]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/disk-io.c
Btrfs: avoid potential super block corruption
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #include <linux/freezer.h>
30 #include "compat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "volumes.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "locking.h"
40 #include "ref-cache.h"
41 #include "tree-log.h"
42
43 #if 0
44 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
45 {
46 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
47 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
48 (unsigned long long)extent_buffer_blocknr(buf),
49 (unsigned long long)btrfs_header_blocknr(buf));
50 return 1;
51 }
52 return 0;
53 }
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58
59 /*
60 * end_io_wq structs are used to do processing in task context when an IO is
61 * complete. This is used during reads to verify checksums, and it is used
62 * by writes to insert metadata for new file extents after IO is complete.
63 */
64 struct end_io_wq {
65 struct bio *bio;
66 bio_end_io_t *end_io;
67 void *private;
68 struct btrfs_fs_info *info;
69 int error;
70 int metadata;
71 struct list_head list;
72 struct btrfs_work work;
73 };
74
75 /*
76 * async submit bios are used to offload expensive checksumming
77 * onto the worker threads. They checksum file and metadata bios
78 * just before they are sent down the IO stack.
79 */
80 struct async_submit_bio {
81 struct inode *inode;
82 struct bio *bio;
83 struct list_head list;
84 extent_submit_bio_hook_t *submit_bio_start;
85 extent_submit_bio_hook_t *submit_bio_done;
86 int rw;
87 int mirror_num;
88 unsigned long bio_flags;
89 struct btrfs_work work;
90 };
91
92 /*
93 * extents on the btree inode are pretty simple, there's one extent
94 * that covers the entire device
95 */
96 static struct extent_map *btree_get_extent(struct inode *inode,
97 struct page *page, size_t page_offset, u64 start, u64 len,
98 int create)
99 {
100 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
101 struct extent_map *em;
102 int ret;
103
104 spin_lock(&em_tree->lock);
105 em = lookup_extent_mapping(em_tree, start, len);
106 if (em) {
107 em->bdev =
108 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
109 spin_unlock(&em_tree->lock);
110 goto out;
111 }
112 spin_unlock(&em_tree->lock);
113
114 em = alloc_extent_map(GFP_NOFS);
115 if (!em) {
116 em = ERR_PTR(-ENOMEM);
117 goto out;
118 }
119 em->start = 0;
120 em->len = (u64)-1;
121 em->block_len = (u64)-1;
122 em->block_start = 0;
123 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
124
125 spin_lock(&em_tree->lock);
126 ret = add_extent_mapping(em_tree, em);
127 if (ret == -EEXIST) {
128 u64 failed_start = em->start;
129 u64 failed_len = em->len;
130
131 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
132 em->start, em->len, em->block_start);
133 free_extent_map(em);
134 em = lookup_extent_mapping(em_tree, start, len);
135 if (em) {
136 printk("after failing, found %Lu %Lu %Lu\n",
137 em->start, em->len, em->block_start);
138 ret = 0;
139 } else {
140 em = lookup_extent_mapping(em_tree, failed_start,
141 failed_len);
142 if (em) {
143 printk("double failure lookup gives us "
144 "%Lu %Lu -> %Lu\n", em->start,
145 em->len, em->block_start);
146 free_extent_map(em);
147 }
148 ret = -EIO;
149 }
150 } else if (ret) {
151 free_extent_map(em);
152 em = NULL;
153 }
154 spin_unlock(&em_tree->lock);
155
156 if (ret)
157 em = ERR_PTR(ret);
158 out:
159 return em;
160 }
161
162 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
163 {
164 return btrfs_crc32c(seed, data, len);
165 }
166
167 void btrfs_csum_final(u32 crc, char *result)
168 {
169 *(__le32 *)result = ~cpu_to_le32(crc);
170 }
171
172 /*
173 * compute the csum for a btree block, and either verify it or write it
174 * into the csum field of the block.
175 */
176 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
177 int verify)
178 {
179 u16 csum_size =
180 btrfs_super_csum_size(&root->fs_info->super_copy);
181 char *result = NULL;
182 unsigned long len;
183 unsigned long cur_len;
184 unsigned long offset = BTRFS_CSUM_SIZE;
185 char *map_token = NULL;
186 char *kaddr;
187 unsigned long map_start;
188 unsigned long map_len;
189 int err;
190 u32 crc = ~(u32)0;
191 unsigned long inline_result;
192
193 len = buf->len - offset;
194 while(len > 0) {
195 err = map_private_extent_buffer(buf, offset, 32,
196 &map_token, &kaddr,
197 &map_start, &map_len, KM_USER0);
198 if (err) {
199 printk("failed to map extent buffer! %lu\n",
200 offset);
201 return 1;
202 }
203 cur_len = min(len, map_len - (offset - map_start));
204 crc = btrfs_csum_data(root, kaddr + offset - map_start,
205 crc, cur_len);
206 len -= cur_len;
207 offset += cur_len;
208 unmap_extent_buffer(buf, map_token, KM_USER0);
209 }
210 if (csum_size > sizeof(inline_result)) {
211 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
212 if (!result)
213 return 1;
214 } else {
215 result = (char *)&inline_result;
216 }
217
218 btrfs_csum_final(crc, result);
219
220 if (verify) {
221 /* FIXME, this is not good */
222 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
223 u32 val;
224 u32 found = 0;
225 memcpy(&found, result, csum_size);
226
227 read_extent_buffer(buf, &val, 0, csum_size);
228 printk("btrfs: %s checksum verify failed on %llu "
229 "wanted %X found %X level %d\n",
230 root->fs_info->sb->s_id,
231 buf->start, val, found, btrfs_header_level(buf));
232 if (result != (char *)&inline_result)
233 kfree(result);
234 return 1;
235 }
236 } else {
237 write_extent_buffer(buf, result, 0, csum_size);
238 }
239 if (result != (char *)&inline_result)
240 kfree(result);
241 return 0;
242 }
243
244 /*
245 * we can't consider a given block up to date unless the transid of the
246 * block matches the transid in the parent node's pointer. This is how we
247 * detect blocks that either didn't get written at all or got written
248 * in the wrong place.
249 */
250 static int verify_parent_transid(struct extent_io_tree *io_tree,
251 struct extent_buffer *eb, u64 parent_transid)
252 {
253 int ret;
254
255 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
256 return 0;
257
258 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
259 if (extent_buffer_uptodate(io_tree, eb) &&
260 btrfs_header_generation(eb) == parent_transid) {
261 ret = 0;
262 goto out;
263 }
264 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
265 (unsigned long long)eb->start,
266 (unsigned long long)parent_transid,
267 (unsigned long long)btrfs_header_generation(eb));
268 ret = 1;
269 clear_extent_buffer_uptodate(io_tree, eb);
270 out:
271 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
272 GFP_NOFS);
273 return ret;
274 }
275
276 /*
277 * helper to read a given tree block, doing retries as required when
278 * the checksums don't match and we have alternate mirrors to try.
