]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/disk-io.c
btrfs: add free space tree to lockdep classes
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static const struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 int read_only);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_root *root);
73 static void btrfs_error_commit_super(struct btrfs_root *root);
74
75 /*
76 * btrfs_end_io_wq structs are used to do processing in task context when an IO
77 * is complete. This is used during reads to verify checksums, and it is used
78 * by writes to insert metadata for new file extents after IO is complete.
79 */
80 struct btrfs_end_io_wq {
81 struct bio *bio;
82 bio_end_io_t *end_io;
83 void *private;
84 struct btrfs_fs_info *info;
85 int error;
86 enum btrfs_wq_endio_type metadata;
87 struct list_head list;
88 struct btrfs_work work;
89 };
90
91 static struct kmem_cache *btrfs_end_io_wq_cache;
92
93 int __init btrfs_end_io_wq_init(void)
94 {
95 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
96 sizeof(struct btrfs_end_io_wq),
97 0,
98 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
99 NULL);
100 if (!btrfs_end_io_wq_cache)
101 return -ENOMEM;
102 return 0;
103 }
104
105 void btrfs_end_io_wq_exit(void)
106 {
107 if (btrfs_end_io_wq_cache)
108 kmem_cache_destroy(btrfs_end_io_wq_cache);
109 }
110
111 /*
112 * async submit bios are used to offload expensive checksumming
113 * onto the worker threads. They checksum file and metadata bios
114 * just before they are sent down the IO stack.
115 */
116 struct async_submit_bio {
117 struct inode *inode;
118 struct bio *bio;
119 struct list_head list;
120 extent_submit_bio_hook_t *submit_bio_start;
121 extent_submit_bio_hook_t *submit_bio_done;
122 int rw;
123 int mirror_num;
124 unsigned long bio_flags;
125 /*
126 * bio_offset is optional, can be used if the pages in the bio
127 * can't tell us where in the file the bio should go
128 */
129 u64 bio_offset;
130 struct btrfs_work work;
131 int error;
132 };
133
134 /*
135 * Lockdep class keys for extent_buffer->lock's in this root. For a given
136 * eb, the lockdep key is determined by the btrfs_root it belongs to and
137 * the level the eb occupies in the tree.
138 *
139 * Different roots are used for different purposes and may nest inside each
140 * other and they require separate keysets. As lockdep keys should be
141 * static, assign keysets according to the purpose of the root as indicated
142 * by btrfs_root->objectid. This ensures that all special purpose roots
143 * have separate keysets.
144 *
145 * Lock-nesting across peer nodes is always done with the immediate parent
146 * node locked thus preventing deadlock. As lockdep doesn't know this, use
147 * subclass to avoid triggering lockdep warning in such cases.
148 *
149 * The key is set by the readpage_end_io_hook after the buffer has passed
150 * csum validation but before the pages are unlocked. It is also set by
151 * btrfs_init_new_buffer on freshly allocated blocks.
152 *
153 * We also add a check to make sure the highest level of the tree is the
154 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
155 * needs update as well.
156 */
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 # if BTRFS_MAX_LEVEL != 8
159 # error
160 # endif
161
162 static struct btrfs_lockdep_keyset {
163 u64 id; /* root objectid */
164 const char *name_stem; /* lock name stem */
165 char names[BTRFS_MAX_LEVEL + 1][20];
166 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
167 } btrfs_lockdep_keysets[] = {
168 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
169 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
170 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
171 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
172 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
173 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
174 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
175 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
176 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
177 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
178 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
179 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
180 { .id = 0, .name_stem = "tree" },
181 };
182
183 void __init btrfs_init_lockdep(void)
184 {
185 int i, j;
186
187 /* initialize lockdep class names */
188 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
189 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
190
191 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
192 snprintf(ks->names[j], sizeof(ks->names[j]),
193 "btrfs-%s-%02d", ks->name_stem, j);
194 }
195 }
196
197 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
198 int level)
199 {
200 struct btrfs_lockdep_keyset *ks;
201
202 BUG_ON(level >= ARRAY_SIZE(ks->keys));
203
204 /* find the matching keyset, id 0 is the default entry */
205 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
206 if (ks->id == objectid)
207 break;
208
209 lockdep_set_class_and_name(&eb->lock,
210 &ks->keys[level], ks->names[level]);
211 }
212
213 #endif
214
215 /*
216 * extents on the btree inode are pretty simple, there's one extent
217 * that covers the entire device
218 */
219 static struct extent_map *btree_get_extent(struct inode *inode,
220 struct page *page, size_t pg_offset, u64 start, u64 len,
221 int create)
222 {
223 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
224 struct extent_map *em;
225 int ret;
226
227 read_lock(&em_tree->lock);
228 em = lookup_extent_mapping(em_tree, start, len);
229 if (em) {
230 em->bdev =
231 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
232 read_unlock(&em_tree->lock);
233 goto out;
234 }
235 read_unlock(&em_tree->lock);
236
237 em = alloc_extent_map();
238 if (!em) {
239 em = ERR_PTR(-ENOMEM);
240 goto out;
241 }
242 em->start = 0;
243 em->len = (u64)-1;
244 em->block_len = (u64)-1;
245 em->block_start = 0;
246 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
247
248 write_lock(&em_tree->lock);
249 ret = add_extent_mapping(em_tree, em, 0);
250 if (ret == -EEXIST) {
251 free_extent_map(em);
252 em = lookup_extent_mapping(em_tree, start, len);
253 if (!em)
254 em = ERR_PTR(-EIO);
255 } else if (ret) {
256 free_extent_map(em);
257 em = ERR_PTR(ret);
258 }
259 write_unlock(&em_tree->lock);
260
261 out:
262 return em;
263 }
264
265 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
266 {
267 return btrfs_crc32c(seed, data, len);
268 }
269
270 void btrfs_csum_final(u32 crc, char *result)
271 {
272 put_unaligned_le32(~crc, result);
273 }
274
275 /*
276 * compute the csum for a btree block, and either verify it or write it
277 * into the csum field of the block.
278 */
279 static int csum_tree_block(struct btrfs_fs_info *fs_info,
280 struct extent_buffer *buf,
281 int verify)
282 {
283 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
284 char *result = NULL;
285 unsigned long len;
286 unsigned long cur_len;
287 unsigned long offset = BTRFS_CSUM_SIZE;
288 char *kaddr;
289 unsigned long map_start;
290 unsigned long map_len;
291 int err;
292 u32 crc = ~(u32)0;
293 unsigned long inline_result;
294
295 len = buf->len - offset;
296 while (len > 0) {
297 err = map_private_extent_buffer(buf, offset, 32,
298 &kaddr, &map_start, &map_len);
299 if (err)
300 return 1;
301 cur_len = min(len, map_len - (offset - map_start));
302 crc = btrfs_csum_data(kaddr + offset - map_start,
303 crc, cur_len);
304 len -= cur_len;
305 offset += cur_len;
306 }
307 if (csum_size > sizeof(inline_result)) {
308 result = kzalloc(csum_size, GFP_NOFS);
309 if (!result)
310 return 1;
311 } else {
312 result = (char *)&inline_result;
313 }
314
315 btrfs_csum_final(crc, result);
316
317 if (verify) {
318 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
319 u32 val;
320 u32 found = 0;
321 memcpy(&found, result, csum_size);
322
323 read_extent_buffer(buf, &val, 0, csum_size);
324 btrfs_warn_rl(fs_info,
325 "%s checksum verify failed on %llu wanted %X found %X "
326 "level %d",
327 fs_info->sb->s_id, buf->start,
328 val, found, btrfs_header_level(buf));
329 if (result != (char *)&inline_result)
330 kfree(result);
331 return 1;
332 }
333 } else {
334 write_extent_buffer(buf, result, 0, csum_size);
335 }
336 if (result != (char *)&inline_result)
337 kfree(result);
338 return 0;
339 }
340
341 /*
342 * we can't consider a given block up to date unless the transid of the
343 * block matches the transid in the parent node's pointer. This is how we
344 * detect blocks that either didn't get written at all or got written
345 * in the wrong place.
346 */
347 static int verify_parent_transid(struct extent_io_tree *io_tree,
348 struct extent_buffer *eb, u64 parent_transid,
349 int atomic)
350 {
351 struct extent_state *cached_state = NULL;
352 int ret;
353 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
354
355 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
356 return 0;
357
358 if (atomic)
359 return -EAGAIN;
360
361 if (need_lock) {
362 btrfs_tree_read_lock(eb);
363 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
364 }
365
366 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
367 &cached_state);
368 if (extent_buffer_uptodate(eb) &&
369 btrfs_header_generation(eb) == parent_transid) {
370 ret = 0;
371 goto out;
372 }
373 btrfs_err_rl(eb->fs_info,
374 "parent transid verify failed on %llu wanted %llu found %llu",
375 eb->start,
376 parent_transid, btrfs_header_generation(eb));
377 ret = 1;
378
379 /*
380 * Things reading via commit roots that don't have normal protection,
381 * like send, can have a really old block in cache that may point at a
382 * block that has been free'd and re-allocated. So don't clear uptodate
383 * if we find an eb that is under IO (dirty/writeback) because we could
384 * end up reading in the stale data and then writing it back out and
385 * making everybody very sad.
386 */
387 if (!extent_buffer_under_io(eb))
388 clear_extent_buffer_uptodate(eb);
389 out:
390 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
391 &cached_state, GFP_NOFS);
392 if (need_lock)
393 btrfs_tree_read_unlock_blocking(eb);
394 return ret;
395 }
396
397 /*
398 * Return 0 if the superblock checksum type matches the checksum value of that
399 * algorithm. Pass the raw disk superblock data.
400 */
401 static int btrfs_check_super_csum(char *raw_disk_sb)
402 {
403 struct btrfs_super_block *disk_sb =
404 (struct btrfs_super_block *)raw_disk_sb;
405 u16 csum_type = btrfs_super_csum_type(disk_sb);
406 int ret = 0;
407
408 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
409 u32 crc = ~(u32)0;
410 const int csum_size = sizeof(crc);
411 char result[csum_size];
412
413 /*
414 * The super_block structure does not span the whole
415 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
416 * is filled with zeros and is included in the checkum.
417 */
418 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
419 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
420 btrfs_csum_final(crc, result);
421
422 if (memcmp(raw_disk_sb, result, csum_size))
423 ret = 1;
424 }
425
426 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
427 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
428 csum_type);
429 ret = 1;
430 }
431
432 return ret;
433 }
434
435 /*
436 * helper to read a given tree block, doing retries as required when
437 * the checksums don't match and we have alternate mirrors to try.
438 */
439 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
440 struct extent_buffer *eb,
441 u64 start, u64 parent_transid)
442 {
443 struct extent_io_tree *io_tree;
444 int failed = 0;
445 int ret;
446 int num_copies = 0;
447 int mirror_num = 0;
448 int failed_mirror = 0;
449
450 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
451 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
452 while (1) {
453 ret = read_extent_buffer_pages(io_tree, eb, start,
454 WAIT_COMPLETE,
455 btree_get_extent, mirror_num);
456 if (!ret) {
457 if (!verify_parent_transid(io_tree, eb,
458 parent_transid, 0))
459 break;
460 else
461 ret = -EIO;
462 }
463
464 /*
465 * This buffer's crc is fine, but its contents are corrupted, so
466 * there is no reason to read the other copies, they won't be
467 * any less wrong.
468 */
469 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
470 break;
471
472 num_copies = btrfs_num_copies(root->fs_info,
473 eb->start, eb->len);
474 if (num_copies == 1)
475 break;
476
477 if (!failed_mirror) {
478 failed = 1;
479 failed_mirror = eb->read_mirror;
480 }
481
482 mirror_num++;
483 if (mirror_num == failed_mirror)
484 mirror_num++;
485
486 if (mirror_num > num_copies)
487 break;
488 }
489
490 if (failed && !ret && failed_mirror)
491 repair_eb_io_failure(root, eb, failed_mirror);
492
493 return ret;
494 }
495
496 /*
497 * checksum a dirty tree block before IO. This has extra checks to make sure
498 * we only fill in the checksum field in the first page of a multi-page block
499 */
500
501 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
502 {
503 u64 start = page_offset(page);
504 u64 found_start;
505 struct extent_buffer *eb;
506
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
510 found_start = btrfs_header_bytenr(eb);
511 if (WARN_ON(found_start != start || !PageUptodate(page)))
512 return 0;
513 csum_tree_block(fs_info, eb, 0);
514 return 0;
515 }
516
517 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
518 struct extent_buffer *eb)
519 {
520 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
521 u8 fsid[BTRFS_UUID_SIZE];
522 int ret = 1;
523
524 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
525 while (fs_devices) {
526 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
527 ret = 0;
528 break;
529 }
530 fs_devices = fs_devices->seed;
531 }
532 return ret;
533 }
534
535 #define CORRUPT(reason, eb, root, slot) \
536 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
537 "root=%llu, slot=%d", reason, \
538 btrfs_header_bytenr(eb), root->objectid, slot)
539
540 static noinline int check_leaf(struct btrfs_root *root,
541 struct extent_buffer *leaf)
542 {
543 struct btrfs_key key;
544 struct btrfs_key leaf_key;
545 u32 nritems = btrfs_header_nritems(leaf);
546 int slot;
547
548 if (nritems == 0)
549 return 0;
550
551 /* Check the 0 item */
552 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
553 BTRFS_LEAF_DATA_SIZE(root)) {
554 CORRUPT("invalid item offset size pair", leaf, root, 0);
555 return -EIO;
556 }
557
558 /*
559 * Check to make sure each items keys are in the correct order and their
560 * offsets make sense. We only have to loop through nritems-1 because
561 * we check the current slot against the next slot, which verifies the
562 * next slot's offset+size makes sense and that the current's slot
563 * offset is correct.
564 */
565 for (slot = 0; slot < nritems - 1; slot++) {
566 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
567 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
568
569 /* Make sure the keys are in the right order */
570 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
571 CORRUPT("bad key order", leaf, root, slot);
572 return -EIO;
573 }
574
575 /*
576 * Make sure the offset and ends are right, remember that the
577 * item data starts at the end of the leaf and grows towards the
578 * front.
579 */
580 if (btrfs_item_offset_nr(leaf, slot) !=
581 btrfs_item_end_nr(leaf, slot + 1)) {
582 CORRUPT("slot offset bad", leaf, root, slot);
583 return -EIO;
584 }
585
586 /*
587 * Check to make sure that we don't point outside of the leaf,
588 * just incase all the items are consistent to eachother, but
589 * all point outside of the leaf.
590 */
591 if (btrfs_item_end_nr(leaf, slot) >
592 BTRFS_LEAF_DATA_SIZE(root)) {
593 CORRUPT("slot end outside of leaf", leaf, root, slot);
594 return -EIO;
595 }
596 }
597
598 return 0;
599 }
600
601 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
602 u64 phy_offset, struct page *page,
603 u64 start, u64 end, int mirror)
604 {
605 u64 found_start;
606 int found_level;
607 struct extent_buffer *eb;
608 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
609 int ret = 0;
610 int reads_done;
611
612 if (!page->private)
613 goto out;
614
615 eb = (struct extent_buffer *)page->private;
616
617 /* the pending IO might have been the only thing that kept this buffer
618 * in memory. Make sure we have a ref for all this other checks
619 */
620 extent_buffer_get(eb);
621
622 reads_done = atomic_dec_and_test(&eb->io_pages);
623 if (!reads_done)
624 goto err;
625
626 eb->read_mirror = mirror;
627 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
628 ret = -EIO;
629 goto err;
630 }
631
632 found_start = btrfs_header_bytenr(eb);
633 if (found_start != eb->start) {
634 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
635 found_start, eb->start);
636 ret = -EIO;
637 goto err;
638 }
639 if (check_tree_block_fsid(root->fs_info, eb)) {
640 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
641 eb->start);
642 ret = -EIO;
643 goto err;
644 }
645 found_level = btrfs_header_level(eb);
646 if (found_level >= BTRFS_MAX_LEVEL) {
647 btrfs_err(root->fs_info, "bad tree block level %d",
648 (int)btrfs_header_level(eb));
649 ret = -EIO;
650 goto err;
651 }
652
653 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
654 eb, found_level);
655
656 ret = csum_tree_block(root->fs_info, eb, 1);
657 if (ret) {
658 ret = -EIO;
659 goto err;
660 }
661
662 /*
663 * If this is a leaf block and it is corrupt, set the corrupt bit so
664 * that we don't try and read the other copies of this block, just
665 * return -EIO.
