]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Merge branch 'misc-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static const struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 int read_only);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_root *root);
73 static void btrfs_error_commit_super(struct btrfs_root *root);
74
75 /*
76 * btrfs_end_io_wq structs are used to do processing in task context when an IO
77 * is complete. This is used during reads to verify checksums, and it is used
78 * by writes to insert metadata for new file extents after IO is complete.
79 */
80 struct btrfs_end_io_wq {
81 struct bio *bio;
82 bio_end_io_t *end_io;
83 void *private;
84 struct btrfs_fs_info *info;
85 int error;
86 enum btrfs_wq_endio_type metadata;
87 struct list_head list;
88 struct btrfs_work work;
89 };
90
91 static struct kmem_cache *btrfs_end_io_wq_cache;
92
93 int __init btrfs_end_io_wq_init(void)
94 {
95 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
96 sizeof(struct btrfs_end_io_wq),
97 0,
98 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
99 NULL);
100 if (!btrfs_end_io_wq_cache)
101 return -ENOMEM;
102 return 0;
103 }
104
105 void btrfs_end_io_wq_exit(void)
106 {
107 if (btrfs_end_io_wq_cache)
108 kmem_cache_destroy(btrfs_end_io_wq_cache);
109 }
110
111 /*
112 * async submit bios are used to offload expensive checksumming
113 * onto the worker threads. They checksum file and metadata bios
114 * just before they are sent down the IO stack.
115 */
116 struct async_submit_bio {
117 struct inode *inode;
118 struct bio *bio;
119 struct list_head list;
120 extent_submit_bio_hook_t *submit_bio_start;
121 extent_submit_bio_hook_t *submit_bio_done;
122 int rw;
123 int mirror_num;
124 unsigned long bio_flags;
125 /*
126 * bio_offset is optional, can be used if the pages in the bio
127 * can't tell us where in the file the bio should go
128 */
129 u64 bio_offset;
130 struct btrfs_work work;
131 int error;
132 };
133
134 /*
135 * Lockdep class keys for extent_buffer->lock's in this root. For a given
136 * eb, the lockdep key is determined by the btrfs_root it belongs to and
137 * the level the eb occupies in the tree.
138 *
139 * Different roots are used for different purposes and may nest inside each
140 * other and they require separate keysets. As lockdep keys should be
141 * static, assign keysets according to the purpose of the root as indicated
142 * by btrfs_root->objectid. This ensures that all special purpose roots
143 * have separate keysets.
144 *
145 * Lock-nesting across peer nodes is always done with the immediate parent
146 * node locked thus preventing deadlock. As lockdep doesn't know this, use
147 * subclass to avoid triggering lockdep warning in such cases.
148 *
149 * The key is set by the readpage_end_io_hook after the buffer has passed
150 * csum validation but before the pages are unlocked. It is also set by
151 * btrfs_init_new_buffer on freshly allocated blocks.
152 *
153 * We also add a check to make sure the highest level of the tree is the
154 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
155 * needs update as well.
156 */
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 # if BTRFS_MAX_LEVEL != 8
159 # error
160 # endif
161
162 static struct btrfs_lockdep_keyset {
163 u64 id; /* root objectid */
164 const char *name_stem; /* lock name stem */
165 char names[BTRFS_MAX_LEVEL + 1][20];
166 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
167 } btrfs_lockdep_keysets[] = {
168 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
169 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
170 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
171 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
172 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
173 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
174 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
175 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
176 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
177 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
178 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
179 { .id = 0, .name_stem = "tree" },
180 };
181
182 void __init btrfs_init_lockdep(void)
183 {
184 int i, j;
185
186 /* initialize lockdep class names */
187 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
188 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
189
190 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
191 snprintf(ks->names[j], sizeof(ks->names[j]),
192 "btrfs-%s-%02d", ks->name_stem, j);
193 }
194 }
195
196 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
197 int level)
198 {
199 struct btrfs_lockdep_keyset *ks;
200
201 BUG_ON(level >= ARRAY_SIZE(ks->keys));
202
203 /* find the matching keyset, id 0 is the default entry */
204 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
205 if (ks->id == objectid)
206 break;
207
208 lockdep_set_class_and_name(&eb->lock,
209 &ks->keys[level], ks->names[level]);
210 }
211
212 #endif
213
214 /*
215 * extents on the btree inode are pretty simple, there's one extent
216 * that covers the entire device
217 */
218 static struct extent_map *btree_get_extent(struct inode *inode,
219 struct page *page, size_t pg_offset, u64 start, u64 len,
220 int create)
221 {
222 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
223 struct extent_map *em;
224 int ret;
225
226 read_lock(&em_tree->lock);
227 em = lookup_extent_mapping(em_tree, start, len);
228 if (em) {
229 em->bdev =
230 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
231 read_unlock(&em_tree->lock);
232 goto out;
233 }
234 read_unlock(&em_tree->lock);
235
236 em = alloc_extent_map();
237 if (!em) {
238 em = ERR_PTR(-ENOMEM);
239 goto out;
240 }
241 em->start = 0;
242 em->len = (u64)-1;
243 em->block_len = (u64)-1;
244 em->block_start = 0;
245 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
246
247 write_lock(&em_tree->lock);
248 ret = add_extent_mapping(em_tree, em, 0);
249 if (ret == -EEXIST) {
250 free_extent_map(em);
251 em = lookup_extent_mapping(em_tree, start, len);
252 if (!em)
253 em = ERR_PTR(-EIO);
254 } else if (ret) {
255 free_extent_map(em);
256 em = ERR_PTR(ret);
257 }
258 write_unlock(&em_tree->lock);
259
260 out:
261 return em;
262 }
263
264 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
265 {
266 return btrfs_crc32c(seed, data, len);
267 }
268
269 void btrfs_csum_final(u32 crc, char *result)
270 {
271 put_unaligned_le32(~crc, result);
272 }
273
274 /*
275 * compute the csum for a btree block, and either verify it or write it
276 * into the csum field of the block.
277 */
278 static int csum_tree_block(struct btrfs_fs_info *fs_info,
279 struct extent_buffer *buf,
280 int verify)
281 {
282 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
283 char *result = NULL;
284 unsigned long len;
285 unsigned long cur_len;
286 unsigned long offset = BTRFS_CSUM_SIZE;
287 char *kaddr;
288 unsigned long map_start;
289 unsigned long map_len;
290 int err;
291 u32 crc = ~(u32)0;
292 unsigned long inline_result;
293
294 len = buf->len - offset;
295 while (len > 0) {
296 err = map_private_extent_buffer(buf, offset, 32,
297 &kaddr, &map_start, &map_len);
298 if (err)
299 return 1;
300 cur_len = min(len, map_len - (offset - map_start));
301 crc = btrfs_csum_data(kaddr + offset - map_start,
302 crc, cur_len);
303 len -= cur_len;
304 offset += cur_len;
305 }
306 if (csum_size > sizeof(inline_result)) {
307 result = kzalloc(csum_size, GFP_NOFS);
308 if (!result)
309 return 1;
310 } else {
311 result = (char *)&inline_result;
312 }
313
314 btrfs_csum_final(crc, result);
315
316 if (verify) {
317 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
318 u32 val;
319 u32 found = 0;
320 memcpy(&found, result, csum_size);
321
322 read_extent_buffer(buf, &val, 0, csum_size);
323 btrfs_warn_rl(fs_info,
324 "%s checksum verify failed on %llu wanted %X found %X "
325 "level %d",
326 fs_info->sb->s_id, buf->start,
327 val, found, btrfs_header_level(buf));
328 if (result != (char *)&inline_result)
329 kfree(result);
330 return 1;
331 }
332 } else {
333 write_extent_buffer(buf, result, 0, csum_size);
334 }
335 if (result != (char *)&inline_result)
336 kfree(result);
337 return 0;
338 }
339
340 /*
341 * we can't consider a given block up to date unless the transid of the
342 * block matches the transid in the parent node's pointer. This is how we
343 * detect blocks that either didn't get written at all or got written
344 * in the wrong place.
345 */
346 static int verify_parent_transid(struct extent_io_tree *io_tree,
347 struct extent_buffer *eb, u64 parent_transid,
348 int atomic)
349 {
350 struct extent_state *cached_state = NULL;
351 int ret;
352 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
353
354 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
355 return 0;
356
357 if (atomic)
358 return -EAGAIN;
359
360 if (need_lock) {
361 btrfs_tree_read_lock(eb);
362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
363 }
364
365 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
366 &cached_state);
367 if (extent_buffer_uptodate(eb) &&
368 btrfs_header_generation(eb) == parent_transid) {
369 ret = 0;
370 goto out;
371 }
372 btrfs_err_rl(eb->fs_info,
373 "parent transid verify failed on %llu wanted %llu found %llu",
374 eb->start,
375 parent_transid, btrfs_header_generation(eb));
376 ret = 1;
377
378 /*
379 * Things reading via commit roots that don't have normal protection,
380 * like send, can have a really old block in cache that may point at a
381 * block that has been free'd and re-allocated. So don't clear uptodate
382 * if we find an eb that is under IO (dirty/writeback) because we could
383 * end up reading in the stale data and then writing it back out and
384 * making everybody very sad.
385 */
386 if (!extent_buffer_under_io(eb))
387 clear_extent_buffer_uptodate(eb);
388 out:
389 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
390 &cached_state, GFP_NOFS);
391 if (need_lock)
392 btrfs_tree_read_unlock_blocking(eb);
393 return ret;
394 }
395
396 /*
397 * Return 0 if the superblock checksum type matches the checksum value of that
398 * algorithm. Pass the raw disk superblock data.
399 */
400 static int btrfs_check_super_csum(char *raw_disk_sb)
401 {
402 struct btrfs_super_block *disk_sb =
403 (struct btrfs_super_block *)raw_disk_sb;
404 u16 csum_type = btrfs_super_csum_type(disk_sb);
405 int ret = 0;
406
407 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
408 u32 crc = ~(u32)0;
409 const int csum_size = sizeof(crc);
410 char result[csum_size];
411
412 /*
413 * The super_block structure does not span the whole
414 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
415 * is filled with zeros and is included in the checkum.
416 */
417 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
418 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
419 btrfs_csum_final(crc, result);
420
421 if (memcmp(raw_disk_sb, result, csum_size))
422 ret = 1;
423 }
424
425 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
426 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
427 csum_type);
428 ret = 1;
429 }
430
431 return ret;
432 }
433
434 /*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
437 */
438 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
439 struct extent_buffer *eb,
440 u64 start, u64 parent_transid)
441 {
442 struct extent_io_tree *io_tree;
443 int failed = 0;
444 int ret;
445 int num_copies = 0;
446 int mirror_num = 0;
447 int failed_mirror = 0;
448
449 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
450 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
451 while (1) {
452 ret = read_extent_buffer_pages(io_tree, eb, start,
453 WAIT_COMPLETE,
454 btree_get_extent, mirror_num);
455 if (!ret) {
456 if (!verify_parent_transid(io_tree, eb,
457 parent_transid, 0))
458 break;
459 else
460 ret = -EIO;
461 }
462
463 /*
464 * This buffer's crc is fine, but its contents are corrupted, so
465 * there is no reason to read the other copies, they won't be
466 * any less wrong.
467 */
468 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
469 break;
470
471 num_copies = btrfs_num_copies(root->fs_info,
472 eb->start, eb->len);
473 if (num_copies == 1)
474 break;
475
476 if (!failed_mirror) {
477 failed = 1;
478 failed_mirror = eb->read_mirror;
479 }
480
481 mirror_num++;
482 if (mirror_num == failed_mirror)
483 mirror_num++;
484
485 if (mirror_num > num_copies)
486 break;
487 }
488
489 if (failed && !ret && failed_mirror)
490 repair_eb_io_failure(root, eb, failed_mirror);
491
492 return ret;
493 }
494
495 /*
496 * checksum a dirty tree block before IO. This has extra checks to make sure
497 * we only fill in the checksum field in the first page of a multi-page block
498 */
499
500 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
501 {
502 u64 start = page_offset(page);
503 u64 found_start;
504 struct extent_buffer *eb;
505
506 eb = (struct extent_buffer *)page->private;
507 if (page != eb->pages[0])
508 return 0;
509 found_start = btrfs_header_bytenr(eb);
510 if (WARN_ON(found_start != start || !PageUptodate(page)))
511 return 0;
512 csum_tree_block(fs_info, eb, 0);
513 return 0;
514 }
515
516 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
517 struct extent_buffer *eb)
518 {
519 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
520 u8 fsid[BTRFS_UUID_SIZE];
521 int ret = 1;
522
523 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
524 while (fs_devices) {
525 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
526 ret = 0;
527 break;
528 }
529 fs_devices = fs_devices->seed;
530 }
531 return ret;
532 }
533
534 #define CORRUPT(reason, eb, root, slot) \
535 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
536 "root=%llu, slot=%d", reason, \
537 btrfs_header_bytenr(eb), root->objectid, slot)
538
539 static noinline int check_leaf(struct btrfs_root *root,
540 struct extent_buffer *leaf)
541 {
542 struct btrfs_key key;
543 struct btrfs_key leaf_key;
544 u32 nritems = btrfs_header_nritems(leaf);
545 int slot;
546
547 if (nritems == 0)
548 return 0;
549
550 /* Check the 0 item */
551 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
552 BTRFS_LEAF_DATA_SIZE(root)) {
553 CORRUPT("invalid item offset size pair", leaf, root, 0);
554 return -EIO;
555 }
556
557 /*
558 * Check to make sure each items keys are in the correct order and their
559 * offsets make sense. We only have to loop through nritems-1 because
560 * we check the current slot against the next slot, which verifies the
561 * next slot's offset+size makes sense and that the current's slot
562 * offset is correct.
563 */
564 for (slot = 0; slot < nritems - 1; slot++) {
565 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
566 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
567
568 /* Make sure the keys are in the right order */
569 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
570 CORRUPT("bad key order", leaf, root, slot);
571 return -EIO;
572 }
573
574 /*
575 * Make sure the offset and ends are right, remember that the
576 * item data starts at the end of the leaf and grows towards the
577 * front.
578 */
579 if (btrfs_item_offset_nr(leaf, slot) !=
580 btrfs_item_end_nr(leaf, slot + 1)) {
581 CORRUPT("slot offset bad", leaf, root, slot);
582 return -EIO;
583 }
584
585 /*
586 * Check to make sure that we don't point outside of the leaf,
587 * just incase all the items are consistent to eachother, but
588 * all point outside of the leaf.
