]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Merge branch 'ino-alloc' of git://repo.or.cz/linux-btrfs-devel into inode_numbers
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <asm/unaligned.h>
33 #include "compat.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "print-tree.h"
40 #include "async-thread.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "inode-map.h"
45
46 static struct extent_io_ops btree_extent_io_ops;
47 static void end_workqueue_fn(struct btrfs_work *work);
48 static void free_fs_root(struct btrfs_root *root);
49 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
50 int read_only);
51 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
52 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
53 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
54 struct btrfs_root *root);
55 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
56 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
57 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
58 struct extent_io_tree *dirty_pages,
59 int mark);
60 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
61 struct extent_io_tree *pinned_extents);
62 static int btrfs_cleanup_transaction(struct btrfs_root *root);
63
64 /*
65 * end_io_wq structs are used to do processing in task context when an IO is
66 * complete. This is used during reads to verify checksums, and it is used
67 * by writes to insert metadata for new file extents after IO is complete.
68 */
69 struct end_io_wq {
70 struct bio *bio;
71 bio_end_io_t *end_io;
72 void *private;
73 struct btrfs_fs_info *info;
74 int error;
75 int metadata;
76 struct list_head list;
77 struct btrfs_work work;
78 };
79
80 /*
81 * async submit bios are used to offload expensive checksumming
82 * onto the worker threads. They checksum file and metadata bios
83 * just before they are sent down the IO stack.
84 */
85 struct async_submit_bio {
86 struct inode *inode;
87 struct bio *bio;
88 struct list_head list;
89 extent_submit_bio_hook_t *submit_bio_start;
90 extent_submit_bio_hook_t *submit_bio_done;
91 int rw;
92 int mirror_num;
93 unsigned long bio_flags;
94 /*
95 * bio_offset is optional, can be used if the pages in the bio
96 * can't tell us where in the file the bio should go
97 */
98 u64 bio_offset;
99 struct btrfs_work work;
100 };
101
102 /* These are used to set the lockdep class on the extent buffer locks.
103 * The class is set by the readpage_end_io_hook after the buffer has
104 * passed csum validation but before the pages are unlocked.
105 *
106 * The lockdep class is also set by btrfs_init_new_buffer on freshly
107 * allocated blocks.
108 *
109 * The class is based on the level in the tree block, which allows lockdep
110 * to know that lower nodes nest inside the locks of higher nodes.
111 *
112 * We also add a check to make sure the highest level of the tree is
113 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
114 * code needs update as well.
115 */
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 # if BTRFS_MAX_LEVEL != 8
118 # error
119 # endif
120 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
121 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
122 /* leaf */
123 "btrfs-extent-00",
124 "btrfs-extent-01",
125 "btrfs-extent-02",
126 "btrfs-extent-03",
127 "btrfs-extent-04",
128 "btrfs-extent-05",
129 "btrfs-extent-06",
130 "btrfs-extent-07",
131 /* highest possible level */
132 "btrfs-extent-08",
133 };
134 #endif
135
136 /*
137 * extents on the btree inode are pretty simple, there's one extent
138 * that covers the entire device
139 */
140 static struct extent_map *btree_get_extent(struct inode *inode,
141 struct page *page, size_t page_offset, u64 start, u64 len,
142 int create)
143 {
144 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
145 struct extent_map *em;
146 int ret;
147
148 read_lock(&em_tree->lock);
149 em = lookup_extent_mapping(em_tree, start, len);
150 if (em) {
151 em->bdev =
152 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
153 read_unlock(&em_tree->lock);
154 goto out;
155 }
156 read_unlock(&em_tree->lock);
157
158 em = alloc_extent_map(GFP_NOFS);
159 if (!em) {
160 em = ERR_PTR(-ENOMEM);
161 goto out;
162 }
163 em->start = 0;
164 em->len = (u64)-1;
165 em->block_len = (u64)-1;
166 em->block_start = 0;
167 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
168
169 write_lock(&em_tree->lock);
170 ret = add_extent_mapping(em_tree, em);
171 if (ret == -EEXIST) {
172 u64 failed_start = em->start;
173 u64 failed_len = em->len;
174
175 free_extent_map(em);
176 em = lookup_extent_mapping(em_tree, start, len);
177 if (em) {
178 ret = 0;
179 } else {
180 em = lookup_extent_mapping(em_tree, failed_start,
181 failed_len);
182 ret = -EIO;
183 }
184 } else if (ret) {
185 free_extent_map(em);
186 em = NULL;
187 }
188 write_unlock(&em_tree->lock);
189
190 if (ret)
191 em = ERR_PTR(ret);
192 out:
193 return em;
194 }
195
196 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
197 {
198 return crc32c(seed, data, len);
199 }
200
201 void btrfs_csum_final(u32 crc, char *result)
202 {
203 put_unaligned_le32(~crc, result);
204 }
205
206 /*
207 * compute the csum for a btree block, and either verify it or write it
208 * into the csum field of the block.
209 */
210 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
211 int verify)
212 {
213 u16 csum_size =
214 btrfs_super_csum_size(&root->fs_info->super_copy);
215 char *result = NULL;
216 unsigned long len;
217 unsigned long cur_len;
218 unsigned long offset = BTRFS_CSUM_SIZE;
219 char *map_token = NULL;
220 char *kaddr;
221 unsigned long map_start;
222 unsigned long map_len;
223 int err;
224 u32 crc = ~(u32)0;
225 unsigned long inline_result;
226
227 len = buf->len - offset;
228 while (len > 0) {
229 err = map_private_extent_buffer(buf, offset, 32,
230 &map_token, &kaddr,
231 &map_start, &map_len, KM_USER0);
232 if (err)
233 return 1;
234 cur_len = min(len, map_len - (offset - map_start));
235 crc = btrfs_csum_data(root, kaddr + offset - map_start,
236 crc, cur_len);
237 len -= cur_len;
238 offset += cur_len;
239 unmap_extent_buffer(buf, map_token, KM_USER0);
240 }
241 if (csum_size > sizeof(inline_result)) {
242 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
243 if (!result)
244 return 1;
245 } else {
246 result = (char *)&inline_result;
247 }
248
249 btrfs_csum_final(crc, result);
250
251 if (verify) {
252 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
253 u32 val;
254 u32 found = 0;
255 memcpy(&found, result, csum_size);
256
257 read_extent_buffer(buf, &val, 0, csum_size);
258 if (printk_ratelimit()) {
259 printk(KERN_INFO "btrfs: %s checksum verify "
260 "failed on %llu wanted %X found %X "
261 "level %d\n",
262 root->fs_info->sb->s_id,
263 (unsigned long long)buf->start, val, found,
264 btrfs_header_level(buf));
265 }
266 if (result != (char *)&inline_result)
267 kfree(result);
268 return 1;
269 }
270 } else {
271 write_extent_buffer(buf, result, 0, csum_size);
272 }
273 if (result != (char *)&inline_result)
274 kfree(result);
275 return 0;
276 }
277
278 /*
279 * we can't consider a given block up to date unless the transid of the
280 * block matches the transid in the parent node's pointer. This is how we
281 * detect blocks that either didn't get written at all or got written
282 * in the wrong place.
283 */
284 static int verify_parent_transid(struct extent_io_tree *io_tree,
285 struct extent_buffer *eb, u64 parent_transid)
286 {
287 struct extent_state *cached_state = NULL;
288 int ret;
289
290 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
291 return 0;
292
293 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
294 0, &cached_state, GFP_NOFS);
295 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
296 btrfs_header_generation(eb) == parent_transid) {
297 ret = 0;
298 goto out;
299 }
300 if (printk_ratelimit()) {
301 printk("parent transid verify failed on %llu wanted %llu "
302 "found %llu\n",
303 (unsigned long long)eb->start,
304 (unsigned long long)parent_transid,
305 (unsigned long long)btrfs_header_generation(eb));
306 }
307 ret = 1;
308 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
309 out:
310 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
311 &cached_state, GFP_NOFS);
312 return ret;
313 }
314
315 /*
316 * helper to read a given tree block, doing retries as required when
317 * the checksums don't match and we have alternate mirrors to try.
318 */
319 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
320 struct extent_buffer *eb,
321 u64 start, u64 parent_transid)
322 {
323 struct extent_io_tree *io_tree;
324 int ret;
325 int num_copies = 0;
326 int mirror_num = 0;
327
328 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
329 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
330 while (1) {
331 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
332 btree_get_extent, mirror_num);
333 if (!ret &&
334 !verify_parent_transid(io_tree, eb, parent_transid))
335 return ret;
336
337 /*
338 * This buffer's crc is fine, but its contents are corrupted, so
339 * there is no reason to read the other copies, they won't be
340 * any less wrong.
341 */
342 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
343 return ret;
344
345 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
346 eb->start, eb->len);
347 if (num_copies == 1)
348 return ret;
349
350 mirror_num++;
351 if (mirror_num > num_copies)
352 return ret;
353 }
354 return -EIO;
355 }
356
357 /*
358 * checksum a dirty tree block before IO. This has extra checks to make sure
359 * we only fill in the checksum field in the first page of a multi-page block
360 */
361
362 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
363 {
364 struct extent_io_tree *tree;
365 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
366 u64 found_start;
367 unsigned long len;
368 struct extent_buffer *eb;
369 int ret;
370
371 tree = &BTRFS_I(page->mapping->host)->io_tree;
372
373 if (page->private == EXTENT_PAGE_PRIVATE) {
374 WARN_ON(1);
375 goto out;
376 }
377 if (!page->private) {
378 WARN_ON(1);
379 goto out;
380 }
381 len = page->private >> 2;
382 WARN_ON(len == 0);
383
384 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
385 if (eb == NULL) {
386 WARN_ON(1);
387 goto out;
388 }
389 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
390 btrfs_header_generation(eb));
391 BUG_ON(ret);
392 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
393
394 found_start = btrfs_header_bytenr(eb);
395 if (found_start != start) {
396 WARN_ON(1);
397 goto err;
398 }
399 if (eb->first_page != page) {
400 WARN_ON(1);
401 goto err;
402 }
403 if (!PageUptodate(page)) {
404 WARN_ON(1);
405 goto err;
406 }
407 csum_tree_block(root, eb, 0);
408 err:
409 free_extent_buffer(eb);
410 out:
411 return 0;
412 }
413
414 static int check_tree_block_fsid(struct btrfs_root *root,
415 struct extent_buffer *eb)
416 {
417 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
418 u8 fsid[BTRFS_UUID_SIZE];
419 int ret = 1;
420
421 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
422 BTRFS_FSID_SIZE);
423 while (fs_devices) {
424 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
425 ret = 0;
426 break;
427 }
428 fs_devices = fs_devices->seed;
429 }
430 return ret;
431 }
432
433 #define CORRUPT(reason, eb, root, slot) \
434 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
435 "root=%llu, slot=%d\n", reason, \
436 (unsigned long long)btrfs_header_bytenr(eb), \
437 (unsigned long long)root->objectid, slot)
438
439 static noinline int check_leaf(struct btrfs_root *root,
440 struct extent_buffer *leaf)
441 {
442 struct btrfs_key key;
443 struct btrfs_key leaf_key;
444 u32 nritems = btrfs_header_nritems(leaf);
445 int slot;
446
447 if (nritems == 0)
448 return 0;
449
450 /* Check the 0 item */
451 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
452 BTRFS_LEAF_DATA_SIZE(root)) {
453 CORRUPT("invalid item offset size pair", leaf, root, 0);
454 return -EIO;
455 }
456
457 /*
458 * Check to make sure each items keys are in the correct order and their
459 * offsets make sense. We only have to loop through nritems-1 because
460 * we check the current slot against the next slot, which verifies the
461 * next slot's offset+size makes sense and that the current's slot
462 * offset is correct.