279 */
280 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
281 struct extent_buffer *eb,
282 u64 start, u64 parent_transid)
283 {
284 struct extent_io_tree *io_tree;
285 int ret;
286 int num_copies = 0;
287 int mirror_num = 0;
288
289 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
290 while (1) {
291 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
292 btree_get_extent, mirror_num);
293 if (!ret &&
294 !verify_parent_transid(io_tree, eb, parent_transid))
295 return ret;
296 printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
297 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
298 eb->start, eb->len);
299 if (num_copies == 1)
300 return ret;
301
302 mirror_num++;
303 if (mirror_num > num_copies)
304 return ret;
305 }
306 return -EIO;
307 }
308
309 /*
310 * checksum a dirty tree block before IO. This has extra checks to make
311 * sure we only fill in the checksum field in the first page of a multi-page block
312 */
313 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
314 {
315 struct extent_io_tree *tree;
316 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
317 u64 found_start;
318 int found_level;
319 unsigned long len;
320 struct extent_buffer *eb;
321 int ret;
322
323 tree = &BTRFS_I(page->mapping->host)->io_tree;
324
325 if (page->private == EXTENT_PAGE_PRIVATE)
326 goto out;
327 if (!page->private)
328 goto out;
329 len = page->private >> 2;
330 if (len == 0) {
331 WARN_ON(1);
332 }
333 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
334 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
335 btrfs_header_generation(eb));
336 BUG_ON(ret);
337 found_start = btrfs_header_bytenr(eb);
338 if (found_start != start) {
339 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
340 start, found_start, len);
341 WARN_ON(1);
342 goto err;
343 }
344 if (eb->first_page != page) {
345 printk("bad first page %lu %lu\n", eb->first_page->index,
346 page->index);
347 WARN_ON(1);
348 goto err;
349 }
350 if (!PageUptodate(page)) {
351 printk("csum not up to date page %lu\n", page->index);
352 WARN_ON(1);
353 goto err;
354 }
355 found_level = btrfs_header_level(eb);
356
357 csum_tree_block(root, eb, 0);
358 err:
359 free_extent_buffer(eb);
360 out:
361 return 0;
362 }
363
364 static int check_tree_block_fsid(struct btrfs_root *root,
365 struct extent_buffer *eb)
366 {
367 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
368 u8 fsid[BTRFS_UUID_SIZE];
369 int ret = 1;
370
371 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
372 BTRFS_FSID_SIZE);
373 while (fs_devices) {
374 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
375 ret = 0;
376 break;
377 }
378 fs_devices = fs_devices->seed;
379 }
380 return ret;
381 }
382
383 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
384 struct extent_state *state)
385 {
386 struct extent_io_tree *tree;
387 u64 found_start;
388 int found_level;
389 unsigned long len;
390 struct extent_buffer *eb;
391 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
392 int ret = 0;
393
394 tree = &BTRFS_I(page->mapping->host)->io_tree;
395 if (page->private == EXTENT_PAGE_PRIVATE)
396 goto out;
397 if (!page->private)
398 goto out;
399 len = page->private >> 2;
400 if (len == 0) {
401 WARN_ON(1);
402 }
403 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
404
405 found_start = btrfs_header_bytenr(eb);
406 if (found_start != start) {
407 printk("bad tree block start %llu %llu\n",
408 (unsigned long long)found_start,
409 (unsigned long long)eb->start);
410 ret = -EIO;
411 goto err;
412 }
413 if (eb->first_page != page) {
414 printk("bad first page %lu %lu\n", eb->first_page->index,
415 page->index);
416 WARN_ON(1);
417 ret = -EIO;
418 goto err;
419 }
420 if (check_tree_block_fsid(root, eb)) {
421 printk("bad fsid on block %Lu\n", eb->start);
422 ret = -EIO;
423 goto err;
424 }
425 found_level = btrfs_header_level(eb);
426
427 ret = csum_tree_block(root, eb, 1);
428 if (ret)
429 ret = -EIO;
430
431 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
432 end = eb->start + end - 1;
433 err:
434 free_extent_buffer(eb);
435 out:
436 return ret;
437 }
438
439 static void end_workqueue_bio(struct bio *bio, int err)
440 {
441 struct end_io_wq *end_io_wq = bio->bi_private;
442 struct btrfs_fs_info *fs_info;
443
444 fs_info = end_io_wq->info;
445 end_io_wq->error = err;
446 end_io_wq->work.func = end_workqueue_fn;
447 end_io_wq->work.flags = 0;
448
449 if (bio->bi_rw & (1 << BIO_RW)) {
450 if (end_io_wq->metadata)
451 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
452 &end_io_wq->work);
453 else
454 btrfs_queue_worker(&fs_info->endio_write_workers,
455 &end_io_wq->work);
456 } else {
457 if (end_io_wq->metadata)
458 btrfs_queue_worker(&fs_info->endio_meta_workers,
459 &end_io_wq->work);
460 else
461 btrfs_queue_worker(&fs_info->endio_workers,
462 &end_io_wq->work);
463 }
464 }
465
466 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
467 int metadata)
468 {
469 struct end_io_wq *end_io_wq;
470 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
471 if (!end_io_wq)
472 return -ENOMEM;
473
474 end_io_wq->private = bio->bi_private;
475 end_io_wq->end_io = bio->bi_end_io;
476 end_io_wq->info = info;
477 end_io_wq->error = 0;
478 end_io_wq->bio = bio;
479 end_io_wq->metadata = metadata;
480
481 bio->bi_private = end_io_wq;
482 bio->bi_end_io = end_workqueue_bio;
483 return 0;
484 }
485
486 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
487 {
488 unsigned long limit = min_t(unsigned long,
489 info->workers.max_workers,
490 info->fs_devices->open_devices);
491 return 256 * limit;
492 }
493
494 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
495 {
496 return atomic_read(&info->nr_async_bios) >
497 btrfs_async_submit_limit(info);
498 }
499
500 static void run_one_async_start(struct btrfs_work *work)
501 {
502 struct btrfs_fs_info *fs_info;
503 struct async_submit_bio *async;
504
505 async = container_of(work, struct async_submit_bio, work);
506 fs_info = BTRFS_I(async->inode)->root->fs_info;
507 async->submit_bio_start(async->inode, async->rw, async->bio,
508 async->mirror_num, async->bio_flags);
509 }
510
511 static void run_one_async_done(struct btrfs_work *work)
512 {
513 struct btrfs_fs_info *fs_info;
514 struct async_submit_bio *async;
515 int limit;
516
517 async = container_of(work, struct async_submit_bio, work);
518 fs_info = BTRFS_I(async->inode)->root->fs_info;
519
520 limit = btrfs_async_submit_limit(fs_info);
521 limit = limit * 2 / 3;
522
523 atomic_dec(&fs_info->nr_async_submits);
524
525 if (atomic_read(&fs_info->nr_async_submits) < limit &&
526 waitqueue_active(&fs_info->async_submit_wait))
527 wake_up(&fs_info->async_submit_wait);
528
529 async->submit_bio_done(async->inode, async->rw, async->bio,
530 async->mirror_num, async->bio_flags);
531 }
532
533 static void run_one_async_free(struct btrfs_work *work)
534 {
535 struct async_submit_bio *async;
536
537 async = container_of(work, struct async_submit_bio, work);
538 kfree(async);
539 }
540
541 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
542 int rw, struct bio *bio, int mirror_num,
543 unsigned long bio_flags,
544 extent_submit_bio_hook_t *submit_bio_start,
545 extent_submit_bio_hook_t *submit_bio_done)
546 {
547 struct async_submit_bio *async;
548
549 async = kmalloc(sizeof(*async), GFP_NOFS);
550 if (!async)
551 return -ENOMEM;
552
553 async->inode = inode;
554 async->rw = rw;
555 async->bio = bio;
556 async->mirror_num = mirror_num;
557 async->submit_bio_start = submit_bio_start;
558 async->submit_bio_done = submit_bio_done;
559
560 async->work.func = run_one_async_start;
561 async->work.ordered_func = run_one_async_done;
562 async->work.ordered_free = run_one_async_free;
563
564 async->work.flags = 0;
565 async->bio_flags = bio_flags;
566
567 atomic_inc(&fs_info->nr_async_submits);
568 btrfs_queue_worker(&fs_info->workers, &async->work);
569 #if 0
570 int limit = btrfs_async_submit_limit(fs_info);
571 if (atomic_read(&fs_info->nr_async_submits) > limit) {
572 wait_event_timeout(fs_info->async_submit_wait,
573 (atomic_read(&fs_info->nr_async_submits) < limit),
574 HZ/10);
575
576 wait_event_timeout(fs_info->async_submit_wait,
577 (atomic_read(&fs_info->nr_async_bios) < limit),
578 HZ/10);
579 }
580 #endif
581 while(atomic_read(&fs_info->async_submit_draining) &&
582 atomic_read(&fs_info->nr_async_submits)) {
583 wait_event(fs_info->async_submit_wait,
584 (atomic_read(&fs_info->nr_async_submits) == 0));
585 }
586
587 return 0;
588 }
589
590 static int btree_csum_one_bio(struct bio *bio)
591 {
592 struct bio_vec *bvec = bio->bi_io_vec;
593 int bio_index = 0;
594 struct btrfs_root *root;
595
596 WARN_ON(bio->bi_vcnt <= 0);
597 while(bio_index < bio->bi_vcnt) {
598 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
599 csum_dirty_buffer(root, bvec->bv_page);
600 bio_index++;
601 bvec++;
602 }
603 return 0;
604 }
605
606 static int __btree_submit_bio_start(struct inode *inode, int rw,
