, csum_size);
337 }
338 if (result != (char *)&inline_result)
339 kfree(result);
340 return 0;
341 }
342
343 /*
344 * we can't consider a given block up to date unless the transid of the
345 * block matches the transid in the parent node's pointer. This is how we
346 * detect blocks that either didn't get written at all or got written
347 * in the wrong place.
348 */
349 static int verify_parent_transid(struct extent_io_tree *io_tree,
350 struct extent_buffer *eb, u64 parent_transid,
351 int atomic)
352 {
353 struct extent_state *cached_state = NULL;
354 int ret;
355 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
356
357 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
358 return 0;
359
360 if (atomic)
361 return -EAGAIN;
362
363 if (need_lock) {
364 btrfs_tree_read_lock(eb);
365 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
366 }
367
368 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
369 &cached_state);
370 if (extent_buffer_uptodate(eb) &&
371 btrfs_header_generation(eb) == parent_transid) {
372 ret = 0;
373 goto out;
374 }
375 btrfs_err_rl(eb->fs_info,
376 "parent transid verify failed on %llu wanted %llu found %llu",
377 eb->start,
378 parent_transid, btrfs_header_generation(eb));
379 ret = 1;
380
381 /*
382 * Things reading via commit roots that don't have normal protection,
383 * like send, can have a really old block in cache that may point at a
384 * block that has been freed and re-allocated. So don't clear uptodate
385 * if we find an eb that is under IO (dirty/writeback) because we could
386 * end up reading in the stale data and then writing it back out and
387 * making everybody very sad.
388 */
389 if (!extent_buffer_under_io(eb))
390 clear_extent_buffer_uptodate(eb);
391 out:
392 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
393 &cached_state, GFP_NOFS);
394 if (need_lock)
395 btrfs_tree_read_unlock_blocking(eb);
396 return ret;
397 }
398
399 /*
400 * Return 0 if the superblock checksum type matches the checksum value of that
401 * algorithm. Pass the raw disk superblock data.
402 */
403 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
404 char *raw_disk_sb)
405 {
406 struct btrfs_super_block *disk_sb =
407 (struct btrfs_super_block *)raw_disk_sb;
408 u16 csum_type = btrfs_super_csum_type(disk_sb);
409 int ret = 0;
410
411 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
412 u32 crc = ~(u32)0;
413 const int csum_size = sizeof(crc);
414 char result[csum_size];
415
416 /*
417 * The super_block structure does not span the whole
418 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
419 * is filled with zeros and is included in the checksum.
420 */
421 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
422 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
423 btrfs_csum_final(crc, result);
424
425 if (memcmp(raw_disk_sb, result, csum_size))
426 ret = 1;
427 }
428
429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
430 btrfs_err(fs_info, "unsupported checksum algorithm %u",
431 csum_type);
432 ret = 1;
433 }
434
435 return ret;
436 }
437
438 /*
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
441 */
442 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
443 struct extent_buffer *eb,
444 u64 parent_transid)
445 {
446 struct extent_io_tree *io_tree;
447 int failed = 0;
448 int ret;
449 int num_copies = 0;
450 int mirror_num = 0;
451 int failed_mirror = 0;
452
453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 while (1) {
456 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
457 btree_get_extent, mirror_num);
458 if (!ret) {
459 if (!verify_parent_transid(io_tree, eb,
460 parent_transid, 0))
461 break;
462 else
463 ret = -EIO;
464 }
465
466 /*
467 * This buffer's crc is fine, but its contents are corrupted, so
468 * there is no reason to read the other copies, they won't be
469 * any less wrong.
470 */
471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
472 break;
473
474 num_copies = btrfs_num_copies(fs_info,
475 eb->start, eb->len);
476 if (num_copies == 1)
477 break;
478
479 if (!failed_mirror) {
480 failed = 1;
481 failed_mirror = eb->read_mirror;
482 }
483
484 mirror_num++;
485 if (mirror_num == failed_mirror)
486 mirror_num++;
487
488 if (mirror_num > num_copies)
489 break;
490 }
491
492 if (failed && !ret && failed_mirror)
493 repair_eb_io_failure(fs_info, eb, failed_mirror);
494
495 return ret;
496 }
497
498 /*
499 * checksum a dirty tree block before IO. This has extra checks to make sure
500 * we only fill in the checksum field in the first page of a multi-page block
501 */
502
503 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
504 {
505 u64 start = page_offset(page);
506 u64 found_start;
507 struct extent_buffer *eb;
508
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
512
513 found_start = btrfs_header_bytenr(eb);
514 /*
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
517 */
518 if (WARN_ON(found_start != start))
519 return -EUCLEAN;
520 if (WARN_ON(!PageUptodate(page)))
521 return -EUCLEAN;
522
523 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
524 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
525
526 return csum_tree_block(fs_info, eb, 0);
527 }
528
529 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
530 struct extent_buffer *eb)
531 {
532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
533 u8 fsid[BTRFS_UUID_SIZE];
534 int ret = 1;
535
536 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
537 while (fs_devices) {
538 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
539 ret = 0;
540 break;
541 }
542 fs_devices = fs_devices->seed;
543 }
544 return ret;
545 }
546
547 #define CORRUPT(reason, eb, root, slot) \
548 btrfs_crit(root->fs_info, \
549 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
550 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
551 reason, btrfs_header_bytenr(eb), root->objectid, slot)
552
553 static noinline int check_leaf(struct btrfs_root *root,
554 struct extent_buffer *leaf)
555 {
556 struct btrfs_fs_info *fs_info = root->fs_info;
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
562 /*
563 * Extent buffers from a relocation tree have a owner field that
564 * corresponds to the subvolume tree they are based on. So just from an
565 * extent buffer alone we can not find out what is the id of the
566 * corresponding subvolume tree, so we can not figure out if the extent
567 * buffer corresponds to the root of the relocation tree or not. So skip
568 * this check for relocation trees.
569 */
570 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
571 struct btrfs_root *check_root;
572
573 key.objectid = btrfs_header_owner(leaf);
574 key.type = BTRFS_ROOT_ITEM_KEY;
575 key.offset = (u64)-1;
576
577 check_root = btrfs_get_fs_root(fs_info, &key, false);
578 /*
579 * The only reason we also check NULL here is that during
580 * open_ctree() some roots has not yet been set up.
581 */
582 if (!IS_ERR_OR_NULL(check_root)) {
583 struct extent_buffer *eb;
584
585 eb = btrfs_root_node(check_root);
586 /* if leaf is the root, then it's fine */
587 if (leaf != eb) {
588 CORRUPT("non-root leaf's nritems is 0",
589 leaf, check_root, 0);
590 free_extent_buffer(eb);
591 return -EIO;
592 }
593 free_extent_buffer(eb);
594 }
595 return 0;
596 }
597
598 if (nritems == 0)
599 return 0;
600
601 /* Check the 0 item */
602 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
603 BTRFS_LEAF_DATA_SIZE(fs_info)) {
604 CORRUPT("invalid item offset size pair", leaf, root, 0);
605 return -EIO;
606 }
607
608 /*
609 * Check to make sure each items keys are in the correct order and their
610 * offsets make sense. We only have to loop through nritems-1 because
611 * we check the current slot against the next slot, which verifies the
612 * next slot's offset+size makes sense and that the current's slot
613 * offset is correct.
614 */
615 for (slot = 0; slot < nritems - 1; slot++) {
616 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
617 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
618
619 /* Make sure the keys are in the right order */
620 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
621 CORRUPT("bad key order", leaf, root, slot);
622 return -EIO;
623 }
624
625 /*
626 * Make sure the offset and ends are right, remember that the
627 * item data starts at the end of the leaf and grows towards the
628 * front.
629 */
630 if (btrfs_item_offset_nr(leaf, slot) !=
631 btrfs_item_end_nr(leaf, slot + 1)) {
632 CORRUPT("slot offset bad", leaf, root, slot);
633 return -EIO;
634 }
635
636 /*
637 * Check to make sure that we don't point outside of the leaf,
638 * just in case all the items are consistent to each other, but
639 * all point outside of the leaf.
640 */
641 if (btrfs_item_end_nr(leaf, slot) >
642 BTRFS_LEAF_DATA_SIZE(fs_info)) {
643 CORRUPT("slot end outside of leaf", leaf, root, slot);
644 return -EIO;
645 }
646 }
647
648 return 0;
649 }
650
651 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
652 {
653 unsigned long nr = btrfs_header_nritems(node);
654 struct btrfs_key key, next_key;
655 int slot;
656 u64 bytenr;
657 int ret = 0;
658
659 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
660 btrfs_crit(root->fs_info,
661 "corrupt node: block %llu root %llu nritems %lu",
662 node->start, root->objectid, nr);
663 return -EIO;
664 }
665
666 for (slot = 0; slot < nr - 1; slot++) {
667 bytenr = btrfs_node_blockptr(node, slot);
668 btrfs_node_key_to_cpu(node, &key, slot);
669 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
670
671 if (!bytenr) {
672 CORRUPT("invalid item slot", node, root, slot);
673 ret = -EIO;
674 goto out;
675 }
676
677 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
678 CORRUPT("bad key order", node, root, slot);
679 ret = -EIO;
680 goto out;
681 }
682 }
683 out:
684 return ret;
685 }
686
687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
688 u64 phy_offset, struct page *page,
689 u64 start, u64 end, int mirror)
690 {
691 u64 found_start;
692 int found_level;
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695 struct btrfs_fs_info *fs_info = root->fs_info;
696 int ret = 0;
697 int reads_done;
698
699 if (!page->private)
700 goto out;
701
702 eb = (struct extent_buffer *)page->private;
703
704 /* the pending IO might have been the only thing that kept this buffer
705 * in memory. Make sure we have a ref for all this other checks
706 */
707 extent_buffer_get(eb);
708
709 reads_done = atomic_dec_and_test(&eb->io_pages);
710 if (!reads_done)
711 goto err;
712
713 eb->read_mirror = mirror;
714 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
715 ret = -EIO;
716 goto err;
717 }
718
719 found_start = btrfs_header_bytenr(eb);
720 if (found_start != eb->start) {
721 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
722 found_start, eb->start);
723 ret = -EIO;
724 goto err;
725 }
726 if (check_tree_block_fsid(fs_info, eb)) {
727 btrfs_err_rl(fs_info, "bad fsid on block %llu",
728 eb->start);
729 ret = -EIO;
730 goto err;
731 }
732 found_level = btrfs_header_level(eb);
733 if (found_level >= BTRFS_MAX_LEVEL) {
734 btrfs_err(fs_info, "bad tree block level %d",
735 (int)btrfs_header_level(eb));
736 ret = -EIO;
737 goto err;
738 }
739
740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
741 eb, found_level);
742
743 ret = csum_tree_block(fs_info, eb, 1);
744 if (ret)
745 goto err;
746
747 /*
748 * If this is a leaf block and it is corrupt, set the corrupt bit so
749 * that we don't try and read the other copies of this block, just
750 * return -EIO.
751 */
752 if (found_level == 0 && check_leaf(root, eb)) {
753 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
754 ret = -EIO;
755 }
756
757 if (found_level > 0 && check_node(root, eb))
758 ret = -EIO;
759
760 if (!ret)
761 set_extent_buffer_uptodate(eb);
762 err:
763 if (reads_done &&
764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
765 btree_readahead_hook(fs_info, eb, ret);
766
767 if (ret) {
768 /*
769 * our io error hook is going to dec the io pages
770 * again, we have to make sure it has something
771 * to decrement
772 */
773 atomic_inc(&eb->io_pages);
774 clear_extent_buffer_uptodate(eb);
775 }
776 free_extent_buffer(eb);
777 out:
778 return ret;
779 }
780
781 static int btree_io_failed_hook(struct page *page, int failed_mirror)
782 {
783 struct extent_buffer *eb;
784
785 eb = (struct extent_buffer *)page->private;
786 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
787 eb->read_mirror = failed_mirror;
788 atomic_dec(&eb->io_pages);
789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
790 btree_readahead_hook(eb->fs_info, eb, -EIO);
791 return -EIO; /* we fixed nothing */
792 }
793
794 static void end_workqueue_bio(struct bio *bio)
795 {
796 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
797 struct btrfs_fs_info *fs_info;
798 struct btrfs_workqueue *wq;
799 btrfs_work_func_t func;
800
801 fs_info = end_io_wq->info;
802 end_io_wq->error = bio->bi_error;
803
804 if (bio_op(bio) == REQ_OP_WRITE) {
805 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
806 wq = fs_info->endio_meta_write_workers;
807 func = btrfs_endio_meta_write_helper;
808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
809 wq = fs_info->endio_freespace_worker;
810 func = btrfs_freespace_write_helper;
811 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
812 wq = fs_info->endio_raid56_workers;
813 func = btrfs_endio_raid56_helper;
814 } else {
815 wq = fs_info->endio_write_workers;
816 func = btrfs_endio_write_helper;
817 }
818 } else {
819 if (unlikely(end_io_wq->metadata ==
820 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
821 wq = fs_info->endio_repair_workers;
822 func = btrfs_endio_repair_helper;
823 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
824 wq = fs_info->endio_raid56_workers;
825 func = btrfs_endio_raid56_helper;
826 } else if (end_io_wq->metadata) {
827 wq = fs_info->endio_meta_workers;
828 func = btrfs_endio_meta_helper;
829 } else {
830 wq = fs_info->endio_workers;
831 func = btrfs_endio_helper;
832 }
833 }
834
835 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
836 btrfs_queue_work(wq, &end_io_wq->work);
837 }
838
839 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
840 enum btrfs_wq_endio_type metadata)
841 {
842 struct btrfs_end_io_wq *end_io_wq;
843
844 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
845 if (!end_io_wq)
846 return -ENOMEM;
847
848 end_io_wq->private = bio->bi_private;
849 end_io_wq->end_io = bio->bi_end_io;
850 end_io_wq->info = info;
851 end_io_wq->error = 0;
852 end_io_wq->bio = bio;
853 end_io_wq->metadata = metadata;
854
855 bio->bi_private = end_io_wq;
856 bio->bi_end_io = end_workqueue_bio;
857 return 0;
858 }
859
860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
861 {
862 unsigned long limit = min_t(unsigned long,
863 info->thread_pool_size,
864 info->fs_devices->open_devices);
865 return 256 * limit;
866 }
867
868 static void run_one_async_start(struct btrfs_work *work)
869 {
870 struct async_submit_bio *async;
871 int ret;
872
873 async = container_of(work, struct async_submit_bio, work);
874 ret = async->submit_bio_start(async->inode, async->bio,
875 async->mirror_num, async->bio_flags,
876 async->bio_offset);
877 if (ret)
878 async->error = ret;
879 }
880
881 static void run_one_async_done(struct btrfs_work *work)
882 {
883 struct btrfs_fs_info *fs_info;
884 struct async_submit_bio *async;
885 int limit;
886
887 async = container_of(work, struct async_submit_bio, work);
888 fs_info = BTRFS_I(async->inode)->root->fs_info;
889
890 limit = btrfs_async_submit_limit(fs_info);
891 limit = limit * 2 / 3;
892
893 /*
894 * atomic_dec_return implies a barrier for waitqueue_active
895 */
896 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
897 waitqueue_active(&fs_info->async_submit_wait))
898 wake_up(&fs_info->async_submit_wait);
899
900 /* If an error occurred we just want to clean up the bio and move on */
901 if (async->error) {
902 async->bio->bi_error = async->error;
903 bio_endio(async->bio);
904 return;
905 }
906
907 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
908 async->bio_flags, async->bio_offset);
909 }
910
911 static void run_one_async_free(struct btrfs_work *work)
912 {
913 struct async_submit_bio *async;
914
915 async = container_of(work, struct async_submit_bio, work);
916 kfree(async);
917 }
918
919 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
920 struct bio *bio, int mirror_num,
921 unsigned long bio_flags,
922 u64 bio_offset,
923 extent_submit_bio_hook_t *submit_bio_start,
924 extent_submit_bio_hook_t *submit_bio_done)
925 {
926 struct async_submit_bio *async;
927
928 async = kmalloc(sizeof(*async), GFP_NOFS);
929 if (!async)
930 return -ENOMEM;
931
932 async->inode = inode;
933 async->bio = bio;
934 async->mirror_num = mirror_num;
935 async->submit_bio_start = submit_bio_start;
936 async->submit_bio_done = submit_bio_done;
937
938 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
939 run_one_async_done, run_one_async_free);
940
941 async->bio_flags = bio_flags;
942 async->bio_offset = bio_offset;
943
944 async->error = 0;
945
946 atomic_inc(&fs_info->nr_async_submits);
947
948 if (op_is_sync(bio->bi_opf))
949 btrfs_set_work_high_priority(&async->work);
950
951 btrfs_queue_work(fs_info->workers, &async->work);
952
953 while (atomic_read(&fs_info->async_submit_draining) &&
954 atomic_read(&fs_info->nr_async_submits)) {
955 wait_event(fs_info->async_submit_wait,
956 (atomic_read(&fs_info->nr_async_submits) == 0));
957 }
958
959 return 0;
960 }
961
962 static int btree_csum_one_bio(struct bio *bio)
963 {
964 struct bio_vec *bvec;
965 struct btrfs_root *root;
966 int i, ret = 0;
967
968 bio_for_each_segment_all(bvec, bio, i) {
969 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
970 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
971 if (ret)
972 break;
973 }
974
975 return ret;
976 }
977
978 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
979 int mirror_num, unsigned long bio_flags,
980 u64 bio_offset)
981 {
982 /*
983 * when we're called for a write, we're already in the async
984 * submission context. Just jump into btrfs_map_bio
985 */
986 return btree_csum_one_bio(bio);
987 }
988
989 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
990 int mirror_num, unsigned long bio_flags,
991 u64 bio_offset)
992 {
993 int ret;
994
995 /*
996 * when we're called for a write, we're already in the async
997 * submission context. Just jump into btrfs_map_bio
998 */
999 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1000 if (ret) {
1001 bio->bi_error = ret;
1002 bio_endio(bio);
1003 }
1004 return ret;
1005 }
1006
1007 static int check_async_write(unsigned long bio_flags)
1008 {
1009 if (bio_flags & EXTENT_BIO_TREE_LOG)
1010 return 0;
1011 #ifdef CONFIG_X86
1012 if (static_cpu_has(X86_FEATURE_XMM4_2))
1013 return 0;
1014 #endif
1015 return 1;
1016 }
1017
1018 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1019 int mirror_num, unsigned long bio_flags,
1020 u64 bio_offset)
1021 {
1022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1023 int async = check_async_write(bio_flags);
1024 int ret;
1025
1026 if (bio_op(bio) != REQ_OP_WRITE) {
1027 /*
1028 * called for a read, do the setup so that checksum validation
1029 * can happen in the async kernel threads
1030 */
1031 ret = btrfs_bio_wq_end_io(fs_info, bio,
1032 BTRFS_WQ_ENDIO_METADATA);
1033 if (ret)
1034 goto out_w_error;
1035 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1036 } else if (!async) {
1037 ret = btree_csum_one_bio(bio);
1038 if (ret)
1039 goto out_w_error;
1040 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1041 } else {
1042 /*
1043 * kthread helpers are used to submit writes so that
1044 * checksumming can happen in parallel across all CPUs
1045 */
1046 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1047 bio_offset,
1048 __btree_submit_bio_start,
1049 __btree_submit_bio_done);
1050 }
1051
1052 if (ret)
1053 goto out_w_error;
1054 return 0;
1055
1056 out_w_error:
1057 bio->bi_error = ret;
1058 bio_endio(bio);
1059 return ret;
1060 }
1061
1062 #ifdef CONFIG_MIGRATION
1063 static int btree_migratepage(struct address_space *mapping,
1064 struct page *newpage, struct page *page,
1065 enum migrate_mode mode)
1066 {
1067 /*
1068 * we can't safely write a btree page from here,
1069 * we haven't done the locking hook
1070 */
1071 if (PageDirty(page))
1072 return -EAGAIN;
1073 /*
1074 * Buffers may be managed in a filesystem specific way.