589 */
590 if (btrfs_item_end_nr(leaf, slot) >
591 BTRFS_LEAF_DATA_SIZE(root)) {
592 CORRUPT("slot end outside of leaf", leaf, root, slot);
593 return -EIO;
594 }
595 }
596
597 return 0;
598 }
599
600 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
601 u64 phy_offset, struct page *page,
602 u64 start, u64 end, int mirror)
603 {
604 u64 found_start;
605 int found_level;
606 struct extent_buffer *eb;
607 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
608 int ret = 0;
609 int reads_done;
610
611 if (!page->private)
612 goto out;
613
614 eb = (struct extent_buffer *)page->private;
615
616 /* the pending IO might have been the only thing that kept this buffer
617 * in memory. Make sure we have a ref for all this other checks
618 */
619 extent_buffer_get(eb);
620
621 reads_done = atomic_dec_and_test(&eb->io_pages);
622 if (!reads_done)
623 goto err;
624
625 eb->read_mirror = mirror;
626 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
627 ret = -EIO;
628 goto err;
629 }
630
631 found_start = btrfs_header_bytenr(eb);
632 if (found_start != eb->start) {
633 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
634 found_start, eb->start);
635 ret = -EIO;
636 goto err;
637 }
638 if (check_tree_block_fsid(root->fs_info, eb)) {
639 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
640 eb->start);
641 ret = -EIO;
642 goto err;
643 }
644 found_level = btrfs_header_level(eb);
645 if (found_level >= BTRFS_MAX_LEVEL) {
646 btrfs_err(root->fs_info, "bad tree block level %d",
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
651
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
654
655 ret = csum_tree_block(root->fs_info, eb, 1);
656 if (ret) {
657 ret = -EIO;
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
670
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
673 err:
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 btree_readahead_hook(root, eb, eb->start, ret);
677
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
685 clear_extent_buffer_uptodate(eb);
686 }
687 free_extent_buffer(eb);
688 out:
689 return ret;
690 }
691
692 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 {
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
697 eb = (struct extent_buffer *)page->private;
698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 eb->read_mirror = failed_mirror;
700 atomic_dec(&eb->io_pages);
701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 btree_readahead_hook(root, eb, eb->start, -EIO);
703 return -EIO; /* we fixed nothing */
704 }
705
706 static void end_workqueue_bio(struct bio *bio)
707 {
708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 struct btrfs_fs_info *fs_info;
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
712
713 fs_info = end_io_wq->info;
714 end_io_wq->error = bio->bi_error;
715
716 if (bio->bi_rw & REQ_WRITE) {
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
730 } else {
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
745 }
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
749 }
750
751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 enum btrfs_wq_endio_type metadata)
753 {
754 struct btrfs_end_io_wq *end_io_wq;
755
756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
762 end_io_wq->info = info;
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
765 end_io_wq->metadata = metadata;
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
769 return 0;
770 }
771
772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 {
774 unsigned long limit = min_t(unsigned long,
775 info->thread_pool_size,
776 info->fs_devices->open_devices);
777 return 256 * limit;
778 }
779
780 static void run_one_async_start(struct btrfs_work *work)
781 {
782 struct async_submit_bio *async;
783 int ret;
784
785 async = container_of(work, struct async_submit_bio, work);
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
791 }
792
793 static void run_one_async_done(struct btrfs_work *work)
794 {
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
797 int limit;
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
801
802 limit = btrfs_async_submit_limit(fs_info);
803 limit = limit * 2 / 3;
804
805 /*
806 * atomic_dec_return implies a barrier for waitqueue_active
807 */
808 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
809 waitqueue_active(&fs_info->async_submit_wait))
810 wake_up(&fs_info->async_submit_wait);
811
812 /* If an error occured we just want to clean up the bio and move on */
813 if (async->error) {
814 async->bio->bi_error = async->error;
815 bio_endio(async->bio);
816 return;
817 }
818
819 async->submit_bio_done(async->inode, async->rw, async->bio,
820 async->mirror_num, async->bio_flags,
821 async->bio_offset);
822 }
823
824 static void run_one_async_free(struct btrfs_work *work)
825 {
826 struct async_submit_bio *async;
827
828 async = container_of(work, struct async_submit_bio, work);
829 kfree(async);
830 }
831
832 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
833 int rw, struct bio *bio, int mirror_num,
834 unsigned long bio_flags,
835 u64 bio_offset,
836 extent_submit_bio_hook_t *submit_bio_start,
837 extent_submit_bio_hook_t *submit_bio_done)
838 {
839 struct async_submit_bio *async;
840
841 async = kmalloc(sizeof(*async), GFP_NOFS);
842 if (!async)
843 return -ENOMEM;
844
845 async->inode = inode;
846 async->rw = rw;
847 async->bio = bio;
848 async->mirror_num = mirror_num;
849 async->submit_bio_start = submit_bio_start;
850 async->submit_bio_done = submit_bio_done;
851
852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
853 run_one_async_done, run_one_async_free);
854
855 async->bio_flags = bio_flags;
856 async->bio_offset = bio_offset;
857
858 async->error = 0;
859
860 atomic_inc(&fs_info->nr_async_submits);
861
862 if (rw & REQ_SYNC)
863 btrfs_set_work_high_priority(&async->work);
864
865 btrfs_queue_work(fs_info->workers, &async->work);
866
867 while (atomic_read(&fs_info->async_submit_draining) &&
868 atomic_read(&fs_info->nr_async_submits)) {
869 wait_event(fs_info->async_submit_wait,
870 (atomic_read(&fs_info->nr_async_submits) == 0));
871 }
872
873 return 0;
874 }
875
876 static int btree_csum_one_bio(struct bio *bio)
877 {
878 struct bio_vec *bvec;
879 struct btrfs_root *root;
880 int i, ret = 0;
881
882 bio_for_each_segment_all(bvec, bio, i) {
883 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
884 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
885 if (ret)
886 break;
887 }
888
889 return ret;
890 }
891
892 static int __btree_submit_bio_start(struct inode *inode, int rw,
893 struct bio *bio, int mirror_num,
894 unsigned long bio_flags,
895 u64 bio_offset)
896 {
897 /*
898 * when we're called for a write, we're already in the async
899 * submission context. Just jump into btrfs_map_bio
900 */
901 return btree_csum_one_bio(bio);
902 }
903
904 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
905 int mirror_num, unsigned long bio_flags,
906 u64 bio_offset)
907 {
908 int ret;
909
910 /*
911 * when we're called for a write, we're already in the async
912 * submission context. Just jump into btrfs_map_bio
913 */
914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
915 if (ret) {
916 bio->bi_error = ret;
917 bio_endio(bio);
918 }
919 return ret;
920 }
921
922 static int check_async_write(struct inode *inode, unsigned long bio_flags)
923 {
924 if (bio_flags & EXTENT_BIO_TREE_LOG)
925 return 0;
926 #ifdef CONFIG_X86
927 if (cpu_has_xmm4_2)
928 return 0;
929 #endif
930 return 1;
931 }
932
933 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
934 int mirror_num, unsigned long bio_flags,
935 u64 bio_offset)
936 {
937 int async = check_async_write(inode, bio_flags);
938 int ret;
939
940 if (!(rw & REQ_WRITE)) {
941 /*
942 * called for a read, do the setup so that checksum validation
943 * can happen in the async kernel threads
944 */
945 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
946 bio, BTRFS_WQ_ENDIO_METADATA);
947 if (ret)
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
951 } else if (!async) {
952 ret = btree_csum_one_bio(bio);
953 if (ret)
954 goto out_w_error;
955 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
956 mirror_num, 0);
957 } else {
958 /*
959 * kthread helpers are used to submit writes so that
960 * checksumming can happen in parallel across all CPUs
961 */
962 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
963 inode, rw, bio, mirror_num, 0,
964 bio_offset,
965 __btree_submit_bio_start,
966 __btree_submit_bio_done);
967 }
968
969 if (ret)
970 goto out_w_error;
971 return 0;
972
973 out_w_error:
974 bio->bi_error = ret;
975 bio_endio(bio);
976 return ret;
977 }
978
979 #ifdef CONFIG_MIGRATION
980 static int btree_migratepage(struct address_space *mapping,
981 struct page *newpage, struct page *page,
982 enum migrate_mode mode)
983 {
984 /*
985 * we can't safely write a btree page from here,
986 * we haven't done the locking hook
987 */
988 if (PageDirty(page))
989 return -EAGAIN;
990 /*
991 * Buffers may be managed in a filesystem specific way.
992 * We must have no buffers or drop them.
993 */
994 if (page_has_private(page) &&
995 !try_to_release_page(page, GFP_KERNEL))
996 return -EAGAIN;
997 return migrate_page(mapping, newpage, page, mode);
998 }
999 #endif
1000
1001
1002 static int btree_writepages(struct address_space *mapping,
1003 struct writeback_control *wbc)
1004 {
1005 struct btrfs_fs_info *fs_info;
1006 int ret;
1007
1008 if (wbc->sync_mode == WB_SYNC_NONE) {
1009
1010 if (wbc->for_kupdate)
1011 return 0;
1012
1013 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1014 /* this is a bit racy, but that's ok */
1015 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1016 BTRFS_DIRTY_METADATA_THRESH);
1017 if (ret < 0)
1018 return 0;
1019 }
1020 return btree_write_cache_pages(mapping, wbc);
1021 }
1022
1023 static int btree_readpage(struct file *file, struct page *page)
1024 {
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
1027 return extent_read_full_page(tree, page, btree_get_extent, 0);
1028 }
1029
1030 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1031 {
1032 if (PageWriteback(page) || PageDirty(page))
1033 return 0;
1034
1035 return try_release_extent_buffer(page);
1036 }
1037
1038 static void btree_invalidatepage(struct page *page, unsigned int offset,
1039 unsigned int length)
1040 {
1041 struct extent_io_tree *tree;
1042 tree = &BTRFS_I(page->mapping->host)->io_tree;
1043 extent_invalidatepage(tree, page, offset);
1044 btree_releasepage(page, GFP_NOFS);
1045 if (PagePrivate(page)) {
1046 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1047 "page private not zero on page %llu",
1048 (unsigned long long)page_offset(page));
1049 ClearPagePrivate(page);
1050 set_page_private(page, 0);
1051 page_cache_release(page);
1052 }
1053 }
1054
1055 static int btree_set_page_dirty(struct page *page)
1056 {
1057 #ifdef DEBUG
1058 struct extent_buffer *eb;
1059
1060 BUG_ON(!PagePrivate(page));
1061 eb = (struct extent_buffer *)page->private;
1062 BUG_ON(!eb);
1063 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1064 BUG_ON(!atomic_read(&eb->refs));
1065 btrfs_assert_tree_locked(eb);
1066 #endif
1067 return __set_page_dirty_nobuffers(page);
1068 }
1069
1070 static const struct address_space_operations btree_aops = {
1071 .readpage = btree_readpage,
1072 .writepages = btree_writepages,
1073 .releasepage = btree_releasepage,
1074 .invalidatepage = btree_invalidatepage,
1075 #ifdef CONFIG_MIGRATION
1076 .migratepage = btree_migratepage,
1077 #endif
1078 .set_page_dirty = btree_set_page_dirty,
1079 };
1080
1081 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1082 {
1083 struct extent_buffer *buf = NULL;
1084 struct inode *btree_inode = root->fs_info->btree_inode;
1085
1086 buf = btrfs_find_create_tree_block(root, bytenr);
1087 if (!buf)
1088 return;
1089 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1090 buf, 0, WAIT_NONE, btree_get_extent, 0);
1091 free_extent_buffer(buf);
1092 }
1093
1094 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1095 int mirror_num, struct extent_buffer **eb)
1096 {
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1100 int ret;
1101
1102 buf = btrfs_find_create_tree_block(root, bytenr);
1103 if (!buf)
1104 return 0;
1105
1106 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1107
1108 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1109 btree_get_extent, mirror_num);
1110 if (ret) {
1111 free_extent_buffer(buf);
1112 return ret;
1113 }
1114
1115 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1116 free_extent_buffer(buf);
1117 return -EIO;
1118 } else if (extent_buffer_uptodate(buf)) {
1119 *eb = buf;
1120 } else {
1121 free_extent_buffer(buf);
1122 }
1123 return 0;
1124 }
1125
1126 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1127 u64 bytenr)
1128 {
1129 return find_extent_buffer(fs_info, bytenr);
1130 }
1131
1132 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1133 u64 bytenr)
1134 {
1135 if (btrfs_test_is_dummy_root(root))
1136 return alloc_test_extent_buffer(root->fs_info, bytenr);
1137 return alloc_extent_buffer(root->fs_info, bytenr);
1138 }
1139
1140
1141 int btrfs_write_tree_block(struct extent_buffer *buf)
1142 {
1143 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1144 buf->start + buf->len - 1);
1145 }
1146
1147 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1148 {
1149 return filemap_fdatawait_range(buf->pages[0]->mapping,
1150 buf->start, buf->start + buf->len - 1);
1151 }
1152
1153 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1154 u64 parent_transid)
1155 {
1156 struct extent_buffer *buf = NULL;
1157 int ret;
1158
1159 buf = btrfs_find_create_tree_block(root, bytenr);
1160 if (!buf)
1161 return ERR_PTR(-ENOMEM);
1162
1163 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1164 if (ret) {
1165 free_extent_buffer(buf);
1166 return ERR_PTR(ret);
1167 }
1168 return buf;
1169
1170 }
1171
1172 void clean_tree_block(struct btrfs_trans_handle *trans,
1173 struct btrfs_fs_info *fs_info,
1174 struct extent_buffer *buf)
1175 {
1176 if (btrfs_header_generation(buf) ==
1177 fs_info->running_transaction->transid) {
1178 btrfs_assert_tree_locked(buf);
1179
1180 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1181 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1182 -buf->len,
1183 fs_info->dirty_metadata_batch);
1184 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1185 btrfs_set_lock_blocking(buf);
1186 clear_extent_buffer_dirty(buf);
1187 }
1188 }
1189 }
1190
1191 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1192 {
1193 struct btrfs_subvolume_writers *writers;
1194 int ret;
1195
1196 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1197 if (!writers)
1198 return ERR_PTR(-ENOMEM);
1199
1200 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1201 if (ret < 0) {
1202 kfree(writers);
1203 return ERR_PTR(ret);
1204 }
1205
1206 init_waitqueue_head(&writers->wait);
1207 return writers;
1208 }
1209
1210 static void
1211 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1212 {
1213 percpu_counter_destroy(&writers->counter);
1214 kfree(writers);
1215 }
1216
1217 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1218 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1219 u64 objectid)
1220 {
1221 root->node = NULL;
1222 root->commit_root = NULL;
1223 root->sectorsize = sectorsize;
1224 root->nodesize = nodesize;
1225 root->stripesize = stripesize;
1226 root->state = 0;
1227 root->orphan_cleanup_state = 0;
1228
1229 root->objectid = objectid;
1230 root->last_trans = 0;
1231 root->highest_objectid = 0;
1232 root->nr_delalloc_inodes = 0;
1233 root->nr_ordered_extents = 0;
1234 root->name = NULL;
1235 root->inode_tree = RB_ROOT;
1236 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1237 root->block_rsv = NULL;
1238 root->orphan_block_rsv = NULL;
1239
1240 INIT_LIST_HEAD(&root->dirty_list);
1241 INIT_LIST_HEAD(&root->root_list);
1242 INIT_LIST_HEAD(&root->delalloc_inodes);
1243 INIT_LIST_HEAD(&root->delalloc_root);
1244 INIT_LIST_HEAD(&root->ordered_extents);
1245 INIT_LIST_HEAD(&root->ordered_root);
1246 INIT_LIST_HEAD(&root->logged_list[0]);
1247 INIT_LIST_HEAD(&root->logged_list[1]);
1248 spin_lock_init(&root->orphan_lock);
1249 spin_lock_init(&root->inode_lock);
1250 spin_lock_init(&root->delalloc_lock);
1251 spin_lock_init(&root->ordered_extent_lock);
1252 spin_lock_init(&root->accounting_lock);
1253 spin_lock_init(&root->log_extents_lock[0]);
1254 spin_lock_init(&root->log_extents_lock[1]);
1255 mutex_init(&root->objectid_mutex);
1256 mutex_init(&root->log_mutex);
1257 mutex_init(&root->ordered_extent_mutex);
1258 mutex_init(&root->delalloc_mutex);
1259 init_waitqueue_head(&root->log_writer_wait);
1260 init_waitqueue_head(&root->log_commit_wait[0]);
1261 init_waitqueue_head(&root->log_commit_wait[1]);
1262 INIT_LIST_HEAD(&root->log_ctxs[0]);
1263 INIT_LIST_HEAD(&root->log_ctxs[1]);
1264 atomic_set(&root->log_commit[0], 0);
1265 atomic_set(&root->log_commit[1], 0);
1266 atomic_set(&root->log_writers, 0);
1267 atomic_set(&root->log_batch, 0);
1268 atomic_set(&root->orphan_inodes, 0);
1269 atomic_set(&root->refs, 1);
1270 atomic_set(&root->will_be_snapshoted, 0);
1271 atomic_set(&root->qgroup_meta_rsv, 0);
1272 root->log_transid = 0;
1273 root->log_transid_committed = -1;
1274 root->last_log_commit = 0;
1275 if (fs_info)
1276 extent_io_tree_init(&root->dirty_log_pages,
1277 fs_info->btree_inode->i_mapping);
1278
1279 memset(&root->root_key, 0, sizeof(root->root_key));
1280 memset(&root->root_item, 0, sizeof(root->root_item));
1281 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1282 if (fs_info)
1283 root->defrag_trans_start = fs_info->generation;
1284 else
1285 root->defrag_trans_start = 0;
1286 root->root_key.objectid = objectid;
1287 root->anon_dev = 0;
1288
1289 spin_lock_init(&root->root_item_lock);
1290 }
1291
1292 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1293 {
1294 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1295 if (root)
1296 root->fs_info = fs_info;
1297 return root;
1298 }
1299
1300 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1301 /* Should only be used by the testing infrastructure */
1302 struct btrfs_root *btrfs_alloc_dummy_root(void)
1303 {
1304 struct btrfs_root *root;
1305
1306 root = btrfs_alloc_root(NULL);
1307 if (!root)
1308 return ERR_PTR(-ENOMEM);
1309 __setup_root(4096, 4096, 4096, root, NULL, 1);
1310 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1311 root->alloc_bytenr = 0;
1312
1313 return root;
1314 }
1315 #endif
1316
1317 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1318 struct btrfs_fs_info *fs_info,
1319 u64 objectid)
1320 {
1321 struct extent_buffer *leaf;
1322 struct btrfs_root *tree_root = fs_info->tree_root;
1323 struct btrfs_root *root;
1324 struct btrfs_key key;
1325 int ret = 0;
1326 uuid_le uuid;
1327
1328 root = btrfs_alloc_root(fs_info);
1329 if (!root)
1330 return ERR_PTR(-ENOMEM);
1331
1332 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1333 tree_root->stripesize, root, fs_info, objectid);
1334 root->root_key.objectid = objectid;
1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 root->root_key.offset = 0;
1337
1338 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1339 if (IS_ERR(leaf)) {
1340 ret = PTR_ERR(leaf);
1341 leaf = NULL;
1342 goto fail;
1343 }
1344
1345 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1346 btrfs_set_header_bytenr(leaf, leaf->start);
1347 btrfs_set_header_generation(leaf, trans->transid);
1348 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1349 btrfs_set_header_owner(leaf, objectid);
1350 root->node = leaf;
1351
1352 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1353 BTRFS_FSID_SIZE);
1354 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1355 btrfs_header_chunk_tree_uuid(leaf),
1356 BTRFS_UUID_SIZE);
1357 btrfs_mark_buffer_dirty(leaf);
1358
1359 root->commit_root = btrfs_root_node(root);
1360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1361
1362 root->root_item.flags = 0;
1363 root->root_item.byte_limit = 0;
1364 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1365 btrfs_set_root_generation(&root->root_item, trans->transid);
1366 btrfs_set_root_level(&root->root_item, 0);
1367 btrfs_set_root_refs(&root->root_item, 1);
1368 btrfs_set_root_used(&root->root_item, leaf->len);
1369 btrfs_set_root_last_snapshot(&root->root_item, 0);
1370 btrfs_set_root_dirid(&root->root_item, 0);
1371 uuid_le_gen(&uuid);
1372 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1373 root->root_item.drop_level = 0;
1374
1375 key.objectid = objectid;
1376 key.type = BTRFS_ROOT_ITEM_KEY;
1377 key.offset = 0;
1378 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1379 if (ret)
1380 goto fail;
1381
1382 btrfs_tree_unlock(leaf);
1383
1384 return root;
1385
1386 fail:
1387 if (leaf) {
1388 btrfs_tree_unlock(leaf);
1389 free_extent_buffer(root->commit_root);
1390 free_extent_buffer(leaf);
1391 }
1392 kfree(root);
1393
1394 return ERR_PTR(ret);
1395 }
1396
1397 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1398 struct btrfs_fs_info *fs_info)
1399 {
1400 struct btrfs_root *root;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
1402 struct extent_buffer *leaf;
1403
1404 root = btrfs_alloc_root(fs_info);
1405 if (!root)
1406 return ERR_PTR(-ENOMEM);
1407
1408 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1409 tree_root->stripesize, root, fs_info,
1410 BTRFS_TREE_LOG_OBJECTID);
1411
1412 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1415
1416 /*
1417 * DON'T set REF_COWS for log trees
1418 *
1419 * log trees do not get reference counted because they go away
1420 * before a real commit is actually done. They do store pointers
1421 * to file data extents, and those reference counts still get
1422 * updated (along with back refs to the log tree).