666 */
667 if (found_level == 0 && check_leaf(root, eb)) {
668 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
669 ret = -EIO;
670 }
671
672 if (!ret)
673 set_extent_buffer_uptodate(eb);
674 err:
675 if (reads_done &&
676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
677 btree_readahead_hook(root, eb, eb->start, ret);
678
679 if (ret) {
680 /*
681 * our io error hook is going to dec the io pages
682 * again, we have to make sure it has something
683 * to decrement
684 */
685 atomic_inc(&eb->io_pages);
686 clear_extent_buffer_uptodate(eb);
687 }
688 free_extent_buffer(eb);
689 out:
690 return ret;
691 }
692
693 static int btree_io_failed_hook(struct page *page, int failed_mirror)
694 {
695 struct extent_buffer *eb;
696 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
697
698 eb = (struct extent_buffer *)page->private;
699 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
700 eb->read_mirror = failed_mirror;
701 atomic_dec(&eb->io_pages);
702 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
703 btree_readahead_hook(root, eb, eb->start, -EIO);
704 return -EIO; /* we fixed nothing */
705 }
706
707 static void end_workqueue_bio(struct bio *bio)
708 {
709 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
710 struct btrfs_fs_info *fs_info;
711 struct btrfs_workqueue *wq;
712 btrfs_work_func_t func;
713
714 fs_info = end_io_wq->info;
715 end_io_wq->error = bio->bi_error;
716
717 if (bio->bi_rw & REQ_WRITE) {
718 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
719 wq = fs_info->endio_meta_write_workers;
720 func = btrfs_endio_meta_write_helper;
721 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
722 wq = fs_info->endio_freespace_worker;
723 func = btrfs_freespace_write_helper;
724 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
725 wq = fs_info->endio_raid56_workers;
726 func = btrfs_endio_raid56_helper;
727 } else {
728 wq = fs_info->endio_write_workers;
729 func = btrfs_endio_write_helper;
730 }
731 } else {
732 if (unlikely(end_io_wq->metadata ==
733 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
734 wq = fs_info->endio_repair_workers;
735 func = btrfs_endio_repair_helper;
736 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
737 wq = fs_info->endio_raid56_workers;
738 func = btrfs_endio_raid56_helper;
739 } else if (end_io_wq->metadata) {
740 wq = fs_info->endio_meta_workers;
741 func = btrfs_endio_meta_helper;
742 } else {
743 wq = fs_info->endio_workers;
744 func = btrfs_endio_helper;
745 }
746 }
747
748 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
749 btrfs_queue_work(wq, &end_io_wq->work);
750 }
751
752 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
753 enum btrfs_wq_endio_type metadata)
754 {
755 struct btrfs_end_io_wq *end_io_wq;
756
757 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
758 if (!end_io_wq)
759 return -ENOMEM;
760
761 end_io_wq->private = bio->bi_private;
762 end_io_wq->end_io = bio->bi_end_io;
763 end_io_wq->info = info;
764 end_io_wq->error = 0;
765 end_io_wq->bio = bio;
766 end_io_wq->metadata = metadata;
767
768 bio->bi_private = end_io_wq;
769 bio->bi_end_io = end_workqueue_bio;
770 return 0;
771 }
772
773 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
774 {
775 unsigned long limit = min_t(unsigned long,
776 info->thread_pool_size,
777 info->fs_devices->open_devices);
778 return 256 * limit;
779 }
780
781 static void run_one_async_start(struct btrfs_work *work)
782 {
783 struct async_submit_bio *async;
784 int ret;
785
786 async = container_of(work, struct async_submit_bio, work);
787 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
788 async->mirror_num, async->bio_flags,
789 async->bio_offset);
790 if (ret)
791 async->error = ret;
792 }
793
794 static void run_one_async_done(struct btrfs_work *work)
795 {
796 struct btrfs_fs_info *fs_info;
797 struct async_submit_bio *async;
798 int limit;
799
800 async = container_of(work, struct async_submit_bio, work);
801 fs_info = BTRFS_I(async->inode)->root->fs_info;
802
803 limit = btrfs_async_submit_limit(fs_info);
804 limit = limit * 2 / 3;
805
806 /*
807 * atomic_dec_return implies a barrier for waitqueue_active
808 */
809 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
810 waitqueue_active(&fs_info->async_submit_wait))
811 wake_up(&fs_info->async_submit_wait);
812
813 /* If an error occured we just want to clean up the bio and move on */
814 if (async->error) {
815 async->bio->bi_error = async->error;
816 bio_endio(async->bio);
817 return;
818 }
819
820 async->submit_bio_done(async->inode, async->rw, async->bio,
821 async->mirror_num, async->bio_flags,
822 async->bio_offset);
823 }
824
825 static void run_one_async_free(struct btrfs_work *work)
826 {
827 struct async_submit_bio *async;
828
829 async = container_of(work, struct async_submit_bio, work);
830 kfree(async);
831 }
832
833 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
834 int rw, struct bio *bio, int mirror_num,
835 unsigned long bio_flags,
836 u64 bio_offset,
837 extent_submit_bio_hook_t *submit_bio_start,
838 extent_submit_bio_hook_t *submit_bio_done)
839 {
840 struct async_submit_bio *async;
841
842 async = kmalloc(sizeof(*async), GFP_NOFS);
843 if (!async)
844 return -ENOMEM;
845
846 async->inode = inode;
847 async->rw = rw;
848 async->bio = bio;
849 async->mirror_num = mirror_num;
850 async->submit_bio_start = submit_bio_start;
851 async->submit_bio_done = submit_bio_done;
852
853 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
854 run_one_async_done, run_one_async_free);
855
856 async->bio_flags = bio_flags;
857 async->bio_offset = bio_offset;
858
859 async->error = 0;
860
861 atomic_inc(&fs_info->nr_async_submits);
862
863 if (rw & REQ_SYNC)
864 btrfs_set_work_high_priority(&async->work);
865
866 btrfs_queue_work(fs_info->workers, &async->work);
867
868 while (atomic_read(&fs_info->async_submit_draining) &&
869 atomic_read(&fs_info->nr_async_submits)) {
870 wait_event(fs_info->async_submit_wait,
871 (atomic_read(&fs_info->nr_async_submits) == 0));
872 }
873
874 return 0;
875 }
876
877 static int btree_csum_one_bio(struct bio *bio)
878 {
879 struct bio_vec *bvec;
880 struct btrfs_root *root;
881 int i, ret = 0;
882
883 bio_for_each_segment_all(bvec, bio, i) {
884 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
885 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
886 if (ret)
887 break;
888 }
889
890 return ret;
891 }
892
893 static int __btree_submit_bio_start(struct inode *inode, int rw,
894 struct bio *bio, int mirror_num,
895 unsigned long bio_flags,
896 u64 bio_offset)
897 {
898 /*
899 * when we're called for a write, we're already in the async
900 * submission context. Just jump into btrfs_map_bio
901 */
902 return btree_csum_one_bio(bio);
903 }
904
905 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
906 int mirror_num, unsigned long bio_flags,
907 u64 bio_offset)
908 {
909 int ret;
910
911 /*
912 * when we're called for a write, we're already in the async
913 * submission context. Just jump into btrfs_map_bio
914 */
915 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
916 if (ret) {
917 bio->bi_error = ret;
918 bio_endio(bio);
919 }
920 return ret;
921 }
922
923 static int check_async_write(struct inode *inode, unsigned long bio_flags)
924 {
925 if (bio_flags & EXTENT_BIO_TREE_LOG)
926 return 0;
927 #ifdef CONFIG_X86
928 if (cpu_has_xmm4_2)
929 return 0;
930 #endif
931 return 1;
932 }
933
934 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
935 int mirror_num, unsigned long bio_flags,
936 u64 bio_offset)
937 {
938 int async = check_async_write(inode, bio_flags);
939 int ret;
940
941 if (!(rw & REQ_WRITE)) {
942 /*
943 * called for a read, do the setup so that checksum validation
944 * can happen in the async kernel threads
945 */
946 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
947 bio, BTRFS_WQ_ENDIO_METADATA);
948 if (ret)
949 goto out_w_error;
950 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
951 mirror_num, 0);
952 } else if (!async) {
953 ret = btree_csum_one_bio(bio);
954 if (ret)
955 goto out_w_error;
956 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
957 mirror_num, 0);
958 } else {
959 /*
960 * kthread helpers are used to submit writes so that
961 * checksumming can happen in parallel across all CPUs
962 */
963 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
964 inode, rw, bio, mirror_num, 0,
965 bio_offset,
966 __btree_submit_bio_start,
967 __btree_submit_bio_done);
968 }
969
970 if (ret)
971 goto out_w_error;
972 return 0;
973
974 out_w_error:
975 bio->bi_error = ret;
976 bio_endio(bio);
977 return ret;
978 }
979
980 #ifdef CONFIG_MIGRATION
981 static int btree_migratepage(struct address_space *mapping,
982 struct page *newpage, struct page *page,
983 enum migrate_mode mode)
984 {
985 /*
986 * we can't safely write a btree page from here,
987 * we haven't done the locking hook
988 */
989 if (PageDirty(page))
990 return -EAGAIN;
991 /*
992 * Buffers may be managed in a filesystem specific way.
993 * We must have no buffers or drop them.
994 */
995 if (page_has_private(page) &&
996 !try_to_release_page(page, GFP_KERNEL))
997 return -EAGAIN;
998 return migrate_page(mapping, newpage, page, mode);
999 }
1000 #endif
1001
1002
1003 static int btree_writepages(struct address_space *mapping,
1004 struct writeback_control *wbc)
1005 {
1006 struct btrfs_fs_info *fs_info;
1007 int ret;
1008
1009 if (wbc->sync_mode == WB_SYNC_NONE) {
1010
1011 if (wbc->for_kupdate)
1012 return 0;
1013
1014 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1015 /* this is a bit racy, but that's ok */
1016 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1017 BTRFS_DIRTY_METADATA_THRESH);
1018 if (ret < 0)
1019 return 0;
1020 }
1021 return btree_write_cache_pages(mapping, wbc);
1022 }
1023
1024 static int btree_readpage(struct file *file, struct page *page)
1025 {
1026 struct extent_io_tree *tree;
1027 tree = &BTRFS_I(page->mapping->host)->io_tree;
1028 return extent_read_full_page(tree, page, btree_get_extent, 0);
1029 }
1030
1031 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1032 {
1033 if (PageWriteback(page) || PageDirty(page))
1034 return 0;
1035
1036 return try_release_extent_buffer(page);
1037 }
1038
1039 static void btree_invalidatepage(struct page *page, unsigned int offset,
1040 unsigned int length)
1041 {
1042 struct extent_io_tree *tree;
1043 tree = &BTRFS_I(page->mapping->host)->io_tree;
1044 extent_invalidatepage(tree, page, offset);
1045 btree_releasepage(page, GFP_NOFS);
1046 if (PagePrivate(page)) {
1047 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1048 "page private not zero on page %llu",
1049 (unsigned long long)page_offset(page));
1050 ClearPagePrivate(page);
1051 set_page_private(page, 0);
1052 page_cache_release(page);
1053 }
1054 }
1055
1056 static int btree_set_page_dirty(struct page *page)
1057 {
1058 #ifdef DEBUG
1059 struct extent_buffer *eb;
1060
1061 BUG_ON(!PagePrivate(page));
1062 eb = (struct extent_buffer *)page->private;
1063 BUG_ON(!eb);
1064 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1065 BUG_ON(!atomic_read(&eb->refs));
1066 btrfs_assert_tree_locked(eb);
1067 #endif
1068 return __set_page_dirty_nobuffers(page);
1069 }
1070
1071 static const struct address_space_operations btree_aops = {
1072 .readpage = btree_readpage,
1073 .writepages = btree_writepages,
1074 .releasepage = btree_releasepage,
1075 .invalidatepage = btree_invalidatepage,
1076 #ifdef CONFIG_MIGRATION
1077 .migratepage = btree_migratepage,
1078 #endif
1079 .set_page_dirty = btree_set_page_dirty,
1080 };
1081
1082 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1083 {
1084 struct extent_buffer *buf = NULL;
1085 struct inode *btree_inode = root->fs_info->btree_inode;
1086
1087 buf = btrfs_find_create_tree_block(root, bytenr);
1088 if (!buf)
1089 return;
1090 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1091 buf, 0, WAIT_NONE, btree_get_extent, 0);
1092 free_extent_buffer(buf);
1093 }
1094
1095 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1096 int mirror_num, struct extent_buffer **eb)
1097 {
1098 struct extent_buffer *buf = NULL;
1099 struct inode *btree_inode = root->fs_info->btree_inode;
1100 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1101 int ret;
1102
1103 buf = btrfs_find_create_tree_block(root, bytenr);
1104 if (!buf)
1105 return 0;
1106
1107 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1108
1109 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1110 btree_get_extent, mirror_num);
1111 if (ret) {
1112 free_extent_buffer(buf);
1113 return ret;
1114 }
1115
1116 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1117 free_extent_buffer(buf);
1118 return -EIO;
1119 } else if (extent_buffer_uptodate(buf)) {
1120 *eb = buf;
1121 } else {
1122 free_extent_buffer(buf);
1123 }
1124 return 0;
1125 }
1126
1127 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1128 u64 bytenr)
1129 {
1130 return find_extent_buffer(fs_info, bytenr);
1131 }
1132
1133 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1134 u64 bytenr)
1135 {
1136 if (btrfs_test_is_dummy_root(root))
1137 return alloc_test_extent_buffer(root->fs_info, bytenr);
1138 return alloc_extent_buffer(root->fs_info, bytenr);
1139 }
1140
1141
1142 int btrfs_write_tree_block(struct extent_buffer *buf)
1143 {
1144 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1145 buf->start + buf->len - 1);
1146 }
1147
1148 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1149 {
1150 return filemap_fdatawait_range(buf->pages[0]->mapping,
1151 buf->start, buf->start + buf->len - 1);
1152 }
1153
1154 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1155 u64 parent_transid)
1156 {
1157 struct extent_buffer *buf = NULL;
1158 int ret;
1159
1160 buf = btrfs_find_create_tree_block(root, bytenr);
1161 if (!buf)
1162 return ERR_PTR(-ENOMEM);
1163
1164 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1165 if (ret) {
1166 free_extent_buffer(buf);
1167 return ERR_PTR(ret);
1168 }
1169 return buf;
1170
1171 }
1172
1173 void clean_tree_block(struct btrfs_trans_handle *trans,
1174 struct btrfs_fs_info *fs_info,
1175 struct extent_buffer *buf)
1176 {
1177 if (btrfs_header_generation(buf) ==
1178 fs_info->running_transaction->transid) {
1179 btrfs_assert_tree_locked(buf);
1180
1181 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1182 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1183 -buf->len,
1184 fs_info->dirty_metadata_batch);
1185 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1186 btrfs_set_lock_blocking(buf);
1187 clear_extent_buffer_dirty(buf);
1188 }
1189 }
1190 }
1191
1192 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1193 {
1194 struct btrfs_subvolume_writers *writers;
1195 int ret;
1196
1197 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1198 if (!writers)
1199 return ERR_PTR(-ENOMEM);
1200
1201 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1202 if (ret < 0) {
1203 kfree(writers);
1204 return ERR_PTR(ret);
1205 }
1206
1207 init_waitqueue_head(&writers->wait);
1208 return writers;
1209 }
1210
1211 static void
1212 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1213 {
1214 percpu_counter_destroy(&writers->counter);
1215 kfree(writers);
1216 }
1217
1218 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1219 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1220 u64 objectid)
1221 {
1222 root->node = NULL;
1223 root->commit_root = NULL;
1224 root->sectorsize = sectorsize;
1225 root->nodesize = nodesize;
1226 root->stripesize = stripesize;
1227 root->state = 0;
1228 root->orphan_cleanup_state = 0;
1229
1230 root->objectid = objectid;
1231 root->last_trans = 0;
1232 root->highest_objectid = 0;
1233 root->nr_delalloc_inodes = 0;
1234 root->nr_ordered_extents = 0;
1235 root->name = NULL;
1236 root->inode_tree = RB_ROOT;
1237 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1238 root->block_rsv = NULL;
1239 root->orphan_block_rsv = NULL;
1240
1241 INIT_LIST_HEAD(&root->dirty_list);
1242 INIT_LIST_HEAD(&root->root_list);
1243 INIT_LIST_HEAD(&root->delalloc_inodes);
1244 INIT_LIST_HEAD(&root->delalloc_root);
1245 INIT_LIST_HEAD(&root->ordered_extents);
1246 INIT_LIST_HEAD(&root->ordered_root);