463 */
464 for (slot = 0; slot < nritems - 1; slot++) {
465 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
466 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
467
468 /* Make sure the keys are in the right order */
469 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
470 CORRUPT("bad key order", leaf, root, slot);
471 return -EIO;
472 }
473
474 /*
475 * Make sure the offset and ends are right, remember that the
476 * item data starts at the end of the leaf and grows towards the
477 * front.
478 */
479 if (btrfs_item_offset_nr(leaf, slot) !=
480 btrfs_item_end_nr(leaf, slot + 1)) {
481 CORRUPT("slot offset bad", leaf, root, slot);
482 return -EIO;
483 }
484
485 /*
486 * Check to make sure that we don't point outside of the leaf,
487 * just incase all the items are consistent to eachother, but
488 * all point outside of the leaf.
489 */
490 if (btrfs_item_end_nr(leaf, slot) >
491 BTRFS_LEAF_DATA_SIZE(root)) {
492 CORRUPT("slot end outside of leaf", leaf, root, slot);
493 return -EIO;
494 }
495 }
496
497 return 0;
498 }
499
500 #ifdef CONFIG_DEBUG_LOCK_ALLOC
501 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
502 {
503 lockdep_set_class_and_name(&eb->lock,
504 &btrfs_eb_class[level],
505 btrfs_eb_name[level]);
506 }
507 #endif
508
509 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
510 struct extent_state *state)
511 {
512 struct extent_io_tree *tree;
513 u64 found_start;
514 int found_level;
515 unsigned long len;
516 struct extent_buffer *eb;
517 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
518 int ret = 0;
519
520 tree = &BTRFS_I(page->mapping->host)->io_tree;
521 if (page->private == EXTENT_PAGE_PRIVATE)
522 goto out;
523 if (!page->private)
524 goto out;
525
526 len = page->private >> 2;
527 WARN_ON(len == 0);
528
529 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
530 if (eb == NULL) {
531 ret = -EIO;
532 goto out;
533 }
534
535 found_start = btrfs_header_bytenr(eb);
536 if (found_start != start) {
537 if (printk_ratelimit()) {
538 printk(KERN_INFO "btrfs bad tree block start "
539 "%llu %llu\n",
540 (unsigned long long)found_start,
541 (unsigned long long)eb->start);
542 }
543 ret = -EIO;
544 goto err;
545 }
546 if (eb->first_page != page) {
547 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
548 eb->first_page->index, page->index);
549 WARN_ON(1);
550 ret = -EIO;
551 goto err;
552 }
553 if (check_tree_block_fsid(root, eb)) {
554 if (printk_ratelimit()) {
555 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
556 (unsigned long long)eb->start);
557 }
558 ret = -EIO;
559 goto err;
560 }
561 found_level = btrfs_header_level(eb);
562
563 btrfs_set_buffer_lockdep_class(eb, found_level);
564
565 ret = csum_tree_block(root, eb, 1);
566 if (ret) {
567 ret = -EIO;
568 goto err;
569 }
570
571 /*
572 * If this is a leaf block and it is corrupt, set the corrupt bit so
573 * that we don't try and read the other copies of this block, just
574 * return -EIO.
575 */
576 if (found_level == 0 && check_leaf(root, eb)) {
577 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
578 ret = -EIO;
579 }
580
581 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
582 end = eb->start + end - 1;
583 err:
584 free_extent_buffer(eb);
585 out:
586 return ret;
587 }
588
589 static void end_workqueue_bio(struct bio *bio, int err)
590 {
591 struct end_io_wq *end_io_wq = bio->bi_private;
592 struct btrfs_fs_info *fs_info;
593
594 fs_info = end_io_wq->info;
595 end_io_wq->error = err;
596 end_io_wq->work.func = end_workqueue_fn;
597 end_io_wq->work.flags = 0;
598
599 if (bio->bi_rw & REQ_WRITE) {
600 if (end_io_wq->metadata == 1)
601 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
602 &end_io_wq->work);
603 else if (end_io_wq->metadata == 2)
604 btrfs_queue_worker(&fs_info->endio_freespace_worker,
605 &end_io_wq->work);
606 else
607 btrfs_queue_worker(&fs_info->endio_write_workers,
608 &end_io_wq->work);
609 } else {
610 if (end_io_wq->metadata)
611 btrfs_queue_worker(&fs_info->endio_meta_workers,
612 &end_io_wq->work);
613 else
614 btrfs_queue_worker(&fs_info->endio_workers,
615 &end_io_wq->work);
616 }
617 }
618
619 /*
620 * For the metadata arg you want
621 *
622 * 0 - if data
623 * 1 - if normal metadta
624 * 2 - if writing to the free space cache area
625 */
626 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
627 int metadata)
628 {
629 struct end_io_wq *end_io_wq;
630 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
631 if (!end_io_wq)
632 return -ENOMEM;
633
634 end_io_wq->private = bio->bi_private;
635 end_io_wq->end_io = bio->bi_end_io;
636 end_io_wq->info = info;
637 end_io_wq->error = 0;
638 end_io_wq->bio = bio;
639 end_io_wq->metadata = metadata;
640
641 bio->bi_private = end_io_wq;
642 bio->bi_end_io = end_workqueue_bio;
643 return 0;
644 }
645
646 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
647 {
648 unsigned long limit = min_t(unsigned long,
649 info->workers.max_workers,
650 info->fs_devices->open_devices);
651 return 256 * limit;
652 }
653
654 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
655 {
656 return atomic_read(&info->nr_async_bios) >
657 btrfs_async_submit_limit(info);
658 }
659
660 static void run_one_async_start(struct btrfs_work *work)
661 {
662 struct async_submit_bio *async;
663
664 async = container_of(work, struct async_submit_bio, work);
665 async->submit_bio_start(async->inode, async->rw, async->bio,
666 async->mirror_num, async->bio_flags,
667 async->bio_offset);
668 }
669
670 static void run_one_async_done(struct btrfs_work *work)
671 {
672 struct btrfs_fs_info *fs_info;
673 struct async_submit_bio *async;
674 int limit;
675
676 async = container_of(work, struct async_submit_bio, work);
677 fs_info = BTRFS_I(async->inode)->root->fs_info;
678
679 limit = btrfs_async_submit_limit(fs_info);
680 limit = limit * 2 / 3;
681
682 atomic_dec(&fs_info->nr_async_submits);
683
684 if (atomic_read(&fs_info->nr_async_submits) < limit &&
685 waitqueue_active(&fs_info->async_submit_wait))
686 wake_up(&fs_info->async_submit_wait);
687
688 async->submit_bio_done(async->inode, async->rw, async->bio,
689 async->mirror_num, async->bio_flags,
690 async->bio_offset);
691 }
692
693 static void run_one_async_free(struct btrfs_work *work)
694 {
695 struct async_submit_bio *async;
696
697 async = container_of(work, struct async_submit_bio, work);
698 kfree(async);
699 }
700
701 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
702 int rw, struct bio *bio, int mirror_num,
703 unsigned long bio_flags,
704 u64 bio_offset,
705 extent_submit_bio_hook_t *submit_bio_start,
706 extent_submit_bio_hook_t *submit_bio_done)
707 {
708 struct async_submit_bio *async;
709
710 async = kmalloc(sizeof(*async), GFP_NOFS);
711 if (!async)
712 return -ENOMEM;
713
714 async->inode = inode;
715 async->rw = rw;
716 async->bio = bio;
717 async->mirror_num = mirror_num;
718 async->submit_bio_start = submit_bio_start;
719 async->submit_bio_done = submit_bio_done;
720
721 async->work.func = run_one_async_start;
722 async->work.ordered_func = run_one_async_done;
723 async->work.ordered_free = run_one_async_free;
724
725 async->work.flags = 0;
726 async->bio_flags = bio_flags;
727 async->bio_offset = bio_offset;
728
729 atomic_inc(&fs_info->nr_async_submits);
730
731 if (rw & REQ_SYNC)
732 btrfs_set_work_high_prio(&async->work);
733
734 btrfs_queue_worker(&fs_info->workers, &async->work);
735
736 while (atomic_read(&fs_info->async_submit_draining) &&
737 atomic_read(&fs_info->nr_async_submits)) {
738 wait_event(fs_info->async_submit_wait,
739 (atomic_read(&fs_info->nr_async_submits) == 0));
740 }
741
742 return 0;
743 }
744
745 static int btree_csum_one_bio(struct bio *bio)
746 {
747 struct bio_vec *bvec = bio->bi_io_vec;
748 int bio_index = 0;
749 struct btrfs_root *root;
750
751 WARN_ON(bio->bi_vcnt <= 0);
752 while (bio_index < bio->bi_vcnt) {
753 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
754 csum_dirty_buffer(root, bvec->bv_page);
755 bio_index++;
756 bvec++;
757 }
758 return 0;
759 }
760
761 static int __btree_submit_bio_start(struct inode *inode, int rw,
762 struct bio *bio, int mirror_num,
763 unsigned long bio_flags,
764 u64 bio_offset)
765 {
766 /*
767 * when we're called for a write, we're already in the async
768 * submission context. Just jump into btrfs_map_bio
769 */
770 btree_csum_one_bio(bio);
771 return 0;
772 }
773
774 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
775 int mirror_num, unsigned long bio_flags,
776 u64 bio_offset)
777 {
778 /*
779 * when we're called for a write, we're already in the async
780 * submission context. Just jump into btrfs_map_bio
781 */
782 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
783 }
784
785 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
786 int mirror_num, unsigned long bio_flags,
787 u64 bio_offset)
788 {
789 int ret;
790
791 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
792 bio, 1);
793 BUG_ON(ret);
794
795 if (!(rw & REQ_WRITE)) {
796 /*
797 * called for a read, do the setup so that checksum validation
798 * can happen in the async kernel threads
799 */
800 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
801 mirror_num, 0);
802 }
803
804 /*
805 * kthread helpers are used to submit writes so that checksumming
806 * can happen in parallel across all CPUs
807 */
808 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
809 inode, rw, bio, mirror_num, 0,
810 bio_offset,
811 __btree_submit_bio_start,
812 __btree_submit_bio_done);
813 }
814
815 #ifdef CONFIG_MIGRATION
816 static int btree_migratepage(struct address_space *mapping,
817 struct page *newpage, struct page *page)
818 {
819 /*
820 * we can't safely write a btree page from here,
821 * we haven't done the locking hook
822 */
823 if (PageDirty(page))
824 return -EAGAIN;
825 /*
826 * Buffers may be managed in a filesystem specific way.
827 * We must have no buffers or drop them.
