]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/disk-io.c
drm/vc4: Add support for feeding DSI encoders from the pixel valve.
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_fs_info *fs_info);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
79 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 int error;
136 };
137
138 /*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 # error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203 {
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226 {
227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
232 read_lock(&em_tree->lock);
233 em = lookup_extent_mapping(em_tree, start, len);
234 if (em) {
235 em->bdev = fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265 out:
266 return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, u8 *result)
275 {
276 put_unaligned_le32(~crc, result);
277 }
278
279 /*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286 {
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info->sb->s_id, buf->start,
331 val, found, btrfs_header_level(buf));
332 if (result != (char *)&inline_result)
333 kfree(result);
334 return -EUCLEAN;
335 }
336 } else {
337 write_extent_buffer(buf, result, 0, csum_size);
338 }
339 if (result != (char *)&inline_result)
340 kfree(result);
341 return 0;
342 }
343
344 /*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
353 {
354 struct extent_state *cached_state = NULL;
355 int ret;
356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
361 if (atomic)
362 return -EAGAIN;
363
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state);
371 if (extent_buffer_uptodate(eb) &&
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
379 parent_transid, btrfs_header_generation(eb));
380 ret = 1;
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
392 out:
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
397 return ret;
398 }
399
400 /*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
406 {
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437 }
438
439 /*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
444 struct extent_buffer *eb,
445 u64 parent_transid)
446 {
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 btree_get_extent, mirror_num);
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
461 parent_transid, 0))
462 break;
463 else
464 ret = -EIO;
465 }
466
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 break;
474
475 num_copies = btrfs_num_copies(fs_info,
476 eb->start, eb->len);
477 if (num_copies == 1)
478 break;
479
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
485 mirror_num++;
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
489 if (mirror_num > num_copies)
490 break;
491 }
492
493 if (failed && !ret && failed_mirror)
494 repair_eb_io_failure(fs_info, eb, failed_mirror);
495
496 return ret;
497 }
498
499 /*
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
502 */
503
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506 u64 start = page_offset(page);
507 u64 found_start;
508 struct extent_buffer *eb;
509
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
513
514 found_start = btrfs_header_bytenr(eb);
515 /*
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
518 */
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
523
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
527 return csum_tree_block(fs_info, eb, 0);
528 }
529
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 struct extent_buffer *eb)
532 {
533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 u8 fsid[BTRFS_UUID_SIZE];
535 int ret = 1;
536
537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
542 }
543 fs_devices = fs_devices->seed;
544 }
545 return ret;
546 }
547
548 #define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, \
550 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556 {
557 struct btrfs_fs_info *fs_info = root->fs_info;
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
563 /*
564 * Extent buffers from a relocation tree have a owner field that
565 * corresponds to the subvolume tree they are based on. So just from an
566 * extent buffer alone we can not find out what is the id of the
567 * corresponding subvolume tree, so we can not figure out if the extent
568 * buffer corresponds to the root of the relocation tree or not. So skip
569 * this check for relocation trees.
570 */
571 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
572 struct btrfs_root *check_root;
573
574 key.objectid = btrfs_header_owner(leaf);
575 key.type = BTRFS_ROOT_ITEM_KEY;
576 key.offset = (u64)-1;
577
578 check_root = btrfs_get_fs_root(fs_info, &key, false);
579 /*
580 * The only reason we also check NULL here is that during
581 * open_ctree() some roots has not yet been set up.
582 */
583 if (!IS_ERR_OR_NULL(check_root)) {
584 struct extent_buffer *eb;
585
586 eb = btrfs_root_node(check_root);
587 /* if leaf is the root, then it's fine */
588 if (leaf != eb) {
589 CORRUPT("non-root leaf's nritems is 0",
590 leaf, check_root, 0);
591 free_extent_buffer(eb);
592 return -EIO;
593 }
594 free_extent_buffer(eb);
595 }
596 return 0;
597 }
598
599 if (nritems == 0)
600 return 0;
601
602 /* Check the 0 item */
603 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
604 BTRFS_LEAF_DATA_SIZE(fs_info)) {
605 CORRUPT("invalid item offset size pair", leaf, root, 0);
606 return -EIO;
607 }
608
609 /*
610 * Check to make sure each items keys are in the correct order and their
611 * offsets make sense. We only have to loop through nritems-1 because
612 * we check the current slot against the next slot, which verifies the
613 * next slot's offset+size makes sense and that the current's slot
614 * offset is correct.
615 */
616 for (slot = 0; slot < nritems - 1; slot++) {
617 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
618 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
619
620 /* Make sure the keys are in the right order */
621 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
622 CORRUPT("bad key order", leaf, root, slot);
623 return -EIO;
624 }
625
626 /*
627 * Make sure the offset and ends are right, remember that the
628 * item data starts at the end of the leaf and grows towards the
629 * front.
630 */
631 if (btrfs_item_offset_nr(leaf, slot) !=
632 btrfs_item_end_nr(leaf, slot + 1)) {
633 CORRUPT("slot offset bad", leaf, root, slot);
634 return -EIO;
635 }
636
637 /*
638 * Check to make sure that we don't point outside of the leaf,
639 * just in case all the items are consistent to each other, but
640 * all point outside of the leaf.
641 */
642 if (btrfs_item_end_nr(leaf, slot) >
643 BTRFS_LEAF_DATA_SIZE(fs_info)) {
644 CORRUPT("slot end outside of leaf", leaf, root, slot);
645 return -EIO;
646 }
647 }
648
649 return 0;
650 }
651
652 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
653 {
654 unsigned long nr = btrfs_header_nritems(node);
655 struct btrfs_key key, next_key;
656 int slot;
657 u64 bytenr;
658 int ret = 0;
659
660 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
661 btrfs_crit(root->fs_info,
662 "corrupt node: block %llu root %llu nritems %lu",
663 node->start, root->objectid, nr);
664 return -EIO;
665 }
666
667 for (slot = 0; slot < nr - 1; slot++) {
668 bytenr = btrfs_node_blockptr(node, slot);
669 btrfs_node_key_to_cpu(node, &key, slot);
670 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
671
672 if (!bytenr) {
673 CORRUPT("invalid item slot", node, root, slot);
674 ret = -EIO;
675 goto out;
676 }
677
678 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
679 CORRUPT("bad key order", node, root, slot);
680 ret = -EIO;
681 goto out;
682 }
683 }
684 out:
685 return ret;
686 }
687
688 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
689 u64 phy_offset, struct page *page,
690 u64 start, u64 end, int mirror)
691 {
692 u64 found_start;
693 int found_level;
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696 struct btrfs_fs_info *fs_info = root->fs_info;
697 int ret = 0;
698 int reads_done;
699
700 if (!page->private)
701 goto out;
702
703 eb = (struct extent_buffer *)page->private;
704
705 /* the pending IO might have been the only thing that kept this buffer
706 * in memory. Make sure we have a ref for all this other checks
707 */
708 extent_buffer_get(eb);
709
710 reads_done = atomic_dec_and_test(&eb->io_pages);
711 if (!reads_done)
712 goto err;
713
714 eb->read_mirror = mirror;
715 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
716 ret = -EIO;
717 goto err;
718 }
719
720 found_start = btrfs_header_bytenr(eb);
721 if (found_start != eb->start) {
722 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
723 found_start, eb->start);
724 ret = -EIO;
725 goto err;
726 }
727 if (check_tree_block_fsid(fs_info, eb)) {
728 btrfs_err_rl(fs_info, "bad fsid on block %llu",
729 eb->start);
730 ret = -EIO;
731 goto err;
732 }
733 found_level = btrfs_header_level(eb);
734 if (found_level >= BTRFS_MAX_LEVEL) {
735 btrfs_err(fs_info, "bad tree block level %d",
736 (int)btrfs_header_level(eb));
737 ret = -EIO;
738 goto err;
739 }
740
741 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
742 eb, found_level);
743
744 ret = csum_tree_block(fs_info, eb, 1);
745 if (ret)
746 goto err;
747
748 /*
749 * If this is a leaf block and it is corrupt, set the corrupt bit so
750 * that we don't try and read the other copies of this block, just
751 * return -EIO.
752 */
753 if (found_level == 0 && check_leaf(root, eb)) {
754 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
755 ret = -EIO;
756 }
757
758 if (found_level > 0 && check_node(root, eb))
759 ret = -EIO;
760
761 if (!ret)
762 set_extent_buffer_uptodate(eb);
763 err:
764 if (reads_done &&
765 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
766 btree_readahead_hook(fs_info, eb, ret);
767
768 if (ret) {
769 /*
770 * our io error hook is going to dec the io pages
771 * again, we have to make sure it has something
772 * to decrement
773 */
774 atomic_inc(&eb->io_pages);
775 clear_extent_buffer_uptodate(eb);
776 }
777 free_extent_buffer(eb);
778 out:
779 return ret;
780 }
781
782 static int btree_io_failed_hook(struct page *page, int failed_mirror)
783 {
784 struct extent_buffer *eb;
785
786 eb = (struct extent_buffer *)page->private;
787 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
788 eb->read_mirror = failed_mirror;
789 atomic_dec(&eb->io_pages);
790 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
791 btree_readahead_hook(eb->fs_info, eb, -EIO);
792 return -EIO; /* we fixed nothing */
793 }
794
795 static void end_workqueue_bio(struct bio *bio)
796 {
797 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
798 struct btrfs_fs_info *fs_info;
799 struct btrfs_workqueue *wq;
800 btrfs_work_func_t func;
801
802 fs_info = end_io_wq->info;
803 end_io_wq->error = bio->bi_error;
804
805 if (bio_op(bio) == REQ_OP_WRITE) {
806 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
807 wq = fs_info->endio_meta_write_workers;
808 func = btrfs_endio_meta_write_helper;
809 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
810 wq = fs_info->endio_freespace_worker;
811 func = btrfs_freespace_write_helper;
812 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
813 wq = fs_info->endio_raid56_workers;
814 func = btrfs_endio_raid56_helper;
815 } else {
816 wq = fs_info->endio_write_workers;
817 func = btrfs_endio_write_helper;
818 }
819 } else {
820 if (unlikely(end_io_wq->metadata ==
821 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
822 wq = fs_info->endio_repair_workers;
823 func = btrfs_endio_repair_helper;
824 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
825 wq = fs_info->endio_raid56_workers;
826 func = btrfs_endio_raid56_helper;
827 } else if (end_io_wq->metadata) {
828 wq = fs_info->endio_meta_workers;
829 func = btrfs_endio_meta_helper;
830 } else {
831 wq = fs_info->endio_workers;
832 func = btrfs_endio_helper;
833 }
834 }
835
836 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
837 btrfs_queue_work(wq, &end_io_wq->work);
838 }
839
840 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
841 enum btrfs_wq_endio_type metadata)
842 {
843 struct btrfs_end_io_wq *end_io_wq;
844
845 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
846 if (!end_io_wq)
847 return -ENOMEM;
848
849 end_io_wq->private = bio->bi_private;
850 end_io_wq->end_io = bio->bi_end_io;
851 end_io_wq->info = info;
852 end_io_wq->error = 0;
853 end_io_wq->bio = bio;
854 end_io_wq->metadata = metadata;
855
856 bio->bi_private = end_io_wq;
857 bio->bi_end_io = end_workqueue_bio;
858 return 0;
859 }
860
861 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
862 {
863 unsigned long limit = min_t(unsigned long,
864 info->thread_pool_size,
865 info->fs_devices->open_devices);
866 return 256 * limit;
867 }
868
869 static void run_one_async_start(struct btrfs_work *work)
870 {
871 struct async_submit_bio *async;
872 int ret;
873
874 async = container_of(work, struct async_submit_bio, work);
875 ret = async->submit_bio_start(async->inode, async->bio,
876 async->mirror_num, async->bio_flags,
877 async->bio_offset);
878 if (ret)
879 async->error = ret;
880 }
881
882 static void run_one_async_done(struct btrfs_work *work)
883 {
884 struct btrfs_fs_info *fs_info;
885 struct async_submit_bio *async;
886 int limit;
887
888 async = container_of(work, struct async_submit_bio, work);
889 fs_info = BTRFS_I(async->inode)->root->fs_info;
890
891 limit = btrfs_async_submit_limit(fs_info);
892 limit = limit * 2 / 3;
893
894 /*
895 * atomic_dec_return implies a barrier for waitqueue_active
896 */
897 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
898 waitqueue_active(&fs_info->async_submit_wait))
899 wake_up(&fs_info->async_submit_wait);
900
901 /* If an error occurred we just want to clean up the bio and move on */
902 if (async->error) {
903 async->bio->bi_error = async->error;
904 bio_endio(async->bio);
905 return;
906 }
907
908 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
909 async->bio_flags, async->bio_offset);
910 }
911
912 static void run_one_async_free(struct btrfs_work *work)
913 {
914 struct async_submit_bio *async;
915
916 async = container_of(work, struct async_submit_bio, work);
917 kfree(async);
918 }
919
920 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
921 struct bio *bio, int mirror_num,
922 unsigned long bio_flags,
923 u64 bio_offset,
924 extent_submit_bio_hook_t *submit_bio_start,
925 extent_submit_bio_hook_t *submit_bio_done)
926 {
927 struct async_submit_bio *async;
928
929 async = kmalloc(sizeof(*async), GFP_NOFS);
930 if (!async)
931 return -ENOMEM;
932
933 async->inode = inode;
934 async->bio = bio;
935 async->mirror_num = mirror_num;
936 async->submit_bio_start = submit_bio_start;
937 async->submit_bio_done = submit_bio_done;
938
939 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
940 run_one_async_done, run_one_async_free);
941
942 async->bio_flags = bio_flags;
943 async->bio_offset = bio_offset;
944
945 async->error = 0;
946
947 atomic_inc(&fs_info->nr_async_submits);
948
949 if (op_is_sync(bio->bi_opf))
950 btrfs_set_work_high_priority(&async->work);
951
952 btrfs_queue_work(fs_info->workers, &async->work);
953
954 while (atomic_read(&fs_info->async_submit_draining) &&
955 atomic_read(&fs_info->nr_async_submits)) {
956 wait_event(fs_info->async_submit_wait,
957 (atomic_read(&fs_info->nr_async_submits) == 0));
958 }
959
960 return 0;
961 }
962
963 static int btree_csum_one_bio(struct bio *bio)
964 {
965 struct bio_vec *bvec;
966 struct btrfs_root *root;
967 int i, ret = 0;
968
969 bio_for_each_segment_all(bvec, bio, i) {
970 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
971 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
972 if (ret)
973 break;
974 }
975
976 return ret;
977 }
978
979 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
980 int mirror_num, unsigned long bio_flags,
981 u64 bio_offset)
982 {
983 /*
984 * when we're called for a write, we're already in the async
985 * submission context. Just jump into btrfs_map_bio
986 */
987 return btree_csum_one_bio(bio);
988 }
989
990 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
991 int mirror_num, unsigned long bio_flags,
992 u64 bio_offset)
993 {
994 int ret;
995
996 /*
997 * when we're called for a write, we're already in the async
998 * submission context. Just jump into btrfs_map_bio
999 */
1000 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1001 if (ret) {
1002 bio->bi_error = ret;
1003 bio_endio(bio);
1004 }
1005 return ret;
1006 }
1007
1008 static int check_async_write(struct inode *inode, unsigned long bio_flags)
1009 {
1010 if (bio_flags & EXTENT_BIO_TREE_LOG)
1011 return 0;
1012 #ifdef CONFIG_X86
1013 if (static_cpu_has(X86_FEATURE_XMM4_2))
1014 return 0;
1015 #endif
1016 return 1;
1017 }
1018
1019 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1020 int mirror_num, unsigned long bio_flags,
1021 u64 bio_offset)
1022 {
1023 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1024 int async = check_async_write(inode, bio_flags);
1025 int ret;
1026
1027 if (bio_op(bio) != REQ_OP_WRITE) {
1028 /*
1029 * called for a read, do the setup so that checksum validation
1030 * can happen in the async kernel threads
1031 */
1032 ret = btrfs_bio_wq_end_io(fs_info, bio,
1033 BTRFS_WQ_ENDIO_METADATA);
1034 if (ret)
1035 goto out_w_error;
1036 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1037 } else if (!async) {
1038 ret = btree_csum_one_bio(bio);
1039 if (ret)
1040 goto out_w_error;
1041 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1042 } else {
1043 /*
1044 * kthread helpers are used to submit writes so that
1045 * checksumming can happen in parallel across all CPUs
1046 */
1047 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1048 bio_offset,
1049 __btree_submit_bio_start,
1050 __btree_submit_bio_done);
1051 }
1052
1053 if (ret)
1054 goto out_w_error;
1055 return 0;
1056
1057 out_w_error:
1058 bio->bi_error = ret;
1059 bio_endio(bio);
1060 return ret;
1061 }
1062
1063 #ifdef CONFIG_MIGRATION
1064 static int btree_migratepage(struct address_space *mapping,
1065 struct page *newpage, struct page *page,
1066 enum migrate_mode mode)
1067 {
1068 /*
1069 * we can't safely write a btree page from here,
1070 * we haven't done the locking hook
1071 */
1072 if (PageDirty(page))
1073 return -EAGAIN;
1074 /*
1075 * Buffers may be managed in a filesystem specific way.