1247 INIT_LIST_HEAD(&root->logged_list[0]);
1248 INIT_LIST_HEAD(&root->logged_list[1]);
1249 spin_lock_init(&root->orphan_lock);
1250 spin_lock_init(&root->inode_lock);
1251 spin_lock_init(&root->delalloc_lock);
1252 spin_lock_init(&root->ordered_extent_lock);
1253 spin_lock_init(&root->accounting_lock);
1254 spin_lock_init(&root->log_extents_lock[0]);
1255 spin_lock_init(&root->log_extents_lock[1]);
1256 mutex_init(&root->objectid_mutex);
1257 mutex_init(&root->log_mutex);
1258 mutex_init(&root->ordered_extent_mutex);
1259 mutex_init(&root->delalloc_mutex);
1260 init_waitqueue_head(&root->log_writer_wait);
1261 init_waitqueue_head(&root->log_commit_wait[0]);
1262 init_waitqueue_head(&root->log_commit_wait[1]);
1263 INIT_LIST_HEAD(&root->log_ctxs[0]);
1264 INIT_LIST_HEAD(&root->log_ctxs[1]);
1265 atomic_set(&root->log_commit[0], 0);
1266 atomic_set(&root->log_commit[1], 0);
1267 atomic_set(&root->log_writers, 0);
1268 atomic_set(&root->log_batch, 0);
1269 atomic_set(&root->orphan_inodes, 0);
1270 atomic_set(&root->refs, 1);
1271 atomic_set(&root->will_be_snapshoted, 0);
1272 atomic_set(&root->qgroup_meta_rsv, 0);
1273 root->log_transid = 0;
1274 root->log_transid_committed = -1;
1275 root->last_log_commit = 0;
1276 if (fs_info)
1277 extent_io_tree_init(&root->dirty_log_pages,
1278 fs_info->btree_inode->i_mapping);
1279
1280 memset(&root->root_key, 0, sizeof(root->root_key));
1281 memset(&root->root_item, 0, sizeof(root->root_item));
1282 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1283 if (fs_info)
1284 root->defrag_trans_start = fs_info->generation;
1285 else
1286 root->defrag_trans_start = 0;
1287 root->root_key.objectid = objectid;
1288 root->anon_dev = 0;
1289
1290 spin_lock_init(&root->root_item_lock);
1291 }
1292
1293 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1294 {
1295 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1296 if (root)
1297 root->fs_info = fs_info;
1298 return root;
1299 }
1300
1301 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1302 /* Should only be used by the testing infrastructure */
1303 struct btrfs_root *btrfs_alloc_dummy_root(void)
1304 {
1305 struct btrfs_root *root;
1306
1307 root = btrfs_alloc_root(NULL);
1308 if (!root)
1309 return ERR_PTR(-ENOMEM);
1310 __setup_root(4096, 4096, 4096, root, NULL, 1);
1311 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1312 root->alloc_bytenr = 0;
1313
1314 return root;
1315 }
1316 #endif
1317
1318 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1319 struct btrfs_fs_info *fs_info,
1320 u64 objectid)
1321 {
1322 struct extent_buffer *leaf;
1323 struct btrfs_root *tree_root = fs_info->tree_root;
1324 struct btrfs_root *root;
1325 struct btrfs_key key;
1326 int ret = 0;
1327 uuid_le uuid;
1328
1329 root = btrfs_alloc_root(fs_info);
1330 if (!root)
1331 return ERR_PTR(-ENOMEM);
1332
1333 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1334 tree_root->stripesize, root, fs_info, objectid);
1335 root->root_key.objectid = objectid;
1336 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 root->root_key.offset = 0;
1338
1339 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1340 if (IS_ERR(leaf)) {
1341 ret = PTR_ERR(leaf);
1342 leaf = NULL;
1343 goto fail;
1344 }
1345
1346 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1347 btrfs_set_header_bytenr(leaf, leaf->start);
1348 btrfs_set_header_generation(leaf, trans->transid);
1349 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1350 btrfs_set_header_owner(leaf, objectid);
1351 root->node = leaf;
1352
1353 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1354 BTRFS_FSID_SIZE);
1355 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1356 btrfs_header_chunk_tree_uuid(leaf),
1357 BTRFS_UUID_SIZE);
1358 btrfs_mark_buffer_dirty(leaf);
1359
1360 root->commit_root = btrfs_root_node(root);
1361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1362
1363 root->root_item.flags = 0;
1364 root->root_item.byte_limit = 0;
1365 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1366 btrfs_set_root_generation(&root->root_item, trans->transid);
1367 btrfs_set_root_level(&root->root_item, 0);
1368 btrfs_set_root_refs(&root->root_item, 1);
1369 btrfs_set_root_used(&root->root_item, leaf->len);
1370 btrfs_set_root_last_snapshot(&root->root_item, 0);
1371 btrfs_set_root_dirid(&root->root_item, 0);
1372 uuid_le_gen(&uuid);
1373 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1374 root->root_item.drop_level = 0;
1375
1376 key.objectid = objectid;
1377 key.type = BTRFS_ROOT_ITEM_KEY;
1378 key.offset = 0;
1379 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1380 if (ret)
1381 goto fail;
1382
1383 btrfs_tree_unlock(leaf);
1384
1385 return root;
1386
1387 fail:
1388 if (leaf) {
1389 btrfs_tree_unlock(leaf);
1390 free_extent_buffer(root->commit_root);
1391 free_extent_buffer(leaf);
1392 }
1393 kfree(root);
1394
1395 return ERR_PTR(ret);
1396 }
1397
1398 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1399 struct btrfs_fs_info *fs_info)
1400 {
1401 struct btrfs_root *root;
1402 struct btrfs_root *tree_root = fs_info->tree_root;
1403 struct extent_buffer *leaf;
1404
1405 root = btrfs_alloc_root(fs_info);
1406 if (!root)
1407 return ERR_PTR(-ENOMEM);
1408
1409 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1410 tree_root->stripesize, root, fs_info,
1411 BTRFS_TREE_LOG_OBJECTID);
1412
1413 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1414 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1415 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1416
1417 /*
1418 * DON'T set REF_COWS for log trees
1419 *
1420 * log trees do not get reference counted because they go away
1421 * before a real commit is actually done. They do store pointers
1422 * to file data extents, and those reference counts still get
1423 * updated (along with back refs to the log tree).
1424 */
1425
1426 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1427 NULL, 0, 0, 0);
1428 if (IS_ERR(leaf)) {
1429 kfree(root);
1430 return ERR_CAST(leaf);
1431 }
1432
1433 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1434 btrfs_set_header_bytenr(leaf, leaf->start);
1435 btrfs_set_header_generation(leaf, trans->transid);
1436 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1437 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1438 root->node = leaf;
1439
1440 write_extent_buffer(root->node, root->fs_info->fsid,
1441 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1442 btrfs_mark_buffer_dirty(root->node);
1443 btrfs_tree_unlock(root->node);
1444 return root;
1445 }
1446
1447 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1448 struct btrfs_fs_info *fs_info)
1449 {
1450 struct btrfs_root *log_root;
1451
1452 log_root = alloc_log_tree(trans, fs_info);
1453 if (IS_ERR(log_root))
1454 return PTR_ERR(log_root);
1455 WARN_ON(fs_info->log_root_tree);
1456 fs_info->log_root_tree = log_root;
1457 return 0;
1458 }
1459
1460 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1461 struct btrfs_root *root)
1462 {
1463 struct btrfs_root *log_root;
1464 struct btrfs_inode_item *inode_item;
1465
1466 log_root = alloc_log_tree(trans, root->fs_info);
1467 if (IS_ERR(log_root))
1468 return PTR_ERR(log_root);
1469
1470 log_root->last_trans = trans->transid;
1471 log_root->root_key.offset = root->root_key.objectid;
1472
1473 inode_item = &log_root->root_item.inode;
1474 btrfs_set_stack_inode_generation(inode_item, 1);
1475 btrfs_set_stack_inode_size(inode_item, 3);
1476 btrfs_set_stack_inode_nlink(inode_item, 1);
1477 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1478 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1479
1480 btrfs_set_root_node(&log_root->root_item, log_root->node);
1481
1482 WARN_ON(root->log_root);
1483 root->log_root = log_root;
1484 root->log_transid = 0;
1485 root->log_transid_committed = -1;
1486 root->last_log_commit = 0;
1487 return 0;
1488 }
1489
1490 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1491 struct btrfs_key *key)
1492 {
1493 struct btrfs_root *root;
1494 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1495 struct btrfs_path *path;
1496 u64 generation;
1497 int ret;
1498
1499 path = btrfs_alloc_path();
1500 if (!path)
1501 return ERR_PTR(-ENOMEM);
1502
1503 root = btrfs_alloc_root(fs_info);
1504 if (!root) {
1505 ret = -ENOMEM;
1506 goto alloc_fail;
1507 }
1508
1509 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1510 tree_root->stripesize, root, fs_info, key->objectid);
1511
1512 ret = btrfs_find_root(tree_root, key, path,
1513 &root->root_item, &root->root_key);
1514 if (ret) {
1515 if (ret > 0)
1516 ret = -ENOENT;
1517 goto find_fail;
1518 }
1519
1520 generation = btrfs_root_generation(&root->root_item);
1521 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1522 generation);
1523 if (IS_ERR(root->node)) {
1524 ret = PTR_ERR(root->node);
1525 goto find_fail;
1526 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1527 ret = -EIO;
1528 free_extent_buffer(root->node);
1529 goto find_fail;
1530 }
1531 root->commit_root = btrfs_root_node(root);
1532 out:
1533 btrfs_free_path(path);
1534 return root;
1535
1536 find_fail:
1537 kfree(root);
1538 alloc_fail:
1539 root = ERR_PTR(ret);
1540 goto out;
1541 }
1542
1543 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1544 struct btrfs_key *location)
1545 {
1546 struct btrfs_root *root;
1547
1548 root = btrfs_read_tree_root(tree_root, location);
1549 if (IS_ERR(root))
1550 return root;
1551
1552 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1553 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1554 btrfs_check_and_init_root_item(&root->root_item);
1555 }
1556
1557 return root;
1558 }
1559
1560 int btrfs_init_fs_root(struct btrfs_root *root)
1561 {
1562 int ret;
1563 struct btrfs_subvolume_writers *writers;
1564
1565 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1566 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1567 GFP_NOFS);
1568 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1569 ret = -ENOMEM;
1570 goto fail;
1571 }
1572
1573 writers = btrfs_alloc_subvolume_writers();
1574 if (IS_ERR(writers)) {
1575 ret = PTR_ERR(writers);
1576 goto fail;
1577 }
1578 root->subv_writers = writers;
1579
1580 btrfs_init_free_ino_ctl(root);
1581 spin_lock_init(&root->ino_cache_lock);
1582 init_waitqueue_head(&root->ino_cache_wait);
1583
1584 ret = get_anon_bdev(&root->anon_dev);
1585 if (ret)
1586 goto free_writers;
1587 return 0;
1588
1589 free_writers:
1590 btrfs_free_subvolume_writers(root->subv_writers);
1591 fail:
1592 kfree(root->free_ino_ctl);
1593 kfree(root->free_ino_pinned);
1594 return ret;
1595 }
1596
1597 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1598 u64 root_id)
1599 {
1600 struct btrfs_root *root;
1601
1602 spin_lock(&fs_info->fs_roots_radix_lock);
1603 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1604 (unsigned long)root_id);
1605 spin_unlock(&fs_info->fs_roots_radix_lock);
1606 return root;
1607 }
1608
1609 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1610 struct btrfs_root *root)
1611 {
1612 int ret;
1613
1614 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1615 if (ret)
1616 return ret;
1617
1618 spin_lock(&fs_info->fs_roots_radix_lock);
1619 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1620 (unsigned long)root->root_key.objectid,
1621 root);
1622 if (ret == 0)
1623 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1624 spin_unlock(&fs_info->fs_roots_radix_lock);
1625 radix_tree_preload_end();
1626
1627 return ret;
1628 }
1629
1630 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1631 struct btrfs_key *location,
1632 bool check_ref)
1633 {
1634 struct btrfs_root *root;
1635 struct btrfs_path *path;
1636 struct btrfs_key key;
1637 int ret;
1638
1639 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1640 return fs_info->tree_root;
1641 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1642 return fs_info->extent_root;
1643 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1644 return fs_info->chunk_root;
1645 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1646 return fs_info->dev_root;
1647 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1648 return fs_info->csum_root;
1649 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1650 return fs_info->quota_root ? fs_info->quota_root :
1651 ERR_PTR(-ENOENT);
1652 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1653 return fs_info->uuid_root ? fs_info->uuid_root :
1654 ERR_PTR(-ENOENT);
1655 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1656 return fs_info->free_space_root ? fs_info->free_space_root :
1657 ERR_PTR(-ENOENT);
1658 again:
1659 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1660 if (root) {
1661 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1662 return ERR_PTR(-ENOENT);
1663 return root;
1664 }
1665
1666 root = btrfs_read_fs_root(fs_info->tree_root, location);
1667 if (IS_ERR(root))
1668 return root;
1669
1670 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1671 ret = -ENOENT;
1672 goto fail;
1673 }
1674
1675 ret = btrfs_init_fs_root(root);
1676 if (ret)
1677 goto fail;
1678
1679 path = btrfs_alloc_path();
1680 if (!path) {
1681 ret = -ENOMEM;
1682 goto fail;
1683 }
1684 key.objectid = BTRFS_ORPHAN_OBJECTID;
1685 key.type = BTRFS_ORPHAN_ITEM_KEY;
1686 key.offset = location->objectid;
1687
1688 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1689 btrfs_free_path(path);
1690 if (ret < 0)
1691 goto fail;
1692 if (ret == 0)
1693 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1694
1695 ret = btrfs_insert_fs_root(fs_info, root);
1696 if (ret) {
1697 if (ret == -EEXIST) {
1698 free_fs_root(root);
1699 goto again;
1700 }
1701 goto fail;
1702 }
1703 return root;
1704 fail:
1705 free_fs_root(root);
1706 return ERR_PTR(ret);
1707 }
1708
1709 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1710 {
1711 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1712 int ret = 0;
1713 struct btrfs_device *device;
1714 struct backing_dev_info *bdi;
1715
1716 rcu_read_lock();
1717 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1718 if (!device->bdev)
1719 continue;
1720 bdi = blk_get_backing_dev_info(device->bdev);
1721 if (bdi_congested(bdi, bdi_bits)) {
1722 ret = 1;
1723 break;
1724 }
1725 }
1726 rcu_read_unlock();
1727 return ret;
1728 }
1729
1730 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1731 {
1732 int err;
1733
1734 err = bdi_setup_and_register(bdi, "btrfs");
1735 if (err)
1736 return err;
1737
1738 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1739 bdi->congested_fn = btrfs_congested_fn;
1740 bdi->congested_data = info;
1741 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1742 return 0;
1743 }
1744
1745 /*
1746 * called by the kthread helper functions to finally call the bio end_io
1747 * functions. This is where read checksum verification actually happens
1748 */
1749 static void end_workqueue_fn(struct btrfs_work *work)
1750 {
1751 struct bio *bio;
1752 struct btrfs_end_io_wq *end_io_wq;
1753
1754 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1755 bio = end_io_wq->bio;
1756
1757 bio->bi_error = end_io_wq->error;
1758 bio->bi_private = end_io_wq->private;
1759 bio->bi_end_io = end_io_wq->end_io;
1760 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1761 bio_endio(bio);
1762 }
1763
1764 static int cleaner_kthread(void *arg)
1765 {
1766 struct btrfs_root *root = arg;
1767 int again;
1768 struct btrfs_trans_handle *trans;
1769
1770 set_freezable();
1771 do {
1772 again = 0;
1773
1774 /* Make the cleaner go to sleep early. */
1775 if (btrfs_need_cleaner_sleep(root))
1776 goto sleep;
1777
1778 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1779 goto sleep;
1780
1781 /*
1782 * Avoid the problem that we change the status of the fs
1783 * during the above check and trylock.
1784 */
1785 if (btrfs_need_cleaner_sleep(root)) {
1786 mutex_unlock(&root->fs_info->cleaner_mutex);
1787 goto sleep;
1788 }
1789
1790 btrfs_run_delayed_iputs(root);
1791 again = btrfs_clean_one_deleted_snapshot(root);
1792 mutex_unlock(&root->fs_info->cleaner_mutex);
1793
1794 /*
1795 * The defragger has dealt with the R/O remount and umount,
1796 * needn't do anything special here.