1075 * We must have no buffers or drop them.
1076 */
1077 if (page_has_private(page) &&
1078 !try_to_release_page(page, GFP_KERNEL))
1079 return -EAGAIN;
1080 return migrate_page(mapping, newpage, page, mode);
1081 }
1082 #endif
1083
1084
1085 static int btree_writepages(struct address_space *mapping,
1086 struct writeback_control *wbc)
1087 {
1088 struct btrfs_fs_info *fs_info;
1089 int ret;
1090
1091 if (wbc->sync_mode == WB_SYNC_NONE) {
1092
1093 if (wbc->for_kupdate)
1094 return 0;
1095
1096 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1097 /* this is a bit racy, but that's ok */
1098 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1099 BTRFS_DIRTY_METADATA_THRESH);
1100 if (ret < 0)
1101 return 0;
1102 }
1103 return btree_write_cache_pages(mapping, wbc);
1104 }
1105
1106 static int btree_readpage(struct file *file, struct page *page)
1107 {
1108 struct extent_io_tree *tree;
1109 tree = &BTRFS_I(page->mapping->host)->io_tree;
1110 return extent_read_full_page(tree, page, btree_get_extent, 0);
1111 }
1112
1113 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1114 {
1115 if (PageWriteback(page) || PageDirty(page))
1116 return 0;
1117
1118 return try_release_extent_buffer(page);
1119 }
1120
1121 static void btree_invalidatepage(struct page *page, unsigned int offset,
1122 unsigned int length)
1123 {
1124 struct extent_io_tree *tree;
1125 tree = &BTRFS_I(page->mapping->host)->io_tree;
1126 extent_invalidatepage(tree, page, offset);
1127 btree_releasepage(page, GFP_NOFS);
1128 if (PagePrivate(page)) {
1129 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1130 "page private not zero on page %llu",
1131 (unsigned long long)page_offset(page));
1132 ClearPagePrivate(page);
1133 set_page_private(page, 0);
1134 put_page(page);
1135 }
1136 }
1137
1138 static int btree_set_page_dirty(struct page *page)
1139 {
1140 #ifdef DEBUG
1141 struct extent_buffer *eb;
1142
1143 BUG_ON(!PagePrivate(page));
1144 eb = (struct extent_buffer *)page->private;
1145 BUG_ON(!eb);
1146 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1147 BUG_ON(!atomic_read(&eb->refs));
1148 btrfs_assert_tree_locked(eb);
1149 #endif
1150 return __set_page_dirty_nobuffers(page);
1151 }
1152
1153 static const struct address_space_operations btree_aops = {
1154 .readpage = btree_readpage,
1155 .writepages = btree_writepages,
1156 .releasepage = btree_releasepage,
1157 .invalidatepage = btree_invalidatepage,
1158 #ifdef CONFIG_MIGRATION
1159 .migratepage = btree_migratepage,
1160 #endif
1161 .set_page_dirty = btree_set_page_dirty,
1162 };
1163
1164 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1165 {
1166 struct extent_buffer *buf = NULL;
1167 struct inode *btree_inode = fs_info->btree_inode;
1168
1169 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1170 if (IS_ERR(buf))
1171 return;
1172 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1173 buf, WAIT_NONE, btree_get_extent, 0);
1174 free_extent_buffer(buf);
1175 }
1176
1177 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1178 int mirror_num, struct extent_buffer **eb)
1179 {
1180 struct extent_buffer *buf = NULL;
1181 struct inode *btree_inode = fs_info->btree_inode;
1182 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1183 int ret;
1184
1185 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1186 if (IS_ERR(buf))
1187 return 0;
1188
1189 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1190
1191 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1192 btree_get_extent, mirror_num);
1193 if (ret) {
1194 free_extent_buffer(buf);
1195 return ret;
1196 }
1197
1198 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1199 free_extent_buffer(buf);
1200 return -EIO;
1201 } else if (extent_buffer_uptodate(buf)) {
1202 *eb = buf;
1203 } else {
1204 free_extent_buffer(buf);
1205 }
1206 return 0;
1207 }
1208
1209 struct extent_buffer *btrfs_find_create_tree_block(
1210 struct btrfs_fs_info *fs_info,
1211 u64 bytenr)
1212 {
1213 if (btrfs_is_testing(fs_info))
1214 return alloc_test_extent_buffer(fs_info, bytenr);
1215 return alloc_extent_buffer(fs_info, bytenr);
1216 }
1217
1218
1219 int btrfs_write_tree_block(struct extent_buffer *buf)
1220 {
1221 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1222 buf->start + buf->len - 1);
1223 }
1224
1225 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1226 {
1227 return filemap_fdatawait_range(buf->pages[0]->mapping,
1228 buf->start, buf->start + buf->len - 1);
1229 }
1230
1231 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1232 u64 parent_transid)
1233 {
1234 struct extent_buffer *buf = NULL;
1235 int ret;
1236
1237 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1238 if (IS_ERR(buf))
1239 return buf;
1240
1241 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1242 if (ret) {
1243 free_extent_buffer(buf);
1244 return ERR_PTR(ret);
1245 }
1246 return buf;
1247
1248 }
1249
1250 void clean_tree_block(struct btrfs_fs_info *fs_info,
1251 struct extent_buffer *buf)
1252 {
1253 if (btrfs_header_generation(buf) ==
1254 fs_info->running_transaction->transid) {
1255 btrfs_assert_tree_locked(buf);
1256
1257 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1258 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1259 -buf->len,
1260 fs_info->dirty_metadata_batch);
1261 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1262 btrfs_set_lock_blocking(buf);
1263 clear_extent_buffer_dirty(buf);
1264 }
1265 }
1266 }
1267
1268 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1269 {
1270 struct btrfs_subvolume_writers *writers;
1271 int ret;
1272
1273 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1274 if (!writers)
1275 return ERR_PTR(-ENOMEM);
1276
1277 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1278 if (ret < 0) {
1279 kfree(writers);
1280 return ERR_PTR(ret);
1281 }
1282
1283 init_waitqueue_head(&writers->wait);
1284 return writers;
1285 }
1286
1287 static void
1288 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1289 {
1290 percpu_counter_destroy(&writers->counter);
1291 kfree(writers);
1292 }
1293
1294 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1295 u64 objectid)
1296 {
1297 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1298 root->node = NULL;
1299 root->commit_root = NULL;
1300 root->state = 0;
1301 root->orphan_cleanup_state = 0;
1302
1303 root->objectid = objectid;
1304 root->last_trans = 0;
1305 root->highest_objectid = 0;
1306 root->nr_delalloc_inodes = 0;
1307 root->nr_ordered_extents = 0;
1308 root->name = NULL;
1309 root->inode_tree = RB_ROOT;
1310 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1311 root->block_rsv = NULL;
1312 root->orphan_block_rsv = NULL;
1313
1314 INIT_LIST_HEAD(&root->dirty_list);
1315 INIT_LIST_HEAD(&root->root_list);
1316 INIT_LIST_HEAD(&root->delalloc_inodes);
1317 INIT_LIST_HEAD(&root->delalloc_root);
1318 INIT_LIST_HEAD(&root->ordered_extents);
1319 INIT_LIST_HEAD(&root->ordered_root);
1320 INIT_LIST_HEAD(&root->logged_list[0]);
1321 INIT_LIST_HEAD(&root->logged_list[1]);
1322 spin_lock_init(&root->orphan_lock);
1323 spin_lock_init(&root->inode_lock);
1324 spin_lock_init(&root->delalloc_lock);
1325 spin_lock_init(&root->ordered_extent_lock);
1326 spin_lock_init(&root->accounting_lock);
1327 spin_lock_init(&root->log_extents_lock[0]);
1328 spin_lock_init(&root->log_extents_lock[1]);
1329 mutex_init(&root->objectid_mutex);
1330 mutex_init(&root->log_mutex);
1331 mutex_init(&root->ordered_extent_mutex);
1332 mutex_init(&root->delalloc_mutex);
1333 init_waitqueue_head(&root->log_writer_wait);
1334 init_waitqueue_head(&root->log_commit_wait[0]);
1335 init_waitqueue_head(&root->log_commit_wait[1]);
1336 INIT_LIST_HEAD(&root->log_ctxs[0]);
1337 INIT_LIST_HEAD(&root->log_ctxs[1]);
1338 atomic_set(&root->log_commit[0], 0);
1339 atomic_set(&root->log_commit[1], 0);
1340 atomic_set(&root->log_writers, 0);
1341 atomic_set(&root->log_batch, 0);
1342 atomic_set(&root->orphan_inodes, 0);
1343 atomic_set(&root->refs, 1);
1344 atomic_set(&root->will_be_snapshoted, 0);
1345 atomic_set(&root->qgroup_meta_rsv, 0);
1346 root->log_transid = 0;
1347 root->log_transid_committed = -1;
1348 root->last_log_commit = 0;
1349 if (!dummy)
1350 extent_io_tree_init(&root->dirty_log_pages,
1351 fs_info->btree_inode->i_mapping);
1352
1353 memset(&root->root_key, 0, sizeof(root->root_key));
1354 memset(&root->root_item, 0, sizeof(root->root_item));
1355 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1356 if (!dummy)
1357 root->defrag_trans_start = fs_info->generation;
1358 else
1359 root->defrag_trans_start = 0;
1360 root->root_key.objectid = objectid;
1361 root->anon_dev = 0;
1362
1363 spin_lock_init(&root->root_item_lock);
1364 }
1365
1366 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1367 gfp_t flags)
1368 {
1369 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1370 if (root)
1371 root->fs_info = fs_info;
1372 return root;
1373 }
1374
1375 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1376 /* Should only be used by the testing infrastructure */
1377 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1378 {
1379 struct btrfs_root *root;
1380
1381 if (!fs_info)
1382 return ERR_PTR(-EINVAL);
1383
1384 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1385 if (!root)
1386 return ERR_PTR(-ENOMEM);
1387
1388 /* We don't use the stripesize in selftest, set it as sectorsize */
1389 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1390 root->alloc_bytenr = 0;
1391
1392 return root;
1393 }
1394 #endif
1395
1396 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info,
1398 u64 objectid)
1399 {
1400 struct extent_buffer *leaf;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
1402 struct btrfs_root *root;
1403 struct btrfs_key key;
1404 int ret = 0;
1405 uuid_le uuid;
1406
1407 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
1411 __setup_root(root, fs_info, objectid);
1412 root->root_key.objectid = objectid;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = 0;
1415
1416 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1417 if (IS_ERR(leaf)) {
1418 ret = PTR_ERR(leaf);
1419 leaf = NULL;
1420 goto fail;
1421 }
1422
1423 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1424 btrfs_set_header_bytenr(leaf, leaf->start);
1425 btrfs_set_header_generation(leaf, trans->transid);
1426 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1427 btrfs_set_header_owner(leaf, objectid);
1428 root->node = leaf;
1429
1430 write_extent_buffer_fsid(leaf, fs_info->fsid);
1431 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1432 btrfs_mark_buffer_dirty(leaf);
1433
1434 root->commit_root = btrfs_root_node(root);
1435 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1436
1437 root->root_item.flags = 0;
1438 root->root_item.byte_limit = 0;
1439 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1440 btrfs_set_root_generation(&root->root_item, trans->transid);
1441 btrfs_set_root_level(&root->root_item, 0);
1442 btrfs_set_root_refs(&root->root_item, 1);
1443 btrfs_set_root_used(&root->root_item, leaf->len);
1444 btrfs_set_root_last_snapshot(&root->root_item, 0);
1445 btrfs_set_root_dirid(&root->root_item, 0);
1446 uuid_le_gen(&uuid);
1447 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1448 root->root_item.drop_level = 0;
1449
1450 key.objectid = objectid;
1451 key.type = BTRFS_ROOT_ITEM_KEY;
1452 key.offset = 0;
1453 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1454 if (ret)
1455 goto fail;
1456
1457 btrfs_tree_unlock(leaf);
1458
1459 return root;
1460
1461 fail:
1462 if (leaf) {
1463 btrfs_tree_unlock(leaf);
1464 free_extent_buffer(root->commit_root);
1465 free_extent_buffer(leaf);
1466 }
1467 kfree(root);
1468
1469 return ERR_PTR(ret);
1470 }
1471
1472 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1473 struct btrfs_fs_info *fs_info)
1474 {
1475 struct btrfs_root *root;
1476 struct extent_buffer *leaf;
1477
1478 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1479 if (!root)
1480 return ERR_PTR(-ENOMEM);
1481
1482 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1483
1484 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1485 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1486 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1487
1488 /*
1489 * DON'T set REF_COWS for log trees
1490 *
1491 * log trees do not get reference counted because they go away
1492 * before a real commit is actually done. They do store pointers
1493 * to file data extents, and those reference counts still get
1494 * updated (along with back refs to the log tree).
