]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/disk-io.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 int error;
136 };
137
138 /*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 # error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203 {
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226 {
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
230
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265 out:
266 return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 put_unaligned_le32(~crc, result);
277 }
278
279 /*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286 {
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X "
330 "level %d",
331 fs_info->sb->s_id, buf->start,
332 val, found, btrfs_header_level(buf));
333 if (result != (char *)&inline_result)
334 kfree(result);
335 return -EUCLEAN;
336 }
337 } else {
338 write_extent_buffer(buf, result, 0, csum_size);
339 }
340 if (result != (char *)&inline_result)
341 kfree(result);
342 return 0;
343 }
344
345 /*
346 * we can't consider a given block up to date unless the transid of the
347 * block matches the transid in the parent node's pointer. This is how we
348 * detect blocks that either didn't get written at all or got written
349 * in the wrong place.
350 */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352 struct extent_buffer *eb, u64 parent_transid,
353 int atomic)
354 {
355 struct extent_state *cached_state = NULL;
356 int ret;
357 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358
359 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 return 0;
361
362 if (atomic)
363 return -EAGAIN;
364
365 if (need_lock) {
366 btrfs_tree_read_lock(eb);
367 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 }
369
370 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 &cached_state);
372 if (extent_buffer_uptodate(eb) &&
373 btrfs_header_generation(eb) == parent_transid) {
374 ret = 0;
375 goto out;
376 }
377 btrfs_err_rl(eb->fs_info,
378 "parent transid verify failed on %llu wanted %llu found %llu",
379 eb->start,
380 parent_transid, btrfs_header_generation(eb));
381 ret = 1;
382
383 /*
384 * Things reading via commit roots that don't have normal protection,
385 * like send, can have a really old block in cache that may point at a
386 * block that has been freed and re-allocated. So don't clear uptodate
387 * if we find an eb that is under IO (dirty/writeback) because we could
388 * end up reading in the stale data and then writing it back out and
389 * making everybody very sad.
390 */
391 if (!extent_buffer_under_io(eb))
392 clear_extent_buffer_uptodate(eb);
393 out:
394 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 &cached_state, GFP_NOFS);
396 if (need_lock)
397 btrfs_tree_read_unlock_blocking(eb);
398 return ret;
399 }
400
401 /*
402 * Return 0 if the superblock checksum type matches the checksum value of that
403 * algorithm. Pass the raw disk superblock data.
404 */
405 static int btrfs_check_super_csum(char *raw_disk_sb)
406 {
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437 }
438
439 /*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
445 u64 start, u64 parent_transid)
446 {
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, start,
458 WAIT_COMPLETE,
459 btree_get_extent, mirror_num);
460 if (!ret) {
461 if (!verify_parent_transid(io_tree, eb,
462 parent_transid, 0))
463 break;
464 else
465 ret = -EIO;
466 }
467
468 /*
469 * This buffer's crc is fine, but its contents are corrupted, so
470 * there is no reason to read the other copies, they won't be
471 * any less wrong.
472 */
473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 break;
475
476 num_copies = btrfs_num_copies(root->fs_info,
477 eb->start, eb->len);
478 if (num_copies == 1)
479 break;
480
481 if (!failed_mirror) {
482 failed = 1;
483 failed_mirror = eb->read_mirror;
484 }
485
486 mirror_num++;
487 if (mirror_num == failed_mirror)
488 mirror_num++;
489
490 if (mirror_num > num_copies)
491 break;
492 }
493
494 if (failed && !ret && failed_mirror)
495 repair_eb_io_failure(root, eb, failed_mirror);
496
497 return ret;
498 }
499
500 /*
501 * checksum a dirty tree block before IO. This has extra checks to make sure
502 * we only fill in the checksum field in the first page of a multi-page block
503 */
504
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 u64 start = page_offset(page);
508 u64 found_start;
509 struct extent_buffer *eb;
510
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
514
515 found_start = btrfs_header_bytenr(eb);
516 /*
517 * Please do not consolidate these warnings into a single if.
518 * It is useful to know what went wrong.
519 */
520 if (WARN_ON(found_start != start))
521 return -EUCLEAN;
522 if (WARN_ON(!PageUptodate(page)))
523 return -EUCLEAN;
524
525 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
528 return csum_tree_block(fs_info, eb, 0);
529 }
530
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532 struct extent_buffer *eb)
533 {
534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535 u8 fsid[BTRFS_UUID_SIZE];
536 int ret = 1;
537
538 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 while (fs_devices) {
540 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 ret = 0;
542 break;
543 }
544 fs_devices = fs_devices->seed;
545 }
546 return ret;
547 }
548
549 #define CORRUPT(reason, eb, root, slot) \
550 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
551 "root=%llu, slot=%d", reason, \
552 btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556 {
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
562 if (nritems == 0)
563 return 0;
564
565 /* Check the 0 item */
566 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
567 BTRFS_LEAF_DATA_SIZE(root)) {
568 CORRUPT("invalid item offset size pair", leaf, root, 0);
569 return -EIO;
570 }
571
572 /*
573 * Check to make sure each items keys are in the correct order and their
574 * offsets make sense. We only have to loop through nritems-1 because
575 * we check the current slot against the next slot, which verifies the
576 * next slot's offset+size makes sense and that the current's slot
577 * offset is correct.
578 */
579 for (slot = 0; slot < nritems - 1; slot++) {
580 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
581 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
582
583 /* Make sure the keys are in the right order */
584 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
585 CORRUPT("bad key order", leaf, root, slot);
586 return -EIO;
587 }
588
589 /*
590 * Make sure the offset and ends are right, remember that the
591 * item data starts at the end of the leaf and grows towards the
592 * front.
593 */
594 if (btrfs_item_offset_nr(leaf, slot) !=
595 btrfs_item_end_nr(leaf, slot + 1)) {
596 CORRUPT("slot offset bad", leaf, root, slot);
597 return -EIO;
598 }
599
600 /*
601 * Check to make sure that we don't point outside of the leaf,
602 * just in case all the items are consistent to each other, but
603 * all point outside of the leaf.
604 */
605 if (btrfs_item_end_nr(leaf, slot) >
606 BTRFS_LEAF_DATA_SIZE(root)) {
607 CORRUPT("slot end outside of leaf", leaf, root, slot);
608 return -EIO;
609 }
610 }
611
612 return 0;
613 }
614
615 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
616 u64 phy_offset, struct page *page,
617 u64 start, u64 end, int mirror)
618 {
619 u64 found_start;
620 int found_level;
621 struct extent_buffer *eb;
622 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
623 struct btrfs_fs_info *fs_info = root->fs_info;
624 int ret = 0;
625 int reads_done;
626
627 if (!page->private)
628 goto out;
629
630 eb = (struct extent_buffer *)page->private;
631
632 /* the pending IO might have been the only thing that kept this buffer
633 * in memory. Make sure we have a ref for all this other checks
634 */
635 extent_buffer_get(eb);
636
637 reads_done = atomic_dec_and_test(&eb->io_pages);
638 if (!reads_done)
639 goto err;
640
641 eb->read_mirror = mirror;
642 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
643 ret = -EIO;
644 goto err;
645 }
646
647 found_start = btrfs_header_bytenr(eb);
648 if (found_start != eb->start) {
649 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
650 found_start, eb->start);
651 ret = -EIO;
652 goto err;
653 }
654 if (check_tree_block_fsid(fs_info, eb)) {
655 btrfs_err_rl(fs_info, "bad fsid on block %llu",
656 eb->start);
657 ret = -EIO;
658 goto err;
659 }
660 found_level = btrfs_header_level(eb);
661 if (found_level >= BTRFS_MAX_LEVEL) {
662 btrfs_err(fs_info, "bad tree block level %d",
663 (int)btrfs_header_level(eb));
664 ret = -EIO;
665 goto err;
666 }
667
668 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
669 eb, found_level);
670
671 ret = csum_tree_block(fs_info, eb, 1);
672 if (ret)
673 goto err;
674
675 /*
676 * If this is a leaf block and it is corrupt, set the corrupt bit so
677 * that we don't try and read the other copies of this block, just
678 * return -EIO.
679 */
680 if (found_level == 0 && check_leaf(root, eb)) {
681 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
682 ret = -EIO;
683 }
684
685 if (!ret)
686 set_extent_buffer_uptodate(eb);
687 err:
688 if (reads_done &&
689 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690 btree_readahead_hook(fs_info, eb, eb->start, ret);
691
692 if (ret) {
693 /*
694 * our io error hook is going to dec the io pages
695 * again, we have to make sure it has something
696 * to decrement
697 */
698 atomic_inc(&eb->io_pages);
699 clear_extent_buffer_uptodate(eb);
700 }
701 free_extent_buffer(eb);
702 out:
703 return ret;
704 }
705
706 static int btree_io_failed_hook(struct page *page, int failed_mirror)
707 {
708 struct extent_buffer *eb;
709
710 eb = (struct extent_buffer *)page->private;
711 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
712 eb->read_mirror = failed_mirror;
713 atomic_dec(&eb->io_pages);
714 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
715 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
716 return -EIO; /* we fixed nothing */
717 }
718
719 static void end_workqueue_bio(struct bio *bio)
720 {
721 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
722 struct btrfs_fs_info *fs_info;
723 struct btrfs_workqueue *wq;
724 btrfs_work_func_t func;
725
726 fs_info = end_io_wq->info;
727 end_io_wq->error = bio->bi_error;
728
729 if (bio_op(bio) == REQ_OP_WRITE) {
730 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
731 wq = fs_info->endio_meta_write_workers;
732 func = btrfs_endio_meta_write_helper;
733 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
734 wq = fs_info->endio_freespace_worker;
735 func = btrfs_freespace_write_helper;
736 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
737 wq = fs_info->endio_raid56_workers;
738 func = btrfs_endio_raid56_helper;
739 } else {
740 wq = fs_info->endio_write_workers;
741 func = btrfs_endio_write_helper;
742 }
743 } else {
744 if (unlikely(end_io_wq->metadata ==
745 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
746 wq = fs_info->endio_repair_workers;
747 func = btrfs_endio_repair_helper;
748 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
749 wq = fs_info->endio_raid56_workers;
750 func = btrfs_endio_raid56_helper;
751 } else if (end_io_wq->metadata) {
752 wq = fs_info->endio_meta_workers;
753 func = btrfs_endio_meta_helper;
754 } else {
755 wq = fs_info->endio_workers;
756 func = btrfs_endio_helper;
757 }
758 }
759
760 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
761 btrfs_queue_work(wq, &end_io_wq->work);
762 }
763
764 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
765 enum btrfs_wq_endio_type metadata)
766 {
767 struct btrfs_end_io_wq *end_io_wq;
768
769 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
770 if (!end_io_wq)
771 return -ENOMEM;
772
773 end_io_wq->private = bio->bi_private;
774 end_io_wq->end_io = bio->bi_end_io;
775 end_io_wq->info = info;
776 end_io_wq->error = 0;
777 end_io_wq->bio = bio;
778 end_io_wq->metadata = metadata;
779
780 bio->bi_private = end_io_wq;
781 bio->bi_end_io = end_workqueue_bio;
782 return 0;
783 }
784
785 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
786 {
787 unsigned long limit = min_t(unsigned long,
788 info->thread_pool_size,
789 info->fs_devices->open_devices);
790 return 256 * limit;
791 }
792
793 static void run_one_async_start(struct btrfs_work *work)
794 {
795 struct async_submit_bio *async;
796 int ret;
797
798 async = container_of(work, struct async_submit_bio, work);
799 ret = async->submit_bio_start(async->inode, async->bio,
800 async->mirror_num, async->bio_flags,
801 async->bio_offset);
802 if (ret)
803 async->error = ret;
804 }
805
806 static void run_one_async_done(struct btrfs_work *work)
807 {
808 struct btrfs_fs_info *fs_info;
809 struct async_submit_bio *async;
810 int limit;
811
812 async = container_of(work, struct async_submit_bio, work);
813 fs_info = BTRFS_I(async->inode)->root->fs_info;
814
815 limit = btrfs_async_submit_limit(fs_info);
816 limit = limit * 2 / 3;
817
818 /*
819 * atomic_dec_return implies a barrier for waitqueue_active
820 */
821 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
822 waitqueue_active(&fs_info->async_submit_wait))
823 wake_up(&fs_info->async_submit_wait);
824
825 /* If an error occurred we just want to clean up the bio and move on */
826 if (async->error) {
827 async->bio->bi_error = async->error;
828 bio_endio(async->bio);
829 return;
830 }
831
832 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
833 async->bio_flags, async->bio_offset);
834 }
835
836 static void run_one_async_free(struct btrfs_work *work)
837 {
838 struct async_submit_bio *async;
839
840 async = container_of(work, struct async_submit_bio, work);
841 kfree(async);
842 }
843
844 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
845 struct bio *bio, int mirror_num,
846 unsigned long bio_flags,
847 u64 bio_offset,
848 extent_submit_bio_hook_t *submit_bio_start,
849 extent_submit_bio_hook_t *submit_bio_done)
850 {
851 struct async_submit_bio *async;
852
853 async = kmalloc(sizeof(*async), GFP_NOFS);
854 if (!async)
855 return -ENOMEM;
856
857 async->inode = inode;
858 async->bio = bio;
859 async->mirror_num = mirror_num;
860 async->submit_bio_start = submit_bio_start;
861 async->submit_bio_done = submit_bio_done;
862
863 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
864 run_one_async_done, run_one_async_free);
865
866 async->bio_flags = bio_flags;
867 async->bio_offset = bio_offset;
868
869 async->error = 0;
870
871 atomic_inc(&fs_info->nr_async_submits);
872
873 if (bio->bi_rw & REQ_SYNC)
874 btrfs_set_work_high_priority(&async->work);
875
876 btrfs_queue_work(fs_info->workers, &async->work);
877
878 while (atomic_read(&fs_info->async_submit_draining) &&
879 atomic_read(&fs_info->nr_async_submits)) {
880 wait_event(fs_info->async_submit_wait,
881 (atomic_read(&fs_info->nr_async_submits) == 0));
882 }
883
884 return 0;
885 }
886
887 static int btree_csum_one_bio(struct bio *bio)
888 {
889 struct bio_vec *bvec;
890 struct btrfs_root *root;
891 int i, ret = 0;
892
893 bio_for_each_segment_all(bvec, bio, i) {
894 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
895 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
896 if (ret)
897 break;
898 }
899
900 return ret;
901 }
902
903 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
904 int mirror_num, unsigned long bio_flags,
905 u64 bio_offset)
906 {
907 /*
908 * when we're called for a write, we're already in the async
909 * submission context. Just jump into btrfs_map_bio
910 */
911 return btree_csum_one_bio(bio);
912 }
913
914 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
915 int mirror_num, unsigned long bio_flags,
916 u64 bio_offset)
917 {
918 int ret;
919
920 /*
921 * when we're called for a write, we're already in the async
922 * submission context. Just jump into btrfs_map_bio
923 */
924 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
925 if (ret) {
926 bio->bi_error = ret;
927 bio_endio(bio);
928 }
929 return ret;
930 }
931
932 static int check_async_write(struct inode *inode, unsigned long bio_flags)
933 {
934 if (bio_flags & EXTENT_BIO_TREE_LOG)
935 return 0;
936 #ifdef CONFIG_X86
937 if (static_cpu_has(X86_FEATURE_XMM4_2))
938 return 0;
939 #endif
940 return 1;
941 }
942
943 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
944 int mirror_num, unsigned long bio_flags,
945 u64 bio_offset)
946 {
947 int async = check_async_write(inode, bio_flags);
948 int ret;
949
950 if (bio_op(bio) != REQ_OP_WRITE) {
951 /*
952 * called for a read, do the setup so that checksum validation
953 * can happen in the async kernel threads
954 */
955 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
956 bio, BTRFS_WQ_ENDIO_METADATA);
957 if (ret)
958 goto out_w_error;
959 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
960 } else if (!async) {
961 ret = btree_csum_one_bio(bio);
962 if (ret)
963 goto out_w_error;
964 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
965 } else {
966 /*
967 * kthread helpers are used to submit writes so that
968 * checksumming can happen in parallel across all CPUs
969 */
970 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
971 inode, bio, mirror_num, 0,
972 bio_offset,
973 __btree_submit_bio_start,
974 __btree_submit_bio_done);
975 }
976
977 if (ret)
978 goto out_w_error;
979 return 0;
980
981 out_w_error:
982 bio->bi_error = ret;
983 bio_endio(bio);
984 return ret;
985 }
986
987 #ifdef CONFIG_MIGRATION
988 static int btree_migratepage(struct address_space *mapping,
989 struct page *newpage, struct page *page,
990 enum migrate_mode mode)
991 {
992 /*
993 * we can't safely write a btree page from here,
994 * we haven't done the locking hook
995 */
996 if (PageDirty(page))
997 return -EAGAIN;
998 /*
999 * Buffers may be managed in a filesystem specific way.
