]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/disk-io.c
btrfs: rename btrfs_std_error to btrfs_handle_fs_error
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int rw;
128 int mirror_num;
129 unsigned long bio_flags;
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
135 struct btrfs_work work;
136 int error;
137 };
138
139 /*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
149 *
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
153 *
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
157 *
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
161 */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 # error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185 { .id = 0, .name_stem = "tree" },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204 {
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225 struct page *page, size_t pg_offset, u64 start, u64 len,
226 int create)
227 {
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
232 read_lock(&em_tree->lock);
233 em = lookup_extent_mapping(em_tree, start, len);
234 if (em) {
235 em->bdev =
236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237 read_unlock(&em_tree->lock);
238 goto out;
239 }
240 read_unlock(&em_tree->lock);
241
242 em = alloc_extent_map();
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
248 em->len = (u64)-1;
249 em->block_len = (u64)-1;
250 em->block_start = 0;
251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252
253 write_lock(&em_tree->lock);
254 ret = add_extent_mapping(em_tree, em, 0);
255 if (ret == -EEXIST) {
256 free_extent_map(em);
257 em = lookup_extent_mapping(em_tree, start, len);
258 if (!em)
259 em = ERR_PTR(-EIO);
260 } else if (ret) {
261 free_extent_map(em);
262 em = ERR_PTR(ret);
263 }
264 write_unlock(&em_tree->lock);
265
266 out:
267 return em;
268 }
269
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272 return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277 put_unaligned_le32(~crc, result);
278 }
279
280 /*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
286 int verify)
287 {
288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 char *result = NULL;
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
298 unsigned long inline_result;
299
300 len = buf->len - offset;
301 while (len > 0) {
302 err = map_private_extent_buffer(buf, offset, 32,
303 &kaddr, &map_start, &map_len);
304 if (err)
305 return err;
306 cur_len = min(len, map_len - (offset - map_start));
307 crc = btrfs_csum_data(kaddr + offset - map_start,
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
311 }
312 if (csum_size > sizeof(inline_result)) {
313 result = kzalloc(csum_size, GFP_NOFS);
314 if (!result)
315 return -ENOMEM;
316 } else {
317 result = (char *)&inline_result;
318 }
319
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324 u32 val;
325 u32 found = 0;
326 memcpy(&found, result, csum_size);
327
328 read_extent_buffer(buf, &val, 0, csum_size);
329 btrfs_warn_rl(fs_info,
330 "%s checksum verify failed on %llu wanted %X found %X "
331 "level %d",
332 fs_info->sb->s_id, buf->start,
333 val, found, btrfs_header_level(buf));
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return -EUCLEAN;
337 }
338 } else {
339 write_extent_buffer(buf, result, 0, csum_size);
340 }
341 if (result != (char *)&inline_result)
342 kfree(result);
343 return 0;
344 }
345
346 /*
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
351 */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
355 {
356 struct extent_state *cached_state = NULL;
357 int ret;
358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
362
363 if (atomic)
364 return -EAGAIN;
365
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 }
370
371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372 &cached_state);
373 if (extent_buffer_uptodate(eb) &&
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
377 }
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
381 parent_transid, btrfs_header_generation(eb));
382 ret = 1;
383
384 /*
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been free'd and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
391 */
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
394 out:
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
399 return ret;
400 }
401
402 /*
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
405 */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 * is filled with zeros and is included in the checkum.
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438 }
439
440 /*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 struct extent_buffer *eb,
446 u64 start, u64 parent_transid)
447 {
448 struct extent_io_tree *io_tree;
449 int failed = 0;
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
453 int failed_mirror = 0;
454
455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
458 ret = read_extent_buffer_pages(io_tree, eb, start,
459 WAIT_COMPLETE,
460 btree_get_extent, mirror_num);
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
463 parent_transid, 0))
464 break;
465 else
466 ret = -EIO;
467 }
468
469 /*
470 * This buffer's crc is fine, but its contents are corrupted, so
471 * there is no reason to read the other copies, they won't be
472 * any less wrong.
473 */
474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475 break;
476
477 num_copies = btrfs_num_copies(root->fs_info,
478 eb->start, eb->len);
479 if (num_copies == 1)
480 break;
481
482 if (!failed_mirror) {
483 failed = 1;
484 failed_mirror = eb->read_mirror;
485 }
486
487 mirror_num++;
488 if (mirror_num == failed_mirror)
489 mirror_num++;
490
491 if (mirror_num > num_copies)
492 break;
493 }
494
495 if (failed && !ret && failed_mirror)
496 repair_eb_io_failure(root, eb, failed_mirror);
497
498 return ret;
499 }
500
501 /*
502 * checksum a dirty tree block before IO. This has extra checks to make sure
503 * we only fill in the checksum field in the first page of a multi-page block
504 */
505
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508 u64 start = page_offset(page);
509 u64 found_start;
510 struct extent_buffer *eb;
511
512 eb = (struct extent_buffer *)page->private;
513 if (page != eb->pages[0])
514 return 0;
515
516 found_start = btrfs_header_bytenr(eb);
517 /*
518 * Please do not consolidate these warnings into a single if.
519 * It is useful to know what went wrong.
520 */
521 if (WARN_ON(found_start != start))
522 return -EUCLEAN;
523 if (WARN_ON(!PageUptodate(page)))
524 return -EUCLEAN;
525
526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
529 return csum_tree_block(fs_info, eb, 0);
530 }
531
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb)
534 {
535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536 u8 fsid[BTRFS_UUID_SIZE];
537 int ret = 1;
538
539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540 while (fs_devices) {
541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 ret = 0;
543 break;
544 }
545 fs_devices = fs_devices->seed;
546 }
547 return ret;
548 }
549
550 #define CORRUPT(reason, eb, root, slot) \
551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
552 "root=%llu, slot=%d", reason, \
553 btrfs_header_bytenr(eb), root->objectid, slot)
554
555 static noinline int check_leaf(struct btrfs_root *root,
556 struct extent_buffer *leaf)
557 {
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
563 if (nritems == 0)
564 return 0;
565
566 /* Check the 0 item */
567 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568 BTRFS_LEAF_DATA_SIZE(root)) {
569 CORRUPT("invalid item offset size pair", leaf, root, 0);
570 return -EIO;
571 }
572
573 /*
574 * Check to make sure each items keys are in the correct order and their
575 * offsets make sense. We only have to loop through nritems-1 because
576 * we check the current slot against the next slot, which verifies the
577 * next slot's offset+size makes sense and that the current's slot
578 * offset is correct.
579 */
580 for (slot = 0; slot < nritems - 1; slot++) {
581 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584 /* Make sure the keys are in the right order */
585 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586 CORRUPT("bad key order", leaf, root, slot);
587 return -EIO;
588 }
589
590 /*
591 * Make sure the offset and ends are right, remember that the
592 * item data starts at the end of the leaf and grows towards the
593 * front.
594 */
595 if (btrfs_item_offset_nr(leaf, slot) !=
596 btrfs_item_end_nr(leaf, slot + 1)) {
597 CORRUPT("slot offset bad", leaf, root, slot);
598 return -EIO;
599 }
600
601 /*
602 * Check to make sure that we don't point outside of the leaf,
603 * just incase all the items are consistent to eachother, but
604 * all point outside of the leaf.
605 */
606 if (btrfs_item_end_nr(leaf, slot) >
607 BTRFS_LEAF_DATA_SIZE(root)) {
608 CORRUPT("slot end outside of leaf", leaf, root, slot);
609 return -EIO;
610 }
611 }
612
613 return 0;
614 }
615
616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617 u64 phy_offset, struct page *page,
618 u64 start, u64 end, int mirror)
619 {
620 u64 found_start;
621 int found_level;
622 struct extent_buffer *eb;
623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 int ret = 0;
626 int reads_done;
627
628 if (!page->private)
629 goto out;
630
631 eb = (struct extent_buffer *)page->private;
632
633 /* the pending IO might have been the only thing that kept this buffer
634 * in memory. Make sure we have a ref for all this other checks
635 */
636 extent_buffer_get(eb);
637
638 reads_done = atomic_dec_and_test(&eb->io_pages);
639 if (!reads_done)
640 goto err;
641
642 eb->read_mirror = mirror;
643 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644 ret = -EIO;
645 goto err;
646 }
647
648 found_start = btrfs_header_bytenr(eb);
649 if (found_start != eb->start) {
650 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651 found_start, eb->start);
652 ret = -EIO;
653 goto err;
654 }
655 if (check_tree_block_fsid(fs_info, eb)) {
656 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657 eb->start);
658 ret = -EIO;
659 goto err;
660 }
661 found_level = btrfs_header_level(eb);
662 if (found_level >= BTRFS_MAX_LEVEL) {
663 btrfs_err(fs_info, "bad tree block level %d",
664 (int)btrfs_header_level(eb));
665 ret = -EIO;
666 goto err;
667 }
668
669 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670 eb, found_level);
671
672 ret = csum_tree_block(fs_info, eb, 1);
673 if (ret)
674 goto err;
675
676 /*
677 * If this is a leaf block and it is corrupt, set the corrupt bit so
678 * that we don't try and read the other copies of this block, just
679 * return -EIO.
680 */
681 if (found_level == 0 && check_leaf(root, eb)) {
682 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683 ret = -EIO;
684 }
685
686 if (!ret)
687 set_extent_buffer_uptodate(eb);
688 err:
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691 btree_readahead_hook(fs_info, eb, eb->start, ret);
692
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
700 clear_extent_buffer_uptodate(eb);
701 }
702 free_extent_buffer(eb);
703 out:
704 return ret;
705 }
706
707 static int btree_io_failed_hook(struct page *page, int failed_mirror)
708 {
709 struct extent_buffer *eb;
710
711 eb = (struct extent_buffer *)page->private;
712 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713 eb->read_mirror = failed_mirror;
714 atomic_dec(&eb->io_pages);
715 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717 return -EIO; /* we fixed nothing */
718 }
719
720 static void end_workqueue_bio(struct bio *bio)
721 {
722 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723 struct btrfs_fs_info *fs_info;
724 struct btrfs_workqueue *wq;
725 btrfs_work_func_t func;
726
727 fs_info = end_io_wq->info;
728 end_io_wq->error = bio->bi_error;
729
730 if (bio->bi_rw & REQ_WRITE) {
731 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732 wq = fs_info->endio_meta_write_workers;
733 func = btrfs_endio_meta_write_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735 wq = fs_info->endio_freespace_worker;
736 func = btrfs_freespace_write_helper;
737 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738 wq = fs_info->endio_raid56_workers;
739 func = btrfs_endio_raid56_helper;
740 } else {
741 wq = fs_info->endio_write_workers;
742 func = btrfs_endio_write_helper;
743 }
744 } else {
745 if (unlikely(end_io_wq->metadata ==
746 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747 wq = fs_info->endio_repair_workers;
748 func = btrfs_endio_repair_helper;
749 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750 wq = fs_info->endio_raid56_workers;
751 func = btrfs_endio_raid56_helper;
752 } else if (end_io_wq->metadata) {
753 wq = fs_info->endio_meta_workers;
754 func = btrfs_endio_meta_helper;
755 } else {
756 wq = fs_info->endio_workers;
757 func = btrfs_endio_helper;
758 }
759 }
760
761 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762 btrfs_queue_work(wq, &end_io_wq->work);
763 }
764
765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766 enum btrfs_wq_endio_type metadata)
767 {
768 struct btrfs_end_io_wq *end_io_wq;
769
770 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771 if (!end_io_wq)
772 return -ENOMEM;
773
774 end_io_wq->private = bio->bi_private;
775 end_io_wq->end_io = bio->bi_end_io;
776 end_io_wq->info = info;
777 end_io_wq->error = 0;
778 end_io_wq->bio = bio;
779 end_io_wq->metadata = metadata;
780
781 bio->bi_private = end_io_wq;
782 bio->bi_end_io = end_workqueue_bio;
783 return 0;
784 }
785
786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787 {
788 unsigned long limit = min_t(unsigned long,
789 info->thread_pool_size,
790 info->fs_devices->open_devices);
791 return 256 * limit;
792 }
793
794 static void run_one_async_start(struct btrfs_work *work)
795 {
796 struct async_submit_bio *async;
797 int ret;
798
799 async = container_of(work, struct async_submit_bio, work);
800 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801 async->mirror_num, async->bio_flags,
802 async->bio_offset);
803 if (ret)
804 async->error = ret;
805 }
806
807 static void run_one_async_done(struct btrfs_work *work)
808 {
809 struct btrfs_fs_info *fs_info;
810 struct async_submit_bio *async;
811 int limit;
812
813 async = container_of(work, struct async_submit_bio, work);
814 fs_info = BTRFS_I(async->inode)->root->fs_info;
815
816 limit = btrfs_async_submit_limit(fs_info);
817 limit = limit * 2 / 3;
818
819 /*
820 * atomic_dec_return implies a barrier for waitqueue_active
821 */
822 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823 waitqueue_active(&fs_info->async_submit_wait))
824 wake_up(&fs_info->async_submit_wait);
825
826 /* If an error occurred we just want to clean up the bio and move on */
827 if (async->error) {
828 async->bio->bi_error = async->error;
829 bio_endio(async->bio);
830 return;
831 }
832
833 async->submit_bio_done(async->inode, async->rw, async->bio,
834 async->mirror_num, async->bio_flags,
835 async->bio_offset);
836 }
837
838 static void run_one_async_free(struct btrfs_work *work)
839 {
840 struct async_submit_bio *async;
841
842 async = container_of(work, struct async_submit_bio, work);
843 kfree(async);
844 }
845
846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847 int rw, struct bio *bio, int mirror_num,
848 unsigned long bio_flags,
849 u64 bio_offset,
850 extent_submit_bio_hook_t *submit_bio_start,
851 extent_submit_bio_hook_t *submit_bio_done)
852 {
853 struct async_submit_bio *async;
854
855 async = kmalloc(sizeof(*async), GFP_NOFS);
856 if (!async)
857 return -ENOMEM;
858
859 async->inode = inode;
860 async->rw = rw;
861 async->bio = bio;
862 async->mirror_num = mirror_num;
863 async->submit_bio_start = submit_bio_start;
864 async->submit_bio_done = submit_bio_done;
865
866 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867 run_one_async_done, run_one_async_free);
868
869 async->bio_flags = bio_flags;
870 async->bio_offset = bio_offset;
871
872 async->error = 0;
873
874 atomic_inc(&fs_info->nr_async_submits);
875
876 if (rw & REQ_SYNC)
877 btrfs_set_work_high_priority(&async->work);
878
879 btrfs_queue_work(fs_info->workers, &async->work);
880
881 while (atomic_read(&fs_info->async_submit_draining) &&
882 atomic_read(&fs_info->nr_async_submits)) {
883 wait_event(fs_info->async_submit_wait,
884 (atomic_read(&fs_info->nr_async_submits) == 0));
885 }
886
887 return 0;
888 }
889
890 static int btree_csum_one_bio(struct bio *bio)
891 {
892 struct bio_vec *bvec;
893 struct btrfs_root *root;
894 int i, ret = 0;
895
896 bio_for_each_segment_all(bvec, bio, i) {
897 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899 if (ret)
900 break;
901 }
902
903 return ret;
904 }
905
906 static int __btree_submit_bio_start(struct inode *inode, int rw,
907 struct bio *bio, int mirror_num,
908 unsigned long bio_flags,
909 u64 bio_offset)
910 {
911 /*
912 * when we're called for a write, we're already in the async
913 * submission context. Just jump into btrfs_map_bio
914 */
915 return btree_csum_one_bio(bio);
916 }
917
918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset)
921 {
922 int ret;
923
924 /*
925 * when we're called for a write, we're already in the async
926 * submission context. Just jump into btrfs_map_bio
927 */
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929 if (ret) {
930 bio->bi_error = ret;
931 bio_endio(bio);
932 }
933 return ret;
934 }
935
936 static int check_async_write(struct inode *inode, unsigned long bio_flags)
937 {
938 if (bio_flags & EXTENT_BIO_TREE_LOG)
939 return 0;
940 #ifdef CONFIG_X86
941 if (static_cpu_has(X86_FEATURE_XMM4_2))
942 return 0;
943 #endif
944 return 1;
945 }
946
947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948 int mirror_num, unsigned long bio_flags,
949 u64 bio_offset)
950 {
951 int async = check_async_write(inode, bio_flags);
952 int ret;
953
954 if (!(rw & REQ_WRITE)) {
955 /*
956 * called for a read, do the setup so that checksum validation
957 * can happen in the async kernel threads
958 */
959 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960 bio, BTRFS_WQ_ENDIO_METADATA);
961 if (ret)
962 goto out_w_error;
963 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964 mirror_num, 0);
965 } else if (!async) {
966 ret = btree_csum_one_bio(bio);
967 if (ret)
968 goto out_w_error;
969 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970 mirror_num, 0);
971 } else {
972 /*
973 * kthread helpers are used to submit writes so that
974 * checksumming can happen in parallel across all CPUs
975 */
976 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977 inode, rw, bio, mirror_num, 0,
978 bio_offset,
979 __btree_submit_bio_start,
980 __btree_submit_bio_done);
981 }
982
983 if (ret)
984 goto out_w_error;
985 return 0;
986
987 out_w_error:
988 bio->bi_error = ret;
989 bio_endio(bio);
990 return ret;
991 }
992
993 #ifdef CONFIG_MIGRATION
994 static int btree_migratepage(struct address_space *mapping,
995 struct page *newpage, struct page *page,
996 enum migrate_mode mode)
997 {
998 /*
999 * we can't safely write a btree page from here,
1000 * we haven't done the locking hook
1001 */
1002 if (PageDirty(page))
1003 return -EAGAIN;
1004 /*
1005 * Buffers may be managed in a filesystem specific way.