828 */
829 if (page_has_private(page) &&
830 !try_to_release_page(page, GFP_KERNEL))
831 return -EAGAIN;
832 return migrate_page(mapping, newpage, page);
833 }
834 #endif
835
836 static int btree_writepage(struct page *page, struct writeback_control *wbc)
837 {
838 struct extent_io_tree *tree;
839 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
840 struct extent_buffer *eb;
841 int was_dirty;
842
843 tree = &BTRFS_I(page->mapping->host)->io_tree;
844 if (!(current->flags & PF_MEMALLOC)) {
845 return extent_write_full_page(tree, page,
846 btree_get_extent, wbc);
847 }
848
849 redirty_page_for_writepage(wbc, page);
850 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
851 WARN_ON(!eb);
852
853 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
854 if (!was_dirty) {
855 spin_lock(&root->fs_info->delalloc_lock);
856 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
857 spin_unlock(&root->fs_info->delalloc_lock);
858 }
859 free_extent_buffer(eb);
860
861 unlock_page(page);
862 return 0;
863 }
864
865 static int btree_writepages(struct address_space *mapping,
866 struct writeback_control *wbc)
867 {
868 struct extent_io_tree *tree;
869 tree = &BTRFS_I(mapping->host)->io_tree;
870 if (wbc->sync_mode == WB_SYNC_NONE) {
871 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
872 u64 num_dirty;
873 unsigned long thresh = 32 * 1024 * 1024;
874
875 if (wbc->for_kupdate)
876 return 0;
877
878 /* this is a bit racy, but that's ok */
879 num_dirty = root->fs_info->dirty_metadata_bytes;
880 if (num_dirty < thresh)
881 return 0;
882 }
883 return extent_writepages(tree, mapping, btree_get_extent, wbc);
884 }
885
886 static int btree_readpage(struct file *file, struct page *page)
887 {
888 struct extent_io_tree *tree;
889 tree = &BTRFS_I(page->mapping->host)->io_tree;
890 return extent_read_full_page(tree, page, btree_get_extent);
891 }
892
893 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
894 {
895 struct extent_io_tree *tree;
896 struct extent_map_tree *map;
897 int ret;
898
899 if (PageWriteback(page) || PageDirty(page))
900 return 0;
901
902 tree = &BTRFS_I(page->mapping->host)->io_tree;
903 map = &BTRFS_I(page->mapping->host)->extent_tree;
904
905 ret = try_release_extent_state(map, tree, page, gfp_flags);
906 if (!ret)
907 return 0;
908
909 ret = try_release_extent_buffer(tree, page);
910 if (ret == 1) {
911 ClearPagePrivate(page);
912 set_page_private(page, 0);
913 page_cache_release(page);
914 }
915
916 return ret;
917 }
918
919 static void btree_invalidatepage(struct page *page, unsigned long offset)
920 {
921 struct extent_io_tree *tree;
922 tree = &BTRFS_I(page->mapping->host)->io_tree;
923 extent_invalidatepage(tree, page, offset);
924 btree_releasepage(page, GFP_NOFS);
925 if (PagePrivate(page)) {
926 printk(KERN_WARNING "btrfs warning page private not zero "
927 "on page %llu\n", (unsigned long long)page_offset(page));
928 ClearPagePrivate(page);
929 set_page_private(page, 0);
930 page_cache_release(page);
931 }
932 }
933
934 static const struct address_space_operations btree_aops = {
935 .readpage = btree_readpage,
936 .writepage = btree_writepage,
937 .writepages = btree_writepages,
938 .releasepage = btree_releasepage,
939 .invalidatepage = btree_invalidatepage,
940 #ifdef CONFIG_MIGRATION
941 .migratepage = btree_migratepage,
942 #endif
943 };
944
945 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
946 u64 parent_transid)
947 {
948 struct extent_buffer *buf = NULL;
949 struct inode *btree_inode = root->fs_info->btree_inode;
950 int ret = 0;
951
952 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
953 if (!buf)
954 return 0;
955 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
956 buf, 0, 0, btree_get_extent, 0);
957 free_extent_buffer(buf);
958 return ret;
959 }
960
961 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
962 u64 bytenr, u32 blocksize)
963 {
964 struct inode *btree_inode = root->fs_info->btree_inode;
965 struct extent_buffer *eb;
966 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
967 bytenr, blocksize, GFP_NOFS);
968 return eb;
969 }
970
971 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
972 u64 bytenr, u32 blocksize)
973 {
974 struct inode *btree_inode = root->fs_info->btree_inode;
975 struct extent_buffer *eb;
976
977 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
978 bytenr, blocksize, NULL, GFP_NOFS);
979 return eb;
980 }
981
982
983 int btrfs_write_tree_block(struct extent_buffer *buf)
984 {
985 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
986 buf->start + buf->len - 1);
987 }
988
989 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
990 {
991 return filemap_fdatawait_range(buf->first_page->mapping,
992 buf->start, buf->start + buf->len - 1);
993 }
994
995 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
996 u32 blocksize, u64 parent_transid)
997 {
998 struct extent_buffer *buf = NULL;
999 int ret;
1000
1001 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1002 if (!buf)
1003 return NULL;
1004
1005 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1006
1007 if (ret == 0)
1008 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1009 return buf;
1010
1011 }
1012
1013 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1014 struct extent_buffer *buf)
1015 {
1016 struct inode *btree_inode = root->fs_info->btree_inode;
1017 if (btrfs_header_generation(buf) ==
1018 root->fs_info->running_transaction->transid) {
1019 btrfs_assert_tree_locked(buf);
1020
1021 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1022 spin_lock(&root->fs_info->delalloc_lock);
1023 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1024 root->fs_info->dirty_metadata_bytes -= buf->len;
1025 else
1026 WARN_ON(1);
1027 spin_unlock(&root->fs_info->delalloc_lock);
1028 }
1029
1030 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1031 btrfs_set_lock_blocking(buf);
1032 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1033 buf);
1034 }
1035 return 0;
1036 }
1037
1038 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1039 u32 stripesize, struct btrfs_root *root,
1040 struct btrfs_fs_info *fs_info,
1041 u64 objectid)
1042 {
1043 root->node = NULL;
1044 root->commit_root = NULL;
1045 root->sectorsize = sectorsize;
1046 root->nodesize = nodesize;
1047 root->leafsize = leafsize;
1048 root->stripesize = stripesize;
1049 root->ref_cows = 0;
1050 root->track_dirty = 0;
1051 root->in_radix = 0;
1052 root->orphan_item_inserted = 0;
1053 root->orphan_cleanup_state = 0;
1054
1055 root->fs_info = fs_info;
1056 root->objectid = objectid;
1057 root->last_trans = 0;
1058 root->highest_objectid = 0;
1059 root->name = NULL;
1060 root->in_sysfs = 0;
1061 root->inode_tree = RB_ROOT;
1062 root->block_rsv = NULL;
1063 root->orphan_block_rsv = NULL;
1064
1065 INIT_LIST_HEAD(&root->dirty_list);
1066 INIT_LIST_HEAD(&root->orphan_list);
1067 INIT_LIST_HEAD(&root->root_list);
1068 spin_lock_init(&root->node_lock);
1069 spin_lock_init(&root->orphan_lock);
1070 spin_lock_init(&root->inode_lock);
1071 spin_lock_init(&root->accounting_lock);
1072 mutex_init(&root->objectid_mutex);
1073 mutex_init(&root->log_mutex);
1074 init_waitqueue_head(&root->log_writer_wait);
1075 init_waitqueue_head(&root->log_commit_wait[0]);
1076 init_waitqueue_head(&root->log_commit_wait[1]);
1077 atomic_set(&root->log_commit[0], 0);
1078 atomic_set(&root->log_commit[1], 0);
1079 atomic_set(&root->log_writers, 0);
1080 root->log_batch = 0;
1081 root->log_transid = 0;
1082 root->last_log_commit = 0;
1083 extent_io_tree_init(&root->dirty_log_pages,
1084 fs_info->btree_inode->i_mapping, GFP_NOFS);
1085
1086 memset(&root->root_key, 0, sizeof(root->root_key));
1087 memset(&root->root_item, 0, sizeof(root->root_item));
1088 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1089 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1090 root->defrag_trans_start = fs_info->generation;
1091 init_completion(&root->kobj_unregister);
1092 root->defrag_running = 0;
1093 root->root_key.objectid = objectid;
1094 root->anon_super.s_root = NULL;
1095 root->anon_super.s_dev = 0;
1096 INIT_LIST_HEAD(&root->anon_super.s_list);
1097 INIT_LIST_HEAD(&root->anon_super.s_instances);
1098 init_rwsem(&root->anon_super.s_umount);
1099
1100 return 0;
1101 }
1102
1103 static int find_and_setup_root(struct btrfs_root *tree_root,
1104 struct btrfs_fs_info *fs_info,
1105 u64 objectid,
1106 struct btrfs_root *root)
1107 {
1108 int ret;
1109 u32 blocksize;
1110 u64 generation;
1111
1112 __setup_root(tree_root->nodesize, tree_root->leafsize,
1113 tree_root->sectorsize, tree_root->stripesize,
1114 root, fs_info, objectid);
1115 ret = btrfs_find_last_root(tree_root, objectid,
1116 &root->root_item, &root->root_key);
1117 if (ret > 0)
1118 return -ENOENT;
1119 BUG_ON(ret);
1120
1121 generation = btrfs_root_generation(&root->root_item);
1122 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1123 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1124 blocksize, generation);
1125 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1126 free_extent_buffer(root->node);
1127 return -EIO;
1128 }
1129 root->commit_root = btrfs_root_node(root);
1130 return 0;
1131 }
1132
1133 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1134 struct btrfs_fs_info *fs_info)
1135 {
1136 struct btrfs_root *root;
1137 struct btrfs_root *tree_root = fs_info->tree_root;
1138 struct extent_buffer *leaf;
1139
1140 root = kzalloc(sizeof(*root), GFP_NOFS);
1141 if (!root)
1142 return ERR_PTR(-ENOMEM);
1143
1144 __setup_root(tree_root->nodesize, tree_root->leafsize,
1145 tree_root->sectorsize, tree_root->stripesize,
1146 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1147
1148 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1149 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1150 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1151 /*
1152 * log trees do not get reference counted because they go away
1153 * before a real commit is actually done. They do store pointers
1154 * to file data extents, and those reference counts still get
1155 * updated (along with back refs to the log tree).