1000 * We must have no buffers or drop them.
1001 */
1002 if (page_has_private(page) &&
1003 !try_to_release_page(page, GFP_KERNEL))
1004 return -EAGAIN;
1005 return migrate_page(mapping, newpage, page, mode);
1006 }
1007 #endif
1008
1009
1010 static int btree_writepages(struct address_space *mapping,
1011 struct writeback_control *wbc)
1012 {
1013 struct btrfs_fs_info *fs_info;
1014 int ret;
1015
1016 if (wbc->sync_mode == WB_SYNC_NONE) {
1017
1018 if (wbc->for_kupdate)
1019 return 0;
1020
1021 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1022 /* this is a bit racy, but that's ok */
1023 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1024 BTRFS_DIRTY_METADATA_THRESH);
1025 if (ret < 0)
1026 return 0;
1027 }
1028 return btree_write_cache_pages(mapping, wbc);
1029 }
1030
1031 static int btree_readpage(struct file *file, struct page *page)
1032 {
1033 struct extent_io_tree *tree;
1034 tree = &BTRFS_I(page->mapping->host)->io_tree;
1035 return extent_read_full_page(tree, page, btree_get_extent, 0);
1036 }
1037
1038 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1039 {
1040 if (PageWriteback(page) || PageDirty(page))
1041 return 0;
1042
1043 return try_release_extent_buffer(page);
1044 }
1045
1046 static void btree_invalidatepage(struct page *page, unsigned int offset,
1047 unsigned int length)
1048 {
1049 struct extent_io_tree *tree;
1050 tree = &BTRFS_I(page->mapping->host)->io_tree;
1051 extent_invalidatepage(tree, page, offset);
1052 btree_releasepage(page, GFP_NOFS);
1053 if (PagePrivate(page)) {
1054 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1055 "page private not zero on page %llu",
1056 (unsigned long long)page_offset(page));
1057 ClearPagePrivate(page);
1058 set_page_private(page, 0);
1059 put_page(page);
1060 }
1061 }
1062
1063 static int btree_set_page_dirty(struct page *page)
1064 {
1065 #ifdef DEBUG
1066 struct extent_buffer *eb;
1067
1068 BUG_ON(!PagePrivate(page));
1069 eb = (struct extent_buffer *)page->private;
1070 BUG_ON(!eb);
1071 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1072 BUG_ON(!atomic_read(&eb->refs));
1073 btrfs_assert_tree_locked(eb);
1074 #endif
1075 return __set_page_dirty_nobuffers(page);
1076 }
1077
1078 static const struct address_space_operations btree_aops = {
1079 .readpage = btree_readpage,
1080 .writepages = btree_writepages,
1081 .releasepage = btree_releasepage,
1082 .invalidatepage = btree_invalidatepage,
1083 #ifdef CONFIG_MIGRATION
1084 .migratepage = btree_migratepage,
1085 #endif
1086 .set_page_dirty = btree_set_page_dirty,
1087 };
1088
1089 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1090 {
1091 struct extent_buffer *buf = NULL;
1092 struct inode *btree_inode = root->fs_info->btree_inode;
1093
1094 buf = btrfs_find_create_tree_block(root, bytenr);
1095 if (IS_ERR(buf))
1096 return;
1097 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1098 buf, 0, WAIT_NONE, btree_get_extent, 0);
1099 free_extent_buffer(buf);
1100 }
1101
1102 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1103 int mirror_num, struct extent_buffer **eb)
1104 {
1105 struct extent_buffer *buf = NULL;
1106 struct inode *btree_inode = root->fs_info->btree_inode;
1107 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1108 int ret;
1109
1110 buf = btrfs_find_create_tree_block(root, bytenr);
1111 if (IS_ERR(buf))
1112 return 0;
1113
1114 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1115
1116 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1117 btree_get_extent, mirror_num);
1118 if (ret) {
1119 free_extent_buffer(buf);
1120 return ret;
1121 }
1122
1123 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1124 free_extent_buffer(buf);
1125 return -EIO;
1126 } else if (extent_buffer_uptodate(buf)) {
1127 *eb = buf;
1128 } else {
1129 free_extent_buffer(buf);
1130 }
1131 return 0;
1132 }
1133
1134 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1135 u64 bytenr)
1136 {
1137 return find_extent_buffer(fs_info, bytenr);
1138 }
1139
1140 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1141 u64 bytenr)
1142 {
1143 if (btrfs_test_is_dummy_root(root))
1144 return alloc_test_extent_buffer(root->fs_info, bytenr,
1145 root->nodesize);
1146 return alloc_extent_buffer(root->fs_info, bytenr);
1147 }
1148
1149
1150 int btrfs_write_tree_block(struct extent_buffer *buf)
1151 {
1152 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1153 buf->start + buf->len - 1);
1154 }
1155
1156 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1157 {
1158 return filemap_fdatawait_range(buf->pages[0]->mapping,
1159 buf->start, buf->start + buf->len - 1);
1160 }
1161
1162 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1163 u64 parent_transid)
1164 {
1165 struct extent_buffer *buf = NULL;
1166 int ret;
1167
1168 buf = btrfs_find_create_tree_block(root, bytenr);
1169 if (IS_ERR(buf))
1170 return buf;
1171
1172 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1173 if (ret) {
1174 free_extent_buffer(buf);
1175 return ERR_PTR(ret);
1176 }
1177 return buf;
1178
1179 }
1180
1181 void clean_tree_block(struct btrfs_trans_handle *trans,
1182 struct btrfs_fs_info *fs_info,
1183 struct extent_buffer *buf)
1184 {
1185 if (btrfs_header_generation(buf) ==
1186 fs_info->running_transaction->transid) {
1187 btrfs_assert_tree_locked(buf);
1188
1189 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1190 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1191 -buf->len,
1192 fs_info->dirty_metadata_batch);
1193 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1194 btrfs_set_lock_blocking(buf);
1195 clear_extent_buffer_dirty(buf);
1196 }
1197 }
1198 }
1199
1200 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1201 {
1202 struct btrfs_subvolume_writers *writers;
1203 int ret;
1204
1205 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1206 if (!writers)
1207 return ERR_PTR(-ENOMEM);
1208
1209 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1210 if (ret < 0) {
1211 kfree(writers);
1212 return ERR_PTR(ret);
1213 }
1214
1215 init_waitqueue_head(&writers->wait);
1216 return writers;
1217 }
1218
1219 static void
1220 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1221 {
1222 percpu_counter_destroy(&writers->counter);
1223 kfree(writers);
1224 }
1225
1226 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1227 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1228 u64 objectid)
1229 {
1230 root->node = NULL;
1231 root->commit_root = NULL;
1232 root->sectorsize = sectorsize;
1233 root->nodesize = nodesize;
1234 root->stripesize = stripesize;
1235 root->state = 0;
1236 root->orphan_cleanup_state = 0;
1237
1238 root->objectid = objectid;
1239 root->last_trans = 0;
1240 root->highest_objectid = 0;
1241 root->nr_delalloc_inodes = 0;
1242 root->nr_ordered_extents = 0;
1243 root->name = NULL;
1244 root->inode_tree = RB_ROOT;
1245 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1246 root->block_rsv = NULL;
1247 root->orphan_block_rsv = NULL;
1248
1249 INIT_LIST_HEAD(&root->dirty_list);
1250 INIT_LIST_HEAD(&root->root_list);
1251 INIT_LIST_HEAD(&root->delalloc_inodes);
1252 INIT_LIST_HEAD(&root->delalloc_root);
1253 INIT_LIST_HEAD(&root->ordered_extents);
1254 INIT_LIST_HEAD(&root->ordered_root);
1255 INIT_LIST_HEAD(&root->logged_list[0]);
1256 INIT_LIST_HEAD(&root->logged_list[1]);
1257 spin_lock_init(&root->orphan_lock);
1258 spin_lock_init(&root->inode_lock);
1259 spin_lock_init(&root->delalloc_lock);
1260 spin_lock_init(&root->ordered_extent_lock);
1261 spin_lock_init(&root->accounting_lock);
1262 spin_lock_init(&root->log_extents_lock[0]);
1263 spin_lock_init(&root->log_extents_lock[1]);
1264 mutex_init(&root->objectid_mutex);
1265 mutex_init(&root->log_mutex);
1266 mutex_init(&root->ordered_extent_mutex);
1267 mutex_init(&root->delalloc_mutex);
1268 init_waitqueue_head(&root->log_writer_wait);
1269 init_waitqueue_head(&root->log_commit_wait[0]);
1270 init_waitqueue_head(&root->log_commit_wait[1]);
1271 INIT_LIST_HEAD(&root->log_ctxs[0]);
1272 INIT_LIST_HEAD(&root->log_ctxs[1]);
1273 atomic_set(&root->log_commit[0], 0);
1274 atomic_set(&root->log_commit[1], 0);
1275 atomic_set(&root->log_writers, 0);
1276 atomic_set(&root->log_batch, 0);
1277 atomic_set(&root->orphan_inodes, 0);
1278 atomic_set(&root->refs, 1);
1279 atomic_set(&root->will_be_snapshoted, 0);
1280 atomic_set(&root->qgroup_meta_rsv, 0);
1281 root->log_transid = 0;
1282 root->log_transid_committed = -1;
1283 root->last_log_commit = 0;
1284 if (fs_info)
1285 extent_io_tree_init(&root->dirty_log_pages,
1286 fs_info->btree_inode->i_mapping);
1287
1288 memset(&root->root_key, 0, sizeof(root->root_key));
1289 memset(&root->root_item, 0, sizeof(root->root_item));
1290 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1291 if (fs_info)
1292 root->defrag_trans_start = fs_info->generation;
1293 else
1294 root->defrag_trans_start = 0;
1295 root->root_key.objectid = objectid;
1296 root->anon_dev = 0;
1297
1298 spin_lock_init(&root->root_item_lock);
1299 }
1300
1301 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1302 gfp_t flags)
1303 {
1304 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1305 if (root)
1306 root->fs_info = fs_info;
1307 return root;
1308 }
1309
1310 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1311 /* Should only be used by the testing infrastructure */
1312 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize)
1313 {
1314 struct btrfs_root *root;
1315
1316 root = btrfs_alloc_root(NULL, GFP_KERNEL);
1317 if (!root)
1318 return ERR_PTR(-ENOMEM);
1319 /* We don't use the stripesize in selftest, set it as sectorsize */
1320 __setup_root(nodesize, sectorsize, sectorsize, root, NULL,
1321 BTRFS_ROOT_TREE_OBJECTID);
1322 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1323 root->alloc_bytenr = 0;
1324
1325 return root;
1326 }
1327 #endif
1328
1329 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1330 struct btrfs_fs_info *fs_info,
1331 u64 objectid)
1332 {
1333 struct extent_buffer *leaf;
1334 struct btrfs_root *tree_root = fs_info->tree_root;
1335 struct btrfs_root *root;
1336 struct btrfs_key key;
1337 int ret = 0;
1338 uuid_le uuid;
1339
1340 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1341 if (!root)
1342 return ERR_PTR(-ENOMEM);
1343
1344 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1345 tree_root->stripesize, root, fs_info, objectid);
1346 root->root_key.objectid = objectid;
1347 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1348 root->root_key.offset = 0;
1349
1350 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1351 if (IS_ERR(leaf)) {
1352 ret = PTR_ERR(leaf);
1353 leaf = NULL;
1354 goto fail;
1355 }
1356
1357 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1358 btrfs_set_header_bytenr(leaf, leaf->start);
1359 btrfs_set_header_generation(leaf, trans->transid);
1360 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1361 btrfs_set_header_owner(leaf, objectid);
1362 root->node = leaf;
1363
1364 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1365 BTRFS_FSID_SIZE);
1366 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1367 btrfs_header_chunk_tree_uuid(leaf),
1368 BTRFS_UUID_SIZE);
1369 btrfs_mark_buffer_dirty(leaf);
1370
1371 root->commit_root = btrfs_root_node(root);
1372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1373
1374 root->root_item.flags = 0;
1375 root->root_item.byte_limit = 0;
1376 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1377 btrfs_set_root_generation(&root->root_item, trans->transid);
1378 btrfs_set_root_level(&root->root_item, 0);
1379 btrfs_set_root_refs(&root->root_item, 1);
1380 btrfs_set_root_used(&root->root_item, leaf->len);
1381 btrfs_set_root_last_snapshot(&root->root_item, 0);
1382 btrfs_set_root_dirid(&root->root_item, 0);
1383 uuid_le_gen(&uuid);
1384 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1385 root->root_item.drop_level = 0;
1386
1387 key.objectid = objectid;
1388 key.type = BTRFS_ROOT_ITEM_KEY;
1389 key.offset = 0;
1390 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1391 if (ret)
1392 goto fail;
1393
1394 btrfs_tree_unlock(leaf);
1395
1396 return root;
1397
1398 fail:
1399 if (leaf) {
1400 btrfs_tree_unlock(leaf);
1401 free_extent_buffer(root->commit_root);
1402 free_extent_buffer(leaf);
1403 }
1404 kfree(root);
1405
1406 return ERR_PTR(ret);
1407 }
1408
1409 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1410 struct btrfs_fs_info *fs_info)
1411 {
1412 struct btrfs_root *root;
1413 struct btrfs_root *tree_root = fs_info->tree_root;
1414 struct extent_buffer *leaf;
1415
1416 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1417 if (!root)
1418 return ERR_PTR(-ENOMEM);
1419
1420 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1421 tree_root->stripesize, root, fs_info,
1422 BTRFS_TREE_LOG_OBJECTID);
1423
1424 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1425 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1426 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1427
1428 /*
1429 * DON'T set REF_COWS for log trees
1430 *
1431 * log trees do not get reference counted because they go away
1432 * before a real commit is actually done. They do store pointers
1433 * to file data extents, and those reference counts still get
1434 * updated (along with back refs to the log tree).