1423 */
1424
1425 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1426 NULL, 0, 0, 0);
1427 if (IS_ERR(leaf)) {
1428 kfree(root);
1429 return ERR_CAST(leaf);
1430 }
1431
1432 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1433 btrfs_set_header_bytenr(leaf, leaf->start);
1434 btrfs_set_header_generation(leaf, trans->transid);
1435 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1436 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1437 root->node = leaf;
1438
1439 write_extent_buffer(root->node, root->fs_info->fsid,
1440 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1441 btrfs_mark_buffer_dirty(root->node);
1442 btrfs_tree_unlock(root->node);
1443 return root;
1444 }
1445
1446 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1447 struct btrfs_fs_info *fs_info)
1448 {
1449 struct btrfs_root *log_root;
1450
1451 log_root = alloc_log_tree(trans, fs_info);
1452 if (IS_ERR(log_root))
1453 return PTR_ERR(log_root);
1454 WARN_ON(fs_info->log_root_tree);
1455 fs_info->log_root_tree = log_root;
1456 return 0;
1457 }
1458
1459 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root)
1461 {
1462 struct btrfs_root *log_root;
1463 struct btrfs_inode_item *inode_item;
1464
1465 log_root = alloc_log_tree(trans, root->fs_info);
1466 if (IS_ERR(log_root))
1467 return PTR_ERR(log_root);
1468
1469 log_root->last_trans = trans->transid;
1470 log_root->root_key.offset = root->root_key.objectid;
1471
1472 inode_item = &log_root->root_item.inode;
1473 btrfs_set_stack_inode_generation(inode_item, 1);
1474 btrfs_set_stack_inode_size(inode_item, 3);
1475 btrfs_set_stack_inode_nlink(inode_item, 1);
1476 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1477 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1478
1479 btrfs_set_root_node(&log_root->root_item, log_root->node);
1480
1481 WARN_ON(root->log_root);
1482 root->log_root = log_root;
1483 root->log_transid = 0;
1484 root->log_transid_committed = -1;
1485 root->last_log_commit = 0;
1486 return 0;
1487 }
1488
1489 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1490 struct btrfs_key *key)
1491 {
1492 struct btrfs_root *root;
1493 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1494 struct btrfs_path *path;
1495 u64 generation;
1496 int ret;
1497
1498 path = btrfs_alloc_path();
1499 if (!path)
1500 return ERR_PTR(-ENOMEM);
1501
1502 root = btrfs_alloc_root(fs_info);
1503 if (!root) {
1504 ret = -ENOMEM;
1505 goto alloc_fail;
1506 }
1507
1508 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1509 tree_root->stripesize, root, fs_info, key->objectid);
1510
1511 ret = btrfs_find_root(tree_root, key, path,
1512 &root->root_item, &root->root_key);
1513 if (ret) {
1514 if (ret > 0)
1515 ret = -ENOENT;
1516 goto find_fail;
1517 }
1518
1519 generation = btrfs_root_generation(&root->root_item);
1520 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1521 generation);
1522 if (IS_ERR(root->node)) {
1523 ret = PTR_ERR(root->node);
1524 goto find_fail;
1525 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1526 ret = -EIO;
1527 free_extent_buffer(root->node);
1528 goto find_fail;
1529 }
1530 root->commit_root = btrfs_root_node(root);
1531 out:
1532 btrfs_free_path(path);
1533 return root;
1534
1535 find_fail:
1536 kfree(root);
1537 alloc_fail:
1538 root = ERR_PTR(ret);
1539 goto out;
1540 }
1541
1542 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1543 struct btrfs_key *location)
1544 {
1545 struct btrfs_root *root;
1546
1547 root = btrfs_read_tree_root(tree_root, location);
1548 if (IS_ERR(root))
1549 return root;
1550
1551 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1552 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1553 btrfs_check_and_init_root_item(&root->root_item);
1554 }
1555
1556 return root;
1557 }
1558
1559 int btrfs_init_fs_root(struct btrfs_root *root)
1560 {
1561 int ret;
1562 struct btrfs_subvolume_writers *writers;
1563
1564 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1565 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1566 GFP_NOFS);
1567 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1568 ret = -ENOMEM;
1569 goto fail;
1570 }
1571
1572 writers = btrfs_alloc_subvolume_writers();
1573 if (IS_ERR(writers)) {
1574 ret = PTR_ERR(writers);
1575 goto fail;
1576 }
1577 root->subv_writers = writers;
1578
1579 btrfs_init_free_ino_ctl(root);
1580 spin_lock_init(&root->ino_cache_lock);
1581 init_waitqueue_head(&root->ino_cache_wait);
1582
1583 ret = get_anon_bdev(&root->anon_dev);
1584 if (ret)
1585 goto free_writers;
1586
1587 mutex_lock(&root->objectid_mutex);
1588 ret = btrfs_find_highest_objectid(root,
1589 &root->highest_objectid);
1590 if (ret) {
1591 mutex_unlock(&root->objectid_mutex);
1592 goto free_root_dev;
1593 }
1594
1595 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1596
1597 mutex_unlock(&root->objectid_mutex);
1598
1599 return 0;
1600
1601 free_root_dev:
1602 free_anon_bdev(root->anon_dev);
1603 free_writers:
1604 btrfs_free_subvolume_writers(root->subv_writers);
1605 fail:
1606 kfree(root->free_ino_ctl);
1607 kfree(root->free_ino_pinned);
1608 return ret;
1609 }
1610
1611 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1612 u64 root_id)
1613 {
1614 struct btrfs_root *root;
1615
1616 spin_lock(&fs_info->fs_roots_radix_lock);
1617 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1618 (unsigned long)root_id);
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 return root;
1621 }
1622
1623 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1624 struct btrfs_root *root)
1625 {
1626 int ret;
1627
1628 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1629 if (ret)
1630 return ret;
1631
1632 spin_lock(&fs_info->fs_roots_radix_lock);
1633 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1634 (unsigned long)root->root_key.objectid,
1635 root);
1636 if (ret == 0)
1637 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1638 spin_unlock(&fs_info->fs_roots_radix_lock);
1639 radix_tree_preload_end();
1640
1641 return ret;
1642 }
1643
1644 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1645 struct btrfs_key *location,
1646 bool check_ref)
1647 {
1648 struct btrfs_root *root;
1649 struct btrfs_path *path;
1650 struct btrfs_key key;
1651 int ret;
1652
1653 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1654 return fs_info->tree_root;
1655 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1656 return fs_info->extent_root;
1657 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1658 return fs_info->chunk_root;
1659 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1660 return fs_info->dev_root;
1661 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1662 return fs_info->csum_root;
1663 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1664 return fs_info->quota_root ? fs_info->quota_root :
1665 ERR_PTR(-ENOENT);
1666 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1667 return fs_info->uuid_root ? fs_info->uuid_root :
1668 ERR_PTR(-ENOENT);
1669 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1670 return fs_info->free_space_root ? fs_info->free_space_root :
1671 ERR_PTR(-ENOENT);
1672 again:
1673 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1674 if (root) {
1675 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1676 return ERR_PTR(-ENOENT);
1677 return root;
1678 }
1679
1680 root = btrfs_read_fs_root(fs_info->tree_root, location);
1681 if (IS_ERR(root))
1682 return root;
1683
1684 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1685 ret = -ENOENT;
1686 goto fail;
1687 }
1688
1689 ret = btrfs_init_fs_root(root);
1690 if (ret)
1691 goto fail;
1692
1693 path = btrfs_alloc_path();
1694 if (!path) {
1695 ret = -ENOMEM;
1696 goto fail;
1697 }
1698 key.objectid = BTRFS_ORPHAN_OBJECTID;
1699 key.type = BTRFS_ORPHAN_ITEM_KEY;
1700 key.offset = location->objectid;
1701
1702 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1703 btrfs_free_path(path);
1704 if (ret < 0)
1705 goto fail;
1706 if (ret == 0)
1707 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1708
1709 ret = btrfs_insert_fs_root(fs_info, root);
1710 if (ret) {
1711 if (ret == -EEXIST) {
1712 free_fs_root(root);
1713 goto again;
1714 }
1715 goto fail;
1716 }
1717 return root;
1718 fail:
1719 free_fs_root(root);
1720 return ERR_PTR(ret);
1721 }
1722
1723 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1724 {
1725 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1726 int ret = 0;
1727 struct btrfs_device *device;
1728 struct backing_dev_info *bdi;
1729
1730 rcu_read_lock();
1731 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1732 if (!device->bdev)
1733 continue;
1734 bdi = blk_get_backing_dev_info(device->bdev);
1735 if (bdi_congested(bdi, bdi_bits)) {
1736 ret = 1;
1737 break;
1738 }
1739 }
1740 rcu_read_unlock();
1741 return ret;
1742 }
1743
1744 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1745 {
1746 int err;
1747
1748 err = bdi_setup_and_register(bdi, "btrfs");
1749 if (err)
1750 return err;
1751
1752 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1753 bdi->congested_fn = btrfs_congested_fn;
1754 bdi->congested_data = info;
1755 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1756 return 0;
1757 }
1758
1759 /*
1760 * called by the kthread helper functions to finally call the bio end_io
1761 * functions. This is where read checksum verification actually happens
1762 */
1763 static void end_workqueue_fn(struct btrfs_work *work)
1764 {
1765 struct bio *bio;
1766 struct btrfs_end_io_wq *end_io_wq;
1767
1768 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1769 bio = end_io_wq->bio;
1770
1771 bio->bi_error = end_io_wq->error;
1772 bio->bi_private = end_io_wq->private;
1773 bio->bi_end_io = end_io_wq->end_io;
1774 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1775 bio_endio(bio);
1776 }
1777
1778 static int cleaner_kthread(void *arg)
1779 {
1780 struct btrfs_root *root = arg;
1781 int again;
1782 struct btrfs_trans_handle *trans;
1783
1784 set_freezable();
1785 do {
1786 again = 0;
1787
1788 /* Make the cleaner go to sleep early. */
1789 if (btrfs_need_cleaner_sleep(root))
1790 goto sleep;
1791
1792 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1793 goto sleep;
1794
1795 /*
1796 * Avoid the problem that we change the status of the fs
1797 * during the above check and trylock.
1798 */
1799 if (btrfs_need_cleaner_sleep(root)) {
1800 mutex_unlock(&root->fs_info->cleaner_mutex);
1801 goto sleep;
1802 }
1803
1804 btrfs_run_delayed_iputs(root);
1805 again = btrfs_clean_one_deleted_snapshot(root);
1806 mutex_unlock(&root->fs_info->cleaner_mutex);
1807
1808 /*
1809 * The defragger has dealt with the R/O remount and umount,
1810 * needn't do anything special here.
1811 */
1812 btrfs_run_defrag_inodes(root->fs_info);
1813
1814 /*
1815 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1816 * with relocation (btrfs_relocate_chunk) and relocation
1817 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1818 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1819 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1820 * unused block groups.
1821 */
1822 btrfs_delete_unused_bgs(root->fs_info);
1823 sleep:
1824 if (!try_to_freeze() && !again) {
1825 set_current_state(TASK_INTERRUPTIBLE);
1826 if (!kthread_should_stop())
1827 schedule();
1828 __set_current_state(TASK_RUNNING);
1829 }
1830 } while (!kthread_should_stop());
1831
1832 /*
1833 * Transaction kthread is stopped before us and wakes us up.
1834 * However we might have started a new transaction and COWed some
1835 * tree blocks when deleting unused block groups for example. So
1836 * make sure we commit the transaction we started to have a clean
1837 * shutdown when evicting the btree inode - if it has dirty pages
1838 * when we do the final iput() on it, eviction will trigger a
1839 * writeback for it which will fail with null pointer dereferences
1840 * since work queues and other resources were already released and
1841 * destroyed by the time the iput/eviction/writeback is made.