1797 */
1798 btrfs_run_defrag_inodes(root->fs_info);
1799
1800 /*
1801 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1802 * with relocation (btrfs_relocate_chunk) and relocation
1803 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1804 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1805 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1806 * unused block groups.
1807 */
1808 btrfs_delete_unused_bgs(root->fs_info);
1809 sleep:
1810 if (!try_to_freeze() && !again) {
1811 set_current_state(TASK_INTERRUPTIBLE);
1812 if (!kthread_should_stop())
1813 schedule();
1814 __set_current_state(TASK_RUNNING);
1815 }
1816 } while (!kthread_should_stop());
1817
1818 /*
1819 * Transaction kthread is stopped before us and wakes us up.
1820 * However we might have started a new transaction and COWed some
1821 * tree blocks when deleting unused block groups for example. So
1822 * make sure we commit the transaction we started to have a clean
1823 * shutdown when evicting the btree inode - if it has dirty pages
1824 * when we do the final iput() on it, eviction will trigger a
1825 * writeback for it which will fail with null pointer dereferences
1826 * since work queues and other resources were already released and
1827 * destroyed by the time the iput/eviction/writeback is made.
1828 */
1829 trans = btrfs_attach_transaction(root);
1830 if (IS_ERR(trans)) {
1831 if (PTR_ERR(trans) != -ENOENT)
1832 btrfs_err(root->fs_info,
1833 "cleaner transaction attach returned %ld",
1834 PTR_ERR(trans));
1835 } else {
1836 int ret;
1837
1838 ret = btrfs_commit_transaction(trans, root);
1839 if (ret)
1840 btrfs_err(root->fs_info,
1841 "cleaner open transaction commit returned %d",
1842 ret);
1843 }
1844
1845 return 0;
1846 }
1847
1848 static int transaction_kthread(void *arg)
1849 {
1850 struct btrfs_root *root = arg;
1851 struct btrfs_trans_handle *trans;
1852 struct btrfs_transaction *cur;
1853 u64 transid;
1854 unsigned long now;
1855 unsigned long delay;
1856 bool cannot_commit;
1857
1858 do {
1859 cannot_commit = false;
1860 delay = HZ * root->fs_info->commit_interval;
1861 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1862
1863 spin_lock(&root->fs_info->trans_lock);
1864 cur = root->fs_info->running_transaction;
1865 if (!cur) {
1866 spin_unlock(&root->fs_info->trans_lock);
1867 goto sleep;
1868 }
1869
1870 now = get_seconds();
1871 if (cur->state < TRANS_STATE_BLOCKED &&
1872 (now < cur->start_time ||
1873 now - cur->start_time < root->fs_info->commit_interval)) {
1874 spin_unlock(&root->fs_info->trans_lock);
1875 delay = HZ * 5;
1876 goto sleep;
1877 }
1878 transid = cur->transid;
1879 spin_unlock(&root->fs_info->trans_lock);
1880
1881 /* If the file system is aborted, this will always fail. */
1882 trans = btrfs_attach_transaction(root);
1883 if (IS_ERR(trans)) {
1884 if (PTR_ERR(trans) != -ENOENT)
1885 cannot_commit = true;
1886 goto sleep;
1887 }
1888 if (transid == trans->transid) {
1889 btrfs_commit_transaction(trans, root);
1890 } else {
1891 btrfs_end_transaction(trans, root);
1892 }
1893 sleep:
1894 wake_up_process(root->fs_info->cleaner_kthread);
1895 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1896
1897 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1898 &root->fs_info->fs_state)))
1899 btrfs_cleanup_transaction(root);
1900 if (!try_to_freeze()) {
1901 set_current_state(TASK_INTERRUPTIBLE);
1902 if (!kthread_should_stop() &&
1903 (!btrfs_transaction_blocked(root->fs_info) ||
1904 cannot_commit))
1905 schedule_timeout(delay);
1906 __set_current_state(TASK_RUNNING);
1907 }
1908 } while (!kthread_should_stop());
1909 return 0;
1910 }
1911
1912 /*
1913 * this will find the highest generation in the array of
1914 * root backups. The index of the highest array is returned,
1915 * or -1 if we can't find anything.
1916 *
1917 * We check to make sure the array is valid by comparing the
1918 * generation of the latest root in the array with the generation
1919 * in the super block. If they don't match we pitch it.
1920 */
1921 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1922 {
1923 u64 cur;
1924 int newest_index = -1;
1925 struct btrfs_root_backup *root_backup;
1926 int i;
1927
1928 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1929 root_backup = info->super_copy->super_roots + i;
1930 cur = btrfs_backup_tree_root_gen(root_backup);
1931 if (cur == newest_gen)
1932 newest_index = i;
1933 }
1934
1935 /* check to see if we actually wrapped around */
1936 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1937 root_backup = info->super_copy->super_roots;
1938 cur = btrfs_backup_tree_root_gen(root_backup);
1939 if (cur == newest_gen)
1940 newest_index = 0;
1941 }
1942 return newest_index;
1943 }
1944
1945
1946 /*
1947 * find the oldest backup so we know where to store new entries
1948 * in the backup array. This will set the backup_root_index
1949 * field in the fs_info struct
1950 */
1951 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1952 u64 newest_gen)
1953 {
1954 int newest_index = -1;
1955
1956 newest_index = find_newest_super_backup(info, newest_gen);
1957 /* if there was garbage in there, just move along */
1958 if (newest_index == -1) {
1959 info->backup_root_index = 0;
1960 } else {
1961 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1962 }
1963 }
1964
1965 /*
1966 * copy all the root pointers into the super backup array.
1967 * this will bump the backup pointer by one when it is
1968 * done
1969 */
1970 static void backup_super_roots(struct btrfs_fs_info *info)
1971 {
1972 int next_backup;
1973 struct btrfs_root_backup *root_backup;
1974 int last_backup;
1975
1976 next_backup = info->backup_root_index;
1977 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1978 BTRFS_NUM_BACKUP_ROOTS;
1979
1980 /*
1981 * just overwrite the last backup if we're at the same generation
1982 * this happens only at umount
1983 */
1984 root_backup = info->super_for_commit->super_roots + last_backup;
1985 if (btrfs_backup_tree_root_gen(root_backup) ==
1986 btrfs_header_generation(info->tree_root->node))
1987 next_backup = last_backup;
1988
1989 root_backup = info->super_for_commit->super_roots + next_backup;
1990
1991 /*
1992 * make sure all of our padding and empty slots get zero filled
1993 * regardless of which ones we use today
1994 */
1995 memset(root_backup, 0, sizeof(*root_backup));
1996
1997 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1998
1999 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2000 btrfs_set_backup_tree_root_gen(root_backup,
2001 btrfs_header_generation(info->tree_root->node));
2002
2003 btrfs_set_backup_tree_root_level(root_backup,
2004 btrfs_header_level(info->tree_root->node));
2005
2006 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2007 btrfs_set_backup_chunk_root_gen(root_backup,
2008 btrfs_header_generation(info->chunk_root->node));
2009 btrfs_set_backup_chunk_root_level(root_backup,
2010 btrfs_header_level(info->chunk_root->node));
2011
2012 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2013 btrfs_set_backup_extent_root_gen(root_backup,
2014 btrfs_header_generation(info->extent_root->node));
2015 btrfs_set_backup_extent_root_level(root_backup,
2016 btrfs_header_level(info->extent_root->node));
2017
2018 /*
2019 * we might commit during log recovery, which happens before we set
2020 * the fs_root. Make sure it is valid before we fill it in.
2021 */
2022 if (info->fs_root && info->fs_root->node) {
2023 btrfs_set_backup_fs_root(root_backup,
2024 info->fs_root->node->start);
2025 btrfs_set_backup_fs_root_gen(root_backup,
2026 btrfs_header_generation(info->fs_root->node));
2027 btrfs_set_backup_fs_root_level(root_backup,
2028 btrfs_header_level(info->fs_root->node));
2029 }
2030
2031 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2032 btrfs_set_backup_dev_root_gen(root_backup,
2033 btrfs_header_generation(info->dev_root->node));
2034 btrfs_set_backup_dev_root_level(root_backup,
2035 btrfs_header_level(info->dev_root->node));
2036
2037 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2038 btrfs_set_backup_csum_root_gen(root_backup,
2039 btrfs_header_generation(info->csum_root->node));
2040 btrfs_set_backup_csum_root_level(root_backup,
2041 btrfs_header_level(info->csum_root->node));
2042
2043 btrfs_set_backup_total_bytes(root_backup,
2044 btrfs_super_total_bytes(info->super_copy));
2045 btrfs_set_backup_bytes_used(root_backup,
2046 btrfs_super_bytes_used(info->super_copy));
2047 btrfs_set_backup_num_devices(root_backup,
2048 btrfs_super_num_devices(info->super_copy));
2049
2050 /*
2051 * if we don't copy this out to the super_copy, it won't get remembered
2052 * for the next commit
2053 */
2054 memcpy(&info->super_copy->super_roots,
2055 &info->super_for_commit->super_roots,
2056 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2057 }
2058
2059 /*
2060 * this copies info out of the root backup array and back into
2061 * the in-memory super block. It is meant to help iterate through
2062 * the array, so you send it the number of backups you've already
2063 * tried and the last backup index you used.
2064 *
2065 * this returns -1 when it has tried all the backups
2066 */
2067 static noinline int next_root_backup(struct btrfs_fs_info *info,
2068 struct btrfs_super_block *super,
2069 int *num_backups_tried, int *backup_index)
2070 {
2071 struct btrfs_root_backup *root_backup;
2072 int newest = *backup_index;
2073
2074 if (*num_backups_tried == 0) {
2075 u64 gen = btrfs_super_generation(super);
2076
2077 newest = find_newest_super_backup(info, gen);
2078 if (newest == -1)
2079 return -1;
2080
2081 *backup_index = newest;
2082 *num_backups_tried = 1;
2083 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2084 /* we've tried all the backups, all done */
2085 return -1;
2086 } else {
2087 /* jump to the next oldest backup */
2088 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2089 BTRFS_NUM_BACKUP_ROOTS;
2090 *backup_index = newest;
2091 *num_backups_tried += 1;
2092 }
2093 root_backup = super->super_roots + newest;
2094
2095 btrfs_set_super_generation(super,
2096 btrfs_backup_tree_root_gen(root_backup));
2097 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2098 btrfs_set_super_root_level(super,
2099 btrfs_backup_tree_root_level(root_backup));
2100 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2101
2102 /*
2103 * fixme: the total bytes and num_devices need to match or we should
2104 * need a fsck
2105 */
2106 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2107 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2108 return 0;
2109 }
2110
2111 /* helper to cleanup workers */
2112 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2113 {
2114 btrfs_destroy_workqueue(fs_info->fixup_workers);
2115 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2116 btrfs_destroy_workqueue(fs_info->workers);
2117 btrfs_destroy_workqueue(fs_info->endio_workers);
2118 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2119 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2120 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2121 btrfs_destroy_workqueue(fs_info->rmw_workers);
2122 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2123 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2124 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2125 btrfs_destroy_workqueue(fs_info->submit_workers);
2126 btrfs_destroy_workqueue(fs_info->delayed_workers);
2127 btrfs_destroy_workqueue(fs_info->caching_workers);
2128 btrfs_destroy_workqueue(fs_info->readahead_workers);
2129 btrfs_destroy_workqueue(fs_info->flush_workers);
2130 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2131 btrfs_destroy_workqueue(fs_info->extent_workers);
2132 }
2133
2134 static void free_root_extent_buffers(struct btrfs_root *root)
2135 {
2136 if (root) {
2137 free_extent_buffer(root->node);
2138 free_extent_buffer(root->commit_root);
2139 root->node = NULL;
2140 root->commit_root = NULL;
2141 }
2142 }
2143
2144 /* helper to cleanup tree roots */
2145 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2146 {
2147 free_root_extent_buffers(info->tree_root);
2148
2149 free_root_extent_buffers(info->dev_root);
2150 free_root_extent_buffers(info->extent_root);
2151 free_root_extent_buffers(info->csum_root);
2152 free_root_extent_buffers(info->quota_root);
2153 free_root_extent_buffers(info->uuid_root);
2154 if (chunk_root)
2155 free_root_extent_buffers(info->chunk_root);
2156 free_root_extent_buffers(info->free_space_root);
2157 }
2158
2159 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2160 {
2161 int ret;
2162 struct btrfs_root *gang[8];
2163 int i;
2164
2165 while (!list_empty(&fs_info->dead_roots)) {
2166 gang[0] = list_entry(fs_info->dead_roots.next,
2167 struct btrfs_root, root_list);
2168 list_del(&gang[0]->root_list);
2169
2170 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2171 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2172 } else {
2173 free_extent_buffer(gang[0]->node);
2174 free_extent_buffer(gang[0]->commit_root);
2175 btrfs_put_fs_root(gang[0]);
2176 }
2177 }
2178
2179 while (1) {
2180 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2181 (void **)gang, 0,
2182 ARRAY_SIZE(gang));
2183 if (!ret)
2184 break;
2185 for (i = 0; i < ret; i++)
2186 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2187 }
2188
2189 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2190 btrfs_free_log_root_tree(NULL, fs_info);
2191 btrfs_destroy_pinned_extent(fs_info->tree_root,
2192 fs_info->pinned_extents);
2193 }
2194 }
2195
2196 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2197 {
2198 mutex_init(&fs_info->scrub_lock);
2199 atomic_set(&fs_info->scrubs_running, 0);
2200 atomic_set(&fs_info->scrub_pause_req, 0);
2201 atomic_set(&fs_info->scrubs_paused, 0);
2202 atomic_set(&fs_info->scrub_cancel_req, 0);
2203 init_waitqueue_head(&fs_info->scrub_pause_wait);
2204 fs_info->scrub_workers_refcnt = 0;
2205 }
2206
2207 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2208 {
2209 spin_lock_init(&fs_info->balance_lock);
2210 mutex_init(&fs_info->balance_mutex);
2211 atomic_set(&fs_info->balance_running, 0);
2212 atomic_set(&fs_info->balance_pause_req, 0);
2213 atomic_set(&fs_info->balance_cancel_req, 0);
2214 fs_info->balance_ctl = NULL;
2215 init_waitqueue_head(&fs_info->balance_wait_q);
2216 }
2217
2218 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2219 struct btrfs_root *tree_root)
2220 {
2221 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2222 set_nlink(fs_info->btree_inode, 1);
2223 /*
2224 * we set the i_size on the btree inode to the max possible int.