1435 */
1436
1437 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1438 NULL, 0, 0, 0);
1439 if (IS_ERR(leaf)) {
1440 kfree(root);
1441 return ERR_CAST(leaf);
1442 }
1443
1444 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1445 btrfs_set_header_bytenr(leaf, leaf->start);
1446 btrfs_set_header_generation(leaf, trans->transid);
1447 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1448 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1449 root->node = leaf;
1450
1451 write_extent_buffer(root->node, root->fs_info->fsid,
1452 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1453 btrfs_mark_buffer_dirty(root->node);
1454 btrfs_tree_unlock(root->node);
1455 return root;
1456 }
1457
1458 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1459 struct btrfs_fs_info *fs_info)
1460 {
1461 struct btrfs_root *log_root;
1462
1463 log_root = alloc_log_tree(trans, fs_info);
1464 if (IS_ERR(log_root))
1465 return PTR_ERR(log_root);
1466 WARN_ON(fs_info->log_root_tree);
1467 fs_info->log_root_tree = log_root;
1468 return 0;
1469 }
1470
1471 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1472 struct btrfs_root *root)
1473 {
1474 struct btrfs_root *log_root;
1475 struct btrfs_inode_item *inode_item;
1476
1477 log_root = alloc_log_tree(trans, root->fs_info);
1478 if (IS_ERR(log_root))
1479 return PTR_ERR(log_root);
1480
1481 log_root->last_trans = trans->transid;
1482 log_root->root_key.offset = root->root_key.objectid;
1483
1484 inode_item = &log_root->root_item.inode;
1485 btrfs_set_stack_inode_generation(inode_item, 1);
1486 btrfs_set_stack_inode_size(inode_item, 3);
1487 btrfs_set_stack_inode_nlink(inode_item, 1);
1488 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1489 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1490
1491 btrfs_set_root_node(&log_root->root_item, log_root->node);
1492
1493 WARN_ON(root->log_root);
1494 root->log_root = log_root;
1495 root->log_transid = 0;
1496 root->log_transid_committed = -1;
1497 root->last_log_commit = 0;
1498 return 0;
1499 }
1500
1501 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1502 struct btrfs_key *key)
1503 {
1504 struct btrfs_root *root;
1505 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1506 struct btrfs_path *path;
1507 u64 generation;
1508 int ret;
1509
1510 path = btrfs_alloc_path();
1511 if (!path)
1512 return ERR_PTR(-ENOMEM);
1513
1514 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1515 if (!root) {
1516 ret = -ENOMEM;
1517 goto alloc_fail;
1518 }
1519
1520 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1521 tree_root->stripesize, root, fs_info, key->objectid);
1522
1523 ret = btrfs_find_root(tree_root, key, path,
1524 &root->root_item, &root->root_key);
1525 if (ret) {
1526 if (ret > 0)
1527 ret = -ENOENT;
1528 goto find_fail;
1529 }
1530
1531 generation = btrfs_root_generation(&root->root_item);
1532 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1533 generation);
1534 if (IS_ERR(root->node)) {
1535 ret = PTR_ERR(root->node);
1536 goto find_fail;
1537 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1538 ret = -EIO;
1539 free_extent_buffer(root->node);
1540 goto find_fail;
1541 }
1542 root->commit_root = btrfs_root_node(root);
1543 out:
1544 btrfs_free_path(path);
1545 return root;
1546
1547 find_fail:
1548 kfree(root);
1549 alloc_fail:
1550 root = ERR_PTR(ret);
1551 goto out;
1552 }
1553
1554 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1555 struct btrfs_key *location)
1556 {
1557 struct btrfs_root *root;
1558
1559 root = btrfs_read_tree_root(tree_root, location);
1560 if (IS_ERR(root))
1561 return root;
1562
1563 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1564 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1565 btrfs_check_and_init_root_item(&root->root_item);
1566 }
1567
1568 return root;
1569 }
1570
1571 int btrfs_init_fs_root(struct btrfs_root *root)
1572 {
1573 int ret;
1574 struct btrfs_subvolume_writers *writers;
1575
1576 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1577 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1578 GFP_NOFS);
1579 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1580 ret = -ENOMEM;
1581 goto fail;
1582 }
1583
1584 writers = btrfs_alloc_subvolume_writers();
1585 if (IS_ERR(writers)) {
1586 ret = PTR_ERR(writers);
1587 goto fail;
1588 }
1589 root->subv_writers = writers;
1590
1591 btrfs_init_free_ino_ctl(root);
1592 spin_lock_init(&root->ino_cache_lock);
1593 init_waitqueue_head(&root->ino_cache_wait);
1594
1595 ret = get_anon_bdev(&root->anon_dev);
1596 if (ret)
1597 goto free_writers;
1598
1599 mutex_lock(&root->objectid_mutex);
1600 ret = btrfs_find_highest_objectid(root,
1601 &root->highest_objectid);
1602 if (ret) {
1603 mutex_unlock(&root->objectid_mutex);
1604 goto free_root_dev;
1605 }
1606
1607 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1608
1609 mutex_unlock(&root->objectid_mutex);
1610
1611 return 0;
1612
1613 free_root_dev:
1614 free_anon_bdev(root->anon_dev);
1615 free_writers:
1616 btrfs_free_subvolume_writers(root->subv_writers);
1617 fail:
1618 kfree(root->free_ino_ctl);
1619 kfree(root->free_ino_pinned);
1620 return ret;
1621 }
1622
1623 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1624 u64 root_id)
1625 {
1626 struct btrfs_root *root;
1627
1628 spin_lock(&fs_info->fs_roots_radix_lock);
1629 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1630 (unsigned long)root_id);
1631 spin_unlock(&fs_info->fs_roots_radix_lock);
1632 return root;
1633 }
1634
1635 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1636 struct btrfs_root *root)
1637 {
1638 int ret;
1639
1640 ret = radix_tree_preload(GFP_NOFS);
1641 if (ret)
1642 return ret;
1643
1644 spin_lock(&fs_info->fs_roots_radix_lock);
1645 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1646 (unsigned long)root->root_key.objectid,
1647 root);
1648 if (ret == 0)
1649 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1650 spin_unlock(&fs_info->fs_roots_radix_lock);
1651 radix_tree_preload_end();
1652
1653 return ret;
1654 }
1655
1656 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1657 struct btrfs_key *location,
1658 bool check_ref)
1659 {
1660 struct btrfs_root *root;
1661 struct btrfs_path *path;
1662 struct btrfs_key key;
1663 int ret;
1664
1665 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1666 return fs_info->tree_root;
1667 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1668 return fs_info->extent_root;
1669 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1670 return fs_info->chunk_root;
1671 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1672 return fs_info->dev_root;
1673 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1674 return fs_info->csum_root;
1675 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1676 return fs_info->quota_root ? fs_info->quota_root :
1677 ERR_PTR(-ENOENT);
1678 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1679 return fs_info->uuid_root ? fs_info->uuid_root :
1680 ERR_PTR(-ENOENT);
1681 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1682 return fs_info->free_space_root ? fs_info->free_space_root :
1683 ERR_PTR(-ENOENT);
1684 again:
1685 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1686 if (root) {
1687 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1688 return ERR_PTR(-ENOENT);
1689 return root;
1690 }
1691
1692 root = btrfs_read_fs_root(fs_info->tree_root, location);
1693 if (IS_ERR(root))
1694 return root;
1695
1696 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1697 ret = -ENOENT;
1698 goto fail;
1699 }
1700
1701 ret = btrfs_init_fs_root(root);
1702 if (ret)
1703 goto fail;
1704
1705 path = btrfs_alloc_path();
1706 if (!path) {
1707 ret = -ENOMEM;
1708 goto fail;
1709 }
1710 key.objectid = BTRFS_ORPHAN_OBJECTID;
1711 key.type = BTRFS_ORPHAN_ITEM_KEY;
1712 key.offset = location->objectid;
1713
1714 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1715 btrfs_free_path(path);
1716 if (ret < 0)
1717 goto fail;
1718 if (ret == 0)
1719 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1720
1721 ret = btrfs_insert_fs_root(fs_info, root);
1722 if (ret) {
1723 if (ret == -EEXIST) {
1724 free_fs_root(root);
1725 goto again;
1726 }
1727 goto fail;
1728 }
1729 return root;
1730 fail:
1731 free_fs_root(root);
1732 return ERR_PTR(ret);
1733 }
1734
1735 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1736 {
1737 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1738 int ret = 0;
1739 struct btrfs_device *device;
1740 struct backing_dev_info *bdi;
1741
1742 rcu_read_lock();
1743 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1744 if (!device->bdev)
1745 continue;
1746 bdi = blk_get_backing_dev_info(device->bdev);
1747 if (bdi_congested(bdi, bdi_bits)) {
1748 ret = 1;
1749 break;
1750 }
1751 }
1752 rcu_read_unlock();
1753 return ret;
1754 }
1755
1756 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1757 {
1758 int err;
1759
1760 err = bdi_setup_and_register(bdi, "btrfs");
1761 if (err)
1762 return err;
1763
1764 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1765 bdi->congested_fn = btrfs_congested_fn;
1766 bdi->congested_data = info;
1767 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1768 return 0;
1769 }
1770
1771 /*
1772 * called by the kthread helper functions to finally call the bio end_io
1773 * functions. This is where read checksum verification actually happens
1774 */
1775 static void end_workqueue_fn(struct btrfs_work *work)
1776 {
1777 struct bio *bio;
1778 struct btrfs_end_io_wq *end_io_wq;
1779
1780 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1781 bio = end_io_wq->bio;
1782
1783 bio->bi_error = end_io_wq->error;
1784 bio->bi_private = end_io_wq->private;
1785 bio->bi_end_io = end_io_wq->end_io;
1786 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1787 bio_endio(bio);
1788 }
1789
1790 static int cleaner_kthread(void *arg)
1791 {
1792 struct btrfs_root *root = arg;
1793 int again;
1794 struct btrfs_trans_handle *trans;
1795
1796 do {
1797 again = 0;
1798
1799 /* Make the cleaner go to sleep early. */
1800 if (btrfs_need_cleaner_sleep(root))
1801 goto sleep;
1802
1803 /*
1804 * Do not do anything if we might cause open_ctree() to block
1805 * before we have finished mounting the filesystem.
1806 */
1807 if (!root->fs_info->open)
1808 goto sleep;
1809
1810 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1811 goto sleep;
1812
1813 /*
1814 * Avoid the problem that we change the status of the fs
1815 * during the above check and trylock.
1816 */
1817 if (btrfs_need_cleaner_sleep(root)) {
1818 mutex_unlock(&root->fs_info->cleaner_mutex);
1819 goto sleep;
1820 }
1821
1822 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1823 btrfs_run_delayed_iputs(root);
1824 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1825
1826 again = btrfs_clean_one_deleted_snapshot(root);
1827 mutex_unlock(&root->fs_info->cleaner_mutex);
1828
1829 /*
1830 * The defragger has dealt with the R/O remount and umount,
1831 * needn't do anything special here.
1832 */
1833 btrfs_run_defrag_inodes(root->fs_info);
1834
1835 /*
1836 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1837 * with relocation (btrfs_relocate_chunk) and relocation
1838 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1839 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1840 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1841 * unused block groups.
1842 */
1843 btrfs_delete_unused_bgs(root->fs_info);
1844 sleep:
1845 if (!again) {
1846 set_current_state(TASK_INTERRUPTIBLE);
1847 if (!kthread_should_stop())
1848 schedule();
1849 __set_current_state(TASK_RUNNING);
1850 }
1851 } while (!kthread_should_stop());
1852
1853 /*
1854 * Transaction kthread is stopped before us and wakes us up.
1855 * However we might have started a new transaction and COWed some
1856 * tree blocks when deleting unused block groups for example. So
1857 * make sure we commit the transaction we started to have a clean
1858 * shutdown when evicting the btree inode - if it has dirty pages
1859 * when we do the final iput() on it, eviction will trigger a
1860 * writeback for it which will fail with null pointer dereferences
1861 * since work queues and other resources were already released and
1862 * destroyed by the time the iput/eviction/writeback is made.
1863 */
1864 trans = btrfs_attach_transaction(root);
1865 if (IS_ERR(trans)) {
1866 if (PTR_ERR(trans) != -ENOENT)
1867 btrfs_err(root->fs_info,
1868 "cleaner transaction attach returned %ld",
1869 PTR_ERR(trans));
1870 } else {
1871 int ret;
1872
1873 ret = btrfs_commit_transaction(trans, root);
1874 if (ret)
1875 btrfs_err(root->fs_info,
1876 "cleaner open transaction commit returned %d",
1877 ret);
1878 }
1879
1880 return 0;
1881 }
1882
1883 static int transaction_kthread(void *arg)
1884 {
1885 struct btrfs_root *root = arg;
1886 struct btrfs_trans_handle *trans;
1887 struct btrfs_transaction *cur;
1888 u64 transid;
1889 unsigned long now;
1890 unsigned long delay;
1891 bool cannot_commit;
1892
1893 do {
1894 cannot_commit = false;
1895 delay = HZ * root->fs_info->commit_interval;
1896 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1897
1898 spin_lock(&root->fs_info->trans_lock);
1899 cur = root->fs_info->running_transaction;
1900 if (!cur) {
1901 spin_unlock(&root->fs_info->trans_lock);
1902 goto sleep;
1903 }
1904
1905 now = get_seconds();
1906 if (cur->state < TRANS_STATE_BLOCKED &&
1907 (now < cur->start_time ||
1908 now - cur->start_time < root->fs_info->commit_interval)) {
1909 spin_unlock(&root->fs_info->trans_lock);
1910 delay = HZ * 5;
1911 goto sleep;
1912 }
1913 transid = cur->transid;
1914 spin_unlock(&root->fs_info->trans_lock);
1915
1916 /* If the file system is aborted, this will always fail. */
1917 trans = btrfs_attach_transaction(root);
1918 if (IS_ERR(trans)) {
1919 if (PTR_ERR(trans) != -ENOENT)
1920 cannot_commit = true;
1921 goto sleep;
1922 }
1923 if (transid == trans->transid) {
1924 btrfs_commit_transaction(trans, root);
1925 } else {
1926 btrfs_end_transaction(trans, root);
1927 }
1928 sleep:
1929 wake_up_process(root->fs_info->cleaner_kthread);
1930 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1931
1932 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1933 &root->fs_info->fs_state)))
1934 btrfs_cleanup_transaction(root);
1935 set_current_state(TASK_INTERRUPTIBLE);
1936 if (!kthread_should_stop() &&
1937 (!btrfs_transaction_blocked(root->fs_info) ||
1938 cannot_commit))
1939 schedule_timeout(delay);
1940 __set_current_state(TASK_RUNNING);
1941 } while (!kthread_should_stop());
1942 return 0;
1943 }
1944
1945 /*
1946 * this will find the highest generation in the array of
1947 * root backups. The index of the highest array is returned,
1948 * or -1 if we can't find anything.
1949 *
1950 * We check to make sure the array is valid by comparing the
1951 * generation of the latest root in the array with the generation
1952 * in the super block. If they don't match we pitch it.
1953 */
1954 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1955 {
1956 u64 cur;
1957 int newest_index = -1;
1958 struct btrfs_root_backup *root_backup;
1959 int i;
1960
1961 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1962 root_backup = info->super_copy->super_roots + i;
1963 cur = btrfs_backup_tree_root_gen(root_backup);
1964 if (cur == newest_gen)
1965 newest_index = i;
1966 }
1967
1968 /* check to see if we actually wrapped around */
1969 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1970 root_backup = info->super_copy->super_roots;
1971 cur = btrfs_backup_tree_root_gen(root_backup);
1972 if (cur == newest_gen)
1973 newest_index = 0;
1974 }
1975 return newest_index;
1976 }
1977
1978
1979 /*
1980 * find the oldest backup so we know where to store new entries
1981 * in the backup array. This will set the backup_root_index
1982 * field in the fs_info struct
1983 */
1984 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1985 u64 newest_gen)
1986 {
1987 int newest_index = -1;
1988
1989 newest_index = find_newest_super_backup(info, newest_gen);
1990 /* if there was garbage in there, just move along */
1991 if (newest_index == -1) {
1992 info->backup_root_index = 0;
1993 } else {
1994 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1995 }
1996 }
1997
1998 /*
1999 * copy all the root pointers into the super backup array.