1842 */
1843 trans = btrfs_attach_transaction(root);
1844 if (IS_ERR(trans)) {
1845 if (PTR_ERR(trans) != -ENOENT)
1846 btrfs_err(root->fs_info,
1847 "cleaner transaction attach returned %ld",
1848 PTR_ERR(trans));
1849 } else {
1850 int ret;
1851
1852 ret = btrfs_commit_transaction(trans, root);
1853 if (ret)
1854 btrfs_err(root->fs_info,
1855 "cleaner open transaction commit returned %d",
1856 ret);
1857 }
1858
1859 return 0;
1860 }
1861
1862 static int transaction_kthread(void *arg)
1863 {
1864 struct btrfs_root *root = arg;
1865 struct btrfs_trans_handle *trans;
1866 struct btrfs_transaction *cur;
1867 u64 transid;
1868 unsigned long now;
1869 unsigned long delay;
1870 bool cannot_commit;
1871
1872 do {
1873 cannot_commit = false;
1874 delay = HZ * root->fs_info->commit_interval;
1875 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1876
1877 spin_lock(&root->fs_info->trans_lock);
1878 cur = root->fs_info->running_transaction;
1879 if (!cur) {
1880 spin_unlock(&root->fs_info->trans_lock);
1881 goto sleep;
1882 }
1883
1884 now = get_seconds();
1885 if (cur->state < TRANS_STATE_BLOCKED &&
1886 (now < cur->start_time ||
1887 now - cur->start_time < root->fs_info->commit_interval)) {
1888 spin_unlock(&root->fs_info->trans_lock);
1889 delay = HZ * 5;
1890 goto sleep;
1891 }
1892 transid = cur->transid;
1893 spin_unlock(&root->fs_info->trans_lock);
1894
1895 /* If the file system is aborted, this will always fail. */
1896 trans = btrfs_attach_transaction(root);
1897 if (IS_ERR(trans)) {
1898 if (PTR_ERR(trans) != -ENOENT)
1899 cannot_commit = true;
1900 goto sleep;
1901 }
1902 if (transid == trans->transid) {
1903 btrfs_commit_transaction(trans, root);
1904 } else {
1905 btrfs_end_transaction(trans, root);
1906 }
1907 sleep:
1908 wake_up_process(root->fs_info->cleaner_kthread);
1909 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1910
1911 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1912 &root->fs_info->fs_state)))
1913 btrfs_cleanup_transaction(root);
1914 if (!try_to_freeze()) {
1915 set_current_state(TASK_INTERRUPTIBLE);
1916 if (!kthread_should_stop() &&
1917 (!btrfs_transaction_blocked(root->fs_info) ||
1918 cannot_commit))
1919 schedule_timeout(delay);
1920 __set_current_state(TASK_RUNNING);
1921 }
1922 } while (!kthread_should_stop());
1923 return 0;
1924 }
1925
1926 /*
1927 * this will find the highest generation in the array of
1928 * root backups. The index of the highest array is returned,
1929 * or -1 if we can't find anything.
1930 *
1931 * We check to make sure the array is valid by comparing the
1932 * generation of the latest root in the array with the generation
1933 * in the super block. If they don't match we pitch it.
1934 */
1935 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1936 {
1937 u64 cur;
1938 int newest_index = -1;
1939 struct btrfs_root_backup *root_backup;
1940 int i;
1941
1942 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1943 root_backup = info->super_copy->super_roots + i;
1944 cur = btrfs_backup_tree_root_gen(root_backup);
1945 if (cur == newest_gen)
1946 newest_index = i;
1947 }
1948
1949 /* check to see if we actually wrapped around */
1950 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1951 root_backup = info->super_copy->super_roots;
1952 cur = btrfs_backup_tree_root_gen(root_backup);
1953 if (cur == newest_gen)
1954 newest_index = 0;
1955 }
1956 return newest_index;
1957 }
1958
1959
1960 /*
1961 * find the oldest backup so we know where to store new entries
1962 * in the backup array. This will set the backup_root_index
1963 * field in the fs_info struct
1964 */
1965 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1966 u64 newest_gen)
1967 {
1968 int newest_index = -1;
1969
1970 newest_index = find_newest_super_backup(info, newest_gen);
1971 /* if there was garbage in there, just move along */
1972 if (newest_index == -1) {
1973 info->backup_root_index = 0;
1974 } else {
1975 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1976 }
1977 }
1978
1979 /*
1980 * copy all the root pointers into the super backup array.
1981 * this will bump the backup pointer by one when it is
1982 * done
1983 */
1984 static void backup_super_roots(struct btrfs_fs_info *info)
1985 {
1986 int next_backup;
1987 struct btrfs_root_backup *root_backup;
1988 int last_backup;
1989
1990 next_backup = info->backup_root_index;
1991 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1992 BTRFS_NUM_BACKUP_ROOTS;
1993
1994 /*
1995 * just overwrite the last backup if we're at the same generation
1996 * this happens only at umount
1997 */
1998 root_backup = info->super_for_commit->super_roots + last_backup;
1999 if (btrfs_backup_tree_root_gen(root_backup) ==
2000 btrfs_header_generation(info->tree_root->node))
2001 next_backup = last_backup;
2002
2003 root_backup = info->super_for_commit->super_roots + next_backup;
2004
2005 /*
2006 * make sure all of our padding and empty slots get zero filled
2007 * regardless of which ones we use today
2008 */
2009 memset(root_backup, 0, sizeof(*root_backup));
2010
2011 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2012
2013 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2014 btrfs_set_backup_tree_root_gen(root_backup,
2015 btrfs_header_generation(info->tree_root->node));
2016
2017 btrfs_set_backup_tree_root_level(root_backup,
2018 btrfs_header_level(info->tree_root->node));
2019
2020 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2021 btrfs_set_backup_chunk_root_gen(root_backup,
2022 btrfs_header_generation(info->chunk_root->node));
2023 btrfs_set_backup_chunk_root_level(root_backup,
2024 btrfs_header_level(info->chunk_root->node));
2025
2026 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2027 btrfs_set_backup_extent_root_gen(root_backup,
2028 btrfs_header_generation(info->extent_root->node));
2029 btrfs_set_backup_extent_root_level(root_backup,
2030 btrfs_header_level(info->extent_root->node));
2031
2032 /*
2033 * we might commit during log recovery, which happens before we set
2034 * the fs_root. Make sure it is valid before we fill it in.
2035 */
2036 if (info->fs_root && info->fs_root->node) {
2037 btrfs_set_backup_fs_root(root_backup,
2038 info->fs_root->node->start);
2039 btrfs_set_backup_fs_root_gen(root_backup,
2040 btrfs_header_generation(info->fs_root->node));
2041 btrfs_set_backup_fs_root_level(root_backup,
2042 btrfs_header_level(info->fs_root->node));
2043 }
2044
2045 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2046 btrfs_set_backup_dev_root_gen(root_backup,
2047 btrfs_header_generation(info->dev_root->node));
2048 btrfs_set_backup_dev_root_level(root_backup,
2049 btrfs_header_level(info->dev_root->node));
2050
2051 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2052 btrfs_set_backup_csum_root_gen(root_backup,
2053 btrfs_header_generation(info->csum_root->node));
2054 btrfs_set_backup_csum_root_level(root_backup,
2055 btrfs_header_level(info->csum_root->node));
2056
2057 btrfs_set_backup_total_bytes(root_backup,
2058 btrfs_super_total_bytes(info->super_copy));
2059 btrfs_set_backup_bytes_used(root_backup,
2060 btrfs_super_bytes_used(info->super_copy));
2061 btrfs_set_backup_num_devices(root_backup,
2062 btrfs_super_num_devices(info->super_copy));
2063
2064 /*
2065 * if we don't copy this out to the super_copy, it won't get remembered
2066 * for the next commit
2067 */
2068 memcpy(&info->super_copy->super_roots,
2069 &info->super_for_commit->super_roots,
2070 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2071 }
2072
2073 /*
2074 * this copies info out of the root backup array and back into
2075 * the in-memory super block. It is meant to help iterate through
2076 * the array, so you send it the number of backups you've already
2077 * tried and the last backup index you used.
2078 *
2079 * this returns -1 when it has tried all the backups
2080 */
2081 static noinline int next_root_backup(struct btrfs_fs_info *info,
2082 struct btrfs_super_block *super,
2083 int *num_backups_tried, int *backup_index)
2084 {
2085 struct btrfs_root_backup *root_backup;
2086 int newest = *backup_index;
2087
2088 if (*num_backups_tried == 0) {
2089 u64 gen = btrfs_super_generation(super);
2090
2091 newest = find_newest_super_backup(info, gen);
2092 if (newest == -1)
2093 return -1;
2094
2095 *backup_index = newest;
2096 *num_backups_tried = 1;
2097 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2098 /* we've tried all the backups, all done */
2099 return -1;
2100 } else {
2101 /* jump to the next oldest backup */
2102 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2103 BTRFS_NUM_BACKUP_ROOTS;
2104 *backup_index = newest;
2105 *num_backups_tried += 1;
2106 }
2107 root_backup = super->super_roots + newest;
2108
2109 btrfs_set_super_generation(super,
2110 btrfs_backup_tree_root_gen(root_backup));
2111 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2112 btrfs_set_super_root_level(super,
2113 btrfs_backup_tree_root_level(root_backup));
2114 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2115
2116 /*
2117 * fixme: the total bytes and num_devices need to match or we should
2118 * need a fsck
2119 */
2120 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2121 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2122 return 0;
2123 }
2124
2125 /* helper to cleanup workers */
2126 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2127 {
2128 btrfs_destroy_workqueue(fs_info->fixup_workers);
2129 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2130 btrfs_destroy_workqueue(fs_info->workers);
2131 btrfs_destroy_workqueue(fs_info->endio_workers);
2132 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2133 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2134 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2135 btrfs_destroy_workqueue(fs_info->rmw_workers);
2136 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2137 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2138 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2139 btrfs_destroy_workqueue(fs_info->submit_workers);
2140 btrfs_destroy_workqueue(fs_info->delayed_workers);
2141 btrfs_destroy_workqueue(fs_info->caching_workers);
2142 btrfs_destroy_workqueue(fs_info->readahead_workers);
2143 btrfs_destroy_workqueue(fs_info->flush_workers);
2144 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2145 btrfs_destroy_workqueue(fs_info->extent_workers);
2146 }
2147
2148 static void free_root_extent_buffers(struct btrfs_root *root)
2149 {
2150 if (root) {
2151 free_extent_buffer(root->node);
2152 free_extent_buffer(root->commit_root);
2153 root->node = NULL;
2154 root->commit_root = NULL;
2155 }
2156 }
2157
2158 /* helper to cleanup tree roots */
2159 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2160 {
2161 free_root_extent_buffers(info->tree_root);
2162
2163 free_root_extent_buffers(info->dev_root);
2164 free_root_extent_buffers(info->extent_root);
2165 free_root_extent_buffers(info->csum_root);
2166 free_root_extent_buffers(info->quota_root);
2167 free_root_extent_buffers(info->uuid_root);
2168 if (chunk_root)
2169 free_root_extent_buffers(info->chunk_root);
2170 free_root_extent_buffers(info->free_space_root);
2171 }
2172
2173 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2174 {
2175 int ret;
2176 struct btrfs_root *gang[8];
2177 int i;
2178
2179 while (!list_empty(&fs_info->dead_roots)) {
2180 gang[0] = list_entry(fs_info->dead_roots.next,
2181 struct btrfs_root, root_list);
2182 list_del(&gang[0]->root_list);
2183
2184 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2185 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2186 } else {
2187 free_extent_buffer(gang[0]->node);
2188 free_extent_buffer(gang[0]->commit_root);
2189 btrfs_put_fs_root(gang[0]);
2190 }
2191 }
2192
2193 while (1) {
2194 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2195 (void **)gang, 0,
2196 ARRAY_SIZE(gang));
2197 if (!ret)
2198 break;
2199 for (i = 0; i < ret; i++)
2200 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2201 }
2202
2203 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2204 btrfs_free_log_root_tree(NULL, fs_info);
2205 btrfs_destroy_pinned_extent(fs_info->tree_root,
2206 fs_info->pinned_extents);
2207 }
2208 }
2209
2210 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2211 {
2212 mutex_init(&fs_info->scrub_lock);
2213 atomic_set(&fs_info->scrubs_running, 0);
2214 atomic_set(&fs_info->scrub_pause_req, 0);
2215 atomic_set(&fs_info->scrubs_paused, 0);
2216 atomic_set(&fs_info->scrub_cancel_req, 0);
2217 init_waitqueue_head(&fs_info->scrub_pause_wait);
2218 fs_info->scrub_workers_refcnt = 0;
2219 }
2220
2221 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2222 {
2223 spin_lock_init(&fs_info->balance_lock);
2224 mutex_init(&fs_info->balance_mutex);
2225 atomic_set(&fs_info->balance_running, 0);
2226 atomic_set(&fs_info->balance_pause_req, 0);
2227 atomic_set(&fs_info->balance_cancel_req, 0);
2228 fs_info->balance_ctl = NULL;
2229 init_waitqueue_head(&fs_info->balance_wait_q);
2230 }
2231
2232 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2233 struct btrfs_root *tree_root)
2234 {
2235 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2236 set_nlink(fs_info->btree_inode, 1);
2237 /*
2238 * we set the i_size on the btree inode to the max possible int.