1495 */
1496
1497 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1498 NULL, 0, 0, 0);
1499 if (IS_ERR(leaf)) {
1500 kfree(root);
1501 return ERR_CAST(leaf);
1502 }
1503
1504 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1505 btrfs_set_header_bytenr(leaf, leaf->start);
1506 btrfs_set_header_generation(leaf, trans->transid);
1507 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1508 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1509 root->node = leaf;
1510
1511 write_extent_buffer_fsid(root->node, fs_info->fsid);
1512 btrfs_mark_buffer_dirty(root->node);
1513 btrfs_tree_unlock(root->node);
1514 return root;
1515 }
1516
1517 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1518 struct btrfs_fs_info *fs_info)
1519 {
1520 struct btrfs_root *log_root;
1521
1522 log_root = alloc_log_tree(trans, fs_info);
1523 if (IS_ERR(log_root))
1524 return PTR_ERR(log_root);
1525 WARN_ON(fs_info->log_root_tree);
1526 fs_info->log_root_tree = log_root;
1527 return 0;
1528 }
1529
1530 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *root)
1532 {
1533 struct btrfs_fs_info *fs_info = root->fs_info;
1534 struct btrfs_root *log_root;
1535 struct btrfs_inode_item *inode_item;
1536
1537 log_root = alloc_log_tree(trans, fs_info);
1538 if (IS_ERR(log_root))
1539 return PTR_ERR(log_root);
1540
1541 log_root->last_trans = trans->transid;
1542 log_root->root_key.offset = root->root_key.objectid;
1543
1544 inode_item = &log_root->root_item.inode;
1545 btrfs_set_stack_inode_generation(inode_item, 1);
1546 btrfs_set_stack_inode_size(inode_item, 3);
1547 btrfs_set_stack_inode_nlink(inode_item, 1);
1548 btrfs_set_stack_inode_nbytes(inode_item,
1549 fs_info->nodesize);
1550 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1551
1552 btrfs_set_root_node(&log_root->root_item, log_root->node);
1553
1554 WARN_ON(root->log_root);
1555 root->log_root = log_root;
1556 root->log_transid = 0;
1557 root->log_transid_committed = -1;
1558 root->last_log_commit = 0;
1559 return 0;
1560 }
1561
1562 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1563 struct btrfs_key *key)
1564 {
1565 struct btrfs_root *root;
1566 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1567 struct btrfs_path *path;
1568 u64 generation;
1569 int ret;
1570
1571 path = btrfs_alloc_path();
1572 if (!path)
1573 return ERR_PTR(-ENOMEM);
1574
1575 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1576 if (!root) {
1577 ret = -ENOMEM;
1578 goto alloc_fail;
1579 }
1580
1581 __setup_root(root, fs_info, key->objectid);
1582
1583 ret = btrfs_find_root(tree_root, key, path,
1584 &root->root_item, &root->root_key);
1585 if (ret) {
1586 if (ret > 0)
1587 ret = -ENOENT;
1588 goto find_fail;
1589 }
1590
1591 generation = btrfs_root_generation(&root->root_item);
1592 root->node = read_tree_block(fs_info,
1593 btrfs_root_bytenr(&root->root_item),
1594 generation);
1595 if (IS_ERR(root->node)) {
1596 ret = PTR_ERR(root->node);
1597 goto find_fail;
1598 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1599 ret = -EIO;
1600 free_extent_buffer(root->node);
1601 goto find_fail;
1602 }
1603 root->commit_root = btrfs_root_node(root);
1604 out:
1605 btrfs_free_path(path);
1606 return root;
1607
1608 find_fail:
1609 kfree(root);
1610 alloc_fail:
1611 root = ERR_PTR(ret);
1612 goto out;
1613 }
1614
1615 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1616 struct btrfs_key *location)
1617 {
1618 struct btrfs_root *root;
1619
1620 root = btrfs_read_tree_root(tree_root, location);
1621 if (IS_ERR(root))
1622 return root;
1623
1624 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1625 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1626 btrfs_check_and_init_root_item(&root->root_item);
1627 }
1628
1629 return root;
1630 }
1631
1632 int btrfs_init_fs_root(struct btrfs_root *root)
1633 {
1634 int ret;
1635 struct btrfs_subvolume_writers *writers;
1636
1637 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1638 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1639 GFP_NOFS);
1640 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1641 ret = -ENOMEM;
1642 goto fail;
1643 }
1644
1645 writers = btrfs_alloc_subvolume_writers();
1646 if (IS_ERR(writers)) {
1647 ret = PTR_ERR(writers);
1648 goto fail;
1649 }
1650 root->subv_writers = writers;
1651
1652 btrfs_init_free_ino_ctl(root);
1653 spin_lock_init(&root->ino_cache_lock);
1654 init_waitqueue_head(&root->ino_cache_wait);
1655
1656 ret = get_anon_bdev(&root->anon_dev);
1657 if (ret)
1658 goto fail;
1659
1660 mutex_lock(&root->objectid_mutex);
1661 ret = btrfs_find_highest_objectid(root,
1662 &root->highest_objectid);
1663 if (ret) {
1664 mutex_unlock(&root->objectid_mutex);
1665 goto fail;
1666 }
1667
1668 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1669
1670 mutex_unlock(&root->objectid_mutex);
1671
1672 return 0;
1673 fail:
1674 /* the caller is responsible to call free_fs_root */
1675 return ret;
1676 }
1677
1678 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1679 u64 root_id)
1680 {
1681 struct btrfs_root *root;
1682
1683 spin_lock(&fs_info->fs_roots_radix_lock);
1684 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1685 (unsigned long)root_id);
1686 spin_unlock(&fs_info->fs_roots_radix_lock);
1687 return root;
1688 }
1689
1690 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1691 struct btrfs_root *root)
1692 {
1693 int ret;
1694
1695 ret = radix_tree_preload(GFP_NOFS);
1696 if (ret)
1697 return ret;
1698
1699 spin_lock(&fs_info->fs_roots_radix_lock);
1700 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1701 (unsigned long)root->root_key.objectid,
1702 root);
1703 if (ret == 0)
1704 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1705 spin_unlock(&fs_info->fs_roots_radix_lock);
1706 radix_tree_preload_end();
1707
1708 return ret;
1709 }
1710
1711 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1712 struct btrfs_key *location,
1713 bool check_ref)
1714 {
1715 struct btrfs_root *root;
1716 struct btrfs_path *path;
1717 struct btrfs_key key;
1718 int ret;
1719
1720 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1721 return fs_info->tree_root;
1722 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1723 return fs_info->extent_root;
1724 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1725 return fs_info->chunk_root;
1726 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1727 return fs_info->dev_root;
1728 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1729 return fs_info->csum_root;
1730 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1731 return fs_info->quota_root ? fs_info->quota_root :
1732 ERR_PTR(-ENOENT);
1733 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1734 return fs_info->uuid_root ? fs_info->uuid_root :
1735 ERR_PTR(-ENOENT);
1736 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1737 return fs_info->free_space_root ? fs_info->free_space_root :
1738 ERR_PTR(-ENOENT);
1739 again:
1740 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1741 if (root) {
1742 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1743 return ERR_PTR(-ENOENT);
1744 return root;
1745 }
1746
1747 root = btrfs_read_fs_root(fs_info->tree_root, location);
1748 if (IS_ERR(root))
1749 return root;
1750
1751 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1752 ret = -ENOENT;
1753 goto fail;
1754 }
1755
1756 ret = btrfs_init_fs_root(root);
1757 if (ret)
1758 goto fail;
1759
1760 path = btrfs_alloc_path();
1761 if (!path) {
1762 ret = -ENOMEM;
1763 goto fail;
1764 }
1765 key.objectid = BTRFS_ORPHAN_OBJECTID;
1766 key.type = BTRFS_ORPHAN_ITEM_KEY;
1767 key.offset = location->objectid;
1768
1769 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1770 btrfs_free_path(path);
1771 if (ret < 0)
1772 goto fail;
1773 if (ret == 0)
1774 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1775
1776 ret = btrfs_insert_fs_root(fs_info, root);
1777 if (ret) {
1778 if (ret == -EEXIST) {
1779 free_fs_root(root);
1780 goto again;
1781 }
1782 goto fail;
1783 }
1784 return root;
1785 fail:
1786 free_fs_root(root);
1787 return ERR_PTR(ret);
1788 }
1789
1790 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1791 {
1792 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1793 int ret = 0;
1794 struct btrfs_device *device;
1795 struct backing_dev_info *bdi;
1796
1797 rcu_read_lock();
1798 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1799 if (!device->bdev)
1800 continue;
1801 bdi = device->bdev->bd_bdi;
1802 if (bdi_congested(bdi, bdi_bits)) {
1803 ret = 1;
1804 break;
1805 }
1806 }
1807 rcu_read_unlock();
1808 return ret;
1809 }
1810
1811 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1812 {
1813 int err;
1814
1815 err = bdi_setup_and_register(bdi, "btrfs");
1816 if (err)
1817 return err;
1818
1819 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1820 bdi->congested_fn = btrfs_congested_fn;
1821 bdi->congested_data = info;
1822 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1823 return 0;
1824 }
1825
1826 /*
1827 * called by the kthread helper functions to finally call the bio end_io
1828 * functions. This is where read checksum verification actually happens
1829 */
1830 static void end_workqueue_fn(struct btrfs_work *work)
1831 {
1832 struct bio *bio;
1833 struct btrfs_end_io_wq *end_io_wq;
1834
1835 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1836 bio = end_io_wq->bio;
1837
1838 bio->bi_error = end_io_wq->error;
1839 bio->bi_private = end_io_wq->private;
1840 bio->bi_end_io = end_io_wq->end_io;
1841 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1842 bio_endio(bio);
1843 }
1844
1845 static int cleaner_kthread(void *arg)
1846 {
1847 struct btrfs_root *root = arg;
1848 struct btrfs_fs_info *fs_info = root->fs_info;
1849 int again;
1850 struct btrfs_trans_handle *trans;
1851
1852 do {
1853 again = 0;
1854
1855 /* Make the cleaner go to sleep early. */
1856 if (btrfs_need_cleaner_sleep(fs_info))
1857 goto sleep;
1858
1859 /*
1860 * Do not do anything if we might cause open_ctree() to block
1861 * before we have finished mounting the filesystem.
1862 */
1863 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1864 goto sleep;
1865
1866 if (!mutex_trylock(&fs_info->cleaner_mutex))
1867 goto sleep;
1868
1869 /*
1870 * Avoid the problem that we change the status of the fs
1871 * during the above check and trylock.
1872 */
1873 if (btrfs_need_cleaner_sleep(fs_info)) {
1874 mutex_unlock(&fs_info->cleaner_mutex);
1875 goto sleep;
1876 }
1877
1878 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1879 btrfs_run_delayed_iputs(fs_info);
1880 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1881
1882 again = btrfs_clean_one_deleted_snapshot(root);
1883 mutex_unlock(&fs_info->cleaner_mutex);
1884
1885 /*
1886 * The defragger has dealt with the R/O remount and umount,
1887 * needn't do anything special here.
1888 */
1889 btrfs_run_defrag_inodes(fs_info);
1890
1891 /*
1892 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1893 * with relocation (btrfs_relocate_chunk) and relocation
1894 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1895 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1896 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1897 * unused block groups.
1898 */
1899 btrfs_delete_unused_bgs(fs_info);
1900 sleep:
1901 if (!again) {
1902 set_current_state(TASK_INTERRUPTIBLE);
1903 if (!kthread_should_stop())
1904 schedule();
1905 __set_current_state(TASK_RUNNING);
1906 }
1907 } while (!kthread_should_stop());
1908
1909 /*
1910 * Transaction kthread is stopped before us and wakes us up.
1911 * However we might have started a new transaction and COWed some
1912 * tree blocks when deleting unused block groups for example. So
1913 * make sure we commit the transaction we started to have a clean
1914 * shutdown when evicting the btree inode - if it has dirty pages
1915 * when we do the final iput() on it, eviction will trigger a
1916 * writeback for it which will fail with null pointer dereferences
1917 * since work queues and other resources were already released and
1918 * destroyed by the time the iput/eviction/writeback is made.
1919 */
1920 trans = btrfs_attach_transaction(root);
1921 if (IS_ERR(trans)) {
1922 if (PTR_ERR(trans) != -ENOENT)
1923 btrfs_err(fs_info,
1924 "cleaner transaction attach returned %ld",
1925 PTR_ERR(trans));
1926 } else {
1927 int ret;
1928
1929 ret = btrfs_commit_transaction(trans);
1930 if (ret)
1931 btrfs_err(fs_info,
1932 "cleaner open transaction commit returned %d",
1933 ret);
1934 }
1935
1936 return 0;
1937 }
1938
1939 static int transaction_kthread(void *arg)
1940 {
1941 struct btrfs_root *root = arg;
1942 struct btrfs_fs_info *fs_info = root->fs_info;
1943 struct btrfs_trans_handle *trans;
1944 struct btrfs_transaction *cur;
1945 u64 transid;
1946 unsigned long now;
1947 unsigned long delay;
1948 bool cannot_commit;
1949
1950 do {
1951 cannot_commit = false;
1952 delay = HZ * fs_info->commit_interval;
1953 mutex_lock(&fs_info->transaction_kthread_mutex);
1954
1955 spin_lock(&fs_info->trans_lock);
1956 cur = fs_info->running_transaction;
1957 if (!cur) {
1958 spin_unlock(&fs_info->trans_lock);
1959 goto sleep;
1960 }
1961
1962 now = get_seconds();
1963 if (cur->state < TRANS_STATE_BLOCKED &&
1964 (now < cur->start_time ||
1965 now - cur->start_time < fs_info->commit_interval)) {
1966 spin_unlock(&fs_info->trans_lock);
1967 delay = HZ * 5;
1968 goto sleep;
1969 }
1970 transid = cur->transid;
1971 spin_unlock(&fs_info->trans_lock);
1972
1973 /* If the file system is aborted, this will always fail. */
1974 trans = btrfs_attach_transaction(root);
1975 if (IS_ERR(trans)) {
1976 if (PTR_ERR(trans) != -ENOENT)
1977 cannot_commit = true;
1978 goto sleep;
1979 }
1980 if (transid == trans->transid) {
1981 btrfs_commit_transaction(trans);
1982 } else {
1983 btrfs_end_transaction(trans);
1984 }
1985 sleep:
1986 wake_up_process(fs_info->cleaner_kthread);
1987 mutex_unlock(&fs_info->transaction_kthread_mutex);
1988
1989 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1990 &fs_info->fs_state)))
1991 btrfs_cleanup_transaction(fs_info);
1992 set_current_state(TASK_INTERRUPTIBLE);
1993 if (!kthread_should_stop() &&
1994 (!btrfs_transaction_blocked(fs_info) ||
1995 cannot_commit))
1996 schedule_timeout(delay);
1997 __set_current_state(TASK_RUNNING);
1998 } while (!kthread_should_stop());
1999 return 0;
2000 }
2001
2002 /*
2003 * this will find the highest generation in the array of
2004 * root backups. The index of the highest array is returned,
2005 * or -1 if we can't find anything.
2006 *
2007 * We check to make sure the array is valid by comparing the
2008 * generation of the latest root in the array with the generation
2009 * in the super block. If they don't match we pitch it.
2010 */
2011 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2012 {
2013 u64 cur;
2014 int newest_index = -1;
2015 struct btrfs_root_backup *root_backup;
2016 int i;
2017
2018 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2019 root_backup = info->super_copy->super_roots + i;
2020 cur = btrfs_backup_tree_root_gen(root_backup);
2021 if (cur == newest_gen)
2022 newest_index = i;
2023 }
2024
2025 /* check to see if we actually wrapped around */
2026 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2027 root_backup = info->super_copy->super_roots;
2028 cur = btrfs_backup_tree_root_gen(root_backup);
2029 if (cur == newest_gen)
2030 newest_index = 0;
2031 }
2032 return newest_index;
2033 }
2034
2035
2036 /*
2037 * find the oldest backup so we know where to store new entries
2038 * in the backup array. This will set the backup_root_index
2039 * field in the fs_info struct
2040 */
2041 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2042 u64 newest_gen)
2043 {
2044 int newest_index = -1;
2045
2046 newest_index = find_newest_super_backup(info, newest_gen);
2047 /* if there was garbage in there, just move along */
2048 if (newest_index == -1) {
2049 info->backup_root_index = 0;
2050 } else {
2051 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2052 }
2053 }
2054
2055 /*
2056 * copy all the root pointers into the super backup array.