2225 * the real end of the address space is determined by all of
2226 * the devices in the system
2227 */
2228 fs_info->btree_inode->i_size = OFFSET_MAX;
2229 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2230
2231 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2232 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2233 fs_info->btree_inode->i_mapping);
2234 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2235 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2236
2237 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2238
2239 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2240 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2241 sizeof(struct btrfs_key));
2242 set_bit(BTRFS_INODE_DUMMY,
2243 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2244 btrfs_insert_inode_hash(fs_info->btree_inode);
2245 }
2246
2247 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2248 {
2249 fs_info->dev_replace.lock_owner = 0;
2250 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2251 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2252 mutex_init(&fs_info->dev_replace.lock_management_lock);
2253 mutex_init(&fs_info->dev_replace.lock);
2254 init_waitqueue_head(&fs_info->replace_wait);
2255 }
2256
2257 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2258 {
2259 spin_lock_init(&fs_info->qgroup_lock);
2260 mutex_init(&fs_info->qgroup_ioctl_lock);
2261 fs_info->qgroup_tree = RB_ROOT;
2262 fs_info->qgroup_op_tree = RB_ROOT;
2263 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2264 fs_info->qgroup_seq = 1;
2265 fs_info->quota_enabled = 0;
2266 fs_info->pending_quota_state = 0;
2267 fs_info->qgroup_ulist = NULL;
2268 mutex_init(&fs_info->qgroup_rescan_lock);
2269 }
2270
2271 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2272 struct btrfs_fs_devices *fs_devices)
2273 {
2274 int max_active = fs_info->thread_pool_size;
2275 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2276
2277 fs_info->workers =
2278 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2279 max_active, 16);
2280
2281 fs_info->delalloc_workers =
2282 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2283
2284 fs_info->flush_workers =
2285 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2286
2287 fs_info->caching_workers =
2288 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2289
2290 /*
2291 * a higher idle thresh on the submit workers makes it much more
2292 * likely that bios will be send down in a sane order to the
2293 * devices
2294 */
2295 fs_info->submit_workers =
2296 btrfs_alloc_workqueue("submit", flags,
2297 min_t(u64, fs_devices->num_devices,
2298 max_active), 64);
2299
2300 fs_info->fixup_workers =
2301 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2302
2303 /*
2304 * endios are largely parallel and should have a very
2305 * low idle thresh
2306 */
2307 fs_info->endio_workers =
2308 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2309 fs_info->endio_meta_workers =
2310 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2311 fs_info->endio_meta_write_workers =
2312 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2313 fs_info->endio_raid56_workers =
2314 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2315 fs_info->endio_repair_workers =
2316 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2317 fs_info->rmw_workers =
2318 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2319 fs_info->endio_write_workers =
2320 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2321 fs_info->endio_freespace_worker =
2322 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2323 fs_info->delayed_workers =
2324 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2325 fs_info->readahead_workers =
2326 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2327 fs_info->qgroup_rescan_workers =
2328 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2329 fs_info->extent_workers =
2330 btrfs_alloc_workqueue("extent-refs", flags,
2331 min_t(u64, fs_devices->num_devices,
2332 max_active), 8);
2333
2334 if (!(fs_info->workers && fs_info->delalloc_workers &&
2335 fs_info->submit_workers && fs_info->flush_workers &&
2336 fs_info->endio_workers && fs_info->endio_meta_workers &&
2337 fs_info->endio_meta_write_workers &&
2338 fs_info->endio_repair_workers &&
2339 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2340 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2341 fs_info->caching_workers && fs_info->readahead_workers &&
2342 fs_info->fixup_workers && fs_info->delayed_workers &&
2343 fs_info->extent_workers &&
2344 fs_info->qgroup_rescan_workers)) {
2345 return -ENOMEM;
2346 }
2347
2348 return 0;
2349 }
2350
2351 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2352 struct btrfs_fs_devices *fs_devices)
2353 {
2354 int ret;
2355 struct btrfs_root *tree_root = fs_info->tree_root;
2356 struct btrfs_root *log_tree_root;
2357 struct btrfs_super_block *disk_super = fs_info->super_copy;
2358 u64 bytenr = btrfs_super_log_root(disk_super);
2359
2360 if (fs_devices->rw_devices == 0) {
2361 btrfs_warn(fs_info, "log replay required on RO media");
2362 return -EIO;
2363 }
2364
2365 log_tree_root = btrfs_alloc_root(fs_info);
2366 if (!log_tree_root)
2367 return -ENOMEM;
2368
2369 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2370 tree_root->stripesize, log_tree_root, fs_info,
2371 BTRFS_TREE_LOG_OBJECTID);
2372
2373 log_tree_root->node = read_tree_block(tree_root, bytenr,
2374 fs_info->generation + 1);
2375 if (IS_ERR(log_tree_root->node)) {
2376 btrfs_warn(fs_info, "failed to read log tree");
2377 ret = PTR_ERR(log_tree_root->node);
2378 kfree(log_tree_root);
2379 return ret;
2380 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2381 btrfs_err(fs_info, "failed to read log tree");
2382 free_extent_buffer(log_tree_root->node);
2383 kfree(log_tree_root);
2384 return -EIO;
2385 }
2386 /* returns with log_tree_root freed on success */
2387 ret = btrfs_recover_log_trees(log_tree_root);
2388 if (ret) {
2389 btrfs_std_error(tree_root->fs_info, ret,
2390 "Failed to recover log tree");
2391 free_extent_buffer(log_tree_root->node);
2392 kfree(log_tree_root);
2393 return ret;
2394 }
2395
2396 if (fs_info->sb->s_flags & MS_RDONLY) {
2397 ret = btrfs_commit_super(tree_root);
2398 if (ret)
2399 return ret;
2400 }
2401
2402 return 0;
2403 }
2404
2405 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2406 struct btrfs_root *tree_root)
2407 {
2408 struct btrfs_root *root;
2409 struct btrfs_key location;
2410 int ret;
2411
2412 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2413 location.type = BTRFS_ROOT_ITEM_KEY;
2414 location.offset = 0;
2415
2416 root = btrfs_read_tree_root(tree_root, &location);
2417 if (IS_ERR(root))
2418 return PTR_ERR(root);
2419 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2420 fs_info->extent_root = root;
2421
2422 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2423 root = btrfs_read_tree_root(tree_root, &location);
2424 if (IS_ERR(root))
2425 return PTR_ERR(root);
2426 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2427 fs_info->dev_root = root;
2428 btrfs_init_devices_late(fs_info);
2429
2430 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2431 root = btrfs_read_tree_root(tree_root, &location);
2432 if (IS_ERR(root))
2433 return PTR_ERR(root);
2434 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2435 fs_info->csum_root = root;
2436
2437 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2438 root = btrfs_read_tree_root(tree_root, &location);
2439 if (!IS_ERR(root)) {
2440 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2441 fs_info->quota_enabled = 1;
2442 fs_info->pending_quota_state = 1;
2443 fs_info->quota_root = root;
2444 }
2445
2446 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2447 root = btrfs_read_tree_root(tree_root, &location);
2448 if (IS_ERR(root)) {
2449 ret = PTR_ERR(root);
2450 if (ret != -ENOENT)
2451 return ret;
2452 } else {
2453 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2454 fs_info->uuid_root = root;
2455 }
2456
2457 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2458 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2459 root = btrfs_read_tree_root(tree_root, &location);
2460 if (IS_ERR(root))
2461 return PTR_ERR(root);
2462 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2463 fs_info->free_space_root = root;
2464 }
2465
2466 return 0;
2467 }
2468
2469 int open_ctree(struct super_block *sb,
2470 struct btrfs_fs_devices *fs_devices,
2471 char *options)
2472 {
2473 u32 sectorsize;
2474 u32 nodesize;
2475 u32 stripesize;
2476 u64 generation;
2477 u64 features;
2478 struct btrfs_key location;
2479 struct buffer_head *bh;
2480 struct btrfs_super_block *disk_super;
2481 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2482 struct btrfs_root *tree_root;
2483 struct btrfs_root *chunk_root;
2484 int ret;
2485 int err = -EINVAL;
2486 int num_backups_tried = 0;
2487 int backup_index = 0;
2488 int max_active;
2489
2490 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2491 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2492 if (!tree_root || !chunk_root) {
2493 err = -ENOMEM;
2494 goto fail;
2495 }
2496
2497 ret = init_srcu_struct(&fs_info->subvol_srcu);
2498 if (ret) {
2499 err = ret;
2500 goto fail;
2501 }
2502
2503 ret = setup_bdi(fs_info, &fs_info->bdi);
2504 if (ret) {
2505 err = ret;
2506 goto fail_srcu;
2507 }
2508
2509 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2510 if (ret) {
2511 err = ret;
2512 goto fail_bdi;
2513 }
2514 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2515 (1 + ilog2(nr_cpu_ids));
2516
2517 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2518 if (ret) {
2519 err = ret;
2520 goto fail_dirty_metadata_bytes;
2521 }
2522
2523 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2524 if (ret) {
2525 err = ret;
2526 goto fail_delalloc_bytes;
2527 }
2528
2529 fs_info->btree_inode = new_inode(sb);
2530 if (!fs_info->btree_inode) {
2531 err = -ENOMEM;
2532 goto fail_bio_counter;
2533 }
2534
2535 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2536
2537 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2538 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2539 INIT_LIST_HEAD(&fs_info->trans_list);
2540 INIT_LIST_HEAD(&fs_info->dead_roots);
2541 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2542 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2543 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2544 spin_lock_init(&fs_info->delalloc_root_lock);
2545 spin_lock_init(&fs_info->trans_lock);
2546 spin_lock_init(&fs_info->fs_roots_radix_lock);
2547 spin_lock_init(&fs_info->delayed_iput_lock);
2548 spin_lock_init(&fs_info->defrag_inodes_lock);
2549 spin_lock_init(&fs_info->free_chunk_lock);
2550 spin_lock_init(&fs_info->tree_mod_seq_lock);
2551 spin_lock_init(&fs_info->super_lock);
2552 spin_lock_init(&fs_info->qgroup_op_lock);
2553 spin_lock_init(&fs_info->buffer_lock);
2554 spin_lock_init(&fs_info->unused_bgs_lock);
2555 rwlock_init(&fs_info->tree_mod_log_lock);
2556 mutex_init(&fs_info->unused_bg_unpin_mutex);
2557 mutex_init(&fs_info->delete_unused_bgs_mutex);
2558 mutex_init(&fs_info->reloc_mutex);
2559 mutex_init(&fs_info->delalloc_root_mutex);
2560 seqlock_init(&fs_info->profiles_lock);
2561 init_rwsem(&fs_info->delayed_iput_sem);
2562
2563 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2564 INIT_LIST_HEAD(&fs_info->space_info);
2565 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2566 INIT_LIST_HEAD(&fs_info->unused_bgs);
2567 btrfs_mapping_init(&fs_info->mapping_tree);
2568 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2569 BTRFS_BLOCK_RSV_GLOBAL);
2570 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2571 BTRFS_BLOCK_RSV_DELALLOC);
2572 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2573 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2574 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2575 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2576 BTRFS_BLOCK_RSV_DELOPS);
2577 atomic_set(&fs_info->nr_async_submits, 0);
2578 atomic_set(&fs_info->async_delalloc_pages, 0);
2579 atomic_set(&fs_info->async_submit_draining, 0);
2580 atomic_set(&fs_info->nr_async_bios, 0);
2581 atomic_set(&fs_info->defrag_running, 0);
2582 atomic_set(&fs_info->qgroup_op_seq, 0);
2583 atomic64_set(&fs_info->tree_mod_seq, 0);
2584 fs_info->sb = sb;
2585 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2586 fs_info->metadata_ratio = 0;
2587 fs_info->defrag_inodes = RB_ROOT;
2588 fs_info->free_chunk_space = 0;
2589 fs_info->tree_mod_log = RB_ROOT;
2590 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2591 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2592 /* readahead state */
2593 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2594 spin_lock_init(&fs_info->reada_lock);
2595
2596 fs_info->thread_pool_size = min_t(unsigned long,
2597 num_online_cpus() + 2, 8);
2598
2599 INIT_LIST_HEAD(&fs_info->ordered_roots);
2600 spin_lock_init(&fs_info->ordered_root_lock);
2601 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2602 GFP_NOFS);
2603 if (!fs_info->delayed_root) {
2604 err = -ENOMEM;
2605 goto fail_iput;
2606 }
2607 btrfs_init_delayed_root(fs_info->delayed_root);
2608
2609 btrfs_init_scrub(fs_info);
2610 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2611 fs_info->check_integrity_print_mask = 0;
2612 #endif
2613 btrfs_init_balance(fs_info);
2614 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2615
2616 sb->s_blocksize = 4096;
2617 sb->s_blocksize_bits = blksize_bits(4096);
2618 sb->s_bdi = &fs_info->bdi;
2619
2620 btrfs_init_btree_inode(fs_info, tree_root);
2621
2622 spin_lock_init(&fs_info->block_group_cache_lock);
2623 fs_info->block_group_cache_tree = RB_ROOT;
2624 fs_info->first_logical_byte = (u64)-1;
2625
2626 extent_io_tree_init(&fs_info->freed_extents[0],
2627 fs_info->btree_inode->i_mapping);
2628 extent_io_tree_init(&fs_info->freed_extents[1],
2629 fs_info->btree_inode->i_mapping);
2630 fs_info->pinned_extents = &fs_info->freed_extents[0];
2631 fs_info->do_barriers = 1;
2632
2633
2634 mutex_init(&fs_info->ordered_operations_mutex);
2635 mutex_init(&fs_info->tree_log_mutex);
2636 mutex_init(&fs_info->chunk_mutex);
2637 mutex_init(&fs_info->transaction_kthread_mutex);
2638 mutex_init(&fs_info->cleaner_mutex);
2639 mutex_init(&fs_info->volume_mutex);
2640 mutex_init(&fs_info->ro_block_group_mutex);
2641 init_rwsem(&fs_info->commit_root_sem);
2642 init_rwsem(&fs_info->cleanup_work_sem);
2643 init_rwsem(&fs_info->subvol_sem);
2644 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2645
2646 btrfs_init_dev_replace_locks(fs_info);
2647 btrfs_init_qgroup(fs_info);
2648
2649 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2650 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2651
2652 init_waitqueue_head(&fs_info->transaction_throttle);
2653 init_waitqueue_head(&fs_info->transaction_wait);
2654 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2655 init_waitqueue_head(&fs_info->async_submit_wait);
2656
2657 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2658
2659 ret = btrfs_alloc_stripe_hash_table(fs_info);
2660 if (ret) {
2661 err = ret;
2662 goto fail_alloc;
2663 }
2664
2665 __setup_root(4096, 4096, 4096, tree_root,
2666 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2667
2668 invalidate_bdev(fs_devices->latest_bdev);
2669
2670 /*
2671 * Read super block and check the signature bytes only
2672 */
2673 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2674 if (IS_ERR(bh)) {
2675 err = PTR_ERR(bh);
2676 goto fail_alloc;
2677 }
2678
2679 /*
2680 * We want to check superblock checksum, the type is stored inside.
2681 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2682 */
2683 if (btrfs_check_super_csum(bh->b_data)) {
2684 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2685 err = -EINVAL;
2686 brelse(bh);
2687 goto fail_alloc;
2688 }
2689
2690 /*
2691 * super_copy is zeroed at allocation time and we never touch the
2692 * following bytes up to INFO_SIZE, the checksum is calculated from
2693 * the whole block of INFO_SIZE
2694 */
2695 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2696 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2697 sizeof(*fs_info->super_for_commit));
2698 brelse(bh);
2699
2700 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2701
2702 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2703 if (ret) {
2704 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2705 err = -EINVAL;
2706 goto fail_alloc;
2707 }
2708
2709 disk_super = fs_info->super_copy;
2710 if (!btrfs_super_root(disk_super))
2711 goto fail_alloc;
2712
2713 /* check FS state, whether FS is broken. */
2714 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2715 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2716
2717 /*
2718 * run through our array of backup supers and setup
2719 * our ring pointer to the oldest one
2720 */
2721 generation = btrfs_super_generation(disk_super);
2722 find_oldest_super_backup(fs_info, generation);
2723
2724 /*
2725 * In the long term, we'll store the compression type in the super
2726 * block, and it'll be used for per file compression control.
2727 */
2728 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2729
2730 ret = btrfs_parse_options(tree_root, options);
2731 if (ret) {
2732 err = ret;
2733 goto fail_alloc;
2734 }
2735
2736 features = btrfs_super_incompat_flags(disk_super) &
2737 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2738 if (features) {
2739 printk(KERN_ERR "BTRFS: couldn't mount because of "
2740 "unsupported optional features (%Lx).\n",
2741 features);
2742 err = -EINVAL;
2743 goto fail_alloc;
2744 }
2745
2746 /*
2747 * Leafsize and nodesize were always equal, this is only a sanity check.
2748 */
2749 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2750 btrfs_super_nodesize(disk_super)) {
2751 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2752 "blocksizes don't match. node %d leaf %d\n",
2753 btrfs_super_nodesize(disk_super),
2754 le32_to_cpu(disk_super->__unused_leafsize));
2755 err = -EINVAL;
2756 goto fail_alloc;
2757 }
2758 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2759 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2760 "blocksize (%d) was too large\n",
2761 btrfs_super_nodesize(disk_super));
2762 err = -EINVAL;
2763 goto fail_alloc;
2764 }
2765
2766 features = btrfs_super_incompat_flags(disk_super);
2767 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2768 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2769 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2770
2771 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2772 printk(KERN_INFO "BTRFS: has skinny extents\n");
2773
2774 /*
2775 * flag our filesystem as having big metadata blocks if
2776 * they are bigger than the page size
2777 */
2778 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2779 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2780 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2781 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2782 }
2783
2784 nodesize = btrfs_super_nodesize(disk_super);
2785 sectorsize = btrfs_super_sectorsize(disk_super);
2786 stripesize = btrfs_super_stripesize(disk_super);
2787 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2788 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2789
2790 /*
2791 * mixed block groups end up with duplicate but slightly offset
2792 * extent buffers for the same range. It leads to corruptions
2793 */
2794 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2795 (sectorsize != nodesize)) {
2796 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2797 "are not allowed for mixed block groups on %s\n",
2798 sb->s_id);
2799 goto fail_alloc;
2800 }
2801
2802 /*
2803 * Needn't use the lock because there is no other task which will
2804 * update the flag.
