]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/disk-io.c
Merge branch 'cleanups-post-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
280 {
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
292
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
304 }
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
320
321 read_extent_buffer(buf, &val, 0, csum_size);
322 printk_ratelimited(KERN_WARNING
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 "level %d\n",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
330 }
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
333 }
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
337 }
338
339 /*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
348 {
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
356 if (atomic)
357 return -EAGAIN;
358
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 eb->fs_info->sb->s_id, eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387 out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
393 }
394
395 /*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422
423 if (ret && btrfs_super_generation(disk_sb) < 10) {
424 printk(KERN_WARNING
425 "BTRFS: super block crcs don't match, older mkfs detected\n");
426 ret = 0;
427 }
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437 }
438
439 /*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
445 u64 start, u64 parent_transid)
446 {
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, start,
458 WAIT_COMPLETE,
459 btree_get_extent, mirror_num);
460 if (!ret) {
461 if (!verify_parent_transid(io_tree, eb,
462 parent_transid, 0))
463 break;
464 else
465 ret = -EIO;
466 }
467
468 /*
469 * This buffer's crc is fine, but its contents are corrupted, so
470 * there is no reason to read the other copies, they won't be
471 * any less wrong.
472 */
473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 break;
475
476 num_copies = btrfs_num_copies(root->fs_info,
477 eb->start, eb->len);
478 if (num_copies == 1)
479 break;
480
481 if (!failed_mirror) {
482 failed = 1;
483 failed_mirror = eb->read_mirror;
484 }
485
486 mirror_num++;
487 if (mirror_num == failed_mirror)
488 mirror_num++;
489
490 if (mirror_num > num_copies)
491 break;
492 }
493
494 if (failed && !ret && failed_mirror)
495 repair_eb_io_failure(root, eb, failed_mirror);
496
497 return ret;
498 }
499
500 /*
501 * checksum a dirty tree block before IO. This has extra checks to make sure
502 * we only fill in the checksum field in the first page of a multi-page block
503 */
504
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 u64 start = page_offset(page);
508 u64 found_start;
509 struct extent_buffer *eb;
510
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
514 found_start = btrfs_header_bytenr(eb);
515 if (WARN_ON(found_start != start || !PageUptodate(page)))
516 return 0;
517 csum_tree_block(fs_info, eb, 0);
518 return 0;
519 }
520
521 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
522 struct extent_buffer *eb)
523 {
524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
525 u8 fsid[BTRFS_UUID_SIZE];
526 int ret = 1;
527
528 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
529 while (fs_devices) {
530 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
531 ret = 0;
532 break;
533 }
534 fs_devices = fs_devices->seed;
535 }
536 return ret;
537 }
538
539 #define CORRUPT(reason, eb, root, slot) \
540 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
541 "root=%llu, slot=%d", reason, \
542 btrfs_header_bytenr(eb), root->objectid, slot)
543
544 static noinline int check_leaf(struct btrfs_root *root,
545 struct extent_buffer *leaf)
546 {
547 struct btrfs_key key;
548 struct btrfs_key leaf_key;
549 u32 nritems = btrfs_header_nritems(leaf);
550 int slot;
551
552 if (nritems == 0)
553 return 0;
554
555 /* Check the 0 item */
556 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
557 BTRFS_LEAF_DATA_SIZE(root)) {
558 CORRUPT("invalid item offset size pair", leaf, root, 0);
559 return -EIO;
560 }
561
562 /*
563 * Check to make sure each items keys are in the correct order and their
564 * offsets make sense. We only have to loop through nritems-1 because
565 * we check the current slot against the next slot, which verifies the
566 * next slot's offset+size makes sense and that the current's slot
567 * offset is correct.
568 */
569 for (slot = 0; slot < nritems - 1; slot++) {
570 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
571 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
572
573 /* Make sure the keys are in the right order */
574 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
575 CORRUPT("bad key order", leaf, root, slot);
576 return -EIO;
577 }
578
579 /*
580 * Make sure the offset and ends are right, remember that the
581 * item data starts at the end of the leaf and grows towards the
582 * front.
583 */
584 if (btrfs_item_offset_nr(leaf, slot) !=
585 btrfs_item_end_nr(leaf, slot + 1)) {
586 CORRUPT("slot offset bad", leaf, root, slot);
587 return -EIO;
588 }
589
590 /*
591 * Check to make sure that we don't point outside of the leaf,
592 * just incase all the items are consistent to eachother, but
593 * all point outside of the leaf.
594 */
595 if (btrfs_item_end_nr(leaf, slot) >
596 BTRFS_LEAF_DATA_SIZE(root)) {
597 CORRUPT("slot end outside of leaf", leaf, root, slot);
598 return -EIO;
599 }
600 }
601
602 return 0;
603 }
604
605 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
606 u64 phy_offset, struct page *page,
607 u64 start, u64 end, int mirror)
608 {
609 u64 found_start;
610 int found_level;
611 struct extent_buffer *eb;
612 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
613 int ret = 0;
614 int reads_done;
615
616 if (!page->private)
617 goto out;
618
619 eb = (struct extent_buffer *)page->private;
620
621 /* the pending IO might have been the only thing that kept this buffer
622 * in memory. Make sure we have a ref for all this other checks
623 */
624 extent_buffer_get(eb);
625
626 reads_done = atomic_dec_and_test(&eb->io_pages);
627 if (!reads_done)
628 goto err;
629
630 eb->read_mirror = mirror;
631 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
632 ret = -EIO;
633 goto err;
634 }
635
636 found_start = btrfs_header_bytenr(eb);
637 if (found_start != eb->start) {
638 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
639 "%llu %llu\n",
640 eb->fs_info->sb->s_id, found_start, eb->start);
641 ret = -EIO;
642 goto err;
643 }
644 if (check_tree_block_fsid(root->fs_info, eb)) {
645 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
646 eb->fs_info->sb->s_id, eb->start);
647 ret = -EIO;
648 goto err;
649 }
650 found_level = btrfs_header_level(eb);
651 if (found_level >= BTRFS_MAX_LEVEL) {
652 btrfs_err(root->fs_info, "bad tree block level %d",
653 (int)btrfs_header_level(eb));
654 ret = -EIO;
655 goto err;
656 }
657
658 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
659 eb, found_level);
660
661 ret = csum_tree_block(root->fs_info, eb, 1);
662 if (ret) {
663 ret = -EIO;
664 goto err;
665 }
666
667 /*
668 * If this is a leaf block and it is corrupt, set the corrupt bit so
669 * that we don't try and read the other copies of this block, just
670 * return -EIO.
671 */
672 if (found_level == 0 && check_leaf(root, eb)) {
673 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
674 ret = -EIO;
675 }
676
677 if (!ret)
678 set_extent_buffer_uptodate(eb);
679 err:
680 if (reads_done &&
681 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
682 btree_readahead_hook(root, eb, eb->start, ret);
683
684 if (ret) {
685 /*
686 * our io error hook is going to dec the io pages
687 * again, we have to make sure it has something
688 * to decrement
689 */
690 atomic_inc(&eb->io_pages);
691 clear_extent_buffer_uptodate(eb);
692 }
693 free_extent_buffer(eb);
694 out:
695 return ret;
696 }
697
698 static int btree_io_failed_hook(struct page *page, int failed_mirror)
699 {
700 struct extent_buffer *eb;
701 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
702
703 eb = (struct extent_buffer *)page->private;
704 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
705 eb->read_mirror = failed_mirror;
706 atomic_dec(&eb->io_pages);
707 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
708 btree_readahead_hook(root, eb, eb->start, -EIO);
709 return -EIO; /* we fixed nothing */
710 }
711
712 static void end_workqueue_bio(struct bio *bio, int err)
713 {
714 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
715 struct btrfs_fs_info *fs_info;
716 struct btrfs_workqueue *wq;
717 btrfs_work_func_t func;
718
719 fs_info = end_io_wq->info;
720 end_io_wq->error = err;
721
722 if (bio->bi_rw & REQ_WRITE) {
723 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
724 wq = fs_info->endio_meta_write_workers;
725 func = btrfs_endio_meta_write_helper;
726 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
727 wq = fs_info->endio_freespace_worker;
728 func = btrfs_freespace_write_helper;
729 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
730 wq = fs_info->endio_raid56_workers;
731 func = btrfs_endio_raid56_helper;
732 } else {
733 wq = fs_info->endio_write_workers;
734 func = btrfs_endio_write_helper;
735 }
736 } else {
737 if (unlikely(end_io_wq->metadata ==
738 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
739 wq = fs_info->endio_repair_workers;
740 func = btrfs_endio_repair_helper;
741 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
742 wq = fs_info->endio_raid56_workers;
743 func = btrfs_endio_raid56_helper;
744 } else if (end_io_wq->metadata) {
745 wq = fs_info->endio_meta_workers;
746 func = btrfs_endio_meta_helper;
747 } else {
748 wq = fs_info->endio_workers;
749 func = btrfs_endio_helper;
750 }
751 }
752
753 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
754 btrfs_queue_work(wq, &end_io_wq->work);
755 }
756
757 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
758 enum btrfs_wq_endio_type metadata)
759 {
760 struct btrfs_end_io_wq *end_io_wq;
761
762 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
763 if (!end_io_wq)
764 return -ENOMEM;
765
766 end_io_wq->private = bio->bi_private;
767 end_io_wq->end_io = bio->bi_end_io;
768 end_io_wq->info = info;
769 end_io_wq->error = 0;
770 end_io_wq->bio = bio;
771 end_io_wq->metadata = metadata;
772
773 bio->bi_private = end_io_wq;
774 bio->bi_end_io = end_workqueue_bio;
775 return 0;
776 }
777
778 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
779 {
780 unsigned long limit = min_t(unsigned long,
781 info->thread_pool_size,
782 info->fs_devices->open_devices);
783 return 256 * limit;
784 }
785
786 static void run_one_async_start(struct btrfs_work *work)
787 {
788 struct async_submit_bio *async;
789 int ret;
790
791 async = container_of(work, struct async_submit_bio, work);
792 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
793 async->mirror_num, async->bio_flags,
794 async->bio_offset);
795 if (ret)
796 async->error = ret;
797 }
798
799 static void run_one_async_done(struct btrfs_work *work)
800 {
801 struct btrfs_fs_info *fs_info;
802 struct async_submit_bio *async;
803 int limit;
804
805 async = container_of(work, struct async_submit_bio, work);
806 fs_info = BTRFS_I(async->inode)->root->fs_info;
807
808 limit = btrfs_async_submit_limit(fs_info);
809 limit = limit * 2 / 3;
810
811 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
812 waitqueue_active(&fs_info->async_submit_wait))
813 wake_up(&fs_info->async_submit_wait);
814
815 /* If an error occured we just want to clean up the bio and move on */
816 if (async->error) {
817 bio_endio(async->bio, async->error);
818 return;
819 }
820
821 async->submit_bio_done(async->inode, async->rw, async->bio,
822 async->mirror_num, async->bio_flags,
823 async->bio_offset);
824 }
825
826 static void run_one_async_free(struct btrfs_work *work)
827 {
828 struct async_submit_bio *async;
829
830 async = container_of(work, struct async_submit_bio, work);
831 kfree(async);
832 }
833
834 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
835 int rw, struct bio *bio, int mirror_num,
836 unsigned long bio_flags,
837 u64 bio_offset,
838 extent_submit_bio_hook_t *submit_bio_start,
839 extent_submit_bio_hook_t *submit_bio_done)
840 {
841 struct async_submit_bio *async;
842
843 async = kmalloc(sizeof(*async), GFP_NOFS);
844 if (!async)
845 return -ENOMEM;
846
847 async->inode = inode;
848 async->rw = rw;
849 async->bio = bio;
850 async->mirror_num = mirror_num;
851 async->submit_bio_start = submit_bio_start;
852 async->submit_bio_done = submit_bio_done;
853
854 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
855 run_one_async_done, run_one_async_free);
856
857 async->bio_flags = bio_flags;
858 async->bio_offset = bio_offset;
859
860 async->error = 0;
861
862 atomic_inc(&fs_info->nr_async_submits);
863
864 if (rw & REQ_SYNC)
865 btrfs_set_work_high_priority(&async->work);
866
867 btrfs_queue_work(fs_info->workers, &async->work);
868
869 while (atomic_read(&fs_info->async_submit_draining) &&
870 atomic_read(&fs_info->nr_async_submits)) {
871 wait_event(fs_info->async_submit_wait,
872 (atomic_read(&fs_info->nr_async_submits) == 0));
873 }
874
875 return 0;
876 }
877
878 static int btree_csum_one_bio(struct bio *bio)
879 {
880 struct bio_vec *bvec;
881 struct btrfs_root *root;
882 int i, ret = 0;
883
884 bio_for_each_segment_all(bvec, bio, i) {
885 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
886 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
887 if (ret)
888 break;
889 }
890
891 return ret;
892 }
893
894 static int __btree_submit_bio_start(struct inode *inode, int rw,
895 struct bio *bio, int mirror_num,
896 unsigned long bio_flags,
897 u64 bio_offset)
898 {
899 /*
900 * when we're called for a write, we're already in the async
901 * submission context. Just jump into btrfs_map_bio
902 */
903 return btree_csum_one_bio(bio);
904 }
905
906 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
907 int mirror_num, unsigned long bio_flags,
908 u64 bio_offset)
909 {
910 int ret;
911
912 /*
913 * when we're called for a write, we're already in the async
914 * submission context. Just jump into btrfs_map_bio
915 */
916 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
917 if (ret)
918 bio_endio(bio, ret);
919 return ret;
920 }
921
922 static int check_async_write(struct inode *inode, unsigned long bio_flags)
923 {
924 if (bio_flags & EXTENT_BIO_TREE_LOG)
925 return 0;
926 #ifdef CONFIG_X86
927 if (cpu_has_xmm4_2)
928 return 0;
929 #endif
930 return 1;
931 }
932
933 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
934 int mirror_num, unsigned long bio_flags,
935 u64 bio_offset)
936 {
937 int async = check_async_write(inode, bio_flags);
938 int ret;
939
940 if (!(rw & REQ_WRITE)) {
941 /*
942 * called for a read, do the setup so that checksum validation
943 * can happen in the async kernel threads
944 */
945 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
946 bio, BTRFS_WQ_ENDIO_METADATA);
947 if (ret)
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
951 } else if (!async) {
952 ret = btree_csum_one_bio(bio);
953 if (ret)
954 goto out_w_error;
955 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
956 mirror_num, 0);
957 } else {
958 /*
959 * kthread helpers are used to submit writes so that
960 * checksumming can happen in parallel across all CPUs
961 */
962 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
963 inode, rw, bio, mirror_num, 0,
964 bio_offset,
965 __btree_submit_bio_start,
966 __btree_submit_bio_done);
967 }
968
969 if (ret) {
970 out_w_error:
971 bio_endio(bio, ret);
972 }
973 return ret;
974 }
975
976 #ifdef CONFIG_MIGRATION
977 static int btree_migratepage(struct address_space *mapping,
978 struct page *newpage, struct page *page,
979 enum migrate_mode mode)
980 {
981 /*
982 * we can't safely write a btree page from here,
983 * we haven't done the locking hook
984 */
985 if (PageDirty(page))
986 return -EAGAIN;
987 /*
988 * Buffers may be managed in a filesystem specific way.