607 struct bio *bio, int mirror_num,
608 unsigned long bio_flags)
609 {
610 /*
611 * when we're called for a write, we're already in the async
612 * submission context. Just jump into btrfs_map_bio
613 */
614 btree_csum_one_bio(bio);
615 return 0;
616 }
617
618 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
619 int mirror_num, unsigned long bio_flags)
620 {
621 /*
622 * when we're called for a write, we're already in the async
623 * submission context. Just jump into btrfs_map_bio
624 */
625 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
626 }
627
628 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
629 int mirror_num, unsigned long bio_flags)
630 {
631 int ret;
632
633 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
634 bio, 1);
635 BUG_ON(ret);
636
637 if (!(rw & (1 << BIO_RW))) {
638 /*
639 * called for a read, do the setup so that checksum validation
640 * can happen in the async kernel threads
641 */
642 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
643 mirror_num, 0);
644 }
645 /*
646 * kthread helpers are used to submit writes so that checksumming
647 * can happen in parallel across all CPUs
648 */
649 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
650 inode, rw, bio, mirror_num, 0,
651 __btree_submit_bio_start,
652 __btree_submit_bio_done);
653 }
654
655 static int btree_writepage(struct page *page, struct writeback_control *wbc)
656 {
657 struct extent_io_tree *tree;
658 tree = &BTRFS_I(page->mapping->host)->io_tree;
659
660 if (current->flags & PF_MEMALLOC) {
661 redirty_page_for_writepage(wbc, page);
662 unlock_page(page);
663 return 0;
664 }
665 return extent_write_full_page(tree, page, btree_get_extent, wbc);
666 }
667
668 static int btree_writepages(struct address_space *mapping,
669 struct writeback_control *wbc)
670 {
671 struct extent_io_tree *tree;
672 tree = &BTRFS_I(mapping->host)->io_tree;
673 if (wbc->sync_mode == WB_SYNC_NONE) {
674 u64 num_dirty;
675 u64 start = 0;
676 unsigned long thresh = 32 * 1024 * 1024;
677
678 if (wbc->for_kupdate)
679 return 0;
680
681 num_dirty = count_range_bits(tree, &start, (u64)-1,
682 thresh, EXTENT_DIRTY);
683 if (num_dirty < thresh) {
684 return 0;
685 }
686 }
687 return extent_writepages(tree, mapping, btree_get_extent, wbc);
688 }
689
690 static int btree_readpage(struct file *file, struct page *page)
691 {
692 struct extent_io_tree *tree;
693 tree = &BTRFS_I(page->mapping->host)->io_tree;
694 return extent_read_full_page(tree, page, btree_get_extent);
695 }
696
697 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
698 {
699 struct extent_io_tree *tree;
700 struct extent_map_tree *map;
701 int ret;
702
703 if (PageWriteback(page) || PageDirty(page))
704 return 0;
705
706 tree = &BTRFS_I(page->mapping->host)->io_tree;
707 map = &BTRFS_I(page->mapping->host)->extent_tree;
708
709 ret = try_release_extent_state(map, tree, page, gfp_flags);
710 if (!ret) {
711 return 0;
712 }
713
714 ret = try_release_extent_buffer(tree, page);
715 if (ret == 1) {
716 ClearPagePrivate(page);
717 set_page_private(page, 0);
718 page_cache_release(page);
719 }
720
721 return ret;
722 }
723
724 static void btree_invalidatepage(struct page *page, unsigned long offset)
725 {
726 struct extent_io_tree *tree;
727 tree = &BTRFS_I(page->mapping->host)->io_tree;
728 extent_invalidatepage(tree, page, offset);
729 btree_releasepage(page, GFP_NOFS);
730 if (PagePrivate(page)) {
731 printk("warning page private not zero on page %Lu\n",
732 page_offset(page));
733 ClearPagePrivate(page);
734 set_page_private(page, 0);
735 page_cache_release(page);
736 }
737 }
738
739 #if 0
740 static int btree_writepage(struct page *page, struct writeback_control *wbc)
741 {
742 struct buffer_head *bh;
743 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
744 struct buffer_head *head;
745 if (!page_has_buffers(page)) {
746 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
747 (1 << BH_Dirty)|(1 << BH_Uptodate));
748 }
749 head = page_buffers(page);
750 bh = head;
751 do {
752 if (buffer_dirty(bh))
753 csum_tree_block(root, bh, 0);
754 bh = bh->b_this_page;
755 } while (bh != head);
756 return block_write_full_page(page, btree_get_block, wbc);
757 }
758 #endif
759
760 static struct address_space_operations btree_aops = {
761 .readpage = btree_readpage,
762 .writepage = btree_writepage,
763 .writepages = btree_writepages,
764 .releasepage = btree_releasepage,
765 .invalidatepage = btree_invalidatepage,
766 .sync_page = block_sync_page,
767 };
768
769 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
770 u64 parent_transid)
771 {
772 struct extent_buffer *buf = NULL;
773 struct inode *btree_inode = root->fs_info->btree_inode;
774 int ret = 0;
775
776 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
777 if (!buf)
778 return 0;
779 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
780 buf, 0, 0, btree_get_extent, 0);
781 free_extent_buffer(buf);
782 return ret;
783 }
784
785 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
786 u64 bytenr, u32 blocksize)
787 {
788 struct inode *btree_inode = root->fs_info->btree_inode;
789 struct extent_buffer *eb;
790 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
791 bytenr, blocksize, GFP_NOFS);
792 return eb;
793 }
794
795 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
796 u64 bytenr, u32 blocksize)
797 {
798 struct inode *btree_inode = root->fs_info->btree_inode;
799 struct extent_buffer *eb;
800
801 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
802 bytenr, blocksize, NULL, GFP_NOFS);
803 return eb;
804 }
805
806
807 int btrfs_write_tree_block(struct extent_buffer *buf)
808 {
809 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
810 buf->start + buf->len - 1, WB_SYNC_ALL);
811 }
812
813 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
814 {
815 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
816 buf->start, buf->start + buf->len -1);
817 }
818
819 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
820 u32 blocksize, u64 parent_transid)
821 {
822 struct extent_buffer *buf = NULL;
823 struct inode *btree_inode = root->fs_info->btree_inode;
824 struct extent_io_tree *io_tree;
825 int ret;
826
827 io_tree = &BTRFS_I(btree_inode)->io_tree;
828
829 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
830 if (!buf)
831 return NULL;
832
833 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
834
835 if (ret == 0) {
836 buf->flags |= EXTENT_UPTODATE;
837 } else {
838 WARN_ON(1);
839 }
840 return buf;
841
842 }
843
844 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
845 struct extent_buffer *buf)
846 {
847 struct inode *btree_inode = root->fs_info->btree_inode;
848 if (btrfs_header_generation(buf) ==
849 root->fs_info->running_transaction->transid) {
850 WARN_ON(!btrfs_tree_locked(buf));
851 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
852 buf);
853 }
854 return 0;
855 }
856
857 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
858 u32 stripesize, struct btrfs_root *root,
859 struct btrfs_fs_info *fs_info,
860 u64 objectid)
861 {
862 root->node = NULL;
863 root->commit_root = NULL;
864 root->ref_tree = NULL;
865 root->sectorsize = sectorsize;
866 root->nodesize = nodesize;
867 root->leafsize = leafsize;
868 root->stripesize = stripesize;
869 root->ref_cows = 0;
870 root->track_dirty = 0;
871
872 root->fs_info = fs_info;
873 root->objectid = objectid;
874 root->last_trans = 0;
875 root->highest_inode = 0;
876 root->last_inode_alloc = 0;
877 root->name = NULL;
878 root->in_sysfs = 0;
879
880 INIT_LIST_HEAD(&root->dirty_list);
881 INIT_LIST_HEAD(&root->orphan_list);
882 INIT_LIST_HEAD(&root->dead_list);
883 spin_lock_init(&root->node_lock);
884 spin_lock_init(&root->list_lock);
885 mutex_init(&root->objectid_mutex);
886 mutex_init(&root->log_mutex);
887 extent_io_tree_init(&root->dirty_log_pages,
888 fs_info->btree_inode->i_mapping, GFP_NOFS);
889
890 btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
891 root->ref_tree = &root->ref_tree_struct;
892
893 memset(&root->root_key, 0, sizeof(root->root_key));
894 memset(&root->root_item, 0, sizeof(root->root_item));
895 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
896 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
897 root->defrag_trans_start = fs_info->generation;
898 init_completion(&root->kobj_unregister);
899 root->defrag_running = 0;
900 root->defrag_level = 0;
901 root->root_key.objectid = objectid;
902 root->anon_super.s_root = NULL;
903 root->anon_super.s_dev = 0;
904 INIT_LIST_HEAD(&root->anon_super.s_list);
905 INIT_LIST_HEAD(&root->anon_super.s_instances);
906 init_rwsem(&root->anon_super.s_umount);
907
908 return 0;
909 }
910
911 static int find_and_setup_root(struct btrfs_root *tree_root,
912 struct btrfs_fs_info *fs_info,
913 u64 objectid,
914 struct btrfs_root *root)
915 {
916 int ret;
917 u32 blocksize;
918 u64 generation;
919
920 __setup_root(tree_root->nodesize, tree_root->leafsize,