1076 * We must have no buffers or drop them.
1077 */
1078 if (page_has_private(page) &&
1079 !try_to_release_page(page, GFP_KERNEL))
1080 return -EAGAIN;
1081 return migrate_page(mapping, newpage, page, mode);
1082 }
1083 #endif
1084
1085
1086 static int btree_writepages(struct address_space *mapping,
1087 struct writeback_control *wbc)
1088 {
1089 struct btrfs_fs_info *fs_info;
1090 int ret;
1091
1092 if (wbc->sync_mode == WB_SYNC_NONE) {
1093
1094 if (wbc->for_kupdate)
1095 return 0;
1096
1097 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1098 /* this is a bit racy, but that's ok */
1099 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100 BTRFS_DIRTY_METADATA_THRESH);
1101 if (ret < 0)
1102 return 0;
1103 }
1104 return btree_write_cache_pages(mapping, wbc);
1105 }
1106
1107 static int btree_readpage(struct file *file, struct page *page)
1108 {
1109 struct extent_io_tree *tree;
1110 tree = &BTRFS_I(page->mapping->host)->io_tree;
1111 return extent_read_full_page(tree, page, btree_get_extent, 0);
1112 }
1113
1114 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1115 {
1116 if (PageWriteback(page) || PageDirty(page))
1117 return 0;
1118
1119 return try_release_extent_buffer(page);
1120 }
1121
1122 static void btree_invalidatepage(struct page *page, unsigned int offset,
1123 unsigned int length)
1124 {
1125 struct extent_io_tree *tree;
1126 tree = &BTRFS_I(page->mapping->host)->io_tree;
1127 extent_invalidatepage(tree, page, offset);
1128 btree_releasepage(page, GFP_NOFS);
1129 if (PagePrivate(page)) {
1130 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131 "page private not zero on page %llu",
1132 (unsigned long long)page_offset(page));
1133 ClearPagePrivate(page);
1134 set_page_private(page, 0);
1135 put_page(page);
1136 }
1137 }
1138
1139 static int btree_set_page_dirty(struct page *page)
1140 {
1141 #ifdef DEBUG
1142 struct extent_buffer *eb;
1143
1144 BUG_ON(!PagePrivate(page));
1145 eb = (struct extent_buffer *)page->private;
1146 BUG_ON(!eb);
1147 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148 BUG_ON(!atomic_read(&eb->refs));
1149 btrfs_assert_tree_locked(eb);
1150 #endif
1151 return __set_page_dirty_nobuffers(page);
1152 }
1153
1154 static const struct address_space_operations btree_aops = {
1155 .readpage = btree_readpage,
1156 .writepages = btree_writepages,
1157 .releasepage = btree_releasepage,
1158 .invalidatepage = btree_invalidatepage,
1159 #ifdef CONFIG_MIGRATION
1160 .migratepage = btree_migratepage,
1161 #endif
1162 .set_page_dirty = btree_set_page_dirty,
1163 };
1164
1165 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1166 {
1167 struct extent_buffer *buf = NULL;
1168 struct inode *btree_inode = fs_info->btree_inode;
1169
1170 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1171 if (IS_ERR(buf))
1172 return;
1173 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1174 buf, WAIT_NONE, btree_get_extent, 0);
1175 free_extent_buffer(buf);
1176 }
1177
1178 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1179 int mirror_num, struct extent_buffer **eb)
1180 {
1181 struct extent_buffer *buf = NULL;
1182 struct inode *btree_inode = fs_info->btree_inode;
1183 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184 int ret;
1185
1186 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1187 if (IS_ERR(buf))
1188 return 0;
1189
1190 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191
1192 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1193 btree_get_extent, mirror_num);
1194 if (ret) {
1195 free_extent_buffer(buf);
1196 return ret;
1197 }
1198
1199 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200 free_extent_buffer(buf);
1201 return -EIO;
1202 } else if (extent_buffer_uptodate(buf)) {
1203 *eb = buf;
1204 } else {
1205 free_extent_buffer(buf);
1206 }
1207 return 0;
1208 }
1209
1210 struct extent_buffer *btrfs_find_create_tree_block(
1211 struct btrfs_fs_info *fs_info,
1212 u64 bytenr)
1213 {
1214 if (btrfs_is_testing(fs_info))
1215 return alloc_test_extent_buffer(fs_info, bytenr);
1216 return alloc_extent_buffer(fs_info, bytenr);
1217 }
1218
1219
1220 int btrfs_write_tree_block(struct extent_buffer *buf)
1221 {
1222 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1223 buf->start + buf->len - 1);
1224 }
1225
1226 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227 {
1228 return filemap_fdatawait_range(buf->pages[0]->mapping,
1229 buf->start, buf->start + buf->len - 1);
1230 }
1231
1232 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1233 u64 parent_transid)
1234 {
1235 struct extent_buffer *buf = NULL;
1236 int ret;
1237
1238 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1239 if (IS_ERR(buf))
1240 return buf;
1241
1242 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1243 if (ret) {
1244 free_extent_buffer(buf);
1245 return ERR_PTR(ret);
1246 }
1247 return buf;
1248
1249 }
1250
1251 void clean_tree_block(struct btrfs_trans_handle *trans,
1252 struct btrfs_fs_info *fs_info,
1253 struct extent_buffer *buf)
1254 {
1255 if (btrfs_header_generation(buf) ==
1256 fs_info->running_transaction->transid) {
1257 btrfs_assert_tree_locked(buf);
1258
1259 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1260 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1261 -buf->len,
1262 fs_info->dirty_metadata_batch);
1263 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1264 btrfs_set_lock_blocking(buf);
1265 clear_extent_buffer_dirty(buf);
1266 }
1267 }
1268 }
1269
1270 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271 {
1272 struct btrfs_subvolume_writers *writers;
1273 int ret;
1274
1275 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276 if (!writers)
1277 return ERR_PTR(-ENOMEM);
1278
1279 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1280 if (ret < 0) {
1281 kfree(writers);
1282 return ERR_PTR(ret);
1283 }
1284
1285 init_waitqueue_head(&writers->wait);
1286 return writers;
1287 }
1288
1289 static void
1290 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291 {
1292 percpu_counter_destroy(&writers->counter);
1293 kfree(writers);
1294 }
1295
1296 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1297 u64 objectid)
1298 {
1299 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1300 root->node = NULL;
1301 root->commit_root = NULL;
1302 root->state = 0;
1303 root->orphan_cleanup_state = 0;
1304
1305 root->objectid = objectid;
1306 root->last_trans = 0;
1307 root->highest_objectid = 0;
1308 root->nr_delalloc_inodes = 0;
1309 root->nr_ordered_extents = 0;
1310 root->name = NULL;
1311 root->inode_tree = RB_ROOT;
1312 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1313 root->block_rsv = NULL;
1314 root->orphan_block_rsv = NULL;
1315
1316 INIT_LIST_HEAD(&root->dirty_list);
1317 INIT_LIST_HEAD(&root->root_list);
1318 INIT_LIST_HEAD(&root->delalloc_inodes);
1319 INIT_LIST_HEAD(&root->delalloc_root);
1320 INIT_LIST_HEAD(&root->ordered_extents);
1321 INIT_LIST_HEAD(&root->ordered_root);
1322 INIT_LIST_HEAD(&root->logged_list[0]);
1323 INIT_LIST_HEAD(&root->logged_list[1]);
1324 spin_lock_init(&root->orphan_lock);
1325 spin_lock_init(&root->inode_lock);
1326 spin_lock_init(&root->delalloc_lock);
1327 spin_lock_init(&root->ordered_extent_lock);
1328 spin_lock_init(&root->accounting_lock);
1329 spin_lock_init(&root->log_extents_lock[0]);
1330 spin_lock_init(&root->log_extents_lock[1]);
1331 mutex_init(&root->objectid_mutex);
1332 mutex_init(&root->log_mutex);
1333 mutex_init(&root->ordered_extent_mutex);
1334 mutex_init(&root->delalloc_mutex);
1335 init_waitqueue_head(&root->log_writer_wait);
1336 init_waitqueue_head(&root->log_commit_wait[0]);
1337 init_waitqueue_head(&root->log_commit_wait[1]);
1338 INIT_LIST_HEAD(&root->log_ctxs[0]);
1339 INIT_LIST_HEAD(&root->log_ctxs[1]);
1340 atomic_set(&root->log_commit[0], 0);
1341 atomic_set(&root->log_commit[1], 0);
1342 atomic_set(&root->log_writers, 0);
1343 atomic_set(&root->log_batch, 0);
1344 atomic_set(&root->orphan_inodes, 0);
1345 atomic_set(&root->refs, 1);
1346 atomic_set(&root->will_be_snapshoted, 0);
1347 atomic_set(&root->qgroup_meta_rsv, 0);
1348 root->log_transid = 0;
1349 root->log_transid_committed = -1;
1350 root->last_log_commit = 0;
1351 if (!dummy)
1352 extent_io_tree_init(&root->dirty_log_pages,
1353 fs_info->btree_inode->i_mapping);
1354
1355 memset(&root->root_key, 0, sizeof(root->root_key));
1356 memset(&root->root_item, 0, sizeof(root->root_item));
1357 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1358 if (!dummy)
1359 root->defrag_trans_start = fs_info->generation;
1360 else
1361 root->defrag_trans_start = 0;
1362 root->root_key.objectid = objectid;
1363 root->anon_dev = 0;
1364
1365 spin_lock_init(&root->root_item_lock);
1366 }
1367
1368 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1369 gfp_t flags)
1370 {
1371 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1372 if (root)
1373 root->fs_info = fs_info;
1374 return root;
1375 }
1376
1377 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1378 /* Should only be used by the testing infrastructure */
1379 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1380 {
1381 struct btrfs_root *root;
1382
1383 if (!fs_info)
1384 return ERR_PTR(-EINVAL);
1385
1386 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1387 if (!root)
1388 return ERR_PTR(-ENOMEM);
1389
1390 /* We don't use the stripesize in selftest, set it as sectorsize */
1391 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1392 root->alloc_bytenr = 0;
1393
1394 return root;
1395 }
1396 #endif
1397
1398 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1399 struct btrfs_fs_info *fs_info,
1400 u64 objectid)
1401 {
1402 struct extent_buffer *leaf;
1403 struct btrfs_root *tree_root = fs_info->tree_root;
1404 struct btrfs_root *root;
1405 struct btrfs_key key;
1406 int ret = 0;
1407 uuid_le uuid;
1408
1409 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1410 if (!root)
1411 return ERR_PTR(-ENOMEM);
1412
1413 __setup_root(root, fs_info, objectid);
1414 root->root_key.objectid = objectid;
1415 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1416 root->root_key.offset = 0;
1417
1418 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1419 if (IS_ERR(leaf)) {
1420 ret = PTR_ERR(leaf);
1421 leaf = NULL;
1422 goto fail;
1423 }
1424
1425 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1426 btrfs_set_header_bytenr(leaf, leaf->start);
1427 btrfs_set_header_generation(leaf, trans->transid);
1428 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429 btrfs_set_header_owner(leaf, objectid);
1430 root->node = leaf;
1431
1432 write_extent_buffer_fsid(leaf, fs_info->fsid);
1433 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1434 btrfs_mark_buffer_dirty(leaf);
1435
1436 root->commit_root = btrfs_root_node(root);
1437 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1438
1439 root->root_item.flags = 0;
1440 root->root_item.byte_limit = 0;
1441 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1442 btrfs_set_root_generation(&root->root_item, trans->transid);
1443 btrfs_set_root_level(&root->root_item, 0);
1444 btrfs_set_root_refs(&root->root_item, 1);
1445 btrfs_set_root_used(&root->root_item, leaf->len);
1446 btrfs_set_root_last_snapshot(&root->root_item, 0);
1447 btrfs_set_root_dirid(&root->root_item, 0);
1448 uuid_le_gen(&uuid);
1449 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1450 root->root_item.drop_level = 0;
1451
1452 key.objectid = objectid;
1453 key.type = BTRFS_ROOT_ITEM_KEY;
1454 key.offset = 0;
1455 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1456 if (ret)
1457 goto fail;
1458
1459 btrfs_tree_unlock(leaf);
1460
1461 return root;
1462
1463 fail:
1464 if (leaf) {
1465 btrfs_tree_unlock(leaf);
1466 free_extent_buffer(root->commit_root);
1467 free_extent_buffer(leaf);
1468 }
1469 kfree(root);
1470
1471 return ERR_PTR(ret);
1472 }
1473
1474 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1475 struct btrfs_fs_info *fs_info)
1476 {
1477 struct btrfs_root *root;
1478 struct extent_buffer *leaf;
1479
1480 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481 if (!root)
1482 return ERR_PTR(-ENOMEM);
1483
1484 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1485
1486 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1487 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1488 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1489
1490 /*
1491 * DON'T set REF_COWS for log trees
1492 *
1493 * log trees do not get reference counted because they go away
1494 * before a real commit is actually done. They do store pointers
1495 * to file data extents, and those reference counts still get
1496 * updated (along with back refs to the log tree).