989 * We must have no buffers or drop them.
990 */
991 if (page_has_private(page) &&
992 !try_to_release_page(page, GFP_KERNEL))
993 return -EAGAIN;
994 return migrate_page(mapping, newpage, page, mode);
995 }
996 #endif
997
998
999 static int btree_writepages(struct address_space *mapping,
1000 struct writeback_control *wbc)
1001 {
1002 struct btrfs_fs_info *fs_info;
1003 int ret;
1004
1005 if (wbc->sync_mode == WB_SYNC_NONE) {
1006
1007 if (wbc->for_kupdate)
1008 return 0;
1009
1010 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1011 /* this is a bit racy, but that's ok */
1012 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1013 BTRFS_DIRTY_METADATA_THRESH);
1014 if (ret < 0)
1015 return 0;
1016 }
1017 return btree_write_cache_pages(mapping, wbc);
1018 }
1019
1020 static int btree_readpage(struct file *file, struct page *page)
1021 {
1022 struct extent_io_tree *tree;
1023 tree = &BTRFS_I(page->mapping->host)->io_tree;
1024 return extent_read_full_page(tree, page, btree_get_extent, 0);
1025 }
1026
1027 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1028 {
1029 if (PageWriteback(page) || PageDirty(page))
1030 return 0;
1031
1032 return try_release_extent_buffer(page);
1033 }
1034
1035 static void btree_invalidatepage(struct page *page, unsigned int offset,
1036 unsigned int length)
1037 {
1038 struct extent_io_tree *tree;
1039 tree = &BTRFS_I(page->mapping->host)->io_tree;
1040 extent_invalidatepage(tree, page, offset);
1041 btree_releasepage(page, GFP_NOFS);
1042 if (PagePrivate(page)) {
1043 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1044 "page private not zero on page %llu",
1045 (unsigned long long)page_offset(page));
1046 ClearPagePrivate(page);
1047 set_page_private(page, 0);
1048 page_cache_release(page);
1049 }
1050 }
1051
1052 static int btree_set_page_dirty(struct page *page)
1053 {
1054 #ifdef DEBUG
1055 struct extent_buffer *eb;
1056
1057 BUG_ON(!PagePrivate(page));
1058 eb = (struct extent_buffer *)page->private;
1059 BUG_ON(!eb);
1060 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1061 BUG_ON(!atomic_read(&eb->refs));
1062 btrfs_assert_tree_locked(eb);
1063 #endif
1064 return __set_page_dirty_nobuffers(page);
1065 }
1066
1067 static const struct address_space_operations btree_aops = {
1068 .readpage = btree_readpage,
1069 .writepages = btree_writepages,
1070 .releasepage = btree_releasepage,
1071 .invalidatepage = btree_invalidatepage,
1072 #ifdef CONFIG_MIGRATION
1073 .migratepage = btree_migratepage,
1074 #endif
1075 .set_page_dirty = btree_set_page_dirty,
1076 };
1077
1078 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1079 {
1080 struct extent_buffer *buf = NULL;
1081 struct inode *btree_inode = root->fs_info->btree_inode;
1082
1083 buf = btrfs_find_create_tree_block(root, bytenr);
1084 if (!buf)
1085 return;
1086 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1087 buf, 0, WAIT_NONE, btree_get_extent, 0);
1088 free_extent_buffer(buf);
1089 }
1090
1091 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1092 int mirror_num, struct extent_buffer **eb)
1093 {
1094 struct extent_buffer *buf = NULL;
1095 struct inode *btree_inode = root->fs_info->btree_inode;
1096 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1097 int ret;
1098
1099 buf = btrfs_find_create_tree_block(root, bytenr);
1100 if (!buf)
1101 return 0;
1102
1103 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1104
1105 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1106 btree_get_extent, mirror_num);
1107 if (ret) {
1108 free_extent_buffer(buf);
1109 return ret;
1110 }
1111
1112 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1113 free_extent_buffer(buf);
1114 return -EIO;
1115 } else if (extent_buffer_uptodate(buf)) {
1116 *eb = buf;
1117 } else {
1118 free_extent_buffer(buf);
1119 }
1120 return 0;
1121 }
1122
1123 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1124 u64 bytenr)
1125 {
1126 return find_extent_buffer(fs_info, bytenr);
1127 }
1128
1129 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1130 u64 bytenr)
1131 {
1132 if (btrfs_test_is_dummy_root(root))
1133 return alloc_test_extent_buffer(root->fs_info, bytenr);
1134 return alloc_extent_buffer(root->fs_info, bytenr);
1135 }
1136
1137
1138 int btrfs_write_tree_block(struct extent_buffer *buf)
1139 {
1140 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1141 buf->start + buf->len - 1);
1142 }
1143
1144 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1145 {
1146 return filemap_fdatawait_range(buf->pages[0]->mapping,
1147 buf->start, buf->start + buf->len - 1);
1148 }
1149
1150 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1151 u64 parent_transid)
1152 {
1153 struct extent_buffer *buf = NULL;
1154 int ret;
1155
1156 buf = btrfs_find_create_tree_block(root, bytenr);
1157 if (!buf)
1158 return NULL;
1159
1160 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1161 if (ret) {
1162 free_extent_buffer(buf);
1163 return NULL;
1164 }
1165 return buf;
1166
1167 }
1168
1169 void clean_tree_block(struct btrfs_trans_handle *trans,
1170 struct btrfs_fs_info *fs_info,
1171 struct extent_buffer *buf)
1172 {
1173 if (btrfs_header_generation(buf) ==
1174 fs_info->running_transaction->transid) {
1175 btrfs_assert_tree_locked(buf);
1176
1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 -buf->len,
1180 fs_info->dirty_metadata_batch);
1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 btrfs_set_lock_blocking(buf);
1183 clear_extent_buffer_dirty(buf);
1184 }
1185 }
1186 }
1187
1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189 {
1190 struct btrfs_subvolume_writers *writers;
1191 int ret;
1192
1193 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 if (!writers)
1195 return ERR_PTR(-ENOMEM);
1196
1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1198 if (ret < 0) {
1199 kfree(writers);
1200 return ERR_PTR(ret);
1201 }
1202
1203 init_waitqueue_head(&writers->wait);
1204 return writers;
1205 }
1206
1207 static void
1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209 {
1210 percpu_counter_destroy(&writers->counter);
1211 kfree(writers);
1212 }
1213
1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1216 u64 objectid)
1217 {
1218 root->node = NULL;
1219 root->commit_root = NULL;
1220 root->sectorsize = sectorsize;
1221 root->nodesize = nodesize;
1222 root->stripesize = stripesize;
1223 root->state = 0;
1224 root->orphan_cleanup_state = 0;
1225
1226 root->objectid = objectid;
1227 root->last_trans = 0;
1228 root->highest_objectid = 0;
1229 root->nr_delalloc_inodes = 0;
1230 root->nr_ordered_extents = 0;
1231 root->name = NULL;
1232 root->inode_tree = RB_ROOT;
1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1234 root->block_rsv = NULL;
1235 root->orphan_block_rsv = NULL;
1236
1237 INIT_LIST_HEAD(&root->dirty_list);
1238 INIT_LIST_HEAD(&root->root_list);
1239 INIT_LIST_HEAD(&root->delalloc_inodes);
1240 INIT_LIST_HEAD(&root->delalloc_root);
1241 INIT_LIST_HEAD(&root->ordered_extents);
1242 INIT_LIST_HEAD(&root->ordered_root);
1243 INIT_LIST_HEAD(&root->logged_list[0]);
1244 INIT_LIST_HEAD(&root->logged_list[1]);
1245 spin_lock_init(&root->orphan_lock);
1246 spin_lock_init(&root->inode_lock);
1247 spin_lock_init(&root->delalloc_lock);
1248 spin_lock_init(&root->ordered_extent_lock);
1249 spin_lock_init(&root->accounting_lock);
1250 spin_lock_init(&root->log_extents_lock[0]);
1251 spin_lock_init(&root->log_extents_lock[1]);
1252 mutex_init(&root->objectid_mutex);
1253 mutex_init(&root->log_mutex);
1254 mutex_init(&root->ordered_extent_mutex);
1255 mutex_init(&root->delalloc_mutex);
1256 init_waitqueue_head(&root->log_writer_wait);
1257 init_waitqueue_head(&root->log_commit_wait[0]);
1258 init_waitqueue_head(&root->log_commit_wait[1]);
1259 INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 INIT_LIST_HEAD(&root->log_ctxs[1]);
1261 atomic_set(&root->log_commit[0], 0);
1262 atomic_set(&root->log_commit[1], 0);
1263 atomic_set(&root->log_writers, 0);
1264 atomic_set(&root->log_batch, 0);
1265 atomic_set(&root->orphan_inodes, 0);
1266 atomic_set(&root->refs, 1);
1267 atomic_set(&root->will_be_snapshoted, 0);
1268 root->log_transid = 0;
1269 root->log_transid_committed = -1;
1270 root->last_log_commit = 0;
1271 if (fs_info)
1272 extent_io_tree_init(&root->dirty_log_pages,
1273 fs_info->btree_inode->i_mapping);
1274
1275 memset(&root->root_key, 0, sizeof(root->root_key));
1276 memset(&root->root_item, 0, sizeof(root->root_item));
1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1278 if (fs_info)
1279 root->defrag_trans_start = fs_info->generation;
1280 else
1281 root->defrag_trans_start = 0;
1282 root->root_key.objectid = objectid;
1283 root->anon_dev = 0;
1284
1285 spin_lock_init(&root->root_item_lock);
1286 }
1287
1288 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1289 {
1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291 if (root)
1292 root->fs_info = fs_info;
1293 return root;
1294 }
1295
1296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297 /* Should only be used by the testing infrastructure */
1298 struct btrfs_root *btrfs_alloc_dummy_root(void)
1299 {
1300 struct btrfs_root *root;
1301
1302 root = btrfs_alloc_root(NULL);
1303 if (!root)
1304 return ERR_PTR(-ENOMEM);
1305 __setup_root(4096, 4096, 4096, root, NULL, 1);
1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1307 root->alloc_bytenr = 0;
1308
1309 return root;
1310 }
1311 #endif
1312
1313 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info,
1315 u64 objectid)
1316 {
1317 struct extent_buffer *leaf;
1318 struct btrfs_root *tree_root = fs_info->tree_root;
1319 struct btrfs_root *root;
1320 struct btrfs_key key;
1321 int ret = 0;
1322 uuid_le uuid;
1323
1324 root = btrfs_alloc_root(fs_info);
1325 if (!root)
1326 return ERR_PTR(-ENOMEM);
1327
1328 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1329 tree_root->stripesize, root, fs_info, objectid);
1330 root->root_key.objectid = objectid;
1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332 root->root_key.offset = 0;
1333
1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1335 if (IS_ERR(leaf)) {
1336 ret = PTR_ERR(leaf);
1337 leaf = NULL;
1338 goto fail;
1339 }
1340
1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342 btrfs_set_header_bytenr(leaf, leaf->start);
1343 btrfs_set_header_generation(leaf, trans->transid);
1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345 btrfs_set_header_owner(leaf, objectid);
1346 root->node = leaf;
1347
1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1349 BTRFS_FSID_SIZE);
1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1351 btrfs_header_chunk_tree_uuid(leaf),
1352 BTRFS_UUID_SIZE);
1353 btrfs_mark_buffer_dirty(leaf);
1354
1355 root->commit_root = btrfs_root_node(root);
1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1357
1358 root->root_item.flags = 0;
1359 root->root_item.byte_limit = 0;
1360 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361 btrfs_set_root_generation(&root->root_item, trans->transid);
1362 btrfs_set_root_level(&root->root_item, 0);
1363 btrfs_set_root_refs(&root->root_item, 1);
1364 btrfs_set_root_used(&root->root_item, leaf->len);
1365 btrfs_set_root_last_snapshot(&root->root_item, 0);
1366 btrfs_set_root_dirid(&root->root_item, 0);
1367 uuid_le_gen(&uuid);
1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1369 root->root_item.drop_level = 0;
1370
1371 key.objectid = objectid;
1372 key.type = BTRFS_ROOT_ITEM_KEY;
1373 key.offset = 0;
1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 if (ret)
1376 goto fail;
1377
1378 btrfs_tree_unlock(leaf);
1379
1380 return root;
1381
1382 fail:
1383 if (leaf) {
1384 btrfs_tree_unlock(leaf);
1385 free_extent_buffer(root->commit_root);
1386 free_extent_buffer(leaf);
1387 }
1388 kfree(root);
1389
1390 return ERR_PTR(ret);
1391 }
1392
1393 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
1395 {
1396 struct btrfs_root *root;
1397 struct btrfs_root *tree_root = fs_info->tree_root;
1398 struct extent_buffer *leaf;
1399
1400 root = btrfs_alloc_root(fs_info);
1401 if (!root)
1402 return ERR_PTR(-ENOMEM);
1403
1404 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1405 tree_root->stripesize, root, fs_info,
1406 BTRFS_TREE_LOG_OBJECTID);
1407
1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1411
1412 /*
1413 * DON'T set REF_COWS for log trees
1414 *
1415 * log trees do not get reference counted because they go away
1416 * before a real commit is actually done. They do store pointers
1417 * to file data extents, and those reference counts still get
1418 * updated (along with back refs to the log tree).