1156 */
1157 root->ref_cows = 0;
1158
1159 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1160 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1161 if (IS_ERR(leaf)) {
1162 kfree(root);
1163 return ERR_CAST(leaf);
1164 }
1165
1166 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1167 btrfs_set_header_bytenr(leaf, leaf->start);
1168 btrfs_set_header_generation(leaf, trans->transid);
1169 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1170 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1171 root->node = leaf;
1172
1173 write_extent_buffer(root->node, root->fs_info->fsid,
1174 (unsigned long)btrfs_header_fsid(root->node),
1175 BTRFS_FSID_SIZE);
1176 btrfs_mark_buffer_dirty(root->node);
1177 btrfs_tree_unlock(root->node);
1178 return root;
1179 }
1180
1181 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1182 struct btrfs_fs_info *fs_info)
1183 {
1184 struct btrfs_root *log_root;
1185
1186 log_root = alloc_log_tree(trans, fs_info);
1187 if (IS_ERR(log_root))
1188 return PTR_ERR(log_root);
1189 WARN_ON(fs_info->log_root_tree);
1190 fs_info->log_root_tree = log_root;
1191 return 0;
1192 }
1193
1194 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root)
1196 {
1197 struct btrfs_root *log_root;
1198 struct btrfs_inode_item *inode_item;
1199
1200 log_root = alloc_log_tree(trans, root->fs_info);
1201 if (IS_ERR(log_root))
1202 return PTR_ERR(log_root);
1203
1204 log_root->last_trans = trans->transid;
1205 log_root->root_key.offset = root->root_key.objectid;
1206
1207 inode_item = &log_root->root_item.inode;
1208 inode_item->generation = cpu_to_le64(1);
1209 inode_item->size = cpu_to_le64(3);
1210 inode_item->nlink = cpu_to_le32(1);
1211 inode_item->nbytes = cpu_to_le64(root->leafsize);
1212 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1213
1214 btrfs_set_root_node(&log_root->root_item, log_root->node);
1215
1216 WARN_ON(root->log_root);
1217 root->log_root = log_root;
1218 root->log_transid = 0;
1219 root->last_log_commit = 0;
1220 return 0;
1221 }
1222
1223 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1224 struct btrfs_key *location)
1225 {
1226 struct btrfs_root *root;
1227 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1228 struct btrfs_path *path;
1229 struct extent_buffer *l;
1230 u64 generation;
1231 u32 blocksize;
1232 int ret = 0;
1233
1234 root = kzalloc(sizeof(*root), GFP_NOFS);
1235 if (!root)
1236 return ERR_PTR(-ENOMEM);
1237 if (location->offset == (u64)-1) {
1238 ret = find_and_setup_root(tree_root, fs_info,
1239 location->objectid, root);
1240 if (ret) {
1241 kfree(root);
1242 return ERR_PTR(ret);
1243 }
1244 goto out;
1245 }
1246
1247 __setup_root(tree_root->nodesize, tree_root->leafsize,
1248 tree_root->sectorsize, tree_root->stripesize,
1249 root, fs_info, location->objectid);
1250
1251 path = btrfs_alloc_path();
1252 if (!path) {
1253 kfree(root);
1254 return ERR_PTR(-ENOMEM);
1255 }
1256 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1257 if (ret == 0) {
1258 l = path->nodes[0];
1259 read_extent_buffer(l, &root->root_item,
1260 btrfs_item_ptr_offset(l, path->slots[0]),
1261 sizeof(root->root_item));
1262 memcpy(&root->root_key, location, sizeof(*location));
1263 }
1264 btrfs_free_path(path);
1265 if (ret) {
1266 kfree(root);
1267 if (ret > 0)
1268 ret = -ENOENT;
1269 return ERR_PTR(ret);
1270 }
1271
1272 generation = btrfs_root_generation(&root->root_item);
1273 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1274 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1275 blocksize, generation);
1276 root->commit_root = btrfs_root_node(root);
1277 BUG_ON(!root->node);
1278 out:
1279 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1280 root->ref_cows = 1;
1281 btrfs_check_and_init_root_item(&root->root_item);
1282 }
1283
1284 return root;
1285 }
1286
1287 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1288 u64 root_objectid)
1289 {
1290 struct btrfs_root *root;
1291
1292 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1293 return fs_info->tree_root;
1294 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1295 return fs_info->extent_root;
1296
1297 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1298 (unsigned long)root_objectid);
1299 return root;
1300 }
1301
1302 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1303 struct btrfs_key *location)
1304 {
1305 struct btrfs_root *root;
1306 int ret;
1307
1308 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1309 return fs_info->tree_root;
1310 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1311 return fs_info->extent_root;
1312 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1313 return fs_info->chunk_root;
1314 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1315 return fs_info->dev_root;
1316 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1317 return fs_info->csum_root;
1318 again:
1319 spin_lock(&fs_info->fs_roots_radix_lock);
1320 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1321 (unsigned long)location->objectid);
1322 spin_unlock(&fs_info->fs_roots_radix_lock);
1323 if (root)
1324 return root;
1325
1326 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1327 if (IS_ERR(root))
1328 return root;
1329
1330 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1331 if (!root->free_ino_ctl)
1332 goto fail;
1333 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1334 GFP_NOFS);
1335 if (!root->free_ino_pinned)
1336 goto fail;
1337
1338 btrfs_init_free_ino_ctl(root);
1339 mutex_init(&root->fs_commit_mutex);
1340 spin_lock_init(&root->cache_lock);
1341 init_waitqueue_head(&root->cache_wait);
1342
1343 set_anon_super(&root->anon_super, NULL);
1344
1345 if (btrfs_root_refs(&root->root_item) == 0) {
1346 ret = -ENOENT;
1347 goto fail;
1348 }
1349
1350 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1351 if (ret < 0)
1352 goto fail;
1353 if (ret == 0)
1354 root->orphan_item_inserted = 1;
1355
1356 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1357 if (ret)
1358 goto fail;
1359
1360 spin_lock(&fs_info->fs_roots_radix_lock);
1361 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1362 (unsigned long)root->root_key.objectid,
1363 root);
1364 if (ret == 0)
1365 root->in_radix = 1;
1366
1367 spin_unlock(&fs_info->fs_roots_radix_lock);
1368 radix_tree_preload_end();
1369 if (ret) {
1370 if (ret == -EEXIST) {
1371 free_fs_root(root);
1372 goto again;
1373 }
1374 goto fail;
1375 }
1376
1377 ret = btrfs_find_dead_roots(fs_info->tree_root,
1378 root->root_key.objectid);
1379 WARN_ON(ret);
1380 return root;
1381 fail:
1382 free_fs_root(root);
1383 return ERR_PTR(ret);
1384 }
1385
1386 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1387 struct btrfs_key *location,
1388 const char *name, int namelen)
1389 {
1390 return btrfs_read_fs_root_no_name(fs_info, location);
1391 #if 0
1392 struct btrfs_root *root;
1393 int ret;
1394
1395 root = btrfs_read_fs_root_no_name(fs_info, location);
1396 if (!root)
1397 return NULL;
1398
1399 if (root->in_sysfs)
1400 return root;
1401
1402 ret = btrfs_set_root_name(root, name, namelen);
1403 if (ret) {
1404 free_extent_buffer(root->node);
1405 kfree(root);
1406 return ERR_PTR(ret);
1407 }
1408
1409 ret = btrfs_sysfs_add_root(root);
1410 if (ret) {
1411 free_extent_buffer(root->node);
1412 kfree(root->name);
1413 kfree(root);
1414 return ERR_PTR(ret);
1415 }
1416 root->in_sysfs = 1;
1417 return root;
1418 #endif
1419 }
1420
1421 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1422 {
1423 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1424 int ret = 0;
1425 struct btrfs_device *device;
1426 struct backing_dev_info *bdi;
1427
1428 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1429 if (!device->bdev)
1430 continue;
1431 bdi = blk_get_backing_dev_info(device->bdev);
1432 if (bdi && bdi_congested(bdi, bdi_bits)) {
1433 ret = 1;
1434 break;
1435 }
1436 }
1437 return ret;
1438 }
1439
1440 /*
1441 * If this fails, caller must call bdi_destroy() to get rid of the
1442 * bdi again.
1443 */
1444 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1445 {
1446 int err;
1447
1448 bdi->capabilities = BDI_CAP_MAP_COPY;
1449 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1450 if (err)
1451 return err;
1452
1453 bdi->ra_pages = default_backing_dev_info.ra_pages;
1454 bdi->congested_fn = btrfs_congested_fn;
1455 bdi->congested_data = info;
1456 return 0;
1457 }
1458
1459 static int bio_ready_for_csum(struct bio *bio)
1460 {
1461 u64 length = 0;
1462 u64 buf_len = 0;
1463 u64 start = 0;
1464 struct page *page;
1465 struct extent_io_tree *io_tree = NULL;
1466 struct bio_vec *bvec;
1467 int i;
1468 int ret;
1469
1470 bio_for_each_segment(bvec, bio, i) {
1471 page = bvec->bv_page;
1472 if (page->private == EXTENT_PAGE_PRIVATE) {
1473 length += bvec->bv_len;
1474 continue;
1475 }
1476 if (!page->private) {
1477 length += bvec->bv_len;
1478 continue;
1479 }
1480 length = bvec->bv_len;
1481 buf_len = page->private >> 2;
1482 start = page_offset(page) + bvec->bv_offset;
1483 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1484 }
1485 /* are we fully contained in this bio? */
1486 if (buf_len <= length)
1487 return 1;
1488
1489 ret = extent_range_uptodate(io_tree, start + length,
1490 start + buf_len - 1);
1491 return ret;
1492 }
1493
1494 /*
1495 * called by the kthread helper functions to finally call the bio end_io
1496 * functions. This is where read checksum verification actually happens
1497 */
1498 static void end_workqueue_fn(struct btrfs_work *work)
1499 {
1500 struct bio *bio;
1501 struct end_io_wq *end_io_wq;
1502 struct btrfs_fs_info *fs_info;
1503 int error;
1504
1505 end_io_wq = container_of(work, struct end_io_wq, work);
1506 bio = end_io_wq->bio;
1507 fs_info = end_io_wq->info;
1508
1509 /* metadata bio reads are special because the whole tree block must
1510 * be checksummed at once. This makes sure the entire block is in
1511 * ram and up to date before trying to verify things. For
1512 * blocksize <= pagesize, it is basically a noop
1513 */
1514 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1515 !bio_ready_for_csum(bio)) {
1516 btrfs_queue_worker(&fs_info->endio_meta_workers,
1517 &end_io_wq->work);
1518 return;
1519 }
1520 error = end_io_wq->error;
1521 bio->bi_private = end_io_wq->private;
1522 bio->bi_end_io = end_io_wq->end_io;
1523 kfree(end_io_wq);
1524 bio_endio(bio, error);
1525 }
1526
1527 static int cleaner_kthread(void *arg)
1528 {
1529 struct btrfs_root *root = arg;
1530
1531 do {
1532 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1533
1534 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1535 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1536 btrfs_run_delayed_iputs(root);
1537 btrfs_clean_old_snapshots(root);
1538 mutex_unlock(&root->fs_info->cleaner_mutex);
1539 }
1540
1541 if (freezing(current)) {
1542 refrigerator();
1543 } else {
1544 set_current_state(TASK_INTERRUPTIBLE);
1545 if (!kthread_should_stop())
1546 schedule();
1547 __set_current_state(TASK_RUNNING);
1548 }
1549 } while (!kthread_should_stop());
1550 return 0;
1551 }
1552
1553 static int transaction_kthread(void *arg)
1554 {
1555 struct btrfs_root *root = arg;
1556 struct btrfs_trans_handle *trans;
1557 struct btrfs_transaction *cur;
1558 u64 transid;
1559 unsigned long now;
1560 unsigned long delay;
1561 int ret;
1562
1563 do {
1564 delay = HZ * 30;
1565 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1566 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1567
1568 spin_lock(&root->fs_info->new_trans_lock);
1569 cur = root->fs_info->running_transaction;
1570 if (!cur) {
1571 spin_unlock(&root->fs_info->new_trans_lock);
1572 goto sleep;
1573 }
1574
1575 now = get_seconds();
1576 if (!cur->blocked &&
1577 (now < cur->start_time || now - cur->start_time < 30)) {
1578 spin_unlock(&root->fs_info->new_trans_lock);
1579 delay = HZ * 5;
1580 goto sleep;
1581 }
1582 transid = cur->transid;
1583 spin_unlock(&root->fs_info->new_trans_lock);
1584
1585 trans = btrfs_join_transaction(root, 1);
1586 BUG_ON(IS_ERR(trans));
1587 if (transid == trans->transid) {
1588 ret = btrfs_commit_transaction(trans, root);
1589 BUG_ON(ret);
1590 } else {
1591 btrfs_end_transaction(trans, root);
1592 }
1593 sleep:
1594 wake_up_process(root->fs_info->cleaner_kthread);
1595 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1596
1597 if (freezing(current)) {
1598 refrigerator();
1599 } else {
1600 set_current_state(TASK_INTERRUPTIBLE);
1601 if (!kthread_should_stop() &&
1602 !btrfs_transaction_blocked(root->fs_info))
1603 schedule_timeout(delay);
1604 __set_current_state(TASK_RUNNING);
1605 }
1606 } while (!kthread_should_stop());
1607 return 0;
1608 }
1609
1610 struct btrfs_root *open_ctree(struct super_block *sb,
1611 struct btrfs_fs_devices *fs_devices,
1612 char *options)
1613 {
1614 u32 sectorsize;
1615 u32 nodesize;
1616 u32 leafsize;
1617 u32 blocksize;
1618 u32 stripesize;
1619 u64 generation;
1620 u64 features;
1621 struct btrfs_key location;
1622 struct buffer_head *bh;
1623 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1624 GFP_NOFS);
1625 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1626 GFP_NOFS);
1627 struct btrfs_root *tree_root = btrfs_sb(sb);
1628 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1629 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1630 GFP_NOFS);
1631 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1632 GFP_NOFS);
1633 struct btrfs_root *log_tree_root;
1634
1635 int ret;
1636 int err = -EINVAL;
1637
1638 struct btrfs_super_block *disk_super;
1639
1640 if (!extent_root || !tree_root || !fs_info ||
1641 !chunk_root || !dev_root || !csum_root) {
1642 err = -ENOMEM;
1643 goto fail;
1644 }
1645
1646 ret = init_srcu_struct(&fs_info->subvol_srcu);
1647 if (ret) {
1648 err = ret;
1649 goto fail;
1650 }
1651
1652 ret = setup_bdi(fs_info, &fs_info->bdi);
1653 if (ret) {
1654 err = ret;
1655 goto fail_srcu;
1656 }
1657
1658 fs_info->btree_inode = new_inode(sb);
1659 if (!fs_info->btree_inode) {
1660 err = -ENOMEM;
1661 goto fail_bdi;
1662 }
1663
1664 fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
1665
1666 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1667 INIT_LIST_HEAD(&fs_info->trans_list);
1668 INIT_LIST_HEAD(&fs_info->dead_roots);
1669 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1670 INIT_LIST_HEAD(&fs_info->hashers);
1671 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1672 INIT_LIST_HEAD(&fs_info->ordered_operations);
1673 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1674 spin_lock_init(&fs_info->delalloc_lock);
1675 spin_lock_init(&fs_info->new_trans_lock);
1676 spin_lock_init(&fs_info->ref_cache_lock);
1677 spin_lock_init(&fs_info->fs_roots_radix_lock);
1678 spin_lock_init(&fs_info->delayed_iput_lock);
1679
1680 init_completion(&fs_info->kobj_unregister);
1681 fs_info->tree_root = tree_root;
1682 fs_info->extent_root = extent_root;
1683 fs_info->csum_root = csum_root;
1684 fs_info->chunk_root = chunk_root;
1685 fs_info->dev_root = dev_root;
1686 fs_info->fs_devices = fs_devices;
1687 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1688 INIT_LIST_HEAD(&fs_info->space_info);
1689 btrfs_mapping_init(&fs_info->mapping_tree);
1690 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1691 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1692 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1693 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1694 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1695 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1696 mutex_init(&fs_info->durable_block_rsv_mutex);
1697 atomic_set(&fs_info->nr_async_submits, 0);
1698 atomic_set(&fs_info->async_delalloc_pages, 0);
1699 atomic_set(&fs_info->async_submit_draining, 0);
1700 atomic_set(&fs_info->nr_async_bios, 0);
1701 fs_info->sb = sb;
1702 fs_info->max_inline = 8192 * 1024;
1703 fs_info->metadata_ratio = 0;
1704
1705 fs_info->thread_pool_size = min_t(unsigned long,
1706 num_online_cpus() + 2, 8);
1707
1708 INIT_LIST_HEAD(&fs_info->ordered_extents);
1709 spin_lock_init(&fs_info->ordered_extent_lock);
1710
1711 sb->s_blocksize = 4096;
1712 sb->s_blocksize_bits = blksize_bits(4096);
1713 sb->s_bdi = &fs_info->bdi;
1714
1715 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1716 fs_info->btree_inode->i_nlink = 1;
1717 /*
1718 * we set the i_size on the btree inode to the max possible int.