1497 */
1498
1499 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1500 NULL, 0, 0, 0);
1501 if (IS_ERR(leaf)) {
1502 kfree(root);
1503 return ERR_CAST(leaf);
1504 }
1505
1506 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1507 btrfs_set_header_bytenr(leaf, leaf->start);
1508 btrfs_set_header_generation(leaf, trans->transid);
1509 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1510 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1511 root->node = leaf;
1512
1513 write_extent_buffer_fsid(root->node, fs_info->fsid);
1514 btrfs_mark_buffer_dirty(root->node);
1515 btrfs_tree_unlock(root->node);
1516 return root;
1517 }
1518
1519 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1520 struct btrfs_fs_info *fs_info)
1521 {
1522 struct btrfs_root *log_root;
1523
1524 log_root = alloc_log_tree(trans, fs_info);
1525 if (IS_ERR(log_root))
1526 return PTR_ERR(log_root);
1527 WARN_ON(fs_info->log_root_tree);
1528 fs_info->log_root_tree = log_root;
1529 return 0;
1530 }
1531
1532 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *root)
1534 {
1535 struct btrfs_fs_info *fs_info = root->fs_info;
1536 struct btrfs_root *log_root;
1537 struct btrfs_inode_item *inode_item;
1538
1539 log_root = alloc_log_tree(trans, fs_info);
1540 if (IS_ERR(log_root))
1541 return PTR_ERR(log_root);
1542
1543 log_root->last_trans = trans->transid;
1544 log_root->root_key.offset = root->root_key.objectid;
1545
1546 inode_item = &log_root->root_item.inode;
1547 btrfs_set_stack_inode_generation(inode_item, 1);
1548 btrfs_set_stack_inode_size(inode_item, 3);
1549 btrfs_set_stack_inode_nlink(inode_item, 1);
1550 btrfs_set_stack_inode_nbytes(inode_item,
1551 fs_info->nodesize);
1552 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1553
1554 btrfs_set_root_node(&log_root->root_item, log_root->node);
1555
1556 WARN_ON(root->log_root);
1557 root->log_root = log_root;
1558 root->log_transid = 0;
1559 root->log_transid_committed = -1;
1560 root->last_log_commit = 0;
1561 return 0;
1562 }
1563
1564 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1565 struct btrfs_key *key)
1566 {
1567 struct btrfs_root *root;
1568 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1569 struct btrfs_path *path;
1570 u64 generation;
1571 int ret;
1572
1573 path = btrfs_alloc_path();
1574 if (!path)
1575 return ERR_PTR(-ENOMEM);
1576
1577 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1578 if (!root) {
1579 ret = -ENOMEM;
1580 goto alloc_fail;
1581 }
1582
1583 __setup_root(root, fs_info, key->objectid);
1584
1585 ret = btrfs_find_root(tree_root, key, path,
1586 &root->root_item, &root->root_key);
1587 if (ret) {
1588 if (ret > 0)
1589 ret = -ENOENT;
1590 goto find_fail;
1591 }
1592
1593 generation = btrfs_root_generation(&root->root_item);
1594 root->node = read_tree_block(fs_info,
1595 btrfs_root_bytenr(&root->root_item),
1596 generation);
1597 if (IS_ERR(root->node)) {
1598 ret = PTR_ERR(root->node);
1599 goto find_fail;
1600 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1601 ret = -EIO;
1602 free_extent_buffer(root->node);
1603 goto find_fail;
1604 }
1605 root->commit_root = btrfs_root_node(root);
1606 out:
1607 btrfs_free_path(path);
1608 return root;
1609
1610 find_fail:
1611 kfree(root);
1612 alloc_fail:
1613 root = ERR_PTR(ret);
1614 goto out;
1615 }
1616
1617 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1618 struct btrfs_key *location)
1619 {
1620 struct btrfs_root *root;
1621
1622 root = btrfs_read_tree_root(tree_root, location);
1623 if (IS_ERR(root))
1624 return root;
1625
1626 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1627 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1628 btrfs_check_and_init_root_item(&root->root_item);
1629 }
1630
1631 return root;
1632 }
1633
1634 int btrfs_init_fs_root(struct btrfs_root *root)
1635 {
1636 int ret;
1637 struct btrfs_subvolume_writers *writers;
1638
1639 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1640 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1641 GFP_NOFS);
1642 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1643 ret = -ENOMEM;
1644 goto fail;
1645 }
1646
1647 writers = btrfs_alloc_subvolume_writers();
1648 if (IS_ERR(writers)) {
1649 ret = PTR_ERR(writers);
1650 goto fail;
1651 }
1652 root->subv_writers = writers;
1653
1654 btrfs_init_free_ino_ctl(root);
1655 spin_lock_init(&root->ino_cache_lock);
1656 init_waitqueue_head(&root->ino_cache_wait);
1657
1658 ret = get_anon_bdev(&root->anon_dev);
1659 if (ret)
1660 goto fail;
1661
1662 mutex_lock(&root->objectid_mutex);
1663 ret = btrfs_find_highest_objectid(root,
1664 &root->highest_objectid);
1665 if (ret) {
1666 mutex_unlock(&root->objectid_mutex);
1667 goto fail;
1668 }
1669
1670 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1671
1672 mutex_unlock(&root->objectid_mutex);
1673
1674 return 0;
1675 fail:
1676 /* the caller is responsible to call free_fs_root */
1677 return ret;
1678 }
1679
1680 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1681 u64 root_id)
1682 {
1683 struct btrfs_root *root;
1684
1685 spin_lock(&fs_info->fs_roots_radix_lock);
1686 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1687 (unsigned long)root_id);
1688 spin_unlock(&fs_info->fs_roots_radix_lock);
1689 return root;
1690 }
1691
1692 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1693 struct btrfs_root *root)
1694 {
1695 int ret;
1696
1697 ret = radix_tree_preload(GFP_NOFS);
1698 if (ret)
1699 return ret;
1700
1701 spin_lock(&fs_info->fs_roots_radix_lock);
1702 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1703 (unsigned long)root->root_key.objectid,
1704 root);
1705 if (ret == 0)
1706 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1707 spin_unlock(&fs_info->fs_roots_radix_lock);
1708 radix_tree_preload_end();
1709
1710 return ret;
1711 }
1712
1713 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1714 struct btrfs_key *location,
1715 bool check_ref)
1716 {
1717 struct btrfs_root *root;
1718 struct btrfs_path *path;
1719 struct btrfs_key key;
1720 int ret;
1721
1722 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1723 return fs_info->tree_root;
1724 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1725 return fs_info->extent_root;
1726 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1727 return fs_info->chunk_root;
1728 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1729 return fs_info->dev_root;
1730 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1731 return fs_info->csum_root;
1732 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1733 return fs_info->quota_root ? fs_info->quota_root :
1734 ERR_PTR(-ENOENT);
1735 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1736 return fs_info->uuid_root ? fs_info->uuid_root :
1737 ERR_PTR(-ENOENT);
1738 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1739 return fs_info->free_space_root ? fs_info->free_space_root :
1740 ERR_PTR(-ENOENT);
1741 again:
1742 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1743 if (root) {
1744 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1745 return ERR_PTR(-ENOENT);
1746 return root;
1747 }
1748
1749 root = btrfs_read_fs_root(fs_info->tree_root, location);
1750 if (IS_ERR(root))
1751 return root;
1752
1753 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1754 ret = -ENOENT;
1755 goto fail;
1756 }
1757
1758 ret = btrfs_init_fs_root(root);
1759 if (ret)
1760 goto fail;
1761
1762 path = btrfs_alloc_path();
1763 if (!path) {
1764 ret = -ENOMEM;
1765 goto fail;
1766 }
1767 key.objectid = BTRFS_ORPHAN_OBJECTID;
1768 key.type = BTRFS_ORPHAN_ITEM_KEY;
1769 key.offset = location->objectid;
1770
1771 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1772 btrfs_free_path(path);
1773 if (ret < 0)
1774 goto fail;
1775 if (ret == 0)
1776 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1777
1778 ret = btrfs_insert_fs_root(fs_info, root);
1779 if (ret) {
1780 if (ret == -EEXIST) {
1781 free_fs_root(root);
1782 goto again;
1783 }
1784 goto fail;
1785 }
1786 return root;
1787 fail:
1788 free_fs_root(root);
1789 return ERR_PTR(ret);
1790 }
1791
1792 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1793 {
1794 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1795 int ret = 0;
1796 struct btrfs_device *device;
1797 struct backing_dev_info *bdi;
1798
1799 rcu_read_lock();
1800 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1801 if (!device->bdev)
1802 continue;
1803 bdi = blk_get_backing_dev_info(device->bdev);
1804 if (bdi_congested(bdi, bdi_bits)) {
1805 ret = 1;
1806 break;
1807 }
1808 }
1809 rcu_read_unlock();
1810 return ret;
1811 }
1812
1813 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1814 {
1815 int err;
1816
1817 err = bdi_setup_and_register(bdi, "btrfs");
1818 if (err)
1819 return err;
1820
1821 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1822 bdi->congested_fn = btrfs_congested_fn;
1823 bdi->congested_data = info;
1824 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1825 return 0;
1826 }
1827
1828 /*
1829 * called by the kthread helper functions to finally call the bio end_io
1830 * functions. This is where read checksum verification actually happens
1831 */
1832 static void end_workqueue_fn(struct btrfs_work *work)
1833 {
1834 struct bio *bio;
1835 struct btrfs_end_io_wq *end_io_wq;
1836
1837 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1838 bio = end_io_wq->bio;
1839
1840 bio->bi_error = end_io_wq->error;
1841 bio->bi_private = end_io_wq->private;
1842 bio->bi_end_io = end_io_wq->end_io;
1843 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1844 bio_endio(bio);
1845 }
1846
1847 static int cleaner_kthread(void *arg)
1848 {
1849 struct btrfs_root *root = arg;
1850 struct btrfs_fs_info *fs_info = root->fs_info;
1851 int again;
1852 struct btrfs_trans_handle *trans;
1853
1854 do {
1855 again = 0;
1856
1857 /* Make the cleaner go to sleep early. */
1858 if (btrfs_need_cleaner_sleep(fs_info))
1859 goto sleep;
1860
1861 /*
1862 * Do not do anything if we might cause open_ctree() to block
1863 * before we have finished mounting the filesystem.
1864 */
1865 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1866 goto sleep;
1867
1868 if (!mutex_trylock(&fs_info->cleaner_mutex))
1869 goto sleep;
1870
1871 /*
1872 * Avoid the problem that we change the status of the fs
1873 * during the above check and trylock.
1874 */
1875 if (btrfs_need_cleaner_sleep(fs_info)) {
1876 mutex_unlock(&fs_info->cleaner_mutex);
1877 goto sleep;
1878 }
1879
1880 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1881 btrfs_run_delayed_iputs(fs_info);
1882 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1883
1884 again = btrfs_clean_one_deleted_snapshot(root);
1885 mutex_unlock(&fs_info->cleaner_mutex);
1886
1887 /*
1888 * The defragger has dealt with the R/O remount and umount,
1889 * needn't do anything special here.
1890 */
1891 btrfs_run_defrag_inodes(fs_info);
1892
1893 /*
1894 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895 * with relocation (btrfs_relocate_chunk) and relocation
1896 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899 * unused block groups.
1900 */
1901 btrfs_delete_unused_bgs(fs_info);
1902 sleep:
1903 if (!again) {
1904 set_current_state(TASK_INTERRUPTIBLE);
1905 if (!kthread_should_stop())
1906 schedule();
1907 __set_current_state(TASK_RUNNING);
1908 }
1909 } while (!kthread_should_stop());
1910
1911 /*
1912 * Transaction kthread is stopped before us and wakes us up.
1913 * However we might have started a new transaction and COWed some
1914 * tree blocks when deleting unused block groups for example. So
1915 * make sure we commit the transaction we started to have a clean
1916 * shutdown when evicting the btree inode - if it has dirty pages
1917 * when we do the final iput() on it, eviction will trigger a
1918 * writeback for it which will fail with null pointer dereferences
1919 * since work queues and other resources were already released and
1920 * destroyed by the time the iput/eviction/writeback is made.
1921 */
1922 trans = btrfs_attach_transaction(root);
1923 if (IS_ERR(trans)) {
1924 if (PTR_ERR(trans) != -ENOENT)
1925 btrfs_err(fs_info,
1926 "cleaner transaction attach returned %ld",
1927 PTR_ERR(trans));
1928 } else {
1929 int ret;
1930
1931 ret = btrfs_commit_transaction(trans);
1932 if (ret)
1933 btrfs_err(fs_info,
1934 "cleaner open transaction commit returned %d",
1935 ret);
1936 }
1937
1938 return 0;
1939 }
1940
1941 static int transaction_kthread(void *arg)
1942 {
1943 struct btrfs_root *root = arg;
1944 struct btrfs_fs_info *fs_info = root->fs_info;
1945 struct btrfs_trans_handle *trans;
1946 struct btrfs_transaction *cur;
1947 u64 transid;
1948 unsigned long now;
1949 unsigned long delay;
1950 bool cannot_commit;
1951
1952 do {
1953 cannot_commit = false;
1954 delay = HZ * fs_info->commit_interval;
1955 mutex_lock(&fs_info->transaction_kthread_mutex);
1956
1957 spin_lock(&fs_info->trans_lock);
1958 cur = fs_info->running_transaction;
1959 if (!cur) {
1960 spin_unlock(&fs_info->trans_lock);
1961 goto sleep;
1962 }
1963
1964 now = get_seconds();
1965 if (cur->state < TRANS_STATE_BLOCKED &&
1966 (now < cur->start_time ||
1967 now - cur->start_time < fs_info->commit_interval)) {
1968 spin_unlock(&fs_info->trans_lock);
1969 delay = HZ * 5;
1970 goto sleep;
1971 }
1972 transid = cur->transid;
1973 spin_unlock(&fs_info->trans_lock);
1974
1975 /* If the file system is aborted, this will always fail. */
1976 trans = btrfs_attach_transaction(root);
1977 if (IS_ERR(trans)) {
1978 if (PTR_ERR(trans) != -ENOENT)
1979 cannot_commit = true;
1980 goto sleep;
1981 }
1982 if (transid == trans->transid) {
1983 btrfs_commit_transaction(trans);
1984 } else {
1985 btrfs_end_transaction(trans);
1986 }
1987 sleep:
1988 wake_up_process(fs_info->cleaner_kthread);
1989 mutex_unlock(&fs_info->transaction_kthread_mutex);
1990
1991 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1992 &fs_info->fs_state)))
1993 btrfs_cleanup_transaction(fs_info);
1994 set_current_state(TASK_INTERRUPTIBLE);
1995 if (!kthread_should_stop() &&
1996 (!btrfs_transaction_blocked(fs_info) ||
1997 cannot_commit))
1998 schedule_timeout(delay);
1999 __set_current_state(TASK_RUNNING);
2000 } while (!kthread_should_stop());
2001 return 0;
2002 }
2003
2004 /*
2005 * this will find the highest generation in the array of
2006 * root backups. The index of the highest array is returned,
2007 * or -1 if we can't find anything.
2008 *
2009 * We check to make sure the array is valid by comparing the
2010 * generation of the latest root in the array with the generation
2011 * in the super block. If they don't match we pitch it.
2012 */
2013 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2014 {
2015 u64 cur;
2016 int newest_index = -1;
2017 struct btrfs_root_backup *root_backup;
2018 int i;
2019
2020 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2021 root_backup = info->super_copy->super_roots + i;
2022 cur = btrfs_backup_tree_root_gen(root_backup);
2023 if (cur == newest_gen)
2024 newest_index = i;
2025 }
2026
2027 /* check to see if we actually wrapped around */
2028 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2029 root_backup = info->super_copy->super_roots;
2030 cur = btrfs_backup_tree_root_gen(root_backup);
2031 if (cur == newest_gen)
2032 newest_index = 0;
2033 }
2034 return newest_index;
2035 }
2036
2037
2038 /*
2039 * find the oldest backup so we know where to store new entries
2040 * in the backup array. This will set the backup_root_index
2041 * field in the fs_info struct
2042 */
2043 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2044 u64 newest_gen)
2045 {
2046 int newest_index = -1;
2047
2048 newest_index = find_newest_super_backup(info, newest_gen);
2049 /* if there was garbage in there, just move along */
2050 if (newest_index == -1) {
2051 info->backup_root_index = 0;
2052 } else {
2053 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2054 }
2055 }
2056
2057 /*
2058 * copy all the root pointers into the super backup array.
2059 * this will bump the backup pointer by one when it is
2060 * done
2061 */
2062 static void backup_super_roots(struct btrfs_fs_info *info)
2063 {
2064 int next_backup;
2065 struct btrfs_root_backup *root_backup;
2066 int last_backup;
2067
2068 next_backup = info->backup_root_index;
2069 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2070 BTRFS_NUM_BACKUP_ROOTS;
2071
2072 /*
2073 * just overwrite the last backup if we're at the same generation
2074 * this happens only at umount
2075 */
2076 root_backup = info->super_for_commit->super_roots + last_backup;
2077 if (btrfs_backup_tree_root_gen(root_backup) ==
2078 btrfs_header_generation(info->tree_root->node))
2079 next_backup = last_backup;
2080
2081 root_backup = info->super_for_commit->super_roots + next_backup;
2082
2083 /*
2084 * make sure all of our padding and empty slots get zero filled
2085 * regardless of which ones we use today
2086 */
2087 memset(root_backup, 0, sizeof(*root_backup));
2088
2089 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2090
2091 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2092 btrfs_set_backup_tree_root_gen(root_backup,
2093 btrfs_header_generation(info->tree_root->node));
2094
2095 btrfs_set_backup_tree_root_level(root_backup,
2096 btrfs_header_level(info->tree_root->node));
2097
2098 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2099 btrfs_set_backup_chunk_root_gen(root_backup,
2100 btrfs_header_generation(info->chunk_root->node));
2101 btrfs_set_backup_chunk_root_level(root_backup,
2102 btrfs_header_level(info->chunk_root->node));
2103
2104 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2105 btrfs_set_backup_extent_root_gen(root_backup,
2106 btrfs_header_generation(info->extent_root->node));
2107 btrfs_set_backup_extent_root_level(root_backup,
2108 btrfs_header_level(info->extent_root->node));
2109
2110 /*
2111 * we might commit during log recovery, which happens before we set
2112 * the fs_root. Make sure it is valid before we fill it in.