1006 * We must have no buffers or drop them.
1007 */
1008 if (page_has_private(page) &&
1009 !try_to_release_page(page, GFP_KERNEL))
1010 return -EAGAIN;
1011 return migrate_page(mapping, newpage, page, mode);
1012 }
1013 #endif
1014
1015
1016 static int btree_writepages(struct address_space *mapping,
1017 struct writeback_control *wbc)
1018 {
1019 struct btrfs_fs_info *fs_info;
1020 int ret;
1021
1022 if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024 if (wbc->for_kupdate)
1025 return 0;
1026
1027 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028 /* this is a bit racy, but that's ok */
1029 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030 BTRFS_DIRTY_METADATA_THRESH);
1031 if (ret < 0)
1032 return 0;
1033 }
1034 return btree_write_cache_pages(mapping, wbc);
1035 }
1036
1037 static int btree_readpage(struct file *file, struct page *page)
1038 {
1039 struct extent_io_tree *tree;
1040 tree = &BTRFS_I(page->mapping->host)->io_tree;
1041 return extent_read_full_page(tree, page, btree_get_extent, 0);
1042 }
1043
1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045 {
1046 if (PageWriteback(page) || PageDirty(page))
1047 return 0;
1048
1049 return try_release_extent_buffer(page);
1050 }
1051
1052 static void btree_invalidatepage(struct page *page, unsigned int offset,
1053 unsigned int length)
1054 {
1055 struct extent_io_tree *tree;
1056 tree = &BTRFS_I(page->mapping->host)->io_tree;
1057 extent_invalidatepage(tree, page, offset);
1058 btree_releasepage(page, GFP_NOFS);
1059 if (PagePrivate(page)) {
1060 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061 "page private not zero on page %llu",
1062 (unsigned long long)page_offset(page));
1063 ClearPagePrivate(page);
1064 set_page_private(page, 0);
1065 put_page(page);
1066 }
1067 }
1068
1069 static int btree_set_page_dirty(struct page *page)
1070 {
1071 #ifdef DEBUG
1072 struct extent_buffer *eb;
1073
1074 BUG_ON(!PagePrivate(page));
1075 eb = (struct extent_buffer *)page->private;
1076 BUG_ON(!eb);
1077 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078 BUG_ON(!atomic_read(&eb->refs));
1079 btrfs_assert_tree_locked(eb);
1080 #endif
1081 return __set_page_dirty_nobuffers(page);
1082 }
1083
1084 static const struct address_space_operations btree_aops = {
1085 .readpage = btree_readpage,
1086 .writepages = btree_writepages,
1087 .releasepage = btree_releasepage,
1088 .invalidatepage = btree_invalidatepage,
1089 #ifdef CONFIG_MIGRATION
1090 .migratepage = btree_migratepage,
1091 #endif
1092 .set_page_dirty = btree_set_page_dirty,
1093 };
1094
1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096 {
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100 buf = btrfs_find_create_tree_block(root, bytenr);
1101 if (!buf)
1102 return;
1103 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105 free_extent_buffer(buf);
1106 }
1107
1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109 int mirror_num, struct extent_buffer **eb)
1110 {
1111 struct extent_buffer *buf = NULL;
1112 struct inode *btree_inode = root->fs_info->btree_inode;
1113 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114 int ret;
1115
1116 buf = btrfs_find_create_tree_block(root, bytenr);
1117 if (!buf)
1118 return 0;
1119
1120 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123 btree_get_extent, mirror_num);
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return ret;
1127 }
1128
1129 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130 free_extent_buffer(buf);
1131 return -EIO;
1132 } else if (extent_buffer_uptodate(buf)) {
1133 *eb = buf;
1134 } else {
1135 free_extent_buffer(buf);
1136 }
1137 return 0;
1138 }
1139
1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141 u64 bytenr)
1142 {
1143 return find_extent_buffer(fs_info, bytenr);
1144 }
1145
1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147 u64 bytenr)
1148 {
1149 if (btrfs_test_is_dummy_root(root))
1150 return alloc_test_extent_buffer(root->fs_info, bytenr);
1151 return alloc_extent_buffer(root->fs_info, bytenr);
1152 }
1153
1154
1155 int btrfs_write_tree_block(struct extent_buffer *buf)
1156 {
1157 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1158 buf->start + buf->len - 1);
1159 }
1160
1161 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1162 {
1163 return filemap_fdatawait_range(buf->pages[0]->mapping,
1164 buf->start, buf->start + buf->len - 1);
1165 }
1166
1167 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1168 u64 parent_transid)
1169 {
1170 struct extent_buffer *buf = NULL;
1171 int ret;
1172
1173 buf = btrfs_find_create_tree_block(root, bytenr);
1174 if (!buf)
1175 return ERR_PTR(-ENOMEM);
1176
1177 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1178 if (ret) {
1179 free_extent_buffer(buf);
1180 return ERR_PTR(ret);
1181 }
1182 return buf;
1183
1184 }
1185
1186 void clean_tree_block(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info,
1188 struct extent_buffer *buf)
1189 {
1190 if (btrfs_header_generation(buf) ==
1191 fs_info->running_transaction->transid) {
1192 btrfs_assert_tree_locked(buf);
1193
1194 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1195 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1196 -buf->len,
1197 fs_info->dirty_metadata_batch);
1198 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1199 btrfs_set_lock_blocking(buf);
1200 clear_extent_buffer_dirty(buf);
1201 }
1202 }
1203 }
1204
1205 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1206 {
1207 struct btrfs_subvolume_writers *writers;
1208 int ret;
1209
1210 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1211 if (!writers)
1212 return ERR_PTR(-ENOMEM);
1213
1214 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1215 if (ret < 0) {
1216 kfree(writers);
1217 return ERR_PTR(ret);
1218 }
1219
1220 init_waitqueue_head(&writers->wait);
1221 return writers;
1222 }
1223
1224 static void
1225 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1226 {
1227 percpu_counter_destroy(&writers->counter);
1228 kfree(writers);
1229 }
1230
1231 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1232 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1233 u64 objectid)
1234 {
1235 root->node = NULL;
1236 root->commit_root = NULL;
1237 root->sectorsize = sectorsize;
1238 root->nodesize = nodesize;
1239 root->stripesize = stripesize;
1240 root->state = 0;
1241 root->orphan_cleanup_state = 0;
1242
1243 root->objectid = objectid;
1244 root->last_trans = 0;
1245 root->highest_objectid = 0;
1246 root->nr_delalloc_inodes = 0;
1247 root->nr_ordered_extents = 0;
1248 root->name = NULL;
1249 root->inode_tree = RB_ROOT;
1250 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1251 root->block_rsv = NULL;
1252 root->orphan_block_rsv = NULL;
1253
1254 INIT_LIST_HEAD(&root->dirty_list);
1255 INIT_LIST_HEAD(&root->root_list);
1256 INIT_LIST_HEAD(&root->delalloc_inodes);
1257 INIT_LIST_HEAD(&root->delalloc_root);
1258 INIT_LIST_HEAD(&root->ordered_extents);
1259 INIT_LIST_HEAD(&root->ordered_root);
1260 INIT_LIST_HEAD(&root->logged_list[0]);
1261 INIT_LIST_HEAD(&root->logged_list[1]);
1262 spin_lock_init(&root->orphan_lock);
1263 spin_lock_init(&root->inode_lock);
1264 spin_lock_init(&root->delalloc_lock);
1265 spin_lock_init(&root->ordered_extent_lock);
1266 spin_lock_init(&root->accounting_lock);
1267 spin_lock_init(&root->log_extents_lock[0]);
1268 spin_lock_init(&root->log_extents_lock[1]);
1269 mutex_init(&root->objectid_mutex);
1270 mutex_init(&root->log_mutex);
1271 mutex_init(&root->ordered_extent_mutex);
1272 mutex_init(&root->delalloc_mutex);
1273 init_waitqueue_head(&root->log_writer_wait);
1274 init_waitqueue_head(&root->log_commit_wait[0]);
1275 init_waitqueue_head(&root->log_commit_wait[1]);
1276 INIT_LIST_HEAD(&root->log_ctxs[0]);
1277 INIT_LIST_HEAD(&root->log_ctxs[1]);
1278 atomic_set(&root->log_commit[0], 0);
1279 atomic_set(&root->log_commit[1], 0);
1280 atomic_set(&root->log_writers, 0);
1281 atomic_set(&root->log_batch, 0);
1282 atomic_set(&root->orphan_inodes, 0);
1283 atomic_set(&root->refs, 1);
1284 atomic_set(&root->will_be_snapshoted, 0);
1285 atomic_set(&root->qgroup_meta_rsv, 0);
1286 root->log_transid = 0;
1287 root->log_transid_committed = -1;
1288 root->last_log_commit = 0;
1289 if (fs_info)
1290 extent_io_tree_init(&root->dirty_log_pages,
1291 fs_info->btree_inode->i_mapping);
1292
1293 memset(&root->root_key, 0, sizeof(root->root_key));
1294 memset(&root->root_item, 0, sizeof(root->root_item));
1295 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1296 if (fs_info)
1297 root->defrag_trans_start = fs_info->generation;
1298 else
1299 root->defrag_trans_start = 0;
1300 root->root_key.objectid = objectid;
1301 root->anon_dev = 0;
1302
1303 spin_lock_init(&root->root_item_lock);
1304 }
1305
1306 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1307 gfp_t flags)
1308 {
1309 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1310 if (root)
1311 root->fs_info = fs_info;
1312 return root;
1313 }
1314
1315 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1316 /* Should only be used by the testing infrastructure */
1317 struct btrfs_root *btrfs_alloc_dummy_root(void)
1318 {
1319 struct btrfs_root *root;
1320
1321 root = btrfs_alloc_root(NULL, GFP_KERNEL);
1322 if (!root)
1323 return ERR_PTR(-ENOMEM);
1324 __setup_root(4096, 4096, 4096, root, NULL, 1);
1325 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1326 root->alloc_bytenr = 0;
1327
1328 return root;
1329 }
1330 #endif
1331
1332 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1333 struct btrfs_fs_info *fs_info,
1334 u64 objectid)
1335 {
1336 struct extent_buffer *leaf;
1337 struct btrfs_root *tree_root = fs_info->tree_root;
1338 struct btrfs_root *root;
1339 struct btrfs_key key;
1340 int ret = 0;
1341 uuid_le uuid;
1342
1343 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1344 if (!root)
1345 return ERR_PTR(-ENOMEM);
1346
1347 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1348 tree_root->stripesize, root, fs_info, objectid);
1349 root->root_key.objectid = objectid;
1350 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351 root->root_key.offset = 0;
1352
1353 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1354 if (IS_ERR(leaf)) {
1355 ret = PTR_ERR(leaf);
1356 leaf = NULL;
1357 goto fail;
1358 }
1359
1360 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1361 btrfs_set_header_bytenr(leaf, leaf->start);
1362 btrfs_set_header_generation(leaf, trans->transid);
1363 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364 btrfs_set_header_owner(leaf, objectid);
1365 root->node = leaf;
1366
1367 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1368 BTRFS_FSID_SIZE);
1369 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1370 btrfs_header_chunk_tree_uuid(leaf),
1371 BTRFS_UUID_SIZE);
1372 btrfs_mark_buffer_dirty(leaf);
1373
1374 root->commit_root = btrfs_root_node(root);
1375 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1376
1377 root->root_item.flags = 0;
1378 root->root_item.byte_limit = 0;
1379 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1380 btrfs_set_root_generation(&root->root_item, trans->transid);
1381 btrfs_set_root_level(&root->root_item, 0);
1382 btrfs_set_root_refs(&root->root_item, 1);
1383 btrfs_set_root_used(&root->root_item, leaf->len);
1384 btrfs_set_root_last_snapshot(&root->root_item, 0);
1385 btrfs_set_root_dirid(&root->root_item, 0);
1386 uuid_le_gen(&uuid);
1387 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1388 root->root_item.drop_level = 0;
1389
1390 key.objectid = objectid;
1391 key.type = BTRFS_ROOT_ITEM_KEY;
1392 key.offset = 0;
1393 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1394 if (ret)
1395 goto fail;
1396
1397 btrfs_tree_unlock(leaf);
1398
1399 return root;
1400
1401 fail:
1402 if (leaf) {
1403 btrfs_tree_unlock(leaf);
1404 free_extent_buffer(root->commit_root);
1405 free_extent_buffer(leaf);
1406 }
1407 kfree(root);
1408
1409 return ERR_PTR(ret);
1410 }
1411
1412 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info)
1414 {
1415 struct btrfs_root *root;
1416 struct btrfs_root *tree_root = fs_info->tree_root;
1417 struct extent_buffer *leaf;
1418
1419 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1420 if (!root)
1421 return ERR_PTR(-ENOMEM);
1422
1423 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1424 tree_root->stripesize, root, fs_info,
1425 BTRFS_TREE_LOG_OBJECTID);
1426
1427 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1428 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1429 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1430
1431 /*
1432 * DON'T set REF_COWS for log trees
1433 *
1434 * log trees do not get reference counted because they go away
1435 * before a real commit is actually done. They do store pointers
1436 * to file data extents, and those reference counts still get
1437 * updated (along with back refs to the log tree).