2239 * the real end of the address space is determined by all of
2240 * the devices in the system
2241 */
2242 fs_info->btree_inode->i_size = OFFSET_MAX;
2243 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2244
2245 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2246 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2247 fs_info->btree_inode->i_mapping);
2248 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2249 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2250
2251 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2252
2253 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2254 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2255 sizeof(struct btrfs_key));
2256 set_bit(BTRFS_INODE_DUMMY,
2257 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2258 btrfs_insert_inode_hash(fs_info->btree_inode);
2259 }
2260
2261 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2262 {
2263 fs_info->dev_replace.lock_owner = 0;
2264 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2265 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2266 mutex_init(&fs_info->dev_replace.lock_management_lock);
2267 mutex_init(&fs_info->dev_replace.lock);
2268 init_waitqueue_head(&fs_info->replace_wait);
2269 }
2270
2271 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2272 {
2273 spin_lock_init(&fs_info->qgroup_lock);
2274 mutex_init(&fs_info->qgroup_ioctl_lock);
2275 fs_info->qgroup_tree = RB_ROOT;
2276 fs_info->qgroup_op_tree = RB_ROOT;
2277 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2278 fs_info->qgroup_seq = 1;
2279 fs_info->quota_enabled = 0;
2280 fs_info->pending_quota_state = 0;
2281 fs_info->qgroup_ulist = NULL;
2282 mutex_init(&fs_info->qgroup_rescan_lock);
2283 }
2284
2285 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2286 struct btrfs_fs_devices *fs_devices)
2287 {
2288 int max_active = fs_info->thread_pool_size;
2289 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2290
2291 fs_info->workers =
2292 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2293 max_active, 16);
2294
2295 fs_info->delalloc_workers =
2296 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2297
2298 fs_info->flush_workers =
2299 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2300
2301 fs_info->caching_workers =
2302 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2303
2304 /*
2305 * a higher idle thresh on the submit workers makes it much more
2306 * likely that bios will be send down in a sane order to the
2307 * devices
2308 */
2309 fs_info->submit_workers =
2310 btrfs_alloc_workqueue("submit", flags,
2311 min_t(u64, fs_devices->num_devices,
2312 max_active), 64);
2313
2314 fs_info->fixup_workers =
2315 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2316
2317 /*
2318 * endios are largely parallel and should have a very
2319 * low idle thresh
2320 */
2321 fs_info->endio_workers =
2322 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2323 fs_info->endio_meta_workers =
2324 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2325 fs_info->endio_meta_write_workers =
2326 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2327 fs_info->endio_raid56_workers =
2328 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2329 fs_info->endio_repair_workers =
2330 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2331 fs_info->rmw_workers =
2332 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2333 fs_info->endio_write_workers =
2334 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2335 fs_info->endio_freespace_worker =
2336 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2337 fs_info->delayed_workers =
2338 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2339 fs_info->readahead_workers =
2340 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2341 fs_info->qgroup_rescan_workers =
2342 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2343 fs_info->extent_workers =
2344 btrfs_alloc_workqueue("extent-refs", flags,
2345 min_t(u64, fs_devices->num_devices,
2346 max_active), 8);
2347
2348 if (!(fs_info->workers && fs_info->delalloc_workers &&
2349 fs_info->submit_workers && fs_info->flush_workers &&
2350 fs_info->endio_workers && fs_info->endio_meta_workers &&
2351 fs_info->endio_meta_write_workers &&
2352 fs_info->endio_repair_workers &&
2353 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2354 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2355 fs_info->caching_workers && fs_info->readahead_workers &&
2356 fs_info->fixup_workers && fs_info->delayed_workers &&
2357 fs_info->extent_workers &&
2358 fs_info->qgroup_rescan_workers)) {
2359 return -ENOMEM;
2360 }
2361
2362 return 0;
2363 }
2364
2365 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2366 struct btrfs_fs_devices *fs_devices)
2367 {
2368 int ret;
2369 struct btrfs_root *tree_root = fs_info->tree_root;
2370 struct btrfs_root *log_tree_root;
2371 struct btrfs_super_block *disk_super = fs_info->super_copy;
2372 u64 bytenr = btrfs_super_log_root(disk_super);
2373
2374 if (fs_devices->rw_devices == 0) {
2375 btrfs_warn(fs_info, "log replay required on RO media");
2376 return -EIO;
2377 }
2378
2379 log_tree_root = btrfs_alloc_root(fs_info);
2380 if (!log_tree_root)
2381 return -ENOMEM;
2382
2383 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2384 tree_root->stripesize, log_tree_root, fs_info,
2385 BTRFS_TREE_LOG_OBJECTID);
2386
2387 log_tree_root->node = read_tree_block(tree_root, bytenr,
2388 fs_info->generation + 1);
2389 if (IS_ERR(log_tree_root->node)) {
2390 btrfs_warn(fs_info, "failed to read log tree");
2391 ret = PTR_ERR(log_tree_root->node);
2392 kfree(log_tree_root);
2393 return ret;
2394 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2395 btrfs_err(fs_info, "failed to read log tree");
2396 free_extent_buffer(log_tree_root->node);
2397 kfree(log_tree_root);
2398 return -EIO;
2399 }
2400 /* returns with log_tree_root freed on success */
2401 ret = btrfs_recover_log_trees(log_tree_root);
2402 if (ret) {
2403 btrfs_std_error(tree_root->fs_info, ret,
2404 "Failed to recover log tree");
2405 free_extent_buffer(log_tree_root->node);
2406 kfree(log_tree_root);
2407 return ret;
2408 }
2409
2410 if (fs_info->sb->s_flags & MS_RDONLY) {
2411 ret = btrfs_commit_super(tree_root);
2412 if (ret)
2413 return ret;
2414 }
2415
2416 return 0;
2417 }
2418
2419 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2420 struct btrfs_root *tree_root)
2421 {
2422 struct btrfs_root *root;
2423 struct btrfs_key location;
2424 int ret;
2425
2426 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2427 location.type = BTRFS_ROOT_ITEM_KEY;
2428 location.offset = 0;
2429
2430 root = btrfs_read_tree_root(tree_root, &location);
2431 if (IS_ERR(root))
2432 return PTR_ERR(root);
2433 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2434 fs_info->extent_root = root;
2435
2436 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2437 root = btrfs_read_tree_root(tree_root, &location);
2438 if (IS_ERR(root))
2439 return PTR_ERR(root);
2440 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2441 fs_info->dev_root = root;
2442 btrfs_init_devices_late(fs_info);
2443
2444 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2445 root = btrfs_read_tree_root(tree_root, &location);
2446 if (IS_ERR(root))
2447 return PTR_ERR(root);
2448 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2449 fs_info->csum_root = root;
2450
2451 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2452 root = btrfs_read_tree_root(tree_root, &location);
2453 if (!IS_ERR(root)) {
2454 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2455 fs_info->quota_enabled = 1;
2456 fs_info->pending_quota_state = 1;
2457 fs_info->quota_root = root;
2458 }
2459
2460 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2461 root = btrfs_read_tree_root(tree_root, &location);
2462 if (IS_ERR(root)) {
2463 ret = PTR_ERR(root);
2464 if (ret != -ENOENT)
2465 return ret;
2466 } else {
2467 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2468 fs_info->uuid_root = root;
2469 }
2470
2471 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2472 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2473 root = btrfs_read_tree_root(tree_root, &location);
2474 if (IS_ERR(root))
2475 return PTR_ERR(root);
2476 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2477 fs_info->free_space_root = root;
2478 }
2479
2480 return 0;
2481 }
2482
2483 int open_ctree(struct super_block *sb,
2484 struct btrfs_fs_devices *fs_devices,
2485 char *options)
2486 {
2487 u32 sectorsize;
2488 u32 nodesize;
2489 u32 stripesize;
2490 u64 generation;
2491 u64 features;
2492 struct btrfs_key location;
2493 struct buffer_head *bh;
2494 struct btrfs_super_block *disk_super;
2495 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2496 struct btrfs_root *tree_root;
2497 struct btrfs_root *chunk_root;
2498 int ret;
2499 int err = -EINVAL;
2500 int num_backups_tried = 0;
2501 int backup_index = 0;
2502 int max_active;
2503
2504 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2505 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2506 if (!tree_root || !chunk_root) {
2507 err = -ENOMEM;
2508 goto fail;
2509 }
2510
2511 ret = init_srcu_struct(&fs_info->subvol_srcu);
2512 if (ret) {
2513 err = ret;
2514 goto fail;
2515 }
2516
2517 ret = setup_bdi(fs_info, &fs_info->bdi);
2518 if (ret) {
2519 err = ret;
2520 goto fail_srcu;
2521 }
2522
2523 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2524 if (ret) {
2525 err = ret;
2526 goto fail_bdi;
2527 }
2528 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2529 (1 + ilog2(nr_cpu_ids));
2530
2531 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2532 if (ret) {
2533 err = ret;
2534 goto fail_dirty_metadata_bytes;
2535 }
2536
2537 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2538 if (ret) {
2539 err = ret;
2540 goto fail_delalloc_bytes;
2541 }
2542
2543 fs_info->btree_inode = new_inode(sb);
2544 if (!fs_info->btree_inode) {
2545 err = -ENOMEM;
2546 goto fail_bio_counter;
2547 }
2548
2549 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2550
2551 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2552 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2553 INIT_LIST_HEAD(&fs_info->trans_list);
2554 INIT_LIST_HEAD(&fs_info->dead_roots);
2555 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2556 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2557 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2558 spin_lock_init(&fs_info->delalloc_root_lock);
2559 spin_lock_init(&fs_info->trans_lock);
2560 spin_lock_init(&fs_info->fs_roots_radix_lock);
2561 spin_lock_init(&fs_info->delayed_iput_lock);
2562 spin_lock_init(&fs_info->defrag_inodes_lock);
2563 spin_lock_init(&fs_info->free_chunk_lock);
2564 spin_lock_init(&fs_info->tree_mod_seq_lock);
2565 spin_lock_init(&fs_info->super_lock);
2566 spin_lock_init(&fs_info->qgroup_op_lock);
2567 spin_lock_init(&fs_info->buffer_lock);
2568 spin_lock_init(&fs_info->unused_bgs_lock);
2569 rwlock_init(&fs_info->tree_mod_log_lock);
2570 mutex_init(&fs_info->unused_bg_unpin_mutex);
2571 mutex_init(&fs_info->delete_unused_bgs_mutex);
2572 mutex_init(&fs_info->reloc_mutex);
2573 mutex_init(&fs_info->delalloc_root_mutex);
2574 seqlock_init(&fs_info->profiles_lock);
2575 init_rwsem(&fs_info->delayed_iput_sem);
2576
2577 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2578 INIT_LIST_HEAD(&fs_info->space_info);
2579 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2580 INIT_LIST_HEAD(&fs_info->unused_bgs);
2581 btrfs_mapping_init(&fs_info->mapping_tree);
2582 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2583 BTRFS_BLOCK_RSV_GLOBAL);
2584 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2585 BTRFS_BLOCK_RSV_DELALLOC);
2586 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2587 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2588 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2589 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2590 BTRFS_BLOCK_RSV_DELOPS);
2591 atomic_set(&fs_info->nr_async_submits, 0);
2592 atomic_set(&fs_info->async_delalloc_pages, 0);
2593 atomic_set(&fs_info->async_submit_draining, 0);
2594 atomic_set(&fs_info->nr_async_bios, 0);
2595 atomic_set(&fs_info->defrag_running, 0);
2596 atomic_set(&fs_info->qgroup_op_seq, 0);
2597 atomic64_set(&fs_info->tree_mod_seq, 0);
2598 fs_info->sb = sb;
2599 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2600 fs_info->metadata_ratio = 0;
2601 fs_info->defrag_inodes = RB_ROOT;
2602 fs_info->free_chunk_space = 0;
2603 fs_info->tree_mod_log = RB_ROOT;
2604 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2605 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2606 /* readahead state */
2607 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2608 spin_lock_init(&fs_info->reada_lock);
2609
2610 fs_info->thread_pool_size = min_t(unsigned long,
2611 num_online_cpus() + 2, 8);
2612
2613 INIT_LIST_HEAD(&fs_info->ordered_roots);
2614 spin_lock_init(&fs_info->ordered_root_lock);
2615 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2616 GFP_NOFS);
2617 if (!fs_info->delayed_root) {
2618 err = -ENOMEM;
2619 goto fail_iput;
2620 }
2621 btrfs_init_delayed_root(fs_info->delayed_root);
2622
2623 btrfs_init_scrub(fs_info);
2624 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2625 fs_info->check_integrity_print_mask = 0;
2626 #endif
2627 btrfs_init_balance(fs_info);
2628 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2629
2630 sb->s_blocksize = 4096;
2631 sb->s_blocksize_bits = blksize_bits(4096);
2632 sb->s_bdi = &fs_info->bdi;
2633
2634 btrfs_init_btree_inode(fs_info, tree_root);
2635
2636 spin_lock_init(&fs_info->block_group_cache_lock);
2637 fs_info->block_group_cache_tree = RB_ROOT;
2638 fs_info->first_logical_byte = (u64)-1;
2639
2640 extent_io_tree_init(&fs_info->freed_extents[0],
2641 fs_info->btree_inode->i_mapping);
2642 extent_io_tree_init(&fs_info->freed_extents[1],
2643 fs_info->btree_inode->i_mapping);
2644 fs_info->pinned_extents = &fs_info->freed_extents[0];
2645 fs_info->do_barriers = 1;
2646
2647
2648 mutex_init(&fs_info->ordered_operations_mutex);
2649 mutex_init(&fs_info->tree_log_mutex);
2650 mutex_init(&fs_info->chunk_mutex);
2651 mutex_init(&fs_info->transaction_kthread_mutex);
2652 mutex_init(&fs_info->cleaner_mutex);
2653 mutex_init(&fs_info->volume_mutex);
2654 mutex_init(&fs_info->ro_block_group_mutex);
2655 init_rwsem(&fs_info->commit_root_sem);
2656 init_rwsem(&fs_info->cleanup_work_sem);
2657 init_rwsem(&fs_info->subvol_sem);
2658 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2659
2660 btrfs_init_dev_replace_locks(fs_info);
2661 btrfs_init_qgroup(fs_info);
2662
2663 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2664 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2665
2666 init_waitqueue_head(&fs_info->transaction_throttle);
2667 init_waitqueue_head(&fs_info->transaction_wait);
2668 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2669 init_waitqueue_head(&fs_info->async_submit_wait);
2670
2671 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2672
2673 ret = btrfs_alloc_stripe_hash_table(fs_info);
2674 if (ret) {
2675 err = ret;
2676 goto fail_alloc;
2677 }
2678
2679 __setup_root(4096, 4096, 4096, tree_root,
2680 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2681
2682 invalidate_bdev(fs_devices->latest_bdev);
2683
2684 /*
2685 * Read super block and check the signature bytes only
2686 */
2687 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2688 if (IS_ERR(bh)) {
2689 err = PTR_ERR(bh);
2690 goto fail_alloc;
2691 }
2692
2693 /*
2694 * We want to check superblock checksum, the type is stored inside.
2695 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2696 */
2697 if (btrfs_check_super_csum(bh->b_data)) {
2698 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2699 err = -EINVAL;
2700 brelse(bh);
2701 goto fail_alloc;
2702 }
2703
2704 /*
2705 * super_copy is zeroed at allocation time and we never touch the
2706 * following bytes up to INFO_SIZE, the checksum is calculated from
2707 * the whole block of INFO_SIZE
2708 */
2709 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2710 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2711 sizeof(*fs_info->super_for_commit));
2712 brelse(bh);
2713
2714 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2715
2716 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2717 if (ret) {
2718 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2719 err = -EINVAL;
2720 goto fail_alloc;
2721 }
2722
2723 disk_super = fs_info->super_copy;
2724 if (!btrfs_super_root(disk_super))
2725 goto fail_alloc;
2726
2727 /* check FS state, whether FS is broken. */
2728 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2729 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2730
2731 /*
2732 * run through our array of backup supers and setup
2733 * our ring pointer to the oldest one
2734 */
2735 generation = btrfs_super_generation(disk_super);
2736 find_oldest_super_backup(fs_info, generation);
2737
2738 /*
2739 * In the long term, we'll store the compression type in the super
2740 * block, and it'll be used for per file compression control.
2741 */
2742 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2743
2744 ret = btrfs_parse_options(tree_root, options);
2745 if (ret) {
2746 err = ret;
2747 goto fail_alloc;
2748 }
2749
2750 features = btrfs_super_incompat_flags(disk_super) &
2751 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2752 if (features) {
2753 printk(KERN_ERR "BTRFS: couldn't mount because of "
2754 "unsupported optional features (%Lx).\n",
2755 features);
2756 err = -EINVAL;
2757 goto fail_alloc;
2758 }
2759
2760 /*
2761 * Leafsize and nodesize were always equal, this is only a sanity check.
2762 */
2763 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2764 btrfs_super_nodesize(disk_super)) {
2765 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2766 "blocksizes don't match. node %d leaf %d\n",
2767 btrfs_super_nodesize(disk_super),
2768 le32_to_cpu(disk_super->__unused_leafsize));
2769 err = -EINVAL;
2770 goto fail_alloc;
2771 }
2772 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2773 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2774 "blocksize (%d) was too large\n",
2775 btrfs_super_nodesize(disk_super));
2776 err = -EINVAL;
2777 goto fail_alloc;
2778 }
2779
2780 features = btrfs_super_incompat_flags(disk_super);
2781 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2782 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2783 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2784
2785 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2786 printk(KERN_INFO "BTRFS: has skinny extents\n");
2787
2788 /*
2789 * flag our filesystem as having big metadata blocks if
2790 * they are bigger than the page size
2791 */
2792 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2793 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2794 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2795 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2796 }
2797
2798 nodesize = btrfs_super_nodesize(disk_super);
2799 sectorsize = btrfs_super_sectorsize(disk_super);
2800 stripesize = btrfs_super_stripesize(disk_super);
2801 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2802 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2803
2804 /*
2805 * mixed block groups end up with duplicate but slightly offset
2806 * extent buffers for the same range. It leads to corruptions
2807 */
2808 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2809 (sectorsize != nodesize)) {
2810 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2811 "are not allowed for mixed block groups on %s\n",
2812 sb->s_id);
2813 goto fail_alloc;
2814 }
2815
2816 /*
2817 * Needn't use the lock because there is no other task which will
2818 * update the flag.