2057 * this will bump the backup pointer by one when it is
2058 * done
2059 */
2060 static void backup_super_roots(struct btrfs_fs_info *info)
2061 {
2062 int next_backup;
2063 struct btrfs_root_backup *root_backup;
2064 int last_backup;
2065
2066 next_backup = info->backup_root_index;
2067 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2068 BTRFS_NUM_BACKUP_ROOTS;
2069
2070 /*
2071 * just overwrite the last backup if we're at the same generation
2072 * this happens only at umount
2073 */
2074 root_backup = info->super_for_commit->super_roots + last_backup;
2075 if (btrfs_backup_tree_root_gen(root_backup) ==
2076 btrfs_header_generation(info->tree_root->node))
2077 next_backup = last_backup;
2078
2079 root_backup = info->super_for_commit->super_roots + next_backup;
2080
2081 /*
2082 * make sure all of our padding and empty slots get zero filled
2083 * regardless of which ones we use today
2084 */
2085 memset(root_backup, 0, sizeof(*root_backup));
2086
2087 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2088
2089 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2090 btrfs_set_backup_tree_root_gen(root_backup,
2091 btrfs_header_generation(info->tree_root->node));
2092
2093 btrfs_set_backup_tree_root_level(root_backup,
2094 btrfs_header_level(info->tree_root->node));
2095
2096 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2097 btrfs_set_backup_chunk_root_gen(root_backup,
2098 btrfs_header_generation(info->chunk_root->node));
2099 btrfs_set_backup_chunk_root_level(root_backup,
2100 btrfs_header_level(info->chunk_root->node));
2101
2102 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2103 btrfs_set_backup_extent_root_gen(root_backup,
2104 btrfs_header_generation(info->extent_root->node));
2105 btrfs_set_backup_extent_root_level(root_backup,
2106 btrfs_header_level(info->extent_root->node));
2107
2108 /*
2109 * we might commit during log recovery, which happens before we set
2110 * the fs_root. Make sure it is valid before we fill it in.
2111 */
2112 if (info->fs_root && info->fs_root->node) {
2113 btrfs_set_backup_fs_root(root_backup,
2114 info->fs_root->node->start);
2115 btrfs_set_backup_fs_root_gen(root_backup,
2116 btrfs_header_generation(info->fs_root->node));
2117 btrfs_set_backup_fs_root_level(root_backup,
2118 btrfs_header_level(info->fs_root->node));
2119 }
2120
2121 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2122 btrfs_set_backup_dev_root_gen(root_backup,
2123 btrfs_header_generation(info->dev_root->node));
2124 btrfs_set_backup_dev_root_level(root_backup,
2125 btrfs_header_level(info->dev_root->node));
2126
2127 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2128 btrfs_set_backup_csum_root_gen(root_backup,
2129 btrfs_header_generation(info->csum_root->node));
2130 btrfs_set_backup_csum_root_level(root_backup,
2131 btrfs_header_level(info->csum_root->node));
2132
2133 btrfs_set_backup_total_bytes(root_backup,
2134 btrfs_super_total_bytes(info->super_copy));
2135 btrfs_set_backup_bytes_used(root_backup,
2136 btrfs_super_bytes_used(info->super_copy));
2137 btrfs_set_backup_num_devices(root_backup,
2138 btrfs_super_num_devices(info->super_copy));
2139
2140 /*
2141 * if we don't copy this out to the super_copy, it won't get remembered
2142 * for the next commit
2143 */
2144 memcpy(&info->super_copy->super_roots,
2145 &info->super_for_commit->super_roots,
2146 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2147 }
2148
2149 /*
2150 * this copies info out of the root backup array and back into
2151 * the in-memory super block. It is meant to help iterate through
2152 * the array, so you send it the number of backups you've already
2153 * tried and the last backup index you used.
2154 *
2155 * this returns -1 when it has tried all the backups
2156 */
2157 static noinline int next_root_backup(struct btrfs_fs_info *info,
2158 struct btrfs_super_block *super,
2159 int *num_backups_tried, int *backup_index)
2160 {
2161 struct btrfs_root_backup *root_backup;
2162 int newest = *backup_index;
2163
2164 if (*num_backups_tried == 0) {
2165 u64 gen = btrfs_super_generation(super);
2166
2167 newest = find_newest_super_backup(info, gen);
2168 if (newest == -1)
2169 return -1;
2170
2171 *backup_index = newest;
2172 *num_backups_tried = 1;
2173 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2174 /* we've tried all the backups, all done */
2175 return -1;
2176 } else {
2177 /* jump to the next oldest backup */
2178 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2179 BTRFS_NUM_BACKUP_ROOTS;
2180 *backup_index = newest;
2181 *num_backups_tried += 1;
2182 }
2183 root_backup = super->super_roots + newest;
2184
2185 btrfs_set_super_generation(super,
2186 btrfs_backup_tree_root_gen(root_backup));
2187 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2188 btrfs_set_super_root_level(super,
2189 btrfs_backup_tree_root_level(root_backup));
2190 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2191
2192 /*
2193 * fixme: the total bytes and num_devices need to match or we should
2194 * need a fsck
2195 */
2196 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2197 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2198 return 0;
2199 }
2200
2201 /* helper to cleanup workers */
2202 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2203 {
2204 btrfs_destroy_workqueue(fs_info->fixup_workers);
2205 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2206 btrfs_destroy_workqueue(fs_info->workers);
2207 btrfs_destroy_workqueue(fs_info->endio_workers);
2208 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2209 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2210 btrfs_destroy_workqueue(fs_info->rmw_workers);
2211 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2212 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2213 btrfs_destroy_workqueue(fs_info->submit_workers);
2214 btrfs_destroy_workqueue(fs_info->delayed_workers);
2215 btrfs_destroy_workqueue(fs_info->caching_workers);
2216 btrfs_destroy_workqueue(fs_info->readahead_workers);
2217 btrfs_destroy_workqueue(fs_info->flush_workers);
2218 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2219 btrfs_destroy_workqueue(fs_info->extent_workers);
2220 /*
2221 * Now that all other work queues are destroyed, we can safely destroy
2222 * the queues used for metadata I/O, since tasks from those other work
2223 * queues can do metadata I/O operations.
2224 */
2225 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2226 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2227 }
2228
2229 static void free_root_extent_buffers(struct btrfs_root *root)
2230 {
2231 if (root) {
2232 free_extent_buffer(root->node);
2233 free_extent_buffer(root->commit_root);
2234 root->node = NULL;
2235 root->commit_root = NULL;
2236 }
2237 }
2238
2239 /* helper to cleanup tree roots */
2240 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2241 {
2242 free_root_extent_buffers(info->tree_root);
2243
2244 free_root_extent_buffers(info->dev_root);
2245 free_root_extent_buffers(info->extent_root);
2246 free_root_extent_buffers(info->csum_root);
2247 free_root_extent_buffers(info->quota_root);
2248 free_root_extent_buffers(info->uuid_root);
2249 if (chunk_root)
2250 free_root_extent_buffers(info->chunk_root);
2251 free_root_extent_buffers(info->free_space_root);
2252 }
2253
2254 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2255 {
2256 int ret;
2257 struct btrfs_root *gang[8];
2258 int i;
2259
2260 while (!list_empty(&fs_info->dead_roots)) {
2261 gang[0] = list_entry(fs_info->dead_roots.next,
2262 struct btrfs_root, root_list);
2263 list_del(&gang[0]->root_list);
2264
2265 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2266 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2267 } else {
2268 free_extent_buffer(gang[0]->node);
2269 free_extent_buffer(gang[0]->commit_root);
2270 btrfs_put_fs_root(gang[0]);
2271 }
2272 }
2273
2274 while (1) {
2275 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2276 (void **)gang, 0,
2277 ARRAY_SIZE(gang));
2278 if (!ret)
2279 break;
2280 for (i = 0; i < ret; i++)
2281 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2282 }
2283
2284 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2285 btrfs_free_log_root_tree(NULL, fs_info);
2286 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2287 }
2288 }
2289
2290 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2291 {
2292 mutex_init(&fs_info->scrub_lock);
2293 atomic_set(&fs_info->scrubs_running, 0);
2294 atomic_set(&fs_info->scrub_pause_req, 0);
2295 atomic_set(&fs_info->scrubs_paused, 0);
2296 atomic_set(&fs_info->scrub_cancel_req, 0);
2297 init_waitqueue_head(&fs_info->scrub_pause_wait);
2298 fs_info->scrub_workers_refcnt = 0;
2299 }
2300
2301 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2302 {
2303 spin_lock_init(&fs_info->balance_lock);
2304 mutex_init(&fs_info->balance_mutex);
2305 atomic_set(&fs_info->balance_running, 0);
2306 atomic_set(&fs_info->balance_pause_req, 0);
2307 atomic_set(&fs_info->balance_cancel_req, 0);
2308 fs_info->balance_ctl = NULL;
2309 init_waitqueue_head(&fs_info->balance_wait_q);
2310 }
2311
2312 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2313 {
2314 struct inode *inode = fs_info->btree_inode;
2315
2316 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2317 set_nlink(inode, 1);
2318 /*
2319 * we set the i_size on the btree inode to the max possible int.
2320 * the real end of the address space is determined by all of
2321 * the devices in the system
2322 */
2323 inode->i_size = OFFSET_MAX;
2324 inode->i_mapping->a_ops = &btree_aops;
2325
2326 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2327 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2328 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2329 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2330
2331 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2332
2333 BTRFS_I(inode)->root = fs_info->tree_root;
2334 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2335 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2336 btrfs_insert_inode_hash(inode);
2337 }
2338
2339 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2340 {
2341 fs_info->dev_replace.lock_owner = 0;
2342 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2343 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2344 rwlock_init(&fs_info->dev_replace.lock);
2345 atomic_set(&fs_info->dev_replace.read_locks, 0);
2346 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2347 init_waitqueue_head(&fs_info->replace_wait);
2348 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2349 }
2350
2351 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2352 {
2353 spin_lock_init(&fs_info->qgroup_lock);
2354 mutex_init(&fs_info->qgroup_ioctl_lock);
2355 fs_info->qgroup_tree = RB_ROOT;
2356 fs_info->qgroup_op_tree = RB_ROOT;
2357 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2358 fs_info->qgroup_seq = 1;
2359 fs_info->qgroup_ulist = NULL;
2360 fs_info->qgroup_rescan_running = false;
2361 mutex_init(&fs_info->qgroup_rescan_lock);
2362 }
2363
2364 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2365 struct btrfs_fs_devices *fs_devices)
2366 {
2367 int max_active = fs_info->thread_pool_size;
2368 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2369
2370 fs_info->workers =
2371 btrfs_alloc_workqueue(fs_info, "worker",
2372 flags | WQ_HIGHPRI, max_active, 16);
2373
2374 fs_info->delalloc_workers =
2375 btrfs_alloc_workqueue(fs_info, "delalloc",
2376 flags, max_active, 2);
2377
2378 fs_info->flush_workers =
2379 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2380 flags, max_active, 0);
2381
2382 fs_info->caching_workers =
2383 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2384
2385 /*
2386 * a higher idle thresh on the submit workers makes it much more
2387 * likely that bios will be send down in a sane order to the
2388 * devices
2389 */
2390 fs_info->submit_workers =
2391 btrfs_alloc_workqueue(fs_info, "submit", flags,
2392 min_t(u64, fs_devices->num_devices,
2393 max_active), 64);
2394
2395 fs_info->fixup_workers =
2396 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2397
2398 /*
2399 * endios are largely parallel and should have a very
2400 * low idle thresh
2401 */
2402 fs_info->endio_workers =
2403 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2404 fs_info->endio_meta_workers =
2405 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2406 max_active, 4);
2407 fs_info->endio_meta_write_workers =
2408 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2409 max_active, 2);
2410 fs_info->endio_raid56_workers =
2411 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2412 max_active, 4);
2413 fs_info->endio_repair_workers =
2414 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2415 fs_info->rmw_workers =
2416 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2417 fs_info->endio_write_workers =
2418 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2419 max_active, 2);
2420 fs_info->endio_freespace_worker =
2421 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2422 max_active, 0);
2423 fs_info->delayed_workers =
2424 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2425 max_active, 0);
2426 fs_info->readahead_workers =
2427 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2428 max_active, 2);
2429 fs_info->qgroup_rescan_workers =
2430 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2431 fs_info->extent_workers =
2432 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2433 min_t(u64, fs_devices->num_devices,
2434 max_active), 8);
2435
2436 if (!(fs_info->workers && fs_info->delalloc_workers &&
2437 fs_info->submit_workers && fs_info->flush_workers &&
2438 fs_info->endio_workers && fs_info->endio_meta_workers &&
2439 fs_info->endio_meta_write_workers &&
2440 fs_info->endio_repair_workers &&
2441 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2442 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2443 fs_info->caching_workers && fs_info->readahead_workers &&
2444 fs_info->fixup_workers && fs_info->delayed_workers &&
2445 fs_info->extent_workers &&
2446 fs_info->qgroup_rescan_workers)) {
2447 return -ENOMEM;
2448 }
2449
2450 return 0;
2451 }
2452
2453 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2454 struct btrfs_fs_devices *fs_devices)
2455 {
2456 int ret;
2457 struct btrfs_root *log_tree_root;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 u64 bytenr = btrfs_super_log_root(disk_super);
2460
2461 if (fs_devices->rw_devices == 0) {
2462 btrfs_warn(fs_info, "log replay required on RO media");
2463 return -EIO;
2464 }
2465
2466 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2467 if (!log_tree_root)
2468 return -ENOMEM;
2469
2470 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2471
2472 log_tree_root->node = read_tree_block(fs_info, bytenr,
2473 fs_info->generation + 1);
2474 if (IS_ERR(log_tree_root->node)) {
2475 btrfs_warn(fs_info, "failed to read log tree");
2476 ret = PTR_ERR(log_tree_root->node);
2477 kfree(log_tree_root);
2478 return ret;
2479 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2480 btrfs_err(fs_info, "failed to read log tree");
2481 free_extent_buffer(log_tree_root->node);
2482 kfree(log_tree_root);
2483 return -EIO;
2484 }
2485 /* returns with log_tree_root freed on success */
2486 ret = btrfs_recover_log_trees(log_tree_root);
2487 if (ret) {
2488 btrfs_handle_fs_error(fs_info, ret,
2489 "Failed to recover log tree");
2490 free_extent_buffer(log_tree_root->node);
2491 kfree(log_tree_root);
2492 return ret;
2493 }
2494
2495 if (fs_info->sb->s_flags & MS_RDONLY) {
2496 ret = btrfs_commit_super(fs_info);
2497 if (ret)
2498 return ret;
2499 }
2500
2501 return 0;
2502 }
2503
2504 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2505 {
2506 struct btrfs_root *tree_root = fs_info->tree_root;
2507 struct btrfs_root *root;
2508 struct btrfs_key location;
2509 int ret;
2510
2511 BUG_ON(!fs_info->tree_root);
2512
2513 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2514 location.type = BTRFS_ROOT_ITEM_KEY;
2515 location.offset = 0;
2516
2517 root = btrfs_read_tree_root(tree_root, &location);
2518 if (IS_ERR(root))
2519 return PTR_ERR(root);
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 fs_info->extent_root = root;
2522
2523 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2524 root = btrfs_read_tree_root(tree_root, &location);
2525 if (IS_ERR(root))
2526 return PTR_ERR(root);