921 tree_root->sectorsize, tree_root->stripesize,
922 root, fs_info, objectid);
923 ret = btrfs_find_last_root(tree_root, objectid,
924 &root->root_item, &root->root_key);
925 BUG_ON(ret);
926
927 generation = btrfs_root_generation(&root->root_item);
928 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
929 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
930 blocksize, generation);
931 BUG_ON(!root->node);
932 return 0;
933 }
934
935 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
936 struct btrfs_fs_info *fs_info)
937 {
938 struct extent_buffer *eb;
939 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
940 u64 start = 0;
941 u64 end = 0;
942 int ret;
943
944 if (!log_root_tree)
945 return 0;
946
947 while(1) {
948 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
949 0, &start, &end, EXTENT_DIRTY);
950 if (ret)
951 break;
952
953 clear_extent_dirty(&log_root_tree->dirty_log_pages,
954 start, end, GFP_NOFS);
955 }
956 eb = fs_info->log_root_tree->node;
957
958 WARN_ON(btrfs_header_level(eb) != 0);
959 WARN_ON(btrfs_header_nritems(eb) != 0);
960
961 ret = btrfs_free_reserved_extent(fs_info->tree_root,
962 eb->start, eb->len);
963 BUG_ON(ret);
964
965 free_extent_buffer(eb);
966 kfree(fs_info->log_root_tree);
967 fs_info->log_root_tree = NULL;
968 return 0;
969 }
970
971 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
972 struct btrfs_fs_info *fs_info)
973 {
974 struct btrfs_root *root;
975 struct btrfs_root *tree_root = fs_info->tree_root;
976
977 root = kzalloc(sizeof(*root), GFP_NOFS);
978 if (!root)
979 return -ENOMEM;
980
981 __setup_root(tree_root->nodesize, tree_root->leafsize,
982 tree_root->sectorsize, tree_root->stripesize,
983 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
984
985 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
986 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
987 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
988 root->ref_cows = 0;
989
990 root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
991 0, BTRFS_TREE_LOG_OBJECTID,
992 trans->transid, 0, 0, 0);
993
994 btrfs_set_header_nritems(root->node, 0);
995 btrfs_set_header_level(root->node, 0);
996 btrfs_set_header_bytenr(root->node, root->node->start);
997 btrfs_set_header_generation(root->node, trans->transid);
998 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
999
1000 write_extent_buffer(root->node, root->fs_info->fsid,
1001 (unsigned long)btrfs_header_fsid(root->node),
1002 BTRFS_FSID_SIZE);
1003 btrfs_mark_buffer_dirty(root->node);
1004 btrfs_tree_unlock(root->node);
1005 fs_info->log_root_tree = root;
1006 return 0;
1007 }
1008
1009 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1010 struct btrfs_key *location)
1011 {
1012 struct btrfs_root *root;
1013 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1014 struct btrfs_path *path;
1015 struct extent_buffer *l;
1016 u64 highest_inode;
1017 u64 generation;
1018 u32 blocksize;
1019 int ret = 0;
1020
1021 root = kzalloc(sizeof(*root), GFP_NOFS);
1022 if (!root)
1023 return ERR_PTR(-ENOMEM);
1024 if (location->offset == (u64)-1) {
1025 ret = find_and_setup_root(tree_root, fs_info,
1026 location->objectid, root);
1027 if (ret) {
1028 kfree(root);
1029 return ERR_PTR(ret);
1030 }
1031 goto insert;
1032 }
1033
1034 __setup_root(tree_root->nodesize, tree_root->leafsize,
1035 tree_root->sectorsize, tree_root->stripesize,
1036 root, fs_info, location->objectid);
1037
1038 path = btrfs_alloc_path();
1039 BUG_ON(!path);
1040 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1041 if (ret != 0) {
1042 if (ret > 0)
1043 ret = -ENOENT;
1044 goto out;
1045 }
1046 l = path->nodes[0];
1047 read_extent_buffer(l, &root->root_item,
1048 btrfs_item_ptr_offset(l, path->slots[0]),
1049 sizeof(root->root_item));
1050 memcpy(&root->root_key, location, sizeof(*location));
1051 ret = 0;
1052 out:
1053 btrfs_release_path(root, path);
1054 btrfs_free_path(path);
1055 if (ret) {
1056 kfree(root);
1057 return ERR_PTR(ret);
1058 }
1059 generation = btrfs_root_generation(&root->root_item);
1060 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1061 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1062 blocksize, generation);
1063 BUG_ON(!root->node);
1064 insert:
1065 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1066 root->ref_cows = 1;
1067 ret = btrfs_find_highest_inode(root, &highest_inode);
1068 if (ret == 0) {
1069 root->highest_inode = highest_inode;
1070 root->last_inode_alloc = highest_inode;
1071 }
1072 }
1073 return root;
1074 }
1075
1076 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1077 u64 root_objectid)
1078 {
1079 struct btrfs_root *root;
1080
1081 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1082 return fs_info->tree_root;
1083 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1084 return fs_info->extent_root;
1085
1086 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1087 (unsigned long)root_objectid);
1088 return root;
1089 }
1090
1091 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1092 struct btrfs_key *location)
1093 {
1094 struct btrfs_root *root;
1095 int ret;
1096
1097 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1098 return fs_info->tree_root;
1099 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1100 return fs_info->extent_root;
1101 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1102 return fs_info->chunk_root;
1103 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1104 return fs_info->dev_root;
1105 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1106 return fs_info->csum_root;
1107
1108 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1109 (unsigned long)location->objectid);
1110 if (root)
1111 return root;
1112
1113 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1114 if (IS_ERR(root))
1115 return root;
1116
1117 set_anon_super(&root->anon_super, NULL);
1118
1119 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1120 (unsigned long)root->root_key.objectid,
1121 root);
1122 if (ret) {
1123 free_extent_buffer(root->node);
1124 kfree(root);
1125 return ERR_PTR(ret);
1126 }
1127 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1128 ret = btrfs_find_dead_roots(fs_info->tree_root,
1129 root->root_key.objectid, root);
1130 BUG_ON(ret);
1131 btrfs_orphan_cleanup(root);
1132 }
1133 return root;
1134 }
1135
1136 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1137 struct btrfs_key *location,
1138 const char *name, int namelen)
1139 {
1140 struct btrfs_root *root;
1141 int ret;
1142
1143 root = btrfs_read_fs_root_no_name(fs_info, location);
1144 if (!root)
1145 return NULL;
1146
1147 if (root->in_sysfs)
1148 return root;
1149
1150 ret = btrfs_set_root_name(root, name, namelen);
1151 if (ret) {
1152 free_extent_buffer(root->node);
1153 kfree(root);
1154 return ERR_PTR(ret);
1155 }
1156 #if 0
1157 ret = btrfs_sysfs_add_root(root);
1158 if (ret) {
1159 free_extent_buffer(root->node);
1160 kfree(root->name);
1161 kfree(root);
1162 return ERR_PTR(ret);
1163 }
1164 #endif
1165 root->in_sysfs = 1;
1166 return root;
1167 }
1168 #if 0
1169 static int add_hasher(struct btrfs_fs_info *info, char *type) {
1170 struct btrfs_hasher *hasher;
1171
1172 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
1173 if (!hasher)
1174 return -ENOMEM;
1175 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
1176 if (!hasher->hash_tfm) {
1177 kfree(hasher);
1178 return -EINVAL;
1179 }
1180 spin_lock(&info->hash_lock);
1181 list_add(&hasher->list, &info->hashers);
1182 spin_unlock(&info->hash_lock);
1183 return 0;
1184 }
1185 #endif
1186
1187 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1188 {
1189 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1190 int ret = 0;
1191 struct list_head *cur;
1192 struct btrfs_device *device;
1193 struct backing_dev_info *bdi;
1194 #if 0
1195 if ((bdi_bits & (1 << BDI_write_congested)) &&
1196 btrfs_congested_async(info, 0))
1197 return 1;
1198 #endif
1199 list_for_each(cur, &info->fs_devices->devices) {
1200 device = list_entry(cur, struct btrfs_device, dev_list);
1201 if (!device->bdev)
1202 continue;
1203 bdi = blk_get_backing_dev_info(device->bdev);
1204 if (bdi && bdi_congested(bdi, bdi_bits)) {
1205 ret = 1;
1206 break;
1207 }
1208 }
1209 return ret;
1210 }
1211
1212 /*
1213 * this unplugs every device on the box, and it is only used when page
1214 * is null
1215 */
1216 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1217 {
1218 struct list_head *cur;
1219 struct btrfs_device *device;
1220 struct btrfs_fs_info *info;
1221
1222 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1223 list_for_each(cur, &info->fs_devices->devices) {
1224 device = list_entry(cur, struct btrfs_device, dev_list);
1225 if (!device->bdev)
1226 continue;
1227
1228 bdi = blk_get_backing_dev_info(device->bdev);
1229 if (bdi->unplug_io_fn) {
1230 bdi->unplug_io_fn(bdi, page);
1231 }
1232 }
1233 }
1234
1235 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1236 {