1438 */
1439
1440 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1441 NULL, 0, 0, 0);
1442 if (IS_ERR(leaf)) {
1443 kfree(root);
1444 return ERR_CAST(leaf);
1445 }
1446
1447 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1448 btrfs_set_header_bytenr(leaf, leaf->start);
1449 btrfs_set_header_generation(leaf, trans->transid);
1450 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1451 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1452 root->node = leaf;
1453
1454 write_extent_buffer(root->node, root->fs_info->fsid,
1455 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1456 btrfs_mark_buffer_dirty(root->node);
1457 btrfs_tree_unlock(root->node);
1458 return root;
1459 }
1460
1461 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1462 struct btrfs_fs_info *fs_info)
1463 {
1464 struct btrfs_root *log_root;
1465
1466 log_root = alloc_log_tree(trans, fs_info);
1467 if (IS_ERR(log_root))
1468 return PTR_ERR(log_root);
1469 WARN_ON(fs_info->log_root_tree);
1470 fs_info->log_root_tree = log_root;
1471 return 0;
1472 }
1473
1474 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1475 struct btrfs_root *root)
1476 {
1477 struct btrfs_root *log_root;
1478 struct btrfs_inode_item *inode_item;
1479
1480 log_root = alloc_log_tree(trans, root->fs_info);
1481 if (IS_ERR(log_root))
1482 return PTR_ERR(log_root);
1483
1484 log_root->last_trans = trans->transid;
1485 log_root->root_key.offset = root->root_key.objectid;
1486
1487 inode_item = &log_root->root_item.inode;
1488 btrfs_set_stack_inode_generation(inode_item, 1);
1489 btrfs_set_stack_inode_size(inode_item, 3);
1490 btrfs_set_stack_inode_nlink(inode_item, 1);
1491 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1492 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1493
1494 btrfs_set_root_node(&log_root->root_item, log_root->node);
1495
1496 WARN_ON(root->log_root);
1497 root->log_root = log_root;
1498 root->log_transid = 0;
1499 root->log_transid_committed = -1;
1500 root->last_log_commit = 0;
1501 return 0;
1502 }
1503
1504 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505 struct btrfs_key *key)
1506 {
1507 struct btrfs_root *root;
1508 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1509 struct btrfs_path *path;
1510 u64 generation;
1511 int ret;
1512
1513 path = btrfs_alloc_path();
1514 if (!path)
1515 return ERR_PTR(-ENOMEM);
1516
1517 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1518 if (!root) {
1519 ret = -ENOMEM;
1520 goto alloc_fail;
1521 }
1522
1523 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1524 tree_root->stripesize, root, fs_info, key->objectid);
1525
1526 ret = btrfs_find_root(tree_root, key, path,
1527 &root->root_item, &root->root_key);
1528 if (ret) {
1529 if (ret > 0)
1530 ret = -ENOENT;
1531 goto find_fail;
1532 }
1533
1534 generation = btrfs_root_generation(&root->root_item);
1535 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1536 generation);
1537 if (IS_ERR(root->node)) {
1538 ret = PTR_ERR(root->node);
1539 goto find_fail;
1540 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1541 ret = -EIO;
1542 free_extent_buffer(root->node);
1543 goto find_fail;
1544 }
1545 root->commit_root = btrfs_root_node(root);
1546 out:
1547 btrfs_free_path(path);
1548 return root;
1549
1550 find_fail:
1551 kfree(root);
1552 alloc_fail:
1553 root = ERR_PTR(ret);
1554 goto out;
1555 }
1556
1557 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1558 struct btrfs_key *location)
1559 {
1560 struct btrfs_root *root;
1561
1562 root = btrfs_read_tree_root(tree_root, location);
1563 if (IS_ERR(root))
1564 return root;
1565
1566 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1567 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1568 btrfs_check_and_init_root_item(&root->root_item);
1569 }
1570
1571 return root;
1572 }
1573
1574 int btrfs_init_fs_root(struct btrfs_root *root)
1575 {
1576 int ret;
1577 struct btrfs_subvolume_writers *writers;
1578
1579 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1580 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1581 GFP_NOFS);
1582 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1583 ret = -ENOMEM;
1584 goto fail;
1585 }
1586
1587 writers = btrfs_alloc_subvolume_writers();
1588 if (IS_ERR(writers)) {
1589 ret = PTR_ERR(writers);
1590 goto fail;
1591 }
1592 root->subv_writers = writers;
1593
1594 btrfs_init_free_ino_ctl(root);
1595 spin_lock_init(&root->ino_cache_lock);
1596 init_waitqueue_head(&root->ino_cache_wait);
1597
1598 ret = get_anon_bdev(&root->anon_dev);
1599 if (ret)
1600 goto free_writers;
1601
1602 mutex_lock(&root->objectid_mutex);
1603 ret = btrfs_find_highest_objectid(root,
1604 &root->highest_objectid);
1605 if (ret) {
1606 mutex_unlock(&root->objectid_mutex);
1607 goto free_root_dev;
1608 }
1609
1610 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1611
1612 mutex_unlock(&root->objectid_mutex);
1613
1614 return 0;
1615
1616 free_root_dev:
1617 free_anon_bdev(root->anon_dev);
1618 free_writers:
1619 btrfs_free_subvolume_writers(root->subv_writers);
1620 fail:
1621 kfree(root->free_ino_ctl);
1622 kfree(root->free_ino_pinned);
1623 return ret;
1624 }
1625
1626 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1627 u64 root_id)
1628 {
1629 struct btrfs_root *root;
1630
1631 spin_lock(&fs_info->fs_roots_radix_lock);
1632 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1633 (unsigned long)root_id);
1634 spin_unlock(&fs_info->fs_roots_radix_lock);
1635 return root;
1636 }
1637
1638 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1639 struct btrfs_root *root)
1640 {
1641 int ret;
1642
1643 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1644 if (ret)
1645 return ret;
1646
1647 spin_lock(&fs_info->fs_roots_radix_lock);
1648 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1649 (unsigned long)root->root_key.objectid,
1650 root);
1651 if (ret == 0)
1652 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1653 spin_unlock(&fs_info->fs_roots_radix_lock);
1654 radix_tree_preload_end();
1655
1656 return ret;
1657 }
1658
1659 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660 struct btrfs_key *location,
1661 bool check_ref)
1662 {
1663 struct btrfs_root *root;
1664 struct btrfs_path *path;
1665 struct btrfs_key key;
1666 int ret;
1667
1668 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1669 return fs_info->tree_root;
1670 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1671 return fs_info->extent_root;
1672 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1673 return fs_info->chunk_root;
1674 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1675 return fs_info->dev_root;
1676 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1677 return fs_info->csum_root;
1678 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1679 return fs_info->quota_root ? fs_info->quota_root :
1680 ERR_PTR(-ENOENT);
1681 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1682 return fs_info->uuid_root ? fs_info->uuid_root :
1683 ERR_PTR(-ENOENT);
1684 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1685 return fs_info->free_space_root ? fs_info->free_space_root :
1686 ERR_PTR(-ENOENT);
1687 again:
1688 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1689 if (root) {
1690 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1691 return ERR_PTR(-ENOENT);
1692 return root;
1693 }
1694
1695 root = btrfs_read_fs_root(fs_info->tree_root, location);
1696 if (IS_ERR(root))
1697 return root;
1698
1699 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1700 ret = -ENOENT;
1701 goto fail;
1702 }
1703
1704 ret = btrfs_init_fs_root(root);
1705 if (ret)
1706 goto fail;
1707
1708 path = btrfs_alloc_path();
1709 if (!path) {
1710 ret = -ENOMEM;
1711 goto fail;
1712 }
1713 key.objectid = BTRFS_ORPHAN_OBJECTID;
1714 key.type = BTRFS_ORPHAN_ITEM_KEY;
1715 key.offset = location->objectid;
1716
1717 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1718 btrfs_free_path(path);
1719 if (ret < 0)
1720 goto fail;
1721 if (ret == 0)
1722 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1723
1724 ret = btrfs_insert_fs_root(fs_info, root);
1725 if (ret) {
1726 if (ret == -EEXIST) {
1727 free_fs_root(root);
1728 goto again;
1729 }
1730 goto fail;
1731 }
1732 return root;
1733 fail:
1734 free_fs_root(root);
1735 return ERR_PTR(ret);
1736 }
1737
1738 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1739 {
1740 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1741 int ret = 0;
1742 struct btrfs_device *device;
1743 struct backing_dev_info *bdi;
1744
1745 rcu_read_lock();
1746 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1747 if (!device->bdev)
1748 continue;
1749 bdi = blk_get_backing_dev_info(device->bdev);
1750 if (bdi_congested(bdi, bdi_bits)) {
1751 ret = 1;
1752 break;
1753 }
1754 }
1755 rcu_read_unlock();
1756 return ret;
1757 }
1758
1759 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1760 {
1761 int err;
1762
1763 err = bdi_setup_and_register(bdi, "btrfs");
1764 if (err)
1765 return err;
1766
1767 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1768 bdi->congested_fn = btrfs_congested_fn;
1769 bdi->congested_data = info;
1770 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1771 return 0;
1772 }
1773
1774 /*
1775 * called by the kthread helper functions to finally call the bio end_io
1776 * functions. This is where read checksum verification actually happens
1777 */
1778 static void end_workqueue_fn(struct btrfs_work *work)
1779 {
1780 struct bio *bio;
1781 struct btrfs_end_io_wq *end_io_wq;
1782
1783 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1784 bio = end_io_wq->bio;
1785
1786 bio->bi_error = end_io_wq->error;
1787 bio->bi_private = end_io_wq->private;
1788 bio->bi_end_io = end_io_wq->end_io;
1789 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1790 bio_endio(bio);
1791 }
1792
1793 static int cleaner_kthread(void *arg)
1794 {
1795 struct btrfs_root *root = arg;
1796 int again;
1797 struct btrfs_trans_handle *trans;
1798
1799 do {
1800 again = 0;
1801
1802 /* Make the cleaner go to sleep early. */
1803 if (btrfs_need_cleaner_sleep(root))
1804 goto sleep;
1805
1806 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1807 goto sleep;
1808
1809 /*
1810 * Avoid the problem that we change the status of the fs
1811 * during the above check and trylock.
1812 */
1813 if (btrfs_need_cleaner_sleep(root)) {
1814 mutex_unlock(&root->fs_info->cleaner_mutex);
1815 goto sleep;
1816 }
1817
1818 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1819 btrfs_run_delayed_iputs(root);
1820 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1821
1822 again = btrfs_clean_one_deleted_snapshot(root);
1823 mutex_unlock(&root->fs_info->cleaner_mutex);
1824
1825 /*
1826 * The defragger has dealt with the R/O remount and umount,
1827 * needn't do anything special here.
1828 */
1829 btrfs_run_defrag_inodes(root->fs_info);
1830
1831 /*
1832 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1833 * with relocation (btrfs_relocate_chunk) and relocation
1834 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1836 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837 * unused block groups.
1838 */
1839 btrfs_delete_unused_bgs(root->fs_info);
1840 sleep:
1841 if (!again) {
1842 set_current_state(TASK_INTERRUPTIBLE);
1843 if (!kthread_should_stop())
1844 schedule();
1845 __set_current_state(TASK_RUNNING);
1846 }
1847 } while (!kthread_should_stop());
1848
1849 /*
1850 * Transaction kthread is stopped before us and wakes us up.
1851 * However we might have started a new transaction and COWed some
1852 * tree blocks when deleting unused block groups for example. So
1853 * make sure we commit the transaction we started to have a clean
1854 * shutdown when evicting the btree inode - if it has dirty pages
1855 * when we do the final iput() on it, eviction will trigger a
1856 * writeback for it which will fail with null pointer dereferences
1857 * since work queues and other resources were already released and
1858 * destroyed by the time the iput/eviction/writeback is made.
1859 */
1860 trans = btrfs_attach_transaction(root);
1861 if (IS_ERR(trans)) {
1862 if (PTR_ERR(trans) != -ENOENT)
1863 btrfs_err(root->fs_info,
1864 "cleaner transaction attach returned %ld",
1865 PTR_ERR(trans));
1866 } else {
1867 int ret;
1868
1869 ret = btrfs_commit_transaction(trans, root);
1870 if (ret)
1871 btrfs_err(root->fs_info,
1872 "cleaner open transaction commit returned %d",
1873 ret);
1874 }
1875
1876 return 0;
1877 }
1878
1879 static int transaction_kthread(void *arg)
1880 {
1881 struct btrfs_root *root = arg;
1882 struct btrfs_trans_handle *trans;
1883 struct btrfs_transaction *cur;
1884 u64 transid;
1885 unsigned long now;
1886 unsigned long delay;
1887 bool cannot_commit;
1888
1889 do {
1890 cannot_commit = false;
1891 delay = HZ * root->fs_info->commit_interval;
1892 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1893
1894 spin_lock(&root->fs_info->trans_lock);
1895 cur = root->fs_info->running_transaction;
1896 if (!cur) {
1897 spin_unlock(&root->fs_info->trans_lock);
1898 goto sleep;
1899 }
1900
1901 now = get_seconds();
1902 if (cur->state < TRANS_STATE_BLOCKED &&
1903 (now < cur->start_time ||
1904 now - cur->start_time < root->fs_info->commit_interval)) {
1905 spin_unlock(&root->fs_info->trans_lock);
1906 delay = HZ * 5;
1907 goto sleep;
1908 }
1909 transid = cur->transid;
1910 spin_unlock(&root->fs_info->trans_lock);
1911
1912 /* If the file system is aborted, this will always fail. */
1913 trans = btrfs_attach_transaction(root);
1914 if (IS_ERR(trans)) {
1915 if (PTR_ERR(trans) != -ENOENT)
1916 cannot_commit = true;
1917 goto sleep;
1918 }
1919 if (transid == trans->transid) {
1920 btrfs_commit_transaction(trans, root);
1921 } else {
1922 btrfs_end_transaction(trans, root);
1923 }
1924 sleep:
1925 wake_up_process(root->fs_info->cleaner_kthread);
1926 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1927
1928 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1929 &root->fs_info->fs_state)))
1930 btrfs_cleanup_transaction(root);
1931 set_current_state(TASK_INTERRUPTIBLE);
1932 if (!kthread_should_stop() &&
1933 (!btrfs_transaction_blocked(root->fs_info) ||
1934 cannot_commit))
1935 schedule_timeout(delay);
1936 __set_current_state(TASK_RUNNING);
1937 } while (!kthread_should_stop());
1938 return 0;
1939 }
1940
1941 /*
1942 * this will find the highest generation in the array of
1943 * root backups. The index of the highest array is returned,
1944 * or -1 if we can't find anything.
1945 *
1946 * We check to make sure the array is valid by comparing the
1947 * generation of the latest root in the array with the generation
1948 * in the super block. If they don't match we pitch it.
1949 */
1950 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1951 {
1952 u64 cur;
1953 int newest_index = -1;
1954 struct btrfs_root_backup *root_backup;
1955 int i;
1956
1957 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1958 root_backup = info->super_copy->super_roots + i;
1959 cur = btrfs_backup_tree_root_gen(root_backup);
1960 if (cur == newest_gen)
1961 newest_index = i;
1962 }
1963
1964 /* check to see if we actually wrapped around */
1965 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1966 root_backup = info->super_copy->super_roots;
1967 cur = btrfs_backup_tree_root_gen(root_backup);
1968 if (cur == newest_gen)
1969 newest_index = 0;
1970 }
1971 return newest_index;
1972 }
1973
1974
1975 /*
1976 * find the oldest backup so we know where to store new entries
1977 * in the backup array. This will set the backup_root_index
1978 * field in the fs_info struct
1979 */
1980 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1981 u64 newest_gen)
1982 {
1983 int newest_index = -1;
1984
1985 newest_index = find_newest_super_backup(info, newest_gen);
1986 /* if there was garbage in there, just move along */
1987 if (newest_index == -1) {
1988 info->backup_root_index = 0;
1989 } else {
1990 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991 }
1992 }
1993
1994 /*
1995 * copy all the root pointers into the super backup array.