2819 */
2820 btrfs_set_super_incompat_flags(disk_super, features);
2821
2822 features = btrfs_super_compat_ro_flags(disk_super) &
2823 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2824 if (!(sb->s_flags & MS_RDONLY) && features) {
2825 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2826 "unsupported option features (%Lx).\n",
2827 features);
2828 err = -EINVAL;
2829 goto fail_alloc;
2830 }
2831
2832 max_active = fs_info->thread_pool_size;
2833
2834 ret = btrfs_init_workqueues(fs_info, fs_devices);
2835 if (ret) {
2836 err = ret;
2837 goto fail_sb_buffer;
2838 }
2839
2840 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2841 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2842 SZ_4M / PAGE_CACHE_SIZE);
2843
2844 tree_root->nodesize = nodesize;
2845 tree_root->sectorsize = sectorsize;
2846 tree_root->stripesize = stripesize;
2847
2848 sb->s_blocksize = sectorsize;
2849 sb->s_blocksize_bits = blksize_bits(sectorsize);
2850
2851 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2852 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2853 goto fail_sb_buffer;
2854 }
2855
2856 if (sectorsize != PAGE_SIZE) {
2857 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2858 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2859 goto fail_sb_buffer;
2860 }
2861
2862 mutex_lock(&fs_info->chunk_mutex);
2863 ret = btrfs_read_sys_array(tree_root);
2864 mutex_unlock(&fs_info->chunk_mutex);
2865 if (ret) {
2866 printk(KERN_ERR "BTRFS: failed to read the system "
2867 "array on %s\n", sb->s_id);
2868 goto fail_sb_buffer;
2869 }
2870
2871 generation = btrfs_super_chunk_root_generation(disk_super);
2872
2873 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2874 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2875
2876 chunk_root->node = read_tree_block(chunk_root,
2877 btrfs_super_chunk_root(disk_super),
2878 generation);
2879 if (IS_ERR(chunk_root->node) ||
2880 !extent_buffer_uptodate(chunk_root->node)) {
2881 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2882 sb->s_id);
2883 if (!IS_ERR(chunk_root->node))
2884 free_extent_buffer(chunk_root->node);
2885 chunk_root->node = NULL;
2886 goto fail_tree_roots;
2887 }
2888 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2889 chunk_root->commit_root = btrfs_root_node(chunk_root);
2890
2891 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2892 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2893
2894 ret = btrfs_read_chunk_tree(chunk_root);
2895 if (ret) {
2896 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2897 sb->s_id);
2898 goto fail_tree_roots;
2899 }
2900
2901 /*
2902 * keep the device that is marked to be the target device for the
2903 * dev_replace procedure
2904 */
2905 btrfs_close_extra_devices(fs_devices, 0);
2906
2907 if (!fs_devices->latest_bdev) {
2908 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2909 sb->s_id);
2910 goto fail_tree_roots;
2911 }
2912
2913 retry_root_backup:
2914 generation = btrfs_super_generation(disk_super);
2915
2916 tree_root->node = read_tree_block(tree_root,
2917 btrfs_super_root(disk_super),
2918 generation);
2919 if (IS_ERR(tree_root->node) ||
2920 !extent_buffer_uptodate(tree_root->node)) {
2921 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2922 sb->s_id);
2923 if (!IS_ERR(tree_root->node))
2924 free_extent_buffer(tree_root->node);
2925 tree_root->node = NULL;
2926 goto recovery_tree_root;
2927 }
2928
2929 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2930 tree_root->commit_root = btrfs_root_node(tree_root);
2931 btrfs_set_root_refs(&tree_root->root_item, 1);
2932
2933 mutex_lock(&tree_root->objectid_mutex);
2934 ret = btrfs_find_highest_objectid(tree_root,
2935 &tree_root->highest_objectid);
2936 if (ret) {
2937 mutex_unlock(&tree_root->objectid_mutex);
2938 goto recovery_tree_root;
2939 }
2940
2941 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2942
2943 mutex_unlock(&tree_root->objectid_mutex);
2944
2945 ret = btrfs_read_roots(fs_info, tree_root);
2946 if (ret)
2947 goto recovery_tree_root;
2948
2949 fs_info->generation = generation;
2950 fs_info->last_trans_committed = generation;
2951
2952 ret = btrfs_recover_balance(fs_info);
2953 if (ret) {
2954 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2955 goto fail_block_groups;
2956 }
2957
2958 ret = btrfs_init_dev_stats(fs_info);
2959 if (ret) {
2960 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2961 ret);
2962 goto fail_block_groups;
2963 }
2964
2965 ret = btrfs_init_dev_replace(fs_info);
2966 if (ret) {
2967 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2968 goto fail_block_groups;
2969 }
2970
2971 btrfs_close_extra_devices(fs_devices, 1);
2972
2973 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2974 if (ret) {
2975 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2976 goto fail_block_groups;
2977 }
2978
2979 ret = btrfs_sysfs_add_device(fs_devices);
2980 if (ret) {
2981 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2982 goto fail_fsdev_sysfs;
2983 }
2984
2985 ret = btrfs_sysfs_add_mounted(fs_info);
2986 if (ret) {
2987 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2988 goto fail_fsdev_sysfs;
2989 }
2990
2991 ret = btrfs_init_space_info(fs_info);
2992 if (ret) {
2993 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2994 goto fail_sysfs;
2995 }
2996
2997 ret = btrfs_read_block_groups(fs_info->extent_root);
2998 if (ret) {
2999 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
3000 goto fail_sysfs;
3001 }
3002 fs_info->num_tolerated_disk_barrier_failures =
3003 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3004 if (fs_info->fs_devices->missing_devices >
3005 fs_info->num_tolerated_disk_barrier_failures &&
3006 !(sb->s_flags & MS_RDONLY)) {
3007 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
3008 fs_info->fs_devices->missing_devices,
3009 fs_info->num_tolerated_disk_barrier_failures);
3010 goto fail_sysfs;
3011 }
3012
3013 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3014 "btrfs-cleaner");
3015 if (IS_ERR(fs_info->cleaner_kthread))
3016 goto fail_sysfs;
3017
3018 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3019 tree_root,
3020 "btrfs-transaction");
3021 if (IS_ERR(fs_info->transaction_kthread))
3022 goto fail_cleaner;
3023
3024 if (!btrfs_test_opt(tree_root, SSD) &&
3025 !btrfs_test_opt(tree_root, NOSSD) &&
3026 !fs_info->fs_devices->rotating) {
3027 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3028 "mode\n");
3029 btrfs_set_opt(fs_info->mount_opt, SSD);
3030 }
3031
3032 /*
3033 * Mount does not set all options immediatelly, we can do it now and do
3034 * not have to wait for transaction commit
3035 */
3036 btrfs_apply_pending_changes(fs_info);
3037
3038 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3039 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3040 ret = btrfsic_mount(tree_root, fs_devices,
3041 btrfs_test_opt(tree_root,
3042 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3043 1 : 0,
3044 fs_info->check_integrity_print_mask);
3045 if (ret)
3046 printk(KERN_WARNING "BTRFS: failed to initialize"
3047 " integrity check module %s\n", sb->s_id);
3048 }
3049 #endif
3050 ret = btrfs_read_qgroup_config(fs_info);
3051 if (ret)
3052 goto fail_trans_kthread;
3053
3054 /* do not make disk changes in broken FS */
3055 if (btrfs_super_log_root(disk_super) != 0) {
3056 ret = btrfs_replay_log(fs_info, fs_devices);
3057 if (ret) {
3058 err = ret;
3059 goto fail_qgroup;
3060 }
3061 }
3062
3063 ret = btrfs_find_orphan_roots(tree_root);
3064 if (ret)
3065 goto fail_qgroup;
3066
3067 if (!(sb->s_flags & MS_RDONLY)) {
3068 ret = btrfs_cleanup_fs_roots(fs_info);
3069 if (ret)
3070 goto fail_qgroup;
3071
3072 mutex_lock(&fs_info->cleaner_mutex);
3073 ret = btrfs_recover_relocation(tree_root);
3074 mutex_unlock(&fs_info->cleaner_mutex);
3075 if (ret < 0) {
3076 printk(KERN_WARNING
3077 "BTRFS: failed to recover relocation\n");
3078 err = -EINVAL;
3079 goto fail_qgroup;
3080 }
3081 }
3082
3083 location.objectid = BTRFS_FS_TREE_OBJECTID;
3084 location.type = BTRFS_ROOT_ITEM_KEY;
3085 location.offset = 0;
3086
3087 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3088 if (IS_ERR(fs_info->fs_root)) {
3089 err = PTR_ERR(fs_info->fs_root);
3090 goto fail_qgroup;
3091 }
3092
3093 if (sb->s_flags & MS_RDONLY)
3094 return 0;
3095
3096 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3097 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3098 pr_info("BTRFS: creating free space tree\n");
3099 ret = btrfs_create_free_space_tree(fs_info);
3100 if (ret) {
3101 pr_warn("BTRFS: failed to create free space tree %d\n",
3102 ret);
3103 close_ctree(tree_root);
3104 return ret;
3105 }
3106 }
3107
3108 down_read(&fs_info->cleanup_work_sem);
3109 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3110 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3111 up_read(&fs_info->cleanup_work_sem);
3112 close_ctree(tree_root);
3113 return ret;
3114 }
3115 up_read(&fs_info->cleanup_work_sem);
3116
3117 ret = btrfs_resume_balance_async(fs_info);
3118 if (ret) {
3119 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3120 close_ctree(tree_root);
3121 return ret;
3122 }
3123
3124 ret = btrfs_resume_dev_replace_async(fs_info);
3125 if (ret) {
3126 pr_warn("BTRFS: failed to resume dev_replace\n");
3127 close_ctree(tree_root);
3128 return ret;
3129 }
3130
3131 btrfs_qgroup_rescan_resume(fs_info);
3132
3133 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3134 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3135 pr_info("BTRFS: clearing free space tree\n");
3136 ret = btrfs_clear_free_space_tree(fs_info);
3137 if (ret) {
3138 pr_warn("BTRFS: failed to clear free space tree %d\n",
3139 ret);
3140 close_ctree(tree_root);
3141 return ret;
3142 }
3143 }
3144
3145 if (!fs_info->uuid_root) {
3146 pr_info("BTRFS: creating UUID tree\n");
3147 ret = btrfs_create_uuid_tree(fs_info);
3148 if (ret) {
3149 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3150 ret);
3151 close_ctree(tree_root);
3152 return ret;
3153 }
3154 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3155 fs_info->generation !=
3156 btrfs_super_uuid_tree_generation(disk_super)) {
3157 pr_info("BTRFS: checking UUID tree\n");
3158 ret = btrfs_check_uuid_tree(fs_info);
3159 if (ret) {
3160 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3161 ret);
3162 close_ctree(tree_root);
3163 return ret;
3164 }
3165 } else {
3166 fs_info->update_uuid_tree_gen = 1;
3167 }
3168
3169 fs_info->open = 1;
3170
3171 return 0;
3172
3173 fail_qgroup:
3174 btrfs_free_qgroup_config(fs_info);
3175 fail_trans_kthread:
3176 kthread_stop(fs_info->transaction_kthread);
3177 btrfs_cleanup_transaction(fs_info->tree_root);
3178 btrfs_free_fs_roots(fs_info);
3179 fail_cleaner:
3180 kthread_stop(fs_info->cleaner_kthread);
3181
3182 /*
3183 * make sure we're done with the btree inode before we stop our
3184 * kthreads
3185 */
3186 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3187
3188 fail_sysfs:
3189 btrfs_sysfs_remove_mounted(fs_info);
3190
3191 fail_fsdev_sysfs:
3192 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3193
3194 fail_block_groups:
3195 btrfs_put_block_group_cache(fs_info);
3196 btrfs_free_block_groups(fs_info);
3197
3198 fail_tree_roots:
3199 free_root_pointers(fs_info, 1);
3200 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3201
3202 fail_sb_buffer:
3203 btrfs_stop_all_workers(fs_info);
3204 fail_alloc:
3205 fail_iput:
3206 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3207
3208 iput(fs_info->btree_inode);
3209 fail_bio_counter:
3210 percpu_counter_destroy(&fs_info->bio_counter);
3211 fail_delalloc_bytes:
3212 percpu_counter_destroy(&fs_info->delalloc_bytes);
3213 fail_dirty_metadata_bytes:
3214 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3215 fail_bdi:
3216 bdi_destroy(&fs_info->bdi);
3217 fail_srcu:
3218 cleanup_srcu_struct(&fs_info->subvol_srcu);
3219 fail:
3220 btrfs_free_stripe_hash_table(fs_info);
3221 btrfs_close_devices(fs_info->fs_devices);
3222 return err;
3223
3224 recovery_tree_root:
3225 if (!btrfs_test_opt(tree_root, RECOVERY))
3226 goto fail_tree_roots;
3227
3228 free_root_pointers(fs_info, 0);
3229
3230 /* don't use the log in recovery mode, it won't be valid */
3231 btrfs_set_super_log_root(disk_super, 0);
3232
3233 /* we can't trust the free space cache either */
3234 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3235
3236 ret = next_root_backup(fs_info, fs_info->super_copy,
3237 &num_backups_tried, &backup_index);
3238 if (ret == -1)
3239 goto fail_block_groups;
3240 goto retry_root_backup;
3241 }
3242
3243 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3244 {
3245 if (uptodate) {
3246 set_buffer_uptodate(bh);
3247 } else {
3248 struct btrfs_device *device = (struct btrfs_device *)
3249 bh->b_private;
3250
3251 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3252 "lost page write due to IO error on %s",
3253 rcu_str_deref(device->name));
3254 /* note, we dont' set_buffer_write_io_error because we have
3255 * our own ways of dealing with the IO errors
3256 */
3257 clear_buffer_uptodate(bh);
3258 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3259 }
3260 unlock_buffer(bh);
3261 put_bh(bh);
3262 }
3263
3264 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3265 struct buffer_head **bh_ret)
3266 {
3267 struct buffer_head *bh;
3268 struct btrfs_super_block *super;
3269 u64 bytenr;
3270
3271 bytenr = btrfs_sb_offset(copy_num);
3272 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3273 return -EINVAL;
3274
3275 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3276 /*
3277 * If we fail to read from the underlying devices, as of now
3278 * the best option we have is to mark it EIO.
3279 */
3280 if (!bh)
3281 return -EIO;
3282
3283 super = (struct btrfs_super_block *)bh->b_data;
3284 if (btrfs_super_bytenr(super) != bytenr ||
3285 btrfs_super_magic(super) != BTRFS_MAGIC) {
3286 brelse(bh);
3287 return -EINVAL;
3288 }
3289
3290 *bh_ret = bh;
3291 return 0;
3292 }
3293
3294
3295 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3296 {
3297 struct buffer_head *bh;
3298 struct buffer_head *latest = NULL;
3299 struct btrfs_super_block *super;
3300 int i;
3301 u64 transid = 0;
3302 int ret = -EINVAL;
3303
3304 /* we would like to check all the supers, but that would make
3305 * a btrfs mount succeed after a mkfs from a different FS.
3306 * So, we need to add a special mount option to scan for
3307 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3308 */
3309 for (i = 0; i < 1; i++) {
3310 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3311 if (ret)
3312 continue;
3313
3314 super = (struct btrfs_super_block *)bh->b_data;
3315
3316 if (!latest || btrfs_super_generation(super) > transid) {
3317 brelse(latest);
3318 latest = bh;
3319 transid = btrfs_super_generation(super);
3320 } else {
3321 brelse(bh);
3322 }
3323 }
3324
3325 if (!latest)
3326 return ERR_PTR(ret);
3327
3328 return latest;
3329 }
3330
3331 /*
3332 * this should be called twice, once with wait == 0 and
3333 * once with wait == 1. When wait == 0 is done, all the buffer heads
3334 * we write are pinned.
3335 *
3336 * They are released when wait == 1 is done.
3337 * max_mirrors must be the same for both runs, and it indicates how
3338 * many supers on this one device should be written.
3339 *
3340 * max_mirrors == 0 means to write them all.
3341 */
3342 static int write_dev_supers(struct btrfs_device *device,
3343 struct btrfs_super_block *sb,
3344 int do_barriers, int wait, int max_mirrors)
3345 {
3346 struct buffer_head *bh;
3347 int i;
3348 int ret;
3349 int errors = 0;
3350 u32 crc;
3351 u64 bytenr;
3352
3353 if (max_mirrors == 0)
3354 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3355
3356 for (i = 0; i < max_mirrors; i++) {
3357 bytenr = btrfs_sb_offset(i);
3358 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3359 device->commit_total_bytes)
3360 break;
3361
3362 if (wait) {
3363 bh = __find_get_block(device->bdev, bytenr / 4096,
3364 BTRFS_SUPER_INFO_SIZE);
3365 if (!bh) {
3366 errors++;
3367 continue;
3368 }
3369 wait_on_buffer(bh);
3370 if (!buffer_uptodate(bh))
3371 errors++;
3372
3373 /* drop our reference */
3374 brelse(bh);
3375
3376 /* drop the reference from the wait == 0 run */
3377 brelse(bh);
3378 continue;
3379 } else {
3380 btrfs_set_super_bytenr(sb, bytenr);
3381
3382 crc = ~(u32)0;
3383 crc = btrfs_csum_data((char *)sb +
3384 BTRFS_CSUM_SIZE, crc,
3385 BTRFS_SUPER_INFO_SIZE -
3386 BTRFS_CSUM_SIZE);
3387 btrfs_csum_final(crc, sb->csum);
3388
3389 /*
3390 * one reference for us, and we leave it for the
3391 * caller
3392 */
3393 bh = __getblk(device->bdev, bytenr / 4096,
3394 BTRFS_SUPER_INFO_SIZE);
3395 if (!bh) {
3396 btrfs_err(device->dev_root->fs_info,
3397 "couldn't get super buffer head for bytenr %llu",
3398 bytenr);
3399 errors++;
3400 continue;
3401 }
3402
3403 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3404
3405 /* one reference for submit_bh */
3406 get_bh(bh);
3407
3408 set_buffer_uptodate(bh);
3409 lock_buffer(bh);
3410 bh->b_end_io = btrfs_end_buffer_write_sync;
3411 bh->b_private = device;
3412 }
3413
3414 /*
3415 * we fua the first super. The others we allow
3416 * to go down lazy.