1419 */
1420
1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422 NULL, 0, 0, 0);
1423 if (IS_ERR(leaf)) {
1424 kfree(root);
1425 return ERR_CAST(leaf);
1426 }
1427
1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429 btrfs_set_header_bytenr(leaf, leaf->start);
1430 btrfs_set_header_generation(leaf, trans->transid);
1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1433 root->node = leaf;
1434
1435 write_extent_buffer(root->node, root->fs_info->fsid,
1436 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1437 btrfs_mark_buffer_dirty(root->node);
1438 btrfs_tree_unlock(root->node);
1439 return root;
1440 }
1441
1442 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_fs_info *fs_info)
1444 {
1445 struct btrfs_root *log_root;
1446
1447 log_root = alloc_log_tree(trans, fs_info);
1448 if (IS_ERR(log_root))
1449 return PTR_ERR(log_root);
1450 WARN_ON(fs_info->log_root_tree);
1451 fs_info->log_root_tree = log_root;
1452 return 0;
1453 }
1454
1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root)
1457 {
1458 struct btrfs_root *log_root;
1459 struct btrfs_inode_item *inode_item;
1460
1461 log_root = alloc_log_tree(trans, root->fs_info);
1462 if (IS_ERR(log_root))
1463 return PTR_ERR(log_root);
1464
1465 log_root->last_trans = trans->transid;
1466 log_root->root_key.offset = root->root_key.objectid;
1467
1468 inode_item = &log_root->root_item.inode;
1469 btrfs_set_stack_inode_generation(inode_item, 1);
1470 btrfs_set_stack_inode_size(inode_item, 3);
1471 btrfs_set_stack_inode_nlink(inode_item, 1);
1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1474
1475 btrfs_set_root_node(&log_root->root_item, log_root->node);
1476
1477 WARN_ON(root->log_root);
1478 root->log_root = log_root;
1479 root->log_transid = 0;
1480 root->log_transid_committed = -1;
1481 root->last_log_commit = 0;
1482 return 0;
1483 }
1484
1485 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486 struct btrfs_key *key)
1487 {
1488 struct btrfs_root *root;
1489 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1490 struct btrfs_path *path;
1491 u64 generation;
1492 int ret;
1493
1494 path = btrfs_alloc_path();
1495 if (!path)
1496 return ERR_PTR(-ENOMEM);
1497
1498 root = btrfs_alloc_root(fs_info);
1499 if (!root) {
1500 ret = -ENOMEM;
1501 goto alloc_fail;
1502 }
1503
1504 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1505 tree_root->stripesize, root, fs_info, key->objectid);
1506
1507 ret = btrfs_find_root(tree_root, key, path,
1508 &root->root_item, &root->root_key);
1509 if (ret) {
1510 if (ret > 0)
1511 ret = -ENOENT;
1512 goto find_fail;
1513 }
1514
1515 generation = btrfs_root_generation(&root->root_item);
1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1517 generation);
1518 if (!root->node) {
1519 ret = -ENOMEM;
1520 goto find_fail;
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 ret = -EIO;
1523 goto read_fail;
1524 }
1525 root->commit_root = btrfs_root_node(root);
1526 out:
1527 btrfs_free_path(path);
1528 return root;
1529
1530 read_fail:
1531 free_extent_buffer(root->node);
1532 find_fail:
1533 kfree(root);
1534 alloc_fail:
1535 root = ERR_PTR(ret);
1536 goto out;
1537 }
1538
1539 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1540 struct btrfs_key *location)
1541 {
1542 struct btrfs_root *root;
1543
1544 root = btrfs_read_tree_root(tree_root, location);
1545 if (IS_ERR(root))
1546 return root;
1547
1548 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1549 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1550 btrfs_check_and_init_root_item(&root->root_item);
1551 }
1552
1553 return root;
1554 }
1555
1556 int btrfs_init_fs_root(struct btrfs_root *root)
1557 {
1558 int ret;
1559 struct btrfs_subvolume_writers *writers;
1560
1561 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1562 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1563 GFP_NOFS);
1564 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1565 ret = -ENOMEM;
1566 goto fail;
1567 }
1568
1569 writers = btrfs_alloc_subvolume_writers();
1570 if (IS_ERR(writers)) {
1571 ret = PTR_ERR(writers);
1572 goto fail;
1573 }
1574 root->subv_writers = writers;
1575
1576 btrfs_init_free_ino_ctl(root);
1577 spin_lock_init(&root->ino_cache_lock);
1578 init_waitqueue_head(&root->ino_cache_wait);
1579
1580 ret = get_anon_bdev(&root->anon_dev);
1581 if (ret)
1582 goto free_writers;
1583 return 0;
1584
1585 free_writers:
1586 btrfs_free_subvolume_writers(root->subv_writers);
1587 fail:
1588 kfree(root->free_ino_ctl);
1589 kfree(root->free_ino_pinned);
1590 return ret;
1591 }
1592
1593 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1594 u64 root_id)
1595 {
1596 struct btrfs_root *root;
1597
1598 spin_lock(&fs_info->fs_roots_radix_lock);
1599 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1600 (unsigned long)root_id);
1601 spin_unlock(&fs_info->fs_roots_radix_lock);
1602 return root;
1603 }
1604
1605 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1606 struct btrfs_root *root)
1607 {
1608 int ret;
1609
1610 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1611 if (ret)
1612 return ret;
1613
1614 spin_lock(&fs_info->fs_roots_radix_lock);
1615 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1616 (unsigned long)root->root_key.objectid,
1617 root);
1618 if (ret == 0)
1619 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1620 spin_unlock(&fs_info->fs_roots_radix_lock);
1621 radix_tree_preload_end();
1622
1623 return ret;
1624 }
1625
1626 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627 struct btrfs_key *location,
1628 bool check_ref)
1629 {
1630 struct btrfs_root *root;
1631 struct btrfs_path *path;
1632 struct btrfs_key key;
1633 int ret;
1634
1635 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1636 return fs_info->tree_root;
1637 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1638 return fs_info->extent_root;
1639 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1640 return fs_info->chunk_root;
1641 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1642 return fs_info->dev_root;
1643 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1644 return fs_info->csum_root;
1645 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1646 return fs_info->quota_root ? fs_info->quota_root :
1647 ERR_PTR(-ENOENT);
1648 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1649 return fs_info->uuid_root ? fs_info->uuid_root :
1650 ERR_PTR(-ENOENT);
1651 again:
1652 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1653 if (root) {
1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1655 return ERR_PTR(-ENOENT);
1656 return root;
1657 }
1658
1659 root = btrfs_read_fs_root(fs_info->tree_root, location);
1660 if (IS_ERR(root))
1661 return root;
1662
1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1664 ret = -ENOENT;
1665 goto fail;
1666 }
1667
1668 ret = btrfs_init_fs_root(root);
1669 if (ret)
1670 goto fail;
1671
1672 path = btrfs_alloc_path();
1673 if (!path) {
1674 ret = -ENOMEM;
1675 goto fail;
1676 }
1677 key.objectid = BTRFS_ORPHAN_OBJECTID;
1678 key.type = BTRFS_ORPHAN_ITEM_KEY;
1679 key.offset = location->objectid;
1680
1681 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1682 btrfs_free_path(path);
1683 if (ret < 0)
1684 goto fail;
1685 if (ret == 0)
1686 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1687
1688 ret = btrfs_insert_fs_root(fs_info, root);
1689 if (ret) {
1690 if (ret == -EEXIST) {
1691 free_fs_root(root);
1692 goto again;
1693 }
1694 goto fail;
1695 }
1696 return root;
1697 fail:
1698 free_fs_root(root);
1699 return ERR_PTR(ret);
1700 }
1701
1702 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1703 {
1704 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1705 int ret = 0;
1706 struct btrfs_device *device;
1707 struct backing_dev_info *bdi;
1708
1709 rcu_read_lock();
1710 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1711 if (!device->bdev)
1712 continue;
1713 bdi = blk_get_backing_dev_info(device->bdev);
1714 if (bdi_congested(bdi, bdi_bits)) {
1715 ret = 1;
1716 break;
1717 }
1718 }
1719 rcu_read_unlock();
1720 return ret;
1721 }
1722
1723 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1724 {
1725 int err;
1726
1727 err = bdi_setup_and_register(bdi, "btrfs");
1728 if (err)
1729 return err;
1730
1731 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1732 bdi->congested_fn = btrfs_congested_fn;
1733 bdi->congested_data = info;
1734 return 0;
1735 }
1736
1737 /*
1738 * called by the kthread helper functions to finally call the bio end_io
1739 * functions. This is where read checksum verification actually happens
1740 */
1741 static void end_workqueue_fn(struct btrfs_work *work)
1742 {
1743 struct bio *bio;
1744 struct btrfs_end_io_wq *end_io_wq;
1745 int error;
1746
1747 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1748 bio = end_io_wq->bio;
1749
1750 error = end_io_wq->error;
1751 bio->bi_private = end_io_wq->private;
1752 bio->bi_end_io = end_io_wq->end_io;
1753 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1754 bio_endio_nodec(bio, error);
1755 }
1756
1757 static int cleaner_kthread(void *arg)
1758 {
1759 struct btrfs_root *root = arg;
1760 int again;
1761
1762 do {
1763 again = 0;
1764
1765 /* Make the cleaner go to sleep early. */
1766 if (btrfs_need_cleaner_sleep(root))
1767 goto sleep;
1768
1769 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1770 goto sleep;
1771
1772 /*
1773 * Avoid the problem that we change the status of the fs
1774 * during the above check and trylock.
1775 */
1776 if (btrfs_need_cleaner_sleep(root)) {
1777 mutex_unlock(&root->fs_info->cleaner_mutex);
1778 goto sleep;
1779 }
1780
1781 btrfs_run_delayed_iputs(root);
1782 btrfs_delete_unused_bgs(root->fs_info);
1783 again = btrfs_clean_one_deleted_snapshot(root);
1784 mutex_unlock(&root->fs_info->cleaner_mutex);
1785
1786 /*
1787 * The defragger has dealt with the R/O remount and umount,
1788 * needn't do anything special here.
1789 */
1790 btrfs_run_defrag_inodes(root->fs_info);
1791 sleep:
1792 if (!try_to_freeze() && !again) {
1793 set_current_state(TASK_INTERRUPTIBLE);
1794 if (!kthread_should_stop())
1795 schedule();
1796 __set_current_state(TASK_RUNNING);
1797 }
1798 } while (!kthread_should_stop());
1799 return 0;
1800 }
1801
1802 static int transaction_kthread(void *arg)
1803 {
1804 struct btrfs_root *root = arg;
1805 struct btrfs_trans_handle *trans;
1806 struct btrfs_transaction *cur;
1807 u64 transid;
1808 unsigned long now;
1809 unsigned long delay;
1810 bool cannot_commit;
1811
1812 do {
1813 cannot_commit = false;
1814 delay = HZ * root->fs_info->commit_interval;
1815 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1816
1817 spin_lock(&root->fs_info->trans_lock);
1818 cur = root->fs_info->running_transaction;
1819 if (!cur) {
1820 spin_unlock(&root->fs_info->trans_lock);
1821 goto sleep;
1822 }
1823
1824 now = get_seconds();
1825 if (cur->state < TRANS_STATE_BLOCKED &&
1826 (now < cur->start_time ||
1827 now - cur->start_time < root->fs_info->commit_interval)) {
1828 spin_unlock(&root->fs_info->trans_lock);
1829 delay = HZ * 5;
1830 goto sleep;
1831 }
1832 transid = cur->transid;
1833 spin_unlock(&root->fs_info->trans_lock);
1834
1835 /* If the file system is aborted, this will always fail. */
1836 trans = btrfs_attach_transaction(root);
1837 if (IS_ERR(trans)) {
1838 if (PTR_ERR(trans) != -ENOENT)
1839 cannot_commit = true;
1840 goto sleep;
1841 }
1842 if (transid == trans->transid) {
1843 btrfs_commit_transaction(trans, root);
1844 } else {
1845 btrfs_end_transaction(trans, root);
1846 }
1847 sleep:
1848 wake_up_process(root->fs_info->cleaner_kthread);
1849 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1850
1851 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1852 &root->fs_info->fs_state)))
1853 btrfs_cleanup_transaction(root);
1854 if (!try_to_freeze()) {
1855 set_current_state(TASK_INTERRUPTIBLE);
1856 if (!kthread_should_stop() &&
1857 (!btrfs_transaction_blocked(root->fs_info) ||
1858 cannot_commit))
1859 schedule_timeout(delay);
1860 __set_current_state(TASK_RUNNING);
1861 }
1862 } while (!kthread_should_stop());
1863 return 0;
1864 }
1865
1866 /*
1867 * this will find the highest generation in the array of
1868 * root backups. The index of the highest array is returned,
1869 * or -1 if we can't find anything.
1870 *
1871 * We check to make sure the array is valid by comparing the
1872 * generation of the latest root in the array with the generation
1873 * in the super block. If they don't match we pitch it.
1874 */
1875 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1876 {
1877 u64 cur;
1878 int newest_index = -1;
1879 struct btrfs_root_backup *root_backup;
1880 int i;
1881
1882 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1883 root_backup = info->super_copy->super_roots + i;
1884 cur = btrfs_backup_tree_root_gen(root_backup);
1885 if (cur == newest_gen)
1886 newest_index = i;
1887 }
1888
1889 /* check to see if we actually wrapped around */
1890 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1891 root_backup = info->super_copy->super_roots;
1892 cur = btrfs_backup_tree_root_gen(root_backup);
1893 if (cur == newest_gen)
1894 newest_index = 0;
1895 }
1896 return newest_index;
1897 }
1898
1899
1900 /*
1901 * find the oldest backup so we know where to store new entries
1902 * in the backup array. This will set the backup_root_index
1903 * field in the fs_info struct
1904 */
1905 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1906 u64 newest_gen)
1907 {
1908 int newest_index = -1;
1909
1910 newest_index = find_newest_super_backup(info, newest_gen);
1911 /* if there was garbage in there, just move along */
1912 if (newest_index == -1) {
1913 info->backup_root_index = 0;
1914 } else {
1915 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1916 }
1917 }
1918
1919 /*
1920 * copy all the root pointers into the super backup array.
1921 * this will bump the backup pointer by one when it is
1922 * done
1923 */
1924 static void backup_super_roots(struct btrfs_fs_info *info)
1925 {
1926 int next_backup;
1927 struct btrfs_root_backup *root_backup;
1928 int last_backup;
1929
1930 next_backup = info->backup_root_index;
1931 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1932 BTRFS_NUM_BACKUP_ROOTS;
1933
1934 /*
1935 * just overwrite the last backup if we're at the same generation
1936 * this happens only at umount
1937 */
1938 root_backup = info->super_for_commit->super_roots + last_backup;
1939 if (btrfs_backup_tree_root_gen(root_backup) ==
1940 btrfs_header_generation(info->tree_root->node))
1941 next_backup = last_backup;
1942
1943 root_backup = info->super_for_commit->super_roots + next_backup;
1944
1945 /*
1946 * make sure all of our padding and empty slots get zero filled
1947 * regardless of which ones we use today
1948 */
1949 memset(root_backup, 0, sizeof(*root_backup));
1950
1951 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1952
1953 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1954 btrfs_set_backup_tree_root_gen(root_backup,
1955 btrfs_header_generation(info->tree_root->node));
1956
1957 btrfs_set_backup_tree_root_level(root_backup,
1958 btrfs_header_level(info->tree_root->node));
1959
1960 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1961 btrfs_set_backup_chunk_root_gen(root_backup,
1962 btrfs_header_generation(info->chunk_root->node));
1963 btrfs_set_backup_chunk_root_level(root_backup,
1964 btrfs_header_level(info->chunk_root->node));
1965
1966 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1967 btrfs_set_backup_extent_root_gen(root_backup,
1968 btrfs_header_generation(info->extent_root->node));
1969 btrfs_set_backup_extent_root_level(root_backup,
1970 btrfs_header_level(info->extent_root->node));
1971
1972 /*
1973 * we might commit during log recovery, which happens before we set
1974 * the fs_root. Make sure it is valid before we fill it in.