2113 */
2114 if (info->fs_root && info->fs_root->node) {
2115 btrfs_set_backup_fs_root(root_backup,
2116 info->fs_root->node->start);
2117 btrfs_set_backup_fs_root_gen(root_backup,
2118 btrfs_header_generation(info->fs_root->node));
2119 btrfs_set_backup_fs_root_level(root_backup,
2120 btrfs_header_level(info->fs_root->node));
2121 }
2122
2123 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2124 btrfs_set_backup_dev_root_gen(root_backup,
2125 btrfs_header_generation(info->dev_root->node));
2126 btrfs_set_backup_dev_root_level(root_backup,
2127 btrfs_header_level(info->dev_root->node));
2128
2129 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2130 btrfs_set_backup_csum_root_gen(root_backup,
2131 btrfs_header_generation(info->csum_root->node));
2132 btrfs_set_backup_csum_root_level(root_backup,
2133 btrfs_header_level(info->csum_root->node));
2134
2135 btrfs_set_backup_total_bytes(root_backup,
2136 btrfs_super_total_bytes(info->super_copy));
2137 btrfs_set_backup_bytes_used(root_backup,
2138 btrfs_super_bytes_used(info->super_copy));
2139 btrfs_set_backup_num_devices(root_backup,
2140 btrfs_super_num_devices(info->super_copy));
2141
2142 /*
2143 * if we don't copy this out to the super_copy, it won't get remembered
2144 * for the next commit
2145 */
2146 memcpy(&info->super_copy->super_roots,
2147 &info->super_for_commit->super_roots,
2148 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2149 }
2150
2151 /*
2152 * this copies info out of the root backup array and back into
2153 * the in-memory super block. It is meant to help iterate through
2154 * the array, so you send it the number of backups you've already
2155 * tried and the last backup index you used.
2156 *
2157 * this returns -1 when it has tried all the backups
2158 */
2159 static noinline int next_root_backup(struct btrfs_fs_info *info,
2160 struct btrfs_super_block *super,
2161 int *num_backups_tried, int *backup_index)
2162 {
2163 struct btrfs_root_backup *root_backup;
2164 int newest = *backup_index;
2165
2166 if (*num_backups_tried == 0) {
2167 u64 gen = btrfs_super_generation(super);
2168
2169 newest = find_newest_super_backup(info, gen);
2170 if (newest == -1)
2171 return -1;
2172
2173 *backup_index = newest;
2174 *num_backups_tried = 1;
2175 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2176 /* we've tried all the backups, all done */
2177 return -1;
2178 } else {
2179 /* jump to the next oldest backup */
2180 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2181 BTRFS_NUM_BACKUP_ROOTS;
2182 *backup_index = newest;
2183 *num_backups_tried += 1;
2184 }
2185 root_backup = super->super_roots + newest;
2186
2187 btrfs_set_super_generation(super,
2188 btrfs_backup_tree_root_gen(root_backup));
2189 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2190 btrfs_set_super_root_level(super,
2191 btrfs_backup_tree_root_level(root_backup));
2192 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2193
2194 /*
2195 * fixme: the total bytes and num_devices need to match or we should
2196 * need a fsck
2197 */
2198 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2199 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2200 return 0;
2201 }
2202
2203 /* helper to cleanup workers */
2204 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2205 {
2206 btrfs_destroy_workqueue(fs_info->fixup_workers);
2207 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2208 btrfs_destroy_workqueue(fs_info->workers);
2209 btrfs_destroy_workqueue(fs_info->endio_workers);
2210 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2212 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2213 btrfs_destroy_workqueue(fs_info->rmw_workers);
2214 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2215 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2216 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2217 btrfs_destroy_workqueue(fs_info->submit_workers);
2218 btrfs_destroy_workqueue(fs_info->delayed_workers);
2219 btrfs_destroy_workqueue(fs_info->caching_workers);
2220 btrfs_destroy_workqueue(fs_info->readahead_workers);
2221 btrfs_destroy_workqueue(fs_info->flush_workers);
2222 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2223 btrfs_destroy_workqueue(fs_info->extent_workers);
2224 }
2225
2226 static void free_root_extent_buffers(struct btrfs_root *root)
2227 {
2228 if (root) {
2229 free_extent_buffer(root->node);
2230 free_extent_buffer(root->commit_root);
2231 root->node = NULL;
2232 root->commit_root = NULL;
2233 }
2234 }
2235
2236 /* helper to cleanup tree roots */
2237 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2238 {
2239 free_root_extent_buffers(info->tree_root);
2240
2241 free_root_extent_buffers(info->dev_root);
2242 free_root_extent_buffers(info->extent_root);
2243 free_root_extent_buffers(info->csum_root);
2244 free_root_extent_buffers(info->quota_root);
2245 free_root_extent_buffers(info->uuid_root);
2246 if (chunk_root)
2247 free_root_extent_buffers(info->chunk_root);
2248 free_root_extent_buffers(info->free_space_root);
2249 }
2250
2251 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2252 {
2253 int ret;
2254 struct btrfs_root *gang[8];
2255 int i;
2256
2257 while (!list_empty(&fs_info->dead_roots)) {
2258 gang[0] = list_entry(fs_info->dead_roots.next,
2259 struct btrfs_root, root_list);
2260 list_del(&gang[0]->root_list);
2261
2262 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2263 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2264 } else {
2265 free_extent_buffer(gang[0]->node);
2266 free_extent_buffer(gang[0]->commit_root);
2267 btrfs_put_fs_root(gang[0]);
2268 }
2269 }
2270
2271 while (1) {
2272 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2273 (void **)gang, 0,
2274 ARRAY_SIZE(gang));
2275 if (!ret)
2276 break;
2277 for (i = 0; i < ret; i++)
2278 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2279 }
2280
2281 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2282 btrfs_free_log_root_tree(NULL, fs_info);
2283 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2284 }
2285 }
2286
2287 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288 {
2289 mutex_init(&fs_info->scrub_lock);
2290 atomic_set(&fs_info->scrubs_running, 0);
2291 atomic_set(&fs_info->scrub_pause_req, 0);
2292 atomic_set(&fs_info->scrubs_paused, 0);
2293 atomic_set(&fs_info->scrub_cancel_req, 0);
2294 init_waitqueue_head(&fs_info->scrub_pause_wait);
2295 fs_info->scrub_workers_refcnt = 0;
2296 }
2297
2298 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299 {
2300 spin_lock_init(&fs_info->balance_lock);
2301 mutex_init(&fs_info->balance_mutex);
2302 atomic_set(&fs_info->balance_running, 0);
2303 atomic_set(&fs_info->balance_pause_req, 0);
2304 atomic_set(&fs_info->balance_cancel_req, 0);
2305 fs_info->balance_ctl = NULL;
2306 init_waitqueue_head(&fs_info->balance_wait_q);
2307 }
2308
2309 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2310 {
2311 struct inode *inode = fs_info->btree_inode;
2312
2313 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2314 set_nlink(inode, 1);
2315 /*
2316 * we set the i_size on the btree inode to the max possible int.
2317 * the real end of the address space is determined by all of
2318 * the devices in the system
2319 */
2320 inode->i_size = OFFSET_MAX;
2321 inode->i_mapping->a_ops = &btree_aops;
2322
2323 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2324 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2325 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2326 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2327
2328 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330 BTRFS_I(inode)->root = fs_info->tree_root;
2331 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2332 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2333 btrfs_insert_inode_hash(inode);
2334 }
2335
2336 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2337 {
2338 fs_info->dev_replace.lock_owner = 0;
2339 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2340 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2341 rwlock_init(&fs_info->dev_replace.lock);
2342 atomic_set(&fs_info->dev_replace.read_locks, 0);
2343 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2344 init_waitqueue_head(&fs_info->replace_wait);
2345 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2346 }
2347
2348 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2349 {
2350 spin_lock_init(&fs_info->qgroup_lock);
2351 mutex_init(&fs_info->qgroup_ioctl_lock);
2352 fs_info->qgroup_tree = RB_ROOT;
2353 fs_info->qgroup_op_tree = RB_ROOT;
2354 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2355 fs_info->qgroup_seq = 1;
2356 fs_info->qgroup_ulist = NULL;
2357 fs_info->qgroup_rescan_running = false;
2358 mutex_init(&fs_info->qgroup_rescan_lock);
2359 }
2360
2361 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2362 struct btrfs_fs_devices *fs_devices)
2363 {
2364 int max_active = fs_info->thread_pool_size;
2365 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2366
2367 fs_info->workers =
2368 btrfs_alloc_workqueue(fs_info, "worker",
2369 flags | WQ_HIGHPRI, max_active, 16);
2370
2371 fs_info->delalloc_workers =
2372 btrfs_alloc_workqueue(fs_info, "delalloc",
2373 flags, max_active, 2);
2374
2375 fs_info->flush_workers =
2376 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2377 flags, max_active, 0);
2378
2379 fs_info->caching_workers =
2380 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2381
2382 /*
2383 * a higher idle thresh on the submit workers makes it much more
2384 * likely that bios will be send down in a sane order to the
2385 * devices
2386 */
2387 fs_info->submit_workers =
2388 btrfs_alloc_workqueue(fs_info, "submit", flags,
2389 min_t(u64, fs_devices->num_devices,
2390 max_active), 64);
2391
2392 fs_info->fixup_workers =
2393 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2394
2395 /*
2396 * endios are largely parallel and should have a very
2397 * low idle thresh
2398 */
2399 fs_info->endio_workers =
2400 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2401 fs_info->endio_meta_workers =
2402 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2403 max_active, 4);
2404 fs_info->endio_meta_write_workers =
2405 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2406 max_active, 2);
2407 fs_info->endio_raid56_workers =
2408 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2409 max_active, 4);
2410 fs_info->endio_repair_workers =
2411 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2412 fs_info->rmw_workers =
2413 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2414 fs_info->endio_write_workers =
2415 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2416 max_active, 2);
2417 fs_info->endio_freespace_worker =
2418 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2419 max_active, 0);
2420 fs_info->delayed_workers =
2421 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2422 max_active, 0);
2423 fs_info->readahead_workers =
2424 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2425 max_active, 2);
2426 fs_info->qgroup_rescan_workers =
2427 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2428 fs_info->extent_workers =
2429 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2430 min_t(u64, fs_devices->num_devices,
2431 max_active), 8);
2432
2433 if (!(fs_info->workers && fs_info->delalloc_workers &&
2434 fs_info->submit_workers && fs_info->flush_workers &&
2435 fs_info->endio_workers && fs_info->endio_meta_workers &&
2436 fs_info->endio_meta_write_workers &&
2437 fs_info->endio_repair_workers &&
2438 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2439 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2440 fs_info->caching_workers && fs_info->readahead_workers &&
2441 fs_info->fixup_workers && fs_info->delayed_workers &&
2442 fs_info->extent_workers &&
2443 fs_info->qgroup_rescan_workers)) {
2444 return -ENOMEM;
2445 }
2446
2447 return 0;
2448 }
2449
2450 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2451 struct btrfs_fs_devices *fs_devices)
2452 {
2453 int ret;
2454 struct btrfs_root *log_tree_root;
2455 struct btrfs_super_block *disk_super = fs_info->super_copy;
2456 u64 bytenr = btrfs_super_log_root(disk_super);
2457
2458 if (fs_devices->rw_devices == 0) {
2459 btrfs_warn(fs_info, "log replay required on RO media");
2460 return -EIO;
2461 }
2462
2463 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2464 if (!log_tree_root)
2465 return -ENOMEM;
2466
2467 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2468
2469 log_tree_root->node = read_tree_block(fs_info, bytenr,
2470 fs_info->generation + 1);
2471 if (IS_ERR(log_tree_root->node)) {
2472 btrfs_warn(fs_info, "failed to read log tree");
2473 ret = PTR_ERR(log_tree_root->node);
2474 kfree(log_tree_root);
2475 return ret;
2476 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2477 btrfs_err(fs_info, "failed to read log tree");
2478 free_extent_buffer(log_tree_root->node);
2479 kfree(log_tree_root);
2480 return -EIO;
2481 }
2482 /* returns with log_tree_root freed on success */
2483 ret = btrfs_recover_log_trees(log_tree_root);
2484 if (ret) {
2485 btrfs_handle_fs_error(fs_info, ret,
2486 "Failed to recover log tree");
2487 free_extent_buffer(log_tree_root->node);
2488 kfree(log_tree_root);
2489 return ret;
2490 }
2491
2492 if (fs_info->sb->s_flags & MS_RDONLY) {
2493 ret = btrfs_commit_super(fs_info);
2494 if (ret)
2495 return ret;
2496 }
2497
2498 return 0;
2499 }
2500
2501 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2502 {
2503 struct btrfs_root *tree_root = fs_info->tree_root;
2504 struct btrfs_root *root;
2505 struct btrfs_key location;
2506 int ret;
2507
2508 BUG_ON(!fs_info->tree_root);
2509
2510 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2511 location.type = BTRFS_ROOT_ITEM_KEY;
2512 location.offset = 0;
2513
2514 root = btrfs_read_tree_root(tree_root, &location);
2515 if (IS_ERR(root))
2516 return PTR_ERR(root);
2517 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518 fs_info->extent_root = root;
2519
2520 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2521 root = btrfs_read_tree_root(tree_root, &location);
2522 if (IS_ERR(root))
2523 return PTR_ERR(root);
2524 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525 fs_info->dev_root = root;
2526 btrfs_init_devices_late(fs_info);
2527
2528 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2529 root = btrfs_read_tree_root(tree_root, &location);
2530 if (IS_ERR(root))
2531 return PTR_ERR(root);
2532 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533 fs_info->csum_root = root;
2534
2535 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2536 root = btrfs_read_tree_root(tree_root, &location);
2537 if (!IS_ERR(root)) {
2538 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2540 fs_info->quota_root = root;
2541 }
2542
2543 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2544 root = btrfs_read_tree_root(tree_root, &location);
2545 if (IS_ERR(root)) {
2546 ret = PTR_ERR(root);
2547 if (ret != -ENOENT)
2548 return ret;
2549 } else {
2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 fs_info->uuid_root = root;
2552 }
2553
2554 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2555 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2556 root = btrfs_read_tree_root(tree_root, &location);
2557 if (IS_ERR(root))
2558 return PTR_ERR(root);
2559 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2560 fs_info->free_space_root = root;
2561 }
2562
2563 return 0;
2564 }
2565
2566 int open_ctree(struct super_block *sb,
2567 struct btrfs_fs_devices *fs_devices,
2568 char *options)
2569 {
2570 u32 sectorsize;
2571 u32 nodesize;
2572 u32 stripesize;
2573 u64 generation;
2574 u64 features;
2575 struct btrfs_key location;