1996 * this will bump the backup pointer by one when it is
1997 * done
1998 */
1999 static void backup_super_roots(struct btrfs_fs_info *info)
2000 {
2001 int next_backup;
2002 struct btrfs_root_backup *root_backup;
2003 int last_backup;
2004
2005 next_backup = info->backup_root_index;
2006 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2007 BTRFS_NUM_BACKUP_ROOTS;
2008
2009 /*
2010 * just overwrite the last backup if we're at the same generation
2011 * this happens only at umount
2012 */
2013 root_backup = info->super_for_commit->super_roots + last_backup;
2014 if (btrfs_backup_tree_root_gen(root_backup) ==
2015 btrfs_header_generation(info->tree_root->node))
2016 next_backup = last_backup;
2017
2018 root_backup = info->super_for_commit->super_roots + next_backup;
2019
2020 /*
2021 * make sure all of our padding and empty slots get zero filled
2022 * regardless of which ones we use today
2023 */
2024 memset(root_backup, 0, sizeof(*root_backup));
2025
2026 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2027
2028 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2029 btrfs_set_backup_tree_root_gen(root_backup,
2030 btrfs_header_generation(info->tree_root->node));
2031
2032 btrfs_set_backup_tree_root_level(root_backup,
2033 btrfs_header_level(info->tree_root->node));
2034
2035 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2036 btrfs_set_backup_chunk_root_gen(root_backup,
2037 btrfs_header_generation(info->chunk_root->node));
2038 btrfs_set_backup_chunk_root_level(root_backup,
2039 btrfs_header_level(info->chunk_root->node));
2040
2041 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2042 btrfs_set_backup_extent_root_gen(root_backup,
2043 btrfs_header_generation(info->extent_root->node));
2044 btrfs_set_backup_extent_root_level(root_backup,
2045 btrfs_header_level(info->extent_root->node));
2046
2047 /*
2048 * we might commit during log recovery, which happens before we set
2049 * the fs_root. Make sure it is valid before we fill it in.
2050 */
2051 if (info->fs_root && info->fs_root->node) {
2052 btrfs_set_backup_fs_root(root_backup,
2053 info->fs_root->node->start);
2054 btrfs_set_backup_fs_root_gen(root_backup,
2055 btrfs_header_generation(info->fs_root->node));
2056 btrfs_set_backup_fs_root_level(root_backup,
2057 btrfs_header_level(info->fs_root->node));
2058 }
2059
2060 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2061 btrfs_set_backup_dev_root_gen(root_backup,
2062 btrfs_header_generation(info->dev_root->node));
2063 btrfs_set_backup_dev_root_level(root_backup,
2064 btrfs_header_level(info->dev_root->node));
2065
2066 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2067 btrfs_set_backup_csum_root_gen(root_backup,
2068 btrfs_header_generation(info->csum_root->node));
2069 btrfs_set_backup_csum_root_level(root_backup,
2070 btrfs_header_level(info->csum_root->node));
2071
2072 btrfs_set_backup_total_bytes(root_backup,
2073 btrfs_super_total_bytes(info->super_copy));
2074 btrfs_set_backup_bytes_used(root_backup,
2075 btrfs_super_bytes_used(info->super_copy));
2076 btrfs_set_backup_num_devices(root_backup,
2077 btrfs_super_num_devices(info->super_copy));
2078
2079 /*
2080 * if we don't copy this out to the super_copy, it won't get remembered
2081 * for the next commit
2082 */
2083 memcpy(&info->super_copy->super_roots,
2084 &info->super_for_commit->super_roots,
2085 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2086 }
2087
2088 /*
2089 * this copies info out of the root backup array and back into
2090 * the in-memory super block. It is meant to help iterate through
2091 * the array, so you send it the number of backups you've already
2092 * tried and the last backup index you used.
2093 *
2094 * this returns -1 when it has tried all the backups
2095 */
2096 static noinline int next_root_backup(struct btrfs_fs_info *info,
2097 struct btrfs_super_block *super,
2098 int *num_backups_tried, int *backup_index)
2099 {
2100 struct btrfs_root_backup *root_backup;
2101 int newest = *backup_index;
2102
2103 if (*num_backups_tried == 0) {
2104 u64 gen = btrfs_super_generation(super);
2105
2106 newest = find_newest_super_backup(info, gen);
2107 if (newest == -1)
2108 return -1;
2109
2110 *backup_index = newest;
2111 *num_backups_tried = 1;
2112 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2113 /* we've tried all the backups, all done */
2114 return -1;
2115 } else {
2116 /* jump to the next oldest backup */
2117 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2118 BTRFS_NUM_BACKUP_ROOTS;
2119 *backup_index = newest;
2120 *num_backups_tried += 1;
2121 }
2122 root_backup = super->super_roots + newest;
2123
2124 btrfs_set_super_generation(super,
2125 btrfs_backup_tree_root_gen(root_backup));
2126 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2127 btrfs_set_super_root_level(super,
2128 btrfs_backup_tree_root_level(root_backup));
2129 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2130
2131 /*
2132 * fixme: the total bytes and num_devices need to match or we should
2133 * need a fsck
2134 */
2135 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2136 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2137 return 0;
2138 }
2139
2140 /* helper to cleanup workers */
2141 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2142 {
2143 btrfs_destroy_workqueue(fs_info->fixup_workers);
2144 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2145 btrfs_destroy_workqueue(fs_info->workers);
2146 btrfs_destroy_workqueue(fs_info->endio_workers);
2147 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2148 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2149 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2150 btrfs_destroy_workqueue(fs_info->rmw_workers);
2151 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2152 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2153 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2154 btrfs_destroy_workqueue(fs_info->submit_workers);
2155 btrfs_destroy_workqueue(fs_info->delayed_workers);
2156 btrfs_destroy_workqueue(fs_info->caching_workers);
2157 btrfs_destroy_workqueue(fs_info->readahead_workers);
2158 btrfs_destroy_workqueue(fs_info->flush_workers);
2159 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2160 btrfs_destroy_workqueue(fs_info->extent_workers);
2161 }
2162
2163 static void free_root_extent_buffers(struct btrfs_root *root)
2164 {
2165 if (root) {
2166 free_extent_buffer(root->node);
2167 free_extent_buffer(root->commit_root);
2168 root->node = NULL;
2169 root->commit_root = NULL;
2170 }
2171 }
2172
2173 /* helper to cleanup tree roots */
2174 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2175 {
2176 free_root_extent_buffers(info->tree_root);
2177
2178 free_root_extent_buffers(info->dev_root);
2179 free_root_extent_buffers(info->extent_root);
2180 free_root_extent_buffers(info->csum_root);
2181 free_root_extent_buffers(info->quota_root);
2182 free_root_extent_buffers(info->uuid_root);
2183 if (chunk_root)
2184 free_root_extent_buffers(info->chunk_root);
2185 free_root_extent_buffers(info->free_space_root);
2186 }
2187
2188 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2189 {
2190 int ret;
2191 struct btrfs_root *gang[8];
2192 int i;
2193
2194 while (!list_empty(&fs_info->dead_roots)) {
2195 gang[0] = list_entry(fs_info->dead_roots.next,
2196 struct btrfs_root, root_list);
2197 list_del(&gang[0]->root_list);
2198
2199 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2200 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2201 } else {
2202 free_extent_buffer(gang[0]->node);
2203 free_extent_buffer(gang[0]->commit_root);
2204 btrfs_put_fs_root(gang[0]);
2205 }
2206 }
2207
2208 while (1) {
2209 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210 (void **)gang, 0,
2211 ARRAY_SIZE(gang));
2212 if (!ret)
2213 break;
2214 for (i = 0; i < ret; i++)
2215 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216 }
2217
2218 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2219 btrfs_free_log_root_tree(NULL, fs_info);
2220 btrfs_destroy_pinned_extent(fs_info->tree_root,
2221 fs_info->pinned_extents);
2222 }
2223 }
2224
2225 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2226 {
2227 mutex_init(&fs_info->scrub_lock);
2228 atomic_set(&fs_info->scrubs_running, 0);
2229 atomic_set(&fs_info->scrub_pause_req, 0);
2230 atomic_set(&fs_info->scrubs_paused, 0);
2231 atomic_set(&fs_info->scrub_cancel_req, 0);
2232 init_waitqueue_head(&fs_info->scrub_pause_wait);
2233 fs_info->scrub_workers_refcnt = 0;
2234 }
2235
2236 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2237 {
2238 spin_lock_init(&fs_info->balance_lock);
2239 mutex_init(&fs_info->balance_mutex);
2240 atomic_set(&fs_info->balance_running, 0);
2241 atomic_set(&fs_info->balance_pause_req, 0);
2242 atomic_set(&fs_info->balance_cancel_req, 0);
2243 fs_info->balance_ctl = NULL;
2244 init_waitqueue_head(&fs_info->balance_wait_q);
2245 }
2246
2247 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2248 struct btrfs_root *tree_root)
2249 {
2250 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2251 set_nlink(fs_info->btree_inode, 1);
2252 /*
2253 * we set the i_size on the btree inode to the max possible int.
2254 * the real end of the address space is determined by all of
2255 * the devices in the system
2256 */
2257 fs_info->btree_inode->i_size = OFFSET_MAX;
2258 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2259
2260 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2261 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2262 fs_info->btree_inode->i_mapping);
2263 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2264 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2265
2266 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2267
2268 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2269 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2270 sizeof(struct btrfs_key));
2271 set_bit(BTRFS_INODE_DUMMY,
2272 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2273 btrfs_insert_inode_hash(fs_info->btree_inode);
2274 }
2275
2276 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2277 {
2278 fs_info->dev_replace.lock_owner = 0;
2279 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2280 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2281 rwlock_init(&fs_info->dev_replace.lock);
2282 atomic_set(&fs_info->dev_replace.read_locks, 0);
2283 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2284 init_waitqueue_head(&fs_info->replace_wait);
2285 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2286 }
2287
2288 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2289 {
2290 spin_lock_init(&fs_info->qgroup_lock);
2291 mutex_init(&fs_info->qgroup_ioctl_lock);
2292 fs_info->qgroup_tree = RB_ROOT;
2293 fs_info->qgroup_op_tree = RB_ROOT;
2294 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2295 fs_info->qgroup_seq = 1;
2296 fs_info->quota_enabled = 0;
2297 fs_info->pending_quota_state = 0;
2298 fs_info->qgroup_ulist = NULL;
2299 mutex_init(&fs_info->qgroup_rescan_lock);
2300 }
2301
2302 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2303 struct btrfs_fs_devices *fs_devices)
2304 {
2305 int max_active = fs_info->thread_pool_size;
2306 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2307
2308 fs_info->workers =
2309 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2310 max_active, 16);
2311
2312 fs_info->delalloc_workers =
2313 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2314
2315 fs_info->flush_workers =
2316 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2317
2318 fs_info->caching_workers =
2319 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2320
2321 /*
2322 * a higher idle thresh on the submit workers makes it much more
2323 * likely that bios will be send down in a sane order to the
2324 * devices
2325 */
2326 fs_info->submit_workers =
2327 btrfs_alloc_workqueue("submit", flags,
2328 min_t(u64, fs_devices->num_devices,
2329 max_active), 64);
2330
2331 fs_info->fixup_workers =
2332 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2333
2334 /*
2335 * endios are largely parallel and should have a very
2336 * low idle thresh
2337 */
2338 fs_info->endio_workers =
2339 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2340 fs_info->endio_meta_workers =
2341 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2342 fs_info->endio_meta_write_workers =
2343 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2344 fs_info->endio_raid56_workers =
2345 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2346 fs_info->endio_repair_workers =
2347 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2348 fs_info->rmw_workers =
2349 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2350 fs_info->endio_write_workers =
2351 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2352 fs_info->endio_freespace_worker =
2353 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2354 fs_info->delayed_workers =
2355 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2356 fs_info->readahead_workers =
2357 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2358 fs_info->qgroup_rescan_workers =
2359 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2360 fs_info->extent_workers =
2361 btrfs_alloc_workqueue("extent-refs", flags,
2362 min_t(u64, fs_devices->num_devices,
2363 max_active), 8);
2364
2365 if (!(fs_info->workers && fs_info->delalloc_workers &&
2366 fs_info->submit_workers && fs_info->flush_workers &&
2367 fs_info->endio_workers && fs_info->endio_meta_workers &&
2368 fs_info->endio_meta_write_workers &&
2369 fs_info->endio_repair_workers &&
2370 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2371 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2372 fs_info->caching_workers && fs_info->readahead_workers &&
2373 fs_info->fixup_workers && fs_info->delayed_workers &&
2374 fs_info->extent_workers &&
2375 fs_info->qgroup_rescan_workers)) {
2376 return -ENOMEM;
2377 }
2378
2379 return 0;
2380 }
2381
2382 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2383 struct btrfs_fs_devices *fs_devices)
2384 {
2385 int ret;
2386 struct btrfs_root *tree_root = fs_info->tree_root;
2387 struct btrfs_root *log_tree_root;
2388 struct btrfs_super_block *disk_super = fs_info->super_copy;