2805 */
2806 btrfs_set_super_incompat_flags(disk_super, features);
2807
2808 features = btrfs_super_compat_ro_flags(disk_super) &
2809 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2810 if (!(sb->s_flags & MS_RDONLY) && features) {
2811 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2812 "unsupported option features (%Lx).\n",
2813 features);
2814 err = -EINVAL;
2815 goto fail_alloc;
2816 }
2817
2818 max_active = fs_info->thread_pool_size;
2819
2820 ret = btrfs_init_workqueues(fs_info, fs_devices);
2821 if (ret) {
2822 err = ret;
2823 goto fail_sb_buffer;
2824 }
2825
2826 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2827 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2828 SZ_4M / PAGE_CACHE_SIZE);
2829
2830 tree_root->nodesize = nodesize;
2831 tree_root->sectorsize = sectorsize;
2832 tree_root->stripesize = stripesize;
2833
2834 sb->s_blocksize = sectorsize;
2835 sb->s_blocksize_bits = blksize_bits(sectorsize);
2836
2837 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2838 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2839 goto fail_sb_buffer;
2840 }
2841
2842 if (sectorsize != PAGE_SIZE) {
2843 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2844 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2845 goto fail_sb_buffer;
2846 }
2847
2848 mutex_lock(&fs_info->chunk_mutex);
2849 ret = btrfs_read_sys_array(tree_root);
2850 mutex_unlock(&fs_info->chunk_mutex);
2851 if (ret) {
2852 printk(KERN_ERR "BTRFS: failed to read the system "
2853 "array on %s\n", sb->s_id);
2854 goto fail_sb_buffer;
2855 }
2856
2857 generation = btrfs_super_chunk_root_generation(disk_super);
2858
2859 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2860 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2861
2862 chunk_root->node = read_tree_block(chunk_root,
2863 btrfs_super_chunk_root(disk_super),
2864 generation);
2865 if (IS_ERR(chunk_root->node) ||
2866 !extent_buffer_uptodate(chunk_root->node)) {
2867 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2868 sb->s_id);
2869 if (!IS_ERR(chunk_root->node))
2870 free_extent_buffer(chunk_root->node);
2871 chunk_root->node = NULL;
2872 goto fail_tree_roots;
2873 }
2874 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2875 chunk_root->commit_root = btrfs_root_node(chunk_root);
2876
2877 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2878 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2879
2880 ret = btrfs_read_chunk_tree(chunk_root);
2881 if (ret) {
2882 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2883 sb->s_id);
2884 goto fail_tree_roots;
2885 }
2886
2887 /*
2888 * keep the device that is marked to be the target device for the
2889 * dev_replace procedure
2890 */
2891 btrfs_close_extra_devices(fs_devices, 0);
2892
2893 if (!fs_devices->latest_bdev) {
2894 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2895 sb->s_id);
2896 goto fail_tree_roots;
2897 }
2898
2899 retry_root_backup:
2900 generation = btrfs_super_generation(disk_super);
2901
2902 tree_root->node = read_tree_block(tree_root,
2903 btrfs_super_root(disk_super),
2904 generation);
2905 if (IS_ERR(tree_root->node) ||
2906 !extent_buffer_uptodate(tree_root->node)) {
2907 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2908 sb->s_id);
2909 if (!IS_ERR(tree_root->node))
2910 free_extent_buffer(tree_root->node);
2911 tree_root->node = NULL;
2912 goto recovery_tree_root;
2913 }
2914
2915 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2916 tree_root->commit_root = btrfs_root_node(tree_root);
2917 btrfs_set_root_refs(&tree_root->root_item, 1);
2918
2919 ret = btrfs_read_roots(fs_info, tree_root);
2920 if (ret)
2921 goto recovery_tree_root;
2922
2923 fs_info->generation = generation;
2924 fs_info->last_trans_committed = generation;
2925
2926 ret = btrfs_recover_balance(fs_info);
2927 if (ret) {
2928 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2929 goto fail_block_groups;
2930 }
2931
2932 ret = btrfs_init_dev_stats(fs_info);
2933 if (ret) {
2934 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2935 ret);
2936 goto fail_block_groups;
2937 }
2938
2939 ret = btrfs_init_dev_replace(fs_info);
2940 if (ret) {
2941 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2942 goto fail_block_groups;
2943 }
2944
2945 btrfs_close_extra_devices(fs_devices, 1);
2946
2947 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2948 if (ret) {
2949 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2950 goto fail_block_groups;
2951 }
2952
2953 ret = btrfs_sysfs_add_device(fs_devices);
2954 if (ret) {
2955 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2956 goto fail_fsdev_sysfs;
2957 }
2958
2959 ret = btrfs_sysfs_add_mounted(fs_info);
2960 if (ret) {
2961 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2962 goto fail_fsdev_sysfs;
2963 }
2964
2965 ret = btrfs_init_space_info(fs_info);
2966 if (ret) {
2967 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2968 goto fail_sysfs;
2969 }
2970
2971 ret = btrfs_read_block_groups(fs_info->extent_root);
2972 if (ret) {
2973 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2974 goto fail_sysfs;
2975 }
2976 fs_info->num_tolerated_disk_barrier_failures =
2977 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2978 if (fs_info->fs_devices->missing_devices >
2979 fs_info->num_tolerated_disk_barrier_failures &&
2980 !(sb->s_flags & MS_RDONLY)) {
2981 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2982 fs_info->fs_devices->missing_devices,
2983 fs_info->num_tolerated_disk_barrier_failures);
2984 goto fail_sysfs;
2985 }
2986
2987 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2988 "btrfs-cleaner");
2989 if (IS_ERR(fs_info->cleaner_kthread))
2990 goto fail_sysfs;
2991
2992 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2993 tree_root,
2994 "btrfs-transaction");
2995 if (IS_ERR(fs_info->transaction_kthread))
2996 goto fail_cleaner;
2997
2998 if (!btrfs_test_opt(tree_root, SSD) &&
2999 !btrfs_test_opt(tree_root, NOSSD) &&
3000 !fs_info->fs_devices->rotating) {
3001 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3002 "mode\n");
3003 btrfs_set_opt(fs_info->mount_opt, SSD);
3004 }
3005
3006 /*
3007 * Mount does not set all options immediatelly, we can do it now and do
3008 * not have to wait for transaction commit
3009 */
3010 btrfs_apply_pending_changes(fs_info);
3011
3012 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3013 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3014 ret = btrfsic_mount(tree_root, fs_devices,
3015 btrfs_test_opt(tree_root,
3016 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3017 1 : 0,
3018 fs_info->check_integrity_print_mask);
3019 if (ret)
3020 printk(KERN_WARNING "BTRFS: failed to initialize"
3021 " integrity check module %s\n", sb->s_id);
3022 }
3023 #endif
3024 ret = btrfs_read_qgroup_config(fs_info);
3025 if (ret)
3026 goto fail_trans_kthread;
3027
3028 /* do not make disk changes in broken FS */
3029 if (btrfs_super_log_root(disk_super) != 0) {
3030 ret = btrfs_replay_log(fs_info, fs_devices);
3031 if (ret) {
3032 err = ret;
3033 goto fail_qgroup;
3034 }
3035 }
3036
3037 ret = btrfs_find_orphan_roots(tree_root);
3038 if (ret)
3039 goto fail_qgroup;
3040
3041 if (!(sb->s_flags & MS_RDONLY)) {
3042 ret = btrfs_cleanup_fs_roots(fs_info);
3043 if (ret)
3044 goto fail_qgroup;
3045
3046 mutex_lock(&fs_info->cleaner_mutex);
3047 ret = btrfs_recover_relocation(tree_root);
3048 mutex_unlock(&fs_info->cleaner_mutex);
3049 if (ret < 0) {
3050 printk(KERN_WARNING
3051 "BTRFS: failed to recover relocation\n");
3052 err = -EINVAL;
3053 goto fail_qgroup;
3054 }
3055 }
3056
3057 location.objectid = BTRFS_FS_TREE_OBJECTID;
3058 location.type = BTRFS_ROOT_ITEM_KEY;
3059 location.offset = 0;
3060
3061 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3062 if (IS_ERR(fs_info->fs_root)) {
3063 err = PTR_ERR(fs_info->fs_root);
3064 goto fail_qgroup;
3065 }
3066
3067 if (sb->s_flags & MS_RDONLY)
3068 return 0;
3069
3070 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3071 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3072 pr_info("BTRFS: creating free space tree\n");
3073 ret = btrfs_create_free_space_tree(fs_info);
3074 if (ret) {
3075 pr_warn("BTRFS: failed to create free space tree %d\n",
3076 ret);
3077 close_ctree(tree_root);
3078 return ret;
3079 }
3080 }
3081
3082 down_read(&fs_info->cleanup_work_sem);
3083 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3084 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3085 up_read(&fs_info->cleanup_work_sem);
3086 close_ctree(tree_root);
3087 return ret;
3088 }
3089 up_read(&fs_info->cleanup_work_sem);
3090
3091 ret = btrfs_resume_balance_async(fs_info);
3092 if (ret) {
3093 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3094 close_ctree(tree_root);
3095 return ret;
3096 }
3097
3098 ret = btrfs_resume_dev_replace_async(fs_info);
3099 if (ret) {
3100 pr_warn("BTRFS: failed to resume dev_replace\n");
3101 close_ctree(tree_root);
3102 return ret;
3103 }
3104
3105 btrfs_qgroup_rescan_resume(fs_info);
3106
3107 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3108 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3109 pr_info("BTRFS: clearing free space tree\n");
3110 ret = btrfs_clear_free_space_tree(fs_info);
3111 if (ret) {
3112 pr_warn("BTRFS: failed to clear free space tree %d\n",
3113 ret);
3114 close_ctree(tree_root);
3115 return ret;
3116 }
3117 }
3118
3119 if (!fs_info->uuid_root) {
3120 pr_info("BTRFS: creating UUID tree\n");
3121 ret = btrfs_create_uuid_tree(fs_info);
3122 if (ret) {
3123 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3124 ret);
3125 close_ctree(tree_root);
3126 return ret;
3127 }
3128 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3129 fs_info->generation !=
3130 btrfs_super_uuid_tree_generation(disk_super)) {
3131 pr_info("BTRFS: checking UUID tree\n");
3132 ret = btrfs_check_uuid_tree(fs_info);
3133 if (ret) {
3134 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3135 ret);
3136 close_ctree(tree_root);
3137 return ret;
3138 }
3139 } else {
3140 fs_info->update_uuid_tree_gen = 1;
3141 }
3142
3143 fs_info->open = 1;
3144
3145 return 0;
3146
3147 fail_qgroup:
3148 btrfs_free_qgroup_config(fs_info);
3149 fail_trans_kthread:
3150 kthread_stop(fs_info->transaction_kthread);
3151 btrfs_cleanup_transaction(fs_info->tree_root);
3152 btrfs_free_fs_roots(fs_info);
3153 fail_cleaner:
3154 kthread_stop(fs_info->cleaner_kthread);
3155
3156 /*
3157 * make sure we're done with the btree inode before we stop our
3158 * kthreads
3159 */
3160 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3161
3162 fail_sysfs:
3163 btrfs_sysfs_remove_mounted(fs_info);
3164
3165 fail_fsdev_sysfs:
3166 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3167
3168 fail_block_groups:
3169 btrfs_put_block_group_cache(fs_info);
3170 btrfs_free_block_groups(fs_info);
3171
3172 fail_tree_roots:
3173 free_root_pointers(fs_info, 1);
3174 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3175
3176 fail_sb_buffer:
3177 btrfs_stop_all_workers(fs_info);
3178 fail_alloc:
3179 fail_iput:
3180 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3181
3182 iput(fs_info->btree_inode);
3183 fail_bio_counter:
3184 percpu_counter_destroy(&fs_info->bio_counter);
3185 fail_delalloc_bytes:
3186 percpu_counter_destroy(&fs_info->delalloc_bytes);
3187 fail_dirty_metadata_bytes:
3188 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3189 fail_bdi:
3190 bdi_destroy(&fs_info->bdi);
3191 fail_srcu:
3192 cleanup_srcu_struct(&fs_info->subvol_srcu);
3193 fail:
3194 btrfs_free_stripe_hash_table(fs_info);
3195 btrfs_close_devices(fs_info->fs_devices);
3196 return err;
3197
3198 recovery_tree_root:
3199 if (!btrfs_test_opt(tree_root, RECOVERY))
3200 goto fail_tree_roots;
3201
3202 free_root_pointers(fs_info, 0);
3203
3204 /* don't use the log in recovery mode, it won't be valid */
3205 btrfs_set_super_log_root(disk_super, 0);
3206
3207 /* we can't trust the free space cache either */
3208 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3209
3210 ret = next_root_backup(fs_info, fs_info->super_copy,
3211 &num_backups_tried, &backup_index);
3212 if (ret == -1)
3213 goto fail_block_groups;
3214 goto retry_root_backup;
3215 }
3216
3217 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3218 {
3219 if (uptodate) {
3220 set_buffer_uptodate(bh);
3221 } else {
3222 struct btrfs_device *device = (struct btrfs_device *)
3223 bh->b_private;
3224
3225 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3226 "lost page write due to IO error on %s",
3227 rcu_str_deref(device->name));
3228 /* note, we dont' set_buffer_write_io_error because we have
3229 * our own ways of dealing with the IO errors
3230 */
3231 clear_buffer_uptodate(bh);
3232 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3233 }
3234 unlock_buffer(bh);
3235 put_bh(bh);
3236 }
3237
3238 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3239 struct buffer_head **bh_ret)
3240 {
3241 struct buffer_head *bh;
3242 struct btrfs_super_block *super;
3243 u64 bytenr;
3244
3245 bytenr = btrfs_sb_offset(copy_num);
3246 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3247 return -EINVAL;
3248
3249 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3250 /*
3251 * If we fail to read from the underlying devices, as of now
3252 * the best option we have is to mark it EIO.
3253 */
3254 if (!bh)
3255 return -EIO;
3256
3257 super = (struct btrfs_super_block *)bh->b_data;
3258 if (btrfs_super_bytenr(super) != bytenr ||
3259 btrfs_super_magic(super) != BTRFS_MAGIC) {
3260 brelse(bh);
3261 return -EINVAL;
3262 }
3263
3264 *bh_ret = bh;
3265 return 0;
3266 }
3267
3268
3269 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3270 {
3271 struct buffer_head *bh;
3272 struct buffer_head *latest = NULL;
3273 struct btrfs_super_block *super;
3274 int i;
3275 u64 transid = 0;
3276 int ret = -EINVAL;
3277
3278 /* we would like to check all the supers, but that would make
3279 * a btrfs mount succeed after a mkfs from a different FS.
3280 * So, we need to add a special mount option to scan for
3281 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3282 */
3283 for (i = 0; i < 1; i++) {
3284 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3285 if (ret)
3286 continue;
3287
3288 super = (struct btrfs_super_block *)bh->b_data;
3289
3290 if (!latest || btrfs_super_generation(super) > transid) {
3291 brelse(latest);
3292 latest = bh;
3293 transid = btrfs_super_generation(super);
3294 } else {
3295 brelse(bh);
3296 }
3297 }
3298
3299 if (!latest)
3300 return ERR_PTR(ret);
3301
3302 return latest;
3303 }
3304
3305 /*
3306 * this should be called twice, once with wait == 0 and
3307 * once with wait == 1. When wait == 0 is done, all the buffer heads
3308 * we write are pinned.
3309 *
3310 * They are released when wait == 1 is done.
3311 * max_mirrors must be the same for both runs, and it indicates how
3312 * many supers on this one device should be written.
3313 *
3314 * max_mirrors == 0 means to write them all.
3315 */
3316 static int write_dev_supers(struct btrfs_device *device,
3317 struct btrfs_super_block *sb,
3318 int do_barriers, int wait, int max_mirrors)
3319 {
3320 struct buffer_head *bh;
3321 int i;
3322 int ret;
3323 int errors = 0;
3324 u32 crc;
3325 u64 bytenr;
3326
3327 if (max_mirrors == 0)
3328 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3329
3330 for (i = 0; i < max_mirrors; i++) {
3331 bytenr = btrfs_sb_offset(i);
3332 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3333 device->commit_total_bytes)
3334 break;
3335
3336 if (wait) {
3337 bh = __find_get_block(device->bdev, bytenr / 4096,
3338 BTRFS_SUPER_INFO_SIZE);
3339 if (!bh) {
3340 errors++;
3341 continue;
3342 }
3343 wait_on_buffer(bh);
3344 if (!buffer_uptodate(bh))
3345 errors++;
3346
3347 /* drop our reference */
3348 brelse(bh);
3349
3350 /* drop the reference from the wait == 0 run */
3351 brelse(bh);
3352 continue;
3353 } else {
3354 btrfs_set_super_bytenr(sb, bytenr);
3355
3356 crc = ~(u32)0;
3357 crc = btrfs_csum_data((char *)sb +
3358 BTRFS_CSUM_SIZE, crc,
3359 BTRFS_SUPER_INFO_SIZE -
3360 BTRFS_CSUM_SIZE);
3361 btrfs_csum_final(crc, sb->csum);
3362
3363 /*
3364 * one reference for us, and we leave it for the
3365 * caller
3366 */
3367 bh = __getblk(device->bdev, bytenr / 4096,
3368 BTRFS_SUPER_INFO_SIZE);
3369 if (!bh) {
3370 btrfs_err(device->dev_root->fs_info,
3371 "couldn't get super buffer head for bytenr %llu",
3372 bytenr);
3373 errors++;
3374 continue;
3375 }
3376
3377 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3378
3379 /* one reference for submit_bh */
3380 get_bh(bh);
3381
3382 set_buffer_uptodate(bh);
3383 lock_buffer(bh);
3384 bh->b_end_io = btrfs_end_buffer_write_sync;
3385 bh->b_private = device;
3386 }
3387
3388 /*
3389 * we fua the first super. The others we allow
3390 * to go down lazy.