2576 struct buffer_head *bh;
2577 struct btrfs_super_block *disk_super;
2578 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2579 struct btrfs_root *tree_root;
2580 struct btrfs_root *chunk_root;
2581 int ret;
2582 int err = -EINVAL;
2583 int num_backups_tried = 0;
2584 int backup_index = 0;
2585 int max_active;
2586 int clear_free_space_tree = 0;
2587
2588 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2589 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2590 if (!tree_root || !chunk_root) {
2591 err = -ENOMEM;
2592 goto fail;
2593 }
2594
2595 ret = init_srcu_struct(&fs_info->subvol_srcu);
2596 if (ret) {
2597 err = ret;
2598 goto fail;
2599 }
2600
2601 ret = setup_bdi(fs_info, &fs_info->bdi);
2602 if (ret) {
2603 err = ret;
2604 goto fail_srcu;
2605 }
2606
2607 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2608 if (ret) {
2609 err = ret;
2610 goto fail_bdi;
2611 }
2612 fs_info->dirty_metadata_batch = PAGE_SIZE *
2613 (1 + ilog2(nr_cpu_ids));
2614
2615 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2616 if (ret) {
2617 err = ret;
2618 goto fail_dirty_metadata_bytes;
2619 }
2620
2621 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2622 if (ret) {
2623 err = ret;
2624 goto fail_delalloc_bytes;
2625 }
2626
2627 fs_info->btree_inode = new_inode(sb);
2628 if (!fs_info->btree_inode) {
2629 err = -ENOMEM;
2630 goto fail_bio_counter;
2631 }
2632
2633 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2634
2635 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2636 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2637 INIT_LIST_HEAD(&fs_info->trans_list);
2638 INIT_LIST_HEAD(&fs_info->dead_roots);
2639 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2640 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2641 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2642 spin_lock_init(&fs_info->delalloc_root_lock);
2643 spin_lock_init(&fs_info->trans_lock);
2644 spin_lock_init(&fs_info->fs_roots_radix_lock);
2645 spin_lock_init(&fs_info->delayed_iput_lock);
2646 spin_lock_init(&fs_info->defrag_inodes_lock);
2647 spin_lock_init(&fs_info->free_chunk_lock);
2648 spin_lock_init(&fs_info->tree_mod_seq_lock);
2649 spin_lock_init(&fs_info->super_lock);
2650 spin_lock_init(&fs_info->qgroup_op_lock);
2651 spin_lock_init(&fs_info->buffer_lock);
2652 spin_lock_init(&fs_info->unused_bgs_lock);
2653 rwlock_init(&fs_info->tree_mod_log_lock);
2654 mutex_init(&fs_info->unused_bg_unpin_mutex);
2655 mutex_init(&fs_info->delete_unused_bgs_mutex);
2656 mutex_init(&fs_info->reloc_mutex);
2657 mutex_init(&fs_info->delalloc_root_mutex);
2658 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2659 seqlock_init(&fs_info->profiles_lock);
2660
2661 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2662 INIT_LIST_HEAD(&fs_info->space_info);
2663 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2664 INIT_LIST_HEAD(&fs_info->unused_bgs);
2665 btrfs_mapping_init(&fs_info->mapping_tree);
2666 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2667 BTRFS_BLOCK_RSV_GLOBAL);
2668 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2669 BTRFS_BLOCK_RSV_DELALLOC);
2670 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674 BTRFS_BLOCK_RSV_DELOPS);
2675 atomic_set(&fs_info->nr_async_submits, 0);
2676 atomic_set(&fs_info->async_delalloc_pages, 0);
2677 atomic_set(&fs_info->async_submit_draining, 0);
2678 atomic_set(&fs_info->nr_async_bios, 0);
2679 atomic_set(&fs_info->defrag_running, 0);
2680 atomic_set(&fs_info->qgroup_op_seq, 0);
2681 atomic_set(&fs_info->reada_works_cnt, 0);
2682 atomic64_set(&fs_info->tree_mod_seq, 0);
2683 fs_info->fs_frozen = 0;
2684 fs_info->sb = sb;
2685 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2686 fs_info->metadata_ratio = 0;
2687 fs_info->defrag_inodes = RB_ROOT;
2688 fs_info->free_chunk_space = 0;
2689 fs_info->tree_mod_log = RB_ROOT;
2690 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2691 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2692 /* readahead state */
2693 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2694 spin_lock_init(&fs_info->reada_lock);
2695
2696 fs_info->thread_pool_size = min_t(unsigned long,
2697 num_online_cpus() + 2, 8);
2698
2699 INIT_LIST_HEAD(&fs_info->ordered_roots);
2700 spin_lock_init(&fs_info->ordered_root_lock);
2701 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2702 GFP_KERNEL);
2703 if (!fs_info->delayed_root) {
2704 err = -ENOMEM;
2705 goto fail_iput;
2706 }
2707 btrfs_init_delayed_root(fs_info->delayed_root);
2708
2709 btrfs_init_scrub(fs_info);
2710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711 fs_info->check_integrity_print_mask = 0;
2712 #endif
2713 btrfs_init_balance(fs_info);
2714 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2715
2716 sb->s_blocksize = 4096;
2717 sb->s_blocksize_bits = blksize_bits(4096);
2718 sb->s_bdi = &fs_info->bdi;
2719
2720 btrfs_init_btree_inode(fs_info);
2721
2722 spin_lock_init(&fs_info->block_group_cache_lock);
2723 fs_info->block_group_cache_tree = RB_ROOT;
2724 fs_info->first_logical_byte = (u64)-1;
2725
2726 extent_io_tree_init(&fs_info->freed_extents[0],
2727 fs_info->btree_inode->i_mapping);
2728 extent_io_tree_init(&fs_info->freed_extents[1],
2729 fs_info->btree_inode->i_mapping);
2730 fs_info->pinned_extents = &fs_info->freed_extents[0];
2731 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2732
2733 mutex_init(&fs_info->ordered_operations_mutex);
2734 mutex_init(&fs_info->tree_log_mutex);
2735 mutex_init(&fs_info->chunk_mutex);
2736 mutex_init(&fs_info->transaction_kthread_mutex);
2737 mutex_init(&fs_info->cleaner_mutex);
2738 mutex_init(&fs_info->volume_mutex);
2739 mutex_init(&fs_info->ro_block_group_mutex);
2740 init_rwsem(&fs_info->commit_root_sem);
2741 init_rwsem(&fs_info->cleanup_work_sem);
2742 init_rwsem(&fs_info->subvol_sem);
2743 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2744
2745 btrfs_init_dev_replace_locks(fs_info);
2746 btrfs_init_qgroup(fs_info);
2747
2748 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750
2751 init_waitqueue_head(&fs_info->transaction_throttle);
2752 init_waitqueue_head(&fs_info->transaction_wait);
2753 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2754 init_waitqueue_head(&fs_info->async_submit_wait);
2755
2756 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757
2758 /* Usable values until the real ones are cached from the superblock */
2759 fs_info->nodesize = 4096;
2760 fs_info->sectorsize = 4096;
2761 fs_info->stripesize = 4096;
2762
2763 ret = btrfs_alloc_stripe_hash_table(fs_info);
2764 if (ret) {
2765 err = ret;
2766 goto fail_alloc;
2767 }
2768
2769 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2770
2771 invalidate_bdev(fs_devices->latest_bdev);
2772
2773 /*
2774 * Read super block and check the signature bytes only
2775 */
2776 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2777 if (IS_ERR(bh)) {
2778 err = PTR_ERR(bh);
2779 goto fail_alloc;
2780 }
2781
2782 /*
2783 * We want to check superblock checksum, the type is stored inside.
2784 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2785 */
2786 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2787 btrfs_err(fs_info, "superblock checksum mismatch");
2788 err = -EINVAL;
2789 brelse(bh);
2790 goto fail_alloc;
2791 }
2792
2793 /*
2794 * super_copy is zeroed at allocation time and we never touch the
2795 * following bytes up to INFO_SIZE, the checksum is calculated from
2796 * the whole block of INFO_SIZE
2797 */
2798 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2799 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2800 sizeof(*fs_info->super_for_commit));
2801 brelse(bh);
2802
2803 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2804
2805 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2806 if (ret) {
2807 btrfs_err(fs_info, "superblock contains fatal errors");
2808 err = -EINVAL;
2809 goto fail_alloc;
2810 }
2811
2812 disk_super = fs_info->super_copy;
2813 if (!btrfs_super_root(disk_super))
2814 goto fail_alloc;
2815
2816 /* check FS state, whether FS is broken. */
2817 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2818 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2819
2820 /*
2821 * run through our array of backup supers and setup
2822 * our ring pointer to the oldest one
2823 */
2824 generation = btrfs_super_generation(disk_super);
2825 find_oldest_super_backup(fs_info, generation);
2826
2827 /*
2828 * In the long term, we'll store the compression type in the super
2829 * block, and it'll be used for per file compression control.
2830 */
2831 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832
2833 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2834 if (ret) {
2835 err = ret;
2836 goto fail_alloc;
2837 }
2838
2839 features = btrfs_super_incompat_flags(disk_super) &
2840 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2841 if (features) {
2842 btrfs_err(fs_info,
2843 "cannot mount because of unsupported optional features (%llx)",
2844 features);
2845 err = -EINVAL;
2846 goto fail_alloc;
2847 }
2848
2849 features = btrfs_super_incompat_flags(disk_super);
2850 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2851 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2852 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2853
2854 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2855 btrfs_info(fs_info, "has skinny extents");
2856
2857 /*
2858 * flag our filesystem as having big metadata blocks if
2859 * they are bigger than the page size
2860 */
2861 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2862 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2863 btrfs_info(fs_info,
2864 "flagging fs with big metadata feature");
2865 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2866 }
2867
2868 nodesize = btrfs_super_nodesize(disk_super);
2869 sectorsize = btrfs_super_sectorsize(disk_super);
2870 stripesize = sectorsize;
2871 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2872 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2873
2874 /* Cache block sizes */
2875 fs_info->nodesize = nodesize;
2876 fs_info->sectorsize = sectorsize;
2877 fs_info->stripesize = stripesize;
2878
2879 /*
2880 * mixed block groups end up with duplicate but slightly offset
2881 * extent buffers for the same range. It leads to corruptions
2882 */
2883 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2884 (sectorsize != nodesize)) {
2885 btrfs_err(fs_info,
2886 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2887 nodesize, sectorsize);
2888 goto fail_alloc;
2889 }
2890
2891 /*
2892 * Needn't use the lock because there is no other task which will
2893 * update the flag.
2894 */
2895 btrfs_set_super_incompat_flags(disk_super, features);
2896
2897 features = btrfs_super_compat_ro_flags(disk_super) &
2898 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2899 if (!(sb->s_flags & MS_RDONLY) && features) {
2900 btrfs_err(fs_info,
2901 "cannot mount read-write because of unsupported optional features (%llx)",
2902 features);
2903 err = -EINVAL;
2904 goto fail_alloc;
2905 }
2906
2907 max_active = fs_info->thread_pool_size;
2908
2909 ret = btrfs_init_workqueues(fs_info, fs_devices);
2910 if (ret) {
2911 err = ret;
2912 goto fail_sb_buffer;
2913 }
2914
2915 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2916 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2917 SZ_4M / PAGE_SIZE);
2918
2919 sb->s_blocksize = sectorsize;
2920 sb->s_blocksize_bits = blksize_bits(sectorsize);
2921
2922 mutex_lock(&fs_info->chunk_mutex);
2923 ret = btrfs_read_sys_array(fs_info);
2924 mutex_unlock(&fs_info->chunk_mutex);
2925 if (ret) {
2926 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2927 goto fail_sb_buffer;
2928 }
2929
2930 generation = btrfs_super_chunk_root_generation(disk_super);
2931
2932 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2933
2934 chunk_root->node = read_tree_block(fs_info,
2935 btrfs_super_chunk_root(disk_super),
2936 generation);
2937 if (IS_ERR(chunk_root->node) ||
2938 !extent_buffer_uptodate(chunk_root->node)) {
2939 btrfs_err(fs_info, "failed to read chunk root");
2940 if (!IS_ERR(chunk_root->node))
2941 free_extent_buffer(chunk_root->node);
2942 chunk_root->node = NULL;
2943 goto fail_tree_roots;
2944 }
2945 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2946 chunk_root->commit_root = btrfs_root_node(chunk_root);
2947
2948 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2949 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2950
2951 ret = btrfs_read_chunk_tree(fs_info);
2952 if (ret) {
2953 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2954 goto fail_tree_roots;
2955 }
2956
2957 /*
2958 * keep the device that is marked to be the target device for the
2959 * dev_replace procedure
2960 */
2961 btrfs_close_extra_devices(fs_devices, 0);
2962
2963 if (!fs_devices->latest_bdev) {
2964 btrfs_err(fs_info, "failed to read devices");
2965 goto fail_tree_roots;
2966 }
2967
2968 retry_root_backup:
2969 generation = btrfs_super_generation(disk_super);
2970
2971 tree_root->node = read_tree_block(fs_info,
2972 btrfs_super_root(disk_super),
2973 generation);
2974 if (IS_ERR(tree_root->node) ||
2975 !extent_buffer_uptodate(tree_root->node)) {
2976 btrfs_warn(fs_info, "failed to read tree root");
2977 if (!IS_ERR(tree_root->node))
2978 free_extent_buffer(tree_root->node);
2979 tree_root->node = NULL;
2980 goto recovery_tree_root;
2981 }
2982
2983 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984 tree_root->commit_root = btrfs_root_node(tree_root);
2985 btrfs_set_root_refs(&tree_root->root_item, 1);
2986
2987 mutex_lock(&tree_root->objectid_mutex);
2988 ret = btrfs_find_highest_objectid(tree_root,
2989 &tree_root->highest_objectid);
2990 if (ret) {
2991 mutex_unlock(&tree_root->objectid_mutex);
2992 goto recovery_tree_root;
2993 }
2994
2995 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996
2997 mutex_unlock(&tree_root->objectid_mutex);
2998
2999 ret = btrfs_read_roots(fs_info);
3000 if (ret)
3001 goto recovery_tree_root;
3002
3003 fs_info->generation = generation;
3004 fs_info->last_trans_committed = generation;
3005
3006 ret = btrfs_recover_balance(fs_info);
3007 if (ret) {
3008 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3009 goto fail_block_groups;
3010 }
3011
3012 ret = btrfs_init_dev_stats(fs_info);
3013 if (ret) {
3014 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3015 goto fail_block_groups;
3016 }
3017
3018 ret = btrfs_init_dev_replace(fs_info);
3019 if (ret) {
3020 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3021 goto fail_block_groups;
3022 }
3023
3024 btrfs_close_extra_devices(fs_devices, 1);
3025
3026 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3027 if (ret) {
3028 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3029 ret);
3030 goto fail_block_groups;
3031 }
3032
3033 ret = btrfs_sysfs_add_device(fs_devices);
3034 if (ret) {
3035 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3036 ret);
3037 goto fail_fsdev_sysfs;
3038 }
3039
3040 ret = btrfs_sysfs_add_mounted(fs_info);
3041 if (ret) {
3042 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3043 goto fail_fsdev_sysfs;
3044 }
3045
3046 ret = btrfs_init_space_info(fs_info);
3047 if (ret) {
3048 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3049 goto fail_sysfs;
3050 }
3051
3052 ret = btrfs_read_block_groups(fs_info);
3053 if (ret) {
3054 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3055 goto fail_sysfs;
3056 }
3057 fs_info->num_tolerated_disk_barrier_failures =
3058 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3059 if (fs_info->fs_devices->missing_devices >
3060 fs_info->num_tolerated_disk_barrier_failures &&
3061 !(sb->s_flags & MS_RDONLY)) {