2389 u64 bytenr = btrfs_super_log_root(disk_super);
2390
2391 if (fs_devices->rw_devices == 0) {
2392 btrfs_warn(fs_info, "log replay required on RO media");
2393 return -EIO;
2394 }
2395
2396 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2397 if (!log_tree_root)
2398 return -ENOMEM;
2399
2400 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2401 tree_root->stripesize, log_tree_root, fs_info,
2402 BTRFS_TREE_LOG_OBJECTID);
2403
2404 log_tree_root->node = read_tree_block(tree_root, bytenr,
2405 fs_info->generation + 1);
2406 if (IS_ERR(log_tree_root->node)) {
2407 btrfs_warn(fs_info, "failed to read log tree");
2408 ret = PTR_ERR(log_tree_root->node);
2409 kfree(log_tree_root);
2410 return ret;
2411 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2412 btrfs_err(fs_info, "failed to read log tree");
2413 free_extent_buffer(log_tree_root->node);
2414 kfree(log_tree_root);
2415 return -EIO;
2416 }
2417 /* returns with log_tree_root freed on success */
2418 ret = btrfs_recover_log_trees(log_tree_root);
2419 if (ret) {
2420 btrfs_handle_fs_error(tree_root->fs_info, ret,
2421 "Failed to recover log tree");
2422 free_extent_buffer(log_tree_root->node);
2423 kfree(log_tree_root);
2424 return ret;
2425 }
2426
2427 if (fs_info->sb->s_flags & MS_RDONLY) {
2428 ret = btrfs_commit_super(tree_root);
2429 if (ret)
2430 return ret;
2431 }
2432
2433 return 0;
2434 }
2435
2436 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2437 struct btrfs_root *tree_root)
2438 {
2439 struct btrfs_root *root;
2440 struct btrfs_key location;
2441 int ret;
2442
2443 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2444 location.type = BTRFS_ROOT_ITEM_KEY;
2445 location.offset = 0;
2446
2447 root = btrfs_read_tree_root(tree_root, &location);
2448 if (IS_ERR(root))
2449 return PTR_ERR(root);
2450 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451 fs_info->extent_root = root;
2452
2453 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2454 root = btrfs_read_tree_root(tree_root, &location);
2455 if (IS_ERR(root))
2456 return PTR_ERR(root);
2457 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2458 fs_info->dev_root = root;
2459 btrfs_init_devices_late(fs_info);
2460
2461 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2462 root = btrfs_read_tree_root(tree_root, &location);
2463 if (IS_ERR(root))
2464 return PTR_ERR(root);
2465 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466 fs_info->csum_root = root;
2467
2468 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2469 root = btrfs_read_tree_root(tree_root, &location);
2470 if (!IS_ERR(root)) {
2471 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2472 fs_info->quota_enabled = 1;
2473 fs_info->pending_quota_state = 1;
2474 fs_info->quota_root = root;
2475 }
2476
2477 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2478 root = btrfs_read_tree_root(tree_root, &location);
2479 if (IS_ERR(root)) {
2480 ret = PTR_ERR(root);
2481 if (ret != -ENOENT)
2482 return ret;
2483 } else {
2484 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485 fs_info->uuid_root = root;
2486 }
2487
2488 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2489 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2490 root = btrfs_read_tree_root(tree_root, &location);
2491 if (IS_ERR(root))
2492 return PTR_ERR(root);
2493 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2494 fs_info->free_space_root = root;
2495 }
2496
2497 return 0;
2498 }
2499
2500 int open_ctree(struct super_block *sb,
2501 struct btrfs_fs_devices *fs_devices,
2502 char *options)
2503 {
2504 u32 sectorsize;
2505 u32 nodesize;
2506 u32 stripesize;
2507 u64 generation;
2508 u64 features;
2509 struct btrfs_key location;
2510 struct buffer_head *bh;
2511 struct btrfs_super_block *disk_super;
2512 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2513 struct btrfs_root *tree_root;
2514 struct btrfs_root *chunk_root;
2515 int ret;
2516 int err = -EINVAL;
2517 int num_backups_tried = 0;
2518 int backup_index = 0;
2519 int max_active;
2520
2521 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2522 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2523 if (!tree_root || !chunk_root) {
2524 err = -ENOMEM;
2525 goto fail;
2526 }
2527
2528 ret = init_srcu_struct(&fs_info->subvol_srcu);
2529 if (ret) {
2530 err = ret;
2531 goto fail;
2532 }
2533
2534 ret = setup_bdi(fs_info, &fs_info->bdi);
2535 if (ret) {
2536 err = ret;
2537 goto fail_srcu;
2538 }
2539
2540 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2541 if (ret) {
2542 err = ret;
2543 goto fail_bdi;
2544 }
2545 fs_info->dirty_metadata_batch = PAGE_SIZE *
2546 (1 + ilog2(nr_cpu_ids));
2547
2548 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2549 if (ret) {
2550 err = ret;
2551 goto fail_dirty_metadata_bytes;
2552 }
2553
2554 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2555 if (ret) {
2556 err = ret;
2557 goto fail_delalloc_bytes;
2558 }
2559
2560 fs_info->btree_inode = new_inode(sb);
2561 if (!fs_info->btree_inode) {
2562 err = -ENOMEM;
2563 goto fail_bio_counter;
2564 }
2565
2566 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2567
2568 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2569 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2570 INIT_LIST_HEAD(&fs_info->trans_list);
2571 INIT_LIST_HEAD(&fs_info->dead_roots);
2572 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2573 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2574 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2575 spin_lock_init(&fs_info->delalloc_root_lock);
2576 spin_lock_init(&fs_info->trans_lock);
2577 spin_lock_init(&fs_info->fs_roots_radix_lock);
2578 spin_lock_init(&fs_info->delayed_iput_lock);
2579 spin_lock_init(&fs_info->defrag_inodes_lock);
2580 spin_lock_init(&fs_info->free_chunk_lock);
2581 spin_lock_init(&fs_info->tree_mod_seq_lock);
2582 spin_lock_init(&fs_info->super_lock);
2583 spin_lock_init(&fs_info->qgroup_op_lock);
2584 spin_lock_init(&fs_info->buffer_lock);
2585 spin_lock_init(&fs_info->unused_bgs_lock);
2586 rwlock_init(&fs_info->tree_mod_log_lock);
2587 mutex_init(&fs_info->unused_bg_unpin_mutex);
2588 mutex_init(&fs_info->delete_unused_bgs_mutex);
2589 mutex_init(&fs_info->reloc_mutex);
2590 mutex_init(&fs_info->delalloc_root_mutex);
2591 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2592 seqlock_init(&fs_info->profiles_lock);
2593
2594 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2595 INIT_LIST_HEAD(&fs_info->space_info);
2596 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2597 INIT_LIST_HEAD(&fs_info->unused_bgs);
2598 btrfs_mapping_init(&fs_info->mapping_tree);
2599 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2600 BTRFS_BLOCK_RSV_GLOBAL);
2601 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2602 BTRFS_BLOCK_RSV_DELALLOC);
2603 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2604 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2605 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2606 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2607 BTRFS_BLOCK_RSV_DELOPS);
2608 atomic_set(&fs_info->nr_async_submits, 0);
2609 atomic_set(&fs_info->async_delalloc_pages, 0);
2610 atomic_set(&fs_info->async_submit_draining, 0);
2611 atomic_set(&fs_info->nr_async_bios, 0);
2612 atomic_set(&fs_info->defrag_running, 0);
2613 atomic_set(&fs_info->qgroup_op_seq, 0);
2614 atomic_set(&fs_info->reada_works_cnt, 0);
2615 atomic64_set(&fs_info->tree_mod_seq, 0);
2616 fs_info->sb = sb;
2617 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2618 fs_info->metadata_ratio = 0;
2619 fs_info->defrag_inodes = RB_ROOT;
2620 fs_info->free_chunk_space = 0;
2621 fs_info->tree_mod_log = RB_ROOT;
2622 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2623 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2624 /* readahead state */
2625 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2626 spin_lock_init(&fs_info->reada_lock);
2627
2628 fs_info->thread_pool_size = min_t(unsigned long,
2629 num_online_cpus() + 2, 8);
2630
2631 INIT_LIST_HEAD(&fs_info->ordered_roots);
2632 spin_lock_init(&fs_info->ordered_root_lock);
2633 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2634 GFP_KERNEL);
2635 if (!fs_info->delayed_root) {
2636 err = -ENOMEM;
2637 goto fail_iput;
2638 }
2639 btrfs_init_delayed_root(fs_info->delayed_root);
2640
2641 btrfs_init_scrub(fs_info);
2642 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2643 fs_info->check_integrity_print_mask = 0;
2644 #endif
2645 btrfs_init_balance(fs_info);
2646 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2647
2648 sb->s_blocksize = 4096;
2649 sb->s_blocksize_bits = blksize_bits(4096);
2650 sb->s_bdi = &fs_info->bdi;
2651
2652 btrfs_init_btree_inode(fs_info, tree_root);
2653
2654 spin_lock_init(&fs_info->block_group_cache_lock);
2655 fs_info->block_group_cache_tree = RB_ROOT;
2656 fs_info->first_logical_byte = (u64)-1;
2657
2658 extent_io_tree_init(&fs_info->freed_extents[0],
2659 fs_info->btree_inode->i_mapping);
2660 extent_io_tree_init(&fs_info->freed_extents[1],
2661 fs_info->btree_inode->i_mapping);
2662 fs_info->pinned_extents = &fs_info->freed_extents[0];
2663 fs_info->do_barriers = 1;
2664
2665
2666 mutex_init(&fs_info->ordered_operations_mutex);
2667 mutex_init(&fs_info->tree_log_mutex);
2668 mutex_init(&fs_info->chunk_mutex);
2669 mutex_init(&fs_info->transaction_kthread_mutex);
2670 mutex_init(&fs_info->cleaner_mutex);
2671 mutex_init(&fs_info->volume_mutex);
2672 mutex_init(&fs_info->ro_block_group_mutex);
2673 init_rwsem(&fs_info->commit_root_sem);
2674 init_rwsem(&fs_info->cleanup_work_sem);
2675 init_rwsem(&fs_info->subvol_sem);
2676 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2677
2678 btrfs_init_dev_replace_locks(fs_info);
2679 btrfs_init_qgroup(fs_info);
2680
2681 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2682 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2683
2684 init_waitqueue_head(&fs_info->transaction_throttle);
2685 init_waitqueue_head(&fs_info->transaction_wait);
2686 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2687 init_waitqueue_head(&fs_info->async_submit_wait);
2688
2689 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2690
2691 ret = btrfs_alloc_stripe_hash_table(fs_info);
2692 if (ret) {
2693 err = ret;
2694 goto fail_alloc;
2695 }
2696
2697 __setup_root(4096, 4096, 4096, tree_root,
2698 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2699
2700 invalidate_bdev(fs_devices->latest_bdev);
2701
2702 /*
2703 * Read super block and check the signature bytes only
2704 */
2705 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2706 if (IS_ERR(bh)) {
2707 err = PTR_ERR(bh);
2708 goto fail_alloc;
2709 }
2710
2711 /*
2712 * We want to check superblock checksum, the type is stored inside.
2713 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2714 */
2715 if (btrfs_check_super_csum(bh->b_data)) {
2716 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2717 err = -EINVAL;
2718 brelse(bh);
2719 goto fail_alloc;
2720 }
2721
2722 /*
2723 * super_copy is zeroed at allocation time and we never touch the
2724 * following bytes up to INFO_SIZE, the checksum is calculated from
2725 * the whole block of INFO_SIZE
2726 */
2727 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2728 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2729 sizeof(*fs_info->super_for_commit));
2730 brelse(bh);
2731
2732 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2733
2734 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2735 if (ret) {
2736 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2737 err = -EINVAL;
2738 goto fail_alloc;
2739 }
2740
2741 disk_super = fs_info->super_copy;
2742 if (!btrfs_super_root(disk_super))
2743 goto fail_alloc;
2744
2745 /* check FS state, whether FS is broken. */
2746 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2747 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2748
2749 /*
2750 * run through our array of backup supers and setup
2751 * our ring pointer to the oldest one
2752 */
2753 generation = btrfs_super_generation(disk_super);
2754 find_oldest_super_backup(fs_info, generation);
2755
2756 /*
2757 * In the long term, we'll store the compression type in the super
2758 * block, and it'll be used for per file compression control.
2759 */
2760 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2761
2762 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2763 if (ret) {
2764 err = ret;
2765 goto fail_alloc;
2766 }
2767
2768 features = btrfs_super_incompat_flags(disk_super) &
2769 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2770 if (features) {
2771 printk(KERN_ERR "BTRFS: couldn't mount because of "
2772 "unsupported optional features (%Lx).\n",
2773 features);
2774 err = -EINVAL;
2775 goto fail_alloc;
2776 }
2777
2778 features = btrfs_super_incompat_flags(disk_super);
2779 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2780 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2781 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2782
2783 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2784 printk(KERN_INFO "BTRFS: has skinny extents\n");
2785
2786 /*
2787 * flag our filesystem as having big metadata blocks if
2788 * they are bigger than the page size
2789 */
2790 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2791 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2792 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2793 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2794 }
2795
2796 nodesize = btrfs_super_nodesize(disk_super);
2797 sectorsize = btrfs_super_sectorsize(disk_super);
2798 stripesize = btrfs_super_stripesize(disk_super);
2799 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2800 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2801
2802 /*
2803 * mixed block groups end up with duplicate but slightly offset
2804 * extent buffers for the same range. It leads to corruptions
2805 */
2806 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2807 (sectorsize != nodesize)) {
2808 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2809 "are not allowed for mixed block groups on %s\n",
2810 sb->s_id);
2811 goto fail_alloc;
2812 }
2813
2814 /*
2815 * Needn't use the lock because there is no other task which will
2816 * update the flag.