3417 */
3418 if (i == 0)
3419 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3420 else
3421 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3422 if (ret)
3423 errors++;
3424 }
3425 return errors < i ? 0 : -1;
3426 }
3427
3428 /*
3429 * endio for the write_dev_flush, this will wake anyone waiting
3430 * for the barrier when it is done
3431 */
3432 static void btrfs_end_empty_barrier(struct bio *bio)
3433 {
3434 if (bio->bi_private)
3435 complete(bio->bi_private);
3436 bio_put(bio);
3437 }
3438
3439 /*
3440 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3441 * sent down. With wait == 1, it waits for the previous flush.
3442 *
3443 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3444 * capable
3445 */
3446 static int write_dev_flush(struct btrfs_device *device, int wait)
3447 {
3448 struct bio *bio;
3449 int ret = 0;
3450
3451 if (device->nobarriers)
3452 return 0;
3453
3454 if (wait) {
3455 bio = device->flush_bio;
3456 if (!bio)
3457 return 0;
3458
3459 wait_for_completion(&device->flush_wait);
3460
3461 if (bio->bi_error) {
3462 ret = bio->bi_error;
3463 btrfs_dev_stat_inc_and_print(device,
3464 BTRFS_DEV_STAT_FLUSH_ERRS);
3465 }
3466
3467 /* drop the reference from the wait == 0 run */
3468 bio_put(bio);
3469 device->flush_bio = NULL;
3470
3471 return ret;
3472 }
3473
3474 /*
3475 * one reference for us, and we leave it for the
3476 * caller
3477 */
3478 device->flush_bio = NULL;
3479 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3480 if (!bio)
3481 return -ENOMEM;
3482
3483 bio->bi_end_io = btrfs_end_empty_barrier;
3484 bio->bi_bdev = device->bdev;
3485 init_completion(&device->flush_wait);
3486 bio->bi_private = &device->flush_wait;
3487 device->flush_bio = bio;
3488
3489 bio_get(bio);
3490 btrfsic_submit_bio(WRITE_FLUSH, bio);
3491
3492 return 0;
3493 }
3494
3495 /*
3496 * send an empty flush down to each device in parallel,
3497 * then wait for them
3498 */
3499 static int barrier_all_devices(struct btrfs_fs_info *info)
3500 {
3501 struct list_head *head;
3502 struct btrfs_device *dev;
3503 int errors_send = 0;
3504 int errors_wait = 0;
3505 int ret;
3506
3507 /* send down all the barriers */
3508 head = &info->fs_devices->devices;
3509 list_for_each_entry_rcu(dev, head, dev_list) {
3510 if (dev->missing)
3511 continue;
3512 if (!dev->bdev) {
3513 errors_send++;
3514 continue;
3515 }
3516 if (!dev->in_fs_metadata || !dev->writeable)
3517 continue;
3518
3519 ret = write_dev_flush(dev, 0);
3520 if (ret)
3521 errors_send++;
3522 }
3523
3524 /* wait for all the barriers */
3525 list_for_each_entry_rcu(dev, head, dev_list) {
3526 if (dev->missing)
3527 continue;
3528 if (!dev->bdev) {
3529 errors_wait++;
3530 continue;
3531 }
3532 if (!dev->in_fs_metadata || !dev->writeable)
3533 continue;
3534
3535 ret = write_dev_flush(dev, 1);
3536 if (ret)
3537 errors_wait++;
3538 }
3539 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3540 errors_wait > info->num_tolerated_disk_barrier_failures)
3541 return -EIO;
3542 return 0;
3543 }
3544
3545 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3546 {
3547 int raid_type;
3548 int min_tolerated = INT_MAX;
3549
3550 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3551 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3552 min_tolerated = min(min_tolerated,
3553 btrfs_raid_array[BTRFS_RAID_SINGLE].
3554 tolerated_failures);
3555
3556 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3557 if (raid_type == BTRFS_RAID_SINGLE)
3558 continue;
3559 if (!(flags & btrfs_raid_group[raid_type]))
3560 continue;
3561 min_tolerated = min(min_tolerated,
3562 btrfs_raid_array[raid_type].
3563 tolerated_failures);
3564 }
3565
3566 if (min_tolerated == INT_MAX) {
3567 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3568 min_tolerated = 0;
3569 }
3570
3571 return min_tolerated;
3572 }
3573
3574 int btrfs_calc_num_tolerated_disk_barrier_failures(
3575 struct btrfs_fs_info *fs_info)
3576 {
3577 struct btrfs_ioctl_space_info space;
3578 struct btrfs_space_info *sinfo;
3579 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3580 BTRFS_BLOCK_GROUP_SYSTEM,
3581 BTRFS_BLOCK_GROUP_METADATA,
3582 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3583 int i;
3584 int c;
3585 int num_tolerated_disk_barrier_failures =
3586 (int)fs_info->fs_devices->num_devices;
3587
3588 for (i = 0; i < ARRAY_SIZE(types); i++) {
3589 struct btrfs_space_info *tmp;
3590
3591 sinfo = NULL;
3592 rcu_read_lock();
3593 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3594 if (tmp->flags == types[i]) {
3595 sinfo = tmp;
3596 break;
3597 }
3598 }
3599 rcu_read_unlock();
3600
3601 if (!sinfo)
3602 continue;
3603
3604 down_read(&sinfo->groups_sem);
3605 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3606 u64 flags;
3607
3608 if (list_empty(&sinfo->block_groups[c]))
3609 continue;
3610
3611 btrfs_get_block_group_info(&sinfo->block_groups[c],
3612 &space);
3613 if (space.total_bytes == 0 || space.used_bytes == 0)
3614 continue;
3615 flags = space.flags;
3616
3617 num_tolerated_disk_barrier_failures = min(
3618 num_tolerated_disk_barrier_failures,
3619 btrfs_get_num_tolerated_disk_barrier_failures(
3620 flags));
3621 }
3622 up_read(&sinfo->groups_sem);
3623 }
3624
3625 return num_tolerated_disk_barrier_failures;
3626 }
3627
3628 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3629 {
3630 struct list_head *head;
3631 struct btrfs_device *dev;
3632 struct btrfs_super_block *sb;
3633 struct btrfs_dev_item *dev_item;
3634 int ret;
3635 int do_barriers;
3636 int max_errors;
3637 int total_errors = 0;
3638 u64 flags;
3639
3640 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3641 backup_super_roots(root->fs_info);
3642
3643 sb = root->fs_info->super_for_commit;
3644 dev_item = &sb->dev_item;
3645
3646 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3647 head = &root->fs_info->fs_devices->devices;
3648 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3649
3650 if (do_barriers) {
3651 ret = barrier_all_devices(root->fs_info);
3652 if (ret) {
3653 mutex_unlock(
3654 &root->fs_info->fs_devices->device_list_mutex);
3655 btrfs_std_error(root->fs_info, ret,
3656 "errors while submitting device barriers.");
3657 return ret;
3658 }
3659 }
3660
3661 list_for_each_entry_rcu(dev, head, dev_list) {
3662 if (!dev->bdev) {
3663 total_errors++;
3664 continue;
3665 }
3666 if (!dev->in_fs_metadata || !dev->writeable)
3667 continue;
3668
3669 btrfs_set_stack_device_generation(dev_item, 0);
3670 btrfs_set_stack_device_type(dev_item, dev->type);
3671 btrfs_set_stack_device_id(dev_item, dev->devid);
3672 btrfs_set_stack_device_total_bytes(dev_item,
3673 dev->commit_total_bytes);
3674 btrfs_set_stack_device_bytes_used(dev_item,
3675 dev->commit_bytes_used);
3676 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3677 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3678 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3679 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3680 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3681
3682 flags = btrfs_super_flags(sb);
3683 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3684
3685 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3686 if (ret)
3687 total_errors++;
3688 }
3689 if (total_errors > max_errors) {
3690 btrfs_err(root->fs_info, "%d errors while writing supers",
3691 total_errors);
3692 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3693
3694 /* FUA is masked off if unsupported and can't be the reason */
3695 btrfs_std_error(root->fs_info, -EIO,
3696 "%d errors while writing supers", total_errors);
3697 return -EIO;
3698 }
3699
3700 total_errors = 0;
3701 list_for_each_entry_rcu(dev, head, dev_list) {
3702 if (!dev->bdev)
3703 continue;
3704 if (!dev->in_fs_metadata || !dev->writeable)
3705 continue;
3706
3707 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3708 if (ret)
3709 total_errors++;
3710 }
3711 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3712 if (total_errors > max_errors) {
3713 btrfs_std_error(root->fs_info, -EIO,
3714 "%d errors while writing supers", total_errors);
3715 return -EIO;
3716 }
3717 return 0;
3718 }
3719
3720 int write_ctree_super(struct btrfs_trans_handle *trans,
3721 struct btrfs_root *root, int max_mirrors)
3722 {
3723 return write_all_supers(root, max_mirrors);
3724 }
3725
3726 /* Drop a fs root from the radix tree and free it. */
3727 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3728 struct btrfs_root *root)
3729 {
3730 spin_lock(&fs_info->fs_roots_radix_lock);
3731 radix_tree_delete(&fs_info->fs_roots_radix,
3732 (unsigned long)root->root_key.objectid);
3733 spin_unlock(&fs_info->fs_roots_radix_lock);
3734
3735 if (btrfs_root_refs(&root->root_item) == 0)
3736 synchronize_srcu(&fs_info->subvol_srcu);
3737
3738 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3739 btrfs_free_log(NULL, root);
3740
3741 if (root->free_ino_pinned)
3742 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3743 if (root->free_ino_ctl)
3744 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3745 free_fs_root(root);
3746 }
3747
3748 static void free_fs_root(struct btrfs_root *root)
3749 {
3750 iput(root->ino_cache_inode);
3751 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3752 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3753 root->orphan_block_rsv = NULL;
3754 if (root->anon_dev)
3755 free_anon_bdev(root->anon_dev);
3756 if (root->subv_writers)
3757 btrfs_free_subvolume_writers(root->subv_writers);
3758 free_extent_buffer(root->node);
3759 free_extent_buffer(root->commit_root);
3760 kfree(root->free_ino_ctl);
3761 kfree(root->free_ino_pinned);
3762 kfree(root->name);
3763 btrfs_put_fs_root(root);
3764 }
3765
3766 void btrfs_free_fs_root(struct btrfs_root *root)
3767 {
3768 free_fs_root(root);
3769 }
3770
3771 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3772 {
3773 u64 root_objectid = 0;
3774 struct btrfs_root *gang[8];
3775 int i = 0;
3776 int err = 0;
3777 unsigned int ret = 0;
3778 int index;
3779
3780 while (1) {
3781 index = srcu_read_lock(&fs_info->subvol_srcu);
3782 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3783 (void **)gang, root_objectid,
3784 ARRAY_SIZE(gang));
3785 if (!ret) {
3786 srcu_read_unlock(&fs_info->subvol_srcu, index);
3787 break;
3788 }
3789 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3790
3791 for (i = 0; i < ret; i++) {
3792 /* Avoid to grab roots in dead_roots */
3793 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3794 gang[i] = NULL;
3795 continue;
3796 }
3797 /* grab all the search result for later use */
3798 gang[i] = btrfs_grab_fs_root(gang[i]);
3799 }
3800 srcu_read_unlock(&fs_info->subvol_srcu, index);
3801
3802 for (i = 0; i < ret; i++) {
3803 if (!gang[i])
3804 continue;
3805 root_objectid = gang[i]->root_key.objectid;
3806 err = btrfs_orphan_cleanup(gang[i]);
3807 if (err)
3808 break;
3809 btrfs_put_fs_root(gang[i]);
3810 }
3811 root_objectid++;
3812 }
3813
3814 /* release the uncleaned roots due to error */
3815 for (; i < ret; i++) {
3816 if (gang[i])
3817 btrfs_put_fs_root(gang[i]);
3818 }
3819 return err;
3820 }
3821
3822 int btrfs_commit_super(struct btrfs_root *root)
3823 {
3824 struct btrfs_trans_handle *trans;
3825
3826 mutex_lock(&root->fs_info->cleaner_mutex);
3827 btrfs_run_delayed_iputs(root);
3828 mutex_unlock(&root->fs_info->cleaner_mutex);
3829 wake_up_process(root->fs_info->cleaner_kthread);
3830
3831 /* wait until ongoing cleanup work done */
3832 down_write(&root->fs_info->cleanup_work_sem);
3833 up_write(&root->fs_info->cleanup_work_sem);
3834
3835 trans = btrfs_join_transaction(root);
3836 if (IS_ERR(trans))
3837 return PTR_ERR(trans);
3838 return btrfs_commit_transaction(trans, root);
3839 }
3840
3841 void close_ctree(struct btrfs_root *root)
3842 {
3843 struct btrfs_fs_info *fs_info = root->fs_info;
3844 int ret;
3845
3846 fs_info->closing = 1;
3847 smp_mb();
3848
3849 /* wait for the qgroup rescan worker to stop */
3850 btrfs_qgroup_wait_for_completion(fs_info);
3851
3852 /* wait for the uuid_scan task to finish */
3853 down(&fs_info->uuid_tree_rescan_sem);
3854 /* avoid complains from lockdep et al., set sem back to initial state */
3855 up(&fs_info->uuid_tree_rescan_sem);
3856
3857 /* pause restriper - we want to resume on mount */
3858 btrfs_pause_balance(fs_info);
3859
3860 btrfs_dev_replace_suspend_for_unmount(fs_info);
3861
3862 btrfs_scrub_cancel(fs_info);
3863
3864 /* wait for any defraggers to finish */
3865 wait_event(fs_info->transaction_wait,
3866 (atomic_read(&fs_info->defrag_running) == 0));
3867
3868 /* clear out the rbtree of defraggable inodes */
3869 btrfs_cleanup_defrag_inodes(fs_info);
3870
3871 cancel_work_sync(&fs_info->async_reclaim_work);
3872
3873 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3874 /*
3875 * If the cleaner thread is stopped and there are
3876 * block groups queued for removal, the deletion will be
3877 * skipped when we quit the cleaner thread.
3878 */
3879 btrfs_delete_unused_bgs(root->fs_info);
3880
3881 ret = btrfs_commit_super(root);
3882 if (ret)
3883 btrfs_err(fs_info, "commit super ret %d", ret);
3884 }
3885
3886 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3887 btrfs_error_commit_super(root);
3888
3889 kthread_stop(fs_info->transaction_kthread);
3890 kthread_stop(fs_info->cleaner_kthread);
3891
3892 fs_info->closing = 2;
3893 smp_mb();
3894
3895 btrfs_free_qgroup_config(fs_info);
3896
3897 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3898 btrfs_info(fs_info, "at unmount delalloc count %lld",
3899 percpu_counter_sum(&fs_info->delalloc_bytes));
3900 }
3901
3902 btrfs_sysfs_remove_mounted(fs_info);
3903 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3904
3905 btrfs_free_fs_roots(fs_info);
3906
3907 btrfs_put_block_group_cache(fs_info);
3908
3909 btrfs_free_block_groups(fs_info);
3910
3911 /*
3912 * we must make sure there is not any read request to
3913 * submit after we stopping all workers.