1237 struct inode *inode;
1238 struct extent_map_tree *em_tree;
1239 struct extent_map *em;
1240 struct address_space *mapping;
1241 u64 offset;
1242
1243 /* the generic O_DIRECT read code does this */
1244 if (1 || !page) {
1245 __unplug_io_fn(bdi, page);
1246 return;
1247 }
1248
1249 /*
1250 * page->mapping may change at any time. Get a consistent copy
1251 * and use that for everything below
1252 */
1253 smp_mb();
1254 mapping = page->mapping;
1255 if (!mapping)
1256 return;
1257
1258 inode = mapping->host;
1259
1260 /*
1261 * don't do the expensive searching for a small number of
1262 * devices
1263 */
1264 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1265 __unplug_io_fn(bdi, page);
1266 return;
1267 }
1268
1269 offset = page_offset(page);
1270
1271 em_tree = &BTRFS_I(inode)->extent_tree;
1272 spin_lock(&em_tree->lock);
1273 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1274 spin_unlock(&em_tree->lock);
1275 if (!em) {
1276 __unplug_io_fn(bdi, page);
1277 return;
1278 }
1279
1280 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1281 free_extent_map(em);
1282 __unplug_io_fn(bdi, page);
1283 return;
1284 }
1285 offset = offset - em->start;
1286 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1287 em->block_start + offset, page);
1288 free_extent_map(em);
1289 }
1290
1291 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1292 {
1293 bdi_init(bdi);
1294 bdi->ra_pages = default_backing_dev_info.ra_pages;
1295 bdi->state = 0;
1296 bdi->capabilities = default_backing_dev_info.capabilities;
1297 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1298 bdi->unplug_io_data = info;
1299 bdi->congested_fn = btrfs_congested_fn;
1300 bdi->congested_data = info;
1301 return 0;
1302 }
1303
1304 static int bio_ready_for_csum(struct bio *bio)
1305 {
1306 u64 length = 0;
1307 u64 buf_len = 0;
1308 u64 start = 0;
1309 struct page *page;
1310 struct extent_io_tree *io_tree = NULL;
1311 struct btrfs_fs_info *info = NULL;
1312 struct bio_vec *bvec;
1313 int i;
1314 int ret;
1315
1316 bio_for_each_segment(bvec, bio, i) {
1317 page = bvec->bv_page;
1318 if (page->private == EXTENT_PAGE_PRIVATE) {
1319 length += bvec->bv_len;
1320 continue;
1321 }
1322 if (!page->private) {
1323 length += bvec->bv_len;
1324 continue;
1325 }
1326 length = bvec->bv_len;
1327 buf_len = page->private >> 2;
1328 start = page_offset(page) + bvec->bv_offset;
1329 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1330 info = BTRFS_I(page->mapping->host)->root->fs_info;
1331 }
1332 /* are we fully contained in this bio? */
1333 if (buf_len <= length)
1334 return 1;
1335
1336 ret = extent_range_uptodate(io_tree, start + length,
1337 start + buf_len - 1);
1338 if (ret == 1)
1339 return ret;
1340 return ret;
1341 }
1342
1343 /*
1344 * called by the kthread helper functions to finally call the bio end_io
1345 * functions. This is where read checksum verification actually happens
1346 */
1347 static void end_workqueue_fn(struct btrfs_work *work)
1348 {
1349 struct bio *bio;
1350 struct end_io_wq *end_io_wq;
1351 struct btrfs_fs_info *fs_info;
1352 int error;
1353
1354 end_io_wq = container_of(work, struct end_io_wq, work);
1355 bio = end_io_wq->bio;
1356 fs_info = end_io_wq->info;
1357
1358 /* metadata bio reads are special because the whole tree block must
1359 * be checksummed at once. This makes sure the entire block is in
1360 * ram and up to date before trying to verify things. For
1361 * blocksize <= pagesize, it is basically a noop
1362 */
1363 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1364 !bio_ready_for_csum(bio)) {
1365 btrfs_queue_worker(&fs_info->endio_meta_workers,
1366 &end_io_wq->work);
1367 return;
1368 }
1369 error = end_io_wq->error;
1370 bio->bi_private = end_io_wq->private;
1371 bio->bi_end_io = end_io_wq->end_io;
1372 kfree(end_io_wq);
1373 bio_endio(bio, error);
1374 }
1375
1376 static int cleaner_kthread(void *arg)
1377 {
1378 struct btrfs_root *root = arg;
1379
1380 do {
1381 smp_mb();
1382 if (root->fs_info->closing)
1383 break;
1384
1385 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1386 mutex_lock(&root->fs_info->cleaner_mutex);
1387 btrfs_clean_old_snapshots(root);
1388 mutex_unlock(&root->fs_info->cleaner_mutex);
1389
1390 if (freezing(current)) {
1391 refrigerator();
1392 } else {
1393 smp_mb();
1394 if (root->fs_info->closing)
1395 break;
1396 set_current_state(TASK_INTERRUPTIBLE);
1397 schedule();
1398 __set_current_state(TASK_RUNNING);
1399 }
1400 } while (!kthread_should_stop());
1401 return 0;
1402 }
1403
1404 static int transaction_kthread(void *arg)
1405 {
1406 struct btrfs_root *root = arg;
1407 struct btrfs_trans_handle *trans;
1408 struct btrfs_transaction *cur;
1409 unsigned long now;
1410 unsigned long delay;
1411 int ret;
1412
1413 do {
1414 smp_mb();
1415 if (root->fs_info->closing)
1416 break;
1417
1418 delay = HZ * 30;
1419 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1420 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1421
1422 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1423 printk("btrfs: total reference cache size %Lu\n",
1424 root->fs_info->total_ref_cache_size);
1425 }
1426
1427 mutex_lock(&root->fs_info->trans_mutex);
1428 cur = root->fs_info->running_transaction;
1429 if (!cur) {
1430 mutex_unlock(&root->fs_info->trans_mutex);
1431 goto sleep;
1432 }
1433
1434 now = get_seconds();
1435 if (now < cur->start_time || now - cur->start_time < 30) {
1436 mutex_unlock(&root->fs_info->trans_mutex);
1437 delay = HZ * 5;
1438 goto sleep;
1439 }
1440 mutex_unlock(&root->fs_info->trans_mutex);
1441 trans = btrfs_start_transaction(root, 1);
1442 ret = btrfs_commit_transaction(trans, root);
1443 sleep:
1444 wake_up_process(root->fs_info->cleaner_kthread);
1445 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1446
1447 if (freezing(current)) {
1448 refrigerator();
1449 } else {
1450 if (root->fs_info->closing)
1451 break;
1452 set_current_state(TASK_INTERRUPTIBLE);
1453 schedule_timeout(delay);
1454 __set_current_state(TASK_RUNNING);
1455 }
1456 } while (!kthread_should_stop());
1457 return 0;
1458 }
1459
1460 struct btrfs_root *open_ctree(struct super_block *sb,
1461 struct btrfs_fs_devices *fs_devices,
1462 char *options)
1463 {
1464 u32 sectorsize;
1465 u32 nodesize;
1466 u32 leafsize;
1467 u32 blocksize;
1468 u32 stripesize;
1469 u64 generation;
1470 u64 features;
1471 struct btrfs_key location;
1472 struct buffer_head *bh;
1473 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1474 GFP_NOFS);
1475 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1476 GFP_NOFS);
1477 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1478 GFP_NOFS);
1479 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1480 GFP_NOFS);
1481 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1482 GFP_NOFS);
1483 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1484 GFP_NOFS);
1485 struct btrfs_root *log_tree_root;
1486
1487 int ret;
1488 int err = -EINVAL;
1489
1490 struct btrfs_super_block *disk_super;
1491
1492 if (!extent_root || !tree_root || !fs_info ||
1493 !chunk_root || !dev_root || !csum_root) {
1494 err = -ENOMEM;
1495 goto fail;
1496 }
1497 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1498 INIT_LIST_HEAD(&fs_info->trans_list);
1499 INIT_LIST_HEAD(&fs_info->dead_roots);
1500 INIT_LIST_HEAD(&fs_info->hashers);
1501 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1502 spin_lock_init(&fs_info->hash_lock);
1503 spin_lock_init(&fs_info->delalloc_lock);
1504 spin_lock_init(&fs_info->new_trans_lock);
1505 spin_lock_init(&fs_info->ref_cache_lock);
1506
1507 init_completion(&fs_info->kobj_unregister);
1508 fs_info->tree_root = tree_root;
1509 fs_info->extent_root = extent_root;
1510 fs_info->csum_root = csum_root;
1511 fs_info->chunk_root = chunk_root;
1512 fs_info->dev_root = dev_root;
1513 fs_info->fs_devices = fs_devices;
1514 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1515 INIT_LIST_HEAD(&fs_info->space_info);
1516 btrfs_mapping_init(&fs_info->mapping_tree);
1517 atomic_set(&fs_info->nr_async_submits, 0);
1518 atomic_set(&fs_info->async_delalloc_pages, 0);
1519 atomic_set(&fs_info->async_submit_draining, 0);
1520 atomic_set(&fs_info->nr_async_bios, 0);
1521 atomic_set(&fs_info->throttles, 0);
1522 atomic_set(&fs_info->throttle_gen, 0);
1523 fs_info->sb = sb;
1524 fs_info->max_extent = (u64)-1;
1525 fs_info->max_inline = 8192 * 1024;
1526 setup_bdi(fs_info, &fs_info->bdi);
1527 fs_info->btree_inode = new_inode(sb);
1528 fs_info->btree_inode->i_ino = 1;
1529 fs_info->btree_inode->i_nlink = 1;
1530
1531 fs_info->thread_pool_size = min_t(unsigned long,
1532 num_online_cpus() + 2, 8);
1533
1534 INIT_LIST_HEAD(&fs_info->ordered_extents);
1535 spin_lock_init(&fs_info->ordered_extent_lock);
1536
1537 sb->s_blocksize = 4096;
1538 sb->s_blocksize_bits = blksize_bits(4096);
1539
1540 /*
1541 * we set the i_size on the btree inode to the max possible int.