2000 * this will bump the backup pointer by one when it is
2001 * done
2002 */
2003 static void backup_super_roots(struct btrfs_fs_info *info)
2004 {
2005 int next_backup;
2006 struct btrfs_root_backup *root_backup;
2007 int last_backup;
2008
2009 next_backup = info->backup_root_index;
2010 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2011 BTRFS_NUM_BACKUP_ROOTS;
2012
2013 /*
2014 * just overwrite the last backup if we're at the same generation
2015 * this happens only at umount
2016 */
2017 root_backup = info->super_for_commit->super_roots + last_backup;
2018 if (btrfs_backup_tree_root_gen(root_backup) ==
2019 btrfs_header_generation(info->tree_root->node))
2020 next_backup = last_backup;
2021
2022 root_backup = info->super_for_commit->super_roots + next_backup;
2023
2024 /*
2025 * make sure all of our padding and empty slots get zero filled
2026 * regardless of which ones we use today
2027 */
2028 memset(root_backup, 0, sizeof(*root_backup));
2029
2030 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2031
2032 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2033 btrfs_set_backup_tree_root_gen(root_backup,
2034 btrfs_header_generation(info->tree_root->node));
2035
2036 btrfs_set_backup_tree_root_level(root_backup,
2037 btrfs_header_level(info->tree_root->node));
2038
2039 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2040 btrfs_set_backup_chunk_root_gen(root_backup,
2041 btrfs_header_generation(info->chunk_root->node));
2042 btrfs_set_backup_chunk_root_level(root_backup,
2043 btrfs_header_level(info->chunk_root->node));
2044
2045 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2046 btrfs_set_backup_extent_root_gen(root_backup,
2047 btrfs_header_generation(info->extent_root->node));
2048 btrfs_set_backup_extent_root_level(root_backup,
2049 btrfs_header_level(info->extent_root->node));
2050
2051 /*
2052 * we might commit during log recovery, which happens before we set
2053 * the fs_root. Make sure it is valid before we fill it in.
2054 */
2055 if (info->fs_root && info->fs_root->node) {
2056 btrfs_set_backup_fs_root(root_backup,
2057 info->fs_root->node->start);
2058 btrfs_set_backup_fs_root_gen(root_backup,
2059 btrfs_header_generation(info->fs_root->node));
2060 btrfs_set_backup_fs_root_level(root_backup,
2061 btrfs_header_level(info->fs_root->node));
2062 }
2063
2064 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2065 btrfs_set_backup_dev_root_gen(root_backup,
2066 btrfs_header_generation(info->dev_root->node));
2067 btrfs_set_backup_dev_root_level(root_backup,
2068 btrfs_header_level(info->dev_root->node));
2069
2070 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2071 btrfs_set_backup_csum_root_gen(root_backup,
2072 btrfs_header_generation(info->csum_root->node));
2073 btrfs_set_backup_csum_root_level(root_backup,
2074 btrfs_header_level(info->csum_root->node));
2075
2076 btrfs_set_backup_total_bytes(root_backup,
2077 btrfs_super_total_bytes(info->super_copy));
2078 btrfs_set_backup_bytes_used(root_backup,
2079 btrfs_super_bytes_used(info->super_copy));
2080 btrfs_set_backup_num_devices(root_backup,
2081 btrfs_super_num_devices(info->super_copy));
2082
2083 /*
2084 * if we don't copy this out to the super_copy, it won't get remembered
2085 * for the next commit
2086 */
2087 memcpy(&info->super_copy->super_roots,
2088 &info->super_for_commit->super_roots,
2089 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2090 }
2091
2092 /*
2093 * this copies info out of the root backup array and back into
2094 * the in-memory super block. It is meant to help iterate through
2095 * the array, so you send it the number of backups you've already
2096 * tried and the last backup index you used.
2097 *
2098 * this returns -1 when it has tried all the backups
2099 */
2100 static noinline int next_root_backup(struct btrfs_fs_info *info,
2101 struct btrfs_super_block *super,
2102 int *num_backups_tried, int *backup_index)
2103 {
2104 struct btrfs_root_backup *root_backup;
2105 int newest = *backup_index;
2106
2107 if (*num_backups_tried == 0) {
2108 u64 gen = btrfs_super_generation(super);
2109
2110 newest = find_newest_super_backup(info, gen);
2111 if (newest == -1)
2112 return -1;
2113
2114 *backup_index = newest;
2115 *num_backups_tried = 1;
2116 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2117 /* we've tried all the backups, all done */
2118 return -1;
2119 } else {
2120 /* jump to the next oldest backup */
2121 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2122 BTRFS_NUM_BACKUP_ROOTS;
2123 *backup_index = newest;
2124 *num_backups_tried += 1;
2125 }
2126 root_backup = super->super_roots + newest;
2127
2128 btrfs_set_super_generation(super,
2129 btrfs_backup_tree_root_gen(root_backup));
2130 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2131 btrfs_set_super_root_level(super,
2132 btrfs_backup_tree_root_level(root_backup));
2133 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2134
2135 /*
2136 * fixme: the total bytes and num_devices need to match or we should
2137 * need a fsck
2138 */
2139 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2140 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2141 return 0;
2142 }
2143
2144 /* helper to cleanup workers */
2145 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2146 {
2147 btrfs_destroy_workqueue(fs_info->fixup_workers);
2148 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2149 btrfs_destroy_workqueue(fs_info->workers);
2150 btrfs_destroy_workqueue(fs_info->endio_workers);
2151 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2152 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2153 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2154 btrfs_destroy_workqueue(fs_info->rmw_workers);
2155 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2156 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2157 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2158 btrfs_destroy_workqueue(fs_info->submit_workers);
2159 btrfs_destroy_workqueue(fs_info->delayed_workers);
2160 btrfs_destroy_workqueue(fs_info->caching_workers);
2161 btrfs_destroy_workqueue(fs_info->readahead_workers);
2162 btrfs_destroy_workqueue(fs_info->flush_workers);
2163 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2164 btrfs_destroy_workqueue(fs_info->extent_workers);
2165 }
2166
2167 static void free_root_extent_buffers(struct btrfs_root *root)
2168 {
2169 if (root) {
2170 free_extent_buffer(root->node);
2171 free_extent_buffer(root->commit_root);
2172 root->node = NULL;
2173 root->commit_root = NULL;
2174 }
2175 }
2176
2177 /* helper to cleanup tree roots */
2178 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2179 {
2180 free_root_extent_buffers(info->tree_root);
2181
2182 free_root_extent_buffers(info->dev_root);
2183 free_root_extent_buffers(info->extent_root);
2184 free_root_extent_buffers(info->csum_root);
2185 free_root_extent_buffers(info->quota_root);
2186 free_root_extent_buffers(info->uuid_root);
2187 if (chunk_root)
2188 free_root_extent_buffers(info->chunk_root);
2189 free_root_extent_buffers(info->free_space_root);
2190 }
2191
2192 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2193 {
2194 int ret;
2195 struct btrfs_root *gang[8];
2196 int i;
2197
2198 while (!list_empty(&fs_info->dead_roots)) {
2199 gang[0] = list_entry(fs_info->dead_roots.next,
2200 struct btrfs_root, root_list);
2201 list_del(&gang[0]->root_list);
2202
2203 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2204 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2205 } else {
2206 free_extent_buffer(gang[0]->node);
2207 free_extent_buffer(gang[0]->commit_root);
2208 btrfs_put_fs_root(gang[0]);
2209 }
2210 }
2211
2212 while (1) {
2213 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2214 (void **)gang, 0,
2215 ARRAY_SIZE(gang));
2216 if (!ret)
2217 break;
2218 for (i = 0; i < ret; i++)
2219 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2220 }
2221
2222 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2223 btrfs_free_log_root_tree(NULL, fs_info);
2224 btrfs_destroy_pinned_extent(fs_info->tree_root,
2225 fs_info->pinned_extents);
2226 }
2227 }
2228
2229 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2230 {
2231 mutex_init(&fs_info->scrub_lock);
2232 atomic_set(&fs_info->scrubs_running, 0);
2233 atomic_set(&fs_info->scrub_pause_req, 0);
2234 atomic_set(&fs_info->scrubs_paused, 0);
2235 atomic_set(&fs_info->scrub_cancel_req, 0);
2236 init_waitqueue_head(&fs_info->scrub_pause_wait);
2237 fs_info->scrub_workers_refcnt = 0;
2238 }
2239
2240 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2241 {
2242 spin_lock_init(&fs_info->balance_lock);
2243 mutex_init(&fs_info->balance_mutex);
2244 atomic_set(&fs_info->balance_running, 0);
2245 atomic_set(&fs_info->balance_pause_req, 0);
2246 atomic_set(&fs_info->balance_cancel_req, 0);
2247 fs_info->balance_ctl = NULL;
2248 init_waitqueue_head(&fs_info->balance_wait_q);
2249 }
2250
2251 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2252 struct btrfs_root *tree_root)
2253 {
2254 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2255 set_nlink(fs_info->btree_inode, 1);
2256 /*
2257 * we set the i_size on the btree inode to the max possible int.
2258 * the real end of the address space is determined by all of
2259 * the devices in the system
2260 */
2261 fs_info->btree_inode->i_size = OFFSET_MAX;
2262 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2263
2264 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2265 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2266 fs_info->btree_inode->i_mapping);
2267 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2268 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2269
2270 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2271
2272 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2273 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2274 sizeof(struct btrfs_key));
2275 set_bit(BTRFS_INODE_DUMMY,
2276 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2277 btrfs_insert_inode_hash(fs_info->btree_inode);
2278 }
2279
2280 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2281 {
2282 fs_info->dev_replace.lock_owner = 0;
2283 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2284 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2285 rwlock_init(&fs_info->dev_replace.lock);
2286 atomic_set(&fs_info->dev_replace.read_locks, 0);
2287 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2288 init_waitqueue_head(&fs_info->replace_wait);
2289 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2290 }
2291
2292 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2293 {
2294 spin_lock_init(&fs_info->qgroup_lock);
2295 mutex_init(&fs_info->qgroup_ioctl_lock);
2296 fs_info->qgroup_tree = RB_ROOT;
2297 fs_info->qgroup_op_tree = RB_ROOT;
2298 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2299 fs_info->qgroup_seq = 1;
2300 fs_info->quota_enabled = 0;
2301 fs_info->pending_quota_state = 0;
2302 fs_info->qgroup_ulist = NULL;
2303 mutex_init(&fs_info->qgroup_rescan_lock);
2304 }
2305
2306 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2307 struct btrfs_fs_devices *fs_devices)
2308 {
2309 int max_active = fs_info->thread_pool_size;
2310 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2311
2312 fs_info->workers =
2313 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2314 max_active, 16);
2315
2316 fs_info->delalloc_workers =
2317 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2318
2319 fs_info->flush_workers =
2320 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2321
2322 fs_info->caching_workers =
2323 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2324
2325 /*
2326 * a higher idle thresh on the submit workers makes it much more
2327 * likely that bios will be send down in a sane order to the
2328 * devices
2329 */
2330 fs_info->submit_workers =
2331 btrfs_alloc_workqueue("submit", flags,
2332 min_t(u64, fs_devices->num_devices,
2333 max_active), 64);
2334
2335 fs_info->fixup_workers =
2336 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2337
2338 /*
2339 * endios are largely parallel and should have a very
2340 * low idle thresh
2341 */
2342 fs_info->endio_workers =
2343 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2344 fs_info->endio_meta_workers =
2345 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2346 fs_info->endio_meta_write_workers =
2347 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2348 fs_info->endio_raid56_workers =
2349 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2350 fs_info->endio_repair_workers =
2351 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2352 fs_info->rmw_workers =
2353 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2354 fs_info->endio_write_workers =
2355 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2356 fs_info->endio_freespace_worker =
2357 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2358 fs_info->delayed_workers =
2359 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2360 fs_info->readahead_workers =
2361 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2362 fs_info->qgroup_rescan_workers =
2363 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2364 fs_info->extent_workers =
2365 btrfs_alloc_workqueue("extent-refs", flags,
2366 min_t(u64, fs_devices->num_devices,
2367 max_active), 8);
2368
2369 if (!(fs_info->workers && fs_info->delalloc_workers &&
2370 fs_info->submit_workers && fs_info->flush_workers &&
2371 fs_info->endio_workers && fs_info->endio_meta_workers &&
2372 fs_info->endio_meta_write_workers &&
2373 fs_info->endio_repair_workers &&
2374 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2375 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2376 fs_info->caching_workers && fs_info->readahead_workers &&
2377 fs_info->fixup_workers && fs_info->delayed_workers &&
2378 fs_info->extent_workers &&
2379 fs_info->qgroup_rescan_workers)) {
2380 return -ENOMEM;
2381 }
2382
2383 return 0;
2384 }
2385
2386 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2387 struct btrfs_fs_devices *fs_devices)
2388 {
2389 int ret;
2390 struct btrfs_root *tree_root = fs_info->tree_root;
2391 struct btrfs_root *log_tree_root;
2392 struct btrfs_super_block *disk_super = fs_info->super_copy;