2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528 fs_info->dev_root = root;
2529 btrfs_init_devices_late(fs_info);
2530
2531 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2532 root = btrfs_read_tree_root(tree_root, &location);
2533 if (IS_ERR(root))
2534 return PTR_ERR(root);
2535 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2536 fs_info->csum_root = root;
2537
2538 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2539 root = btrfs_read_tree_root(tree_root, &location);
2540 if (!IS_ERR(root)) {
2541 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2542 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2543 fs_info->quota_root = root;
2544 }
2545
2546 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2547 root = btrfs_read_tree_root(tree_root, &location);
2548 if (IS_ERR(root)) {
2549 ret = PTR_ERR(root);
2550 if (ret != -ENOENT)
2551 return ret;
2552 } else {
2553 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2554 fs_info->uuid_root = root;
2555 }
2556
2557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2558 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2559 root = btrfs_read_tree_root(tree_root, &location);
2560 if (IS_ERR(root))
2561 return PTR_ERR(root);
2562 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2563 fs_info->free_space_root = root;
2564 }
2565
2566 return 0;
2567 }
2568
2569 int open_ctree(struct super_block *sb,
2570 struct btrfs_fs_devices *fs_devices,
2571 char *options)
2572 {
2573 u32 sectorsize;
2574 u32 nodesize;
2575 u32 stripesize;
2576 u64 generation;
2577 u64 features;
2578 struct btrfs_key location;
2579 struct buffer_head *bh;
2580 struct btrfs_super_block *disk_super;
2581 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2582 struct btrfs_root *tree_root;
2583 struct btrfs_root *chunk_root;
2584 int ret;
2585 int err = -EINVAL;
2586 int num_backups_tried = 0;
2587 int backup_index = 0;
2588 int max_active;
2589 int clear_free_space_tree = 0;
2590
2591 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2592 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2593 if (!tree_root || !chunk_root) {
2594 err = -ENOMEM;
2595 goto fail;
2596 }
2597
2598 ret = init_srcu_struct(&fs_info->subvol_srcu);
2599 if (ret) {
2600 err = ret;
2601 goto fail;
2602 }
2603
2604 ret = setup_bdi(fs_info, &fs_info->bdi);
2605 if (ret) {
2606 err = ret;
2607 goto fail_srcu;
2608 }
2609
2610 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2611 if (ret) {
2612 err = ret;
2613 goto fail_bdi;
2614 }
2615 fs_info->dirty_metadata_batch = PAGE_SIZE *
2616 (1 + ilog2(nr_cpu_ids));
2617
2618 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2619 if (ret) {
2620 err = ret;
2621 goto fail_dirty_metadata_bytes;
2622 }
2623
2624 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2625 if (ret) {
2626 err = ret;
2627 goto fail_delalloc_bytes;
2628 }
2629
2630 fs_info->btree_inode = new_inode(sb);
2631 if (!fs_info->btree_inode) {
2632 err = -ENOMEM;
2633 goto fail_bio_counter;
2634 }
2635
2636 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2637
2638 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2639 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2640 INIT_LIST_HEAD(&fs_info->trans_list);
2641 INIT_LIST_HEAD(&fs_info->dead_roots);
2642 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2643 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2644 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2645 spin_lock_init(&fs_info->delalloc_root_lock);
2646 spin_lock_init(&fs_info->trans_lock);
2647 spin_lock_init(&fs_info->fs_roots_radix_lock);
2648 spin_lock_init(&fs_info->delayed_iput_lock);
2649 spin_lock_init(&fs_info->defrag_inodes_lock);
2650 spin_lock_init(&fs_info->free_chunk_lock);
2651 spin_lock_init(&fs_info->tree_mod_seq_lock);
2652 spin_lock_init(&fs_info->super_lock);
2653 spin_lock_init(&fs_info->qgroup_op_lock);
2654 spin_lock_init(&fs_info->buffer_lock);
2655 spin_lock_init(&fs_info->unused_bgs_lock);
2656 rwlock_init(&fs_info->tree_mod_log_lock);
2657 mutex_init(&fs_info->unused_bg_unpin_mutex);
2658 mutex_init(&fs_info->delete_unused_bgs_mutex);
2659 mutex_init(&fs_info->reloc_mutex);
2660 mutex_init(&fs_info->delalloc_root_mutex);
2661 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2662 seqlock_init(&fs_info->profiles_lock);
2663
2664 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2665 INIT_LIST_HEAD(&fs_info->space_info);
2666 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2667 INIT_LIST_HEAD(&fs_info->unused_bgs);
2668 btrfs_mapping_init(&fs_info->mapping_tree);
2669 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2670 BTRFS_BLOCK_RSV_GLOBAL);
2671 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2672 BTRFS_BLOCK_RSV_DELALLOC);
2673 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2674 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2675 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2676 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2677 BTRFS_BLOCK_RSV_DELOPS);
2678 atomic_set(&fs_info->nr_async_submits, 0);
2679 atomic_set(&fs_info->async_delalloc_pages, 0);
2680 atomic_set(&fs_info->async_submit_draining, 0);
2681 atomic_set(&fs_info->nr_async_bios, 0);
2682 atomic_set(&fs_info->defrag_running, 0);
2683 atomic_set(&fs_info->qgroup_op_seq, 0);
2684 atomic_set(&fs_info->reada_works_cnt, 0);
2685 atomic64_set(&fs_info->tree_mod_seq, 0);
2686 fs_info->fs_frozen = 0;
2687 fs_info->sb = sb;
2688 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2689 fs_info->metadata_ratio = 0;
2690 fs_info->defrag_inodes = RB_ROOT;
2691 fs_info->free_chunk_space = 0;
2692 fs_info->tree_mod_log = RB_ROOT;
2693 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2694 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2695 /* readahead state */
2696 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2697 spin_lock_init(&fs_info->reada_lock);
2698
2699 fs_info->thread_pool_size = min_t(unsigned long,
2700 num_online_cpus() + 2, 8);
2701
2702 INIT_LIST_HEAD(&fs_info->ordered_roots);
2703 spin_lock_init(&fs_info->ordered_root_lock);
2704 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2705 GFP_KERNEL);
2706 if (!fs_info->delayed_root) {
2707 err = -ENOMEM;
2708 goto fail_iput;
2709 }
2710 btrfs_init_delayed_root(fs_info->delayed_root);
2711
2712 btrfs_init_scrub(fs_info);
2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2714 fs_info->check_integrity_print_mask = 0;
2715 #endif
2716 btrfs_init_balance(fs_info);
2717 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2718
2719 sb->s_blocksize = 4096;
2720 sb->s_blocksize_bits = blksize_bits(4096);
2721 sb->s_bdi = &fs_info->bdi;
2722
2723 btrfs_init_btree_inode(fs_info);
2724
2725 spin_lock_init(&fs_info->block_group_cache_lock);
2726 fs_info->block_group_cache_tree = RB_ROOT;
2727 fs_info->first_logical_byte = (u64)-1;
2728
2729 extent_io_tree_init(&fs_info->freed_extents[0],
2730 fs_info->btree_inode->i_mapping);
2731 extent_io_tree_init(&fs_info->freed_extents[1],
2732 fs_info->btree_inode->i_mapping);
2733 fs_info->pinned_extents = &fs_info->freed_extents[0];
2734 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2735
2736 mutex_init(&fs_info->ordered_operations_mutex);
2737 mutex_init(&fs_info->tree_log_mutex);
2738 mutex_init(&fs_info->chunk_mutex);
2739 mutex_init(&fs_info->transaction_kthread_mutex);
2740 mutex_init(&fs_info->cleaner_mutex);
2741 mutex_init(&fs_info->volume_mutex);
2742 mutex_init(&fs_info->ro_block_group_mutex);
2743 init_rwsem(&fs_info->commit_root_sem);
2744 init_rwsem(&fs_info->cleanup_work_sem);
2745 init_rwsem(&fs_info->subvol_sem);
2746 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2747
2748 btrfs_init_dev_replace_locks(fs_info);
2749 btrfs_init_qgroup(fs_info);
2750
2751 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2752 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2753
2754 init_waitqueue_head(&fs_info->transaction_throttle);
2755 init_waitqueue_head(&fs_info->transaction_wait);
2756 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2757 init_waitqueue_head(&fs_info->async_submit_wait);
2758
2759 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2760
2761 /* Usable values until the real ones are cached from the superblock */
2762 fs_info->nodesize = 4096;
2763 fs_info->sectorsize = 4096;
2764 fs_info->stripesize = 4096;
2765
2766 ret = btrfs_alloc_stripe_hash_table(fs_info);
2767 if (ret) {
2768 err = ret;
2769 goto fail_alloc;
2770 }
2771
2772 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2773
2774 invalidate_bdev(fs_devices->latest_bdev);
2775
2776 /*
2777 * Read super block and check the signature bytes only
2778 */
2779 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2780 if (IS_ERR(bh)) {
2781 err = PTR_ERR(bh);
2782 goto fail_alloc;
2783 }
2784
2785 /*
2786 * We want to check superblock checksum, the type is stored inside.
2787 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2788 */
2789 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2790 btrfs_err(fs_info, "superblock checksum mismatch");
2791 err = -EINVAL;
2792 brelse(bh);
2793 goto fail_alloc;
2794 }
2795
2796 /*
2797 * super_copy is zeroed at allocation time and we never touch the
2798 * following bytes up to INFO_SIZE, the checksum is calculated from
2799 * the whole block of INFO_SIZE
2800 */
2801 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2802 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2803 sizeof(*fs_info->super_for_commit));
2804 brelse(bh);
2805
2806 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2807
2808 ret = btrfs_check_super_valid(fs_info);
2809 if (ret) {
2810 btrfs_err(fs_info, "superblock contains fatal errors");
2811 err = -EINVAL;
2812 goto fail_alloc;
2813 }
2814
2815 disk_super = fs_info->super_copy;
2816 if (!btrfs_super_root(disk_super))
2817 goto fail_alloc;
2818
2819 /* check FS state, whether FS is broken. */
2820 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2821 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2822
2823 /*
2824 * run through our array of backup supers and setup
2825 * our ring pointer to the oldest one
2826 */
2827 generation = btrfs_super_generation(disk_super);
2828 find_oldest_super_backup(fs_info, generation);
2829
2830 /*
2831 * In the long term, we'll store the compression type in the super
2832 * block, and it'll be used for per file compression control.
2833 */
2834 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2835
2836 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2837 if (ret) {
2838 err = ret;
2839 goto fail_alloc;
2840 }
2841
2842 features = btrfs_super_incompat_flags(disk_super) &
2843 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2844 if (features) {
2845 btrfs_err(fs_info,
2846 "cannot mount because of unsupported optional features (%llx)",
2847 features);
2848 err = -EINVAL;
2849 goto fail_alloc;
2850 }
2851
2852 features = btrfs_super_incompat_flags(disk_super);
2853 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2854 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2855 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2856
2857 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2858 btrfs_info(fs_info, "has skinny extents");
2859
2860 /*
2861 * flag our filesystem as having big metadata blocks if
2862 * they are bigger than the page size
2863 */
2864 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2865 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2866 btrfs_info(fs_info,
2867 "flagging fs with big metadata feature");
2868 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2869 }
2870
2871 nodesize = btrfs_super_nodesize(disk_super);
2872 sectorsize = btrfs_super_sectorsize(disk_super);
2873 stripesize = sectorsize;
2874 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2875 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2876
2877 /* Cache block sizes */
2878 fs_info->nodesize = nodesize;
2879 fs_info->sectorsize = sectorsize;
2880 fs_info->stripesize = stripesize;
2881
2882 /*
2883 * mixed block groups end up with duplicate but slightly offset
2884 * extent buffers for the same range. It leads to corruptions
2885 */
2886 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2887 (sectorsize != nodesize)) {
2888 btrfs_err(fs_info,
2889 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2890 nodesize, sectorsize);
2891 goto fail_alloc;
2892 }
2893
2894 /*
2895 * Needn't use the lock because there is no other task which will
2896 * update the flag.
2897 */
2898 btrfs_set_super_incompat_flags(disk_super, features);
2899
2900 features = btrfs_super_compat_ro_flags(disk_super) &
2901 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2902 if (!(sb->s_flags & MS_RDONLY) && features) {
2903 btrfs_err(fs_info,
2904 "cannot mount read-write because of unsupported optional features (%llx)",
2905 features);
2906 err = -EINVAL;
2907 goto fail_alloc;
2908 }
2909
2910 max_active = fs_info->thread_pool_size;
2911
2912 ret = btrfs_init_workqueues(fs_info, fs_devices);
2913 if (ret) {
2914 err = ret;
2915 goto fail_sb_buffer;
2916 }
2917
2918 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2919 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2920 SZ_4M / PAGE_SIZE);
2921
2922 sb->s_blocksize = sectorsize;
2923 sb->s_blocksize_bits = blksize_bits(sectorsize);
2924
2925 mutex_lock(&fs_info->chunk_mutex);
2926 ret = btrfs_read_sys_array(fs_info);
2927 mutex_unlock(&fs_info->chunk_mutex);
2928 if (ret) {
2929 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2930 goto fail_sb_buffer;
2931 }
2932
2933 generation = btrfs_super_chunk_root_generation(disk_super);
2934
2935 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2936
2937 chunk_root->node = read_tree_block(fs_info,
2938 btrfs_super_chunk_root(disk_super),
2939 generation);
2940 if (IS_ERR(chunk_root->node) ||
2941 !extent_buffer_uptodate(chunk_root->node)) {
2942 btrfs_err(fs_info, "failed to read chunk root");
2943 if (!IS_ERR(chunk_root->node))
2944 free_extent_buffer(chunk_root->node);
2945 chunk_root->node = NULL;
2946 goto fail_tree_roots;
2947 }
2948 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2949 chunk_root->commit_root = btrfs_root_node(chunk_root);
2950
2951 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2952 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2953
2954 ret = btrfs_read_chunk_tree(fs_info);
2955 if (ret) {
2956 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2957 goto fail_tree_roots;
2958 }
2959
2960 /*
2961 * keep the device that is marked to be the target device for the
2962 * dev_replace procedure
2963 */
2964 btrfs_close_extra_devices(fs_devices, 0);
2965
2966 if (!fs_devices->latest_bdev) {
2967 btrfs_err(fs_info, "failed to read devices");
2968 goto fail_tree_roots;
2969 }
2970
2971 retry_root_backup:
2972 generation = btrfs_super_generation(disk_super);
2973
2974 tree_root->node = read_tree_block(fs_info,
2975 btrfs_super_root(disk_super),
2976 generation);
2977 if (IS_ERR(tree_root->node) ||
2978 !extent_buffer_uptodate(tree_root->node)) {
2979 btrfs_warn(fs_info, "failed to read tree root");
2980 if (!IS_ERR(tree_root->node))
2981 free_extent_buffer(tree_root->node);
2982 tree_root->node = NULL;
2983 goto recovery_tree_root;
2984 }
2985
2986 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2987 tree_root->commit_root = btrfs_root_node(tree_root);
2988 btrfs_set_root_refs(&tree_root->root_item, 1);
2989
2990 mutex_lock(&tree_root->objectid_mutex);
2991 ret = btrfs_find_highest_objectid(tree_root,
2992 &tree_root->highest_objectid);
2993 if (ret) {
2994 mutex_unlock(&tree_root->objectid_mutex);
2995 goto recovery_tree_root;
2996 }
2997
2998 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2999
3000 mutex_unlock(&tree_root->objectid_mutex);
3001
3002 ret = btrfs_read_roots(fs_info);
3003 if (ret)
3004 goto recovery_tree_root;
3005
3006 fs_info->generation = generation;
3007 fs_info->last_trans_committed = generation;
3008
3009 ret = btrfs_recover_balance(fs_info);
3010 if (ret) {
3011 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3012 goto fail_block_groups;
3013 }
3014
3015 ret = btrfs_init_dev_stats(fs_info);
3016 if (ret) {
3017 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3018 goto fail_block_groups;
3019 }
3020
3021 ret = btrfs_init_dev_replace(fs_info);
3022 if (ret) {
3023 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3024 goto fail_block_groups;
3025 }
3026
3027 btrfs_close_extra_devices(fs_devices, 1);
3028