2817 */
2818 btrfs_set_super_incompat_flags(disk_super, features);
2819
2820 features = btrfs_super_compat_ro_flags(disk_super) &
2821 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2822 if (!(sb->s_flags & MS_RDONLY) && features) {
2823 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2824 "unsupported option features (%Lx).\n",
2825 features);
2826 err = -EINVAL;
2827 goto fail_alloc;
2828 }
2829
2830 max_active = fs_info->thread_pool_size;
2831
2832 ret = btrfs_init_workqueues(fs_info, fs_devices);
2833 if (ret) {
2834 err = ret;
2835 goto fail_sb_buffer;
2836 }
2837
2838 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2839 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2840 SZ_4M / PAGE_SIZE);
2841
2842 tree_root->nodesize = nodesize;
2843 tree_root->sectorsize = sectorsize;
2844 tree_root->stripesize = stripesize;
2845
2846 sb->s_blocksize = sectorsize;
2847 sb->s_blocksize_bits = blksize_bits(sectorsize);
2848
2849 mutex_lock(&fs_info->chunk_mutex);
2850 ret = btrfs_read_sys_array(tree_root);
2851 mutex_unlock(&fs_info->chunk_mutex);
2852 if (ret) {
2853 printk(KERN_ERR "BTRFS: failed to read the system "
2854 "array on %s\n", sb->s_id);
2855 goto fail_sb_buffer;
2856 }
2857
2858 generation = btrfs_super_chunk_root_generation(disk_super);
2859
2860 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2861 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2862
2863 chunk_root->node = read_tree_block(chunk_root,
2864 btrfs_super_chunk_root(disk_super),
2865 generation);
2866 if (IS_ERR(chunk_root->node) ||
2867 !extent_buffer_uptodate(chunk_root->node)) {
2868 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2869 sb->s_id);
2870 if (!IS_ERR(chunk_root->node))
2871 free_extent_buffer(chunk_root->node);
2872 chunk_root->node = NULL;
2873 goto fail_tree_roots;
2874 }
2875 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2876 chunk_root->commit_root = btrfs_root_node(chunk_root);
2877
2878 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2879 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2880
2881 ret = btrfs_read_chunk_tree(chunk_root);
2882 if (ret) {
2883 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2884 sb->s_id);
2885 goto fail_tree_roots;
2886 }
2887
2888 /*
2889 * keep the device that is marked to be the target device for the
2890 * dev_replace procedure
2891 */
2892 btrfs_close_extra_devices(fs_devices, 0);
2893
2894 if (!fs_devices->latest_bdev) {
2895 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2896 sb->s_id);
2897 goto fail_tree_roots;
2898 }
2899
2900 retry_root_backup:
2901 generation = btrfs_super_generation(disk_super);
2902
2903 tree_root->node = read_tree_block(tree_root,
2904 btrfs_super_root(disk_super),
2905 generation);
2906 if (IS_ERR(tree_root->node) ||
2907 !extent_buffer_uptodate(tree_root->node)) {
2908 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2909 sb->s_id);
2910 if (!IS_ERR(tree_root->node))
2911 free_extent_buffer(tree_root->node);
2912 tree_root->node = NULL;
2913 goto recovery_tree_root;
2914 }
2915
2916 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917 tree_root->commit_root = btrfs_root_node(tree_root);
2918 btrfs_set_root_refs(&tree_root->root_item, 1);
2919
2920 mutex_lock(&tree_root->objectid_mutex);
2921 ret = btrfs_find_highest_objectid(tree_root,
2922 &tree_root->highest_objectid);
2923 if (ret) {
2924 mutex_unlock(&tree_root->objectid_mutex);
2925 goto recovery_tree_root;
2926 }
2927
2928 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929
2930 mutex_unlock(&tree_root->objectid_mutex);
2931
2932 ret = btrfs_read_roots(fs_info, tree_root);
2933 if (ret)
2934 goto recovery_tree_root;
2935
2936 fs_info->generation = generation;
2937 fs_info->last_trans_committed = generation;
2938
2939 ret = btrfs_recover_balance(fs_info);
2940 if (ret) {
2941 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2942 goto fail_block_groups;
2943 }
2944
2945 ret = btrfs_init_dev_stats(fs_info);
2946 if (ret) {
2947 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2948 ret);
2949 goto fail_block_groups;
2950 }
2951
2952 ret = btrfs_init_dev_replace(fs_info);
2953 if (ret) {
2954 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2955 goto fail_block_groups;
2956 }
2957
2958 btrfs_close_extra_devices(fs_devices, 1);
2959
2960 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2961 if (ret) {
2962 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2963 goto fail_block_groups;
2964 }
2965
2966 ret = btrfs_sysfs_add_device(fs_devices);
2967 if (ret) {
2968 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2969 goto fail_fsdev_sysfs;
2970 }
2971
2972 ret = btrfs_sysfs_add_mounted(fs_info);
2973 if (ret) {
2974 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2975 goto fail_fsdev_sysfs;
2976 }
2977
2978 ret = btrfs_init_space_info(fs_info);
2979 if (ret) {
2980 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2981 goto fail_sysfs;
2982 }
2983
2984 ret = btrfs_read_block_groups(fs_info->extent_root);
2985 if (ret) {
2986 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2987 goto fail_sysfs;
2988 }
2989 fs_info->num_tolerated_disk_barrier_failures =
2990 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2991 if (fs_info->fs_devices->missing_devices >
2992 fs_info->num_tolerated_disk_barrier_failures &&
2993 !(sb->s_flags & MS_RDONLY)) {
2994 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2995 fs_info->fs_devices->missing_devices,
2996 fs_info->num_tolerated_disk_barrier_failures);
2997 goto fail_sysfs;
2998 }
2999
3000 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3001 "btrfs-cleaner");
3002 if (IS_ERR(fs_info->cleaner_kthread))
3003 goto fail_sysfs;
3004
3005 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3006 tree_root,
3007 "btrfs-transaction");
3008 if (IS_ERR(fs_info->transaction_kthread))
3009 goto fail_cleaner;
3010
3011 if (!btrfs_test_opt(tree_root, SSD) &&
3012 !btrfs_test_opt(tree_root, NOSSD) &&
3013 !fs_info->fs_devices->rotating) {
3014 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3015 "mode\n");
3016 btrfs_set_opt(fs_info->mount_opt, SSD);
3017 }
3018
3019 /*
3020 * Mount does not set all options immediatelly, we can do it now and do
3021 * not have to wait for transaction commit
3022 */
3023 btrfs_apply_pending_changes(fs_info);
3024
3025 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3026 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3027 ret = btrfsic_mount(tree_root, fs_devices,
3028 btrfs_test_opt(tree_root,
3029 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3030 1 : 0,
3031 fs_info->check_integrity_print_mask);
3032 if (ret)
3033 printk(KERN_WARNING "BTRFS: failed to initialize"
3034 " integrity check module %s\n", sb->s_id);
3035 }
3036 #endif
3037 ret = btrfs_read_qgroup_config(fs_info);
3038 if (ret)
3039 goto fail_trans_kthread;
3040
3041 /* do not make disk changes in broken FS or nologreplay is given */
3042 if (btrfs_super_log_root(disk_super) != 0 &&
3043 !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3044 ret = btrfs_replay_log(fs_info, fs_devices);
3045 if (ret) {
3046 err = ret;
3047 goto fail_qgroup;
3048 }
3049 }
3050
3051 ret = btrfs_find_orphan_roots(tree_root);
3052 if (ret)
3053 goto fail_qgroup;
3054
3055 if (!(sb->s_flags & MS_RDONLY)) {
3056 ret = btrfs_cleanup_fs_roots(fs_info);
3057 if (ret)
3058 goto fail_qgroup;
3059
3060 mutex_lock(&fs_info->cleaner_mutex);
3061 ret = btrfs_recover_relocation(tree_root);
3062 mutex_unlock(&fs_info->cleaner_mutex);
3063 if (ret < 0) {
3064 printk(KERN_WARNING
3065 "BTRFS: failed to recover relocation\n");
3066 err = -EINVAL;
3067 goto fail_qgroup;
3068 }
3069 }
3070
3071 location.objectid = BTRFS_FS_TREE_OBJECTID;
3072 location.type = BTRFS_ROOT_ITEM_KEY;
3073 location.offset = 0;
3074
3075 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3076 if (IS_ERR(fs_info->fs_root)) {
3077 err = PTR_ERR(fs_info->fs_root);
3078 goto fail_qgroup;
3079 }
3080
3081 if (sb->s_flags & MS_RDONLY)
3082 return 0;
3083
3084 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3085 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3086 pr_info("BTRFS: creating free space tree\n");
3087 ret = btrfs_create_free_space_tree(fs_info);
3088 if (ret) {
3089 pr_warn("BTRFS: failed to create free space tree %d\n",
3090 ret);
3091 close_ctree(tree_root);
3092 return ret;
3093 }
3094 }
3095
3096 down_read(&fs_info->cleanup_work_sem);
3097 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3098 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3099 up_read(&fs_info->cleanup_work_sem);
3100 close_ctree(tree_root);
3101 return ret;
3102 }
3103 up_read(&fs_info->cleanup_work_sem);
3104
3105 ret = btrfs_resume_balance_async(fs_info);
3106 if (ret) {
3107 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3108 close_ctree(tree_root);
3109 return ret;
3110 }
3111
3112 ret = btrfs_resume_dev_replace_async(fs_info);
3113 if (ret) {
3114 pr_warn("BTRFS: failed to resume dev_replace\n");
3115 close_ctree(tree_root);
3116 return ret;
3117 }
3118
3119 btrfs_qgroup_rescan_resume(fs_info);
3120
3121 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3122 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3123 pr_info("BTRFS: clearing free space tree\n");
3124 ret = btrfs_clear_free_space_tree(fs_info);
3125 if (ret) {
3126 pr_warn("BTRFS: failed to clear free space tree %d\n",
3127 ret);
3128 close_ctree(tree_root);
3129 return ret;
3130 }
3131 }
3132
3133 if (!fs_info->uuid_root) {
3134 pr_info("BTRFS: creating UUID tree\n");
3135 ret = btrfs_create_uuid_tree(fs_info);
3136 if (ret) {
3137 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3138 ret);
3139 close_ctree(tree_root);
3140 return ret;
3141 }
3142 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3143 fs_info->generation !=
3144 btrfs_super_uuid_tree_generation(disk_super)) {
3145 pr_info("BTRFS: checking UUID tree\n");
3146 ret = btrfs_check_uuid_tree(fs_info);
3147 if (ret) {
3148 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3149 ret);
3150 close_ctree(tree_root);
3151 return ret;
3152 }
3153 } else {
3154 fs_info->update_uuid_tree_gen = 1;
3155 }
3156
3157 fs_info->open = 1;
3158
3159 /*
3160 * backuproot only affect mount behavior, and if open_ctree succeeded,
3161 * no need to keep the flag
3162 */
3163 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3164
3165 return 0;
3166
3167 fail_qgroup:
3168 btrfs_free_qgroup_config(fs_info);
3169 fail_trans_kthread:
3170 kthread_stop(fs_info->transaction_kthread);
3171 btrfs_cleanup_transaction(fs_info->tree_root);
3172 btrfs_free_fs_roots(fs_info);
3173 fail_cleaner:
3174 kthread_stop(fs_info->cleaner_kthread);
3175
3176 /*
3177 * make sure we're done with the btree inode before we stop our
3178 * kthreads
3179 */
3180 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3181
3182 fail_sysfs:
3183 btrfs_sysfs_remove_mounted(fs_info);
3184
3185 fail_fsdev_sysfs:
3186 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3187
3188 fail_block_groups:
3189 btrfs_put_block_group_cache(fs_info);
3190 btrfs_free_block_groups(fs_info);
3191
3192 fail_tree_roots:
3193 free_root_pointers(fs_info, 1);
3194 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3195
3196 fail_sb_buffer:
3197 btrfs_stop_all_workers(fs_info);
3198 fail_alloc:
3199 fail_iput:
3200 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3201
3202 iput(fs_info->btree_inode);
3203 fail_bio_counter:
3204 percpu_counter_destroy(&fs_info->bio_counter);
3205 fail_delalloc_bytes:
3206 percpu_counter_destroy(&fs_info->delalloc_bytes);
3207 fail_dirty_metadata_bytes:
3208 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3209 fail_bdi:
3210 bdi_destroy(&fs_info->bdi);
3211 fail_srcu:
3212 cleanup_srcu_struct(&fs_info->subvol_srcu);
3213 fail:
3214 btrfs_free_stripe_hash_table(fs_info);
3215 btrfs_close_devices(fs_info->fs_devices);
3216 return err;
3217
3218 recovery_tree_root:
3219 if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3220 goto fail_tree_roots;
3221
3222 free_root_pointers(fs_info, 0);
3223
3224 /* don't use the log in recovery mode, it won't be valid */
3225 btrfs_set_super_log_root(disk_super, 0);
3226
3227 /* we can't trust the free space cache either */
3228 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3229
3230 ret = next_root_backup(fs_info, fs_info->super_copy,
3231 &num_backups_tried, &backup_index);
3232 if (ret == -1)
3233 goto fail_block_groups;
3234 goto retry_root_backup;
3235 }
3236
3237 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3238 {
3239 if (uptodate) {
3240 set_buffer_uptodate(bh);
3241 } else {
3242 struct btrfs_device *device = (struct btrfs_device *)
3243 bh->b_private;
3244
3245 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3246 "lost page write due to IO error on %s",
3247 rcu_str_deref(device->name));
3248 /* note, we dont' set_buffer_write_io_error because we have
3249 * our own ways of dealing with the IO errors
3250 */
3251 clear_buffer_uptodate(bh);
3252 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3253 }
3254 unlock_buffer(bh);
3255 put_bh(bh);
3256 }
3257
3258 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3259 struct buffer_head **bh_ret)
3260 {
3261 struct buffer_head *bh;
3262 struct btrfs_super_block *super;
3263 u64 bytenr;
3264
3265 bytenr = btrfs_sb_offset(copy_num);
3266 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3267 return -EINVAL;
3268
3269 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3270 /*
3271 * If we fail to read from the underlying devices, as of now
3272 * the best option we have is to mark it EIO.
3273 */
3274 if (!bh)
3275 return -EIO;
3276
3277 super = (struct btrfs_super_block *)bh->b_data;
3278 if (btrfs_super_bytenr(super) != bytenr ||
3279 btrfs_super_magic(super) != BTRFS_MAGIC) {
3280 brelse(bh);
3281 return -EINVAL;
3282 }
3283
3284 *bh_ret = bh;
3285 return 0;
3286 }
3287
3288
3289 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3290 {
3291 struct buffer_head *bh;
3292 struct buffer_head *latest = NULL;
3293 struct btrfs_super_block *super;
3294 int i;
3295 u64 transid = 0;
3296 int ret = -EINVAL;
3297
3298 /* we would like to check all the supers, but that would make
3299 * a btrfs mount succeed after a mkfs from a different FS.
3300 * So, we need to add a special mount option to scan for
3301 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3302 */
3303 for (i = 0; i < 1; i++) {
3304 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3305 if (ret)
3306 continue;
3307
3308 super = (struct btrfs_super_block *)bh->b_data;
3309
3310 if (!latest || btrfs_super_generation(super) > transid) {
3311 brelse(latest);
3312 latest = bh;
3313 transid = btrfs_super_generation(super);
3314 } else {
3315 brelse(bh);
3316 }
3317 }
3318
3319 if (!latest)
3320 return ERR_PTR(ret);
3321
3322 return latest;
3323 }
3324
3325 /*
3326 * this should be called twice, once with wait == 0 and
3327 * once with wait == 1. When wait == 0 is done, all the buffer heads
3328 * we write are pinned.
3329 *
3330 * They are released when wait == 1 is done.
3331 * max_mirrors must be the same for both runs, and it indicates how
3332 * many supers on this one device should be written.
3333 *
3334 * max_mirrors == 0 means to write them all.
3335 */
3336 static int write_dev_supers(struct btrfs_device *device,
3337 struct btrfs_super_block *sb,
3338 int do_barriers, int wait, int max_mirrors)
3339 {
3340 struct buffer_head *bh;
3341 int i;
3342 int ret;
3343 int errors = 0;
3344 u32 crc;
3345 u64 bytenr;
3346
3347 if (max_mirrors == 0)
3348 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3349
3350 for (i = 0; i < max_mirrors; i++) {
3351 bytenr = btrfs_sb_offset(i);
3352 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3353 device->commit_total_bytes)
3354 break;
3355
3356 if (wait) {
3357 bh = __find_get_block(device->bdev, bytenr / 4096,
3358 BTRFS_SUPER_INFO_SIZE);
3359 if (!bh) {
3360 errors++;
3361 continue;
3362 }
3363 wait_on_buffer(bh);
3364 if (!buffer_uptodate(bh))
3365 errors++;
3366
3367 /* drop our reference */
3368 brelse(bh);
3369
3370 /* drop the reference from the wait == 0 run */
3371 brelse(bh);
3372 continue;
3373 } else {
3374 btrfs_set_super_bytenr(sb, bytenr);
3375
3376 crc = ~(u32)0;
3377 crc = btrfs_csum_data((char *)sb +
3378 BTRFS_CSUM_SIZE, crc,
3379 BTRFS_SUPER_INFO_SIZE -
3380 BTRFS_CSUM_SIZE);
3381 btrfs_csum_final(crc, sb->csum);
3382
3383 /*
3384 * one reference for us, and we leave it for the
3385 * caller
3386 */
3387 bh = __getblk(device->bdev, bytenr / 4096,
3388 BTRFS_SUPER_INFO_SIZE);
3389 if (!bh) {
3390 btrfs_err(device->dev_root->fs_info,
3391 "couldn't get super buffer head for bytenr %llu",
3392 bytenr);
3393 errors++;
3394 continue;
3395 }
3396
3397 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3398
3399 /* one reference for submit_bh */
3400 get_bh(bh);
3401
3402 set_buffer_uptodate(bh);
3403 lock_buffer(bh);
3404 bh->b_end_io = btrfs_end_buffer_write_sync;
3405 bh->b_private = device;
3406 }
3407
3408 /*
3409 * we fua the first super. The others we allow
3410 * to go down lazy.
3411 */
3412 if (i == 0)
3413 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3414 else
3415 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3416 if (ret)
3417 errors++;
3418 }
3419 return errors < i ? 0 : -1;
3420 }
3421
3422 /*
3423 * endio for the write_dev_flush, this will wake anyone waiting
3424 * for the barrier when it is done
3425 */
3426 static void btrfs_end_empty_barrier(struct bio *bio)
3427 {
3428 if (bio->bi_private)
3429 complete(bio->bi_private);
3430 bio_put(bio);
3431 }
3432
3433 /*
3434 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3435 * sent down. With wait == 1, it waits for the previous flush.