2393 u64 bytenr = btrfs_super_log_root(disk_super);
2394
2395 if (fs_devices->rw_devices == 0) {
2396 btrfs_warn(fs_info, "log replay required on RO media");
2397 return -EIO;
2398 }
2399
2400 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2401 if (!log_tree_root)
2402 return -ENOMEM;
2403
2404 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2405 tree_root->stripesize, log_tree_root, fs_info,
2406 BTRFS_TREE_LOG_OBJECTID);
2407
2408 log_tree_root->node = read_tree_block(tree_root, bytenr,
2409 fs_info->generation + 1);
2410 if (IS_ERR(log_tree_root->node)) {
2411 btrfs_warn(fs_info, "failed to read log tree");
2412 ret = PTR_ERR(log_tree_root->node);
2413 kfree(log_tree_root);
2414 return ret;
2415 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2416 btrfs_err(fs_info, "failed to read log tree");
2417 free_extent_buffer(log_tree_root->node);
2418 kfree(log_tree_root);
2419 return -EIO;
2420 }
2421 /* returns with log_tree_root freed on success */
2422 ret = btrfs_recover_log_trees(log_tree_root);
2423 if (ret) {
2424 btrfs_handle_fs_error(tree_root->fs_info, ret,
2425 "Failed to recover log tree");
2426 free_extent_buffer(log_tree_root->node);
2427 kfree(log_tree_root);
2428 return ret;
2429 }
2430
2431 if (fs_info->sb->s_flags & MS_RDONLY) {
2432 ret = btrfs_commit_super(tree_root);
2433 if (ret)
2434 return ret;
2435 }
2436
2437 return 0;
2438 }
2439
2440 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2441 struct btrfs_root *tree_root)
2442 {
2443 struct btrfs_root *root;
2444 struct btrfs_key location;
2445 int ret;
2446
2447 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2448 location.type = BTRFS_ROOT_ITEM_KEY;
2449 location.offset = 0;
2450
2451 root = btrfs_read_tree_root(tree_root, &location);
2452 if (IS_ERR(root))
2453 return PTR_ERR(root);
2454 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2455 fs_info->extent_root = root;
2456
2457 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2458 root = btrfs_read_tree_root(tree_root, &location);
2459 if (IS_ERR(root))
2460 return PTR_ERR(root);
2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 fs_info->dev_root = root;
2463 btrfs_init_devices_late(fs_info);
2464
2465 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2466 root = btrfs_read_tree_root(tree_root, &location);
2467 if (IS_ERR(root))
2468 return PTR_ERR(root);
2469 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2470 fs_info->csum_root = root;
2471
2472 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2473 root = btrfs_read_tree_root(tree_root, &location);
2474 if (!IS_ERR(root)) {
2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476 fs_info->quota_enabled = 1;
2477 fs_info->pending_quota_state = 1;
2478 fs_info->quota_root = root;
2479 }
2480
2481 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2482 root = btrfs_read_tree_root(tree_root, &location);
2483 if (IS_ERR(root)) {
2484 ret = PTR_ERR(root);
2485 if (ret != -ENOENT)
2486 return ret;
2487 } else {
2488 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2489 fs_info->uuid_root = root;
2490 }
2491
2492 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2493 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2494 root = btrfs_read_tree_root(tree_root, &location);
2495 if (IS_ERR(root))
2496 return PTR_ERR(root);
2497 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2498 fs_info->free_space_root = root;
2499 }
2500
2501 return 0;
2502 }
2503
2504 int open_ctree(struct super_block *sb,
2505 struct btrfs_fs_devices *fs_devices,
2506 char *options)
2507 {
2508 u32 sectorsize;
2509 u32 nodesize;
2510 u32 stripesize;
2511 u64 generation;
2512 u64 features;
2513 struct btrfs_key location;
2514 struct buffer_head *bh;
2515 struct btrfs_super_block *disk_super;
2516 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2517 struct btrfs_root *tree_root;
2518 struct btrfs_root *chunk_root;
2519 int ret;
2520 int err = -EINVAL;
2521 int num_backups_tried = 0;
2522 int backup_index = 0;
2523 int max_active;
2524
2525 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2526 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2527 if (!tree_root || !chunk_root) {
2528 err = -ENOMEM;
2529 goto fail;
2530 }
2531
2532 ret = init_srcu_struct(&fs_info->subvol_srcu);
2533 if (ret) {
2534 err = ret;
2535 goto fail;
2536 }
2537
2538 ret = setup_bdi(fs_info, &fs_info->bdi);
2539 if (ret) {
2540 err = ret;
2541 goto fail_srcu;
2542 }
2543
2544 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2545 if (ret) {
2546 err = ret;
2547 goto fail_bdi;
2548 }
2549 fs_info->dirty_metadata_batch = PAGE_SIZE *
2550 (1 + ilog2(nr_cpu_ids));
2551
2552 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2553 if (ret) {
2554 err = ret;
2555 goto fail_dirty_metadata_bytes;
2556 }
2557
2558 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2559 if (ret) {
2560 err = ret;
2561 goto fail_delalloc_bytes;
2562 }
2563
2564 fs_info->btree_inode = new_inode(sb);
2565 if (!fs_info->btree_inode) {
2566 err = -ENOMEM;
2567 goto fail_bio_counter;
2568 }
2569
2570 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2571
2572 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2573 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2574 INIT_LIST_HEAD(&fs_info->trans_list);
2575 INIT_LIST_HEAD(&fs_info->dead_roots);
2576 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2577 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2578 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2579 spin_lock_init(&fs_info->delalloc_root_lock);
2580 spin_lock_init(&fs_info->trans_lock);
2581 spin_lock_init(&fs_info->fs_roots_radix_lock);
2582 spin_lock_init(&fs_info->delayed_iput_lock);
2583 spin_lock_init(&fs_info->defrag_inodes_lock);
2584 spin_lock_init(&fs_info->free_chunk_lock);
2585 spin_lock_init(&fs_info->tree_mod_seq_lock);
2586 spin_lock_init(&fs_info->super_lock);
2587 spin_lock_init(&fs_info->qgroup_op_lock);
2588 spin_lock_init(&fs_info->buffer_lock);
2589 spin_lock_init(&fs_info->unused_bgs_lock);
2590 rwlock_init(&fs_info->tree_mod_log_lock);
2591 mutex_init(&fs_info->unused_bg_unpin_mutex);
2592 mutex_init(&fs_info->delete_unused_bgs_mutex);
2593 mutex_init(&fs_info->reloc_mutex);
2594 mutex_init(&fs_info->delalloc_root_mutex);
2595 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2596 seqlock_init(&fs_info->profiles_lock);
2597
2598 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2599 INIT_LIST_HEAD(&fs_info->space_info);
2600 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2601 INIT_LIST_HEAD(&fs_info->unused_bgs);
2602 btrfs_mapping_init(&fs_info->mapping_tree);
2603 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2604 BTRFS_BLOCK_RSV_GLOBAL);
2605 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2606 BTRFS_BLOCK_RSV_DELALLOC);
2607 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2608 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2609 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2610 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2611 BTRFS_BLOCK_RSV_DELOPS);
2612 atomic_set(&fs_info->nr_async_submits, 0);
2613 atomic_set(&fs_info->async_delalloc_pages, 0);
2614 atomic_set(&fs_info->async_submit_draining, 0);
2615 atomic_set(&fs_info->nr_async_bios, 0);
2616 atomic_set(&fs_info->defrag_running, 0);
2617 atomic_set(&fs_info->qgroup_op_seq, 0);
2618 atomic_set(&fs_info->reada_works_cnt, 0);
2619 atomic64_set(&fs_info->tree_mod_seq, 0);
2620 fs_info->sb = sb;
2621 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2622 fs_info->metadata_ratio = 0;
2623 fs_info->defrag_inodes = RB_ROOT;
2624 fs_info->free_chunk_space = 0;
2625 fs_info->tree_mod_log = RB_ROOT;
2626 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2627 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2628 /* readahead state */
2629 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2630 spin_lock_init(&fs_info->reada_lock);
2631
2632 fs_info->thread_pool_size = min_t(unsigned long,
2633 num_online_cpus() + 2, 8);
2634
2635 INIT_LIST_HEAD(&fs_info->ordered_roots);
2636 spin_lock_init(&fs_info->ordered_root_lock);
2637 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2638 GFP_KERNEL);
2639 if (!fs_info->delayed_root) {
2640 err = -ENOMEM;
2641 goto fail_iput;
2642 }
2643 btrfs_init_delayed_root(fs_info->delayed_root);
2644
2645 btrfs_init_scrub(fs_info);
2646 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2647 fs_info->check_integrity_print_mask = 0;
2648 #endif
2649 btrfs_init_balance(fs_info);
2650 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2651
2652 sb->s_blocksize = 4096;
2653 sb->s_blocksize_bits = blksize_bits(4096);
2654 sb->s_bdi = &fs_info->bdi;
2655
2656 btrfs_init_btree_inode(fs_info, tree_root);
2657
2658 spin_lock_init(&fs_info->block_group_cache_lock);
2659 fs_info->block_group_cache_tree = RB_ROOT;
2660 fs_info->first_logical_byte = (u64)-1;
2661
2662 extent_io_tree_init(&fs_info->freed_extents[0],
2663 fs_info->btree_inode->i_mapping);
2664 extent_io_tree_init(&fs_info->freed_extents[1],
2665 fs_info->btree_inode->i_mapping);
2666 fs_info->pinned_extents = &fs_info->freed_extents[0];
2667 fs_info->do_barriers = 1;
2668
2669
2670 mutex_init(&fs_info->ordered_operations_mutex);
2671 mutex_init(&fs_info->tree_log_mutex);
2672 mutex_init(&fs_info->chunk_mutex);
2673 mutex_init(&fs_info->transaction_kthread_mutex);
2674 mutex_init(&fs_info->cleaner_mutex);
2675 mutex_init(&fs_info->volume_mutex);
2676 mutex_init(&fs_info->ro_block_group_mutex);
2677 init_rwsem(&fs_info->commit_root_sem);
2678 init_rwsem(&fs_info->cleanup_work_sem);
2679 init_rwsem(&fs_info->subvol_sem);
2680 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2681
2682 btrfs_init_dev_replace_locks(fs_info);
2683 btrfs_init_qgroup(fs_info);
2684
2685 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2686 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2687
2688 init_waitqueue_head(&fs_info->transaction_throttle);
2689 init_waitqueue_head(&fs_info->transaction_wait);
2690 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2691 init_waitqueue_head(&fs_info->async_submit_wait);
2692
2693 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2694
2695 ret = btrfs_alloc_stripe_hash_table(fs_info);
2696 if (ret) {
2697 err = ret;
2698 goto fail_alloc;
2699 }
2700
2701 __setup_root(4096, 4096, 4096, tree_root,
2702 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2703
2704 invalidate_bdev(fs_devices->latest_bdev);
2705
2706 /*
2707 * Read super block and check the signature bytes only
2708 */
2709 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2710 if (IS_ERR(bh)) {
2711 err = PTR_ERR(bh);
2712 goto fail_alloc;
2713 }
2714
2715 /*
2716 * We want to check superblock checksum, the type is stored inside.
2717 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2718 */
2719 if (btrfs_check_super_csum(bh->b_data)) {
2720 btrfs_err(fs_info, "superblock checksum mismatch");
2721 err = -EINVAL;
2722 brelse(bh);
2723 goto fail_alloc;
2724 }
2725
2726 /*
2727 * super_copy is zeroed at allocation time and we never touch the
2728 * following bytes up to INFO_SIZE, the checksum is calculated from
2729 * the whole block of INFO_SIZE
2730 */
2731 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2732 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2733 sizeof(*fs_info->super_for_commit));
2734 brelse(bh);
2735
2736 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2737
2738 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2739 if (ret) {
2740 btrfs_err(fs_info, "superblock contains fatal errors");
2741 err = -EINVAL;
2742 goto fail_alloc;
2743 }
2744
2745 disk_super = fs_info->super_copy;
2746 if (!btrfs_super_root(disk_super))
2747 goto fail_alloc;
2748
2749 /* check FS state, whether FS is broken. */
2750 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2751 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2752
2753 /*
2754 * run through our array of backup supers and setup
2755 * our ring pointer to the oldest one
2756 */
2757 generation = btrfs_super_generation(disk_super);
2758 find_oldest_super_backup(fs_info, generation);
2759
2760 /*
2761 * In the long term, we'll store the compression type in the super
2762 * block, and it'll be used for per file compression control.
2763 */
2764 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2765
2766 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2767 if (ret) {
2768 err = ret;
2769 goto fail_alloc;
2770 }
2771
2772 features = btrfs_super_incompat_flags(disk_super) &
2773 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2774 if (features) {
2775 btrfs_err(fs_info,
2776 "cannot mount because of unsupported optional features (%llx)",
2777 features);
2778 err = -EINVAL;
2779 goto fail_alloc;
2780 }
2781
2782 features = btrfs_super_incompat_flags(disk_super);
2783 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2784 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2785 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2786
2787 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2788 btrfs_info(fs_info, "has skinny extents");
2789
2790 /*
2791 * flag our filesystem as having big metadata blocks if
2792 * they are bigger than the page size
2793 */
2794 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2795 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2796 btrfs_info(fs_info,
2797 "flagging fs with big metadata feature");
2798 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2799 }
2800
2801 nodesize = btrfs_super_nodesize(disk_super);
2802 sectorsize = btrfs_super_sectorsize(disk_super);
2803 stripesize = sectorsize;
2804 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2805 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2806
2807 /*
2808 * mixed block groups end up with duplicate but slightly offset
2809 * extent buffers for the same range. It leads to corruptions
2810 */
2811 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2812 (sectorsize != nodesize)) {
2813 btrfs_err(fs_info,
2814 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2815 nodesize, sectorsize);
2816 goto fail_alloc;
2817 }
2818
2819 /*
2820 * Needn't use the lock because there is no other task which will
2821 * update the flag.