3062 btrfs_warn(fs_info,
3063 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3064 fs_info->fs_devices->missing_devices,
3065 fs_info->num_tolerated_disk_barrier_failures);
3066 goto fail_sysfs;
3067 }
3068
3069 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3070 "btrfs-cleaner");
3071 if (IS_ERR(fs_info->cleaner_kthread))
3072 goto fail_sysfs;
3073
3074 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3075 tree_root,
3076 "btrfs-transaction");
3077 if (IS_ERR(fs_info->transaction_kthread))
3078 goto fail_cleaner;
3079
3080 if (!btrfs_test_opt(fs_info, SSD) &&
3081 !btrfs_test_opt(fs_info, NOSSD) &&
3082 !fs_info->fs_devices->rotating) {
3083 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3084 btrfs_set_opt(fs_info->mount_opt, SSD);
3085 }
3086
3087 /*
3088 * Mount does not set all options immediately, we can do it now and do
3089 * not have to wait for transaction commit
3090 */
3091 btrfs_apply_pending_changes(fs_info);
3092
3093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3094 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3095 ret = btrfsic_mount(fs_info, fs_devices,
3096 btrfs_test_opt(fs_info,
3097 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098 1 : 0,
3099 fs_info->check_integrity_print_mask);
3100 if (ret)
3101 btrfs_warn(fs_info,
3102 "failed to initialize integrity check module: %d",
3103 ret);
3104 }
3105 #endif
3106 ret = btrfs_read_qgroup_config(fs_info);
3107 if (ret)
3108 goto fail_trans_kthread;
3109
3110 /* do not make disk changes in broken FS or nologreplay is given */
3111 if (btrfs_super_log_root(disk_super) != 0 &&
3112 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3113 ret = btrfs_replay_log(fs_info, fs_devices);
3114 if (ret) {
3115 err = ret;
3116 goto fail_qgroup;
3117 }
3118 }
3119
3120 ret = btrfs_find_orphan_roots(fs_info);
3121 if (ret)
3122 goto fail_qgroup;
3123
3124 if (!(sb->s_flags & MS_RDONLY)) {
3125 ret = btrfs_cleanup_fs_roots(fs_info);
3126 if (ret)
3127 goto fail_qgroup;
3128
3129 mutex_lock(&fs_info->cleaner_mutex);
3130 ret = btrfs_recover_relocation(tree_root);
3131 mutex_unlock(&fs_info->cleaner_mutex);
3132 if (ret < 0) {
3133 btrfs_warn(fs_info, "failed to recover relocation: %d",
3134 ret);
3135 err = -EINVAL;
3136 goto fail_qgroup;
3137 }
3138 }
3139
3140 location.objectid = BTRFS_FS_TREE_OBJECTID;
3141 location.type = BTRFS_ROOT_ITEM_KEY;
3142 location.offset = 0;
3143
3144 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3145 if (IS_ERR(fs_info->fs_root)) {
3146 err = PTR_ERR(fs_info->fs_root);
3147 goto fail_qgroup;
3148 }
3149
3150 if (sb->s_flags & MS_RDONLY)
3151 return 0;
3152
3153 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3154 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3155 clear_free_space_tree = 1;
3156 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3157 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3158 btrfs_warn(fs_info, "free space tree is invalid");
3159 clear_free_space_tree = 1;
3160 }
3161
3162 if (clear_free_space_tree) {
3163 btrfs_info(fs_info, "clearing free space tree");
3164 ret = btrfs_clear_free_space_tree(fs_info);
3165 if (ret) {
3166 btrfs_warn(fs_info,
3167 "failed to clear free space tree: %d", ret);
3168 close_ctree(fs_info);
3169 return ret;
3170 }
3171 }
3172
3173 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3174 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3175 btrfs_info(fs_info, "creating free space tree");
3176 ret = btrfs_create_free_space_tree(fs_info);
3177 if (ret) {
3178 btrfs_warn(fs_info,
3179 "failed to create free space tree: %d", ret);
3180 close_ctree(fs_info);
3181 return ret;
3182 }
3183 }
3184
3185 down_read(&fs_info->cleanup_work_sem);
3186 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3187 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3188 up_read(&fs_info->cleanup_work_sem);
3189 close_ctree(fs_info);
3190 return ret;
3191 }
3192 up_read(&fs_info->cleanup_work_sem);
3193
3194 ret = btrfs_resume_balance_async(fs_info);
3195 if (ret) {
3196 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3197 close_ctree(fs_info);
3198 return ret;
3199 }
3200
3201 ret = btrfs_resume_dev_replace_async(fs_info);
3202 if (ret) {
3203 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3204 close_ctree(fs_info);
3205 return ret;
3206 }
3207
3208 btrfs_qgroup_rescan_resume(fs_info);
3209
3210 if (!fs_info->uuid_root) {
3211 btrfs_info(fs_info, "creating UUID tree");
3212 ret = btrfs_create_uuid_tree(fs_info);
3213 if (ret) {
3214 btrfs_warn(fs_info,
3215 "failed to create the UUID tree: %d", ret);
3216 close_ctree(fs_info);
3217 return ret;
3218 }
3219 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3220 fs_info->generation !=
3221 btrfs_super_uuid_tree_generation(disk_super)) {
3222 btrfs_info(fs_info, "checking UUID tree");
3223 ret = btrfs_check_uuid_tree(fs_info);
3224 if (ret) {
3225 btrfs_warn(fs_info,
3226 "failed to check the UUID tree: %d", ret);
3227 close_ctree(fs_info);
3228 return ret;
3229 }
3230 } else {
3231 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3232 }
3233 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3234
3235 /*
3236 * backuproot only affect mount behavior, and if open_ctree succeeded,
3237 * no need to keep the flag
3238 */
3239 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3240
3241 return 0;
3242
3243 fail_qgroup:
3244 btrfs_free_qgroup_config(fs_info);
3245 fail_trans_kthread:
3246 kthread_stop(fs_info->transaction_kthread);
3247 btrfs_cleanup_transaction(fs_info);
3248 btrfs_free_fs_roots(fs_info);
3249 fail_cleaner:
3250 kthread_stop(fs_info->cleaner_kthread);
3251
3252 /*
3253 * make sure we're done with the btree inode before we stop our
3254 * kthreads
3255 */
3256 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3257
3258 fail_sysfs:
3259 btrfs_sysfs_remove_mounted(fs_info);
3260
3261 fail_fsdev_sysfs:
3262 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3263
3264 fail_block_groups:
3265 btrfs_put_block_group_cache(fs_info);
3266 btrfs_free_block_groups(fs_info);
3267
3268 fail_tree_roots:
3269 free_root_pointers(fs_info, 1);
3270 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3271
3272 fail_sb_buffer:
3273 btrfs_stop_all_workers(fs_info);
3274 fail_alloc:
3275 fail_iput:
3276 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3277
3278 iput(fs_info->btree_inode);
3279 fail_bio_counter:
3280 percpu_counter_destroy(&fs_info->bio_counter);
3281 fail_delalloc_bytes:
3282 percpu_counter_destroy(&fs_info->delalloc_bytes);
3283 fail_dirty_metadata_bytes:
3284 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3285 fail_bdi:
3286 bdi_destroy(&fs_info->bdi);
3287 fail_srcu:
3288 cleanup_srcu_struct(&fs_info->subvol_srcu);
3289 fail:
3290 btrfs_free_stripe_hash_table(fs_info);
3291 btrfs_close_devices(fs_info->fs_devices);
3292 return err;
3293
3294 recovery_tree_root:
3295 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3296 goto fail_tree_roots;
3297
3298 free_root_pointers(fs_info, 0);
3299
3300 /* don't use the log in recovery mode, it won't be valid */
3301 btrfs_set_super_log_root(disk_super, 0);
3302
3303 /* we can't trust the free space cache either */
3304 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3305
3306 ret = next_root_backup(fs_info, fs_info->super_copy,
3307 &num_backups_tried, &backup_index);
3308 if (ret == -1)
3309 goto fail_block_groups;
3310 goto retry_root_backup;
3311 }
3312
3313 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3314 {
3315 if (uptodate) {
3316 set_buffer_uptodate(bh);
3317 } else {
3318 struct btrfs_device *device = (struct btrfs_device *)
3319 bh->b_private;
3320
3321 btrfs_warn_rl_in_rcu(device->fs_info,
3322 "lost page write due to IO error on %s",
3323 rcu_str_deref(device->name));
3324 /* note, we don't set_buffer_write_io_error because we have
3325 * our own ways of dealing with the IO errors
3326 */
3327 clear_buffer_uptodate(bh);
3328 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3329 }
3330 unlock_buffer(bh);
3331 put_bh(bh);
3332 }
3333
3334 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3335 struct buffer_head **bh_ret)
3336 {
3337 struct buffer_head *bh;
3338 struct btrfs_super_block *super;
3339 u64 bytenr;
3340
3341 bytenr = btrfs_sb_offset(copy_num);
3342 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3343 return -EINVAL;
3344
3345 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3346 /*
3347 * If we fail to read from the underlying devices, as of now
3348 * the best option we have is to mark it EIO.
3349 */
3350 if (!bh)
3351 return -EIO;
3352
3353 super = (struct btrfs_super_block *)bh->b_data;
3354 if (btrfs_super_bytenr(super) != bytenr ||
3355 btrfs_super_magic(super) != BTRFS_MAGIC) {
3356 brelse(bh);
3357 return -EINVAL;
3358 }
3359
3360 *bh_ret = bh;
3361 return 0;
3362 }
3363
3364
3365 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3366 {
3367 struct buffer_head *bh;
3368 struct buffer_head *latest = NULL;
3369 struct btrfs_super_block *super;
3370 int i;
3371 u64 transid = 0;
3372 int ret = -EINVAL;
3373
3374 /* we would like to check all the supers, but that would make
3375 * a btrfs mount succeed after a mkfs from a different FS.
3376 * So, we need to add a special mount option to scan for
3377 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3378 */
3379 for (i = 0; i < 1; i++) {
3380 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3381 if (ret)
3382 continue;
3383
3384 super = (struct btrfs_super_block *)bh->b_data;
3385
3386 if (!latest || btrfs_super_generation(super) > transid) {
3387 brelse(latest);
3388 latest = bh;
3389 transid = btrfs_super_generation(super);
3390 } else {
3391 brelse(bh);
3392 }
3393 }
3394
3395 if (!latest)
3396 return ERR_PTR(ret);
3397
3398 return latest;
3399 }
3400
3401 /*
3402 * this should be called twice, once with wait == 0 and
3403 * once with wait == 1. When wait == 0 is done, all the buffer heads
3404 * we write are pinned.
3405 *
3406 * They are released when wait == 1 is done.
3407 * max_mirrors must be the same for both runs, and it indicates how
3408 * many supers on this one device should be written.
3409 *
3410 * max_mirrors == 0 means to write them all.
3411 */
3412 static int write_dev_supers(struct btrfs_device *device,
3413 struct btrfs_super_block *sb,
3414 int do_barriers, int wait, int max_mirrors)
3415 {
3416 struct buffer_head *bh;
3417 int i;
3418 int ret;
3419 int errors = 0;
3420 u32 crc;
3421 u64 bytenr;
3422
3423 if (max_mirrors == 0)
3424 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3425
3426 for (i = 0; i < max_mirrors; i++) {
3427 bytenr = btrfs_sb_offset(i);
3428 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3429 device->commit_total_bytes)
3430 break;
3431
3432 if (wait) {
3433 bh = __find_get_block(device->bdev, bytenr / 4096,
3434 BTRFS_SUPER_INFO_SIZE);
3435 if (!bh) {
3436 errors++;
3437 continue;
3438 }
3439 wait_on_buffer(bh);
3440 if (!buffer_uptodate(bh))
3441 errors++;
3442
3443 /* drop our reference */
3444 brelse(bh);
3445
3446 /* drop the reference from the wait == 0 run */
3447 brelse(bh);
3448 continue;
3449 } else {
3450 btrfs_set_super_bytenr(sb, bytenr);
3451
3452 crc = ~(u32)0;
3453 crc = btrfs_csum_data((char *)sb +
3454 BTRFS_CSUM_SIZE, crc,
3455 BTRFS_SUPER_INFO_SIZE -
3456 BTRFS_CSUM_SIZE);
3457 btrfs_csum_final(crc, sb->csum);
3458
3459 /*
3460 * one reference for us, and we leave it for the
3461 * caller
3462 */
3463 bh = __getblk(device->bdev, bytenr / 4096,
3464 BTRFS_SUPER_INFO_SIZE);
3465 if (!bh) {
3466 btrfs_err(device->fs_info,
3467 "couldn't get super buffer head for bytenr %llu",
3468 bytenr);
3469 errors++;
3470 continue;
3471 }
3472
3473 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3474
3475 /* one reference for submit_bh */
3476 get_bh(bh);
3477
3478 set_buffer_uptodate(bh);
3479 lock_buffer(bh);
3480 bh->b_end_io = btrfs_end_buffer_write_sync;
3481 bh->b_private = device;
3482 }
3483
3484 /*
3485 * we fua the first super. The others we allow
3486 * to go down lazy.
3487 */
3488 if (i == 0)
3489 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
3490 else
3491 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3492 if (ret)
3493 errors++;
3494 }
3495 return errors < i ? 0 : -1;
3496 }
3497
3498 /*
3499 * endio for the write_dev_flush, this will wake anyone waiting
3500 * for the barrier when it is done
3501 */
3502 static void btrfs_end_empty_barrier(struct bio *bio)
3503 {
3504 if (bio->bi_private)
3505 complete(bio->bi_private);
3506 bio_put(bio);
3507 }
3508
3509 /*
3510 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3511 * sent down. With wait == 1, it waits for the previous flush.
3512 *
3513 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3514 * capable
3515 */
3516 static int write_dev_flush(struct btrfs_device *device, int wait)
3517 {
3518 struct bio *bio;
3519 int ret = 0;
3520
3521 if (device->nobarriers)
3522 return 0;
3523
3524 if (wait) {
3525 bio = device->flush_bio;
3526 if (!bio)
3527 return 0;
3528
3529 wait_for_completion(&device->flush_wait);
3530
3531 if (bio->bi_error) {
3532 ret = bio->bi_error;
3533 btrfs_dev_stat_inc_and_print(device,
3534 BTRFS_DEV_STAT_FLUSH_ERRS);
3535 }
3536
3537 /* drop the reference from the wait == 0 run */
3538 bio_put(bio);
3539 device->flush_bio = NULL;
3540
3541 return ret;
3542 }
3543
3544 /*
3545 * one reference for us, and we leave it for the
3546 * caller
3547 */
3548 device->flush_bio = NULL;
3549 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3550 if (!bio)
3551 return -ENOMEM;
3552
3553 bio->bi_end_io = btrfs_end_empty_barrier;
3554 bio->bi_bdev = device->bdev;
3555 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3556 init_completion(&device->flush_wait);
3557 bio->bi_private = &device->flush_wait;
3558 device->flush_bio = bio;
3559
3560 bio_get(bio);
3561 btrfsic_submit_bio(bio);
3562
3563 return 0;
3564 }
3565
3566 /*
3567 * send an empty flush down to each device in parallel,
3568 * then wait for them
3569 */
3570 static int barrier_all_devices(struct btrfs_fs_info *info)
3571 {
3572 struct list_head *head;
3573 struct btrfs_device *dev;
3574 int errors_send = 0;
3575 int errors_wait = 0;
3576 int ret;
3577
3578 /* send down all the barriers */
3579 head = &info->fs_devices->devices;
3580 list_for_each_entry_rcu(dev, head, dev_list) {
3581 if (dev->missing)
3582 continue;
3583 if (!dev->bdev) {
3584 errors_send++;
3585 continue;
3586 }
3587 if (!dev->in_fs_metadata || !dev->writeable)
3588 continue;
3589
3590 ret = write_dev_flush(dev, 0);
3591 if (ret)
3592 errors_send++;
3593 }
3594
3595 /* wait for all the barriers */
3596 list_for_each_entry_rcu(dev, head, dev_list) {
3597 if (dev->missing)
3598 continue;
3599 if (!dev->bdev) {
3600 errors_wait++;
3601 continue;
3602 }
3603 if (!dev->in_fs_metadata || !dev->writeable)
3604 continue;
3605
3606 ret = write_dev_flush(dev, 1);
3607 if (ret)
3608 errors_wait++;
3609 }
3610 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3611 errors_wait > info->num_tolerated_disk_barrier_failures)
3612 return -EIO;
3613 return 0;
3614 }
3615
3616 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3617 {
3618 int raid_type;
3619 int min_tolerated = INT_MAX;
3620
3621 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3622 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3623 min_tolerated = min(min_tolerated,
3624 btrfs_raid_array[BTRFS_RAID_SINGLE].
3625 tolerated_failures);
3626
3627 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3628 if (raid_type == BTRFS_RAID_SINGLE)
3629 continue;
3630 if (!(flags & btrfs_raid_group[raid_type]))
3631 continue;
3632 min_tolerated = min(min_tolerated,
3633 btrfs_raid_array[raid_type].