3029 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3030 if (ret) {
3031 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3032 ret);
3033 goto fail_block_groups;
3034 }
3035
3036 ret = btrfs_sysfs_add_device(fs_devices);
3037 if (ret) {
3038 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3039 ret);
3040 goto fail_fsdev_sysfs;
3041 }
3042
3043 ret = btrfs_sysfs_add_mounted(fs_info);
3044 if (ret) {
3045 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3046 goto fail_fsdev_sysfs;
3047 }
3048
3049 ret = btrfs_init_space_info(fs_info);
3050 if (ret) {
3051 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3052 goto fail_sysfs;
3053 }
3054
3055 ret = btrfs_read_block_groups(fs_info);
3056 if (ret) {
3057 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3058 goto fail_sysfs;
3059 }
3060 fs_info->num_tolerated_disk_barrier_failures =
3061 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3062 if (fs_info->fs_devices->missing_devices >
3063 fs_info->num_tolerated_disk_barrier_failures &&
3064 !(sb->s_flags & MS_RDONLY)) {
3065 btrfs_warn(fs_info,
3066 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3067 fs_info->fs_devices->missing_devices,
3068 fs_info->num_tolerated_disk_barrier_failures);
3069 goto fail_sysfs;
3070 }
3071
3072 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3073 "btrfs-cleaner");
3074 if (IS_ERR(fs_info->cleaner_kthread))
3075 goto fail_sysfs;
3076
3077 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3078 tree_root,
3079 "btrfs-transaction");
3080 if (IS_ERR(fs_info->transaction_kthread))
3081 goto fail_cleaner;
3082
3083 if (!btrfs_test_opt(fs_info, SSD) &&
3084 !btrfs_test_opt(fs_info, NOSSD) &&
3085 !fs_info->fs_devices->rotating) {
3086 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3087 btrfs_set_opt(fs_info->mount_opt, SSD);
3088 }
3089
3090 /*
3091 * Mount does not set all options immediately, we can do it now and do
3092 * not have to wait for transaction commit
3093 */
3094 btrfs_apply_pending_changes(fs_info);
3095
3096 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3097 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3098 ret = btrfsic_mount(fs_info, fs_devices,
3099 btrfs_test_opt(fs_info,
3100 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3101 1 : 0,
3102 fs_info->check_integrity_print_mask);
3103 if (ret)
3104 btrfs_warn(fs_info,
3105 "failed to initialize integrity check module: %d",
3106 ret);
3107 }
3108 #endif
3109 ret = btrfs_read_qgroup_config(fs_info);
3110 if (ret)
3111 goto fail_trans_kthread;
3112
3113 /* do not make disk changes in broken FS or nologreplay is given */
3114 if (btrfs_super_log_root(disk_super) != 0 &&
3115 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3116 ret = btrfs_replay_log(fs_info, fs_devices);
3117 if (ret) {
3118 err = ret;
3119 goto fail_qgroup;
3120 }
3121 }
3122
3123 ret = btrfs_find_orphan_roots(fs_info);
3124 if (ret)
3125 goto fail_qgroup;
3126
3127 if (!(sb->s_flags & MS_RDONLY)) {
3128 ret = btrfs_cleanup_fs_roots(fs_info);
3129 if (ret)
3130 goto fail_qgroup;
3131
3132 mutex_lock(&fs_info->cleaner_mutex);
3133 ret = btrfs_recover_relocation(tree_root);
3134 mutex_unlock(&fs_info->cleaner_mutex);
3135 if (ret < 0) {
3136 btrfs_warn(fs_info, "failed to recover relocation: %d",
3137 ret);
3138 err = -EINVAL;
3139 goto fail_qgroup;
3140 }
3141 }
3142
3143 location.objectid = BTRFS_FS_TREE_OBJECTID;
3144 location.type = BTRFS_ROOT_ITEM_KEY;
3145 location.offset = 0;
3146
3147 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3148 if (IS_ERR(fs_info->fs_root)) {
3149 err = PTR_ERR(fs_info->fs_root);
3150 goto fail_qgroup;
3151 }
3152
3153 if (sb->s_flags & MS_RDONLY)
3154 return 0;
3155
3156 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3157 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3158 clear_free_space_tree = 1;
3159 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3160 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3161 btrfs_warn(fs_info, "free space tree is invalid");
3162 clear_free_space_tree = 1;
3163 }
3164
3165 if (clear_free_space_tree) {
3166 btrfs_info(fs_info, "clearing free space tree");
3167 ret = btrfs_clear_free_space_tree(fs_info);
3168 if (ret) {
3169 btrfs_warn(fs_info,
3170 "failed to clear free space tree: %d", ret);
3171 close_ctree(fs_info);
3172 return ret;
3173 }
3174 }
3175
3176 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3177 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3178 btrfs_info(fs_info, "creating free space tree");
3179 ret = btrfs_create_free_space_tree(fs_info);
3180 if (ret) {
3181 btrfs_warn(fs_info,
3182 "failed to create free space tree: %d", ret);
3183 close_ctree(fs_info);
3184 return ret;
3185 }
3186 }
3187
3188 down_read(&fs_info->cleanup_work_sem);
3189 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3190 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3191 up_read(&fs_info->cleanup_work_sem);
3192 close_ctree(fs_info);
3193 return ret;
3194 }
3195 up_read(&fs_info->cleanup_work_sem);
3196
3197 ret = btrfs_resume_balance_async(fs_info);
3198 if (ret) {
3199 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3200 close_ctree(fs_info);
3201 return ret;
3202 }
3203
3204 ret = btrfs_resume_dev_replace_async(fs_info);
3205 if (ret) {
3206 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3207 close_ctree(fs_info);
3208 return ret;
3209 }
3210
3211 btrfs_qgroup_rescan_resume(fs_info);
3212
3213 if (!fs_info->uuid_root) {
3214 btrfs_info(fs_info, "creating UUID tree");
3215 ret = btrfs_create_uuid_tree(fs_info);
3216 if (ret) {
3217 btrfs_warn(fs_info,
3218 "failed to create the UUID tree: %d", ret);
3219 close_ctree(fs_info);
3220 return ret;
3221 }
3222 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3223 fs_info->generation !=
3224 btrfs_super_uuid_tree_generation(disk_super)) {
3225 btrfs_info(fs_info, "checking UUID tree");
3226 ret = btrfs_check_uuid_tree(fs_info);
3227 if (ret) {
3228 btrfs_warn(fs_info,
3229 "failed to check the UUID tree: %d", ret);
3230 close_ctree(fs_info);
3231 return ret;
3232 }
3233 } else {
3234 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3235 }
3236 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3237
3238 /*
3239 * backuproot only affect mount behavior, and if open_ctree succeeded,
3240 * no need to keep the flag
3241 */
3242 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3243
3244 return 0;
3245
3246 fail_qgroup:
3247 btrfs_free_qgroup_config(fs_info);
3248 fail_trans_kthread:
3249 kthread_stop(fs_info->transaction_kthread);
3250 btrfs_cleanup_transaction(fs_info);
3251 btrfs_free_fs_roots(fs_info);
3252 fail_cleaner:
3253 kthread_stop(fs_info->cleaner_kthread);
3254
3255 /*
3256 * make sure we're done with the btree inode before we stop our
3257 * kthreads
3258 */
3259 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3260
3261 fail_sysfs:
3262 btrfs_sysfs_remove_mounted(fs_info);
3263
3264 fail_fsdev_sysfs:
3265 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3266
3267 fail_block_groups:
3268 btrfs_put_block_group_cache(fs_info);
3269
3270 fail_tree_roots:
3271 free_root_pointers(fs_info, 1);
3272 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3273
3274 fail_sb_buffer:
3275 btrfs_stop_all_workers(fs_info);
3276 btrfs_free_block_groups(fs_info);
3277 fail_alloc:
3278 fail_iput:
3279 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3280
3281 iput(fs_info->btree_inode);
3282 fail_bio_counter:
3283 percpu_counter_destroy(&fs_info->bio_counter);
3284 fail_delalloc_bytes:
3285 percpu_counter_destroy(&fs_info->delalloc_bytes);
3286 fail_dirty_metadata_bytes:
3287 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3288 fail_bdi:
3289 bdi_destroy(&fs_info->bdi);
3290 fail_srcu:
3291 cleanup_srcu_struct(&fs_info->subvol_srcu);
3292 fail:
3293 btrfs_free_stripe_hash_table(fs_info);
3294 btrfs_close_devices(fs_info->fs_devices);
3295 return err;
3296
3297 recovery_tree_root:
3298 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3299 goto fail_tree_roots;
3300
3301 free_root_pointers(fs_info, 0);
3302
3303 /* don't use the log in recovery mode, it won't be valid */
3304 btrfs_set_super_log_root(disk_super, 0);
3305
3306 /* we can't trust the free space cache either */
3307 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3308
3309 ret = next_root_backup(fs_info, fs_info->super_copy,
3310 &num_backups_tried, &backup_index);
3311 if (ret == -1)
3312 goto fail_block_groups;
3313 goto retry_root_backup;
3314 }
3315
3316 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3317 {
3318 if (uptodate) {
3319 set_buffer_uptodate(bh);
3320 } else {
3321 struct btrfs_device *device = (struct btrfs_device *)
3322 bh->b_private;
3323
3324 btrfs_warn_rl_in_rcu(device->fs_info,
3325 "lost page write due to IO error on %s",
3326 rcu_str_deref(device->name));
3327 /* note, we don't set_buffer_write_io_error because we have
3328 * our own ways of dealing with the IO errors
3329 */
3330 clear_buffer_uptodate(bh);
3331 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3332 }
3333 unlock_buffer(bh);
3334 put_bh(bh);
3335 }
3336
3337 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3338 struct buffer_head **bh_ret)
3339 {
3340 struct buffer_head *bh;
3341 struct btrfs_super_block *super;
3342 u64 bytenr;
3343
3344 bytenr = btrfs_sb_offset(copy_num);
3345 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3346 return -EINVAL;
3347
3348 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3349 /*
3350 * If we fail to read from the underlying devices, as of now
3351 * the best option we have is to mark it EIO.
3352 */
3353 if (!bh)
3354 return -EIO;
3355
3356 super = (struct btrfs_super_block *)bh->b_data;
3357 if (btrfs_super_bytenr(super) != bytenr ||
3358 btrfs_super_magic(super) != BTRFS_MAGIC) {
3359 brelse(bh);
3360 return -EINVAL;
3361 }
3362
3363 *bh_ret = bh;
3364 return 0;
3365 }
3366
3367
3368 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3369 {
3370 struct buffer_head *bh;
3371 struct buffer_head *latest = NULL;
3372 struct btrfs_super_block *super;
3373 int i;
3374 u64 transid = 0;
3375 int ret = -EINVAL;
3376
3377 /* we would like to check all the supers, but that would make
3378 * a btrfs mount succeed after a mkfs from a different FS.
3379 * So, we need to add a special mount option to scan for
3380 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3381 */
3382 for (i = 0; i < 1; i++) {
3383 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3384 if (ret)
3385 continue;
3386
3387 super = (struct btrfs_super_block *)bh->b_data;
3388
3389 if (!latest || btrfs_super_generation(super) > transid) {
3390 brelse(latest);
3391 latest = bh;
3392 transid = btrfs_super_generation(super);
3393 } else {
3394 brelse(bh);
3395 }
3396 }
3397
3398 if (!latest)
3399 return ERR_PTR(ret);
3400
3401 return latest;
3402 }
3403
3404 /*
3405 * this should be called twice, once with wait == 0 and
3406 * once with wait == 1. When wait == 0 is done, all the buffer heads
3407 * we write are pinned.
3408 *
3409 * They are released when wait == 1 is done.
3410 * max_mirrors must be the same for both runs, and it indicates how
3411 * many supers on this one device should be written.
3412 *
3413 * max_mirrors == 0 means to write them all.
3414 */
3415 static int write_dev_supers(struct btrfs_device *device,
3416 struct btrfs_super_block *sb,
3417 int wait, int max_mirrors)
3418 {
3419 struct buffer_head *bh;
3420 int i;
3421 int ret;
3422 int errors = 0;
3423 u32 crc;
3424 u64 bytenr;
3425
3426 if (max_mirrors == 0)
3427 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3428
3429 for (i = 0; i < max_mirrors; i++) {
3430 bytenr = btrfs_sb_offset(i);
3431 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3432 device->commit_total_bytes)
3433 break;
3434
3435 if (wait) {
3436 bh = __find_get_block(device->bdev, bytenr / 4096,
3437 BTRFS_SUPER_INFO_SIZE);
3438 if (!bh) {
3439 errors++;
3440 continue;
3441 }
3442 wait_on_buffer(bh);
3443 if (!buffer_uptodate(bh))
3444 errors++;
3445
3446 /* drop our reference */
3447 brelse(bh);
3448
3449 /* drop the reference from the wait == 0 run */
3450 brelse(bh);
3451 continue;
3452 } else {
3453 btrfs_set_super_bytenr(sb, bytenr);
3454
3455 crc = ~(u32)0;
3456 crc = btrfs_csum_data((const char *)sb +
3457 BTRFS_CSUM_SIZE, crc,
3458 BTRFS_SUPER_INFO_SIZE -
3459 BTRFS_CSUM_SIZE);
3460 btrfs_csum_final(crc, sb->csum);
3461
3462 /*
3463 * one reference for us, and we leave it for the
3464 * caller
3465 */
3466 bh = __getblk(device->bdev, bytenr / 4096,
3467 BTRFS_SUPER_INFO_SIZE);
3468 if (!bh) {
3469 btrfs_err(device->fs_info,
3470 "couldn't get super buffer head for bytenr %llu",
3471 bytenr);
3472 errors++;
3473 continue;
3474 }
3475
3476 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3477
3478 /* one reference for submit_bh */
3479 get_bh(bh);
3480
3481 set_buffer_uptodate(bh);
3482 lock_buffer(bh);
3483 bh->b_end_io = btrfs_end_buffer_write_sync;
3484 bh->b_private = device;
3485 }
3486
3487 /*
3488 * we fua the first super. The others we allow
3489 * to go down lazy.
3490 */
3491 if (i == 0)
3492 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
3493 else
3494 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3495 if (ret)
3496 errors++;
3497 }
3498 return errors < i ? 0 : -1;
3499 }
3500
3501 /*
3502 * endio for the write_dev_flush, this will wake anyone waiting
3503 * for the barrier when it is done
3504 */
3505 static void btrfs_end_empty_barrier(struct bio *bio)
3506 {
3507 if (bio->bi_private)
3508 complete(bio->bi_private);
3509 bio_put(bio);
3510 }
3511
3512 /*
3513 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3514 * sent down. With wait == 1, it waits for the previous flush.
3515 *
3516 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3517 * capable
3518 */
3519 static int write_dev_flush(struct btrfs_device *device, int wait)
3520 {
3521 struct bio *bio;
3522 int ret = 0;
3523
3524 if (device->nobarriers)
3525 return 0;
3526
3527 if (wait) {
3528 bio = device->flush_bio;
3529 if (!bio)
3530 return 0;
3531
3532 wait_for_completion(&device->flush_wait);
3533
3534 if (bio->bi_error) {
3535 ret = bio->bi_error;
3536 btrfs_dev_stat_inc_and_print(device,
3537 BTRFS_DEV_STAT_FLUSH_ERRS);
3538 }
3539
3540 /* drop the reference from the wait == 0 run */
3541 bio_put(bio);
3542 device->flush_bio = NULL;
3543
3544 return ret;
3545 }
3546
3547 /*
3548 * one reference for us, and we leave it for the
3549 * caller
3550 */
3551 device->flush_bio = NULL;
3552 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3553 if (!bio)
3554 return -ENOMEM;
3555
3556 bio->bi_end_io = btrfs_end_empty_barrier;
3557 bio->bi_bdev = device->bdev;
3558 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3559 init_completion(&device->flush_wait);
3560 bio->bi_private = &device->flush_wait;
3561 device->flush_bio = bio;
3562
3563 bio_get(bio);
3564 btrfsic_submit_bio(bio);
3565
3566 return 0;
3567 }
3568
3569 /*
3570 * send an empty flush down to each device in parallel,
3571 * then wait for them
3572 */
3573 static int barrier_all_devices(struct btrfs_fs_info *info)
3574 {
3575 struct list_head *head;
3576 struct btrfs_device *dev;
3577 int errors_send = 0;
3578 int errors_wait = 0;
3579 int ret;
3580
3581 /* send down all the barriers */
3582 head = &info->fs_devices->devices;
3583 list_for_each_entry_rcu(dev, head, dev_list) {
3584 if (dev->missing)
3585 continue;
3586 if (!dev->bdev) {
3587 errors_send++;
3588 continue;
3589 }
3590 if (!dev->in_fs_metadata || !dev->writeable)
3591 continue;
3592
3593 ret = write_dev_flush(dev, 0);
3594 if (ret)
3595 errors_send++;
3596 }
3597
3598 /* wait for all the barriers */
3599 list_for_each_entry_rcu(dev, head, dev_list) {
3600 if (dev->missing)
3601 continue;
3602 if (!dev->bdev) {
3603 errors_wait++;
3604 continue;
3605 }
3606 if (!dev->in_fs_metadata || !dev->writeable)
3607 continue;
3608
3609 ret = write_dev_flush(dev, 1);
3610 if (ret)
3611 errors_wait++;
3612 }
3613 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3614 errors_wait > info->num_tolerated_disk_barrier_failures)
3615 return -EIO;
3616 return 0;
3617 }
3618
3619 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3620 {
3621 int raid_type;
3622 int min_tolerated = INT_MAX;
3623
3624 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3625 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3626 min_tolerated = min(min_tolerated,
3627 btrfs_raid_array[BTRFS_RAID_SINGLE].