2822 */
2823 btrfs_set_super_incompat_flags(disk_super, features);
2824
2825 features = btrfs_super_compat_ro_flags(disk_super) &
2826 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2827 if (!(sb->s_flags & MS_RDONLY) && features) {
2828 btrfs_err(fs_info,
2829 "cannot mount read-write because of unsupported optional features (%llx)",
2830 features);
2831 err = -EINVAL;
2832 goto fail_alloc;
2833 }
2834
2835 max_active = fs_info->thread_pool_size;
2836
2837 ret = btrfs_init_workqueues(fs_info, fs_devices);
2838 if (ret) {
2839 err = ret;
2840 goto fail_sb_buffer;
2841 }
2842
2843 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2844 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2845 SZ_4M / PAGE_SIZE);
2846
2847 tree_root->nodesize = nodesize;
2848 tree_root->sectorsize = sectorsize;
2849 tree_root->stripesize = stripesize;
2850
2851 sb->s_blocksize = sectorsize;
2852 sb->s_blocksize_bits = blksize_bits(sectorsize);
2853
2854 mutex_lock(&fs_info->chunk_mutex);
2855 ret = btrfs_read_sys_array(tree_root);
2856 mutex_unlock(&fs_info->chunk_mutex);
2857 if (ret) {
2858 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2859 goto fail_sb_buffer;
2860 }
2861
2862 generation = btrfs_super_chunk_root_generation(disk_super);
2863
2864 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2865 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2866
2867 chunk_root->node = read_tree_block(chunk_root,
2868 btrfs_super_chunk_root(disk_super),
2869 generation);
2870 if (IS_ERR(chunk_root->node) ||
2871 !extent_buffer_uptodate(chunk_root->node)) {
2872 btrfs_err(fs_info, "failed to read chunk root");
2873 if (!IS_ERR(chunk_root->node))
2874 free_extent_buffer(chunk_root->node);
2875 chunk_root->node = NULL;
2876 goto fail_tree_roots;
2877 }
2878 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2879 chunk_root->commit_root = btrfs_root_node(chunk_root);
2880
2881 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2882 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2883
2884 ret = btrfs_read_chunk_tree(chunk_root);
2885 if (ret) {
2886 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2887 goto fail_tree_roots;
2888 }
2889
2890 /*
2891 * keep the device that is marked to be the target device for the
2892 * dev_replace procedure
2893 */
2894 btrfs_close_extra_devices(fs_devices, 0);
2895
2896 if (!fs_devices->latest_bdev) {
2897 btrfs_err(fs_info, "failed to read devices");
2898 goto fail_tree_roots;
2899 }
2900
2901 retry_root_backup:
2902 generation = btrfs_super_generation(disk_super);
2903
2904 tree_root->node = read_tree_block(tree_root,
2905 btrfs_super_root(disk_super),
2906 generation);
2907 if (IS_ERR(tree_root->node) ||
2908 !extent_buffer_uptodate(tree_root->node)) {
2909 btrfs_warn(fs_info, "failed to read tree root");
2910 if (!IS_ERR(tree_root->node))
2911 free_extent_buffer(tree_root->node);
2912 tree_root->node = NULL;
2913 goto recovery_tree_root;
2914 }
2915
2916 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917 tree_root->commit_root = btrfs_root_node(tree_root);
2918 btrfs_set_root_refs(&tree_root->root_item, 1);
2919
2920 mutex_lock(&tree_root->objectid_mutex);
2921 ret = btrfs_find_highest_objectid(tree_root,
2922 &tree_root->highest_objectid);
2923 if (ret) {
2924 mutex_unlock(&tree_root->objectid_mutex);
2925 goto recovery_tree_root;
2926 }
2927
2928 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929
2930 mutex_unlock(&tree_root->objectid_mutex);
2931
2932 ret = btrfs_read_roots(fs_info, tree_root);
2933 if (ret)
2934 goto recovery_tree_root;
2935
2936 fs_info->generation = generation;
2937 fs_info->last_trans_committed = generation;
2938
2939 ret = btrfs_recover_balance(fs_info);
2940 if (ret) {
2941 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2942 goto fail_block_groups;
2943 }
2944
2945 ret = btrfs_init_dev_stats(fs_info);
2946 if (ret) {
2947 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2948 goto fail_block_groups;
2949 }
2950
2951 ret = btrfs_init_dev_replace(fs_info);
2952 if (ret) {
2953 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2954 goto fail_block_groups;
2955 }
2956
2957 btrfs_close_extra_devices(fs_devices, 1);
2958
2959 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2960 if (ret) {
2961 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2962 ret);
2963 goto fail_block_groups;
2964 }
2965
2966 ret = btrfs_sysfs_add_device(fs_devices);
2967 if (ret) {
2968 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2969 ret);
2970 goto fail_fsdev_sysfs;
2971 }
2972
2973 ret = btrfs_sysfs_add_mounted(fs_info);
2974 if (ret) {
2975 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2976 goto fail_fsdev_sysfs;
2977 }
2978
2979 ret = btrfs_init_space_info(fs_info);
2980 if (ret) {
2981 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2982 goto fail_sysfs;
2983 }
2984
2985 ret = btrfs_read_block_groups(fs_info->extent_root);
2986 if (ret) {
2987 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2988 goto fail_sysfs;
2989 }
2990 fs_info->num_tolerated_disk_barrier_failures =
2991 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2992 if (fs_info->fs_devices->missing_devices >
2993 fs_info->num_tolerated_disk_barrier_failures &&
2994 !(sb->s_flags & MS_RDONLY)) {
2995 btrfs_warn(fs_info,
2996 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2997 fs_info->fs_devices->missing_devices,
2998 fs_info->num_tolerated_disk_barrier_failures);
2999 goto fail_sysfs;
3000 }
3001
3002 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3003 "btrfs-cleaner");
3004 if (IS_ERR(fs_info->cleaner_kthread))
3005 goto fail_sysfs;
3006
3007 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3008 tree_root,
3009 "btrfs-transaction");
3010 if (IS_ERR(fs_info->transaction_kthread))
3011 goto fail_cleaner;
3012
3013 if (!btrfs_test_opt(tree_root, SSD) &&
3014 !btrfs_test_opt(tree_root, NOSSD) &&
3015 !fs_info->fs_devices->rotating) {
3016 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3017 btrfs_set_opt(fs_info->mount_opt, SSD);
3018 }
3019
3020 /*
3021 * Mount does not set all options immediately, we can do it now and do
3022 * not have to wait for transaction commit
3023 */
3024 btrfs_apply_pending_changes(fs_info);
3025
3026 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3027 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3028 ret = btrfsic_mount(tree_root, fs_devices,
3029 btrfs_test_opt(tree_root,
3030 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3031 1 : 0,
3032 fs_info->check_integrity_print_mask);
3033 if (ret)
3034 btrfs_warn(fs_info,
3035 "failed to initialize integrity check module: %d",
3036 ret);
3037 }
3038 #endif
3039 ret = btrfs_read_qgroup_config(fs_info);
3040 if (ret)
3041 goto fail_trans_kthread;
3042
3043 /* do not make disk changes in broken FS or nologreplay is given */
3044 if (btrfs_super_log_root(disk_super) != 0 &&
3045 !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3046 ret = btrfs_replay_log(fs_info, fs_devices);
3047 if (ret) {
3048 err = ret;
3049 goto fail_qgroup;
3050 }
3051 }
3052
3053 ret = btrfs_find_orphan_roots(tree_root);
3054 if (ret)
3055 goto fail_qgroup;
3056
3057 if (!(sb->s_flags & MS_RDONLY)) {
3058 ret = btrfs_cleanup_fs_roots(fs_info);
3059 if (ret)
3060 goto fail_qgroup;
3061
3062 mutex_lock(&fs_info->cleaner_mutex);
3063 ret = btrfs_recover_relocation(tree_root);
3064 mutex_unlock(&fs_info->cleaner_mutex);
3065 if (ret < 0) {
3066 btrfs_warn(fs_info, "failed to recover relocation: %d",
3067 ret);
3068 err = -EINVAL;
3069 goto fail_qgroup;
3070 }
3071 }
3072
3073 location.objectid = BTRFS_FS_TREE_OBJECTID;
3074 location.type = BTRFS_ROOT_ITEM_KEY;
3075 location.offset = 0;
3076
3077 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3078 if (IS_ERR(fs_info->fs_root)) {
3079 err = PTR_ERR(fs_info->fs_root);
3080 goto fail_qgroup;
3081 }
3082
3083 if (sb->s_flags & MS_RDONLY)
3084 return 0;
3085
3086 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3087 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3088 btrfs_info(fs_info, "creating free space tree");
3089 ret = btrfs_create_free_space_tree(fs_info);
3090 if (ret) {
3091 btrfs_warn(fs_info,
3092 "failed to create free space tree: %d", ret);
3093 close_ctree(tree_root);
3094 return ret;
3095 }
3096 }
3097
3098 down_read(&fs_info->cleanup_work_sem);
3099 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3100 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3101 up_read(&fs_info->cleanup_work_sem);
3102 close_ctree(tree_root);
3103 return ret;
3104 }
3105 up_read(&fs_info->cleanup_work_sem);
3106
3107 ret = btrfs_resume_balance_async(fs_info);
3108 if (ret) {
3109 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3110 close_ctree(tree_root);
3111 return ret;
3112 }
3113
3114 ret = btrfs_resume_dev_replace_async(fs_info);
3115 if (ret) {
3116 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3117 close_ctree(tree_root);
3118 return ret;
3119 }
3120
3121 btrfs_qgroup_rescan_resume(fs_info);
3122
3123 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3124 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3125 btrfs_info(fs_info, "clearing free space tree");
3126 ret = btrfs_clear_free_space_tree(fs_info);
3127 if (ret) {
3128 btrfs_warn(fs_info,
3129 "failed to clear free space tree: %d", ret);
3130 close_ctree(tree_root);
3131 return ret;
3132 }
3133 }
3134
3135 if (!fs_info->uuid_root) {
3136 btrfs_info(fs_info, "creating UUID tree");
3137 ret = btrfs_create_uuid_tree(fs_info);
3138 if (ret) {
3139 btrfs_warn(fs_info,
3140 "failed to create the UUID tree: %d", ret);
3141 close_ctree(tree_root);
3142 return ret;
3143 }
3144 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3145 fs_info->generation !=
3146 btrfs_super_uuid_tree_generation(disk_super)) {
3147 btrfs_info(fs_info, "checking UUID tree");
3148 ret = btrfs_check_uuid_tree(fs_info);
3149 if (ret) {
3150 btrfs_warn(fs_info,
3151 "failed to check the UUID tree: %d", ret);
3152 close_ctree(tree_root);
3153 return ret;
3154 }
3155 } else {
3156 fs_info->update_uuid_tree_gen = 1;
3157 }
3158
3159 fs_info->open = 1;
3160
3161 /*
3162 * backuproot only affect mount behavior, and if open_ctree succeeded,
3163 * no need to keep the flag
3164 */
3165 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3166
3167 return 0;
3168
3169 fail_qgroup:
3170 btrfs_free_qgroup_config(fs_info);
3171 fail_trans_kthread:
3172 kthread_stop(fs_info->transaction_kthread);
3173 btrfs_cleanup_transaction(fs_info->tree_root);
3174 btrfs_free_fs_roots(fs_info);
3175 fail_cleaner:
3176 kthread_stop(fs_info->cleaner_kthread);
3177
3178 /*
3179 * make sure we're done with the btree inode before we stop our
3180 * kthreads
3181 */
3182 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3183
3184 fail_sysfs:
3185 btrfs_sysfs_remove_mounted(fs_info);
3186
3187 fail_fsdev_sysfs:
3188 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3189
3190 fail_block_groups:
3191 btrfs_put_block_group_cache(fs_info);
3192 btrfs_free_block_groups(fs_info);
3193
3194 fail_tree_roots:
3195 free_root_pointers(fs_info, 1);
3196 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3197
3198 fail_sb_buffer:
3199 btrfs_stop_all_workers(fs_info);
3200 fail_alloc:
3201 fail_iput:
3202 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3203
3204 iput(fs_info->btree_inode);
3205 fail_bio_counter:
3206 percpu_counter_destroy(&fs_info->bio_counter);
3207 fail_delalloc_bytes:
3208 percpu_counter_destroy(&fs_info->delalloc_bytes);
3209 fail_dirty_metadata_bytes:
3210 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3211 fail_bdi:
3212 bdi_destroy(&fs_info->bdi);
3213 fail_srcu:
3214 cleanup_srcu_struct(&fs_info->subvol_srcu);
3215 fail:
3216 btrfs_free_stripe_hash_table(fs_info);
3217 btrfs_close_devices(fs_info->fs_devices);
3218 return err;
3219
3220 recovery_tree_root:
3221 if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3222 goto fail_tree_roots;
3223
3224 free_root_pointers(fs_info, 0);
3225
3226 /* don't use the log in recovery mode, it won't be valid */
3227 btrfs_set_super_log_root(disk_super, 0);
3228
3229 /* we can't trust the free space cache either */
3230 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3231
3232 ret = next_root_backup(fs_info, fs_info->super_copy,
3233 &num_backups_tried, &backup_index);
3234 if (ret == -1)
3235 goto fail_block_groups;
3236 goto retry_root_backup;
3237 }
3238
3239 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3240 {
3241 if (uptodate) {
3242 set_buffer_uptodate(bh);
3243 } else {
3244 struct btrfs_device *device = (struct btrfs_device *)
3245 bh->b_private;
3246
3247 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3248 "lost page write due to IO error on %s",
3249 rcu_str_deref(device->name));
3250 /* note, we don't set_buffer_write_io_error because we have
3251 * our own ways of dealing with the IO errors
3252 */
3253 clear_buffer_uptodate(bh);
3254 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3255 }
3256 unlock_buffer(bh);
3257 put_bh(bh);
3258 }
3259
3260 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3261 struct buffer_head **bh_ret)
3262 {
3263 struct buffer_head *bh;
3264 struct btrfs_super_block *super;
3265 u64 bytenr;
3266
3267 bytenr = btrfs_sb_offset(copy_num);
3268 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3269 return -EINVAL;
3270
3271 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3272 /*
3273 * If we fail to read from the underlying devices, as of now
3274 * the best option we have is to mark it EIO.
3275 */
3276 if (!bh)
3277 return -EIO;
3278
3279 super = (struct btrfs_super_block *)bh->b_data;
3280 if (btrfs_super_bytenr(super) != bytenr ||
3281 btrfs_super_magic(super) != BTRFS_MAGIC) {
3282 brelse(bh);
3283 return -EINVAL;
3284 }
3285
3286 *bh_ret = bh;
3287 return 0;
3288 }
3289
3290
3291 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3292 {
3293 struct buffer_head *bh;
3294 struct buffer_head *latest = NULL;
3295 struct btrfs_super_block *super;
3296 int i;
3297 u64 transid = 0;
3298 int ret = -EINVAL;
3299
3300 /* we would like to check all the supers, but that would make
3301 * a btrfs mount succeed after a mkfs from a different FS.
3302 * So, we need to add a special mount option to scan for
3303 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3304 */
3305 for (i = 0; i < 1; i++) {
3306 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3307 if (ret)
3308 continue;
3309
3310 super = (struct btrfs_super_block *)bh->b_data;
3311
3312 if (!latest || btrfs_super_generation(super) > transid) {
3313 brelse(latest);
3314 latest = bh;
3315 transid = btrfs_super_generation(super);
3316 } else {
3317 brelse(bh);
3318 }
3319 }
3320
3321 if (!latest)
3322 return ERR_PTR(ret);
3323
3324 return latest;
3325 }
3326
3327 /*
3328 * this should be called twice, once with wait == 0 and
3329 * once with wait == 1. When wait == 0 is done, all the buffer heads
3330 * we write are pinned.
3331 *
3332 * They are released when wait == 1 is done.
3333 * max_mirrors must be the same for both runs, and it indicates how
3334 * many supers on this one device should be written.
3335 *
3336 * max_mirrors == 0 means to write them all.
3337 */
3338 static int write_dev_supers(struct btrfs_device *device,
3339 struct btrfs_super_block *sb,
3340 int do_barriers, int wait, int max_mirrors)
3341 {
3342 struct buffer_head *bh;
3343 int i;
3344 int ret;
3345 int errors = 0;
3346 u32 crc;
3347 u64 bytenr;
3348
3349 if (max_mirrors == 0)
3350 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3351
3352 for (i = 0; i < max_mirrors; i++) {
3353 bytenr = btrfs_sb_offset(i);
3354 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3355 device->commit_total_bytes)
3356 break;
3357
3358 if (wait) {
3359 bh = __find_get_block(device->bdev, bytenr / 4096,
3360 BTRFS_SUPER_INFO_SIZE);
3361 if (!bh) {
3362 errors++;
3363 continue;
3364 }
3365 wait_on_buffer(bh);
3366 if (!buffer_uptodate(bh))
3367 errors++;
3368
3369 /* drop our reference */
3370 brelse(bh);
3371
3372 /* drop the reference from the wait == 0 run */
3373 brelse(bh);
3374 continue;
3375 } else {
3376 btrfs_set_super_bytenr(sb, bytenr);
3377
3378 crc = ~(u32)0;
3379 crc = btrfs_csum_data((char *)sb +
3380 BTRFS_CSUM_SIZE, crc,
3381 BTRFS_SUPER_INFO_SIZE -
3382 BTRFS_CSUM_SIZE);
3383 btrfs_csum_final(crc, sb->csum);
3384
3385 /*
3386 * one reference for us, and we leave it for the
3387 * caller
3388 */
3389 bh = __getblk(device->bdev, bytenr / 4096,
3390 BTRFS_SUPER_INFO_SIZE);
3391 if (!bh) {
3392 btrfs_err(device->dev_root->fs_info,
3393 "couldn't get super buffer head for bytenr %llu",
3394 bytenr);
3395 errors++;
3396 continue;
3397 }
3398
3399 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3400
3401 /* one reference for submit_bh */
3402 get_bh(bh);
3403
3404 set_buffer_uptodate(bh);
3405 lock_buffer(bh);
3406 bh->b_end_io = btrfs_end_buffer_write_sync;
3407 bh->b_private = device;
3408 }
3409
3410 /*
3411 * we fua the first super. The others we allow
3412 * to go down lazy.
3413 */
3414 if (i == 0)
3415 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3416 else
3417 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3418 if (ret)
3419 errors++;
3420 }
3421 return errors < i ? 0 : -1;
3422 }
3423
3424 /*
3425 * endio for the write_dev_flush, this will wake anyone waiting
3426 * for the barrier when it is done
3427 */
3428 static void btrfs_end_empty_barrier(struct bio *bio)
3429 {
3430 if (bio->bi_private)
3431 complete(bio->bi_private);
3432 bio_put(bio);
3433 }
3434
3435 /*
3436 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3437 * sent down. With wait == 1, it waits for the previous flush.