3634 tolerated_failures);
3635 }
3636
3637 if (min_tolerated == INT_MAX) {
3638 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3639 min_tolerated = 0;
3640 }
3641
3642 return min_tolerated;
3643 }
3644
3645 int btrfs_calc_num_tolerated_disk_barrier_failures(
3646 struct btrfs_fs_info *fs_info)
3647 {
3648 struct btrfs_ioctl_space_info space;
3649 struct btrfs_space_info *sinfo;
3650 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3651 BTRFS_BLOCK_GROUP_SYSTEM,
3652 BTRFS_BLOCK_GROUP_METADATA,
3653 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3654 int i;
3655 int c;
3656 int num_tolerated_disk_barrier_failures =
3657 (int)fs_info->fs_devices->num_devices;
3658
3659 for (i = 0; i < ARRAY_SIZE(types); i++) {
3660 struct btrfs_space_info *tmp;
3661
3662 sinfo = NULL;
3663 rcu_read_lock();
3664 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3665 if (tmp->flags == types[i]) {
3666 sinfo = tmp;
3667 break;
3668 }
3669 }
3670 rcu_read_unlock();
3671
3672 if (!sinfo)
3673 continue;
3674
3675 down_read(&sinfo->groups_sem);
3676 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3677 u64 flags;
3678
3679 if (list_empty(&sinfo->block_groups[c]))
3680 continue;
3681
3682 btrfs_get_block_group_info(&sinfo->block_groups[c],
3683 &space);
3684 if (space.total_bytes == 0 || space.used_bytes == 0)
3685 continue;
3686 flags = space.flags;
3687
3688 num_tolerated_disk_barrier_failures = min(
3689 num_tolerated_disk_barrier_failures,
3690 btrfs_get_num_tolerated_disk_barrier_failures(
3691 flags));
3692 }
3693 up_read(&sinfo->groups_sem);
3694 }
3695
3696 return num_tolerated_disk_barrier_failures;
3697 }
3698
3699 static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3700 {
3701 struct list_head *head;
3702 struct btrfs_device *dev;
3703 struct btrfs_super_block *sb;
3704 struct btrfs_dev_item *dev_item;
3705 int ret;
3706 int do_barriers;
3707 int max_errors;
3708 int total_errors = 0;
3709 u64 flags;
3710
3711 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3712 backup_super_roots(fs_info);
3713
3714 sb = fs_info->super_for_commit;
3715 dev_item = &sb->dev_item;
3716
3717 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3718 head = &fs_info->fs_devices->devices;
3719 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3720
3721 if (do_barriers) {
3722 ret = barrier_all_devices(fs_info);
3723 if (ret) {
3724 mutex_unlock(
3725 &fs_info->fs_devices->device_list_mutex);
3726 btrfs_handle_fs_error(fs_info, ret,
3727 "errors while submitting device barriers.");
3728 return ret;
3729 }
3730 }
3731
3732 list_for_each_entry_rcu(dev, head, dev_list) {
3733 if (!dev->bdev) {
3734 total_errors++;
3735 continue;
3736 }
3737 if (!dev->in_fs_metadata || !dev->writeable)
3738 continue;
3739
3740 btrfs_set_stack_device_generation(dev_item, 0);
3741 btrfs_set_stack_device_type(dev_item, dev->type);
3742 btrfs_set_stack_device_id(dev_item, dev->devid);
3743 btrfs_set_stack_device_total_bytes(dev_item,
3744 dev->commit_total_bytes);
3745 btrfs_set_stack_device_bytes_used(dev_item,
3746 dev->commit_bytes_used);
3747 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3751 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3752
3753 flags = btrfs_super_flags(sb);
3754 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3755
3756 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3757 if (ret)
3758 total_errors++;
3759 }
3760 if (total_errors > max_errors) {
3761 btrfs_err(fs_info, "%d errors while writing supers",
3762 total_errors);
3763 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3764
3765 /* FUA is masked off if unsupported and can't be the reason */
3766 btrfs_handle_fs_error(fs_info, -EIO,
3767 "%d errors while writing supers",
3768 total_errors);
3769 return -EIO;
3770 }
3771
3772 total_errors = 0;
3773 list_for_each_entry_rcu(dev, head, dev_list) {
3774 if (!dev->bdev)
3775 continue;
3776 if (!dev->in_fs_metadata || !dev->writeable)
3777 continue;
3778
3779 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3780 if (ret)
3781 total_errors++;
3782 }
3783 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3784 if (total_errors > max_errors) {
3785 btrfs_handle_fs_error(fs_info, -EIO,
3786 "%d errors while writing supers",
3787 total_errors);
3788 return -EIO;
3789 }
3790 return 0;
3791 }
3792
3793 int write_ctree_super(struct btrfs_trans_handle *trans,
3794 struct btrfs_fs_info *fs_info, int max_mirrors)
3795 {
3796 return write_all_supers(fs_info, max_mirrors);
3797 }
3798
3799 /* Drop a fs root from the radix tree and free it. */
3800 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3801 struct btrfs_root *root)
3802 {
3803 spin_lock(&fs_info->fs_roots_radix_lock);
3804 radix_tree_delete(&fs_info->fs_roots_radix,
3805 (unsigned long)root->root_key.objectid);
3806 spin_unlock(&fs_info->fs_roots_radix_lock);
3807
3808 if (btrfs_root_refs(&root->root_item) == 0)
3809 synchronize_srcu(&fs_info->subvol_srcu);
3810
3811 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3812 btrfs_free_log(NULL, root);
3813 if (root->reloc_root) {
3814 free_extent_buffer(root->reloc_root->node);
3815 free_extent_buffer(root->reloc_root->commit_root);
3816 btrfs_put_fs_root(root->reloc_root);
3817 root->reloc_root = NULL;
3818 }
3819 }
3820
3821 if (root->free_ino_pinned)
3822 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3823 if (root->free_ino_ctl)
3824 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3825 free_fs_root(root);
3826 }
3827
3828 static void free_fs_root(struct btrfs_root *root)
3829 {
3830 iput(root->ino_cache_inode);
3831 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3832 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3833 root->orphan_block_rsv = NULL;
3834 if (root->anon_dev)
3835 free_anon_bdev(root->anon_dev);
3836 if (root->subv_writers)
3837 btrfs_free_subvolume_writers(root->subv_writers);
3838 free_extent_buffer(root->node);
3839 free_extent_buffer(root->commit_root);
3840 kfree(root->free_ino_ctl);
3841 kfree(root->free_ino_pinned);
3842 kfree(root->name);
3843 btrfs_put_fs_root(root);
3844 }
3845
3846 void btrfs_free_fs_root(struct btrfs_root *root)
3847 {
3848 free_fs_root(root);
3849 }
3850
3851 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3852 {
3853 u64 root_objectid = 0;
3854 struct btrfs_root *gang[8];
3855 int i = 0;
3856 int err = 0;
3857 unsigned int ret = 0;
3858 int index;
3859
3860 while (1) {
3861 index = srcu_read_lock(&fs_info->subvol_srcu);
3862 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3863 (void **)gang, root_objectid,
3864 ARRAY_SIZE(gang));
3865 if (!ret) {
3866 srcu_read_unlock(&fs_info->subvol_srcu, index);
3867 break;
3868 }
3869 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3870
3871 for (i = 0; i < ret; i++) {
3872 /* Avoid to grab roots in dead_roots */
3873 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3874 gang[i] = NULL;
3875 continue;
3876 }
3877 /* grab all the search result for later use */
3878 gang[i] = btrfs_grab_fs_root(gang[i]);
3879 }
3880 srcu_read_unlock(&fs_info->subvol_srcu, index);
3881
3882 for (i = 0; i < ret; i++) {
3883 if (!gang[i])
3884 continue;
3885 root_objectid = gang[i]->root_key.objectid;
3886 err = btrfs_orphan_cleanup(gang[i]);
3887 if (err)
3888 break;
3889 btrfs_put_fs_root(gang[i]);
3890 }
3891 root_objectid++;
3892 }
3893
3894 /* release the uncleaned roots due to error */
3895 for (; i < ret; i++) {
3896 if (gang[i])
3897 btrfs_put_fs_root(gang[i]);
3898 }
3899 return err;
3900 }
3901
3902 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3903 {
3904 struct btrfs_root *root = fs_info->tree_root;
3905 struct btrfs_trans_handle *trans;
3906
3907 mutex_lock(&fs_info->cleaner_mutex);
3908 btrfs_run_delayed_iputs(fs_info);
3909 mutex_unlock(&fs_info->cleaner_mutex);
3910 wake_up_process(fs_info->cleaner_kthread);
3911
3912 /* wait until ongoing cleanup work done */
3913 down_write(&fs_info->cleanup_work_sem);
3914 up_write(&fs_info->cleanup_work_sem);
3915
3916 trans = btrfs_join_transaction(root);
3917 if (IS_ERR(trans))
3918 return PTR_ERR(trans);
3919 return btrfs_commit_transaction(trans);
3920 }
3921
3922 void close_ctree(struct btrfs_fs_info *fs_info)
3923 {
3924 struct btrfs_root *root = fs_info->tree_root;
3925 int ret;
3926
3927 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3928
3929 /* wait for the qgroup rescan worker to stop */
3930 btrfs_qgroup_wait_for_completion(fs_info, false);
3931
3932 /* wait for the uuid_scan task to finish */
3933 down(&fs_info->uuid_tree_rescan_sem);
3934 /* avoid complains from lockdep et al., set sem back to initial state */
3935 up(&fs_info->uuid_tree_rescan_sem);
3936
3937 /* pause restriper - we want to resume on mount */
3938 btrfs_pause_balance(fs_info);
3939
3940 btrfs_dev_replace_suspend_for_unmount(fs_info);
3941
3942 btrfs_scrub_cancel(fs_info);
3943
3944 /* wait for any defraggers to finish */
3945 wait_event(fs_info->transaction_wait,
3946 (atomic_read(&fs_info->defrag_running) == 0));
3947
3948 /* clear out the rbtree of defraggable inodes */
3949 btrfs_cleanup_defrag_inodes(fs_info);
3950
3951 cancel_work_sync(&fs_info->async_reclaim_work);
3952
3953 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3954 /*
3955 * If the cleaner thread is stopped and there are
3956 * block groups queued for removal, the deletion will be
3957 * skipped when we quit the cleaner thread.
3958 */
3959 btrfs_delete_unused_bgs(fs_info);
3960
3961 ret = btrfs_commit_super(fs_info);
3962 if (ret)
3963 btrfs_err(fs_info, "commit super ret %d", ret);
3964 }
3965
3966 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3967 btrfs_error_commit_super(fs_info);
3968
3969 kthread_stop(fs_info->transaction_kthread);
3970 kthread_stop(fs_info->cleaner_kthread);
3971
3972 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3973
3974 btrfs_free_qgroup_config(fs_info);
3975
3976 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3977 btrfs_info(fs_info, "at unmount delalloc count %lld",
3978 percpu_counter_sum(&fs_info->delalloc_bytes));
3979 }
3980
3981 btrfs_sysfs_remove_mounted(fs_info);
3982 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3983
3984 btrfs_free_fs_roots(fs_info);
3985
3986 btrfs_put_block_group_cache(fs_info);
3987
3988 btrfs_free_block_groups(fs_info);
3989
3990 /*
3991 * we must make sure there is not any read request to
3992 * submit after we stopping all workers.
3993 */
3994 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3995 btrfs_stop_all_workers(fs_info);
3996
3997 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3998 free_root_pointers(fs_info, 1);
3999
4000 iput(fs_info->btree_inode);
4001
4002 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4004 btrfsic_unmount(fs_info->fs_devices);
4005 #endif
4006
4007 btrfs_close_devices(fs_info->fs_devices);
4008 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4009
4010 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4011 percpu_counter_destroy(&fs_info->delalloc_bytes);
4012 percpu_counter_destroy(&fs_info->bio_counter);
4013 bdi_destroy(&fs_info->bdi);
4014 cleanup_srcu_struct(&fs_info->subvol_srcu);
4015
4016 btrfs_free_stripe_hash_table(fs_info);
4017
4018 __btrfs_free_block_rsv(root->orphan_block_rsv);
4019 root->orphan_block_rsv = NULL;
4020
4021 mutex_lock(&fs_info->chunk_mutex);
4022 while (!list_empty(&fs_info->pinned_chunks)) {
4023 struct extent_map *em;
4024
4025 em = list_first_entry(&fs_info->pinned_chunks,
4026 struct extent_map, list);
4027 list_del_init(&em->list);
4028 free_extent_map(em);
4029 }
4030 mutex_unlock(&fs_info->chunk_mutex);
4031 }
4032
4033 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4034 int atomic)
4035 {
4036 int ret;
4037 struct inode *btree_inode = buf->pages[0]->mapping->host;
4038
4039 ret = extent_buffer_uptodate(buf);
4040 if (!ret)
4041 return ret;
4042
4043 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4044 parent_transid, atomic);
4045 if (ret == -EAGAIN)
4046 return ret;
4047 return !ret;
4048 }
4049
4050 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4051 {
4052 struct btrfs_fs_info *fs_info;
4053 struct btrfs_root *root;
4054 u64 transid = btrfs_header_generation(buf);
4055 int was_dirty;
4056
4057 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4058 /*
4059 * This is a fast path so only do this check if we have sanity tests
4060 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4061 * outside of the sanity tests.
4062 */
4063 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4064 return;
4065 #endif
4066 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4067 fs_info = root->fs_info;
4068 btrfs_assert_tree_locked(buf);
4069 if (transid != fs_info->generation)
4070 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4071 buf->start, transid, fs_info->generation);
4072 was_dirty = set_extent_buffer_dirty(buf);
4073 if (!was_dirty)
4074 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
4075 buf->len,
4076 fs_info->dirty_metadata_batch);
4077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4079 btrfs_print_leaf(fs_info, buf);
4080 ASSERT(0);
4081 }
4082 #endif
4083 }
4084
4085 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4086 int flush_delayed)
4087 {
4088 /*
4089 * looks as though older kernels can get into trouble with
4090 * this code, they end up stuck in balance_dirty_pages forever
4091 */
4092 int ret;
4093
4094 if (current->flags & PF_MEMALLOC)
4095 return;
4096
4097 if (flush_delayed)
4098 btrfs_balance_delayed_items(fs_info);
4099
4100 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4101 BTRFS_DIRTY_METADATA_THRESH);
4102 if (ret > 0) {
4103 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4104 }
4105 }
4106
4107 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4108 {
4109 __btrfs_btree_balance_dirty(fs_info, 1);
4110 }
4111
4112 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4113 {
4114 __btrfs_btree_balance_dirty(fs_info, 0);
4115 }
4116
4117 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4118 {
4119 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4120 struct btrfs_fs_info *fs_info = root->fs_info;
4121
4122 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4123 }
4124
4125 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4126 int read_only)
4127 {
4128 struct btrfs_super_block *sb = fs_info->super_copy;
4129 u64 nodesize = btrfs_super_nodesize(sb);
4130 u64 sectorsize = btrfs_super_sectorsize(sb);
4131 int ret = 0;
4132
4133 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4134 btrfs_err(fs_info, "no valid FS found");
4135 ret = -EINVAL;
4136 }
4137 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4138 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4139 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4140 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4141 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4142 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4143 ret = -EINVAL;
4144 }
4145 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4146 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4147 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4148 ret = -EINVAL;
4149 }
4150 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4151 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4152 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4153 ret = -EINVAL;
4154 }
4155
4156 /*
4157 * Check sectorsize and nodesize first, other check will need it.