3628 tolerated_failures);
3629
3630 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3631 if (raid_type == BTRFS_RAID_SINGLE)
3632 continue;
3633 if (!(flags & btrfs_raid_group[raid_type]))
3634 continue;
3635 min_tolerated = min(min_tolerated,
3636 btrfs_raid_array[raid_type].
3637 tolerated_failures);
3638 }
3639
3640 if (min_tolerated == INT_MAX) {
3641 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3642 min_tolerated = 0;
3643 }
3644
3645 return min_tolerated;
3646 }
3647
3648 int btrfs_calc_num_tolerated_disk_barrier_failures(
3649 struct btrfs_fs_info *fs_info)
3650 {
3651 struct btrfs_ioctl_space_info space;
3652 struct btrfs_space_info *sinfo;
3653 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3654 BTRFS_BLOCK_GROUP_SYSTEM,
3655 BTRFS_BLOCK_GROUP_METADATA,
3656 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3657 int i;
3658 int c;
3659 int num_tolerated_disk_barrier_failures =
3660 (int)fs_info->fs_devices->num_devices;
3661
3662 for (i = 0; i < ARRAY_SIZE(types); i++) {
3663 struct btrfs_space_info *tmp;
3664
3665 sinfo = NULL;
3666 rcu_read_lock();
3667 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3668 if (tmp->flags == types[i]) {
3669 sinfo = tmp;
3670 break;
3671 }
3672 }
3673 rcu_read_unlock();
3674
3675 if (!sinfo)
3676 continue;
3677
3678 down_read(&sinfo->groups_sem);
3679 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3680 u64 flags;
3681
3682 if (list_empty(&sinfo->block_groups[c]))
3683 continue;
3684
3685 btrfs_get_block_group_info(&sinfo->block_groups[c],
3686 &space);
3687 if (space.total_bytes == 0 || space.used_bytes == 0)
3688 continue;
3689 flags = space.flags;
3690
3691 num_tolerated_disk_barrier_failures = min(
3692 num_tolerated_disk_barrier_failures,
3693 btrfs_get_num_tolerated_disk_barrier_failures(
3694 flags));
3695 }
3696 up_read(&sinfo->groups_sem);
3697 }
3698
3699 return num_tolerated_disk_barrier_failures;
3700 }
3701
3702 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3703 {
3704 struct list_head *head;
3705 struct btrfs_device *dev;
3706 struct btrfs_super_block *sb;
3707 struct btrfs_dev_item *dev_item;
3708 int ret;
3709 int do_barriers;
3710 int max_errors;
3711 int total_errors = 0;
3712 u64 flags;
3713
3714 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3715 backup_super_roots(fs_info);
3716
3717 sb = fs_info->super_for_commit;
3718 dev_item = &sb->dev_item;
3719
3720 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3721 head = &fs_info->fs_devices->devices;
3722 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3723
3724 if (do_barriers) {
3725 ret = barrier_all_devices(fs_info);
3726 if (ret) {
3727 mutex_unlock(
3728 &fs_info->fs_devices->device_list_mutex);
3729 btrfs_handle_fs_error(fs_info, ret,
3730 "errors while submitting device barriers.");
3731 return ret;
3732 }
3733 }
3734
3735 list_for_each_entry_rcu(dev, head, dev_list) {
3736 if (!dev->bdev) {
3737 total_errors++;
3738 continue;
3739 }
3740 if (!dev->in_fs_metadata || !dev->writeable)
3741 continue;
3742
3743 btrfs_set_stack_device_generation(dev_item, 0);
3744 btrfs_set_stack_device_type(dev_item, dev->type);
3745 btrfs_set_stack_device_id(dev_item, dev->devid);
3746 btrfs_set_stack_device_total_bytes(dev_item,
3747 dev->commit_total_bytes);
3748 btrfs_set_stack_device_bytes_used(dev_item,
3749 dev->commit_bytes_used);
3750 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3751 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3752 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3753 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3754 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3755
3756 flags = btrfs_super_flags(sb);
3757 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3758
3759 ret = write_dev_supers(dev, sb, 0, max_mirrors);
3760 if (ret)
3761 total_errors++;
3762 }
3763 if (total_errors > max_errors) {
3764 btrfs_err(fs_info, "%d errors while writing supers",
3765 total_errors);
3766 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3767
3768 /* FUA is masked off if unsupported and can't be the reason */
3769 btrfs_handle_fs_error(fs_info, -EIO,
3770 "%d errors while writing supers",
3771 total_errors);
3772 return -EIO;
3773 }
3774
3775 total_errors = 0;
3776 list_for_each_entry_rcu(dev, head, dev_list) {
3777 if (!dev->bdev)
3778 continue;
3779 if (!dev->in_fs_metadata || !dev->writeable)
3780 continue;
3781
3782 ret = write_dev_supers(dev, sb, 1, max_mirrors);
3783 if (ret)
3784 total_errors++;
3785 }
3786 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3787 if (total_errors > max_errors) {
3788 btrfs_handle_fs_error(fs_info, -EIO,
3789 "%d errors while writing supers",
3790 total_errors);
3791 return -EIO;
3792 }
3793 return 0;
3794 }
3795
3796 /* Drop a fs root from the radix tree and free it. */
3797 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3798 struct btrfs_root *root)
3799 {
3800 spin_lock(&fs_info->fs_roots_radix_lock);
3801 radix_tree_delete(&fs_info->fs_roots_radix,
3802 (unsigned long)root->root_key.objectid);
3803 spin_unlock(&fs_info->fs_roots_radix_lock);
3804
3805 if (btrfs_root_refs(&root->root_item) == 0)
3806 synchronize_srcu(&fs_info->subvol_srcu);
3807
3808 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3809 btrfs_free_log(NULL, root);
3810 if (root->reloc_root) {
3811 free_extent_buffer(root->reloc_root->node);
3812 free_extent_buffer(root->reloc_root->commit_root);
3813 btrfs_put_fs_root(root->reloc_root);
3814 root->reloc_root = NULL;
3815 }
3816 }
3817
3818 if (root->free_ino_pinned)
3819 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3820 if (root->free_ino_ctl)
3821 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3822 free_fs_root(root);
3823 }
3824
3825 static void free_fs_root(struct btrfs_root *root)
3826 {
3827 iput(root->ino_cache_inode);
3828 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3829 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3830 root->orphan_block_rsv = NULL;
3831 if (root->anon_dev)
3832 free_anon_bdev(root->anon_dev);
3833 if (root->subv_writers)
3834 btrfs_free_subvolume_writers(root->subv_writers);
3835 free_extent_buffer(root->node);
3836 free_extent_buffer(root->commit_root);
3837 kfree(root->free_ino_ctl);
3838 kfree(root->free_ino_pinned);
3839 kfree(root->name);
3840 btrfs_put_fs_root(root);
3841 }
3842
3843 void btrfs_free_fs_root(struct btrfs_root *root)
3844 {
3845 free_fs_root(root);
3846 }
3847
3848 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3849 {
3850 u64 root_objectid = 0;
3851 struct btrfs_root *gang[8];
3852 int i = 0;
3853 int err = 0;
3854 unsigned int ret = 0;
3855 int index;
3856
3857 while (1) {
3858 index = srcu_read_lock(&fs_info->subvol_srcu);
3859 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3860 (void **)gang, root_objectid,
3861 ARRAY_SIZE(gang));
3862 if (!ret) {
3863 srcu_read_unlock(&fs_info->subvol_srcu, index);
3864 break;
3865 }
3866 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3867
3868 for (i = 0; i < ret; i++) {
3869 /* Avoid to grab roots in dead_roots */
3870 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3871 gang[i] = NULL;
3872 continue;
3873 }
3874 /* grab all the search result for later use */
3875 gang[i] = btrfs_grab_fs_root(gang[i]);
3876 }
3877 srcu_read_unlock(&fs_info->subvol_srcu, index);
3878
3879 for (i = 0; i < ret; i++) {
3880 if (!gang[i])
3881 continue;
3882 root_objectid = gang[i]->root_key.objectid;
3883 err = btrfs_orphan_cleanup(gang[i]);
3884 if (err)
3885 break;
3886 btrfs_put_fs_root(gang[i]);
3887 }
3888 root_objectid++;
3889 }
3890
3891 /* release the uncleaned roots due to error */
3892 for (; i < ret; i++) {
3893 if (gang[i])
3894 btrfs_put_fs_root(gang[i]);
3895 }
3896 return err;
3897 }
3898
3899 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3900 {
3901 struct btrfs_root *root = fs_info->tree_root;
3902 struct btrfs_trans_handle *trans;
3903
3904 mutex_lock(&fs_info->cleaner_mutex);
3905 btrfs_run_delayed_iputs(fs_info);
3906 mutex_unlock(&fs_info->cleaner_mutex);
3907 wake_up_process(fs_info->cleaner_kthread);
3908
3909 /* wait until ongoing cleanup work done */
3910 down_write(&fs_info->cleanup_work_sem);
3911 up_write(&fs_info->cleanup_work_sem);
3912
3913 trans = btrfs_join_transaction(root);
3914 if (IS_ERR(trans))
3915 return PTR_ERR(trans);
3916 return btrfs_commit_transaction(trans);
3917 }
3918
3919 void close_ctree(struct btrfs_fs_info *fs_info)
3920 {
3921 struct btrfs_root *root = fs_info->tree_root;
3922 int ret;
3923
3924 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3925
3926 /* wait for the qgroup rescan worker to stop */
3927 btrfs_qgroup_wait_for_completion(fs_info, false);
3928
3929 /* wait for the uuid_scan task to finish */
3930 down(&fs_info->uuid_tree_rescan_sem);
3931 /* avoid complains from lockdep et al., set sem back to initial state */
3932 up(&fs_info->uuid_tree_rescan_sem);
3933
3934 /* pause restriper - we want to resume on mount */
3935 btrfs_pause_balance(fs_info);
3936
3937 btrfs_dev_replace_suspend_for_unmount(fs_info);
3938
3939 btrfs_scrub_cancel(fs_info);
3940
3941 /* wait for any defraggers to finish */
3942 wait_event(fs_info->transaction_wait,
3943 (atomic_read(&fs_info->defrag_running) == 0));
3944
3945 /* clear out the rbtree of defraggable inodes */
3946 btrfs_cleanup_defrag_inodes(fs_info);
3947
3948 cancel_work_sync(&fs_info->async_reclaim_work);
3949
3950 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3951 /*
3952 * If the cleaner thread is stopped and there are
3953 * block groups queued for removal, the deletion will be
3954 * skipped when we quit the cleaner thread.
3955 */
3956 btrfs_delete_unused_bgs(fs_info);
3957
3958 ret = btrfs_commit_super(fs_info);
3959 if (ret)
3960 btrfs_err(fs_info, "commit super ret %d", ret);
3961 }
3962
3963 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3964 btrfs_error_commit_super(fs_info);
3965
3966 kthread_stop(fs_info->transaction_kthread);
3967 kthread_stop(fs_info->cleaner_kthread);
3968
3969 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3970
3971 btrfs_free_qgroup_config(fs_info);
3972
3973 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3974 btrfs_info(fs_info, "at unmount delalloc count %lld",
3975 percpu_counter_sum(&fs_info->delalloc_bytes));
3976 }
3977
3978 btrfs_sysfs_remove_mounted(fs_info);
3979 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3980
3981 btrfs_free_fs_roots(fs_info);
3982
3983 btrfs_put_block_group_cache(fs_info);
3984
3985 /*
3986 * we must make sure there is not any read request to
3987 * submit after we stopping all workers.
3988 */
3989 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3990 btrfs_stop_all_workers(fs_info);
3991
3992 btrfs_free_block_groups(fs_info);
3993
3994 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3995 free_root_pointers(fs_info, 1);
3996
3997 iput(fs_info->btree_inode);
3998
3999 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4000 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4001 btrfsic_unmount(fs_info->fs_devices);
4002 #endif
4003
4004 btrfs_close_devices(fs_info->fs_devices);
4005 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4006
4007 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4008 percpu_counter_destroy(&fs_info->delalloc_bytes);
4009 percpu_counter_destroy(&fs_info->bio_counter);
4010 bdi_destroy(&fs_info->bdi);
4011 cleanup_srcu_struct(&fs_info->subvol_srcu);
4012
4013 btrfs_free_stripe_hash_table(fs_info);
4014
4015 __btrfs_free_block_rsv(root->orphan_block_rsv);
4016 root->orphan_block_rsv = NULL;
4017
4018 mutex_lock(&fs_info->chunk_mutex);
4019 while (!list_empty(&fs_info->pinned_chunks)) {
4020 struct extent_map *em;
4021
4022 em = list_first_entry(&fs_info->pinned_chunks,
4023 struct extent_map, list);
4024 list_del_init(&em->list);
4025 free_extent_map(em);
4026 }
4027 mutex_unlock(&fs_info->chunk_mutex);
4028 }
4029
4030 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4031 int atomic)
4032 {
4033 int ret;
4034 struct inode *btree_inode = buf->pages[0]->mapping->host;
4035
4036 ret = extent_buffer_uptodate(buf);
4037 if (!ret)
4038 return ret;
4039
4040 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4041 parent_transid, atomic);
4042 if (ret == -EAGAIN)
4043 return ret;
4044 return !ret;
4045 }
4046
4047 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4048 {
4049 struct btrfs_fs_info *fs_info;
4050 struct btrfs_root *root;
4051 u64 transid = btrfs_header_generation(buf);
4052 int was_dirty;
4053
4054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4055 /*
4056 * This is a fast path so only do this check if we have sanity tests
4057 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4058 * outside of the sanity tests.
4059 */
4060 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4061 return;
4062 #endif
4063 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4064 fs_info = root->fs_info;
4065 btrfs_assert_tree_locked(buf);
4066 if (transid != fs_info->generation)
4067 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4068 buf->start, transid, fs_info->generation);
4069 was_dirty = set_extent_buffer_dirty(buf);
4070 if (!was_dirty)
4071 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
4072 buf->len,
4073 fs_info->dirty_metadata_batch);
4074 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4075 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4076 btrfs_print_leaf(fs_info, buf);
4077 ASSERT(0);
4078 }
4079 #endif
4080 }
4081
4082 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4083 int flush_delayed)
4084 {
4085 /*
4086 * looks as though older kernels can get into trouble with
4087 * this code, they end up stuck in balance_dirty_pages forever
4088 */
4089 int ret;
4090
4091 if (current->flags & PF_MEMALLOC)
4092 return;
4093
4094 if (flush_delayed)
4095 btrfs_balance_delayed_items(fs_info);
4096
4097 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4098 BTRFS_DIRTY_METADATA_THRESH);
4099 if (ret > 0) {
4100 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4101 }
4102 }
4103
4104 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4105 {
4106 __btrfs_btree_balance_dirty(fs_info, 1);
4107 }
4108
4109 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4110 {
4111 __btrfs_btree_balance_dirty(fs_info, 0);
4112 }
4113
4114 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4115 {
4116 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4117 struct btrfs_fs_info *fs_info = root->fs_info;
4118
4119 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4120 }
4121
4122 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
4123 {
4124 struct btrfs_super_block *sb = fs_info->super_copy;
4125 u64 nodesize = btrfs_super_nodesize(sb);
4126 u64 sectorsize = btrfs_super_sectorsize(sb);
4127 int ret = 0;
4128
4129 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4130 btrfs_err(fs_info, "no valid FS found");
4131 ret = -EINVAL;
4132 }
4133 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4134 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4135 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4136 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4137 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4138 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4139 ret = -EINVAL;
4140 }
4141 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4142 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4143 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4144 ret = -EINVAL;
4145 }
4146 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4147 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4148 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4149 ret = -EINVAL;
4150 }
4151
4152 /*
4153 * Check sectorsize and nodesize first, other check will need it.