3436 *
3437 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3438 * capable
3439 */
3440 static int write_dev_flush(struct btrfs_device *device, int wait)
3441 {
3442 struct bio *bio;
3443 int ret = 0;
3444
3445 if (device->nobarriers)
3446 return 0;
3447
3448 if (wait) {
3449 bio = device->flush_bio;
3450 if (!bio)
3451 return 0;
3452
3453 wait_for_completion(&device->flush_wait);
3454
3455 if (bio->bi_error) {
3456 ret = bio->bi_error;
3457 btrfs_dev_stat_inc_and_print(device,
3458 BTRFS_DEV_STAT_FLUSH_ERRS);
3459 }
3460
3461 /* drop the reference from the wait == 0 run */
3462 bio_put(bio);
3463 device->flush_bio = NULL;
3464
3465 return ret;
3466 }
3467
3468 /*
3469 * one reference for us, and we leave it for the
3470 * caller
3471 */
3472 device->flush_bio = NULL;
3473 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3474 if (!bio)
3475 return -ENOMEM;
3476
3477 bio->bi_end_io = btrfs_end_empty_barrier;
3478 bio->bi_bdev = device->bdev;
3479 init_completion(&device->flush_wait);
3480 bio->bi_private = &device->flush_wait;
3481 device->flush_bio = bio;
3482
3483 bio_get(bio);
3484 btrfsic_submit_bio(WRITE_FLUSH, bio);
3485
3486 return 0;
3487 }
3488
3489 /*
3490 * send an empty flush down to each device in parallel,
3491 * then wait for them
3492 */
3493 static int barrier_all_devices(struct btrfs_fs_info *info)
3494 {
3495 struct list_head *head;
3496 struct btrfs_device *dev;
3497 int errors_send = 0;
3498 int errors_wait = 0;
3499 int ret;
3500
3501 /* send down all the barriers */
3502 head = &info->fs_devices->devices;
3503 list_for_each_entry_rcu(dev, head, dev_list) {
3504 if (dev->missing)
3505 continue;
3506 if (!dev->bdev) {
3507 errors_send++;
3508 continue;
3509 }
3510 if (!dev->in_fs_metadata || !dev->writeable)
3511 continue;
3512
3513 ret = write_dev_flush(dev, 0);
3514 if (ret)
3515 errors_send++;
3516 }
3517
3518 /* wait for all the barriers */
3519 list_for_each_entry_rcu(dev, head, dev_list) {
3520 if (dev->missing)
3521 continue;
3522 if (!dev->bdev) {
3523 errors_wait++;
3524 continue;
3525 }
3526 if (!dev->in_fs_metadata || !dev->writeable)
3527 continue;
3528
3529 ret = write_dev_flush(dev, 1);
3530 if (ret)
3531 errors_wait++;
3532 }
3533 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3534 errors_wait > info->num_tolerated_disk_barrier_failures)
3535 return -EIO;
3536 return 0;
3537 }
3538
3539 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3540 {
3541 int raid_type;
3542 int min_tolerated = INT_MAX;
3543
3544 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3545 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3546 min_tolerated = min(min_tolerated,
3547 btrfs_raid_array[BTRFS_RAID_SINGLE].
3548 tolerated_failures);
3549
3550 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3551 if (raid_type == BTRFS_RAID_SINGLE)
3552 continue;
3553 if (!(flags & btrfs_raid_group[raid_type]))
3554 continue;
3555 min_tolerated = min(min_tolerated,
3556 btrfs_raid_array[raid_type].
3557 tolerated_failures);
3558 }
3559
3560 if (min_tolerated == INT_MAX) {
3561 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3562 min_tolerated = 0;
3563 }
3564
3565 return min_tolerated;
3566 }
3567
3568 int btrfs_calc_num_tolerated_disk_barrier_failures(
3569 struct btrfs_fs_info *fs_info)
3570 {
3571 struct btrfs_ioctl_space_info space;
3572 struct btrfs_space_info *sinfo;
3573 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3574 BTRFS_BLOCK_GROUP_SYSTEM,
3575 BTRFS_BLOCK_GROUP_METADATA,
3576 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3577 int i;
3578 int c;
3579 int num_tolerated_disk_barrier_failures =
3580 (int)fs_info->fs_devices->num_devices;
3581
3582 for (i = 0; i < ARRAY_SIZE(types); i++) {
3583 struct btrfs_space_info *tmp;
3584
3585 sinfo = NULL;
3586 rcu_read_lock();
3587 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3588 if (tmp->flags == types[i]) {
3589 sinfo = tmp;
3590 break;
3591 }
3592 }
3593 rcu_read_unlock();
3594
3595 if (!sinfo)
3596 continue;
3597
3598 down_read(&sinfo->groups_sem);
3599 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3600 u64 flags;
3601
3602 if (list_empty(&sinfo->block_groups[c]))
3603 continue;
3604
3605 btrfs_get_block_group_info(&sinfo->block_groups[c],
3606 &space);
3607 if (space.total_bytes == 0 || space.used_bytes == 0)
3608 continue;
3609 flags = space.flags;
3610
3611 num_tolerated_disk_barrier_failures = min(
3612 num_tolerated_disk_barrier_failures,
3613 btrfs_get_num_tolerated_disk_barrier_failures(
3614 flags));
3615 }
3616 up_read(&sinfo->groups_sem);
3617 }
3618
3619 return num_tolerated_disk_barrier_failures;
3620 }
3621
3622 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3623 {
3624 struct list_head *head;
3625 struct btrfs_device *dev;
3626 struct btrfs_super_block *sb;
3627 struct btrfs_dev_item *dev_item;
3628 int ret;
3629 int do_barriers;
3630 int max_errors;
3631 int total_errors = 0;
3632 u64 flags;
3633
3634 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3635 backup_super_roots(root->fs_info);
3636
3637 sb = root->fs_info->super_for_commit;
3638 dev_item = &sb->dev_item;
3639
3640 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3641 head = &root->fs_info->fs_devices->devices;
3642 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3643
3644 if (do_barriers) {
3645 ret = barrier_all_devices(root->fs_info);
3646 if (ret) {
3647 mutex_unlock(
3648 &root->fs_info->fs_devices->device_list_mutex);
3649 btrfs_handle_fs_error(root->fs_info, ret,
3650 "errors while submitting device barriers.");
3651 return ret;
3652 }
3653 }
3654
3655 list_for_each_entry_rcu(dev, head, dev_list) {
3656 if (!dev->bdev) {
3657 total_errors++;
3658 continue;
3659 }
3660 if (!dev->in_fs_metadata || !dev->writeable)
3661 continue;
3662
3663 btrfs_set_stack_device_generation(dev_item, 0);
3664 btrfs_set_stack_device_type(dev_item, dev->type);
3665 btrfs_set_stack_device_id(dev_item, dev->devid);
3666 btrfs_set_stack_device_total_bytes(dev_item,
3667 dev->commit_total_bytes);
3668 btrfs_set_stack_device_bytes_used(dev_item,
3669 dev->commit_bytes_used);
3670 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3671 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3672 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3673 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3674 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3675
3676 flags = btrfs_super_flags(sb);
3677 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3678
3679 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3680 if (ret)
3681 total_errors++;
3682 }
3683 if (total_errors > max_errors) {
3684 btrfs_err(root->fs_info, "%d errors while writing supers",
3685 total_errors);
3686 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3687
3688 /* FUA is masked off if unsupported and can't be the reason */
3689 btrfs_handle_fs_error(root->fs_info, -EIO,
3690 "%d errors while writing supers", total_errors);
3691 return -EIO;
3692 }
3693
3694 total_errors = 0;
3695 list_for_each_entry_rcu(dev, head, dev_list) {
3696 if (!dev->bdev)
3697 continue;
3698 if (!dev->in_fs_metadata || !dev->writeable)
3699 continue;
3700
3701 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3702 if (ret)
3703 total_errors++;
3704 }
3705 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3706 if (total_errors > max_errors) {
3707 btrfs_handle_fs_error(root->fs_info, -EIO,
3708 "%d errors while writing supers", total_errors);
3709 return -EIO;
3710 }
3711 return 0;
3712 }
3713
3714 int write_ctree_super(struct btrfs_trans_handle *trans,
3715 struct btrfs_root *root, int max_mirrors)
3716 {
3717 return write_all_supers(root, max_mirrors);
3718 }
3719
3720 /* Drop a fs root from the radix tree and free it. */
3721 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3722 struct btrfs_root *root)
3723 {
3724 spin_lock(&fs_info->fs_roots_radix_lock);
3725 radix_tree_delete(&fs_info->fs_roots_radix,
3726 (unsigned long)root->root_key.objectid);
3727 spin_unlock(&fs_info->fs_roots_radix_lock);
3728
3729 if (btrfs_root_refs(&root->root_item) == 0)
3730 synchronize_srcu(&fs_info->subvol_srcu);
3731
3732 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3733 btrfs_free_log(NULL, root);
3734
3735 if (root->free_ino_pinned)
3736 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3737 if (root->free_ino_ctl)
3738 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3739 free_fs_root(root);
3740 }
3741
3742 static void free_fs_root(struct btrfs_root *root)
3743 {
3744 iput(root->ino_cache_inode);
3745 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3746 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3747 root->orphan_block_rsv = NULL;
3748 if (root->anon_dev)
3749 free_anon_bdev(root->anon_dev);
3750 if (root->subv_writers)
3751 btrfs_free_subvolume_writers(root->subv_writers);
3752 free_extent_buffer(root->node);
3753 free_extent_buffer(root->commit_root);
3754 kfree(root->free_ino_ctl);
3755 kfree(root->free_ino_pinned);
3756 kfree(root->name);
3757 btrfs_put_fs_root(root);
3758 }
3759
3760 void btrfs_free_fs_root(struct btrfs_root *root)
3761 {
3762 free_fs_root(root);
3763 }
3764
3765 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3766 {
3767 u64 root_objectid = 0;
3768 struct btrfs_root *gang[8];
3769 int i = 0;
3770 int err = 0;
3771 unsigned int ret = 0;
3772 int index;
3773
3774 while (1) {
3775 index = srcu_read_lock(&fs_info->subvol_srcu);
3776 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3777 (void **)gang, root_objectid,
3778 ARRAY_SIZE(gang));
3779 if (!ret) {
3780 srcu_read_unlock(&fs_info->subvol_srcu, index);
3781 break;
3782 }
3783 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3784
3785 for (i = 0; i < ret; i++) {
3786 /* Avoid to grab roots in dead_roots */
3787 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3788 gang[i] = NULL;
3789 continue;
3790 }
3791 /* grab all the search result for later use */
3792 gang[i] = btrfs_grab_fs_root(gang[i]);
3793 }
3794 srcu_read_unlock(&fs_info->subvol_srcu, index);
3795
3796 for (i = 0; i < ret; i++) {
3797 if (!gang[i])
3798 continue;
3799 root_objectid = gang[i]->root_key.objectid;
3800 err = btrfs_orphan_cleanup(gang[i]);
3801 if (err)
3802 break;
3803 btrfs_put_fs_root(gang[i]);
3804 }
3805 root_objectid++;
3806 }
3807
3808 /* release the uncleaned roots due to error */
3809 for (; i < ret; i++) {
3810 if (gang[i])
3811 btrfs_put_fs_root(gang[i]);
3812 }
3813 return err;
3814 }
3815
3816 int btrfs_commit_super(struct btrfs_root *root)
3817 {
3818 struct btrfs_trans_handle *trans;
3819
3820 mutex_lock(&root->fs_info->cleaner_mutex);
3821 btrfs_run_delayed_iputs(root);
3822 mutex_unlock(&root->fs_info->cleaner_mutex);
3823 wake_up_process(root->fs_info->cleaner_kthread);
3824
3825 /* wait until ongoing cleanup work done */
3826 down_write(&root->fs_info->cleanup_work_sem);
3827 up_write(&root->fs_info->cleanup_work_sem);
3828
3829 trans = btrfs_join_transaction(root);
3830 if (IS_ERR(trans))
3831 return PTR_ERR(trans);
3832 return btrfs_commit_transaction(trans, root);
3833 }
3834
3835 void close_ctree(struct btrfs_root *root)
3836 {
3837 struct btrfs_fs_info *fs_info = root->fs_info;
3838 int ret;
3839
3840 fs_info->closing = 1;
3841 smp_mb();
3842
3843 /* wait for the qgroup rescan worker to stop */
3844 btrfs_qgroup_wait_for_completion(fs_info);
3845
3846 /* wait for the uuid_scan task to finish */
3847 down(&fs_info->uuid_tree_rescan_sem);
3848 /* avoid complains from lockdep et al., set sem back to initial state */
3849 up(&fs_info->uuid_tree_rescan_sem);
3850
3851 /* pause restriper - we want to resume on mount */
3852 btrfs_pause_balance(fs_info);
3853
3854 btrfs_dev_replace_suspend_for_unmount(fs_info);
3855
3856 btrfs_scrub_cancel(fs_info);
3857
3858 /* wait for any defraggers to finish */
3859 wait_event(fs_info->transaction_wait,
3860 (atomic_read(&fs_info->defrag_running) == 0));
3861
3862 /* clear out the rbtree of defraggable inodes */
3863 btrfs_cleanup_defrag_inodes(fs_info);
3864
3865 cancel_work_sync(&fs_info->async_reclaim_work);
3866
3867 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3868 /*
3869 * If the cleaner thread is stopped and there are
3870 * block groups queued for removal, the deletion will be
3871 * skipped when we quit the cleaner thread.
3872 */
3873 btrfs_delete_unused_bgs(root->fs_info);
3874
3875 ret = btrfs_commit_super(root);
3876 if (ret)
3877 btrfs_err(fs_info, "commit super ret %d", ret);
3878 }
3879
3880 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3881 btrfs_error_commit_super(root);
3882
3883 kthread_stop(fs_info->transaction_kthread);
3884 kthread_stop(fs_info->cleaner_kthread);
3885
3886 fs_info->closing = 2;
3887 smp_mb();
3888
3889 btrfs_free_qgroup_config(fs_info);
3890
3891 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3892 btrfs_info(fs_info, "at unmount delalloc count %lld",
3893 percpu_counter_sum(&fs_info->delalloc_bytes));
3894 }
3895
3896 btrfs_sysfs_remove_mounted(fs_info);
3897 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3898
3899 btrfs_free_fs_roots(fs_info);
3900
3901 btrfs_put_block_group_cache(fs_info);
3902
3903 btrfs_free_block_groups(fs_info);
3904
3905 /*
3906 * we must make sure there is not any read request to
3907 * submit after we stopping all workers.
3908 */
3909 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3910 btrfs_stop_all_workers(fs_info);
3911
3912 fs_info->open = 0;
3913 free_root_pointers(fs_info, 1);
3914
3915 iput(fs_info->btree_inode);
3916
3917 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3918 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3919 btrfsic_unmount(root, fs_info->fs_devices);
3920 #endif
3921
3922 btrfs_close_devices(fs_info->fs_devices);
3923 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3924
3925 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3926 percpu_counter_destroy(&fs_info->delalloc_bytes);
3927 percpu_counter_destroy(&fs_info->bio_counter);
3928 bdi_destroy(&fs_info->bdi);
3929 cleanup_srcu_struct(&fs_info->subvol_srcu);
3930
3931 btrfs_free_stripe_hash_table(fs_info);
3932
3933 __btrfs_free_block_rsv(root->orphan_block_rsv);
3934 root->orphan_block_rsv = NULL;
3935
3936 lock_chunks(root);
3937 while (!list_empty(&fs_info->pinned_chunks)) {
3938 struct extent_map *em;
3939
3940 em = list_first_entry(&fs_info->pinned_chunks,
3941 struct extent_map, list);
3942 list_del_init(&em->list);
3943 free_extent_map(em);
3944 }
3945 unlock_chunks(root);
3946 }
3947
3948 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3949 int atomic)
3950 {
3951 int ret;
3952 struct inode *btree_inode = buf->pages[0]->mapping->host;
3953
3954 ret = extent_buffer_uptodate(buf);
3955 if (!ret)
3956 return ret;
3957
3958 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3959 parent_transid, atomic);
3960 if (ret == -EAGAIN)
3961 return ret;
3962 return !ret;
3963 }
3964
3965 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3966 {
3967 struct btrfs_root *root;
3968 u64 transid = btrfs_header_generation(buf);
3969 int was_dirty;
3970
3971 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3972 /*
3973 * This is a fast path so only do this check if we have sanity tests
3974 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3975 * outside of the sanity tests.