4158 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4159 */
4160 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4161 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4162 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4163 ret = -EINVAL;
4164 }
4165 /* Only PAGE SIZE is supported yet */
4166 if (sectorsize != PAGE_SIZE) {
4167 btrfs_err(fs_info,
4168 "sectorsize %llu not supported yet, only support %lu",
4169 sectorsize, PAGE_SIZE);
4170 ret = -EINVAL;
4171 }
4172 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4173 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4174 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4175 ret = -EINVAL;
4176 }
4177 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4178 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4179 le32_to_cpu(sb->__unused_leafsize), nodesize);
4180 ret = -EINVAL;
4181 }
4182
4183 /* Root alignment check */
4184 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4185 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4186 btrfs_super_root(sb));
4187 ret = -EINVAL;
4188 }
4189 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4190 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4191 btrfs_super_chunk_root(sb));
4192 ret = -EINVAL;
4193 }
4194 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4195 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4196 btrfs_super_log_root(sb));
4197 ret = -EINVAL;
4198 }
4199
4200 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4201 btrfs_err(fs_info,
4202 "dev_item UUID does not match fsid: %pU != %pU",
4203 fs_info->fsid, sb->dev_item.fsid);
4204 ret = -EINVAL;
4205 }
4206
4207 /*
4208 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4209 * done later
4210 */
4211 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4212 btrfs_err(fs_info, "bytes_used is too small %llu",
4213 btrfs_super_bytes_used(sb));
4214 ret = -EINVAL;
4215 }
4216 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4217 btrfs_err(fs_info, "invalid stripesize %u",
4218 btrfs_super_stripesize(sb));
4219 ret = -EINVAL;
4220 }
4221 if (btrfs_super_num_devices(sb) > (1UL << 31))
4222 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4223 btrfs_super_num_devices(sb));
4224 if (btrfs_super_num_devices(sb) == 0) {
4225 btrfs_err(fs_info, "number of devices is 0");
4226 ret = -EINVAL;
4227 }
4228
4229 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4230 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4231 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4232 ret = -EINVAL;
4233 }
4234
4235 /*
4236 * Obvious sys_chunk_array corruptions, it must hold at least one key
4237 * and one chunk
4238 */
4239 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4240 btrfs_err(fs_info, "system chunk array too big %u > %u",
4241 btrfs_super_sys_array_size(sb),
4242 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4243 ret = -EINVAL;
4244 }
4245 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4246 + sizeof(struct btrfs_chunk)) {
4247 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4248 btrfs_super_sys_array_size(sb),
4249 sizeof(struct btrfs_disk_key)
4250 + sizeof(struct btrfs_chunk));
4251 ret = -EINVAL;
4252 }
4253
4254 /*
4255 * The generation is a global counter, we'll trust it more than the others
4256 * but it's still possible that it's the one that's wrong.
4257 */
4258 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4259 btrfs_warn(fs_info,
4260 "suspicious: generation < chunk_root_generation: %llu < %llu",
4261 btrfs_super_generation(sb),
4262 btrfs_super_chunk_root_generation(sb));
4263 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4264 && btrfs_super_cache_generation(sb) != (u64)-1)
4265 btrfs_warn(fs_info,
4266 "suspicious: generation < cache_generation: %llu < %llu",
4267 btrfs_super_generation(sb),
4268 btrfs_super_cache_generation(sb));
4269
4270 return ret;
4271 }
4272
4273 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4274 {
4275 mutex_lock(&fs_info->cleaner_mutex);
4276 btrfs_run_delayed_iputs(fs_info);
4277 mutex_unlock(&fs_info->cleaner_mutex);
4278
4279 down_write(&fs_info->cleanup_work_sem);
4280 up_write(&fs_info->cleanup_work_sem);
4281
4282 /* cleanup FS via transaction */
4283 btrfs_cleanup_transaction(fs_info);
4284 }
4285
4286 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4287 {
4288 struct btrfs_ordered_extent *ordered;
4289
4290 spin_lock(&root->ordered_extent_lock);
4291 /*
4292 * This will just short circuit the ordered completion stuff which will
4293 * make sure the ordered extent gets properly cleaned up.
4294 */
4295 list_for_each_entry(ordered, &root->ordered_extents,
4296 root_extent_list)
4297 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4298 spin_unlock(&root->ordered_extent_lock);
4299 }
4300
4301 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302 {
4303 struct btrfs_root *root;
4304 struct list_head splice;
4305
4306 INIT_LIST_HEAD(&splice);
4307
4308 spin_lock(&fs_info->ordered_root_lock);
4309 list_splice_init(&fs_info->ordered_roots, &splice);
4310 while (!list_empty(&splice)) {
4311 root = list_first_entry(&splice, struct btrfs_root,
4312 ordered_root);
4313 list_move_tail(&root->ordered_root,
4314 &fs_info->ordered_roots);
4315
4316 spin_unlock(&fs_info->ordered_root_lock);
4317 btrfs_destroy_ordered_extents(root);
4318
4319 cond_resched();
4320 spin_lock(&fs_info->ordered_root_lock);
4321 }
4322 spin_unlock(&fs_info->ordered_root_lock);
4323 }
4324
4325 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4326 struct btrfs_fs_info *fs_info)
4327 {
4328 struct rb_node *node;
4329 struct btrfs_delayed_ref_root *delayed_refs;
4330 struct btrfs_delayed_ref_node *ref;
4331 int ret = 0;
4332
4333 delayed_refs = &trans->delayed_refs;
4334
4335 spin_lock(&delayed_refs->lock);
4336 if (atomic_read(&delayed_refs->num_entries) == 0) {
4337 spin_unlock(&delayed_refs->lock);
4338 btrfs_info(fs_info, "delayed_refs has NO entry");
4339 return ret;
4340 }
4341
4342 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4343 struct btrfs_delayed_ref_head *head;
4344 struct btrfs_delayed_ref_node *tmp;
4345 bool pin_bytes = false;
4346
4347 head = rb_entry(node, struct btrfs_delayed_ref_head,
4348 href_node);
4349 if (!mutex_trylock(&head->mutex)) {
4350 atomic_inc(&head->node.refs);
4351 spin_unlock(&delayed_refs->lock);
4352
4353 mutex_lock(&head->mutex);
4354 mutex_unlock(&head->mutex);
4355 btrfs_put_delayed_ref(&head->node);
4356 spin_lock(&delayed_refs->lock);
4357 continue;
4358 }
4359 spin_lock(&head->lock);
4360 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4361 list) {
4362 ref->in_tree = 0;
4363 list_del(&ref->list);
4364 if (!list_empty(&ref->add_list))
4365 list_del(&ref->add_list);
4366 atomic_dec(&delayed_refs->num_entries);
4367 btrfs_put_delayed_ref(ref);
4368 }
4369 if (head->must_insert_reserved)
4370 pin_bytes = true;
4371 btrfs_free_delayed_extent_op(head->extent_op);
4372 delayed_refs->num_heads--;
4373 if (head->processing == 0)
4374 delayed_refs->num_heads_ready--;
4375 atomic_dec(&delayed_refs->num_entries);
4376 head->node.in_tree = 0;
4377 rb_erase(&head->href_node, &delayed_refs->href_root);
4378 spin_unlock(&head->lock);
4379 spin_unlock(&delayed_refs->lock);
4380 mutex_unlock(&head->mutex);
4381
4382 if (pin_bytes)
4383 btrfs_pin_extent(fs_info, head->node.bytenr,
4384 head->node.num_bytes, 1);
4385 btrfs_put_delayed_ref(&head->node);
4386 cond_resched();
4387 spin_lock(&delayed_refs->lock);
4388 }
4389
4390 spin_unlock(&delayed_refs->lock);
4391
4392 return ret;
4393 }
4394
4395 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4396 {
4397 struct btrfs_inode *btrfs_inode;
4398 struct list_head splice;
4399
4400 INIT_LIST_HEAD(&splice);
4401
4402 spin_lock(&root->delalloc_lock);
4403 list_splice_init(&root->delalloc_inodes, &splice);
4404
4405 while (!list_empty(&splice)) {
4406 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4407 delalloc_inodes);
4408
4409 list_del_init(&btrfs_inode->delalloc_inodes);
4410 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4411 &btrfs_inode->runtime_flags);
4412 spin_unlock(&root->delalloc_lock);
4413
4414 btrfs_invalidate_inodes(btrfs_inode->root);
4415
4416 spin_lock(&root->delalloc_lock);
4417 }
4418
4419 spin_unlock(&root->delalloc_lock);
4420 }
4421
4422 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4423 {
4424 struct btrfs_root *root;
4425 struct list_head splice;
4426
4427 INIT_LIST_HEAD(&splice);
4428
4429 spin_lock(&fs_info->delalloc_root_lock);
4430 list_splice_init(&fs_info->delalloc_roots, &splice);
4431 while (!list_empty(&splice)) {
4432 root = list_first_entry(&splice, struct btrfs_root,
4433 delalloc_root);
4434 list_del_init(&root->delalloc_root);
4435 root = btrfs_grab_fs_root(root);
4436 BUG_ON(!root);
4437 spin_unlock(&fs_info->delalloc_root_lock);
4438
4439 btrfs_destroy_delalloc_inodes(root);
4440 btrfs_put_fs_root(root);
4441
4442 spin_lock(&fs_info->delalloc_root_lock);
4443 }
4444 spin_unlock(&fs_info->delalloc_root_lock);
4445 }
4446
4447 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4448 struct extent_io_tree *dirty_pages,
4449 int mark)
4450 {
4451 int ret;
4452 struct extent_buffer *eb;
4453 u64 start = 0;
4454 u64 end;
4455
4456 while (1) {
4457 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4458 mark, NULL);
4459 if (ret)
4460 break;
4461
4462 clear_extent_bits(dirty_pages, start, end, mark);
4463 while (start <= end) {
4464 eb = find_extent_buffer(fs_info, start);
4465 start += fs_info->nodesize;
4466 if (!eb)
4467 continue;
4468 wait_on_extent_buffer_writeback(eb);
4469
4470 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4471 &eb->bflags))
4472 clear_extent_buffer_dirty(eb);
4473 free_extent_buffer_stale(eb);
4474 }
4475 }
4476
4477 return ret;
4478 }
4479
4480 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4481 struct extent_io_tree *pinned_extents)
4482 {
4483 struct extent_io_tree *unpin;
4484 u64 start;
4485 u64 end;
4486 int ret;
4487 bool loop = true;
4488
4489 unpin = pinned_extents;
4490 again:
4491 while (1) {
4492 ret = find_first_extent_bit(unpin, 0, &start, &end,
4493 EXTENT_DIRTY, NULL);
4494 if (ret)
4495 break;
4496
4497 clear_extent_dirty(unpin, start, end);
4498 btrfs_error_unpin_extent_range(fs_info, start, end);
4499 cond_resched();
4500 }
4501
4502 if (loop) {
4503 if (unpin == &fs_info->freed_extents[0])
4504 unpin = &fs_info->freed_extents[1];
4505 else
4506 unpin = &fs_info->freed_extents[0];
4507 loop = false;
4508 goto again;
4509 }
4510
4511 return 0;
4512 }
4513
4514 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4515 {
4516 struct inode *inode;
4517
4518 inode = cache->io_ctl.inode;
4519 if (inode) {
4520 invalidate_inode_pages2(inode->i_mapping);
4521 BTRFS_I(inode)->generation = 0;
4522 cache->io_ctl.inode = NULL;
4523 iput(inode);
4524 }
4525 btrfs_put_block_group(cache);
4526 }
4527
4528 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4529 struct btrfs_fs_info *fs_info)
4530 {
4531 struct btrfs_block_group_cache *cache;
4532
4533 spin_lock(&cur_trans->dirty_bgs_lock);
4534 while (!list_empty(&cur_trans->dirty_bgs)) {
4535 cache = list_first_entry(&cur_trans->dirty_bgs,
4536 struct btrfs_block_group_cache,
4537 dirty_list);
4538 if (!cache) {
4539 btrfs_err(fs_info, "orphan block group dirty_bgs list");
4540 spin_unlock(&cur_trans->dirty_bgs_lock);
4541 return;
4542 }
4543
4544 if (!list_empty(&cache->io_list)) {
4545 spin_unlock(&cur_trans->dirty_bgs_lock);
4546 list_del_init(&cache->io_list);
4547 btrfs_cleanup_bg_io(cache);
4548 spin_lock(&cur_trans->dirty_bgs_lock);
4549 }
4550
4551 list_del_init(&cache->dirty_list);
4552 spin_lock(&cache->lock);
4553 cache->disk_cache_state = BTRFS_DC_ERROR;
4554 spin_unlock(&cache->lock);
4555
4556 spin_unlock(&cur_trans->dirty_bgs_lock);
4557 btrfs_put_block_group(cache);
4558 spin_lock(&cur_trans->dirty_bgs_lock);
4559 }
4560 spin_unlock(&cur_trans->dirty_bgs_lock);
4561
4562 while (!list_empty(&cur_trans->io_bgs)) {
4563 cache = list_first_entry(&cur_trans->io_bgs,
4564 struct btrfs_block_group_cache,
4565 io_list);
4566 if (!cache) {
4567 btrfs_err(fs_info, "orphan block group on io_bgs list");
4568 return;
4569 }
4570
4571 list_del_init(&cache->io_list);
4572 spin_lock(&cache->lock);
4573 cache->disk_cache_state = BTRFS_DC_ERROR;
4574 spin_unlock(&cache->lock);
4575 btrfs_cleanup_bg_io(cache);
4576 }
4577 }
4578
4579 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4580 struct btrfs_fs_info *fs_info)
4581 {
4582 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4583 ASSERT(list_empty(&cur_trans->dirty_bgs));
4584 ASSERT(list_empty(&cur_trans->io_bgs));
4585
4586 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4587
4588 cur_trans->state = TRANS_STATE_COMMIT_START;
4589 wake_up(&fs_info->transaction_blocked_wait);
4590
4591 cur_trans->state = TRANS_STATE_UNBLOCKED;
4592 wake_up(&fs_info->transaction_wait);
4593
4594 btrfs_destroy_delayed_inodes(fs_info);
4595 btrfs_assert_delayed_root_empty(fs_info);
4596
4597 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4598 EXTENT_DIRTY);
4599 btrfs_destroy_pinned_extent(fs_info,
4600 fs_info->pinned_extents);
4601
4602 cur_trans->state =TRANS_STATE_COMPLETED;
4603 wake_up(&cur_trans->commit_wait);
4604
4605 /*
4606 memset(cur_trans, 0, sizeof(*cur_trans));
4607 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4608 */
4609 }
4610
4611 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4612 {
4613 struct btrfs_transaction *t;
4614
4615 mutex_lock(&fs_info->transaction_kthread_mutex);
4616
4617 spin_lock(&fs_info->trans_lock);
4618 while (!list_empty(&fs_info->trans_list)) {
4619 t = list_first_entry(&fs_info->trans_list,
4620 struct btrfs_transaction, list);
4621 if (t->state >= TRANS_STATE_COMMIT_START) {
4622 atomic_inc(&t->use_count);
4623 spin_unlock(&fs_info->trans_lock);
4624 btrfs_wait_for_commit(fs_info, t->transid);
4625 btrfs_put_transaction(t);
4626 spin_lock(&fs_info->trans_lock);
4627 continue;
4628 }
4629 if (t == fs_info->running_transaction) {
4630 t->state = TRANS_STATE_COMMIT_DOING;
4631 spin_unlock(&fs_info->trans_lock);
4632 /*
4633 * We wait for 0 num_writers since we don't hold a trans
4634 * handle open currently for this transaction.
4635 */
4636 wait_event(t->writer_wait,
4637 atomic_read(&t->num_writers) == 0);
4638 } else {
4639 spin_unlock(&fs_info->trans_lock);
4640 }
4641 btrfs_cleanup_one_transaction(t, fs_info);
4642
4643 spin_lock(&fs_info->trans_lock);
4644 if (t == fs_info->running_transaction)
4645 fs_info->running_transaction = NULL;
4646 list_del_init(&t->list);
4647 spin_unlock(&fs_info->trans_lock);
4648
4649 btrfs_put_transaction(t);
4650 trace_btrfs_transaction_commit(fs_info->tree_root);
4651 spin_lock(&fs_info->trans_lock);
4652 }
4653 spin_unlock(&fs_info->trans_lock);
4654 btrfs_destroy_all_ordered_extents(fs_info);
4655 btrfs_destroy_delayed_inodes(fs_info);
4656 btrfs_assert_delayed_root_empty(fs_info);
4657 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4658 btrfs_destroy_all_delalloc_inodes(fs_info);
4659 mutex_unlock(&fs_info->transaction_kthread_mutex);
4660
4661 return 0;
4662 }
4663
4664 static const struct extent_io_ops btree_extent_io_ops = {
4665 .readpage_end_io_hook = btree_readpage_end_io_hook,
4666 .readpage_io_failed_hook = btree_io_failed_hook,
4667 .submit_bio_hook = btree_submit_bio_hook,
4668 /* note we're sharing with inode.c for the merge bio hook */
4669 .merge_bio_hook = btrfs_merge_bio_hook,
4670 };