1542 * the real end of the address space is determined by all of
1543 * the devices in the system
1544 */
1545 fs_info->btree_inode->i_size = OFFSET_MAX;
1546 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1547 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1548
1549 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1550 fs_info->btree_inode->i_mapping,
1551 GFP_NOFS);
1552 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1553 GFP_NOFS);
1554
1555 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1556
1557 spin_lock_init(&fs_info->block_group_cache_lock);
1558 fs_info->block_group_cache_tree.rb_node = NULL;
1559
1560 extent_io_tree_init(&fs_info->pinned_extents,
1561 fs_info->btree_inode->i_mapping, GFP_NOFS);
1562 extent_io_tree_init(&fs_info->pending_del,
1563 fs_info->btree_inode->i_mapping, GFP_NOFS);
1564 extent_io_tree_init(&fs_info->extent_ins,
1565 fs_info->btree_inode->i_mapping, GFP_NOFS);
1566 fs_info->do_barriers = 1;
1567
1568 INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1569 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1570 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1571
1572 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1573 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1574 sizeof(struct btrfs_key));
1575 insert_inode_hash(fs_info->btree_inode);
1576
1577 mutex_init(&fs_info->trans_mutex);
1578 mutex_init(&fs_info->tree_log_mutex);
1579 mutex_init(&fs_info->drop_mutex);
1580 mutex_init(&fs_info->extent_ins_mutex);
1581 mutex_init(&fs_info->pinned_mutex);
1582 mutex_init(&fs_info->chunk_mutex);
1583 mutex_init(&fs_info->transaction_kthread_mutex);
1584 mutex_init(&fs_info->cleaner_mutex);
1585 mutex_init(&fs_info->volume_mutex);
1586 mutex_init(&fs_info->tree_reloc_mutex);
1587 init_waitqueue_head(&fs_info->transaction_throttle);
1588 init_waitqueue_head(&fs_info->transaction_wait);
1589 init_waitqueue_head(&fs_info->async_submit_wait);
1590 init_waitqueue_head(&fs_info->tree_log_wait);
1591 atomic_set(&fs_info->tree_log_commit, 0);
1592 atomic_set(&fs_info->tree_log_writers, 0);
1593 fs_info->tree_log_transid = 0;
1594
1595 #if 0
1596 ret = add_hasher(fs_info, "crc32c");
1597 if (ret) {
1598 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1599 err = -ENOMEM;
1600 goto fail_iput;
1601 }
1602 #endif
1603 __setup_root(4096, 4096, 4096, 4096, tree_root,
1604 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1605
1606
1607 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1608 if (!bh)
1609 goto fail_iput;
1610
1611 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1612 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1613 sizeof(fs_info->super_for_commit));
1614 brelse(bh);
1615
1616 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1617
1618 disk_super = &fs_info->super_copy;
1619 if (!btrfs_super_root(disk_super))
1620 goto fail_iput;
1621
1622 ret = btrfs_parse_options(tree_root, options);
1623 if (ret) {
1624 err = ret;
1625 goto fail_iput;
1626 }
1627
1628 features = btrfs_super_incompat_flags(disk_super) &
1629 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1630 if (features) {
1631 printk(KERN_ERR "BTRFS: couldn't mount because of "
1632 "unsupported optional features (%Lx).\n",
1633 features);
1634 err = -EINVAL;
1635 goto fail_iput;
1636 }
1637
1638 features = btrfs_super_compat_ro_flags(disk_super) &
1639 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1640 if (!(sb->s_flags & MS_RDONLY) && features) {
1641 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1642 "unsupported option features (%Lx).\n",
1643 features);
1644 err = -EINVAL;
1645 goto fail_iput;
1646 }
1647
1648 /*
1649 * we need to start all the end_io workers up front because the
1650 * queue work function gets called at interrupt time, and so it
1651 * cannot dynamically grow.
1652 */
1653 btrfs_init_workers(&fs_info->workers, "worker",
1654 fs_info->thread_pool_size);
1655
1656 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1657 fs_info->thread_pool_size);
1658
1659 btrfs_init_workers(&fs_info->submit_workers, "submit",
1660 min_t(u64, fs_devices->num_devices,
1661 fs_info->thread_pool_size));
1662
1663 /* a higher idle thresh on the submit workers makes it much more
1664 * likely that bios will be send down in a sane order to the
1665 * devices
1666 */
1667 fs_info->submit_workers.idle_thresh = 64;
1668
1669 fs_info->workers.idle_thresh = 16;
1670 fs_info->workers.ordered = 1;
1671
1672 fs_info->delalloc_workers.idle_thresh = 2;
1673 fs_info->delalloc_workers.ordered = 1;
1674
1675 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1676 btrfs_init_workers(&fs_info->endio_workers, "endio",
1677 fs_info->thread_pool_size);
1678 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1679 fs_info->thread_pool_size);
1680 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1681 "endio-meta-write", fs_info->thread_pool_size);
1682 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1683 fs_info->thread_pool_size);
1684
1685 /*
1686 * endios are largely parallel and should have a very
1687 * low idle thresh
1688 */
1689 fs_info->endio_workers.idle_thresh = 4;
1690 fs_info->endio_write_workers.idle_thresh = 64;
1691 fs_info->endio_meta_write_workers.idle_thresh = 64;
1692
1693 btrfs_start_workers(&fs_info->workers, 1);
1694 btrfs_start_workers(&fs_info->submit_workers, 1);
1695 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1696 btrfs_start_workers(&fs_info->fixup_workers, 1);
1697 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1698 btrfs_start_workers(&fs_info->endio_meta_workers,
1699 fs_info->thread_pool_size);
1700 btrfs_start_workers(&fs_info->endio_meta_write_workers,
1701 fs_info->thread_pool_size);
1702 btrfs_start_workers(&fs_info->endio_write_workers,
1703 fs_info->thread_pool_size);
1704
1705 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1706 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1707 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1708
1709 nodesize = btrfs_super_nodesize(disk_super);
1710 leafsize = btrfs_super_leafsize(disk_super);
1711 sectorsize = btrfs_super_sectorsize(disk_super);
1712 stripesize = btrfs_super_stripesize(disk_super);
1713 tree_root->nodesize = nodesize;
1714 tree_root->leafsize = leafsize;
1715 tree_root->sectorsize = sectorsize;
1716 tree_root->stripesize = stripesize;
1717
1718 sb->s_blocksize = sectorsize;
1719 sb->s_blocksize_bits = blksize_bits(sectorsize);
1720
1721 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1722 sizeof(disk_super->magic))) {
1723 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1724 goto fail_sb_buffer;
1725 }
1726
1727 mutex_lock(&fs_info->chunk_mutex);
1728 ret = btrfs_read_sys_array(tree_root);
1729 mutex_unlock(&fs_info->chunk_mutex);
1730 if (ret) {
1731 printk("btrfs: failed to read the system array on %s\n",
1732 sb->s_id);
1733 goto fail_sys_array;
1734 }
1735
1736 blocksize = btrfs_level_size(tree_root,
1737 btrfs_super_chunk_root_level(disk_super));
1738 generation = btrfs_super_chunk_root_generation(disk_super);
1739
1740 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1741 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1742
1743 chunk_root->node = read_tree_block(chunk_root,
1744 btrfs_super_chunk_root(disk_super),
1745 blocksize, generation);
1746 BUG_ON(!chunk_root->node);
1747
1748 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1749 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1750 BTRFS_UUID_SIZE);
1751
1752 mutex_lock(&fs_info->chunk_mutex);
1753 ret = btrfs_read_chunk_tree(chunk_root);
1754 mutex_unlock(&fs_info->chunk_mutex);
1755 if (ret) {
1756 printk("btrfs: failed to read chunk tree on %s\n", sb->s_id);
1757 goto fail_chunk_root;
1758 }
1759
1760 btrfs_close_extra_devices(fs_devices);
1761
1762 blocksize = btrfs_level_size(tree_root,
1763 btrfs_super_root_level(disk_super));
1764 generation = btrfs_super_generation(disk_super);
1765
1766 tree_root->node = read_tree_block(tree_root,
1767 btrfs_super_root(disk_super),
1768 blocksize, generation);
1769 if (!tree_root->node)
1770 goto fail_chunk_root;
1771
1772
1773 ret = find_and_setup_root(tree_root, fs_info,
1774 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1775 if (ret)
1776 goto fail_tree_root;
1777 extent_root->track_dirty = 1;
1778
1779 ret = find_and_setup_root(tree_root, fs_info,
1780 BTRFS_DEV_TREE_OBJECTID, dev_root);
1781 dev_root->track_dirty = 1;
1782
1783 if (ret)
1784 goto fail_extent_root;
1785
1786 ret = find_and_setup_root(tree_root, fs_info,
1787 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1788 if (ret)
1789 goto fail_extent_root;
1790
1791 csum_root->track_dirty = 1;
1792
1793 btrfs_read_block_groups(extent_root);
1794
1795 fs_info->generation = generation;