3976 */
3977 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3978 return;
3979 #endif
3980 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3981 btrfs_assert_tree_locked(buf);
3982 if (transid != root->fs_info->generation)
3983 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3984 "found %llu running %llu\n",
3985 buf->start, transid, root->fs_info->generation);
3986 was_dirty = set_extent_buffer_dirty(buf);
3987 if (!was_dirty)
3988 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3989 buf->len,
3990 root->fs_info->dirty_metadata_batch);
3991 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3992 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3993 btrfs_print_leaf(root, buf);
3994 ASSERT(0);
3995 }
3996 #endif
3997 }
3998
3999 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4000 int flush_delayed)
4001 {
4002 /*
4003 * looks as though older kernels can get into trouble with
4004 * this code, they end up stuck in balance_dirty_pages forever
4005 */
4006 int ret;
4007
4008 if (current->flags & PF_MEMALLOC)
4009 return;
4010
4011 if (flush_delayed)
4012 btrfs_balance_delayed_items(root);
4013
4014 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4015 BTRFS_DIRTY_METADATA_THRESH);
4016 if (ret > 0) {
4017 balance_dirty_pages_ratelimited(
4018 root->fs_info->btree_inode->i_mapping);
4019 }
4020 }
4021
4022 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4023 {
4024 __btrfs_btree_balance_dirty(root, 1);
4025 }
4026
4027 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4028 {
4029 __btrfs_btree_balance_dirty(root, 0);
4030 }
4031
4032 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4033 {
4034 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4035 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4036 }
4037
4038 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4039 int read_only)
4040 {
4041 struct btrfs_super_block *sb = fs_info->super_copy;
4042 u64 nodesize = btrfs_super_nodesize(sb);
4043 u64 sectorsize = btrfs_super_sectorsize(sb);
4044 int ret = 0;
4045
4046 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4047 printk(KERN_ERR "BTRFS: no valid FS found\n");
4048 ret = -EINVAL;
4049 }
4050 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4051 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4052 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4053 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4054 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4055 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4056 ret = -EINVAL;
4057 }
4058 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4060 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4061 ret = -EINVAL;
4062 }
4063 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4065 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4066 ret = -EINVAL;
4067 }
4068
4069 /*
4070 * Check sectorsize and nodesize first, other check will need it.
4071 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4072 */
4073 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4074 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4075 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4076 ret = -EINVAL;
4077 }
4078 /* Only PAGE SIZE is supported yet */
4079 if (sectorsize != PAGE_SIZE) {
4080 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4081 sectorsize, PAGE_SIZE);
4082 ret = -EINVAL;
4083 }
4084 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4085 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4086 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4087 ret = -EINVAL;
4088 }
4089 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4090 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4091 le32_to_cpu(sb->__unused_leafsize),
4092 nodesize);
4093 ret = -EINVAL;
4094 }
4095
4096 /* Root alignment check */
4097 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4098 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4099 btrfs_super_root(sb));
4100 ret = -EINVAL;
4101 }
4102 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4103 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4104 btrfs_super_chunk_root(sb));
4105 ret = -EINVAL;
4106 }
4107 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4108 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4109 btrfs_super_log_root(sb));
4110 ret = -EINVAL;
4111 }
4112
4113 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4114 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4115 fs_info->fsid, sb->dev_item.fsid);
4116 ret = -EINVAL;
4117 }
4118
4119 /*
4120 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4121 * done later
4122 */
4123 if (btrfs_super_num_devices(sb) > (1UL << 31))
4124 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4125 btrfs_super_num_devices(sb));
4126 if (btrfs_super_num_devices(sb) == 0) {
4127 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4128 ret = -EINVAL;
4129 }
4130
4131 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4132 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4133 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4134 ret = -EINVAL;
4135 }
4136
4137 /*
4138 * Obvious sys_chunk_array corruptions, it must hold at least one key
4139 * and one chunk
4140 */
4141 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4142 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4143 btrfs_super_sys_array_size(sb),
4144 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4145 ret = -EINVAL;
4146 }
4147 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4148 + sizeof(struct btrfs_chunk)) {
4149 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4150 btrfs_super_sys_array_size(sb),
4151 sizeof(struct btrfs_disk_key)
4152 + sizeof(struct btrfs_chunk));
4153 ret = -EINVAL;
4154 }
4155
4156 /*
4157 * The generation is a global counter, we'll trust it more than the others
4158 * but it's still possible that it's the one that's wrong.
4159 */
4160 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4161 printk(KERN_WARNING
4162 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4163 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4164 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4165 && btrfs_super_cache_generation(sb) != (u64)-1)
4166 printk(KERN_WARNING
4167 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4168 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4169
4170 return ret;
4171 }
4172
4173 static void btrfs_error_commit_super(struct btrfs_root *root)
4174 {
4175 mutex_lock(&root->fs_info->cleaner_mutex);
4176 btrfs_run_delayed_iputs(root);
4177 mutex_unlock(&root->fs_info->cleaner_mutex);
4178
4179 down_write(&root->fs_info->cleanup_work_sem);
4180 up_write(&root->fs_info->cleanup_work_sem);
4181
4182 /* cleanup FS via transaction */
4183 btrfs_cleanup_transaction(root);
4184 }
4185
4186 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4187 {
4188 struct btrfs_ordered_extent *ordered;
4189
4190 spin_lock(&root->ordered_extent_lock);
4191 /*
4192 * This will just short circuit the ordered completion stuff which will
4193 * make sure the ordered extent gets properly cleaned up.
4194 */
4195 list_for_each_entry(ordered, &root->ordered_extents,
4196 root_extent_list)
4197 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4198 spin_unlock(&root->ordered_extent_lock);
4199 }
4200
4201 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4202 {
4203 struct btrfs_root *root;
4204 struct list_head splice;
4205
4206 INIT_LIST_HEAD(&splice);
4207
4208 spin_lock(&fs_info->ordered_root_lock);
4209 list_splice_init(&fs_info->ordered_roots, &splice);
4210 while (!list_empty(&splice)) {
4211 root = list_first_entry(&splice, struct btrfs_root,
4212 ordered_root);
4213 list_move_tail(&root->ordered_root,
4214 &fs_info->ordered_roots);
4215
4216 spin_unlock(&fs_info->ordered_root_lock);
4217 btrfs_destroy_ordered_extents(root);
4218
4219 cond_resched();
4220 spin_lock(&fs_info->ordered_root_lock);
4221 }
4222 spin_unlock(&fs_info->ordered_root_lock);
4223 }
4224
4225 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4226 struct btrfs_root *root)
4227 {
4228 struct rb_node *node;
4229 struct btrfs_delayed_ref_root *delayed_refs;
4230 struct btrfs_delayed_ref_node *ref;
4231 int ret = 0;
4232
4233 delayed_refs = &trans->delayed_refs;
4234
4235 spin_lock(&delayed_refs->lock);
4236 if (atomic_read(&delayed_refs->num_entries) == 0) {
4237 spin_unlock(&delayed_refs->lock);
4238 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4239 return ret;
4240 }
4241
4242 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4243 struct btrfs_delayed_ref_head *head;
4244 struct btrfs_delayed_ref_node *tmp;
4245 bool pin_bytes = false;
4246
4247 head = rb_entry(node, struct btrfs_delayed_ref_head,
4248 href_node);
4249 if (!mutex_trylock(&head->mutex)) {
4250 atomic_inc(&head->node.refs);
4251 spin_unlock(&delayed_refs->lock);
4252
4253 mutex_lock(&head->mutex);
4254 mutex_unlock(&head->mutex);
4255 btrfs_put_delayed_ref(&head->node);
4256 spin_lock(&delayed_refs->lock);
4257 continue;
4258 }
4259 spin_lock(&head->lock);
4260 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4261 list) {
4262 ref->in_tree = 0;
4263 list_del(&ref->list);
4264 atomic_dec(&delayed_refs->num_entries);
4265 btrfs_put_delayed_ref(ref);
4266 }
4267 if (head->must_insert_reserved)
4268 pin_bytes = true;
4269 btrfs_free_delayed_extent_op(head->extent_op);
4270 delayed_refs->num_heads--;
4271 if (head->processing == 0)
4272 delayed_refs->num_heads_ready--;
4273 atomic_dec(&delayed_refs->num_entries);
4274 head->node.in_tree = 0;
4275 rb_erase(&head->href_node, &delayed_refs->href_root);
4276 spin_unlock(&head->lock);
4277 spin_unlock(&delayed_refs->lock);
4278 mutex_unlock(&head->mutex);
4279
4280 if (pin_bytes)
4281 btrfs_pin_extent(root, head->node.bytenr,
4282 head->node.num_bytes, 1);
4283 btrfs_put_delayed_ref(&head->node);
4284 cond_resched();
4285 spin_lock(&delayed_refs->lock);
4286 }
4287
4288 spin_unlock(&delayed_refs->lock);
4289
4290 return ret;
4291 }
4292
4293 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4294 {
4295 struct btrfs_inode *btrfs_inode;
4296 struct list_head splice;
4297
4298 INIT_LIST_HEAD(&splice);
4299
4300 spin_lock(&root->delalloc_lock);
4301 list_splice_init(&root->delalloc_inodes, &splice);
4302
4303 while (!list_empty(&splice)) {
4304 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4305 delalloc_inodes);
4306
4307 list_del_init(&btrfs_inode->delalloc_inodes);
4308 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4309 &btrfs_inode->runtime_flags);
4310 spin_unlock(&root->delalloc_lock);
4311
4312 btrfs_invalidate_inodes(btrfs_inode->root);
4313
4314 spin_lock(&root->delalloc_lock);
4315 }
4316
4317 spin_unlock(&root->delalloc_lock);
4318 }
4319
4320 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4321 {
4322 struct btrfs_root *root;
4323 struct list_head splice;
4324
4325 INIT_LIST_HEAD(&splice);
4326
4327 spin_lock(&fs_info->delalloc_root_lock);
4328 list_splice_init(&fs_info->delalloc_roots, &splice);
4329 while (!list_empty(&splice)) {
4330 root = list_first_entry(&splice, struct btrfs_root,
4331 delalloc_root);
4332 list_del_init(&root->delalloc_root);
4333 root = btrfs_grab_fs_root(root);
4334 BUG_ON(!root);
4335 spin_unlock(&fs_info->delalloc_root_lock);
4336
4337 btrfs_destroy_delalloc_inodes(root);
4338 btrfs_put_fs_root(root);
4339
4340 spin_lock(&fs_info->delalloc_root_lock);
4341 }
4342 spin_unlock(&fs_info->delalloc_root_lock);
4343 }
4344
4345 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4346 struct extent_io_tree *dirty_pages,
4347 int mark)
4348 {
4349 int ret;
4350 struct extent_buffer *eb;
4351 u64 start = 0;
4352 u64 end;
4353
4354 while (1) {
4355 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4356 mark, NULL);
4357 if (ret)
4358 break;
4359
4360 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4361 while (start <= end) {
4362 eb = btrfs_find_tree_block(root->fs_info, start);
4363 start += root->nodesize;
4364 if (!eb)
4365 continue;
4366 wait_on_extent_buffer_writeback(eb);
4367
4368 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4369 &eb->bflags))
4370 clear_extent_buffer_dirty(eb);
4371 free_extent_buffer_stale(eb);
4372 }
4373 }
4374
4375 return ret;
4376 }
4377
4378 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4379 struct extent_io_tree *pinned_extents)
4380 {
4381 struct extent_io_tree *unpin;
4382 u64 start;
4383 u64 end;
4384 int ret;
4385 bool loop = true;
4386
4387 unpin = pinned_extents;
4388 again:
4389 while (1) {
4390 ret = find_first_extent_bit(unpin, 0, &start, &end,
4391 EXTENT_DIRTY, NULL);
4392 if (ret)
4393 break;
4394
4395 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4396 btrfs_error_unpin_extent_range(root, start, end);
4397 cond_resched();
4398 }
4399
4400 if (loop) {
4401 if (unpin == &root->fs_info->freed_extents[0])
4402 unpin = &root->fs_info->freed_extents[1];
4403 else
4404 unpin = &root->fs_info->freed_extents[0];
4405 loop = false;
4406 goto again;
4407 }
4408
4409 return 0;
4410 }
4411
4412 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4413 struct btrfs_root *root)
4414 {
4415 btrfs_destroy_delayed_refs(cur_trans, root);
4416
4417 cur_trans->state = TRANS_STATE_COMMIT_START;
4418 wake_up(&root->fs_info->transaction_blocked_wait);
4419
4420 cur_trans->state = TRANS_STATE_UNBLOCKED;
4421 wake_up(&root->fs_info->transaction_wait);
4422
4423 btrfs_destroy_delayed_inodes(root);
4424 btrfs_assert_delayed_root_empty(root);
4425
4426 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4427 EXTENT_DIRTY);
4428 btrfs_destroy_pinned_extent(root,
4429 root->fs_info->pinned_extents);
4430
4431 cur_trans->state =TRANS_STATE_COMPLETED;
4432 wake_up(&cur_trans->commit_wait);
4433
4434 /*
4435 memset(cur_trans, 0, sizeof(*cur_trans));
4436 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4437 */
4438 }
4439
4440 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4441 {
4442 struct btrfs_transaction *t;
4443
4444 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4445
4446 spin_lock(&root->fs_info->trans_lock);
4447 while (!list_empty(&root->fs_info->trans_list)) {
4448 t = list_first_entry(&root->fs_info->trans_list,
4449 struct btrfs_transaction, list);
4450 if (t->state >= TRANS_STATE_COMMIT_START) {
4451 atomic_inc(&t->use_count);
4452 spin_unlock(&root->fs_info->trans_lock);
4453 btrfs_wait_for_commit(root, t->transid);
4454 btrfs_put_transaction(t);
4455 spin_lock(&root->fs_info->trans_lock);
4456 continue;
4457 }
4458 if (t == root->fs_info->running_transaction) {
4459 t->state = TRANS_STATE_COMMIT_DOING;
4460 spin_unlock(&root->fs_info->trans_lock);
4461 /*
4462 * We wait for 0 num_writers since we don't hold a trans
4463 * handle open currently for this transaction.
4464 */
4465 wait_event(t->writer_wait,
4466 atomic_read(&t->num_writers) == 0);
4467 } else {
4468 spin_unlock(&root->fs_info->trans_lock);
4469 }
4470 btrfs_cleanup_one_transaction(t, root);
4471
4472 spin_lock(&root->fs_info->trans_lock);
4473 if (t == root->fs_info->running_transaction)
4474 root->fs_info->running_transaction = NULL;
4475 list_del_init(&t->list);
4476 spin_unlock(&root->fs_info->trans_lock);
4477
4478 btrfs_put_transaction(t);
4479 trace_btrfs_transaction_commit(root);
4480 spin_lock(&root->fs_info->trans_lock);
4481 }
4482 spin_unlock(&root->fs_info->trans_lock);
4483 btrfs_destroy_all_ordered_extents(root->fs_info);
4484 btrfs_destroy_delayed_inodes(root);
4485 btrfs_assert_delayed_root_empty(root);
4486 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4487 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4488 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4489
4490 return 0;
4491 }
4492
4493 static const struct extent_io_ops btree_extent_io_ops = {
4494 .readpage_end_io_hook = btree_readpage_end_io_hook,
4495 .readpage_io_failed_hook = btree_io_failed_hook,
4496 .submit_bio_hook = btree_submit_bio_hook,
4497 /* note we're sharing with inode.c for the merge bio hook */
4498 .merge_bio_hook = btrfs_merge_bio_hook,
4499 };