1719 * the real end of the address space is determined by all of
1720 * the devices in the system
1721 */
1722 fs_info->btree_inode->i_size = OFFSET_MAX;
1723 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1724 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1725
1726 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1727 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1728 fs_info->btree_inode->i_mapping,
1729 GFP_NOFS);
1730 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1731 GFP_NOFS);
1732
1733 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1734
1735 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1736 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1737 sizeof(struct btrfs_key));
1738 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1739 insert_inode_hash(fs_info->btree_inode);
1740
1741 spin_lock_init(&fs_info->block_group_cache_lock);
1742 fs_info->block_group_cache_tree = RB_ROOT;
1743
1744 extent_io_tree_init(&fs_info->freed_extents[0],
1745 fs_info->btree_inode->i_mapping, GFP_NOFS);
1746 extent_io_tree_init(&fs_info->freed_extents[1],
1747 fs_info->btree_inode->i_mapping, GFP_NOFS);
1748 fs_info->pinned_extents = &fs_info->freed_extents[0];
1749 fs_info->do_barriers = 1;
1750
1751
1752 mutex_init(&fs_info->trans_mutex);
1753 mutex_init(&fs_info->ordered_operations_mutex);
1754 mutex_init(&fs_info->tree_log_mutex);
1755 mutex_init(&fs_info->chunk_mutex);
1756 mutex_init(&fs_info->transaction_kthread_mutex);
1757 mutex_init(&fs_info->cleaner_mutex);
1758 mutex_init(&fs_info->volume_mutex);
1759 init_rwsem(&fs_info->extent_commit_sem);
1760 init_rwsem(&fs_info->cleanup_work_sem);
1761 init_rwsem(&fs_info->subvol_sem);
1762
1763 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1764 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1765
1766 init_waitqueue_head(&fs_info->transaction_throttle);
1767 init_waitqueue_head(&fs_info->transaction_wait);
1768 init_waitqueue_head(&fs_info->transaction_blocked_wait);
1769 init_waitqueue_head(&fs_info->async_submit_wait);
1770
1771 __setup_root(4096, 4096, 4096, 4096, tree_root,
1772 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1773
1774 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1775 if (!bh) {
1776 err = -EINVAL;
1777 goto fail_iput;
1778 }
1779
1780 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1781 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1782 sizeof(fs_info->super_for_commit));
1783 brelse(bh);
1784
1785 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1786
1787 disk_super = &fs_info->super_copy;
1788 if (!btrfs_super_root(disk_super))
1789 goto fail_iput;
1790
1791 /* check FS state, whether FS is broken. */
1792 fs_info->fs_state |= btrfs_super_flags(disk_super);
1793
1794 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1795
1796 /*
1797 * In the long term, we'll store the compression type in the super
1798 * block, and it'll be used for per file compression control.
1799 */
1800 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1801
1802 ret = btrfs_parse_options(tree_root, options);
1803 if (ret) {
1804 err = ret;
1805 goto fail_iput;
1806 }
1807
1808 features = btrfs_super_incompat_flags(disk_super) &
1809 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1810 if (features) {
1811 printk(KERN_ERR "BTRFS: couldn't mount because of "
1812 "unsupported optional features (%Lx).\n",
1813 (unsigned long long)features);
1814 err = -EINVAL;
1815 goto fail_iput;
1816 }
1817
1818 features = btrfs_super_incompat_flags(disk_super);
1819 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1820 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1821 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1822 btrfs_set_super_incompat_flags(disk_super, features);
1823
1824 features = btrfs_super_compat_ro_flags(disk_super) &
1825 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1826 if (!(sb->s_flags & MS_RDONLY) && features) {
1827 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1828 "unsupported option features (%Lx).\n",
1829 (unsigned long long)features);
1830 err = -EINVAL;
1831 goto fail_iput;
1832 }
1833
1834 btrfs_init_workers(&fs_info->generic_worker,
1835 "genwork", 1, NULL);
1836
1837 btrfs_init_workers(&fs_info->workers, "worker",
1838 fs_info->thread_pool_size,
1839 &fs_info->generic_worker);
1840
1841 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1842 fs_info->thread_pool_size,
1843 &fs_info->generic_worker);
1844
1845 btrfs_init_workers(&fs_info->submit_workers, "submit",
1846 min_t(u64, fs_devices->num_devices,
1847 fs_info->thread_pool_size),
1848 &fs_info->generic_worker);
1849
1850 /* a higher idle thresh on the submit workers makes it much more
1851 * likely that bios will be send down in a sane order to the
1852 * devices
1853 */
1854 fs_info->submit_workers.idle_thresh = 64;
1855
1856 fs_info->workers.idle_thresh = 16;
1857 fs_info->workers.ordered = 1;
1858
1859 fs_info->delalloc_workers.idle_thresh = 2;
1860 fs_info->delalloc_workers.ordered = 1;
1861
1862 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1863 &fs_info->generic_worker);
1864 btrfs_init_workers(&fs_info->endio_workers, "endio",
1865 fs_info->thread_pool_size,
1866 &fs_info->generic_worker);
1867 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1868 fs_info->thread_pool_size,
1869 &fs_info->generic_worker);
1870 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1871 "endio-meta-write", fs_info->thread_pool_size,
1872 &fs_info->generic_worker);
1873 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1874 fs_info->thread_pool_size,
1875 &fs_info->generic_worker);
1876 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1877 1, &fs_info->generic_worker);
1878
1879 /*
1880 * endios are largely parallel and should have a very
1881 * low idle thresh
1882 */
1883 fs_info->endio_workers.idle_thresh = 4;
1884 fs_info->endio_meta_workers.idle_thresh = 4;
1885
1886 fs_info->endio_write_workers.idle_thresh = 2;
1887 fs_info->endio_meta_write_workers.idle_thresh = 2;
1888
1889 btrfs_start_workers(&fs_info->workers, 1);
1890 btrfs_start_workers(&fs_info->generic_worker, 1);
1891 btrfs_start_workers(&fs_info->submit_workers, 1);
1892 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1893 btrfs_start_workers(&fs_info->fixup_workers, 1);
1894 btrfs_start_workers(&fs_info->endio_workers, 1);
1895 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1896 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1897 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1898 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1899
1900 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1901 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1902 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1903
1904 nodesize = btrfs_super_nodesize(disk_super);
1905 leafsize = btrfs_super_leafsize(disk_super);
1906 sectorsize = btrfs_super_sectorsize(disk_super);
1907 stripesize = btrfs_super_stripesize(disk_super);
1908 tree_root->nodesize = nodesize;
1909 tree_root->leafsize = leafsize;
1910 tree_root->sectorsize = sectorsize;
1911 tree_root->stripesize = stripesize;
1912
1913 sb->s_blocksize = sectorsize;
1914 sb->s_blocksize_bits = blksize_bits(sectorsize);
1915
1916 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1917 sizeof(disk_super->magic))) {
1918 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1919 goto fail_sb_buffer;
1920 }
1921
1922 mutex_lock(&fs_info->chunk_mutex);
1923 ret = btrfs_read_sys_array(tree_root);
1924 mutex_unlock(&fs_info->chunk_mutex);
1925 if (ret) {
1926 printk(KERN_WARNING "btrfs: failed to read the system "
1927 "array on %s\n", sb->s_id);
1928 goto fail_sb_buffer;
1929 }
1930
1931 blocksize = btrfs_level_size(tree_root,
1932 btrfs_super_chunk_root_level(disk_super));
1933 generation = btrfs_super_chunk_root_generation(disk_super);
1934
1935 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1936 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1937
1938 chunk_root->node = read_tree_block(chunk_root,
1939 btrfs_super_chunk_root(disk_super),
1940 blocksize, generation);
1941 BUG_ON(!chunk_root->node);
1942 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1943 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1944 sb->s_id);
1945 goto fail_chunk_root;
1946 }
1947 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1948 chunk_root->commit_root = btrfs_root_node(chunk_root);
1949
1950 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1951 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1952 BTRFS_UUID_SIZE);
1953
1954 mutex_lock(&fs_info->chunk_mutex);
1955 ret = btrfs_read_chunk_tree(chunk_root);
1956 mutex_unlock(&fs_info->chunk_mutex);
1957 if (ret) {