3438 *
3439 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3440 * capable
3441 */
3442 static int write_dev_flush(struct btrfs_device *device, int wait)
3443 {
3444 struct bio *bio;
3445 int ret = 0;
3446
3447 if (device->nobarriers)
3448 return 0;
3449
3450 if (wait) {
3451 bio = device->flush_bio;
3452 if (!bio)
3453 return 0;
3454
3455 wait_for_completion(&device->flush_wait);
3456
3457 if (bio->bi_error) {
3458 ret = bio->bi_error;
3459 btrfs_dev_stat_inc_and_print(device,
3460 BTRFS_DEV_STAT_FLUSH_ERRS);
3461 }
3462
3463 /* drop the reference from the wait == 0 run */
3464 bio_put(bio);
3465 device->flush_bio = NULL;
3466
3467 return ret;
3468 }
3469
3470 /*
3471 * one reference for us, and we leave it for the
3472 * caller
3473 */
3474 device->flush_bio = NULL;
3475 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3476 if (!bio)
3477 return -ENOMEM;
3478
3479 bio->bi_end_io = btrfs_end_empty_barrier;
3480 bio->bi_bdev = device->bdev;
3481 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3482 init_completion(&device->flush_wait);
3483 bio->bi_private = &device->flush_wait;
3484 device->flush_bio = bio;
3485
3486 bio_get(bio);
3487 btrfsic_submit_bio(bio);
3488
3489 return 0;
3490 }
3491
3492 /*
3493 * send an empty flush down to each device in parallel,
3494 * then wait for them
3495 */
3496 static int barrier_all_devices(struct btrfs_fs_info *info)
3497 {
3498 struct list_head *head;
3499 struct btrfs_device *dev;
3500 int errors_send = 0;
3501 int errors_wait = 0;
3502 int ret;
3503
3504 /* send down all the barriers */
3505 head = &info->fs_devices->devices;
3506 list_for_each_entry_rcu(dev, head, dev_list) {
3507 if (dev->missing)
3508 continue;
3509 if (!dev->bdev) {
3510 errors_send++;
3511 continue;
3512 }
3513 if (!dev->in_fs_metadata || !dev->writeable)
3514 continue;
3515
3516 ret = write_dev_flush(dev, 0);
3517 if (ret)
3518 errors_send++;
3519 }
3520
3521 /* wait for all the barriers */
3522 list_for_each_entry_rcu(dev, head, dev_list) {
3523 if (dev->missing)
3524 continue;
3525 if (!dev->bdev) {
3526 errors_wait++;
3527 continue;
3528 }
3529 if (!dev->in_fs_metadata || !dev->writeable)
3530 continue;
3531
3532 ret = write_dev_flush(dev, 1);
3533 if (ret)
3534 errors_wait++;
3535 }
3536 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3537 errors_wait > info->num_tolerated_disk_barrier_failures)
3538 return -EIO;
3539 return 0;
3540 }
3541
3542 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3543 {
3544 int raid_type;
3545 int min_tolerated = INT_MAX;
3546
3547 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3548 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3549 min_tolerated = min(min_tolerated,
3550 btrfs_raid_array[BTRFS_RAID_SINGLE].
3551 tolerated_failures);
3552
3553 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3554 if (raid_type == BTRFS_RAID_SINGLE)
3555 continue;
3556 if (!(flags & btrfs_raid_group[raid_type]))
3557 continue;
3558 min_tolerated = min(min_tolerated,
3559 btrfs_raid_array[raid_type].
3560 tolerated_failures);
3561 }
3562
3563 if (min_tolerated == INT_MAX) {
3564 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3565 min_tolerated = 0;
3566 }
3567
3568 return min_tolerated;
3569 }
3570
3571 int btrfs_calc_num_tolerated_disk_barrier_failures(
3572 struct btrfs_fs_info *fs_info)
3573 {
3574 struct btrfs_ioctl_space_info space;
3575 struct btrfs_space_info *sinfo;
3576 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3577 BTRFS_BLOCK_GROUP_SYSTEM,
3578 BTRFS_BLOCK_GROUP_METADATA,
3579 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3580 int i;
3581 int c;
3582 int num_tolerated_disk_barrier_failures =
3583 (int)fs_info->fs_devices->num_devices;
3584
3585 for (i = 0; i < ARRAY_SIZE(types); i++) {
3586 struct btrfs_space_info *tmp;
3587
3588 sinfo = NULL;
3589 rcu_read_lock();
3590 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3591 if (tmp->flags == types[i]) {
3592 sinfo = tmp;
3593 break;
3594 }
3595 }
3596 rcu_read_unlock();
3597
3598 if (!sinfo)
3599 continue;
3600
3601 down_read(&sinfo->groups_sem);
3602 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3603 u64 flags;
3604
3605 if (list_empty(&sinfo->block_groups[c]))
3606 continue;
3607
3608 btrfs_get_block_group_info(&sinfo->block_groups[c],
3609 &space);
3610 if (space.total_bytes == 0 || space.used_bytes == 0)
3611 continue;
3612 flags = space.flags;
3613
3614 num_tolerated_disk_barrier_failures = min(
3615 num_tolerated_disk_barrier_failures,
3616 btrfs_get_num_tolerated_disk_barrier_failures(
3617 flags));
3618 }
3619 up_read(&sinfo->groups_sem);
3620 }
3621
3622 return num_tolerated_disk_barrier_failures;
3623 }
3624
3625 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3626 {
3627 struct list_head *head;
3628 struct btrfs_device *dev;
3629 struct btrfs_super_block *sb;
3630 struct btrfs_dev_item *dev_item;
3631 int ret;
3632 int do_barriers;
3633 int max_errors;
3634 int total_errors = 0;
3635 u64 flags;
3636
3637 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3638 backup_super_roots(root->fs_info);
3639
3640 sb = root->fs_info->super_for_commit;
3641 dev_item = &sb->dev_item;
3642
3643 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3644 head = &root->fs_info->fs_devices->devices;
3645 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3646
3647 if (do_barriers) {
3648 ret = barrier_all_devices(root->fs_info);
3649 if (ret) {
3650 mutex_unlock(
3651 &root->fs_info->fs_devices->device_list_mutex);
3652 btrfs_handle_fs_error(root->fs_info, ret,
3653 "errors while submitting device barriers.");
3654 return ret;
3655 }
3656 }
3657
3658 list_for_each_entry_rcu(dev, head, dev_list) {
3659 if (!dev->bdev) {
3660 total_errors++;
3661 continue;
3662 }
3663 if (!dev->in_fs_metadata || !dev->writeable)
3664 continue;
3665
3666 btrfs_set_stack_device_generation(dev_item, 0);
3667 btrfs_set_stack_device_type(dev_item, dev->type);
3668 btrfs_set_stack_device_id(dev_item, dev->devid);
3669 btrfs_set_stack_device_total_bytes(dev_item,
3670 dev->commit_total_bytes);
3671 btrfs_set_stack_device_bytes_used(dev_item,
3672 dev->commit_bytes_used);
3673 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3674 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3675 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3676 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3677 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3678
3679 flags = btrfs_super_flags(sb);
3680 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3681
3682 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3683 if (ret)
3684 total_errors++;
3685 }
3686 if (total_errors > max_errors) {
3687 btrfs_err(root->fs_info, "%d errors while writing supers",
3688 total_errors);
3689 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3690
3691 /* FUA is masked off if unsupported and can't be the reason */
3692 btrfs_handle_fs_error(root->fs_info, -EIO,
3693 "%d errors while writing supers", total_errors);
3694 return -EIO;
3695 }
3696
3697 total_errors = 0;
3698 list_for_each_entry_rcu(dev, head, dev_list) {
3699 if (!dev->bdev)
3700 continue;
3701 if (!dev->in_fs_metadata || !dev->writeable)
3702 continue;
3703
3704 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3705 if (ret)
3706 total_errors++;
3707 }
3708 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3709 if (total_errors > max_errors) {
3710 btrfs_handle_fs_error(root->fs_info, -EIO,
3711 "%d errors while writing supers", total_errors);
3712 return -EIO;
3713 }
3714 return 0;
3715 }
3716
3717 int write_ctree_super(struct btrfs_trans_handle *trans,
3718 struct btrfs_root *root, int max_mirrors)
3719 {
3720 return write_all_supers(root, max_mirrors);
3721 }
3722
3723 /* Drop a fs root from the radix tree and free it. */
3724 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3725 struct btrfs_root *root)
3726 {
3727 spin_lock(&fs_info->fs_roots_radix_lock);
3728 radix_tree_delete(&fs_info->fs_roots_radix,
3729 (unsigned long)root->root_key.objectid);
3730 spin_unlock(&fs_info->fs_roots_radix_lock);
3731
3732 if (btrfs_root_refs(&root->root_item) == 0)
3733 synchronize_srcu(&fs_info->subvol_srcu);
3734
3735 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3736 btrfs_free_log(NULL, root);
3737
3738 if (root->free_ino_pinned)
3739 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3740 if (root->free_ino_ctl)
3741 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3742 free_fs_root(root);
3743 }
3744
3745 static void free_fs_root(struct btrfs_root *root)
3746 {
3747 iput(root->ino_cache_inode);
3748 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3749 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3750 root->orphan_block_rsv = NULL;
3751 if (root->anon_dev)
3752 free_anon_bdev(root->anon_dev);
3753 if (root->subv_writers)
3754 btrfs_free_subvolume_writers(root->subv_writers);
3755 free_extent_buffer(root->node);
3756 free_extent_buffer(root->commit_root);
3757 kfree(root->free_ino_ctl);
3758 kfree(root->free_ino_pinned);
3759 kfree(root->name);
3760 btrfs_put_fs_root(root);
3761 }
3762
3763 void btrfs_free_fs_root(struct btrfs_root *root)
3764 {
3765 free_fs_root(root);
3766 }
3767
3768 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3769 {
3770 u64 root_objectid = 0;
3771 struct btrfs_root *gang[8];
3772 int i = 0;
3773 int err = 0;
3774 unsigned int ret = 0;
3775 int index;
3776
3777 while (1) {
3778 index = srcu_read_lock(&fs_info->subvol_srcu);
3779 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3780 (void **)gang, root_objectid,
3781 ARRAY_SIZE(gang));
3782 if (!ret) {
3783 srcu_read_unlock(&fs_info->subvol_srcu, index);
3784 break;
3785 }
3786 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3787
3788 for (i = 0; i < ret; i++) {
3789 /* Avoid to grab roots in dead_roots */
3790 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3791 gang[i] = NULL;
3792 continue;
3793 }
3794 /* grab all the search result for later use */
3795 gang[i] = btrfs_grab_fs_root(gang[i]);
3796 }
3797 srcu_read_unlock(&fs_info->subvol_srcu, index);
3798
3799 for (i = 0; i < ret; i++) {
3800 if (!gang[i])
3801 continue;
3802 root_objectid = gang[i]->root_key.objectid;
3803 err = btrfs_orphan_cleanup(gang[i]);
3804 if (err)
3805 break;
3806 btrfs_put_fs_root(gang[i]);
3807 }
3808 root_objectid++;
3809 }
3810
3811 /* release the uncleaned roots due to error */
3812 for (; i < ret; i++) {
3813 if (gang[i])
3814 btrfs_put_fs_root(gang[i]);
3815 }
3816 return err;
3817 }
3818
3819 int btrfs_commit_super(struct btrfs_root *root)
3820 {
3821 struct btrfs_trans_handle *trans;
3822
3823 mutex_lock(&root->fs_info->cleaner_mutex);
3824 btrfs_run_delayed_iputs(root);
3825 mutex_unlock(&root->fs_info->cleaner_mutex);
3826 wake_up_process(root->fs_info->cleaner_kthread);
3827
3828 /* wait until ongoing cleanup work done */
3829 down_write(&root->fs_info->cleanup_work_sem);
3830 up_write(&root->fs_info->cleanup_work_sem);
3831
3832 trans = btrfs_join_transaction(root);
3833 if (IS_ERR(trans))
3834 return PTR_ERR(trans);
3835 return btrfs_commit_transaction(trans, root);
3836 }
3837
3838 void close_ctree(struct btrfs_root *root)
3839 {
3840 struct btrfs_fs_info *fs_info = root->fs_info;
3841 int ret;
3842
3843 fs_info->closing = 1;
3844 smp_mb();
3845
3846 /* wait for the qgroup rescan worker to stop */
3847 btrfs_qgroup_wait_for_completion(fs_info);
3848
3849 /* wait for the uuid_scan task to finish */
3850 down(&fs_info->uuid_tree_rescan_sem);
3851 /* avoid complains from lockdep et al., set sem back to initial state */
3852 up(&fs_info->uuid_tree_rescan_sem);
3853
3854 /* pause restriper - we want to resume on mount */
3855 btrfs_pause_balance(fs_info);
3856
3857 btrfs_dev_replace_suspend_for_unmount(fs_info);
3858
3859 btrfs_scrub_cancel(fs_info);
3860
3861 /* wait for any defraggers to finish */
3862 wait_event(fs_info->transaction_wait,
3863 (atomic_read(&fs_info->defrag_running) == 0));
3864
3865 /* clear out the rbtree of defraggable inodes */
3866 btrfs_cleanup_defrag_inodes(fs_info);
3867
3868 cancel_work_sync(&fs_info->async_reclaim_work);
3869
3870 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3871 /*
3872 * If the cleaner thread is stopped and there are
3873 * block groups queued for removal, the deletion will be
3874 * skipped when we quit the cleaner thread.
3875 */
3876 btrfs_delete_unused_bgs(root->fs_info);
3877
3878 ret = btrfs_commit_super(root);
3879 if (ret)
3880 btrfs_err(fs_info, "commit super ret %d", ret);
3881 }
3882
3883 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3884 btrfs_error_commit_super(root);
3885
3886 kthread_stop(fs_info->transaction_kthread);
3887 kthread_stop(fs_info->cleaner_kthread);
3888
3889 fs_info->closing = 2;
3890 smp_mb();
3891
3892 btrfs_free_qgroup_config(fs_info);
3893
3894 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3895 btrfs_info(fs_info, "at unmount delalloc count %lld",
3896 percpu_counter_sum(&fs_info->delalloc_bytes));
3897 }
3898
3899 btrfs_sysfs_remove_mounted(fs_info);
3900 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3901
3902 btrfs_free_fs_roots(fs_info);
3903
3904 btrfs_put_block_group_cache(fs_info);
3905
3906 btrfs_free_block_groups(fs_info);
3907
3908 /*
3909 * we must make sure there is not any read request to
3910 * submit after we stopping all workers.
3911 */
3912 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3913 btrfs_stop_all_workers(fs_info);
3914
3915 fs_info->open = 0;
3916 free_root_pointers(fs_info, 1);
3917
3918 iput(fs_info->btree_inode);
3919
3920 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3921 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3922 btrfsic_unmount(root, fs_info->fs_devices);
3923 #endif
3924
3925 btrfs_close_devices(fs_info->fs_devices);
3926 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3927
3928 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3929 percpu_counter_destroy(&fs_info->delalloc_bytes);
3930 percpu_counter_destroy(&fs_info->bio_counter);
3931 bdi_destroy(&fs_info->bdi);
3932 cleanup_srcu_struct(&fs_info->subvol_srcu);
3933
3934 btrfs_free_stripe_hash_table(fs_info);
3935
3936 __btrfs_free_block_rsv(root->orphan_block_rsv);
3937 root->orphan_block_rsv = NULL;
3938
3939 lock_chunks(root);
3940 while (!list_empty(&fs_info->pinned_chunks)) {
3941 struct extent_map *em;
3942
3943 em = list_first_entry(&fs_info->pinned_chunks,
3944 struct extent_map, list);
3945 list_del_init(&em->list);
3946 free_extent_map(em);
3947 }
3948 unlock_chunks(root);
3949 }
3950
3951 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3952 int atomic)
3953 {
3954 int ret;
3955 struct inode *btree_inode = buf->pages[0]->mapping->host;
3956
3957 ret = extent_buffer_uptodate(buf);
3958 if (!ret)
3959 return ret;
3960
3961 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3962 parent_transid, atomic);
3963 if (ret == -EAGAIN)
3964 return ret;
3965 return !ret;
3966 }
3967
3968 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3969 {
3970 struct btrfs_root *root;
3971 u64 transid = btrfs_header_generation(buf);
3972 int was_dirty;
3973
3974 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3975 /*
3976 * This is a fast path so only do this check if we have sanity tests
3977 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3978 * outside of the sanity tests.