1975 */
1976 if (info->fs_root && info->fs_root->node) {
1977 btrfs_set_backup_fs_root(root_backup,
1978 info->fs_root->node->start);
1979 btrfs_set_backup_fs_root_gen(root_backup,
1980 btrfs_header_generation(info->fs_root->node));
1981 btrfs_set_backup_fs_root_level(root_backup,
1982 btrfs_header_level(info->fs_root->node));
1983 }
1984
1985 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1986 btrfs_set_backup_dev_root_gen(root_backup,
1987 btrfs_header_generation(info->dev_root->node));
1988 btrfs_set_backup_dev_root_level(root_backup,
1989 btrfs_header_level(info->dev_root->node));
1990
1991 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1992 btrfs_set_backup_csum_root_gen(root_backup,
1993 btrfs_header_generation(info->csum_root->node));
1994 btrfs_set_backup_csum_root_level(root_backup,
1995 btrfs_header_level(info->csum_root->node));
1996
1997 btrfs_set_backup_total_bytes(root_backup,
1998 btrfs_super_total_bytes(info->super_copy));
1999 btrfs_set_backup_bytes_used(root_backup,
2000 btrfs_super_bytes_used(info->super_copy));
2001 btrfs_set_backup_num_devices(root_backup,
2002 btrfs_super_num_devices(info->super_copy));
2003
2004 /*
2005 * if we don't copy this out to the super_copy, it won't get remembered
2006 * for the next commit
2007 */
2008 memcpy(&info->super_copy->super_roots,
2009 &info->super_for_commit->super_roots,
2010 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2011 }
2012
2013 /*
2014 * this copies info out of the root backup array and back into
2015 * the in-memory super block. It is meant to help iterate through
2016 * the array, so you send it the number of backups you've already
2017 * tried and the last backup index you used.
2018 *
2019 * this returns -1 when it has tried all the backups
2020 */
2021 static noinline int next_root_backup(struct btrfs_fs_info *info,
2022 struct btrfs_super_block *super,
2023 int *num_backups_tried, int *backup_index)
2024 {
2025 struct btrfs_root_backup *root_backup;
2026 int newest = *backup_index;
2027
2028 if (*num_backups_tried == 0) {
2029 u64 gen = btrfs_super_generation(super);
2030
2031 newest = find_newest_super_backup(info, gen);
2032 if (newest == -1)
2033 return -1;
2034
2035 *backup_index = newest;
2036 *num_backups_tried = 1;
2037 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2038 /* we've tried all the backups, all done */
2039 return -1;
2040 } else {
2041 /* jump to the next oldest backup */
2042 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2043 BTRFS_NUM_BACKUP_ROOTS;
2044 *backup_index = newest;
2045 *num_backups_tried += 1;
2046 }
2047 root_backup = super->super_roots + newest;
2048
2049 btrfs_set_super_generation(super,
2050 btrfs_backup_tree_root_gen(root_backup));
2051 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2052 btrfs_set_super_root_level(super,
2053 btrfs_backup_tree_root_level(root_backup));
2054 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2055
2056 /*
2057 * fixme: the total bytes and num_devices need to match or we should
2058 * need a fsck
2059 */
2060 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2061 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2062 return 0;
2063 }
2064
2065 /* helper to cleanup workers */
2066 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2067 {
2068 btrfs_destroy_workqueue(fs_info->fixup_workers);
2069 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2070 btrfs_destroy_workqueue(fs_info->workers);
2071 btrfs_destroy_workqueue(fs_info->endio_workers);
2072 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2073 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2074 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2075 btrfs_destroy_workqueue(fs_info->rmw_workers);
2076 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2077 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2078 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2079 btrfs_destroy_workqueue(fs_info->submit_workers);
2080 btrfs_destroy_workqueue(fs_info->delayed_workers);
2081 btrfs_destroy_workqueue(fs_info->caching_workers);
2082 btrfs_destroy_workqueue(fs_info->readahead_workers);
2083 btrfs_destroy_workqueue(fs_info->flush_workers);
2084 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2085 btrfs_destroy_workqueue(fs_info->extent_workers);
2086 }
2087
2088 static void free_root_extent_buffers(struct btrfs_root *root)
2089 {
2090 if (root) {
2091 free_extent_buffer(root->node);
2092 free_extent_buffer(root->commit_root);
2093 root->node = NULL;
2094 root->commit_root = NULL;
2095 }
2096 }
2097
2098 /* helper to cleanup tree roots */
2099 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2100 {
2101 free_root_extent_buffers(info->tree_root);
2102
2103 free_root_extent_buffers(info->dev_root);
2104 free_root_extent_buffers(info->extent_root);
2105 free_root_extent_buffers(info->csum_root);
2106 free_root_extent_buffers(info->quota_root);
2107 free_root_extent_buffers(info->uuid_root);
2108 if (chunk_root)
2109 free_root_extent_buffers(info->chunk_root);
2110 }
2111
2112 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2113 {
2114 int ret;
2115 struct btrfs_root *gang[8];
2116 int i;
2117
2118 while (!list_empty(&fs_info->dead_roots)) {
2119 gang[0] = list_entry(fs_info->dead_roots.next,
2120 struct btrfs_root, root_list);
2121 list_del(&gang[0]->root_list);
2122
2123 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2124 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2125 } else {
2126 free_extent_buffer(gang[0]->node);
2127 free_extent_buffer(gang[0]->commit_root);
2128 btrfs_put_fs_root(gang[0]);
2129 }
2130 }
2131
2132 while (1) {
2133 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2134 (void **)gang, 0,
2135 ARRAY_SIZE(gang));
2136 if (!ret)
2137 break;
2138 for (i = 0; i < ret; i++)
2139 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2140 }
2141
2142 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2143 btrfs_free_log_root_tree(NULL, fs_info);
2144 btrfs_destroy_pinned_extent(fs_info->tree_root,
2145 fs_info->pinned_extents);
2146 }
2147 }
2148
2149 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2150 {
2151 mutex_init(&fs_info->scrub_lock);
2152 atomic_set(&fs_info->scrubs_running, 0);
2153 atomic_set(&fs_info->scrub_pause_req, 0);
2154 atomic_set(&fs_info->scrubs_paused, 0);
2155 atomic_set(&fs_info->scrub_cancel_req, 0);
2156 init_waitqueue_head(&fs_info->scrub_pause_wait);
2157 fs_info->scrub_workers_refcnt = 0;
2158 }
2159
2160 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2161 {
2162 spin_lock_init(&fs_info->balance_lock);
2163 mutex_init(&fs_info->balance_mutex);
2164 atomic_set(&fs_info->balance_running, 0);
2165 atomic_set(&fs_info->balance_pause_req, 0);
2166 atomic_set(&fs_info->balance_cancel_req, 0);
2167 fs_info->balance_ctl = NULL;
2168 init_waitqueue_head(&fs_info->balance_wait_q);
2169 }
2170
2171 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2172 struct btrfs_root *tree_root)
2173 {
2174 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2175 set_nlink(fs_info->btree_inode, 1);
2176 /*
2177 * we set the i_size on the btree inode to the max possible int.
2178 * the real end of the address space is determined by all of
2179 * the devices in the system
2180 */
2181 fs_info->btree_inode->i_size = OFFSET_MAX;
2182 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2183
2184 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2185 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2186 fs_info->btree_inode->i_mapping);
2187 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2188 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2189
2190 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2191
2192 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2193 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2194 sizeof(struct btrfs_key));
2195 set_bit(BTRFS_INODE_DUMMY,
2196 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2197 btrfs_insert_inode_hash(fs_info->btree_inode);
2198 }
2199
2200 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2201 {
2202 fs_info->dev_replace.lock_owner = 0;
2203 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2204 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2205 mutex_init(&fs_info->dev_replace.lock_management_lock);
2206 mutex_init(&fs_info->dev_replace.lock);
2207 init_waitqueue_head(&fs_info->replace_wait);
2208 }
2209
2210 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2211 {
2212 spin_lock_init(&fs_info->qgroup_lock);
2213 mutex_init(&fs_info->qgroup_ioctl_lock);
2214 fs_info->qgroup_tree = RB_ROOT;
2215 fs_info->qgroup_op_tree = RB_ROOT;
2216 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2217 fs_info->qgroup_seq = 1;
2218 fs_info->quota_enabled = 0;
2219 fs_info->pending_quota_state = 0;
2220 fs_info->qgroup_ulist = NULL;
2221 mutex_init(&fs_info->qgroup_rescan_lock);
2222 }
2223
2224 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2225 struct btrfs_fs_devices *fs_devices)
2226 {
2227 int max_active = fs_info->thread_pool_size;
2228 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2229
2230 fs_info->workers =
2231 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2232 max_active, 16);
2233
2234 fs_info->delalloc_workers =
2235 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2236
2237 fs_info->flush_workers =
2238 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2239
2240 fs_info->caching_workers =
2241 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2242
2243 /*
2244 * a higher idle thresh on the submit workers makes it much more
2245 * likely that bios will be send down in a sane order to the
2246 * devices
2247 */
2248 fs_info->submit_workers =
2249 btrfs_alloc_workqueue("submit", flags,
2250 min_t(u64, fs_devices->num_devices,
2251 max_active), 64);
2252
2253 fs_info->fixup_workers =
2254 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2255
2256 /*
2257 * endios are largely parallel and should have a very
2258 * low idle thresh
2259 */
2260 fs_info->endio_workers =
2261 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2262 fs_info->endio_meta_workers =
2263 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2264 fs_info->endio_meta_write_workers =
2265 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2266 fs_info->endio_raid56_workers =
2267 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2268 fs_info->endio_repair_workers =
2269 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2270 fs_info->rmw_workers =
2271 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2272 fs_info->endio_write_workers =
2273 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2274 fs_info->endio_freespace_worker =
2275 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2276 fs_info->delayed_workers =
2277 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2278 fs_info->readahead_workers =
2279 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2280 fs_info->qgroup_rescan_workers =
2281 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2282 fs_info->extent_workers =
2283 btrfs_alloc_workqueue("extent-refs", flags,
2284 min_t(u64, fs_devices->num_devices,
2285 max_active), 8);
2286
2287 if (!(fs_info->workers && fs_info->delalloc_workers &&
2288 fs_info->submit_workers && fs_info->flush_workers &&
2289 fs_info->endio_workers && fs_info->endio_meta_workers &&
2290 fs_info->endio_meta_write_workers &&
2291 fs_info->endio_repair_workers &&
2292 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2293 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2294 fs_info->caching_workers && fs_info->readahead_workers &&
2295 fs_info->fixup_workers && fs_info->delayed_workers &&
2296 fs_info->extent_workers &&
2297 fs_info->qgroup_rescan_workers)) {
2298 return -ENOMEM;
2299 }
2300
2301 return 0;
2302 }
2303
2304 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2305 struct btrfs_fs_devices *fs_devices)
2306 {
2307 int ret;
2308 struct btrfs_root *tree_root = fs_info->tree_root;
2309 struct btrfs_root *log_tree_root;
2310 struct btrfs_super_block *disk_super = fs_info->super_copy;
2311 u64 bytenr = btrfs_super_log_root(disk_super);
2312
2313 if (fs_devices->rw_devices == 0) {
2314 printk(KERN_WARNING "BTRFS: log replay required "
2315 "on RO media\n");
2316 return -EIO;
2317 }
2318
2319 log_tree_root = btrfs_alloc_root(fs_info);
2320 if (!log_tree_root)
2321 return -ENOMEM;
2322
2323 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2324 tree_root->stripesize, log_tree_root, fs_info,
2325 BTRFS_TREE_LOG_OBJECTID);
2326
2327 log_tree_root->node = read_tree_block(tree_root, bytenr,
2328 fs_info->generation + 1);
2329 if (!log_tree_root->node ||
2330 !extent_buffer_uptodate(log_tree_root->node)) {
2331 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2332 free_extent_buffer(log_tree_root->node);
2333 kfree(log_tree_root);
2334 return -EIO;
2335 }
2336 /* returns with log_tree_root freed on success */
2337 ret = btrfs_recover_log_trees(log_tree_root);
2338 if (ret) {
2339 btrfs_error(tree_root->fs_info, ret,
2340 "Failed to recover log tree");
2341 free_extent_buffer(log_tree_root->node);
2342 kfree(log_tree_root);
2343 return ret;
2344 }
2345
2346 if (fs_info->sb->s_flags & MS_RDONLY) {
2347 ret = btrfs_commit_super(tree_root);
2348 if (ret)
2349 return ret;
2350 }
2351
2352 return 0;
2353 }
2354
2355 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2356 struct btrfs_root *tree_root)
2357 {
2358 struct btrfs_root *root;
2359 struct btrfs_key location;
2360 int ret;
2361
2362 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2363 location.type = BTRFS_ROOT_ITEM_KEY;
2364 location.offset = 0;
2365
2366 root = btrfs_read_tree_root(tree_root, &location);
2367 if (IS_ERR(root))
2368 return PTR_ERR(root);
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 fs_info->extent_root = root;
2371
2372 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2373 root = btrfs_read_tree_root(tree_root, &location);
2374 if (IS_ERR(root))
2375 return PTR_ERR(root);
2376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377 fs_info->dev_root = root;
2378 btrfs_init_devices_late(fs_info);
2379
2380 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2381 root = btrfs_read_tree_root(tree_root, &location);
2382 if (IS_ERR(root))
2383 return PTR_ERR(root);
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 fs_info->csum_root = root;
2386
2387 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2388 root = btrfs_read_tree_root(tree_root, &location);
2389 if (!IS_ERR(root)) {
2390 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2391 fs_info->quota_enabled = 1;
2392 fs_info->pending_quota_state = 1;
2393 fs_info->quota_root = root;
2394 }
2395
2396 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2397 root = btrfs_read_tree_root(tree_root, &location);
2398 if (IS_ERR(root)) {
2399 ret = PTR_ERR(root);
2400 if (ret != -ENOENT)
2401 return ret;
2402 } else {
2403 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404 fs_info->uuid_root = root;
2405 }
2406
2407 return 0;
2408 }
2409
2410 int open_ctree(struct super_block *sb,
2411 struct btrfs_fs_devices *fs_devices,
2412 char *options)
2413 {
2414 u32 sectorsize;
2415 u32 nodesize;
2416 u32 stripesize;
2417 u64 generation;
2418 u64 features;
2419 struct btrfs_key location;
2420 struct buffer_head *bh;
2421 struct btrfs_super_block *disk_super;