1958 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1959 sb->s_id);
1960 goto fail_chunk_root;
1961 }
1962
1963 btrfs_close_extra_devices(fs_devices);
1964
1965 blocksize = btrfs_level_size(tree_root,
1966 btrfs_super_root_level(disk_super));
1967 generation = btrfs_super_generation(disk_super);
1968
1969 tree_root->node = read_tree_block(tree_root,
1970 btrfs_super_root(disk_super),
1971 blocksize, generation);
1972 if (!tree_root->node)
1973 goto fail_chunk_root;
1974 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1975 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1976 sb->s_id);
1977 goto fail_tree_root;
1978 }
1979 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1980 tree_root->commit_root = btrfs_root_node(tree_root);
1981
1982 ret = find_and_setup_root(tree_root, fs_info,
1983 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1984 if (ret)
1985 goto fail_tree_root;
1986 extent_root->track_dirty = 1;
1987
1988 ret = find_and_setup_root(tree_root, fs_info,
1989 BTRFS_DEV_TREE_OBJECTID, dev_root);
1990 if (ret)
1991 goto fail_extent_root;
1992 dev_root->track_dirty = 1;
1993
1994 ret = find_and_setup_root(tree_root, fs_info,
1995 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1996 if (ret)
1997 goto fail_dev_root;
1998
1999 csum_root->track_dirty = 1;
2000
2001 fs_info->generation = generation;
2002 fs_info->last_trans_committed = generation;
2003 fs_info->data_alloc_profile = (u64)-1;
2004 fs_info->metadata_alloc_profile = (u64)-1;
2005 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2006
2007 ret = btrfs_init_space_info(fs_info);
2008 if (ret) {
2009 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2010 goto fail_block_groups;
2011 }
2012
2013 ret = btrfs_read_block_groups(extent_root);
2014 if (ret) {
2015 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2016 goto fail_block_groups;
2017 }
2018
2019 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2020 "btrfs-cleaner");
2021 if (IS_ERR(fs_info->cleaner_kthread))
2022 goto fail_block_groups;
2023
2024 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2025 tree_root,
2026 "btrfs-transaction");
2027 if (IS_ERR(fs_info->transaction_kthread))
2028 goto fail_cleaner;
2029
2030 if (!btrfs_test_opt(tree_root, SSD) &&
2031 !btrfs_test_opt(tree_root, NOSSD) &&
2032 !fs_info->fs_devices->rotating) {
2033 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2034 "mode\n");
2035 btrfs_set_opt(fs_info->mount_opt, SSD);
2036 }
2037
2038 /* do not make disk changes in broken FS */
2039 if (btrfs_super_log_root(disk_super) != 0 &&
2040 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2041 u64 bytenr = btrfs_super_log_root(disk_super);
2042
2043 if (fs_devices->rw_devices == 0) {
2044 printk(KERN_WARNING "Btrfs log replay required "
2045 "on RO media\n");
2046 err = -EIO;
2047 goto fail_trans_kthread;
2048 }
2049 blocksize =
2050 btrfs_level_size(tree_root,
2051 btrfs_super_log_root_level(disk_super));
2052
2053 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2054 if (!log_tree_root) {
2055 err = -ENOMEM;
2056 goto fail_trans_kthread;
2057 }
2058
2059 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2060 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2061
2062 log_tree_root->node = read_tree_block(tree_root, bytenr,
2063 blocksize,
2064 generation + 1);
2065 ret = btrfs_recover_log_trees(log_tree_root);
2066 BUG_ON(ret);
2067
2068 if (sb->s_flags & MS_RDONLY) {
2069 ret = btrfs_commit_super(tree_root);
2070 BUG_ON(ret);
2071 }
2072 }
2073
2074 ret = btrfs_find_orphan_roots(tree_root);
2075 BUG_ON(ret);
2076
2077 if (!(sb->s_flags & MS_RDONLY)) {
2078 ret = btrfs_cleanup_fs_roots(fs_info);
2079 BUG_ON(ret);
2080
2081 ret = btrfs_recover_relocation(tree_root);
2082 if (ret < 0) {
2083 printk(KERN_WARNING
2084 "btrfs: failed to recover relocation\n");
2085 err = -EINVAL;
2086 goto fail_trans_kthread;
2087 }
2088 }
2089
2090 location.objectid = BTRFS_FS_TREE_OBJECTID;
2091 location.type = BTRFS_ROOT_ITEM_KEY;
2092 location.offset = (u64)-1;
2093
2094 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2095 if (!fs_info->fs_root)
2096 goto fail_trans_kthread;
2097 if (IS_ERR(fs_info->fs_root)) {
2098 err = PTR_ERR(fs_info->fs_root);
2099 goto fail_trans_kthread;
2100 }
2101
2102 if (!(sb->s_flags & MS_RDONLY)) {
2103 down_read(&fs_info->cleanup_work_sem);
2104 err = btrfs_orphan_cleanup(fs_info->fs_root);
2105 if (!err)
2106 err = btrfs_orphan_cleanup(fs_info->tree_root);
2107 up_read(&fs_info->cleanup_work_sem);
2108 if (err) {
2109 close_ctree(tree_root);
2110 return ERR_PTR(err);
2111 }
2112 }
2113
2114 return tree_root;
2115
2116 fail_trans_kthread:
2117 kthread_stop(fs_info->transaction_kthread);
2118 fail_cleaner:
2119 kthread_stop(fs_info->cleaner_kthread);
2120
2121 /*
2122 * make sure we're done with the btree inode before we stop our
2123 * kthreads
2124 */
2125 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2126 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2127
2128 fail_block_groups:
2129 btrfs_free_block_groups(fs_info);
2130 free_extent_buffer(csum_root->node);
2131 free_extent_buffer(csum_root->commit_root);
2132 fail_dev_root:
2133 free_extent_buffer(dev_root->node);
2134 free_extent_buffer(dev_root->commit_root);
2135 fail_extent_root:
2136 free_extent_buffer(extent_root->node);
2137 free_extent_buffer(extent_root->commit_root);
2138 fail_tree_root:
2139 free_extent_buffer(tree_root->node);
2140 free_extent_buffer(tree_root->commit_root);
2141 fail_chunk_root:
2142 free_extent_buffer(chunk_root->node);
2143 free_extent_buffer(chunk_root->commit_root);
2144 fail_sb_buffer:
2145 btrfs_stop_workers(&fs_info->generic_worker);
2146 btrfs_stop_workers(&fs_info->fixup_workers);
2147 btrfs_stop_workers(&fs_info->delalloc_workers);
2148 btrfs_stop_workers(&fs_info->workers);
2149 btrfs_stop_workers(&fs_info->endio_workers);
2150 btrfs_stop_workers(&fs_info->endio_meta_workers);
2151 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2152 btrfs_stop_workers(&fs_info->endio_write_workers);
2153 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2154 btrfs_stop_workers(&fs_info->submit_workers);
2155 fail_iput:
2156 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2157 iput(fs_info->btree_inode);
2158
2159 btrfs_close_devices(fs_info->fs_devices);
2160 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2161 fail_bdi:
2162 bdi_destroy(&fs_info->bdi);
2163 fail_srcu:
2164 cleanup_srcu_struct(&fs_info->subvol_srcu);
2165 fail:
2166 kfree(extent_root);
2167 kfree(tree_root);
2168 kfree(fs_info);
2169 kfree(chunk_root);
2170 kfree(dev_root);
2171 kfree(csum_root);
2172 return ERR_PTR(err);
2173 }
2174
2175 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2176 {
2177 char b[BDEVNAME_SIZE];
2178
2179 if (uptodate) {
2180 set_buffer_uptodate(bh);
2181 } else {
2182 if (printk_ratelimit()) {
2183 printk(KERN_WARNING "lost page write due to "
2184 "I/O error on %s\n",
2185 bdevname(bh->b_bdev, b));
2186 }
2187 /* note, we dont' set_buffer_write_io_error because we have
2188 * our own ways of dealing with the IO errors
2189 */
2190 clear_buffer_uptodate(bh);
2191 }
2192 unlock_buffer(bh);
2193 put_bh(bh);
2194 }
2195
2196 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2197 {
2198 struct buffer_head *bh;
2199 struct buffer_head *latest = NULL;
2200 struct btrfs_super_block *super;
2201 int i;
2202 u64 transid = 0;
2203 u64 bytenr;
2204
2205 /* we would like to check all the supers, but that would make
2206 * a btrfs mount succeed after a mkfs from a different FS.
2207 * So, we need to add a special mount option to scan for
2208 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2209 */
2210 for (i = 0; i < 1; i++) {
2211 bytenr = btrfs_sb_offset(i);
2212 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2213 break;
2214 bh = __bread(bdev, bytenr / 4096, 4096);
2215 if (!bh)
2216 continue;
2217
2218 super = (struct btrfs_super_block *)bh->b_data;
2219 if (btrfs_super_bytenr(super) != bytenr ||
2220 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2221 sizeof(super->magic))) {
2222 brelse(bh);
2223 continue;
2224 }
2225
2226 if (!latest || btrfs_super_generation(super) > transid) {
2227 brelse(latest);
2228 latest = bh;
2229 transid = btrfs_super_generation(super);
2230 } else {
2231 brelse(bh);
2232 }
2233 }
2234 return latest;
2235 }
2236
2237 /*
2238 * this should be called twice, once with wait == 0 and
2239 * once with wait == 1. When wait == 0 is done, all the buffer heads
2240 * we write are pinned.
2241 *
2242 * They are released when wait == 1 is done.
2243 * max_mirrors must be the same for both runs, and it indicates how
2244 * many supers on this one device should be written.
2245 *
2246 * max_mirrors == 0 means to write them all.