1796 fs_info->last_trans_committed = generation;
1797 fs_info->data_alloc_profile = (u64)-1;
1798 fs_info->metadata_alloc_profile = (u64)-1;
1799 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1800 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1801 "btrfs-cleaner");
1802 if (!fs_info->cleaner_kthread)
1803 goto fail_csum_root;
1804
1805 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1806 tree_root,
1807 "btrfs-transaction");
1808 if (!fs_info->transaction_kthread)
1809 goto fail_cleaner;
1810
1811 if (btrfs_super_log_root(disk_super) != 0) {
1812 u64 bytenr = btrfs_super_log_root(disk_super);
1813
1814 if (fs_devices->rw_devices == 0) {
1815 printk("Btrfs log replay required on RO media\n");
1816 err = -EIO;
1817 goto fail_trans_kthread;
1818 }
1819 blocksize =
1820 btrfs_level_size(tree_root,
1821 btrfs_super_log_root_level(disk_super));
1822
1823 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1824 GFP_NOFS);
1825
1826 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1827 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1828
1829 log_tree_root->node = read_tree_block(tree_root, bytenr,
1830 blocksize,
1831 generation + 1);
1832 ret = btrfs_recover_log_trees(log_tree_root);
1833 BUG_ON(ret);
1834
1835 if (sb->s_flags & MS_RDONLY) {
1836 ret = btrfs_commit_super(tree_root);
1837 BUG_ON(ret);
1838 }
1839 }
1840
1841 if (!(sb->s_flags & MS_RDONLY)) {
1842 ret = btrfs_cleanup_reloc_trees(tree_root);
1843 BUG_ON(ret);
1844 }
1845
1846 location.objectid = BTRFS_FS_TREE_OBJECTID;
1847 location.type = BTRFS_ROOT_ITEM_KEY;
1848 location.offset = (u64)-1;
1849
1850 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1851 if (!fs_info->fs_root)
1852 goto fail_trans_kthread;
1853 return tree_root;
1854
1855 fail_trans_kthread:
1856 kthread_stop(fs_info->transaction_kthread);
1857 fail_cleaner:
1858 kthread_stop(fs_info->cleaner_kthread);
1859
1860 /*
1861 * make sure we're done with the btree inode before we stop our
1862 * kthreads
1863 */
1864 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1865 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1866
1867 fail_csum_root:
1868 free_extent_buffer(csum_root->node);
1869 fail_extent_root:
1870 free_extent_buffer(extent_root->node);
1871 fail_tree_root:
1872 free_extent_buffer(tree_root->node);
1873 fail_chunk_root:
1874 free_extent_buffer(chunk_root->node);
1875 fail_sys_array:
1876 free_extent_buffer(dev_root->node);
1877 fail_sb_buffer:
1878 btrfs_stop_workers(&fs_info->fixup_workers);
1879 btrfs_stop_workers(&fs_info->delalloc_workers);
1880 btrfs_stop_workers(&fs_info->workers);
1881 btrfs_stop_workers(&fs_info->endio_workers);
1882 btrfs_stop_workers(&fs_info->endio_meta_workers);
1883 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1884 btrfs_stop_workers(&fs_info->endio_write_workers);
1885 btrfs_stop_workers(&fs_info->submit_workers);
1886 fail_iput:
1887 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1888 iput(fs_info->btree_inode);
1889 fail:
1890 btrfs_close_devices(fs_info->fs_devices);
1891 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1892
1893 kfree(extent_root);
1894 kfree(tree_root);
1895 bdi_destroy(&fs_info->bdi);
1896 kfree(fs_info);
1897 kfree(chunk_root);
1898 kfree(dev_root);
1899 kfree(csum_root);
1900 return ERR_PTR(err);
1901 }
1902
1903 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1904 {
1905 char b[BDEVNAME_SIZE];
1906
1907 if (uptodate) {
1908 set_buffer_uptodate(bh);
1909 } else {
1910 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1911 printk(KERN_WARNING "lost page write due to "
1912 "I/O error on %s\n",
1913 bdevname(bh->b_bdev, b));
1914 }
1915 /* note, we dont' set_buffer_write_io_error because we have
1916 * our own ways of dealing with the IO errors
1917 */
1918 clear_buffer_uptodate(bh);
1919 }
1920 unlock_buffer(bh);
1921 put_bh(bh);
1922 }
1923
1924 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1925 {
1926 struct buffer_head *bh;
1927 struct buffer_head *latest = NULL;
1928 struct btrfs_super_block *super;
1929 int i;
1930 u64 transid = 0;
1931 u64 bytenr;
1932
1933 /* we would like to check all the supers, but that would make
1934 * a btrfs mount succeed after a mkfs from a different FS.
1935 * So, we need to add a special mount option to scan for
1936 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1937 */
1938 for (i = 0; i < 1; i++) {
1939 bytenr = btrfs_sb_offset(i);
1940 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
1941 break;
1942 bh = __bread(bdev, bytenr / 4096, 4096);
1943 if (!bh)
1944 continue;
1945
1946 super = (struct btrfs_super_block *)bh->b_data;
1947 if (btrfs_super_bytenr(super) != bytenr ||
1948 strncmp((char *)(&super->magic), BTRFS_MAGIC,
1949 sizeof(super->magic))) {
1950 brelse(bh);
1951 continue;
1952 }
1953
1954 if (!latest || btrfs_super_generation(super) > transid) {
1955 brelse(latest);
1956 latest = bh;
1957 transid = btrfs_super_generation(super);
1958 } else {
1959 brelse(bh);
1960 }
1961 }
1962 return latest;
1963 }
1964
1965 static int write_dev_supers(struct btrfs_device *device,
1966 struct btrfs_super_block *sb,
1967 int do_barriers, int wait, int max_mirrors)
1968 {
1969 struct buffer_head *bh;
1970 int i;
1971 int ret;
1972 int errors = 0;
1973 u32 crc;
1974 u64 bytenr;
1975 int last_barrier = 0;
1976
1977 if (max_mirrors == 0)
1978 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
1979
1980 /* make sure only the last submit_bh does a barrier */
1981 if (do_barriers) {
1982 for (i = 0; i < max_mirrors; i++) {
1983 bytenr = btrfs_sb_offset(i);
1984 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1985 device->total_bytes)
1986 break;
1987 last_barrier = i;
1988 }
1989 }
1990
1991 for (i = 0; i < max_mirrors; i++) {
1992 bytenr = btrfs_sb_offset(i);
1993 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1994 break;
1995
1996 if (wait) {
1997 bh = __find_get_block(device->bdev, bytenr / 4096,
1998 BTRFS_SUPER_INFO_SIZE);
1999 BUG_ON(!bh);
2000 brelse(bh);
2001 wait_on_buffer(bh);
2002 if (buffer_uptodate(bh)) {
2003 brelse(bh);
2004 continue;
2005 }
2006 } else {
2007 btrfs_set_super_bytenr(sb, bytenr);
2008
2009 crc = ~(u32)0;
2010 crc = btrfs_csum_data(NULL, (char *)sb +
2011 BTRFS_CSUM_SIZE, crc,
2012 BTRFS_SUPER_INFO_SIZE -
2013 BTRFS_CSUM_SIZE);
2014 btrfs_csum_final(crc, sb->csum);
2015
2016 bh = __getblk(device->bdev, bytenr / 4096,
2017 BTRFS_SUPER_INFO_SIZE);
2018 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2019
2020 set_buffer_uptodate(bh);
2021 get_bh(bh);
2022 lock_buffer(bh);
2023 bh->b_end_io = btrfs_end_buffer_write_sync;
2024 }
2025
2026 if (i == last_barrier && do_barriers && device->barriers) {
2027 ret = submit_bh(WRITE_BARRIER, bh);
2028 if (ret == -EOPNOTSUPP) {
2029 printk("btrfs: disabling barriers on dev %s\n",
2030 device->name);
2031 set_buffer_uptodate(bh);
2032 device->barriers = 0;
2033 get_bh(bh);
2034 lock_buffer(bh);
2035 ret = submit_bh(WRITE, bh);
2036 }
2037 } else {
2038 ret = submit_bh(WRITE, bh);
2039 }
2040
2041 if (!ret && wait) {
2042 wait_on_buffer(bh);
2043 if (!buffer_uptodate(bh))
2044 errors++;
2045 } else if (ret) {
2046 errors++;
2047 }
2048 if (wait)
2049 brelse(bh);
2050 }
2051 return errors < i ? 0 : -1;
2052 }
2053
2054 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2055 {
2056 struct list_head *cur;
2057 struct list_head *head = &root->fs_info->fs_devices->devices;
2058 struct btrfs_device *dev;
2059 struct btrfs_super_block *sb;
2060 struct btrfs_dev_item *dev_item;
2061 int ret;
2062 int do_barriers;
2063 int max_errors;
2064 int total_errors = 0;
2065 u64 flags;
2066
2067 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2068 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2069
2070 sb = &root->fs_info->super_for_commit;
2071 dev_item = &sb->dev_item;
2072 list_for_each(cur, head) {
2073 dev = list_entry(cur, struct btrfs_device, dev_list);
2074 if (!dev->bdev) {
2075 total_errors++;
2076 continue;
2077 }
2078 if (!dev->in_fs_metadata || !dev->writeable)
2079 continue;
2080
2081 btrfs_set_stack_device_generation(dev_item, 0);
2082 btrfs_set_stack_device_type(dev_item, dev->type);
2083 btrfs_set_stack_device_id(dev_item, dev->devid);
2084 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2085 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2086 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2087 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2088 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2089 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2090 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2091
2092 flags = btrfs_super_flags(sb);
2093 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2094
2095 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2096 if (ret)