2422 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2423 struct btrfs_root *tree_root;
2424 struct btrfs_root *chunk_root;
2425 int ret;
2426 int err = -EINVAL;
2427 int num_backups_tried = 0;
2428 int backup_index = 0;
2429 int max_active;
2430
2431 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2432 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2433 if (!tree_root || !chunk_root) {
2434 err = -ENOMEM;
2435 goto fail;
2436 }
2437
2438 ret = init_srcu_struct(&fs_info->subvol_srcu);
2439 if (ret) {
2440 err = ret;
2441 goto fail;
2442 }
2443
2444 ret = setup_bdi(fs_info, &fs_info->bdi);
2445 if (ret) {
2446 err = ret;
2447 goto fail_srcu;
2448 }
2449
2450 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2451 if (ret) {
2452 err = ret;
2453 goto fail_bdi;
2454 }
2455 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2456 (1 + ilog2(nr_cpu_ids));
2457
2458 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2459 if (ret) {
2460 err = ret;
2461 goto fail_dirty_metadata_bytes;
2462 }
2463
2464 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2465 if (ret) {
2466 err = ret;
2467 goto fail_delalloc_bytes;
2468 }
2469
2470 fs_info->btree_inode = new_inode(sb);
2471 if (!fs_info->btree_inode) {
2472 err = -ENOMEM;
2473 goto fail_bio_counter;
2474 }
2475
2476 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2477
2478 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2479 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2480 INIT_LIST_HEAD(&fs_info->trans_list);
2481 INIT_LIST_HEAD(&fs_info->dead_roots);
2482 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2483 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2484 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2485 spin_lock_init(&fs_info->delalloc_root_lock);
2486 spin_lock_init(&fs_info->trans_lock);
2487 spin_lock_init(&fs_info->fs_roots_radix_lock);
2488 spin_lock_init(&fs_info->delayed_iput_lock);
2489 spin_lock_init(&fs_info->defrag_inodes_lock);
2490 spin_lock_init(&fs_info->free_chunk_lock);
2491 spin_lock_init(&fs_info->tree_mod_seq_lock);
2492 spin_lock_init(&fs_info->super_lock);
2493 spin_lock_init(&fs_info->qgroup_op_lock);
2494 spin_lock_init(&fs_info->buffer_lock);
2495 spin_lock_init(&fs_info->unused_bgs_lock);
2496 mutex_init(&fs_info->unused_bg_unpin_mutex);
2497 rwlock_init(&fs_info->tree_mod_log_lock);
2498 mutex_init(&fs_info->reloc_mutex);
2499 mutex_init(&fs_info->delalloc_root_mutex);
2500 seqlock_init(&fs_info->profiles_lock);
2501
2502 init_completion(&fs_info->kobj_unregister);
2503 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2504 INIT_LIST_HEAD(&fs_info->space_info);
2505 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2506 INIT_LIST_HEAD(&fs_info->unused_bgs);
2507 btrfs_mapping_init(&fs_info->mapping_tree);
2508 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2509 BTRFS_BLOCK_RSV_GLOBAL);
2510 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2511 BTRFS_BLOCK_RSV_DELALLOC);
2512 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2513 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2514 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2515 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2516 BTRFS_BLOCK_RSV_DELOPS);
2517 atomic_set(&fs_info->nr_async_submits, 0);
2518 atomic_set(&fs_info->async_delalloc_pages, 0);
2519 atomic_set(&fs_info->async_submit_draining, 0);
2520 atomic_set(&fs_info->nr_async_bios, 0);
2521 atomic_set(&fs_info->defrag_running, 0);
2522 atomic_set(&fs_info->qgroup_op_seq, 0);
2523 atomic64_set(&fs_info->tree_mod_seq, 0);
2524 fs_info->sb = sb;
2525 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2526 fs_info->metadata_ratio = 0;
2527 fs_info->defrag_inodes = RB_ROOT;
2528 fs_info->free_chunk_space = 0;
2529 fs_info->tree_mod_log = RB_ROOT;
2530 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2531 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2532 /* readahead state */
2533 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2534 spin_lock_init(&fs_info->reada_lock);
2535
2536 fs_info->thread_pool_size = min_t(unsigned long,
2537 num_online_cpus() + 2, 8);
2538
2539 INIT_LIST_HEAD(&fs_info->ordered_roots);
2540 spin_lock_init(&fs_info->ordered_root_lock);
2541 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2542 GFP_NOFS);
2543 if (!fs_info->delayed_root) {
2544 err = -ENOMEM;
2545 goto fail_iput;
2546 }
2547 btrfs_init_delayed_root(fs_info->delayed_root);
2548
2549 btrfs_init_scrub(fs_info);
2550 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2551 fs_info->check_integrity_print_mask = 0;
2552 #endif
2553 btrfs_init_balance(fs_info);
2554 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2555
2556 sb->s_blocksize = 4096;
2557 sb->s_blocksize_bits = blksize_bits(4096);
2558 sb->s_bdi = &fs_info->bdi;
2559
2560 btrfs_init_btree_inode(fs_info, tree_root);
2561
2562 spin_lock_init(&fs_info->block_group_cache_lock);
2563 fs_info->block_group_cache_tree = RB_ROOT;
2564 fs_info->first_logical_byte = (u64)-1;
2565
2566 extent_io_tree_init(&fs_info->freed_extents[0],
2567 fs_info->btree_inode->i_mapping);
2568 extent_io_tree_init(&fs_info->freed_extents[1],
2569 fs_info->btree_inode->i_mapping);
2570 fs_info->pinned_extents = &fs_info->freed_extents[0];
2571 fs_info->do_barriers = 1;
2572
2573
2574 mutex_init(&fs_info->ordered_operations_mutex);
2575 mutex_init(&fs_info->ordered_extent_flush_mutex);
2576 mutex_init(&fs_info->tree_log_mutex);
2577 mutex_init(&fs_info->chunk_mutex);
2578 mutex_init(&fs_info->transaction_kthread_mutex);
2579 mutex_init(&fs_info->cleaner_mutex);
2580 mutex_init(&fs_info->volume_mutex);
2581 init_rwsem(&fs_info->commit_root_sem);
2582 init_rwsem(&fs_info->cleanup_work_sem);
2583 init_rwsem(&fs_info->subvol_sem);
2584 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2585
2586 btrfs_init_dev_replace_locks(fs_info);
2587 btrfs_init_qgroup(fs_info);
2588
2589 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2590 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2591
2592 init_waitqueue_head(&fs_info->transaction_throttle);
2593 init_waitqueue_head(&fs_info->transaction_wait);
2594 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2595 init_waitqueue_head(&fs_info->async_submit_wait);
2596
2597 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2598
2599 ret = btrfs_alloc_stripe_hash_table(fs_info);
2600 if (ret) {
2601 err = ret;
2602 goto fail_alloc;
2603 }
2604
2605 __setup_root(4096, 4096, 4096, tree_root,
2606 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2607
2608 invalidate_bdev(fs_devices->latest_bdev);
2609
2610 /*
2611 * Read super block and check the signature bytes only
2612 */
2613 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2614 if (!bh) {
2615 err = -EINVAL;
2616 goto fail_alloc;
2617 }
2618
2619 /*
2620 * We want to check superblock checksum, the type is stored inside.
2621 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2622 */
2623 if (btrfs_check_super_csum(bh->b_data)) {
2624 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2625 err = -EINVAL;
2626 goto fail_alloc;
2627 }
2628
2629 /*
2630 * super_copy is zeroed at allocation time and we never touch the
2631 * following bytes up to INFO_SIZE, the checksum is calculated from
2632 * the whole block of INFO_SIZE
2633 */
2634 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2635 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2636 sizeof(*fs_info->super_for_commit));
2637 brelse(bh);
2638
2639 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2640
2641 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2642 if (ret) {
2643 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2644 err = -EINVAL;
2645 goto fail_alloc;
2646 }
2647
2648 disk_super = fs_info->super_copy;
2649 if (!btrfs_super_root(disk_super))
2650 goto fail_alloc;
2651
2652 /* check FS state, whether FS is broken. */
2653 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2654 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2655
2656 /*
2657 * run through our array of backup supers and setup
2658 * our ring pointer to the oldest one
2659 */
2660 generation = btrfs_super_generation(disk_super);
2661 find_oldest_super_backup(fs_info, generation);
2662
2663 /*
2664 * In the long term, we'll store the compression type in the super
2665 * block, and it'll be used for per file compression control.
2666 */
2667 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2668
2669 ret = btrfs_parse_options(tree_root, options);
2670 if (ret) {
2671 err = ret;
2672 goto fail_alloc;
2673 }
2674
2675 features = btrfs_super_incompat_flags(disk_super) &
2676 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2677 if (features) {
2678 printk(KERN_ERR "BTRFS: couldn't mount because of "
2679 "unsupported optional features (%Lx).\n",
2680 features);
2681 err = -EINVAL;
2682 goto fail_alloc;
2683 }
2684
2685 /*
2686 * Leafsize and nodesize were always equal, this is only a sanity check.
2687 */
2688 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2689 btrfs_super_nodesize(disk_super)) {
2690 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2691 "blocksizes don't match. node %d leaf %d\n",
2692 btrfs_super_nodesize(disk_super),
2693 le32_to_cpu(disk_super->__unused_leafsize));
2694 err = -EINVAL;
2695 goto fail_alloc;
2696 }
2697 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2698 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2699 "blocksize (%d) was too large\n",
2700 btrfs_super_nodesize(disk_super));
2701 err = -EINVAL;
2702 goto fail_alloc;
2703 }
2704
2705 features = btrfs_super_incompat_flags(disk_super);
2706 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2707 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2708 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2709
2710 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2711 printk(KERN_INFO "BTRFS: has skinny extents\n");
2712
2713 /*
2714 * flag our filesystem as having big metadata blocks if
2715 * they are bigger than the page size
2716 */
2717 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2718 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2719 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2720 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2721 }
2722
2723 nodesize = btrfs_super_nodesize(disk_super);
2724 sectorsize = btrfs_super_sectorsize(disk_super);
2725 stripesize = btrfs_super_stripesize(disk_super);
2726 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2727 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2728
2729 /*
2730 * mixed block groups end up with duplicate but slightly offset
2731 * extent buffers for the same range. It leads to corruptions
2732 */
2733 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2734 (sectorsize != nodesize)) {
2735 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2736 "are not allowed for mixed block groups on %s\n",
2737 sb->s_id);
2738 goto fail_alloc;
2739 }
2740
2741 /*
2742 * Needn't use the lock because there is no other task which will
2743 * update the flag.
2744 */
2745 btrfs_set_super_incompat_flags(disk_super, features);
2746
2747 features = btrfs_super_compat_ro_flags(disk_super) &
2748 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2749 if (!(sb->s_flags & MS_RDONLY) && features) {
2750 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2751 "unsupported option features (%Lx).\n",
2752 features);
2753 err = -EINVAL;
2754 goto fail_alloc;
2755 }
2756
2757 max_active = fs_info->thread_pool_size;
2758
2759 ret = btrfs_init_workqueues(fs_info, fs_devices);
2760 if (ret) {
2761 err = ret;
2762 goto fail_sb_buffer;
2763 }
2764
2765 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2766 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2767 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2768
2769 tree_root->nodesize = nodesize;
2770 tree_root->sectorsize = sectorsize;
2771 tree_root->stripesize = stripesize;
2772
2773 sb->s_blocksize = sectorsize;
2774 sb->s_blocksize_bits = blksize_bits(sectorsize);
2775
2776 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2777 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2778 goto fail_sb_buffer;
2779 }
2780
2781 if (sectorsize != PAGE_SIZE) {
2782 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2783 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2784 goto fail_sb_buffer;
2785 }
2786
2787 mutex_lock(&fs_info->chunk_mutex);
2788 ret = btrfs_read_sys_array(tree_root);
2789 mutex_unlock(&fs_info->chunk_mutex);
2790 if (ret) {
2791 printk(KERN_ERR "BTRFS: failed to read the system "
2792 "array on %s\n", sb->s_id);
2793 goto fail_sb_buffer;
2794 }
2795
2796 generation = btrfs_super_chunk_root_generation(disk_super);
2797
2798 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2799 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2800
2801 chunk_root->node = read_tree_block(chunk_root,
2802 btrfs_super_chunk_root(disk_super),
2803 generation);
2804 if (!chunk_root->node ||
2805 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2806 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2807 sb->s_id);
2808 goto fail_tree_roots;
2809 }
2810 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2811 chunk_root->commit_root = btrfs_root_node(chunk_root);
2812
2813 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2814 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2815
2816 ret = btrfs_read_chunk_tree(chunk_root);
2817 if (ret) {
2818 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2819 sb->s_id);
2820 goto fail_tree_roots;
2821 }
2822
2823 /*
2824 * keep the device that is marked to be the target device for the
2825 * dev_replace procedure
2826 */
2827 btrfs_close_extra_devices(fs_devices, 0);
2828
2829 if (!fs_devices->latest_bdev) {
2830 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2831 sb->s_id);
2832 goto fail_tree_roots;
2833 }
2834
2835 retry_root_backup:
2836 generation = btrfs_super_generation(disk_super);
2837
2838 tree_root->node = read_tree_block(tree_root,
2839 btrfs_super_root(disk_super),
2840 generation);
2841 if (!tree_root->node ||
2842 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2843 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2844 sb->s_id);
2845
2846 goto recovery_tree_root;
2847 }
2848
2849 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2850 tree_root->commit_root = btrfs_root_node(tree_root);
2851 btrfs_set_root_refs(&tree_root->root_item, 1);
2852
2853 ret = btrfs_read_roots(fs_info, tree_root);
2854 if (ret)
2855 goto recovery_tree_root;
2856
2857 fs_info->generation = generation;
2858 fs_info->last_trans_committed = generation;
2859
2860 ret = btrfs_recover_balance(fs_info);
2861 if (ret) {
2862 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2863 goto fail_block_groups;
2864 }
2865
2866 ret = btrfs_init_dev_stats(fs_info);
2867 if (ret) {
2868 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2869 ret);
2870 goto fail_block_groups;
2871 }
2872
2873 ret = btrfs_init_dev_replace(fs_info);
2874 if (ret) {
2875 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2876 goto fail_block_groups;
2877 }
2878
2879 btrfs_close_extra_devices(fs_devices, 1);
2880
2881 ret = btrfs_sysfs_add_one(fs_info);
2882 if (ret) {
2883 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2884 goto fail_block_groups;
2885 }
2886
2887 ret = btrfs_init_space_info(fs_info);
2888 if (ret) {