2247 */
2248 static int write_dev_supers(struct btrfs_device *device,
2249 struct btrfs_super_block *sb,
2250 int do_barriers, int wait, int max_mirrors)
2251 {
2252 struct buffer_head *bh;
2253 int i;
2254 int ret;
2255 int errors = 0;
2256 u32 crc;
2257 u64 bytenr;
2258 int last_barrier = 0;
2259
2260 if (max_mirrors == 0)
2261 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2262
2263 /* make sure only the last submit_bh does a barrier */
2264 if (do_barriers) {
2265 for (i = 0; i < max_mirrors; i++) {
2266 bytenr = btrfs_sb_offset(i);
2267 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2268 device->total_bytes)
2269 break;
2270 last_barrier = i;
2271 }
2272 }
2273
2274 for (i = 0; i < max_mirrors; i++) {
2275 bytenr = btrfs_sb_offset(i);
2276 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2277 break;
2278
2279 if (wait) {
2280 bh = __find_get_block(device->bdev, bytenr / 4096,
2281 BTRFS_SUPER_INFO_SIZE);
2282 BUG_ON(!bh);
2283 wait_on_buffer(bh);
2284 if (!buffer_uptodate(bh))
2285 errors++;
2286
2287 /* drop our reference */
2288 brelse(bh);
2289
2290 /* drop the reference from the wait == 0 run */
2291 brelse(bh);
2292 continue;
2293 } else {
2294 btrfs_set_super_bytenr(sb, bytenr);
2295
2296 crc = ~(u32)0;
2297 crc = btrfs_csum_data(NULL, (char *)sb +
2298 BTRFS_CSUM_SIZE, crc,
2299 BTRFS_SUPER_INFO_SIZE -
2300 BTRFS_CSUM_SIZE);
2301 btrfs_csum_final(crc, sb->csum);
2302
2303 /*
2304 * one reference for us, and we leave it for the
2305 * caller
2306 */
2307 bh = __getblk(device->bdev, bytenr / 4096,
2308 BTRFS_SUPER_INFO_SIZE);
2309 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2310
2311 /* one reference for submit_bh */
2312 get_bh(bh);
2313
2314 set_buffer_uptodate(bh);
2315 lock_buffer(bh);
2316 bh->b_end_io = btrfs_end_buffer_write_sync;
2317 }
2318
2319 if (i == last_barrier && do_barriers)
2320 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2321 else
2322 ret = submit_bh(WRITE_SYNC, bh);
2323
2324 if (ret)
2325 errors++;
2326 }
2327 return errors < i ? 0 : -1;
2328 }
2329
2330 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2331 {
2332 struct list_head *head;
2333 struct btrfs_device *dev;
2334 struct btrfs_super_block *sb;
2335 struct btrfs_dev_item *dev_item;
2336 int ret;
2337 int do_barriers;
2338 int max_errors;
2339 int total_errors = 0;
2340 u64 flags;
2341
2342 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2343 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2344
2345 sb = &root->fs_info->super_for_commit;
2346 dev_item = &sb->dev_item;
2347
2348 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2349 head = &root->fs_info->fs_devices->devices;
2350 list_for_each_entry(dev, head, dev_list) {
2351 if (!dev->bdev) {
2352 total_errors++;
2353 continue;
2354 }
2355 if (!dev->in_fs_metadata || !dev->writeable)
2356 continue;
2357
2358 btrfs_set_stack_device_generation(dev_item, 0);
2359 btrfs_set_stack_device_type(dev_item, dev->type);
2360 btrfs_set_stack_device_id(dev_item, dev->devid);
2361 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2362 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2363 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2364 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2365 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2366 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2367 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2368
2369 flags = btrfs_super_flags(sb);
2370 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2371
2372 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2373 if (ret)
2374 total_errors++;
2375 }
2376 if (total_errors > max_errors) {
2377 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2378 total_errors);
2379 BUG();
2380 }
2381
2382 total_errors = 0;
2383 list_for_each_entry(dev, head, dev_list) {
2384 if (!dev->bdev)
2385 continue;
2386 if (!dev->in_fs_metadata || !dev->writeable)
2387 continue;
2388
2389 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2390 if (ret)
2391 total_errors++;
2392 }
2393 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2394 if (total_errors > max_errors) {
2395 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2396 total_errors);
2397 BUG();
2398 }
2399 return 0;
2400 }
2401
2402 int write_ctree_super(struct btrfs_trans_handle *trans,
2403 struct btrfs_root *root, int max_mirrors)
2404 {
2405 int ret;
2406
2407 ret = write_all_supers(root, max_mirrors);
2408 return ret;
2409 }
2410
2411 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2412 {
2413 spin_lock(&fs_info->fs_roots_radix_lock);
2414 radix_tree_delete(&fs_info->fs_roots_radix,
2415 (unsigned long)root->root_key.objectid);
2416 spin_unlock(&fs_info->fs_roots_radix_lock);
2417
2418 if (btrfs_root_refs(&root->root_item) == 0)
2419 synchronize_srcu(&fs_info->subvol_srcu);
2420
2421 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2422 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2423 free_fs_root(root);
2424 return 0;
2425 }
2426
2427 static void free_fs_root(struct btrfs_root *root)
2428 {
2429 iput(root->cache_inode);
2430 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2431 if (root->anon_super.s_dev) {
2432 down_write(&root->anon_super.s_umount);
2433 kill_anon_super(&root->anon_super);
2434 }
2435 free_extent_buffer(root->node);
2436 free_extent_buffer(root->commit_root);
2437 kfree(root->free_ino_ctl);
2438 kfree(root->free_ino_pinned);
2439 kfree(root->name);
2440 kfree(root);
2441 }
2442
2443 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2444 {
2445 int ret;
2446 struct btrfs_root *gang[8];
2447 int i;
2448
2449 while (!list_empty(&fs_info->dead_roots)) {
2450 gang[0] = list_entry(fs_info->dead_roots.next,
2451 struct btrfs_root, root_list);
2452 list_del(&gang[0]->root_list);
2453
2454 if (gang[0]->in_radix) {
2455 btrfs_free_fs_root(fs_info, gang[0]);
2456 } else {
2457 free_extent_buffer(gang[0]->node);
2458 free_extent_buffer(gang[0]->commit_root);
2459 kfree(gang[0]);
2460 }
2461 }
2462
2463 while (1) {
2464 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2465 (void **)gang, 0,
2466 ARRAY_SIZE(gang));
2467 if (!ret)
2468 break;
2469 for (i = 0; i < ret; i++)
2470 btrfs_free_fs_root(fs_info, gang[i]);
2471 }
2472 return 0;
2473 }
2474
2475 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2476 {
2477 u64 root_objectid = 0;
2478 struct btrfs_root *gang[8];
2479 int i;
2480 int ret;
2481
2482 while (1) {
2483 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2484 (void **)gang, root_objectid,
2485 ARRAY_SIZE(gang));
2486 if (!ret)
2487 break;
2488
2489 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2490 for (i = 0; i < ret; i++) {
2491 int err;
2492
2493 root_objectid = gang[i]->root_key.objectid;
2494 err = btrfs_orphan_cleanup(gang[i]);
2495 if (err)
2496 return err;
2497 }
2498 root_objectid++;
2499 }
2500 return 0;
2501 }
2502
2503 int btrfs_commit_super(struct btrfs_root *root)
2504 {
2505 struct btrfs_trans_handle *trans;
2506 int ret;
2507
2508 mutex_lock(&root->fs_info->cleaner_mutex);
2509 btrfs_run_delayed_iputs(root);
2510 btrfs_clean_old_snapshots(root);
2511 mutex_unlock(&root->fs_info->cleaner_mutex);
2512
2513 /* wait until ongoing cleanup work done */
2514 down_write(&root->fs_info->cleanup_work_sem);
2515 up_write(&root->fs_info->cleanup_work_sem);
2516
2517 trans = btrfs_join_transaction(root, 1);
2518 if (IS_ERR(trans))
2519 return PTR_ERR(trans);
2520 ret = btrfs_commit_transaction(trans, root);
2521 BUG_ON(ret);
2522 /* run commit again to drop the original snapshot */
2523 trans = btrfs_join_transaction(root, 1);
2524 if (IS_ERR(trans))
2525 return PTR_ERR(trans);
2526 btrfs_commit_transaction(trans, root);
2527 ret = btrfs_write_and_wait_transaction(NULL, root);
2528 BUG_ON(ret);
2529
2530 ret = write_ctree_super(NULL, root, 0);
2531 return ret;
2532 }
2533
2534 int close_ctree(struct btrfs_root *root)
2535 {
2536 struct btrfs_fs_info *fs_info = root->fs_info;
2537 int ret;
2538
2539 fs_info->closing = 1;
2540 smp_mb();
2541
2542 btrfs_put_block_group_cache(fs_info);
2543
2544 /*
2545 * Here come 2 situations when btrfs is broken to flip readonly:
2546 *
2547 * 1. when btrfs flips readonly somewhere else before
2548 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2549 * and btrfs will skip to write sb directly to keep
2550 * ERROR state on disk.
2551 *
2552 * 2. when btrfs flips readonly just in btrfs_commit_super,
2553 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2554 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2555 * btrfs will cleanup all FS resources first and write sb then.
2556 */
2557 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2558 ret = btrfs_commit_super(root);
2559 if (ret)
2560 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2561 }
2562
2563 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2564 ret = btrfs_error_commit_super(root);
2565 if (ret)
2566 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2567 }
2568
2569 kthread_stop(root->fs_info->transaction_kthread);
2570 kthread_stop(root->fs_info->cleaner_kthread);
2571
2572 fs_info->closing = 2;
2573 smp_mb();
2574
2575 if (fs_info->delalloc_bytes) {
2576 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2577 (unsigned long long)fs_info->delalloc_bytes);
2578 }
2579 if (fs_info->total_ref_cache_size) {
2580 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2581 (unsigned long long)fs_info->total_ref_cache_size);
2582 }
2583
2584 free_extent_buffer(fs_info->extent_root->node);
2585 free_extent_buffer(fs_info->extent_root->commit_root);
2586 free_extent_buffer(fs_info->tree_root->node);
2587 free_extent_buffer(fs_info->tree_root->commit_root);
2588 free_extent_buffer(root->fs_info->chunk_root->node);
2589 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2590 free_extent_buffer(root->fs_info->dev_root->node);
2591 free_extent_buffer(root->fs_info->dev_root->commit_root);
2592 free_extent_buffer(root->fs_info->csum_root->node);
2593 free_extent_buffer(root->fs_info->csum_root->commit_root);
2594
2595 btrfs_free_block_groups(root->fs_info);
2596
2597 del_fs_roots(fs_info);
2598
2599 iput(fs_info->btree_inode);
2600
2601 btrfs_stop_workers(&fs_info->generic_worker);
2602 btrfs_stop_workers(&fs_info->fixup_workers);
2603 btrfs_stop_workers(&fs_info->delalloc_workers);
2604 btrfs_stop_workers(&fs_info->workers);
2605 btrfs_stop_workers(&fs_info->endio_workers);
2606 btrfs_stop_workers(&fs_info->endio_meta_workers);
2607 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2608 btrfs_stop_workers(&fs_info->endio_write_workers);
2609 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2610 btrfs_stop_workers(&fs_info->submit_workers);
2611
2612 btrfs_close_devices(fs_info->fs_devices);
2613 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2614
2615 bdi_destroy(&fs_info->bdi);
2616 cleanup_srcu_struct(&fs_info->subvol_srcu);
2617
2618 kfree(fs_info->extent_root);
2619 kfree(fs_info->tree_root);
2620 kfree(fs_info->chunk_root);
2621 kfree(fs_info->dev_root);
2622 kfree(fs_info->csum_root);
2623 kfree(fs_info);
2624
2625 return 0;
2626 }
2627
2628 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2629 {
2630 int ret;
2631 struct inode *btree_inode = buf->first_page->mapping->host;
2632
2633 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2634 NULL);
2635 if (!ret)
2636 return ret;
2637
2638 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2639 parent_transid);
2640 return !ret;
2641 }
2642
2643 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2644 {
2645 struct inode *btree_inode = buf->first_page->mapping->host;
2646 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2647 buf);
2648 }
2649
2650 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2651 {
2652 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2653 u64 transid = btrfs_header_generation(buf);
2654 struct inode *btree_inode = root->fs_info->btree_inode;
2655 int was_dirty;
2656
2657 btrfs_assert_tree_locked(buf);
2658 if (transid != root->fs_info->generation) {