4154 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4155 */
4156 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4157 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4158 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4159 ret = -EINVAL;
4160 }
4161 /* Only PAGE SIZE is supported yet */
4162 if (sectorsize != PAGE_SIZE) {
4163 btrfs_err(fs_info,
4164 "sectorsize %llu not supported yet, only support %lu",
4165 sectorsize, PAGE_SIZE);
4166 ret = -EINVAL;
4167 }
4168 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4169 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4170 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4171 ret = -EINVAL;
4172 }
4173 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4174 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4175 le32_to_cpu(sb->__unused_leafsize), nodesize);
4176 ret = -EINVAL;
4177 }
4178
4179 /* Root alignment check */
4180 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4181 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4182 btrfs_super_root(sb));
4183 ret = -EINVAL;
4184 }
4185 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4186 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4187 btrfs_super_chunk_root(sb));
4188 ret = -EINVAL;
4189 }
4190 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4191 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4192 btrfs_super_log_root(sb));
4193 ret = -EINVAL;
4194 }
4195
4196 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4197 btrfs_err(fs_info,
4198 "dev_item UUID does not match fsid: %pU != %pU",
4199 fs_info->fsid, sb->dev_item.fsid);
4200 ret = -EINVAL;
4201 }
4202
4203 /*
4204 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4205 * done later
4206 */
4207 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4208 btrfs_err(fs_info, "bytes_used is too small %llu",
4209 btrfs_super_bytes_used(sb));
4210 ret = -EINVAL;
4211 }
4212 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4213 btrfs_err(fs_info, "invalid stripesize %u",
4214 btrfs_super_stripesize(sb));
4215 ret = -EINVAL;
4216 }
4217 if (btrfs_super_num_devices(sb) > (1UL << 31))
4218 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4219 btrfs_super_num_devices(sb));
4220 if (btrfs_super_num_devices(sb) == 0) {
4221 btrfs_err(fs_info, "number of devices is 0");
4222 ret = -EINVAL;
4223 }
4224
4225 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4226 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4227 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4228 ret = -EINVAL;
4229 }
4230
4231 /*
4232 * Obvious sys_chunk_array corruptions, it must hold at least one key
4233 * and one chunk
4234 */
4235 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4236 btrfs_err(fs_info, "system chunk array too big %u > %u",
4237 btrfs_super_sys_array_size(sb),
4238 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4239 ret = -EINVAL;
4240 }
4241 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4242 + sizeof(struct btrfs_chunk)) {
4243 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4244 btrfs_super_sys_array_size(sb),
4245 sizeof(struct btrfs_disk_key)
4246 + sizeof(struct btrfs_chunk));
4247 ret = -EINVAL;
4248 }
4249
4250 /*
4251 * The generation is a global counter, we'll trust it more than the others
4252 * but it's still possible that it's the one that's wrong.
4253 */
4254 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4255 btrfs_warn(fs_info,
4256 "suspicious: generation < chunk_root_generation: %llu < %llu",
4257 btrfs_super_generation(sb),
4258 btrfs_super_chunk_root_generation(sb));
4259 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4260 && btrfs_super_cache_generation(sb) != (u64)-1)
4261 btrfs_warn(fs_info,
4262 "suspicious: generation < cache_generation: %llu < %llu",
4263 btrfs_super_generation(sb),
4264 btrfs_super_cache_generation(sb));
4265
4266 return ret;
4267 }
4268
4269 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4270 {
4271 mutex_lock(&fs_info->cleaner_mutex);
4272 btrfs_run_delayed_iputs(fs_info);
4273 mutex_unlock(&fs_info->cleaner_mutex);
4274
4275 down_write(&fs_info->cleanup_work_sem);
4276 up_write(&fs_info->cleanup_work_sem);
4277
4278 /* cleanup FS via transaction */
4279 btrfs_cleanup_transaction(fs_info);
4280 }
4281
4282 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4283 {
4284 struct btrfs_ordered_extent *ordered;
4285
4286 spin_lock(&root->ordered_extent_lock);
4287 /*
4288 * This will just short circuit the ordered completion stuff which will
4289 * make sure the ordered extent gets properly cleaned up.
4290 */
4291 list_for_each_entry(ordered, &root->ordered_extents,
4292 root_extent_list)
4293 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4294 spin_unlock(&root->ordered_extent_lock);
4295 }
4296
4297 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4298 {
4299 struct btrfs_root *root;
4300 struct list_head splice;
4301
4302 INIT_LIST_HEAD(&splice);
4303
4304 spin_lock(&fs_info->ordered_root_lock);
4305 list_splice_init(&fs_info->ordered_roots, &splice);
4306 while (!list_empty(&splice)) {
4307 root = list_first_entry(&splice, struct btrfs_root,
4308 ordered_root);
4309 list_move_tail(&root->ordered_root,
4310 &fs_info->ordered_roots);
4311
4312 spin_unlock(&fs_info->ordered_root_lock);
4313 btrfs_destroy_ordered_extents(root);
4314
4315 cond_resched();
4316 spin_lock(&fs_info->ordered_root_lock);
4317 }
4318 spin_unlock(&fs_info->ordered_root_lock);
4319 }
4320
4321 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4322 struct btrfs_fs_info *fs_info)
4323 {
4324 struct rb_node *node;
4325 struct btrfs_delayed_ref_root *delayed_refs;
4326 struct btrfs_delayed_ref_node *ref;
4327 int ret = 0;
4328
4329 delayed_refs = &trans->delayed_refs;
4330
4331 spin_lock(&delayed_refs->lock);
4332 if (atomic_read(&delayed_refs->num_entries) == 0) {
4333 spin_unlock(&delayed_refs->lock);
4334 btrfs_info(fs_info, "delayed_refs has NO entry");
4335 return ret;
4336 }
4337
4338 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4339 struct btrfs_delayed_ref_head *head;
4340 struct btrfs_delayed_ref_node *tmp;
4341 bool pin_bytes = false;
4342
4343 head = rb_entry(node, struct btrfs_delayed_ref_head,
4344 href_node);
4345 if (!mutex_trylock(&head->mutex)) {
4346 atomic_inc(&head->node.refs);
4347 spin_unlock(&delayed_refs->lock);
4348
4349 mutex_lock(&head->mutex);
4350 mutex_unlock(&head->mutex);
4351 btrfs_put_delayed_ref(&head->node);
4352 spin_lock(&delayed_refs->lock);
4353 continue;
4354 }
4355 spin_lock(&head->lock);
4356 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4357 list) {
4358 ref->in_tree = 0;
4359 list_del(&ref->list);
4360 if (!list_empty(&ref->add_list))
4361 list_del(&ref->add_list);
4362 atomic_dec(&delayed_refs->num_entries);
4363 btrfs_put_delayed_ref(ref);
4364 }
4365 if (head->must_insert_reserved)
4366 pin_bytes = true;
4367 btrfs_free_delayed_extent_op(head->extent_op);
4368 delayed_refs->num_heads--;
4369 if (head->processing == 0)
4370 delayed_refs->num_heads_ready--;
4371 atomic_dec(&delayed_refs->num_entries);
4372 head->node.in_tree = 0;
4373 rb_erase(&head->href_node, &delayed_refs->href_root);
4374 spin_unlock(&head->lock);
4375 spin_unlock(&delayed_refs->lock);
4376 mutex_unlock(&head->mutex);
4377
4378 if (pin_bytes)
4379 btrfs_pin_extent(fs_info, head->node.bytenr,
4380 head->node.num_bytes, 1);
4381 btrfs_put_delayed_ref(&head->node);
4382 cond_resched();
4383 spin_lock(&delayed_refs->lock);
4384 }
4385
4386 spin_unlock(&delayed_refs->lock);
4387
4388 return ret;
4389 }
4390
4391 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4392 {
4393 struct btrfs_inode *btrfs_inode;
4394 struct list_head splice;
4395
4396 INIT_LIST_HEAD(&splice);
4397
4398 spin_lock(&root->delalloc_lock);
4399 list_splice_init(&root->delalloc_inodes, &splice);
4400
4401 while (!list_empty(&splice)) {
4402 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4403 delalloc_inodes);
4404
4405 list_del_init(&btrfs_inode->delalloc_inodes);
4406 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4407 &btrfs_inode->runtime_flags);
4408 spin_unlock(&root->delalloc_lock);
4409
4410 btrfs_invalidate_inodes(btrfs_inode->root);
4411
4412 spin_lock(&root->delalloc_lock);
4413 }
4414
4415 spin_unlock(&root->delalloc_lock);
4416 }
4417
4418 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4419 {
4420 struct btrfs_root *root;
4421 struct list_head splice;
4422
4423 INIT_LIST_HEAD(&splice);
4424
4425 spin_lock(&fs_info->delalloc_root_lock);
4426 list_splice_init(&fs_info->delalloc_roots, &splice);
4427 while (!list_empty(&splice)) {
4428 root = list_first_entry(&splice, struct btrfs_root,
4429 delalloc_root);
4430 list_del_init(&root->delalloc_root);
4431 root = btrfs_grab_fs_root(root);
4432 BUG_ON(!root);
4433 spin_unlock(&fs_info->delalloc_root_lock);
4434
4435 btrfs_destroy_delalloc_inodes(root);
4436 btrfs_put_fs_root(root);
4437
4438 spin_lock(&fs_info->delalloc_root_lock);
4439 }
4440 spin_unlock(&fs_info->delalloc_root_lock);
4441 }
4442
4443 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4444 struct extent_io_tree *dirty_pages,
4445 int mark)
4446 {
4447 int ret;
4448 struct extent_buffer *eb;
4449 u64 start = 0;
4450 u64 end;
4451
4452 while (1) {
4453 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4454 mark, NULL);
4455 if (ret)
4456 break;
4457
4458 clear_extent_bits(dirty_pages, start, end, mark);
4459 while (start <= end) {
4460 eb = find_extent_buffer(fs_info, start);
4461 start += fs_info->nodesize;
4462 if (!eb)
4463 continue;
4464 wait_on_extent_buffer_writeback(eb);
4465
4466 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4467 &eb->bflags))
4468 clear_extent_buffer_dirty(eb);
4469 free_extent_buffer_stale(eb);
4470 }
4471 }
4472
4473 return ret;
4474 }
4475
4476 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4477 struct extent_io_tree *pinned_extents)
4478 {
4479 struct extent_io_tree *unpin;
4480 u64 start;
4481 u64 end;
4482 int ret;
4483 bool loop = true;
4484
4485 unpin = pinned_extents;
4486 again:
4487 while (1) {
4488 ret = find_first_extent_bit(unpin, 0, &start, &end,
4489 EXTENT_DIRTY, NULL);
4490 if (ret)
4491 break;
4492
4493 clear_extent_dirty(unpin, start, end);
4494 btrfs_error_unpin_extent_range(fs_info, start, end);
4495 cond_resched();
4496 }
4497
4498 if (loop) {
4499 if (unpin == &fs_info->freed_extents[0])
4500 unpin = &fs_info->freed_extents[1];
4501 else
4502 unpin = &fs_info->freed_extents[0];
4503 loop = false;
4504 goto again;
4505 }
4506
4507 return 0;
4508 }
4509
4510 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4511 {
4512 struct inode *inode;
4513
4514 inode = cache->io_ctl.inode;
4515 if (inode) {
4516 invalidate_inode_pages2(inode->i_mapping);
4517 BTRFS_I(inode)->generation = 0;
4518 cache->io_ctl.inode = NULL;
4519 iput(inode);
4520 }
4521 btrfs_put_block_group(cache);
4522 }
4523
4524 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4525 struct btrfs_fs_info *fs_info)
4526 {
4527 struct btrfs_block_group_cache *cache;
4528
4529 spin_lock(&cur_trans->dirty_bgs_lock);
4530 while (!list_empty(&cur_trans->dirty_bgs)) {
4531 cache = list_first_entry(&cur_trans->dirty_bgs,
4532 struct btrfs_block_group_cache,
4533 dirty_list);
4534 if (!cache) {
4535 btrfs_err(fs_info, "orphan block group dirty_bgs list");
4536 spin_unlock(&cur_trans->dirty_bgs_lock);
4537 return;
4538 }
4539
4540 if (!list_empty(&cache->io_list)) {
4541 spin_unlock(&cur_trans->dirty_bgs_lock);
4542 list_del_init(&cache->io_list);
4543 btrfs_cleanup_bg_io(cache);
4544 spin_lock(&cur_trans->dirty_bgs_lock);
4545 }
4546
4547 list_del_init(&cache->dirty_list);
4548 spin_lock(&cache->lock);
4549 cache->disk_cache_state = BTRFS_DC_ERROR;
4550 spin_unlock(&cache->lock);
4551
4552 spin_unlock(&cur_trans->dirty_bgs_lock);
4553 btrfs_put_block_group(cache);
4554 spin_lock(&cur_trans->dirty_bgs_lock);
4555 }
4556 spin_unlock(&cur_trans->dirty_bgs_lock);
4557
4558 while (!list_empty(&cur_trans->io_bgs)) {
4559 cache = list_first_entry(&cur_trans->io_bgs,
4560 struct btrfs_block_group_cache,
4561 io_list);
4562 if (!cache) {
4563 btrfs_err(fs_info, "orphan block group on io_bgs list");
4564 return;
4565 }
4566
4567 list_del_init(&cache->io_list);
4568 spin_lock(&cache->lock);
4569 cache->disk_cache_state = BTRFS_DC_ERROR;
4570 spin_unlock(&cache->lock);
4571 btrfs_cleanup_bg_io(cache);
4572 }
4573 }
4574
4575 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4576 struct btrfs_fs_info *fs_info)
4577 {
4578 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4579 ASSERT(list_empty(&cur_trans->dirty_bgs));
4580 ASSERT(list_empty(&cur_trans->io_bgs));
4581
4582 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4583
4584 cur_trans->state = TRANS_STATE_COMMIT_START;
4585 wake_up(&fs_info->transaction_blocked_wait);
4586
4587 cur_trans->state = TRANS_STATE_UNBLOCKED;
4588 wake_up(&fs_info->transaction_wait);
4589
4590 btrfs_destroy_delayed_inodes(fs_info);
4591 btrfs_assert_delayed_root_empty(fs_info);
4592
4593 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4594 EXTENT_DIRTY);
4595 btrfs_destroy_pinned_extent(fs_info,
4596 fs_info->pinned_extents);
4597
4598 cur_trans->state =TRANS_STATE_COMPLETED;
4599 wake_up(&cur_trans->commit_wait);
4600
4601 /*
4602 memset(cur_trans, 0, sizeof(*cur_trans));
4603 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4604 */
4605 }
4606
4607 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4608 {
4609 struct btrfs_transaction *t;
4610
4611 mutex_lock(&fs_info->transaction_kthread_mutex);
4612
4613 spin_lock(&fs_info->trans_lock);
4614 while (!list_empty(&fs_info->trans_list)) {
4615 t = list_first_entry(&fs_info->trans_list,
4616 struct btrfs_transaction, list);
4617 if (t->state >= TRANS_STATE_COMMIT_START) {
4618 atomic_inc(&t->use_count);
4619 spin_unlock(&fs_info->trans_lock);
4620 btrfs_wait_for_commit(fs_info, t->transid);
4621 btrfs_put_transaction(t);
4622 spin_lock(&fs_info->trans_lock);
4623 continue;
4624 }
4625 if (t == fs_info->running_transaction) {
4626 t->state = TRANS_STATE_COMMIT_DOING;
4627 spin_unlock(&fs_info->trans_lock);
4628 /*
4629 * We wait for 0 num_writers since we don't hold a trans
4630 * handle open currently for this transaction.
4631 */
4632 wait_event(t->writer_wait,
4633 atomic_read(&t->num_writers) == 0);
4634 } else {
4635 spin_unlock(&fs_info->trans_lock);
4636 }
4637 btrfs_cleanup_one_transaction(t, fs_info);
4638
4639 spin_lock(&fs_info->trans_lock);
4640 if (t == fs_info->running_transaction)
4641 fs_info->running_transaction = NULL;
4642 list_del_init(&t->list);
4643 spin_unlock(&fs_info->trans_lock);
4644
4645 btrfs_put_transaction(t);
4646 trace_btrfs_transaction_commit(fs_info->tree_root);
4647 spin_lock(&fs_info->trans_lock);
4648 }
4649 spin_unlock(&fs_info->trans_lock);
4650 btrfs_destroy_all_ordered_extents(fs_info);
4651 btrfs_destroy_delayed_inodes(fs_info);
4652 btrfs_assert_delayed_root_empty(fs_info);
4653 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4654 btrfs_destroy_all_delalloc_inodes(fs_info);
4655 mutex_unlock(&fs_info->transaction_kthread_mutex);
4656
4657 return 0;
4658 }
4659
4660 static const struct extent_io_ops btree_extent_io_ops = {
4661 /* mandatory callbacks */
4662 .submit_bio_hook = btree_submit_bio_hook,
4663 .readpage_end_io_hook = btree_readpage_end_io_hook,
4664 /* note we're sharing with inode.c for the merge bio hook */
4665 .merge_bio_hook = btrfs_merge_bio_hook,
4666 .readpage_io_failed_hook = btree_io_failed_hook,
4667
4668 /* optional callbacks */
4669 };