2097 total_errors++;
2098 }
2099 if (total_errors > max_errors) {
2100 printk("btrfs: %d errors while writing supers\n", total_errors);
2101 BUG();
2102 }
2103
2104 total_errors = 0;
2105 list_for_each(cur, head) {
2106 dev = list_entry(cur, struct btrfs_device, dev_list);
2107 if (!dev->bdev)
2108 continue;
2109 if (!dev->in_fs_metadata || !dev->writeable)
2110 continue;
2111
2112 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2113 if (ret)
2114 total_errors++;
2115 }
2116 if (total_errors > max_errors) {
2117 printk("btrfs: %d errors while writing supers\n", total_errors);
2118 BUG();
2119 }
2120 return 0;
2121 }
2122
2123 int write_ctree_super(struct btrfs_trans_handle *trans,
2124 struct btrfs_root *root, int max_mirrors)
2125 {
2126 int ret;
2127
2128 ret = write_all_supers(root, max_mirrors);
2129 return ret;
2130 }
2131
2132 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2133 {
2134 radix_tree_delete(&fs_info->fs_roots_radix,
2135 (unsigned long)root->root_key.objectid);
2136 if (root->anon_super.s_dev) {
2137 down_write(&root->anon_super.s_umount);
2138 kill_anon_super(&root->anon_super);
2139 }
2140 #if 0
2141 if (root->in_sysfs)
2142 btrfs_sysfs_del_root(root);
2143 #endif
2144 if (root->node)
2145 free_extent_buffer(root->node);
2146 if (root->commit_root)
2147 free_extent_buffer(root->commit_root);
2148 if (root->name)
2149 kfree(root->name);
2150 kfree(root);
2151 return 0;
2152 }
2153
2154 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2155 {
2156 int ret;
2157 struct btrfs_root *gang[8];
2158 int i;
2159
2160 while(1) {
2161 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2162 (void **)gang, 0,
2163 ARRAY_SIZE(gang));
2164 if (!ret)
2165 break;
2166 for (i = 0; i < ret; i++)
2167 btrfs_free_fs_root(fs_info, gang[i]);
2168 }
2169 return 0;
2170 }
2171
2172 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2173 {
2174 u64 root_objectid = 0;
2175 struct btrfs_root *gang[8];
2176 int i;
2177 int ret;
2178
2179 while (1) {
2180 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2181 (void **)gang, root_objectid,
2182 ARRAY_SIZE(gang));
2183 if (!ret)
2184 break;
2185 for (i = 0; i < ret; i++) {
2186 root_objectid = gang[i]->root_key.objectid;
2187 ret = btrfs_find_dead_roots(fs_info->tree_root,
2188 root_objectid, gang[i]);
2189 BUG_ON(ret);
2190 btrfs_orphan_cleanup(gang[i]);
2191 }
2192 root_objectid++;
2193 }
2194 return 0;
2195 }
2196
2197 int btrfs_commit_super(struct btrfs_root *root)
2198 {
2199 struct btrfs_trans_handle *trans;
2200 int ret;
2201
2202 mutex_lock(&root->fs_info->cleaner_mutex);
2203 btrfs_clean_old_snapshots(root);
2204 mutex_unlock(&root->fs_info->cleaner_mutex);
2205 trans = btrfs_start_transaction(root, 1);
2206 ret = btrfs_commit_transaction(trans, root);
2207 BUG_ON(ret);
2208 /* run commit again to drop the original snapshot */
2209 trans = btrfs_start_transaction(root, 1);
2210 btrfs_commit_transaction(trans, root);
2211 ret = btrfs_write_and_wait_transaction(NULL, root);
2212 BUG_ON(ret);
2213
2214 ret = write_ctree_super(NULL, root, 0);
2215 return ret;
2216 }
2217
2218 int close_ctree(struct btrfs_root *root)
2219 {
2220 struct btrfs_fs_info *fs_info = root->fs_info;
2221 int ret;
2222
2223 fs_info->closing = 1;
2224 smp_mb();
2225
2226 kthread_stop(root->fs_info->transaction_kthread);
2227 kthread_stop(root->fs_info->cleaner_kthread);
2228
2229 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2230 ret = btrfs_commit_super(root);
2231 if (ret) {
2232 printk("btrfs: commit super returns %d\n", ret);
2233 }
2234 }
2235
2236 if (fs_info->delalloc_bytes) {
2237 printk("btrfs: at unmount delalloc count %Lu\n",
2238 fs_info->delalloc_bytes);
2239 }
2240 if (fs_info->total_ref_cache_size) {
2241 printk("btrfs: at umount reference cache size %Lu\n",
2242 fs_info->total_ref_cache_size);
2243 }
2244
2245 if (fs_info->extent_root->node)
2246 free_extent_buffer(fs_info->extent_root->node);
2247
2248 if (fs_info->tree_root->node)
2249 free_extent_buffer(fs_info->tree_root->node);
2250
2251 if (root->fs_info->chunk_root->node);
2252 free_extent_buffer(root->fs_info->chunk_root->node);
2253
2254 if (root->fs_info->dev_root->node);
2255 free_extent_buffer(root->fs_info->dev_root->node);
2256
2257 if (root->fs_info->csum_root->node);
2258 free_extent_buffer(root->fs_info->csum_root->node);
2259
2260 btrfs_free_block_groups(root->fs_info);
2261
2262 del_fs_roots(fs_info);
2263
2264 iput(fs_info->btree_inode);
2265
2266 btrfs_stop_workers(&fs_info->fixup_workers);
2267 btrfs_stop_workers(&fs_info->delalloc_workers);
2268 btrfs_stop_workers(&fs_info->workers);
2269 btrfs_stop_workers(&fs_info->endio_workers);
2270 btrfs_stop_workers(&fs_info->endio_meta_workers);
2271 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2272 btrfs_stop_workers(&fs_info->endio_write_workers);
2273 btrfs_stop_workers(&fs_info->submit_workers);
2274
2275 #if 0
2276 while(!list_empty(&fs_info->hashers)) {
2277 struct btrfs_hasher *hasher;
2278 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2279 hashers);
2280 list_del(&hasher->hashers);
2281 crypto_free_hash(&fs_info->hash_tfm);
2282 kfree(hasher);
2283 }
2284 #endif
2285 btrfs_close_devices(fs_info->fs_devices);
2286 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2287
2288 bdi_destroy(&fs_info->bdi);
2289
2290 kfree(fs_info->extent_root);
2291 kfree(fs_info->tree_root);
2292 kfree(fs_info->chunk_root);
2293 kfree(fs_info->dev_root);
2294 kfree(fs_info->csum_root);
2295 return 0;
2296 }
2297
2298 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2299 {
2300 int ret;
2301 struct inode *btree_inode = buf->first_page->mapping->host;
2302
2303 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2304 if (!ret)
2305 return ret;
2306
2307 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2308 parent_transid);
2309 return !ret;
2310 }
2311
2312 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2313 {
2314 struct inode *btree_inode = buf->first_page->mapping->host;
2315 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2316 buf);
2317 }
2318
2319 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2320 {
2321 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2322 u64 transid = btrfs_header_generation(buf);
2323 struct inode *btree_inode = root->fs_info->btree_inode;
2324
2325 WARN_ON(!btrfs_tree_locked(buf));
2326 if (transid != root->fs_info->generation) {
2327 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
2328 (unsigned long long)buf->start,
2329 transid, root->fs_info->generation);
2330 WARN_ON(1);
2331 }
2332 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2333 }
2334
2335 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2336 {
2337 /*
2338 * looks as though older kernels can get into trouble with
2339 * this code, they end up stuck in balance_dirty_pages forever
2340 */
2341 struct extent_io_tree *tree;
2342 u64 num_dirty;
2343 u64 start = 0;
2344 unsigned long thresh = 32 * 1024 * 1024;
2345 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2346
2347 if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2348 return;
2349
2350 num_dirty = count_range_bits(tree, &start, (u64)-1,
2351 thresh, EXTENT_DIRTY);
2352 if (num_dirty > thresh) {
2353 balance_dirty_pages_ratelimited_nr(
2354 root->fs_info->btree_inode->i_mapping, 1);
2355 }
2356 return;
2357 }
2358
2359 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2360 {
2361 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2362 int ret;
2363 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2364 if (ret == 0) {
2365 buf->flags |= EXTENT_UPTODATE;
2366 }
2367 return ret;
2368 }
2369
2370 int btree_lock_page_hook(struct page *page)
2371 {
2372 struct inode *inode = page->mapping->host;
2373 struct btrfs_root *root = BTRFS_I(inode)->root;
2374 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2375 struct extent_buffer *eb;
2376 unsigned long len;
2377 u64 bytenr = page_offset(page);
2378
2379 if (page->private == EXTENT_PAGE_PRIVATE)
2380 goto out;
2381
2382 len = page->private >> 2;
2383 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2384 if (!eb)
2385 goto out;
2386
2387 btrfs_tree_lock(eb);
2388 spin_lock(&root->fs_info->hash_lock);
2389 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2390 spin_unlock(&root->fs_info->hash_lock);
2391 btrfs_tree_unlock(eb);
2392 free_extent_buffer(eb);
2393 out:
2394 lock_page(page);
2395 return 0;
2396 }
2397
2398 static struct extent_io_ops btree_extent_io_ops = {
2399 .write_cache_pages_lock_hook = btree_lock_page_hook,
2400 .readpage_end_io_hook = btree_readpage_end_io_hook,
2401 .submit_bio_hook = btree_submit_bio_hook,
2402 /* note we're sharing with inode.c for the merge bio hook */
2403 .merge_bio_hook = btrfs_merge_bio_hook,
2404 };