3391 */
3392 if (i == 0)
3393 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3394 else
3395 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3396 if (ret)
3397 errors++;
3398 }
3399 return errors < i ? 0 : -1;
3400 }
3401
3402 /*
3403 * endio for the write_dev_flush, this will wake anyone waiting
3404 * for the barrier when it is done
3405 */
3406 static void btrfs_end_empty_barrier(struct bio *bio)
3407 {
3408 if (bio->bi_private)
3409 complete(bio->bi_private);
3410 bio_put(bio);
3411 }
3412
3413 /*
3414 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3415 * sent down. With wait == 1, it waits for the previous flush.
3416 *
3417 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3418 * capable
3419 */
3420 static int write_dev_flush(struct btrfs_device *device, int wait)
3421 {
3422 struct bio *bio;
3423 int ret = 0;
3424
3425 if (device->nobarriers)
3426 return 0;
3427
3428 if (wait) {
3429 bio = device->flush_bio;
3430 if (!bio)
3431 return 0;
3432
3433 wait_for_completion(&device->flush_wait);
3434
3435 if (bio->bi_error) {
3436 ret = bio->bi_error;
3437 btrfs_dev_stat_inc_and_print(device,
3438 BTRFS_DEV_STAT_FLUSH_ERRS);
3439 }
3440
3441 /* drop the reference from the wait == 0 run */
3442 bio_put(bio);
3443 device->flush_bio = NULL;
3444
3445 return ret;
3446 }
3447
3448 /*
3449 * one reference for us, and we leave it for the
3450 * caller
3451 */
3452 device->flush_bio = NULL;
3453 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3454 if (!bio)
3455 return -ENOMEM;
3456
3457 bio->bi_end_io = btrfs_end_empty_barrier;
3458 bio->bi_bdev = device->bdev;
3459 init_completion(&device->flush_wait);
3460 bio->bi_private = &device->flush_wait;
3461 device->flush_bio = bio;
3462
3463 bio_get(bio);
3464 btrfsic_submit_bio(WRITE_FLUSH, bio);
3465
3466 return 0;
3467 }
3468
3469 /*
3470 * send an empty flush down to each device in parallel,
3471 * then wait for them
3472 */
3473 static int barrier_all_devices(struct btrfs_fs_info *info)
3474 {
3475 struct list_head *head;
3476 struct btrfs_device *dev;
3477 int errors_send = 0;
3478 int errors_wait = 0;
3479 int ret;
3480
3481 /* send down all the barriers */
3482 head = &info->fs_devices->devices;
3483 list_for_each_entry_rcu(dev, head, dev_list) {
3484 if (dev->missing)
3485 continue;
3486 if (!dev->bdev) {
3487 errors_send++;
3488 continue;
3489 }
3490 if (!dev->in_fs_metadata || !dev->writeable)
3491 continue;
3492
3493 ret = write_dev_flush(dev, 0);
3494 if (ret)
3495 errors_send++;
3496 }
3497
3498 /* wait for all the barriers */
3499 list_for_each_entry_rcu(dev, head, dev_list) {
3500 if (dev->missing)
3501 continue;
3502 if (!dev->bdev) {
3503 errors_wait++;
3504 continue;
3505 }
3506 if (!dev->in_fs_metadata || !dev->writeable)
3507 continue;
3508
3509 ret = write_dev_flush(dev, 1);
3510 if (ret)
3511 errors_wait++;
3512 }
3513 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3514 errors_wait > info->num_tolerated_disk_barrier_failures)
3515 return -EIO;
3516 return 0;
3517 }
3518
3519 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3520 {
3521 int raid_type;
3522 int min_tolerated = INT_MAX;
3523
3524 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3525 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3526 min_tolerated = min(min_tolerated,
3527 btrfs_raid_array[BTRFS_RAID_SINGLE].
3528 tolerated_failures);
3529
3530 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3531 if (raid_type == BTRFS_RAID_SINGLE)
3532 continue;
3533 if (!(flags & btrfs_raid_group[raid_type]))
3534 continue;
3535 min_tolerated = min(min_tolerated,
3536 btrfs_raid_array[raid_type].
3537 tolerated_failures);
3538 }
3539
3540 if (min_tolerated == INT_MAX) {
3541 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3542 min_tolerated = 0;
3543 }
3544
3545 return min_tolerated;
3546 }
3547
3548 int btrfs_calc_num_tolerated_disk_barrier_failures(
3549 struct btrfs_fs_info *fs_info)
3550 {
3551 struct btrfs_ioctl_space_info space;
3552 struct btrfs_space_info *sinfo;
3553 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3554 BTRFS_BLOCK_GROUP_SYSTEM,
3555 BTRFS_BLOCK_GROUP_METADATA,
3556 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3557 int i;
3558 int c;
3559 int num_tolerated_disk_barrier_failures =
3560 (int)fs_info->fs_devices->num_devices;
3561
3562 for (i = 0; i < ARRAY_SIZE(types); i++) {
3563 struct btrfs_space_info *tmp;
3564
3565 sinfo = NULL;
3566 rcu_read_lock();
3567 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3568 if (tmp->flags == types[i]) {
3569 sinfo = tmp;
3570 break;
3571 }
3572 }
3573 rcu_read_unlock();
3574
3575 if (!sinfo)
3576 continue;
3577
3578 down_read(&sinfo->groups_sem);
3579 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3580 u64 flags;
3581
3582 if (list_empty(&sinfo->block_groups[c]))
3583 continue;
3584
3585 btrfs_get_block_group_info(&sinfo->block_groups[c],
3586 &space);
3587 if (space.total_bytes == 0 || space.used_bytes == 0)
3588 continue;
3589 flags = space.flags;
3590
3591 num_tolerated_disk_barrier_failures = min(
3592 num_tolerated_disk_barrier_failures,
3593 btrfs_get_num_tolerated_disk_barrier_failures(
3594 flags));
3595 }
3596 up_read(&sinfo->groups_sem);
3597 }
3598
3599 return num_tolerated_disk_barrier_failures;
3600 }
3601
3602 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3603 {
3604 struct list_head *head;
3605 struct btrfs_device *dev;
3606 struct btrfs_super_block *sb;
3607 struct btrfs_dev_item *dev_item;
3608 int ret;
3609 int do_barriers;
3610 int max_errors;
3611 int total_errors = 0;
3612 u64 flags;
3613
3614 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3615 backup_super_roots(root->fs_info);
3616
3617 sb = root->fs_info->super_for_commit;
3618 dev_item = &sb->dev_item;
3619
3620 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3621 head = &root->fs_info->fs_devices->devices;
3622 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3623
3624 if (do_barriers) {
3625 ret = barrier_all_devices(root->fs_info);
3626 if (ret) {
3627 mutex_unlock(
3628 &root->fs_info->fs_devices->device_list_mutex);
3629 btrfs_std_error(root->fs_info, ret,
3630 "errors while submitting device barriers.");
3631 return ret;
3632 }
3633 }
3634
3635 list_for_each_entry_rcu(dev, head, dev_list) {
3636 if (!dev->bdev) {
3637 total_errors++;
3638 continue;
3639 }
3640 if (!dev->in_fs_metadata || !dev->writeable)
3641 continue;
3642
3643 btrfs_set_stack_device_generation(dev_item, 0);
3644 btrfs_set_stack_device_type(dev_item, dev->type);
3645 btrfs_set_stack_device_id(dev_item, dev->devid);
3646 btrfs_set_stack_device_total_bytes(dev_item,
3647 dev->commit_total_bytes);
3648 btrfs_set_stack_device_bytes_used(dev_item,
3649 dev->commit_bytes_used);
3650 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3651 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3652 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3653 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3654 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3655
3656 flags = btrfs_super_flags(sb);
3657 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3658
3659 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3660 if (ret)
3661 total_errors++;
3662 }
3663 if (total_errors > max_errors) {
3664 btrfs_err(root->fs_info, "%d errors while writing supers",
3665 total_errors);
3666 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3667
3668 /* FUA is masked off if unsupported and can't be the reason */
3669 btrfs_std_error(root->fs_info, -EIO,
3670 "%d errors while writing supers", total_errors);
3671 return -EIO;
3672 }
3673
3674 total_errors = 0;
3675 list_for_each_entry_rcu(dev, head, dev_list) {
3676 if (!dev->bdev)
3677 continue;
3678 if (!dev->in_fs_metadata || !dev->writeable)
3679 continue;
3680
3681 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3682 if (ret)
3683 total_errors++;
3684 }
3685 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3686 if (total_errors > max_errors) {
3687 btrfs_std_error(root->fs_info, -EIO,
3688 "%d errors while writing supers", total_errors);
3689 return -EIO;
3690 }
3691 return 0;
3692 }
3693
3694 int write_ctree_super(struct btrfs_trans_handle *trans,
3695 struct btrfs_root *root, int max_mirrors)
3696 {
3697 return write_all_supers(root, max_mirrors);
3698 }
3699
3700 /* Drop a fs root from the radix tree and free it. */
3701 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3702 struct btrfs_root *root)
3703 {
3704 spin_lock(&fs_info->fs_roots_radix_lock);
3705 radix_tree_delete(&fs_info->fs_roots_radix,
3706 (unsigned long)root->root_key.objectid);
3707 spin_unlock(&fs_info->fs_roots_radix_lock);
3708
3709 if (btrfs_root_refs(&root->root_item) == 0)
3710 synchronize_srcu(&fs_info->subvol_srcu);
3711
3712 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3713 btrfs_free_log(NULL, root);
3714
3715 if (root->free_ino_pinned)
3716 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3717 if (root->free_ino_ctl)
3718 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3719 free_fs_root(root);
3720 }
3721
3722 static void free_fs_root(struct btrfs_root *root)
3723 {
3724 iput(root->ino_cache_inode);
3725 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3726 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3727 root->orphan_block_rsv = NULL;
3728 if (root->anon_dev)
3729 free_anon_bdev(root->anon_dev);
3730 if (root->subv_writers)
3731 btrfs_free_subvolume_writers(root->subv_writers);
3732 free_extent_buffer(root->node);
3733 free_extent_buffer(root->commit_root);
3734 kfree(root->free_ino_ctl);
3735 kfree(root->free_ino_pinned);
3736 kfree(root->name);
3737 btrfs_put_fs_root(root);
3738 }
3739
3740 void btrfs_free_fs_root(struct btrfs_root *root)
3741 {
3742 free_fs_root(root);
3743 }
3744
3745 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3746 {
3747 u64 root_objectid = 0;
3748 struct btrfs_root *gang[8];
3749 int i = 0;
3750 int err = 0;
3751 unsigned int ret = 0;
3752 int index;
3753
3754 while (1) {
3755 index = srcu_read_lock(&fs_info->subvol_srcu);
3756 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3757 (void **)gang, root_objectid,
3758 ARRAY_SIZE(gang));
3759 if (!ret) {
3760 srcu_read_unlock(&fs_info->subvol_srcu, index);
3761 break;
3762 }
3763 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3764
3765 for (i = 0; i < ret; i++) {
3766 /* Avoid to grab roots in dead_roots */
3767 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3768 gang[i] = NULL;
3769 continue;
3770 }
3771 /* grab all the search result for later use */
3772 gang[i] = btrfs_grab_fs_root(gang[i]);
3773 }
3774 srcu_read_unlock(&fs_info->subvol_srcu, index);
3775
3776 for (i = 0; i < ret; i++) {
3777 if (!gang[i])
3778 continue;
3779 root_objectid = gang[i]->root_key.objectid;
3780 err = btrfs_orphan_cleanup(gang[i]);
3781 if (err)
3782 break;
3783 btrfs_put_fs_root(gang[i]);
3784 }
3785 root_objectid++;
3786 }
3787
3788 /* release the uncleaned roots due to error */
3789 for (; i < ret; i++) {
3790 if (gang[i])
3791 btrfs_put_fs_root(gang[i]);
3792 }
3793 return err;
3794 }
3795
3796 int btrfs_commit_super(struct btrfs_root *root)
3797 {
3798 struct btrfs_trans_handle *trans;
3799
3800 mutex_lock(&root->fs_info->cleaner_mutex);
3801 btrfs_run_delayed_iputs(root);
3802 mutex_unlock(&root->fs_info->cleaner_mutex);
3803 wake_up_process(root->fs_info->cleaner_kthread);
3804
3805 /* wait until ongoing cleanup work done */
3806 down_write(&root->fs_info->cleanup_work_sem);
3807 up_write(&root->fs_info->cleanup_work_sem);
3808
3809 trans = btrfs_join_transaction(root);
3810 if (IS_ERR(trans))
3811 return PTR_ERR(trans);
3812 return btrfs_commit_transaction(trans, root);
3813 }
3814
3815 void close_ctree(struct btrfs_root *root)
3816 {
3817 struct btrfs_fs_info *fs_info = root->fs_info;
3818 int ret;
3819
3820 fs_info->closing = 1;
3821 smp_mb();
3822
3823 /* wait for the qgroup rescan worker to stop */
3824 btrfs_qgroup_wait_for_completion(fs_info);
3825
3826 /* wait for the uuid_scan task to finish */
3827 down(&fs_info->uuid_tree_rescan_sem);
3828 /* avoid complains from lockdep et al., set sem back to initial state */
3829 up(&fs_info->uuid_tree_rescan_sem);
3830
3831 /* pause restriper - we want to resume on mount */
3832 btrfs_pause_balance(fs_info);
3833
3834 btrfs_dev_replace_suspend_for_unmount(fs_info);
3835
3836 btrfs_scrub_cancel(fs_info);
3837
3838 /* wait for any defraggers to finish */
3839 wait_event(fs_info->transaction_wait,
3840 (atomic_read(&fs_info->defrag_running) == 0));
3841
3842 /* clear out the rbtree of defraggable inodes */
3843 btrfs_cleanup_defrag_inodes(fs_info);
3844
3845 cancel_work_sync(&fs_info->async_reclaim_work);
3846
3847 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3848 /*
3849 * If the cleaner thread is stopped and there are
3850 * block groups queued for removal, the deletion will be
3851 * skipped when we quit the cleaner thread.
3852 */
3853 btrfs_delete_unused_bgs(root->fs_info);
3854
3855 ret = btrfs_commit_super(root);
3856 if (ret)
3857 btrfs_err(fs_info, "commit super ret %d", ret);
3858 }
3859
3860 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3861 btrfs_error_commit_super(root);
3862
3863 kthread_stop(fs_info->transaction_kthread);
3864 kthread_stop(fs_info->cleaner_kthread);
3865
3866 fs_info->closing = 2;
3867 smp_mb();
3868
3869 btrfs_free_qgroup_config(fs_info);
3870
3871 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3872 btrfs_info(fs_info, "at unmount delalloc count %lld",
3873 percpu_counter_sum(&fs_info->delalloc_bytes));
3874 }
3875
3876 btrfs_sysfs_remove_mounted(fs_info);
3877 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3878
3879 btrfs_free_fs_roots(fs_info);
3880
3881 btrfs_put_block_group_cache(fs_info);
3882
3883 btrfs_free_block_groups(fs_info);
3884
3885 /*
3886 * we must make sure there is not any read request to
3887 * submit after we stopping all workers.