3979 */
3980 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3981 return;
3982 #endif
3983 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3984 btrfs_assert_tree_locked(buf);
3985 if (transid != root->fs_info->generation)
3986 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3987 "found %llu running %llu\n",
3988 buf->start, transid, root->fs_info->generation);
3989 was_dirty = set_extent_buffer_dirty(buf);
3990 if (!was_dirty)
3991 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3992 buf->len,
3993 root->fs_info->dirty_metadata_batch);
3994 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3995 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3996 btrfs_print_leaf(root, buf);
3997 ASSERT(0);
3998 }
3999 #endif
4000 }
4001
4002 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4003 int flush_delayed)
4004 {
4005 /*
4006 * looks as though older kernels can get into trouble with
4007 * this code, they end up stuck in balance_dirty_pages forever
4008 */
4009 int ret;
4010
4011 if (current->flags & PF_MEMALLOC)
4012 return;
4013
4014 if (flush_delayed)
4015 btrfs_balance_delayed_items(root);
4016
4017 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4018 BTRFS_DIRTY_METADATA_THRESH);
4019 if (ret > 0) {
4020 balance_dirty_pages_ratelimited(
4021 root->fs_info->btree_inode->i_mapping);
4022 }
4023 }
4024
4025 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4026 {
4027 __btrfs_btree_balance_dirty(root, 1);
4028 }
4029
4030 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4031 {
4032 __btrfs_btree_balance_dirty(root, 0);
4033 }
4034
4035 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4036 {
4037 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4038 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4039 }
4040
4041 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4042 int read_only)
4043 {
4044 struct btrfs_super_block *sb = fs_info->super_copy;
4045 u64 nodesize = btrfs_super_nodesize(sb);
4046 u64 sectorsize = btrfs_super_sectorsize(sb);
4047 int ret = 0;
4048
4049 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4050 printk(KERN_ERR "BTRFS: no valid FS found\n");
4051 ret = -EINVAL;
4052 }
4053 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4054 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4055 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4056 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4057 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4058 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4059 ret = -EINVAL;
4060 }
4061 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4062 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4063 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4064 ret = -EINVAL;
4065 }
4066 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4067 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4068 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4069 ret = -EINVAL;
4070 }
4071
4072 /*
4073 * Check sectorsize and nodesize first, other check will need it.
4074 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4075 */
4076 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4077 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4078 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4079 ret = -EINVAL;
4080 }
4081 /* Only PAGE SIZE is supported yet */
4082 if (sectorsize != PAGE_SIZE) {
4083 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4084 sectorsize, PAGE_SIZE);
4085 ret = -EINVAL;
4086 }
4087 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4088 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4089 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4090 ret = -EINVAL;
4091 }
4092 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4093 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4094 le32_to_cpu(sb->__unused_leafsize),
4095 nodesize);
4096 ret = -EINVAL;
4097 }
4098
4099 /* Root alignment check */
4100 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4101 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4102 btrfs_super_root(sb));
4103 ret = -EINVAL;
4104 }
4105 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4106 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4107 btrfs_super_chunk_root(sb));
4108 ret = -EINVAL;
4109 }
4110 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4111 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4112 btrfs_super_log_root(sb));
4113 ret = -EINVAL;
4114 }
4115
4116 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4117 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4118 fs_info->fsid, sb->dev_item.fsid);
4119 ret = -EINVAL;
4120 }
4121
4122 /*
4123 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4124 * done later
4125 */
4126 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4127 btrfs_err(fs_info, "bytes_used is too small %llu",
4128 btrfs_super_bytes_used(sb));
4129 ret = -EINVAL;
4130 }
4131 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4132 btrfs_err(fs_info, "invalid stripesize %u",
4133 btrfs_super_stripesize(sb));
4134 ret = -EINVAL;
4135 }
4136 if (btrfs_super_num_devices(sb) > (1UL << 31))
4137 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4138 btrfs_super_num_devices(sb));
4139 if (btrfs_super_num_devices(sb) == 0) {
4140 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4141 ret = -EINVAL;
4142 }
4143
4144 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4145 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4146 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4147 ret = -EINVAL;
4148 }
4149
4150 /*
4151 * Obvious sys_chunk_array corruptions, it must hold at least one key
4152 * and one chunk
4153 */
4154 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4155 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4156 btrfs_super_sys_array_size(sb),
4157 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4158 ret = -EINVAL;
4159 }
4160 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4161 + sizeof(struct btrfs_chunk)) {
4162 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4163 btrfs_super_sys_array_size(sb),
4164 sizeof(struct btrfs_disk_key)
4165 + sizeof(struct btrfs_chunk));
4166 ret = -EINVAL;
4167 }
4168
4169 /*
4170 * The generation is a global counter, we'll trust it more than the others
4171 * but it's still possible that it's the one that's wrong.
4172 */
4173 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4174 printk(KERN_WARNING
4175 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4176 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4177 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4178 && btrfs_super_cache_generation(sb) != (u64)-1)
4179 printk(KERN_WARNING
4180 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4181 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4182
4183 return ret;
4184 }
4185
4186 static void btrfs_error_commit_super(struct btrfs_root *root)
4187 {
4188 mutex_lock(&root->fs_info->cleaner_mutex);
4189 btrfs_run_delayed_iputs(root);
4190 mutex_unlock(&root->fs_info->cleaner_mutex);
4191
4192 down_write(&root->fs_info->cleanup_work_sem);
4193 up_write(&root->fs_info->cleanup_work_sem);
4194
4195 /* cleanup FS via transaction */
4196 btrfs_cleanup_transaction(root);
4197 }
4198
4199 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4200 {
4201 struct btrfs_ordered_extent *ordered;
4202
4203 spin_lock(&root->ordered_extent_lock);
4204 /*
4205 * This will just short circuit the ordered completion stuff which will
4206 * make sure the ordered extent gets properly cleaned up.
4207 */
4208 list_for_each_entry(ordered, &root->ordered_extents,
4209 root_extent_list)
4210 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4211 spin_unlock(&root->ordered_extent_lock);
4212 }
4213
4214 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4215 {
4216 struct btrfs_root *root;
4217 struct list_head splice;
4218
4219 INIT_LIST_HEAD(&splice);
4220
4221 spin_lock(&fs_info->ordered_root_lock);
4222 list_splice_init(&fs_info->ordered_roots, &splice);
4223 while (!list_empty(&splice)) {
4224 root = list_first_entry(&splice, struct btrfs_root,
4225 ordered_root);
4226 list_move_tail(&root->ordered_root,
4227 &fs_info->ordered_roots);
4228
4229 spin_unlock(&fs_info->ordered_root_lock);
4230 btrfs_destroy_ordered_extents(root);
4231
4232 cond_resched();
4233 spin_lock(&fs_info->ordered_root_lock);
4234 }
4235 spin_unlock(&fs_info->ordered_root_lock);
4236 }
4237
4238 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4239 struct btrfs_root *root)
4240 {
4241 struct rb_node *node;
4242 struct btrfs_delayed_ref_root *delayed_refs;
4243 struct btrfs_delayed_ref_node *ref;
4244 int ret = 0;
4245
4246 delayed_refs = &trans->delayed_refs;
4247
4248 spin_lock(&delayed_refs->lock);
4249 if (atomic_read(&delayed_refs->num_entries) == 0) {
4250 spin_unlock(&delayed_refs->lock);
4251 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4252 return ret;
4253 }
4254
4255 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4256 struct btrfs_delayed_ref_head *head;
4257 struct btrfs_delayed_ref_node *tmp;
4258 bool pin_bytes = false;
4259
4260 head = rb_entry(node, struct btrfs_delayed_ref_head,
4261 href_node);
4262 if (!mutex_trylock(&head->mutex)) {
4263 atomic_inc(&head->node.refs);
4264 spin_unlock(&delayed_refs->lock);
4265
4266 mutex_lock(&head->mutex);
4267 mutex_unlock(&head->mutex);
4268 btrfs_put_delayed_ref(&head->node);
4269 spin_lock(&delayed_refs->lock);
4270 continue;
4271 }
4272 spin_lock(&head->lock);
4273 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4274 list) {
4275 ref->in_tree = 0;
4276 list_del(&ref->list);
4277 atomic_dec(&delayed_refs->num_entries);
4278 btrfs_put_delayed_ref(ref);
4279 }
4280 if (head->must_insert_reserved)
4281 pin_bytes = true;
4282 btrfs_free_delayed_extent_op(head->extent_op);
4283 delayed_refs->num_heads--;
4284 if (head->processing == 0)
4285 delayed_refs->num_heads_ready--;
4286 atomic_dec(&delayed_refs->num_entries);
4287 head->node.in_tree = 0;
4288 rb_erase(&head->href_node, &delayed_refs->href_root);
4289 spin_unlock(&head->lock);
4290 spin_unlock(&delayed_refs->lock);
4291 mutex_unlock(&head->mutex);
4292
4293 if (pin_bytes)
4294 btrfs_pin_extent(root, head->node.bytenr,
4295 head->node.num_bytes, 1);
4296 btrfs_put_delayed_ref(&head->node);
4297 cond_resched();
4298 spin_lock(&delayed_refs->lock);
4299 }
4300
4301 spin_unlock(&delayed_refs->lock);
4302
4303 return ret;
4304 }
4305
4306 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4307 {
4308 struct btrfs_inode *btrfs_inode;
4309 struct list_head splice;
4310
4311 INIT_LIST_HEAD(&splice);
4312
4313 spin_lock(&root->delalloc_lock);
4314 list_splice_init(&root->delalloc_inodes, &splice);
4315
4316 while (!list_empty(&splice)) {
4317 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4318 delalloc_inodes);
4319
4320 list_del_init(&btrfs_inode->delalloc_inodes);
4321 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4322 &btrfs_inode->runtime_flags);
4323 spin_unlock(&root->delalloc_lock);
4324
4325 btrfs_invalidate_inodes(btrfs_inode->root);
4326
4327 spin_lock(&root->delalloc_lock);
4328 }
4329
4330 spin_unlock(&root->delalloc_lock);
4331 }
4332
4333 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4334 {
4335 struct btrfs_root *root;
4336 struct list_head splice;
4337
4338 INIT_LIST_HEAD(&splice);
4339
4340 spin_lock(&fs_info->delalloc_root_lock);
4341 list_splice_init(&fs_info->delalloc_roots, &splice);
4342 while (!list_empty(&splice)) {
4343 root = list_first_entry(&splice, struct btrfs_root,
4344 delalloc_root);
4345 list_del_init(&root->delalloc_root);
4346 root = btrfs_grab_fs_root(root);
4347 BUG_ON(!root);
4348 spin_unlock(&fs_info->delalloc_root_lock);
4349
4350 btrfs_destroy_delalloc_inodes(root);
4351 btrfs_put_fs_root(root);
4352
4353 spin_lock(&fs_info->delalloc_root_lock);
4354 }
4355 spin_unlock(&fs_info->delalloc_root_lock);
4356 }
4357
4358 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4359 struct extent_io_tree *dirty_pages,
4360 int mark)
4361 {
4362 int ret;
4363 struct extent_buffer *eb;
4364 u64 start = 0;
4365 u64 end;
4366
4367 while (1) {
4368 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4369 mark, NULL);
4370 if (ret)
4371 break;
4372
4373 clear_extent_bits(dirty_pages, start, end, mark);
4374 while (start <= end) {
4375 eb = btrfs_find_tree_block(root->fs_info, start);
4376 start += root->nodesize;
4377 if (!eb)
4378 continue;
4379 wait_on_extent_buffer_writeback(eb);
4380
4381 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4382 &eb->bflags))
4383 clear_extent_buffer_dirty(eb);
4384 free_extent_buffer_stale(eb);
4385 }
4386 }
4387
4388 return ret;
4389 }
4390
4391 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4392 struct extent_io_tree *pinned_extents)
4393 {
4394 struct extent_io_tree *unpin;
4395 u64 start;
4396 u64 end;
4397 int ret;
4398 bool loop = true;
4399
4400 unpin = pinned_extents;
4401 again:
4402 while (1) {
4403 ret = find_first_extent_bit(unpin, 0, &start, &end,
4404 EXTENT_DIRTY, NULL);
4405 if (ret)
4406 break;
4407
4408 clear_extent_dirty(unpin, start, end);
4409 btrfs_error_unpin_extent_range(root, start, end);
4410 cond_resched();
4411 }
4412
4413 if (loop) {
4414 if (unpin == &root->fs_info->freed_extents[0])
4415 unpin = &root->fs_info->freed_extents[1];
4416 else
4417 unpin = &root->fs_info->freed_extents[0];
4418 loop = false;
4419 goto again;
4420 }
4421
4422 return 0;
4423 }
4424
4425 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4426 struct btrfs_root *root)
4427 {
4428 btrfs_destroy_delayed_refs(cur_trans, root);
4429
4430 cur_trans->state = TRANS_STATE_COMMIT_START;
4431 wake_up(&root->fs_info->transaction_blocked_wait);
4432
4433 cur_trans->state = TRANS_STATE_UNBLOCKED;
4434 wake_up(&root->fs_info->transaction_wait);
4435
4436 btrfs_destroy_delayed_inodes(root);
4437 btrfs_assert_delayed_root_empty(root);
4438
4439 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4440 EXTENT_DIRTY);
4441 btrfs_destroy_pinned_extent(root,
4442 root->fs_info->pinned_extents);
4443
4444 cur_trans->state =TRANS_STATE_COMPLETED;
4445 wake_up(&cur_trans->commit_wait);
4446
4447 /*
4448 memset(cur_trans, 0, sizeof(*cur_trans));
4449 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4450 */
4451 }
4452
4453 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4454 {
4455 struct btrfs_transaction *t;
4456
4457 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4458
4459 spin_lock(&root->fs_info->trans_lock);
4460 while (!list_empty(&root->fs_info->trans_list)) {
4461 t = list_first_entry(&root->fs_info->trans_list,
4462 struct btrfs_transaction, list);
4463 if (t->state >= TRANS_STATE_COMMIT_START) {
4464 atomic_inc(&t->use_count);
4465 spin_unlock(&root->fs_info->trans_lock);
4466 btrfs_wait_for_commit(root, t->transid);
4467 btrfs_put_transaction(t);
4468 spin_lock(&root->fs_info->trans_lock);
4469 continue;
4470 }
4471 if (t == root->fs_info->running_transaction) {
4472 t->state = TRANS_STATE_COMMIT_DOING;
4473 spin_unlock(&root->fs_info->trans_lock);
4474 /*
4475 * We wait for 0 num_writers since we don't hold a trans
4476 * handle open currently for this transaction.
4477 */
4478 wait_event(t->writer_wait,
4479 atomic_read(&t->num_writers) == 0);
4480 } else {
4481 spin_unlock(&root->fs_info->trans_lock);
4482 }
4483 btrfs_cleanup_one_transaction(t, root);
4484
4485 spin_lock(&root->fs_info->trans_lock);
4486 if (t == root->fs_info->running_transaction)
4487 root->fs_info->running_transaction = NULL;
4488 list_del_init(&t->list);
4489 spin_unlock(&root->fs_info->trans_lock);
4490
4491 btrfs_put_transaction(t);
4492 trace_btrfs_transaction_commit(root);
4493 spin_lock(&root->fs_info->trans_lock);
4494 }
4495 spin_unlock(&root->fs_info->trans_lock);
4496 btrfs_destroy_all_ordered_extents(root->fs_info);
4497 btrfs_destroy_delayed_inodes(root);
4498 btrfs_assert_delayed_root_empty(root);
4499 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4500 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4501 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4502
4503 return 0;
4504 }
4505
4506 static const struct extent_io_ops btree_extent_io_ops = {
4507 .readpage_end_io_hook = btree_readpage_end_io_hook,
4508 .readpage_io_failed_hook = btree_io_failed_hook,
4509 .submit_bio_hook = btree_submit_bio_hook,
4510 /* note we're sharing with inode.c for the merge bio hook */
4511 .merge_bio_hook = btrfs_merge_bio_hook,
4512 };