2889 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2890 goto fail_sysfs;
2891 }
2892
2893 ret = btrfs_read_block_groups(fs_info->extent_root);
2894 if (ret) {
2895 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2896 goto fail_sysfs;
2897 }
2898 fs_info->num_tolerated_disk_barrier_failures =
2899 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2900 if (fs_info->fs_devices->missing_devices >
2901 fs_info->num_tolerated_disk_barrier_failures &&
2902 !(sb->s_flags & MS_RDONLY)) {
2903 printk(KERN_WARNING "BTRFS: "
2904 "too many missing devices, writeable mount is not allowed\n");
2905 goto fail_sysfs;
2906 }
2907
2908 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2909 "btrfs-cleaner");
2910 if (IS_ERR(fs_info->cleaner_kthread))
2911 goto fail_sysfs;
2912
2913 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2914 tree_root,
2915 "btrfs-transaction");
2916 if (IS_ERR(fs_info->transaction_kthread))
2917 goto fail_cleaner;
2918
2919 if (!btrfs_test_opt(tree_root, SSD) &&
2920 !btrfs_test_opt(tree_root, NOSSD) &&
2921 !fs_info->fs_devices->rotating) {
2922 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2923 "mode\n");
2924 btrfs_set_opt(fs_info->mount_opt, SSD);
2925 }
2926
2927 /*
2928 * Mount does not set all options immediatelly, we can do it now and do
2929 * not have to wait for transaction commit
2930 */
2931 btrfs_apply_pending_changes(fs_info);
2932
2933 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2934 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2935 ret = btrfsic_mount(tree_root, fs_devices,
2936 btrfs_test_opt(tree_root,
2937 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2938 1 : 0,
2939 fs_info->check_integrity_print_mask);
2940 if (ret)
2941 printk(KERN_WARNING "BTRFS: failed to initialize"
2942 " integrity check module %s\n", sb->s_id);
2943 }
2944 #endif
2945 ret = btrfs_read_qgroup_config(fs_info);
2946 if (ret)
2947 goto fail_trans_kthread;
2948
2949 /* do not make disk changes in broken FS */
2950 if (btrfs_super_log_root(disk_super) != 0) {
2951 ret = btrfs_replay_log(fs_info, fs_devices);
2952 if (ret) {
2953 err = ret;
2954 goto fail_qgroup;
2955 }
2956 }
2957
2958 ret = btrfs_find_orphan_roots(tree_root);
2959 if (ret)
2960 goto fail_qgroup;
2961
2962 if (!(sb->s_flags & MS_RDONLY)) {
2963 ret = btrfs_cleanup_fs_roots(fs_info);
2964 if (ret)
2965 goto fail_qgroup;
2966
2967 mutex_lock(&fs_info->cleaner_mutex);
2968 ret = btrfs_recover_relocation(tree_root);
2969 mutex_unlock(&fs_info->cleaner_mutex);
2970 if (ret < 0) {
2971 printk(KERN_WARNING
2972 "BTRFS: failed to recover relocation\n");
2973 err = -EINVAL;
2974 goto fail_qgroup;
2975 }
2976 }
2977
2978 location.objectid = BTRFS_FS_TREE_OBJECTID;
2979 location.type = BTRFS_ROOT_ITEM_KEY;
2980 location.offset = 0;
2981
2982 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2983 if (IS_ERR(fs_info->fs_root)) {
2984 err = PTR_ERR(fs_info->fs_root);
2985 goto fail_qgroup;
2986 }
2987
2988 if (sb->s_flags & MS_RDONLY)
2989 return 0;
2990
2991 down_read(&fs_info->cleanup_work_sem);
2992 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2993 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2994 up_read(&fs_info->cleanup_work_sem);
2995 close_ctree(tree_root);
2996 return ret;
2997 }
2998 up_read(&fs_info->cleanup_work_sem);
2999
3000 ret = btrfs_resume_balance_async(fs_info);
3001 if (ret) {
3002 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3003 close_ctree(tree_root);
3004 return ret;
3005 }
3006
3007 ret = btrfs_resume_dev_replace_async(fs_info);
3008 if (ret) {
3009 pr_warn("BTRFS: failed to resume dev_replace\n");
3010 close_ctree(tree_root);
3011 return ret;
3012 }
3013
3014 btrfs_qgroup_rescan_resume(fs_info);
3015
3016 if (!fs_info->uuid_root) {
3017 pr_info("BTRFS: creating UUID tree\n");
3018 ret = btrfs_create_uuid_tree(fs_info);
3019 if (ret) {
3020 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3021 ret);
3022 close_ctree(tree_root);
3023 return ret;
3024 }
3025 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3026 fs_info->generation !=
3027 btrfs_super_uuid_tree_generation(disk_super)) {
3028 pr_info("BTRFS: checking UUID tree\n");
3029 ret = btrfs_check_uuid_tree(fs_info);
3030 if (ret) {
3031 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3032 ret);
3033 close_ctree(tree_root);
3034 return ret;
3035 }
3036 } else {
3037 fs_info->update_uuid_tree_gen = 1;
3038 }
3039
3040 fs_info->open = 1;
3041
3042 return 0;
3043
3044 fail_qgroup:
3045 btrfs_free_qgroup_config(fs_info);
3046 fail_trans_kthread:
3047 kthread_stop(fs_info->transaction_kthread);
3048 btrfs_cleanup_transaction(fs_info->tree_root);
3049 btrfs_free_fs_roots(fs_info);
3050 fail_cleaner:
3051 kthread_stop(fs_info->cleaner_kthread);
3052
3053 /*
3054 * make sure we're done with the btree inode before we stop our
3055 * kthreads
3056 */
3057 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3058
3059 fail_sysfs:
3060 btrfs_sysfs_remove_one(fs_info);
3061
3062 fail_block_groups:
3063 btrfs_put_block_group_cache(fs_info);
3064 btrfs_free_block_groups(fs_info);
3065
3066 fail_tree_roots:
3067 free_root_pointers(fs_info, 1);
3068 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3069
3070 fail_sb_buffer:
3071 btrfs_stop_all_workers(fs_info);
3072 fail_alloc:
3073 fail_iput:
3074 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3075
3076 iput(fs_info->btree_inode);
3077 fail_bio_counter:
3078 percpu_counter_destroy(&fs_info->bio_counter);
3079 fail_delalloc_bytes:
3080 percpu_counter_destroy(&fs_info->delalloc_bytes);
3081 fail_dirty_metadata_bytes:
3082 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3083 fail_bdi:
3084 bdi_destroy(&fs_info->bdi);
3085 fail_srcu:
3086 cleanup_srcu_struct(&fs_info->subvol_srcu);
3087 fail:
3088 btrfs_free_stripe_hash_table(fs_info);
3089 btrfs_close_devices(fs_info->fs_devices);
3090 return err;
3091
3092 recovery_tree_root:
3093 if (!btrfs_test_opt(tree_root, RECOVERY))
3094 goto fail_tree_roots;
3095
3096 free_root_pointers(fs_info, 0);
3097
3098 /* don't use the log in recovery mode, it won't be valid */
3099 btrfs_set_super_log_root(disk_super, 0);
3100
3101 /* we can't trust the free space cache either */
3102 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3103
3104 ret = next_root_backup(fs_info, fs_info->super_copy,
3105 &num_backups_tried, &backup_index);
3106 if (ret == -1)
3107 goto fail_block_groups;
3108 goto retry_root_backup;
3109 }
3110
3111 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3112 {
3113 if (uptodate) {
3114 set_buffer_uptodate(bh);
3115 } else {
3116 struct btrfs_device *device = (struct btrfs_device *)
3117 bh->b_private;
3118
3119 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3120 "I/O error on %s\n",
3121 rcu_str_deref(device->name));
3122 /* note, we dont' set_buffer_write_io_error because we have
3123 * our own ways of dealing with the IO errors
3124 */
3125 clear_buffer_uptodate(bh);
3126 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3127 }
3128 unlock_buffer(bh);
3129 put_bh(bh);
3130 }
3131
3132 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3133 {
3134 struct buffer_head *bh;
3135 struct buffer_head *latest = NULL;
3136 struct btrfs_super_block *super;
3137 int i;
3138 u64 transid = 0;
3139 u64 bytenr;
3140
3141 /* we would like to check all the supers, but that would make
3142 * a btrfs mount succeed after a mkfs from a different FS.
3143 * So, we need to add a special mount option to scan for
3144 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3145 */
3146 for (i = 0; i < 1; i++) {
3147 bytenr = btrfs_sb_offset(i);
3148 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3149 i_size_read(bdev->bd_inode))
3150 break;
3151 bh = __bread(bdev, bytenr / 4096,
3152 BTRFS_SUPER_INFO_SIZE);
3153 if (!bh)
3154 continue;
3155
3156 super = (struct btrfs_super_block *)bh->b_data;
3157 if (btrfs_super_bytenr(super) != bytenr ||
3158 btrfs_super_magic(super) != BTRFS_MAGIC) {
3159 brelse(bh);
3160 continue;
3161 }
3162
3163 if (!latest || btrfs_super_generation(super) > transid) {
3164 brelse(latest);
3165 latest = bh;
3166 transid = btrfs_super_generation(super);
3167 } else {
3168 brelse(bh);
3169 }
3170 }
3171 return latest;
3172 }
3173
3174 /*
3175 * this should be called twice, once with wait == 0 and
3176 * once with wait == 1. When wait == 0 is done, all the buffer heads
3177 * we write are pinned.
3178 *
3179 * They are released when wait == 1 is done.
3180 * max_mirrors must be the same for both runs, and it indicates how
3181 * many supers on this one device should be written.
3182 *
3183 * max_mirrors == 0 means to write them all.
3184 */
3185 static int write_dev_supers(struct btrfs_device *device,
3186 struct btrfs_super_block *sb,
3187 int do_barriers, int wait, int max_mirrors)
3188 {
3189 struct buffer_head *bh;
3190 int i;
3191 int ret;
3192 int errors = 0;
3193 u32 crc;
3194 u64 bytenr;
3195
3196 if (max_mirrors == 0)
3197 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3198
3199 for (i = 0; i < max_mirrors; i++) {
3200 bytenr = btrfs_sb_offset(i);
3201 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3202 device->commit_total_bytes)
3203 break;
3204
3205 if (wait) {
3206 bh = __find_get_block(device->bdev, bytenr / 4096,
3207 BTRFS_SUPER_INFO_SIZE);
3208 if (!bh) {
3209 errors++;
3210 continue;
3211 }
3212 wait_on_buffer(bh);
3213 if (!buffer_uptodate(bh))
3214 errors++;
3215
3216 /* drop our reference */
3217 brelse(bh);
3218
3219 /* drop the reference from the wait == 0 run */
3220 brelse(bh);
3221 continue;
3222 } else {
3223 btrfs_set_super_bytenr(sb, bytenr);
3224
3225 crc = ~(u32)0;
3226 crc = btrfs_csum_data((char *)sb +
3227 BTRFS_CSUM_SIZE, crc,
3228 BTRFS_SUPER_INFO_SIZE -
3229 BTRFS_CSUM_SIZE);
3230 btrfs_csum_final(crc, sb->csum);
3231
3232 /*
3233 * one reference for us, and we leave it for the
3234 * caller
3235 */
3236 bh = __getblk(device->bdev, bytenr / 4096,
3237 BTRFS_SUPER_INFO_SIZE);
3238 if (!bh) {
3239 printk(KERN_ERR "BTRFS: couldn't get super "
3240 "buffer head for bytenr %Lu\n", bytenr);
3241 errors++;
3242 continue;
3243 }
3244
3245 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3246
3247 /* one reference for submit_bh */
3248 get_bh(bh);
3249
3250 set_buffer_uptodate(bh);
3251 lock_buffer(bh);
3252 bh->b_end_io = btrfs_end_buffer_write_sync;
3253 bh->b_private = device;
3254 }
3255
3256 /*
3257 * we fua the first super. The others we allow
3258 * to go down lazy.
3259 */
3260 if (i == 0)
3261 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3262 else
3263 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3264 if (ret)
3265 errors++;
3266 }
3267 return errors < i ? 0 : -1;
3268 }
3269
3270 /*
3271 * endio for the write_dev_flush, this will wake anyone waiting
3272 * for the barrier when it is done
3273 */
3274 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3275 {
3276 if (err) {
3277 if (err == -EOPNOTSUPP)
3278 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3279 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3280 }
3281 if (bio->bi_private)
3282 complete(bio->bi_private);
3283 bio_put(bio);
3284 }
3285
3286 /*
3287 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3288 * sent down. With wait == 1, it waits for the previous flush.
3289 *
3290 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3291 * capable
3292 */
3293 static int write_dev_flush(struct btrfs_device *device, int wait)
3294 {
3295 struct bio *bio;
3296 int ret = 0;
3297
3298 if (device->nobarriers)
3299 return 0;
3300
3301 if (wait) {
3302 bio = device->flush_bio;
3303 if (!bio)
3304 return 0;
3305
3306 wait_for_completion(&device->flush_wait);
3307
3308 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3309 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3310 rcu_str_deref(device->name));
3311 device->nobarriers = 1;
3312 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3313 ret = -EIO;
3314 btrfs_dev_stat_inc_and_print(device,
3315 BTRFS_DEV_STAT_FLUSH_ERRS);
3316 }
3317
3318 /* drop the reference from the wait == 0 run */
3319 bio_put(bio);
3320 device->flush_bio = NULL;
3321
3322 return ret;
3323 }
3324
3325 /*
3326 * one reference for us, and we leave it for the
3327 * caller
3328 */
3329 device->flush_bio = NULL;
3330 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3331 if (!bio)
3332 return -ENOMEM;
3333
3334 bio->bi_end_io = btrfs_end_empty_barrier;
3335 bio->bi_bdev = device->bdev;
3336 init_completion(&device->flush_wait);
3337 bio->bi_private = &device->flush_wait;
3338 device->flush_bio = bio;
3339
3340 bio_get(bio);
3341 btrfsic_submit_bio(WRITE_FLUSH, bio);
3342
3343 return 0;
3344 }
3345
3346 /*
3347 * send an empty flush down to each device in parallel,
3348 * then wait for them
3349 */
3350 static int barrier_all_devices(struct btrfs_fs_info *info)
3351 {
3352 struct list_head *head;
3353 struct btrfs_device *dev;
3354 int errors_send = 0;
3355 int errors_wait = 0;
3356 int ret;
3357
3358 /* send down all the barriers */
3359 head = &info->fs_devices->devices;
3360 list_for_each_entry_rcu(dev, head, dev_list) {
3361 if (dev->missing)
3362 continue;
3363 if (!dev->bdev) {
3364 errors_send++;
3365 continue;
3366 }
3367 if (!dev->in_fs_metadata || !dev->writeable)
3368 continue;
3369
3370 ret = write_dev_flush(dev, 0);
3371 if (ret)
3372 errors_send++;
3373 }
3374
3375 /* wait for all the barriers */
3376 list_for_each_entry_rcu(dev, head, dev_list) {
3377 if (dev->missing)
3378 continue;
3379 if (!dev->bdev) {
3380 errors_wait++;
3381 continue;
3382 }
3383 if (!dev->in_fs_metadata || !dev->writeable)
3384 continue;
3385
3386 ret = write_dev_flush(dev, 1);
3387 if (ret)
3388 errors_wait++;
3389 }
3390 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3391 errors_wait > info->num_tolerated_disk_barrier_failures)
3392 return -EIO;
3393 return 0;
3394 }
3395
3396 int btrfs_calc_num_tolerated_disk_barrier_failures(
3397 struct btrfs_fs_info *fs_info)
3398 {
3399 struct btrfs_ioctl_space_info space;
3400 struct btrfs_space_info *sinfo;
3401 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3402 BTRFS_BLOCK_GROUP_SYSTEM,
3403 BTRFS_BLOCK_GROUP_METADATA,
3404 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3405 int num_types = 4;
3406 int i;
3407 int c;
3408 int num_tolerated_disk_barrier_failures =
3409 (int)fs_info->fs_devices->num_devices;
3410
3411 for (i = 0; i < num_types; i++) {
3412 struct btrfs_space_info *tmp;
3413
3414 sinfo = NULL;
3415 rcu_read_lock();
3416 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3417 if (tmp->flags == types[i]) {
3418 sinfo = tmp;
3419 break;
3420 }
3421 }
3422 rcu_read_unlock();
3423
3424 if (!sinfo)
3425 continue;
3426
3427 down_read(&sinfo->groups_sem);
3428 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3429 if (!list_empty(&sinfo->block_groups[c])) {
3430 u64 flags;
3431
3432 btrfs_get_block_group_info(
3433 &sinfo->block_groups[c], &space);
3434 if (space.total_bytes == 0 ||
3435 space.used_bytes == 0)
3436 continue;
3437 flags = space.flags;
3438 /*
3439 * return
3440 * 0: if dup, single or RAID0 is configured for
3441 * any of metadata, system or data, else
3442 * 1: if RAID5 is configured, or if RAID1 or
3443 * RAID10 is configured and only two mirrors
3444 * are used, else
3445 * 2: if RAID6 is configured, else
3446 * num_mirrors - 1: if RAID1 or RAID10 is
3447 * configured and more than
3448 * 2 mirrors are used.