2659 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2660 "found %llu running %llu\n",
2661 (unsigned long long)buf->start,
2662 (unsigned long long)transid,
2663 (unsigned long long)root->fs_info->generation);
2664 WARN_ON(1);
2665 }
2666 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2667 buf);
2668 if (!was_dirty) {
2669 spin_lock(&root->fs_info->delalloc_lock);
2670 root->fs_info->dirty_metadata_bytes += buf->len;
2671 spin_unlock(&root->fs_info->delalloc_lock);
2672 }
2673 }
2674
2675 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2676 {
2677 /*
2678 * looks as though older kernels can get into trouble with
2679 * this code, they end up stuck in balance_dirty_pages forever
2680 */
2681 u64 num_dirty;
2682 unsigned long thresh = 32 * 1024 * 1024;
2683
2684 if (current->flags & PF_MEMALLOC)
2685 return;
2686
2687 num_dirty = root->fs_info->dirty_metadata_bytes;
2688
2689 if (num_dirty > thresh) {
2690 balance_dirty_pages_ratelimited_nr(
2691 root->fs_info->btree_inode->i_mapping, 1);
2692 }
2693 return;
2694 }
2695
2696 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2697 {
2698 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2699 int ret;
2700 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2701 if (ret == 0)
2702 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2703 return ret;
2704 }
2705
2706 int btree_lock_page_hook(struct page *page)
2707 {
2708 struct inode *inode = page->mapping->host;
2709 struct btrfs_root *root = BTRFS_I(inode)->root;
2710 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2711 struct extent_buffer *eb;
2712 unsigned long len;
2713 u64 bytenr = page_offset(page);
2714
2715 if (page->private == EXTENT_PAGE_PRIVATE)
2716 goto out;
2717
2718 len = page->private >> 2;
2719 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2720 if (!eb)
2721 goto out;
2722
2723 btrfs_tree_lock(eb);
2724 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2725
2726 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2727 spin_lock(&root->fs_info->delalloc_lock);
2728 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2729 root->fs_info->dirty_metadata_bytes -= eb->len;
2730 else
2731 WARN_ON(1);
2732 spin_unlock(&root->fs_info->delalloc_lock);
2733 }
2734
2735 btrfs_tree_unlock(eb);
2736 free_extent_buffer(eb);
2737 out:
2738 lock_page(page);
2739 return 0;
2740 }
2741
2742 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2743 int read_only)
2744 {
2745 if (read_only)
2746 return;
2747
2748 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2749 printk(KERN_WARNING "warning: mount fs with errors, "
2750 "running btrfsck is recommended\n");
2751 }
2752
2753 int btrfs_error_commit_super(struct btrfs_root *root)
2754 {
2755 int ret;
2756
2757 mutex_lock(&root->fs_info->cleaner_mutex);
2758 btrfs_run_delayed_iputs(root);
2759 mutex_unlock(&root->fs_info->cleaner_mutex);
2760
2761 down_write(&root->fs_info->cleanup_work_sem);
2762 up_write(&root->fs_info->cleanup_work_sem);
2763
2764 /* cleanup FS via transaction */
2765 btrfs_cleanup_transaction(root);
2766
2767 ret = write_ctree_super(NULL, root, 0);
2768
2769 return ret;
2770 }
2771
2772 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2773 {
2774 struct btrfs_inode *btrfs_inode;
2775 struct list_head splice;
2776
2777 INIT_LIST_HEAD(&splice);
2778
2779 mutex_lock(&root->fs_info->ordered_operations_mutex);
2780 spin_lock(&root->fs_info->ordered_extent_lock);
2781
2782 list_splice_init(&root->fs_info->ordered_operations, &splice);
2783 while (!list_empty(&splice)) {
2784 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2785 ordered_operations);
2786
2787 list_del_init(&btrfs_inode->ordered_operations);
2788
2789 btrfs_invalidate_inodes(btrfs_inode->root);
2790 }
2791
2792 spin_unlock(&root->fs_info->ordered_extent_lock);
2793 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2794
2795 return 0;
2796 }
2797
2798 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2799 {
2800 struct list_head splice;
2801 struct btrfs_ordered_extent *ordered;
2802 struct inode *inode;
2803
2804 INIT_LIST_HEAD(&splice);
2805
2806 spin_lock(&root->fs_info->ordered_extent_lock);
2807
2808 list_splice_init(&root->fs_info->ordered_extents, &splice);
2809 while (!list_empty(&splice)) {
2810 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2811 root_extent_list);
2812
2813 list_del_init(&ordered->root_extent_list);
2814 atomic_inc(&ordered->refs);
2815
2816 /* the inode may be getting freed (in sys_unlink path). */
2817 inode = igrab(ordered->inode);
2818
2819 spin_unlock(&root->fs_info->ordered_extent_lock);
2820 if (inode)
2821 iput(inode);
2822
2823 atomic_set(&ordered->refs, 1);
2824 btrfs_put_ordered_extent(ordered);
2825
2826 spin_lock(&root->fs_info->ordered_extent_lock);
2827 }
2828
2829 spin_unlock(&root->fs_info->ordered_extent_lock);
2830
2831 return 0;
2832 }
2833
2834 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2835 struct btrfs_root *root)
2836 {
2837 struct rb_node *node;
2838 struct btrfs_delayed_ref_root *delayed_refs;
2839 struct btrfs_delayed_ref_node *ref;
2840 int ret = 0;
2841
2842 delayed_refs = &trans->delayed_refs;
2843
2844 spin_lock(&delayed_refs->lock);
2845 if (delayed_refs->num_entries == 0) {
2846 spin_unlock(&delayed_refs->lock);
2847 printk(KERN_INFO "delayed_refs has NO entry\n");
2848 return ret;
2849 }
2850
2851 node = rb_first(&delayed_refs->root);
2852 while (node) {
2853 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2854 node = rb_next(node);
2855
2856 ref->in_tree = 0;
2857 rb_erase(&ref->rb_node, &delayed_refs->root);
2858 delayed_refs->num_entries--;
2859
2860 atomic_set(&ref->refs, 1);
2861 if (btrfs_delayed_ref_is_head(ref)) {
2862 struct btrfs_delayed_ref_head *head;
2863
2864 head = btrfs_delayed_node_to_head(ref);
2865 mutex_lock(&head->mutex);
2866 kfree(head->extent_op);
2867 delayed_refs->num_heads--;
2868 if (list_empty(&head->cluster))
2869 delayed_refs->num_heads_ready--;
2870 list_del_init(&head->cluster);
2871 mutex_unlock(&head->mutex);
2872 }
2873
2874 spin_unlock(&delayed_refs->lock);
2875 btrfs_put_delayed_ref(ref);
2876
2877 cond_resched();
2878 spin_lock(&delayed_refs->lock);
2879 }
2880
2881 spin_unlock(&delayed_refs->lock);
2882
2883 return ret;
2884 }
2885
2886 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2887 {
2888 struct btrfs_pending_snapshot *snapshot;
2889 struct list_head splice;
2890
2891 INIT_LIST_HEAD(&splice);
2892
2893 list_splice_init(&t->pending_snapshots, &splice);
2894
2895 while (!list_empty(&splice)) {
2896 snapshot = list_entry(splice.next,
2897 struct btrfs_pending_snapshot,
2898 list);
2899
2900 list_del_init(&snapshot->list);
2901
2902 kfree(snapshot);
2903 }
2904
2905 return 0;
2906 }
2907
2908 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2909 {
2910 struct btrfs_inode *btrfs_inode;
2911 struct list_head splice;
2912
2913 INIT_LIST_HEAD(&splice);
2914
2915 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2916
2917 spin_lock(&root->fs_info->delalloc_lock);
2918
2919 while (!list_empty(&splice)) {
2920 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2921 delalloc_inodes);
2922
2923 list_del_init(&btrfs_inode->delalloc_inodes);
2924
2925 btrfs_invalidate_inodes(btrfs_inode->root);
2926 }
2927
2928 spin_unlock(&root->fs_info->delalloc_lock);
2929
2930 return 0;
2931 }
2932
2933 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2934 struct extent_io_tree *dirty_pages,
2935 int mark)
2936 {
2937 int ret;
2938 struct page *page;
2939 struct inode *btree_inode = root->fs_info->btree_inode;
2940 struct extent_buffer *eb;
2941 u64 start = 0;
2942 u64 end;
2943 u64 offset;
2944 unsigned long index;
2945
2946 while (1) {
2947 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2948 mark);
2949 if (ret)
2950 break;
2951
2952 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2953 while (start <= end) {
2954 index = start >> PAGE_CACHE_SHIFT;
2955 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2956 page = find_get_page(btree_inode->i_mapping, index);
2957 if (!page)
2958 continue;
2959 offset = page_offset(page);
2960
2961 spin_lock(&dirty_pages->buffer_lock);
2962 eb = radix_tree_lookup(
2963 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2964 offset >> PAGE_CACHE_SHIFT);
2965 spin_unlock(&dirty_pages->buffer_lock);
2966 if (eb) {
2967 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2968 &eb->bflags);
2969 atomic_set(&eb->refs, 1);
2970 }
2971 if (PageWriteback(page))
2972 end_page_writeback(page);
2973
2974 lock_page(page);
2975 if (PageDirty(page)) {
2976 clear_page_dirty_for_io(page);
2977 spin_lock_irq(&page->mapping->tree_lock);
2978 radix_tree_tag_clear(&page->mapping->page_tree,
2979 page_index(page),
2980 PAGECACHE_TAG_DIRTY);
2981 spin_unlock_irq(&page->mapping->tree_lock);
2982 }
2983
2984 page->mapping->a_ops->invalidatepage(page, 0);
2985 unlock_page(page);
2986 }
2987 }
2988
2989 return ret;
2990 }
2991
2992 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2993 struct extent_io_tree *pinned_extents)
2994 {
2995 struct extent_io_tree *unpin;
2996 u64 start;
2997 u64 end;
2998 int ret;
2999
3000 unpin = pinned_extents;
3001 while (1) {
3002 ret = find_first_extent_bit(unpin, 0, &start, &end,
3003 EXTENT_DIRTY);
3004 if (ret)
3005 break;
3006
3007 /* opt_discard */
3008 if (btrfs_test_opt(root, DISCARD))
3009 ret = btrfs_error_discard_extent(root, start,
3010 end + 1 - start,
3011 NULL);
3012
3013 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3014 btrfs_error_unpin_extent_range(root, start, end);
3015 cond_resched();
3016 }
3017
3018 return 0;
3019 }
3020
3021 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3022 {
3023 struct btrfs_transaction *t;
3024 LIST_HEAD(list);
3025
3026 WARN_ON(1);
3027
3028 mutex_lock(&root->fs_info->trans_mutex);
3029 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3030
3031 list_splice_init(&root->fs_info->trans_list, &list);
3032 while (!list_empty(&list)) {
3033 t = list_entry(list.next, struct btrfs_transaction, list);
3034 if (!t)
3035 break;
3036
3037 btrfs_destroy_ordered_operations(root);
3038
3039 btrfs_destroy_ordered_extents(root);
3040
3041 btrfs_destroy_delayed_refs(t, root);
3042
3043 btrfs_block_rsv_release(root,
3044 &root->fs_info->trans_block_rsv,
3045 t->dirty_pages.dirty_bytes);
3046
3047 /* FIXME: cleanup wait for commit */
3048 t->in_commit = 1;
3049 t->blocked = 1;
3050 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3051 wake_up(&root->fs_info->transaction_blocked_wait);
3052
3053 t->blocked = 0;
3054 if (waitqueue_active(&root->fs_info->transaction_wait))
3055 wake_up(&root->fs_info->transaction_wait);
3056 mutex_unlock(&root->fs_info->trans_mutex);
3057
3058 mutex_lock(&root->fs_info->trans_mutex);
3059 t->commit_done = 1;
3060 if (waitqueue_active(&t->commit_wait))
3061 wake_up(&t->commit_wait);
3062 mutex_unlock(&root->fs_info->trans_mutex);
3063
3064 mutex_lock(&root->fs_info->trans_mutex);
3065
3066 btrfs_destroy_pending_snapshots(t);
3067
3068 btrfs_destroy_delalloc_inodes(root);
3069
3070 spin_lock(&root->fs_info->new_trans_lock);
3071 root->fs_info->running_transaction = NULL;
3072 spin_unlock(&root->fs_info->new_trans_lock);
3073
3074 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3075 EXTENT_DIRTY);
3076
3077 btrfs_destroy_pinned_extent(root,
3078 root->fs_info->pinned_extents);
3079
3080 atomic_set(&t->use_count, 0);
3081 list_del_init(&t->list);
3082 memset(t, 0, sizeof(*t));
3083 kmem_cache_free(btrfs_transaction_cachep, t);
3084 }
3085
3086 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3087 mutex_unlock(&root->fs_info->trans_mutex);
3088
3089 return 0;
3090 }
3091
3092 static struct extent_io_ops btree_extent_io_ops = {
3093 .write_cache_pages_lock_hook = btree_lock_page_hook,
3094 .readpage_end_io_hook = btree_readpage_end_io_hook,
3095 .submit_bio_hook = btree_submit_bio_hook,
3096 /* note we're sharing with inode.c for the merge bio hook */
3097 .merge_bio_hook = btrfs_merge_bio_hook,
3098 };