3914 */
3915 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3916 btrfs_stop_all_workers(fs_info);
3917
3918 fs_info->open = 0;
3919 free_root_pointers(fs_info, 1);
3920
3921 iput(fs_info->btree_inode);
3922
3923 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3924 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3925 btrfsic_unmount(root, fs_info->fs_devices);
3926 #endif
3927
3928 btrfs_close_devices(fs_info->fs_devices);
3929 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3930
3931 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3932 percpu_counter_destroy(&fs_info->delalloc_bytes);
3933 percpu_counter_destroy(&fs_info->bio_counter);
3934 bdi_destroy(&fs_info->bdi);
3935 cleanup_srcu_struct(&fs_info->subvol_srcu);
3936
3937 btrfs_free_stripe_hash_table(fs_info);
3938
3939 __btrfs_free_block_rsv(root->orphan_block_rsv);
3940 root->orphan_block_rsv = NULL;
3941
3942 lock_chunks(root);
3943 while (!list_empty(&fs_info->pinned_chunks)) {
3944 struct extent_map *em;
3945
3946 em = list_first_entry(&fs_info->pinned_chunks,
3947 struct extent_map, list);
3948 list_del_init(&em->list);
3949 free_extent_map(em);
3950 }
3951 unlock_chunks(root);
3952 }
3953
3954 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3955 int atomic)
3956 {
3957 int ret;
3958 struct inode *btree_inode = buf->pages[0]->mapping->host;
3959
3960 ret = extent_buffer_uptodate(buf);
3961 if (!ret)
3962 return ret;
3963
3964 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3965 parent_transid, atomic);
3966 if (ret == -EAGAIN)
3967 return ret;
3968 return !ret;
3969 }
3970
3971 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3972 {
3973 struct btrfs_root *root;
3974 u64 transid = btrfs_header_generation(buf);
3975 int was_dirty;
3976
3977 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3978 /*
3979 * This is a fast path so only do this check if we have sanity tests
3980 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3981 * outside of the sanity tests.
3982 */
3983 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3984 return;
3985 #endif
3986 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3987 btrfs_assert_tree_locked(buf);
3988 if (transid != root->fs_info->generation)
3989 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3990 "found %llu running %llu\n",
3991 buf->start, transid, root->fs_info->generation);
3992 was_dirty = set_extent_buffer_dirty(buf);
3993 if (!was_dirty)
3994 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3995 buf->len,
3996 root->fs_info->dirty_metadata_batch);
3997 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3998 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3999 btrfs_print_leaf(root, buf);
4000 ASSERT(0);
4001 }
4002 #endif
4003 }
4004
4005 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4006 int flush_delayed)
4007 {
4008 /*
4009 * looks as though older kernels can get into trouble with
4010 * this code, they end up stuck in balance_dirty_pages forever
4011 */
4012 int ret;
4013
4014 if (current->flags & PF_MEMALLOC)
4015 return;
4016
4017 if (flush_delayed)
4018 btrfs_balance_delayed_items(root);
4019
4020 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4021 BTRFS_DIRTY_METADATA_THRESH);
4022 if (ret > 0) {
4023 balance_dirty_pages_ratelimited(
4024 root->fs_info->btree_inode->i_mapping);
4025 }
4026 }
4027
4028 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4029 {
4030 __btrfs_btree_balance_dirty(root, 1);
4031 }
4032
4033 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4034 {
4035 __btrfs_btree_balance_dirty(root, 0);
4036 }
4037
4038 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4039 {
4040 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4041 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4042 }
4043
4044 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4045 int read_only)
4046 {
4047 struct btrfs_super_block *sb = fs_info->super_copy;
4048 int ret = 0;
4049
4050 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4051 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4052 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4053 ret = -EINVAL;
4054 }
4055 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4056 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4057 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4058 ret = -EINVAL;
4059 }
4060 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4061 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4062 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4063 ret = -EINVAL;
4064 }
4065
4066 /*
4067 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4068 * items yet, they'll be verified later. Issue just a warning.
4069 */
4070 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4071 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4072 btrfs_super_root(sb));
4073 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4074 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4075 btrfs_super_chunk_root(sb));
4076 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4077 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4078 btrfs_super_log_root(sb));
4079
4080 /*
4081 * Check the lower bound, the alignment and other constraints are
4082 * checked later.
4083 */
4084 if (btrfs_super_nodesize(sb) < 4096) {
4085 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4086 btrfs_super_nodesize(sb));
4087 ret = -EINVAL;
4088 }
4089 if (btrfs_super_sectorsize(sb) < 4096) {
4090 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4091 btrfs_super_sectorsize(sb));
4092 ret = -EINVAL;
4093 }
4094
4095 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4096 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4097 fs_info->fsid, sb->dev_item.fsid);
4098 ret = -EINVAL;
4099 }
4100
4101 /*
4102 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4103 * done later
4104 */
4105 if (btrfs_super_num_devices(sb) > (1UL << 31))
4106 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4107 btrfs_super_num_devices(sb));
4108 if (btrfs_super_num_devices(sb) == 0) {
4109 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4110 ret = -EINVAL;
4111 }
4112
4113 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4114 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4115 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4116 ret = -EINVAL;
4117 }
4118
4119 /*
4120 * Obvious sys_chunk_array corruptions, it must hold at least one key
4121 * and one chunk
4122 */
4123 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4124 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4125 btrfs_super_sys_array_size(sb),
4126 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4127 ret = -EINVAL;
4128 }
4129 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4130 + sizeof(struct btrfs_chunk)) {
4131 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4132 btrfs_super_sys_array_size(sb),
4133 sizeof(struct btrfs_disk_key)
4134 + sizeof(struct btrfs_chunk));
4135 ret = -EINVAL;
4136 }
4137
4138 /*
4139 * The generation is a global counter, we'll trust it more than the others
4140 * but it's still possible that it's the one that's wrong.
4141 */
4142 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4143 printk(KERN_WARNING
4144 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4145 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4146 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4147 && btrfs_super_cache_generation(sb) != (u64)-1)
4148 printk(KERN_WARNING
4149 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4150 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4151
4152 return ret;
4153 }
4154
4155 static void btrfs_error_commit_super(struct btrfs_root *root)
4156 {
4157 mutex_lock(&root->fs_info->cleaner_mutex);
4158 btrfs_run_delayed_iputs(root);
4159 mutex_unlock(&root->fs_info->cleaner_mutex);
4160
4161 down_write(&root->fs_info->cleanup_work_sem);
4162 up_write(&root->fs_info->cleanup_work_sem);
4163
4164 /* cleanup FS via transaction */
4165 btrfs_cleanup_transaction(root);
4166 }
4167
4168 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4169 {
4170 struct btrfs_ordered_extent *ordered;
4171
4172 spin_lock(&root->ordered_extent_lock);
4173 /*
4174 * This will just short circuit the ordered completion stuff which will
4175 * make sure the ordered extent gets properly cleaned up.
4176 */
4177 list_for_each_entry(ordered, &root->ordered_extents,
4178 root_extent_list)
4179 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4180 spin_unlock(&root->ordered_extent_lock);
4181 }
4182
4183 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4184 {
4185 struct btrfs_root *root;
4186 struct list_head splice;
4187
4188 INIT_LIST_HEAD(&splice);
4189
4190 spin_lock(&fs_info->ordered_root_lock);
4191 list_splice_init(&fs_info->ordered_roots, &splice);
4192 while (!list_empty(&splice)) {
4193 root = list_first_entry(&splice, struct btrfs_root,
4194 ordered_root);
4195 list_move_tail(&root->ordered_root,
4196 &fs_info->ordered_roots);
4197
4198 spin_unlock(&fs_info->ordered_root_lock);
4199 btrfs_destroy_ordered_extents(root);
4200
4201 cond_resched();
4202 spin_lock(&fs_info->ordered_root_lock);
4203 }
4204 spin_unlock(&fs_info->ordered_root_lock);
4205 }
4206
4207 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4208 struct btrfs_root *root)
4209 {
4210 struct rb_node *node;
4211 struct btrfs_delayed_ref_root *delayed_refs;
4212 struct btrfs_delayed_ref_node *ref;
4213 int ret = 0;
4214
4215 delayed_refs = &trans->delayed_refs;
4216
4217 spin_lock(&delayed_refs->lock);
4218 if (atomic_read(&delayed_refs->num_entries) == 0) {
4219 spin_unlock(&delayed_refs->lock);
4220 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4221 return ret;
4222 }
4223
4224 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4225 struct btrfs_delayed_ref_head *head;
4226 struct btrfs_delayed_ref_node *tmp;
4227 bool pin_bytes = false;
4228
4229 head = rb_entry(node, struct btrfs_delayed_ref_head,
4230 href_node);
4231 if (!mutex_trylock(&head->mutex)) {
4232 atomic_inc(&head->node.refs);
4233 spin_unlock(&delayed_refs->lock);
4234
4235 mutex_lock(&head->mutex);
4236 mutex_unlock(&head->mutex);
4237 btrfs_put_delayed_ref(&head->node);
4238 spin_lock(&delayed_refs->lock);
4239 continue;
4240 }
4241 spin_lock(&head->lock);
4242 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4243 list) {
4244 ref->in_tree = 0;
4245 list_del(&ref->list);
4246 atomic_dec(&delayed_refs->num_entries);
4247 btrfs_put_delayed_ref(ref);
4248 }
4249 if (head->must_insert_reserved)
4250 pin_bytes = true;
4251 btrfs_free_delayed_extent_op(head->extent_op);
4252 delayed_refs->num_heads--;
4253 if (head->processing == 0)
4254 delayed_refs->num_heads_ready--;
4255 atomic_dec(&delayed_refs->num_entries);
4256 head->node.in_tree = 0;
4257 rb_erase(&head->href_node, &delayed_refs->href_root);
4258 spin_unlock(&head->lock);
4259 spin_unlock(&delayed_refs->lock);
4260 mutex_unlock(&head->mutex);
4261
4262 if (pin_bytes)
4263 btrfs_pin_extent(root, head->node.bytenr,
4264 head->node.num_bytes, 1);
4265 btrfs_put_delayed_ref(&head->node);
4266 cond_resched();
4267 spin_lock(&delayed_refs->lock);
4268 }
4269
4270 spin_unlock(&delayed_refs->lock);
4271
4272 return ret;
4273 }
4274
4275 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4276 {
4277 struct btrfs_inode *btrfs_inode;
4278 struct list_head splice;
4279
4280 INIT_LIST_HEAD(&splice);
4281
4282 spin_lock(&root->delalloc_lock);
4283 list_splice_init(&root->delalloc_inodes, &splice);
4284
4285 while (!list_empty(&splice)) {
4286 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4287 delalloc_inodes);
4288
4289 list_del_init(&btrfs_inode->delalloc_inodes);
4290 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4291 &btrfs_inode->runtime_flags);
4292 spin_unlock(&root->delalloc_lock);
4293
4294 btrfs_invalidate_inodes(btrfs_inode->root);
4295
4296 spin_lock(&root->delalloc_lock);
4297 }
4298
4299 spin_unlock(&root->delalloc_lock);
4300 }
4301
4302 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4303 {
4304 struct btrfs_root *root;
4305 struct list_head splice;
4306
4307 INIT_LIST_HEAD(&splice);
4308
4309 spin_lock(&fs_info->delalloc_root_lock);
4310 list_splice_init(&fs_info->delalloc_roots, &splice);
4311 while (!list_empty(&splice)) {
4312 root = list_first_entry(&splice, struct btrfs_root,
4313 delalloc_root);
4314 list_del_init(&root->delalloc_root);
4315 root = btrfs_grab_fs_root(root);
4316 BUG_ON(!root);
4317 spin_unlock(&fs_info->delalloc_root_lock);
4318
4319 btrfs_destroy_delalloc_inodes(root);
4320 btrfs_put_fs_root(root);
4321
4322 spin_lock(&fs_info->delalloc_root_lock);
4323 }
4324 spin_unlock(&fs_info->delalloc_root_lock);
4325 }
4326
4327 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4328 struct extent_io_tree *dirty_pages,
4329 int mark)
4330 {
4331 int ret;
4332 struct extent_buffer *eb;
4333 u64 start = 0;
4334 u64 end;
4335
4336 while (1) {
4337 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4338 mark, NULL);
4339 if (ret)
4340 break;
4341
4342 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4343 while (start <= end) {
4344 eb = btrfs_find_tree_block(root->fs_info, start);
4345 start += root->nodesize;
4346 if (!eb)
4347 continue;
4348 wait_on_extent_buffer_writeback(eb);
4349
4350 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4351 &eb->bflags))
4352 clear_extent_buffer_dirty(eb);
4353 free_extent_buffer_stale(eb);
4354 }
4355 }
4356
4357 return ret;
4358 }
4359
4360 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4361 struct extent_io_tree *pinned_extents)
4362 {
4363 struct extent_io_tree *unpin;
4364 u64 start;
4365 u64 end;
4366 int ret;
4367 bool loop = true;
4368
4369 unpin = pinned_extents;
4370 again:
4371 while (1) {
4372 ret = find_first_extent_bit(unpin, 0, &start, &end,
4373 EXTENT_DIRTY, NULL);
4374 if (ret)
4375 break;
4376
4377 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4378 btrfs_error_unpin_extent_range(root, start, end);
4379 cond_resched();
4380 }
4381
4382 if (loop) {
4383 if (unpin == &root->fs_info->freed_extents[0])
4384 unpin = &root->fs_info->freed_extents[1];
4385 else
4386 unpin = &root->fs_info->freed_extents[0];
4387 loop = false;
4388 goto again;
4389 }
4390
4391 return 0;
4392 }
4393
4394 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4395 struct btrfs_root *root)
4396 {
4397 btrfs_destroy_delayed_refs(cur_trans, root);
4398
4399 cur_trans->state = TRANS_STATE_COMMIT_START;
4400 wake_up(&root->fs_info->transaction_blocked_wait);
4401
4402 cur_trans->state = TRANS_STATE_UNBLOCKED;
4403 wake_up(&root->fs_info->transaction_wait);
4404
4405 btrfs_destroy_delayed_inodes(root);
4406 btrfs_assert_delayed_root_empty(root);
4407
4408 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4409 EXTENT_DIRTY);
4410 btrfs_destroy_pinned_extent(root,
4411 root->fs_info->pinned_extents);
4412
4413 cur_trans->state =TRANS_STATE_COMPLETED;
4414 wake_up(&cur_trans->commit_wait);
4415
4416 /*
4417 memset(cur_trans, 0, sizeof(*cur_trans));
4418 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4419 */
4420 }
4421
4422 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4423 {
4424 struct btrfs_transaction *t;
4425
4426 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4427
4428 spin_lock(&root->fs_info->trans_lock);
4429 while (!list_empty(&root->fs_info->trans_list)) {
4430 t = list_first_entry(&root->fs_info->trans_list,
4431 struct btrfs_transaction, list);
4432 if (t->state >= TRANS_STATE_COMMIT_START) {
4433 atomic_inc(&t->use_count);
4434 spin_unlock(&root->fs_info->trans_lock);
4435 btrfs_wait_for_commit(root, t->transid);
4436 btrfs_put_transaction(t);
4437 spin_lock(&root->fs_info->trans_lock);
4438 continue;
4439 }
4440 if (t == root->fs_info->running_transaction) {
4441 t->state = TRANS_STATE_COMMIT_DOING;
4442 spin_unlock(&root->fs_info->trans_lock);
4443 /*
4444 * We wait for 0 num_writers since we don't hold a trans
4445 * handle open currently for this transaction.
4446 */
4447 wait_event(t->writer_wait,
4448 atomic_read(&t->num_writers) == 0);
4449 } else {
4450 spin_unlock(&root->fs_info->trans_lock);
4451 }
4452 btrfs_cleanup_one_transaction(t, root);
4453
4454 spin_lock(&root->fs_info->trans_lock);
4455 if (t == root->fs_info->running_transaction)
4456 root->fs_info->running_transaction = NULL;
4457 list_del_init(&t->list);
4458 spin_unlock(&root->fs_info->trans_lock);
4459
4460 btrfs_put_transaction(t);
4461 trace_btrfs_transaction_commit(root);
4462 spin_lock(&root->fs_info->trans_lock);
4463 }
4464 spin_unlock(&root->fs_info->trans_lock);
4465 btrfs_destroy_all_ordered_extents(root->fs_info);
4466 btrfs_destroy_delayed_inodes(root);
4467 btrfs_assert_delayed_root_empty(root);
4468 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4469 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4470 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4471
4472 return 0;
4473 }
4474
4475 static const struct extent_io_ops btree_extent_io_ops = {
4476 .readpage_end_io_hook = btree_readpage_end_io_hook,
4477 .readpage_io_failed_hook = btree_io_failed_hook,
4478 .submit_bio_hook = btree_submit_bio_hook,
4479 /* note we're sharing with inode.c for the merge bio hook */
4480 .merge_bio_hook = btrfs_merge_bio_hook,
4481 };