3449 */
3450 if (num_tolerated_disk_barrier_failures > 0 &&
3451 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3452 BTRFS_BLOCK_GROUP_RAID0)) ||
3453 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3454 == 0)))
3455 num_tolerated_disk_barrier_failures = 0;
3456 else if (num_tolerated_disk_barrier_failures > 1) {
3457 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3458 BTRFS_BLOCK_GROUP_RAID5 |
3459 BTRFS_BLOCK_GROUP_RAID10)) {
3460 num_tolerated_disk_barrier_failures = 1;
3461 } else if (flags &
3462 BTRFS_BLOCK_GROUP_RAID6) {
3463 num_tolerated_disk_barrier_failures = 2;
3464 }
3465 }
3466 }
3467 }
3468 up_read(&sinfo->groups_sem);
3469 }
3470
3471 return num_tolerated_disk_barrier_failures;
3472 }
3473
3474 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3475 {
3476 struct list_head *head;
3477 struct btrfs_device *dev;
3478 struct btrfs_super_block *sb;
3479 struct btrfs_dev_item *dev_item;
3480 int ret;
3481 int do_barriers;
3482 int max_errors;
3483 int total_errors = 0;
3484 u64 flags;
3485
3486 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3487 backup_super_roots(root->fs_info);
3488
3489 sb = root->fs_info->super_for_commit;
3490 dev_item = &sb->dev_item;
3491
3492 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3493 head = &root->fs_info->fs_devices->devices;
3494 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3495
3496 if (do_barriers) {
3497 ret = barrier_all_devices(root->fs_info);
3498 if (ret) {
3499 mutex_unlock(
3500 &root->fs_info->fs_devices->device_list_mutex);
3501 btrfs_error(root->fs_info, ret,
3502 "errors while submitting device barriers.");
3503 return ret;
3504 }
3505 }
3506
3507 list_for_each_entry_rcu(dev, head, dev_list) {
3508 if (!dev->bdev) {
3509 total_errors++;
3510 continue;
3511 }
3512 if (!dev->in_fs_metadata || !dev->writeable)
3513 continue;
3514
3515 btrfs_set_stack_device_generation(dev_item, 0);
3516 btrfs_set_stack_device_type(dev_item, dev->type);
3517 btrfs_set_stack_device_id(dev_item, dev->devid);
3518 btrfs_set_stack_device_total_bytes(dev_item,
3519 dev->commit_total_bytes);
3520 btrfs_set_stack_device_bytes_used(dev_item,
3521 dev->commit_bytes_used);
3522 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3523 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3524 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3525 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3526 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3527
3528 flags = btrfs_super_flags(sb);
3529 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3530
3531 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3532 if (ret)
3533 total_errors++;
3534 }
3535 if (total_errors > max_errors) {
3536 btrfs_err(root->fs_info, "%d errors while writing supers",
3537 total_errors);
3538 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3539
3540 /* FUA is masked off if unsupported and can't be the reason */
3541 btrfs_error(root->fs_info, -EIO,
3542 "%d errors while writing supers", total_errors);
3543 return -EIO;
3544 }
3545
3546 total_errors = 0;
3547 list_for_each_entry_rcu(dev, head, dev_list) {
3548 if (!dev->bdev)
3549 continue;
3550 if (!dev->in_fs_metadata || !dev->writeable)
3551 continue;
3552
3553 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3554 if (ret)
3555 total_errors++;
3556 }
3557 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3558 if (total_errors > max_errors) {
3559 btrfs_error(root->fs_info, -EIO,
3560 "%d errors while writing supers", total_errors);
3561 return -EIO;
3562 }
3563 return 0;
3564 }
3565
3566 int write_ctree_super(struct btrfs_trans_handle *trans,
3567 struct btrfs_root *root, int max_mirrors)
3568 {
3569 return write_all_supers(root, max_mirrors);
3570 }
3571
3572 /* Drop a fs root from the radix tree and free it. */
3573 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3574 struct btrfs_root *root)
3575 {
3576 spin_lock(&fs_info->fs_roots_radix_lock);
3577 radix_tree_delete(&fs_info->fs_roots_radix,
3578 (unsigned long)root->root_key.objectid);
3579 spin_unlock(&fs_info->fs_roots_radix_lock);
3580
3581 if (btrfs_root_refs(&root->root_item) == 0)
3582 synchronize_srcu(&fs_info->subvol_srcu);
3583
3584 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3585 btrfs_free_log(NULL, root);
3586
3587 if (root->free_ino_pinned)
3588 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3589 if (root->free_ino_ctl)
3590 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3591 free_fs_root(root);
3592 }
3593
3594 static void free_fs_root(struct btrfs_root *root)
3595 {
3596 iput(root->ino_cache_inode);
3597 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3598 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3599 root->orphan_block_rsv = NULL;
3600 if (root->anon_dev)
3601 free_anon_bdev(root->anon_dev);
3602 if (root->subv_writers)
3603 btrfs_free_subvolume_writers(root->subv_writers);
3604 free_extent_buffer(root->node);
3605 free_extent_buffer(root->commit_root);
3606 kfree(root->free_ino_ctl);
3607 kfree(root->free_ino_pinned);
3608 kfree(root->name);
3609 btrfs_put_fs_root(root);
3610 }
3611
3612 void btrfs_free_fs_root(struct btrfs_root *root)
3613 {
3614 free_fs_root(root);
3615 }
3616
3617 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3618 {
3619 u64 root_objectid = 0;
3620 struct btrfs_root *gang[8];
3621 int i = 0;
3622 int err = 0;
3623 unsigned int ret = 0;
3624 int index;
3625
3626 while (1) {
3627 index = srcu_read_lock(&fs_info->subvol_srcu);
3628 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3629 (void **)gang, root_objectid,
3630 ARRAY_SIZE(gang));
3631 if (!ret) {
3632 srcu_read_unlock(&fs_info->subvol_srcu, index);
3633 break;
3634 }
3635 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3636
3637 for (i = 0; i < ret; i++) {
3638 /* Avoid to grab roots in dead_roots */
3639 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3640 gang[i] = NULL;
3641 continue;
3642 }
3643 /* grab all the search result for later use */
3644 gang[i] = btrfs_grab_fs_root(gang[i]);
3645 }
3646 srcu_read_unlock(&fs_info->subvol_srcu, index);
3647
3648 for (i = 0; i < ret; i++) {
3649 if (!gang[i])
3650 continue;
3651 root_objectid = gang[i]->root_key.objectid;
3652 err = btrfs_orphan_cleanup(gang[i]);
3653 if (err)
3654 break;
3655 btrfs_put_fs_root(gang[i]);
3656 }
3657 root_objectid++;
3658 }
3659
3660 /* release the uncleaned roots due to error */
3661 for (; i < ret; i++) {
3662 if (gang[i])
3663 btrfs_put_fs_root(gang[i]);
3664 }
3665 return err;
3666 }
3667
3668 int btrfs_commit_super(struct btrfs_root *root)
3669 {
3670 struct btrfs_trans_handle *trans;
3671
3672 mutex_lock(&root->fs_info->cleaner_mutex);
3673 btrfs_run_delayed_iputs(root);
3674 mutex_unlock(&root->fs_info->cleaner_mutex);
3675 wake_up_process(root->fs_info->cleaner_kthread);
3676
3677 /* wait until ongoing cleanup work done */
3678 down_write(&root->fs_info->cleanup_work_sem);
3679 up_write(&root->fs_info->cleanup_work_sem);
3680
3681 trans = btrfs_join_transaction(root);
3682 if (IS_ERR(trans))
3683 return PTR_ERR(trans);
3684 return btrfs_commit_transaction(trans, root);
3685 }
3686
3687 void close_ctree(struct btrfs_root *root)
3688 {
3689 struct btrfs_fs_info *fs_info = root->fs_info;
3690 int ret;
3691
3692 fs_info->closing = 1;
3693 smp_mb();
3694
3695 /* wait for the uuid_scan task to finish */
3696 down(&fs_info->uuid_tree_rescan_sem);
3697 /* avoid complains from lockdep et al., set sem back to initial state */
3698 up(&fs_info->uuid_tree_rescan_sem);
3699
3700 /* pause restriper - we want to resume on mount */
3701 btrfs_pause_balance(fs_info);
3702
3703 btrfs_dev_replace_suspend_for_unmount(fs_info);
3704
3705 btrfs_scrub_cancel(fs_info);
3706
3707 /* wait for any defraggers to finish */
3708 wait_event(fs_info->transaction_wait,
3709 (atomic_read(&fs_info->defrag_running) == 0));
3710
3711 /* clear out the rbtree of defraggable inodes */
3712 btrfs_cleanup_defrag_inodes(fs_info);
3713
3714 cancel_work_sync(&fs_info->async_reclaim_work);
3715
3716 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3717 ret = btrfs_commit_super(root);
3718 if (ret)
3719 btrfs_err(fs_info, "commit super ret %d", ret);
3720 }
3721
3722 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3723 btrfs_error_commit_super(root);
3724
3725 kthread_stop(fs_info->transaction_kthread);
3726 kthread_stop(fs_info->cleaner_kthread);
3727
3728 fs_info->closing = 2;
3729 smp_mb();
3730
3731 btrfs_free_qgroup_config(fs_info);
3732
3733 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3734 btrfs_info(fs_info, "at unmount delalloc count %lld",
3735 percpu_counter_sum(&fs_info->delalloc_bytes));
3736 }
3737
3738 btrfs_sysfs_remove_one(fs_info);
3739
3740 btrfs_free_fs_roots(fs_info);
3741
3742 btrfs_put_block_group_cache(fs_info);
3743
3744 btrfs_free_block_groups(fs_info);
3745
3746 /*
3747 * we must make sure there is not any read request to
3748 * submit after we stopping all workers.
3749 */
3750 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3751 btrfs_stop_all_workers(fs_info);
3752
3753 fs_info->open = 0;
3754 free_root_pointers(fs_info, 1);
3755
3756 iput(fs_info->btree_inode);
3757
3758 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3759 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3760 btrfsic_unmount(root, fs_info->fs_devices);
3761 #endif
3762
3763 btrfs_close_devices(fs_info->fs_devices);
3764 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3765
3766 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3767 percpu_counter_destroy(&fs_info->delalloc_bytes);
3768 percpu_counter_destroy(&fs_info->bio_counter);
3769 bdi_destroy(&fs_info->bdi);
3770 cleanup_srcu_struct(&fs_info->subvol_srcu);
3771
3772 btrfs_free_stripe_hash_table(fs_info);
3773
3774 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3775 root->orphan_block_rsv = NULL;
3776
3777 lock_chunks(root);
3778 while (!list_empty(&fs_info->pinned_chunks)) {
3779 struct extent_map *em;
3780
3781 em = list_first_entry(&fs_info->pinned_chunks,
3782 struct extent_map, list);
3783 list_del_init(&em->list);
3784 free_extent_map(em);
3785 }
3786 unlock_chunks(root);
3787 }
3788
3789 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3790 int atomic)
3791 {
3792 int ret;
3793 struct inode *btree_inode = buf->pages[0]->mapping->host;
3794
3795 ret = extent_buffer_uptodate(buf);
3796 if (!ret)
3797 return ret;
3798
3799 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3800 parent_transid, atomic);
3801 if (ret == -EAGAIN)
3802 return ret;
3803 return !ret;
3804 }
3805
3806 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3807 {
3808 return set_extent_buffer_uptodate(buf);
3809 }
3810
3811 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3812 {
3813 struct btrfs_root *root;
3814 u64 transid = btrfs_header_generation(buf);
3815 int was_dirty;
3816
3817 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3818 /*
3819 * This is a fast path so only do this check if we have sanity tests
3820 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3821 * outside of the sanity tests.
3822 */
3823 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3824 return;
3825 #endif
3826 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3827 btrfs_assert_tree_locked(buf);
3828 if (transid != root->fs_info->generation)
3829 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3830 "found %llu running %llu\n",
3831 buf->start, transid, root->fs_info->generation);
3832 was_dirty = set_extent_buffer_dirty(buf);
3833 if (!was_dirty)
3834 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3835 buf->len,
3836 root->fs_info->dirty_metadata_batch);
3837 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3838 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3839 btrfs_print_leaf(root, buf);
3840 ASSERT(0);
3841 }
3842 #endif
3843 }
3844
3845 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3846 int flush_delayed)
3847 {
3848 /*
3849 * looks as though older kernels can get into trouble with
3850 * this code, they end up stuck in balance_dirty_pages forever
3851 */
3852 int ret;
3853
3854 if (current->flags & PF_MEMALLOC)
3855 return;
3856
3857 if (flush_delayed)
3858 btrfs_balance_delayed_items(root);
3859
3860 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3861 BTRFS_DIRTY_METADATA_THRESH);
3862 if (ret > 0) {
3863 balance_dirty_pages_ratelimited(
3864 root->fs_info->btree_inode->i_mapping);
3865 }
3866 return;
3867 }
3868
3869 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3870 {
3871 __btrfs_btree_balance_dirty(root, 1);
3872 }
3873
3874 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3875 {
3876 __btrfs_btree_balance_dirty(root, 0);
3877 }
3878
3879 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3880 {
3881 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3882 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3883 }
3884
3885 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3886 int read_only)
3887 {
3888 struct btrfs_super_block *sb = fs_info->super_copy;
3889 int ret = 0;
3890
3891 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3892 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3893 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3894 ret = -EINVAL;
3895 }
3896 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3897 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3898 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3899 ret = -EINVAL;
3900 }
3901 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3902 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3903 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3904 ret = -EINVAL;
3905 }
3906
3907 /*
3908 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3909 * items yet, they'll be verified later. Issue just a warning.