3888 */
3889 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3890 btrfs_stop_all_workers(fs_info);
3891
3892 fs_info->open = 0;
3893 free_root_pointers(fs_info, 1);
3894
3895 iput(fs_info->btree_inode);
3896
3897 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3898 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3899 btrfsic_unmount(root, fs_info->fs_devices);
3900 #endif
3901
3902 btrfs_close_devices(fs_info->fs_devices);
3903 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3904
3905 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3906 percpu_counter_destroy(&fs_info->delalloc_bytes);
3907 percpu_counter_destroy(&fs_info->bio_counter);
3908 bdi_destroy(&fs_info->bdi);
3909 cleanup_srcu_struct(&fs_info->subvol_srcu);
3910
3911 btrfs_free_stripe_hash_table(fs_info);
3912
3913 __btrfs_free_block_rsv(root->orphan_block_rsv);
3914 root->orphan_block_rsv = NULL;
3915
3916 lock_chunks(root);
3917 while (!list_empty(&fs_info->pinned_chunks)) {
3918 struct extent_map *em;
3919
3920 em = list_first_entry(&fs_info->pinned_chunks,
3921 struct extent_map, list);
3922 list_del_init(&em->list);
3923 free_extent_map(em);
3924 }
3925 unlock_chunks(root);
3926 }
3927
3928 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3929 int atomic)
3930 {
3931 int ret;
3932 struct inode *btree_inode = buf->pages[0]->mapping->host;
3933
3934 ret = extent_buffer_uptodate(buf);
3935 if (!ret)
3936 return ret;
3937
3938 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3939 parent_transid, atomic);
3940 if (ret == -EAGAIN)
3941 return ret;
3942 return !ret;
3943 }
3944
3945 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3946 {
3947 struct btrfs_root *root;
3948 u64 transid = btrfs_header_generation(buf);
3949 int was_dirty;
3950
3951 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3952 /*
3953 * This is a fast path so only do this check if we have sanity tests
3954 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3955 * outside of the sanity tests.
3956 */
3957 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3958 return;
3959 #endif
3960 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3961 btrfs_assert_tree_locked(buf);
3962 if (transid != root->fs_info->generation)
3963 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3964 "found %llu running %llu\n",
3965 buf->start, transid, root->fs_info->generation);
3966 was_dirty = set_extent_buffer_dirty(buf);
3967 if (!was_dirty)
3968 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3969 buf->len,
3970 root->fs_info->dirty_metadata_batch);
3971 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3972 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3973 btrfs_print_leaf(root, buf);
3974 ASSERT(0);
3975 }
3976 #endif
3977 }
3978
3979 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3980 int flush_delayed)
3981 {
3982 /*
3983 * looks as though older kernels can get into trouble with
3984 * this code, they end up stuck in balance_dirty_pages forever
3985 */
3986 int ret;
3987
3988 if (current->flags & PF_MEMALLOC)
3989 return;
3990
3991 if (flush_delayed)
3992 btrfs_balance_delayed_items(root);
3993
3994 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3995 BTRFS_DIRTY_METADATA_THRESH);
3996 if (ret > 0) {
3997 balance_dirty_pages_ratelimited(
3998 root->fs_info->btree_inode->i_mapping);
3999 }
4000 }
4001
4002 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4003 {
4004 __btrfs_btree_balance_dirty(root, 1);
4005 }
4006
4007 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4008 {
4009 __btrfs_btree_balance_dirty(root, 0);
4010 }
4011
4012 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4013 {
4014 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4015 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4016 }
4017
4018 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4019 int read_only)
4020 {
4021 struct btrfs_super_block *sb = fs_info->super_copy;
4022 int ret = 0;
4023
4024 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4025 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4026 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4027 ret = -EINVAL;
4028 }
4029 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4030 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4031 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4032 ret = -EINVAL;
4033 }
4034 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4035 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4036 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4037 ret = -EINVAL;
4038 }
4039
4040 /*
4041 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4042 * items yet, they'll be verified later. Issue just a warning.
4043 */
4044 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4045 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4046 btrfs_super_root(sb));
4047 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4048 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4049 btrfs_super_chunk_root(sb));
4050 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4051 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4052 btrfs_super_log_root(sb));
4053
4054 /*
4055 * Check the lower bound, the alignment and other constraints are
4056 * checked later.
4057 */
4058 if (btrfs_super_nodesize(sb) < 4096) {
4059 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4060 btrfs_super_nodesize(sb));
4061 ret = -EINVAL;
4062 }
4063 if (btrfs_super_sectorsize(sb) < 4096) {
4064 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4065 btrfs_super_sectorsize(sb));
4066 ret = -EINVAL;
4067 }
4068
4069 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4070 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4071 fs_info->fsid, sb->dev_item.fsid);
4072 ret = -EINVAL;
4073 }
4074
4075 /*
4076 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4077 * done later
4078 */
4079 if (btrfs_super_num_devices(sb) > (1UL << 31))
4080 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4081 btrfs_super_num_devices(sb));
4082 if (btrfs_super_num_devices(sb) == 0) {
4083 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4084 ret = -EINVAL;
4085 }
4086
4087 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4088 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4089 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4090 ret = -EINVAL;
4091 }
4092
4093 /*
4094 * Obvious sys_chunk_array corruptions, it must hold at least one key
4095 * and one chunk
4096 */
4097 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4098 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4099 btrfs_super_sys_array_size(sb),
4100 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4101 ret = -EINVAL;
4102 }
4103 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4104 + sizeof(struct btrfs_chunk)) {
4105 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4106 btrfs_super_sys_array_size(sb),
4107 sizeof(struct btrfs_disk_key)
4108 + sizeof(struct btrfs_chunk));
4109 ret = -EINVAL;
4110 }
4111
4112 /*
4113 * The generation is a global counter, we'll trust it more than the others
4114 * but it's still possible that it's the one that's wrong.
4115 */
4116 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4117 printk(KERN_WARNING
4118 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4119 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4120 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4121 && btrfs_super_cache_generation(sb) != (u64)-1)
4122 printk(KERN_WARNING
4123 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4124 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4125
4126 return ret;
4127 }
4128
4129 static void btrfs_error_commit_super(struct btrfs_root *root)
4130 {
4131 mutex_lock(&root->fs_info->cleaner_mutex);
4132 btrfs_run_delayed_iputs(root);
4133 mutex_unlock(&root->fs_info->cleaner_mutex);
4134
4135 down_write(&root->fs_info->cleanup_work_sem);
4136 up_write(&root->fs_info->cleanup_work_sem);
4137
4138 /* cleanup FS via transaction */
4139 btrfs_cleanup_transaction(root);
4140 }
4141
4142 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4143 {
4144 struct btrfs_ordered_extent *ordered;
4145
4146 spin_lock(&root->ordered_extent_lock);
4147 /*
4148 * This will just short circuit the ordered completion stuff which will
4149 * make sure the ordered extent gets properly cleaned up.
4150 */
4151 list_for_each_entry(ordered, &root->ordered_extents,
4152 root_extent_list)
4153 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4154 spin_unlock(&root->ordered_extent_lock);
4155 }
4156
4157 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4158 {
4159 struct btrfs_root *root;
4160 struct list_head splice;
4161
4162 INIT_LIST_HEAD(&splice);
4163
4164 spin_lock(&fs_info->ordered_root_lock);
4165 list_splice_init(&fs_info->ordered_roots, &splice);
4166 while (!list_empty(&splice)) {
4167 root = list_first_entry(&splice, struct btrfs_root,
4168 ordered_root);
4169 list_move_tail(&root->ordered_root,
4170 &fs_info->ordered_roots);
4171
4172 spin_unlock(&fs_info->ordered_root_lock);
4173 btrfs_destroy_ordered_extents(root);
4174
4175 cond_resched();
4176 spin_lock(&fs_info->ordered_root_lock);
4177 }
4178 spin_unlock(&fs_info->ordered_root_lock);
4179 }
4180
4181 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4182 struct btrfs_root *root)
4183 {
4184 struct rb_node *node;
4185 struct btrfs_delayed_ref_root *delayed_refs;
4186 struct btrfs_delayed_ref_node *ref;
4187 int ret = 0;
4188
4189 delayed_refs = &trans->delayed_refs;
4190
4191 spin_lock(&delayed_refs->lock);
4192 if (atomic_read(&delayed_refs->num_entries) == 0) {
4193 spin_unlock(&delayed_refs->lock);
4194 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4195 return ret;
4196 }
4197
4198 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4199 struct btrfs_delayed_ref_head *head;
4200 struct btrfs_delayed_ref_node *tmp;
4201 bool pin_bytes = false;
4202
4203 head = rb_entry(node, struct btrfs_delayed_ref_head,
4204 href_node);
4205 if (!mutex_trylock(&head->mutex)) {
4206 atomic_inc(&head->node.refs);
4207 spin_unlock(&delayed_refs->lock);
4208
4209 mutex_lock(&head->mutex);
4210 mutex_unlock(&head->mutex);
4211 btrfs_put_delayed_ref(&head->node);
4212 spin_lock(&delayed_refs->lock);
4213 continue;
4214 }
4215 spin_lock(&head->lock);
4216 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4217 list) {
4218 ref->in_tree = 0;
4219 list_del(&ref->list);
4220 atomic_dec(&delayed_refs->num_entries);
4221 btrfs_put_delayed_ref(ref);
4222 }
4223 if (head->must_insert_reserved)
4224 pin_bytes = true;
4225 btrfs_free_delayed_extent_op(head->extent_op);
4226 delayed_refs->num_heads--;
4227 if (head->processing == 0)
4228 delayed_refs->num_heads_ready--;
4229 atomic_dec(&delayed_refs->num_entries);
4230 head->node.in_tree = 0;
4231 rb_erase(&head->href_node, &delayed_refs->href_root);
4232 spin_unlock(&head->lock);
4233 spin_unlock(&delayed_refs->lock);
4234 mutex_unlock(&head->mutex);
4235
4236 if (pin_bytes)
4237 btrfs_pin_extent(root, head->node.bytenr,
4238 head->node.num_bytes, 1);
4239 btrfs_put_delayed_ref(&head->node);
4240 cond_resched();
4241 spin_lock(&delayed_refs->lock);
4242 }
4243
4244 spin_unlock(&delayed_refs->lock);
4245
4246 return ret;
4247 }
4248
4249 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4250 {
4251 struct btrfs_inode *btrfs_inode;
4252 struct list_head splice;
4253
4254 INIT_LIST_HEAD(&splice);
4255
4256 spin_lock(&root->delalloc_lock);
4257 list_splice_init(&root->delalloc_inodes, &splice);
4258
4259 while (!list_empty(&splice)) {
4260 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4261 delalloc_inodes);
4262
4263 list_del_init(&btrfs_inode->delalloc_inodes);
4264 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4265 &btrfs_inode->runtime_flags);
4266 spin_unlock(&root->delalloc_lock);
4267
4268 btrfs_invalidate_inodes(btrfs_inode->root);
4269
4270 spin_lock(&root->delalloc_lock);
4271 }
4272
4273 spin_unlock(&root->delalloc_lock);
4274 }
4275
4276 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4277 {
4278 struct btrfs_root *root;
4279 struct list_head splice;
4280
4281 INIT_LIST_HEAD(&splice);
4282
4283 spin_lock(&fs_info->delalloc_root_lock);
4284 list_splice_init(&fs_info->delalloc_roots, &splice);
4285 while (!list_empty(&splice)) {
4286 root = list_first_entry(&splice, struct btrfs_root,
4287 delalloc_root);
4288 list_del_init(&root->delalloc_root);
4289 root = btrfs_grab_fs_root(root);
4290 BUG_ON(!root);
4291 spin_unlock(&fs_info->delalloc_root_lock);
4292
4293 btrfs_destroy_delalloc_inodes(root);
4294 btrfs_put_fs_root(root);
4295
4296 spin_lock(&fs_info->delalloc_root_lock);
4297 }
4298 spin_unlock(&fs_info->delalloc_root_lock);
4299 }
4300
4301 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4302 struct extent_io_tree *dirty_pages,
4303 int mark)
4304 {
4305 int ret;
4306 struct extent_buffer *eb;
4307 u64 start = 0;
4308 u64 end;
4309
4310 while (1) {
4311 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4312 mark, NULL);
4313 if (ret)
4314 break;
4315
4316 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4317 while (start <= end) {
4318 eb = btrfs_find_tree_block(root->fs_info, start);
4319 start += root->nodesize;
4320 if (!eb)
4321 continue;
4322 wait_on_extent_buffer_writeback(eb);
4323
4324 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4325 &eb->bflags))
4326 clear_extent_buffer_dirty(eb);
4327 free_extent_buffer_stale(eb);
4328 }
4329 }
4330
4331 return ret;
4332 }
4333
4334 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4335 struct extent_io_tree *pinned_extents)
4336 {
4337 struct extent_io_tree *unpin;
4338 u64 start;
4339 u64 end;
4340 int ret;
4341 bool loop = true;
4342
4343 unpin = pinned_extents;
4344 again:
4345 while (1) {
4346 ret = find_first_extent_bit(unpin, 0, &start, &end,
4347 EXTENT_DIRTY, NULL);
4348 if (ret)
4349 break;
4350
4351 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4352 btrfs_error_unpin_extent_range(root, start, end);
4353 cond_resched();
4354 }
4355
4356 if (loop) {
4357 if (unpin == &root->fs_info->freed_extents[0])
4358 unpin = &root->fs_info->freed_extents[1];
4359 else
4360 unpin = &root->fs_info->freed_extents[0];
4361 loop = false;
4362 goto again;
4363 }
4364
4365 return 0;
4366 }
4367
4368 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4369 struct btrfs_root *root)
4370 {
4371 btrfs_destroy_delayed_refs(cur_trans, root);
4372
4373 cur_trans->state = TRANS_STATE_COMMIT_START;
4374 wake_up(&root->fs_info->transaction_blocked_wait);
4375
4376 cur_trans->state = TRANS_STATE_UNBLOCKED;
4377 wake_up(&root->fs_info->transaction_wait);
4378
4379 btrfs_destroy_delayed_inodes(root);
4380 btrfs_assert_delayed_root_empty(root);
4381
4382 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4383 EXTENT_DIRTY);
4384 btrfs_destroy_pinned_extent(root,
4385 root->fs_info->pinned_extents);
4386
4387 cur_trans->state =TRANS_STATE_COMPLETED;
4388 wake_up(&cur_trans->commit_wait);
4389
4390 /*
4391 memset(cur_trans, 0, sizeof(*cur_trans));
4392 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4393 */
4394 }
4395
4396 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4397 {
4398 struct btrfs_transaction *t;
4399
4400 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4401
4402 spin_lock(&root->fs_info->trans_lock);
4403 while (!list_empty(&root->fs_info->trans_list)) {
4404 t = list_first_entry(&root->fs_info->trans_list,
4405 struct btrfs_transaction, list);
4406 if (t->state >= TRANS_STATE_COMMIT_START) {
4407 atomic_inc(&t->use_count);
4408 spin_unlock(&root->fs_info->trans_lock);
4409 btrfs_wait_for_commit(root, t->transid);
4410 btrfs_put_transaction(t);
4411 spin_lock(&root->fs_info->trans_lock);
4412 continue;
4413 }
4414 if (t == root->fs_info->running_transaction) {
4415 t->state = TRANS_STATE_COMMIT_DOING;
4416 spin_unlock(&root->fs_info->trans_lock);
4417 /*
4418 * We wait for 0 num_writers since we don't hold a trans
4419 * handle open currently for this transaction.
4420 */
4421 wait_event(t->writer_wait,
4422 atomic_read(&t->num_writers) == 0);
4423 } else {
4424 spin_unlock(&root->fs_info->trans_lock);
4425 }
4426 btrfs_cleanup_one_transaction(t, root);
4427
4428 spin_lock(&root->fs_info->trans_lock);
4429 if (t == root->fs_info->running_transaction)
4430 root->fs_info->running_transaction = NULL;
4431 list_del_init(&t->list);
4432 spin_unlock(&root->fs_info->trans_lock);
4433
4434 btrfs_put_transaction(t);
4435 trace_btrfs_transaction_commit(root);
4436 spin_lock(&root->fs_info->trans_lock);
4437 }
4438 spin_unlock(&root->fs_info->trans_lock);
4439 btrfs_destroy_all_ordered_extents(root->fs_info);
4440 btrfs_destroy_delayed_inodes(root);
4441 btrfs_assert_delayed_root_empty(root);
4442 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4443 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4444 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4445
4446 return 0;
4447 }
4448
4449 static const struct extent_io_ops btree_extent_io_ops = {
4450 .readpage_end_io_hook = btree_readpage_end_io_hook,
4451 .readpage_io_failed_hook = btree_io_failed_hook,
4452 .submit_bio_hook = btree_submit_bio_hook,
4453 /* note we're sharing with inode.c for the merge bio hook */
4454 .merge_bio_hook = btrfs_merge_bio_hook,
4455 };