3910 */
3911 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3912 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3913 btrfs_super_root(sb));
3914 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3915 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3916 btrfs_super_chunk_root(sb));
3917 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3918 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3919 btrfs_super_log_root(sb));
3920
3921 /*
3922 * Check the lower bound, the alignment and other constraints are
3923 * checked later.
3924 */
3925 if (btrfs_super_nodesize(sb) < 4096) {
3926 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3927 btrfs_super_nodesize(sb));
3928 ret = -EINVAL;
3929 }
3930 if (btrfs_super_sectorsize(sb) < 4096) {
3931 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3932 btrfs_super_sectorsize(sb));
3933 ret = -EINVAL;
3934 }
3935
3936 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3937 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3938 fs_info->fsid, sb->dev_item.fsid);
3939 ret = -EINVAL;
3940 }
3941
3942 /*
3943 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3944 * done later
3945 */
3946 if (btrfs_super_num_devices(sb) > (1UL << 31))
3947 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3948 btrfs_super_num_devices(sb));
3949 if (btrfs_super_num_devices(sb) == 0) {
3950 printk(KERN_ERR "BTRFS: number of devices is 0\n");
3951 ret = -EINVAL;
3952 }
3953
3954 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3955 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3956 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3957 ret = -EINVAL;
3958 }
3959
3960 /*
3961 * Obvious sys_chunk_array corruptions, it must hold at least one key
3962 * and one chunk
3963 */
3964 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3965 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3966 btrfs_super_sys_array_size(sb),
3967 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3968 ret = -EINVAL;
3969 }
3970 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3971 + sizeof(struct btrfs_chunk)) {
3972 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
3973 btrfs_super_sys_array_size(sb),
3974 sizeof(struct btrfs_disk_key)
3975 + sizeof(struct btrfs_chunk));
3976 ret = -EINVAL;
3977 }
3978
3979 /*
3980 * The generation is a global counter, we'll trust it more than the others
3981 * but it's still possible that it's the one that's wrong.
3982 */
3983 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
3984 printk(KERN_WARNING
3985 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
3986 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3987 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3988 && btrfs_super_cache_generation(sb) != (u64)-1)
3989 printk(KERN_WARNING
3990 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
3991 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
3992
3993 return ret;
3994 }
3995
3996 static void btrfs_error_commit_super(struct btrfs_root *root)
3997 {
3998 mutex_lock(&root->fs_info->cleaner_mutex);
3999 btrfs_run_delayed_iputs(root);
4000 mutex_unlock(&root->fs_info->cleaner_mutex);
4001
4002 down_write(&root->fs_info->cleanup_work_sem);
4003 up_write(&root->fs_info->cleanup_work_sem);
4004
4005 /* cleanup FS via transaction */
4006 btrfs_cleanup_transaction(root);
4007 }
4008
4009 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4010 {
4011 struct btrfs_ordered_extent *ordered;
4012
4013 spin_lock(&root->ordered_extent_lock);
4014 /*
4015 * This will just short circuit the ordered completion stuff which will
4016 * make sure the ordered extent gets properly cleaned up.
4017 */
4018 list_for_each_entry(ordered, &root->ordered_extents,
4019 root_extent_list)
4020 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4021 spin_unlock(&root->ordered_extent_lock);
4022 }
4023
4024 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4025 {
4026 struct btrfs_root *root;
4027 struct list_head splice;
4028
4029 INIT_LIST_HEAD(&splice);
4030
4031 spin_lock(&fs_info->ordered_root_lock);
4032 list_splice_init(&fs_info->ordered_roots, &splice);
4033 while (!list_empty(&splice)) {
4034 root = list_first_entry(&splice, struct btrfs_root,
4035 ordered_root);
4036 list_move_tail(&root->ordered_root,
4037 &fs_info->ordered_roots);
4038
4039 spin_unlock(&fs_info->ordered_root_lock);
4040 btrfs_destroy_ordered_extents(root);
4041
4042 cond_resched();
4043 spin_lock(&fs_info->ordered_root_lock);
4044 }
4045 spin_unlock(&fs_info->ordered_root_lock);
4046 }
4047
4048 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4049 struct btrfs_root *root)
4050 {
4051 struct rb_node *node;
4052 struct btrfs_delayed_ref_root *delayed_refs;
4053 struct btrfs_delayed_ref_node *ref;
4054 int ret = 0;
4055
4056 delayed_refs = &trans->delayed_refs;
4057
4058 spin_lock(&delayed_refs->lock);
4059 if (atomic_read(&delayed_refs->num_entries) == 0) {
4060 spin_unlock(&delayed_refs->lock);
4061 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4062 return ret;
4063 }
4064
4065 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4066 struct btrfs_delayed_ref_head *head;
4067 bool pin_bytes = false;
4068
4069 head = rb_entry(node, struct btrfs_delayed_ref_head,
4070 href_node);
4071 if (!mutex_trylock(&head->mutex)) {
4072 atomic_inc(&head->node.refs);
4073 spin_unlock(&delayed_refs->lock);
4074
4075 mutex_lock(&head->mutex);
4076 mutex_unlock(&head->mutex);
4077 btrfs_put_delayed_ref(&head->node);
4078 spin_lock(&delayed_refs->lock);
4079 continue;
4080 }
4081 spin_lock(&head->lock);
4082 while ((node = rb_first(&head->ref_root)) != NULL) {
4083 ref = rb_entry(node, struct btrfs_delayed_ref_node,
4084 rb_node);
4085 ref->in_tree = 0;
4086 rb_erase(&ref->rb_node, &head->ref_root);
4087 atomic_dec(&delayed_refs->num_entries);
4088 btrfs_put_delayed_ref(ref);
4089 }
4090 if (head->must_insert_reserved)
4091 pin_bytes = true;
4092 btrfs_free_delayed_extent_op(head->extent_op);
4093 delayed_refs->num_heads--;
4094 if (head->processing == 0)
4095 delayed_refs->num_heads_ready--;
4096 atomic_dec(&delayed_refs->num_entries);
4097 head->node.in_tree = 0;
4098 rb_erase(&head->href_node, &delayed_refs->href_root);
4099 spin_unlock(&head->lock);
4100 spin_unlock(&delayed_refs->lock);
4101 mutex_unlock(&head->mutex);
4102
4103 if (pin_bytes)
4104 btrfs_pin_extent(root, head->node.bytenr,
4105 head->node.num_bytes, 1);
4106 btrfs_put_delayed_ref(&head->node);
4107 cond_resched();
4108 spin_lock(&delayed_refs->lock);
4109 }
4110
4111 spin_unlock(&delayed_refs->lock);
4112
4113 return ret;
4114 }
4115
4116 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4117 {
4118 struct btrfs_inode *btrfs_inode;
4119 struct list_head splice;
4120
4121 INIT_LIST_HEAD(&splice);
4122
4123 spin_lock(&root->delalloc_lock);
4124 list_splice_init(&root->delalloc_inodes, &splice);
4125
4126 while (!list_empty(&splice)) {
4127 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4128 delalloc_inodes);
4129
4130 list_del_init(&btrfs_inode->delalloc_inodes);
4131 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4132 &btrfs_inode->runtime_flags);
4133 spin_unlock(&root->delalloc_lock);
4134
4135 btrfs_invalidate_inodes(btrfs_inode->root);
4136
4137 spin_lock(&root->delalloc_lock);
4138 }
4139
4140 spin_unlock(&root->delalloc_lock);
4141 }
4142
4143 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4144 {
4145 struct btrfs_root *root;
4146 struct list_head splice;
4147
4148 INIT_LIST_HEAD(&splice);
4149
4150 spin_lock(&fs_info->delalloc_root_lock);
4151 list_splice_init(&fs_info->delalloc_roots, &splice);
4152 while (!list_empty(&splice)) {
4153 root = list_first_entry(&splice, struct btrfs_root,
4154 delalloc_root);
4155 list_del_init(&root->delalloc_root);
4156 root = btrfs_grab_fs_root(root);
4157 BUG_ON(!root);
4158 spin_unlock(&fs_info->delalloc_root_lock);
4159
4160 btrfs_destroy_delalloc_inodes(root);
4161 btrfs_put_fs_root(root);
4162
4163 spin_lock(&fs_info->delalloc_root_lock);
4164 }
4165 spin_unlock(&fs_info->delalloc_root_lock);
4166 }
4167
4168 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4169 struct extent_io_tree *dirty_pages,
4170 int mark)
4171 {
4172 int ret;
4173 struct extent_buffer *eb;
4174 u64 start = 0;
4175 u64 end;
4176
4177 while (1) {
4178 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4179 mark, NULL);
4180 if (ret)
4181 break;
4182
4183 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4184 while (start <= end) {
4185 eb = btrfs_find_tree_block(root->fs_info, start);
4186 start += root->nodesize;
4187 if (!eb)
4188 continue;
4189 wait_on_extent_buffer_writeback(eb);
4190
4191 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4192 &eb->bflags))
4193 clear_extent_buffer_dirty(eb);
4194 free_extent_buffer_stale(eb);
4195 }
4196 }
4197
4198 return ret;
4199 }
4200
4201 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4202 struct extent_io_tree *pinned_extents)
4203 {
4204 struct extent_io_tree *unpin;
4205 u64 start;
4206 u64 end;
4207 int ret;
4208 bool loop = true;
4209
4210 unpin = pinned_extents;
4211 again:
4212 while (1) {
4213 ret = find_first_extent_bit(unpin, 0, &start, &end,
4214 EXTENT_DIRTY, NULL);
4215 if (ret)
4216 break;
4217
4218 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4219 btrfs_error_unpin_extent_range(root, start, end);
4220 cond_resched();
4221 }
4222
4223 if (loop) {
4224 if (unpin == &root->fs_info->freed_extents[0])
4225 unpin = &root->fs_info->freed_extents[1];
4226 else
4227 unpin = &root->fs_info->freed_extents[0];
4228 loop = false;
4229 goto again;
4230 }
4231
4232 return 0;
4233 }
4234
4235 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4236 struct btrfs_fs_info *fs_info)
4237 {
4238 struct btrfs_ordered_extent *ordered;
4239
4240 spin_lock(&fs_info->trans_lock);
4241 while (!list_empty(&cur_trans->pending_ordered)) {
4242 ordered = list_first_entry(&cur_trans->pending_ordered,
4243 struct btrfs_ordered_extent,
4244 trans_list);
4245 list_del_init(&ordered->trans_list);
4246 spin_unlock(&fs_info->trans_lock);
4247
4248 btrfs_put_ordered_extent(ordered);
4249 spin_lock(&fs_info->trans_lock);
4250 }
4251 spin_unlock(&fs_info->trans_lock);
4252 }
4253
4254 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4255 struct btrfs_root *root)
4256 {
4257 btrfs_destroy_delayed_refs(cur_trans, root);
4258
4259 cur_trans->state = TRANS_STATE_COMMIT_START;
4260 wake_up(&root->fs_info->transaction_blocked_wait);
4261
4262 cur_trans->state = TRANS_STATE_UNBLOCKED;
4263 wake_up(&root->fs_info->transaction_wait);
4264
4265 btrfs_free_pending_ordered(cur_trans, root->fs_info);
4266 btrfs_destroy_delayed_inodes(root);
4267 btrfs_assert_delayed_root_empty(root);
4268
4269 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4270 EXTENT_DIRTY);
4271 btrfs_destroy_pinned_extent(root,
4272 root->fs_info->pinned_extents);
4273
4274 cur_trans->state =TRANS_STATE_COMPLETED;
4275 wake_up(&cur_trans->commit_wait);
4276
4277 /*
4278 memset(cur_trans, 0, sizeof(*cur_trans));
4279 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4280 */
4281 }
4282
4283 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4284 {
4285 struct btrfs_transaction *t;
4286
4287 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4288
4289 spin_lock(&root->fs_info->trans_lock);
4290 while (!list_empty(&root->fs_info->trans_list)) {
4291 t = list_first_entry(&root->fs_info->trans_list,
4292 struct btrfs_transaction, list);
4293 if (t->state >= TRANS_STATE_COMMIT_START) {
4294 atomic_inc(&t->use_count);
4295 spin_unlock(&root->fs_info->trans_lock);
4296 btrfs_wait_for_commit(root, t->transid);
4297 btrfs_put_transaction(t);
4298 spin_lock(&root->fs_info->trans_lock);
4299 continue;
4300 }
4301 if (t == root->fs_info->running_transaction) {
4302 t->state = TRANS_STATE_COMMIT_DOING;
4303 spin_unlock(&root->fs_info->trans_lock);
4304 /*
4305 * We wait for 0 num_writers since we don't hold a trans
4306 * handle open currently for this transaction.
4307 */
4308 wait_event(t->writer_wait,
4309 atomic_read(&t->num_writers) == 0);
4310 } else {
4311 spin_unlock(&root->fs_info->trans_lock);
4312 }
4313 btrfs_cleanup_one_transaction(t, root);
4314
4315 spin_lock(&root->fs_info->trans_lock);
4316 if (t == root->fs_info->running_transaction)
4317 root->fs_info->running_transaction = NULL;
4318 list_del_init(&t->list);
4319 spin_unlock(&root->fs_info->trans_lock);
4320
4321 btrfs_put_transaction(t);
4322 trace_btrfs_transaction_commit(root);
4323 spin_lock(&root->fs_info->trans_lock);
4324 }
4325 spin_unlock(&root->fs_info->trans_lock);
4326 btrfs_destroy_all_ordered_extents(root->fs_info);
4327 btrfs_destroy_delayed_inodes(root);
4328 btrfs_assert_delayed_root_empty(root);
4329 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4330 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4331 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4332
4333 return 0;
4334 }
4335
4336 static const struct extent_io_ops btree_extent_io_ops = {
4337 .readpage_end_io_hook = btree_readpage_end_io_hook,
4338 .readpage_io_failed_hook = btree_io_failed_hook,
4339 .submit_bio_hook = btree_submit_bio_hook,
4340 /* note we're sharing with inode.c for the merge bio hook */
4341 .merge_bio_hook = btrfs_merge_bio_hook,
4342 };