]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/disk-io.c
btrfs: enhance superblock checks
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178 {
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201 {
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
386 }
387
388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
389 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
390 csum_type);
391 ret = 1;
392 }
393
394 return ret;
395 }
396
397 /*
398 * helper to read a given tree block, doing retries as required when
399 * the checksums don't match and we have alternate mirrors to try.
400 */
401 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
402 struct extent_buffer *eb,
403 u64 start, u64 parent_transid)
404 {
405 struct extent_io_tree *io_tree;
406 int failed = 0;
407 int ret;
408 int num_copies = 0;
409 int mirror_num = 0;
410 int failed_mirror = 0;
411
412 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
413 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
414 while (1) {
415 ret = read_extent_buffer_pages(io_tree, eb, start,
416 WAIT_COMPLETE,
417 btree_get_extent, mirror_num);
418 if (!ret) {
419 if (!verify_parent_transid(io_tree, eb,
420 parent_transid, 0))
421 break;
422 else
423 ret = -EIO;
424 }
425
426 /*
427 * This buffer's crc is fine, but its contents are corrupted, so
428 * there is no reason to read the other copies, they won't be
429 * any less wrong.
430 */
431 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
432 break;
433
434 num_copies = btrfs_num_copies(root->fs_info,
435 eb->start, eb->len);
436 if (num_copies == 1)
437 break;
438
439 if (!failed_mirror) {
440 failed = 1;
441 failed_mirror = eb->read_mirror;
442 }
443
444 mirror_num++;
445 if (mirror_num == failed_mirror)
446 mirror_num++;
447
448 if (mirror_num > num_copies)
449 break;
450 }
451
452 if (failed && !ret && failed_mirror)
453 repair_eb_io_failure(root, eb, failed_mirror);
454
455 return ret;
456 }
457
458 /*
459 * checksum a dirty tree block before IO. This has extra checks to make sure
460 * we only fill in the checksum field in the first page of a multi-page block
461 */
462
463 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
464 {
465 struct extent_io_tree *tree;
466 u64 start = page_offset(page);
467 u64 found_start;
468 struct extent_buffer *eb;
469
470 tree = &BTRFS_I(page->mapping->host)->io_tree;
471
472 eb = (struct extent_buffer *)page->private;
473 if (page != eb->pages[0])
474 return 0;
475 found_start = btrfs_header_bytenr(eb);
476 if (found_start != start) {
477 WARN_ON(1);
478 return 0;
479 }
480 if (!PageUptodate(page)) {
481 WARN_ON(1);
482 return 0;
483 }
484 csum_tree_block(root, eb, 0);
485 return 0;
486 }
487
488 static int check_tree_block_fsid(struct btrfs_root *root,
489 struct extent_buffer *eb)
490 {
491 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
492 u8 fsid[BTRFS_UUID_SIZE];
493 int ret = 1;
494
495 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
496 BTRFS_FSID_SIZE);
497 while (fs_devices) {
498 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
499 ret = 0;
500 break;
501 }
502 fs_devices = fs_devices->seed;
503 }
504 return ret;
505 }
506
507 #define CORRUPT(reason, eb, root, slot) \
508 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
509 "root=%llu, slot=%d\n", reason, \
510 (unsigned long long)btrfs_header_bytenr(eb), \
511 (unsigned long long)root->objectid, slot)
512
513 static noinline int check_leaf(struct btrfs_root *root,
514 struct extent_buffer *leaf)
515 {
516 struct btrfs_key key;
517 struct btrfs_key leaf_key;
518 u32 nritems = btrfs_header_nritems(leaf);
519 int slot;
520
521 if (nritems == 0)
522 return 0;
523
524 /* Check the 0 item */
525 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
526 BTRFS_LEAF_DATA_SIZE(root)) {
527 CORRUPT("invalid item offset size pair", leaf, root, 0);
528 return -EIO;
529 }
530
531 /*
532 * Check to make sure each items keys are in the correct order and their
533 * offsets make sense. We only have to loop through nritems-1 because
534 * we check the current slot against the next slot, which verifies the
535 * next slot's offset+size makes sense and that the current's slot
536 * offset is correct.
537 */
538 for (slot = 0; slot < nritems - 1; slot++) {
539 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
540 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
541
542 /* Make sure the keys are in the right order */
543 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
544 CORRUPT("bad key order", leaf, root, slot);
545 return -EIO;
546 }
547
548 /*
549 * Make sure the offset and ends are right, remember that the
550 * item data starts at the end of the leaf and grows towards the
551 * front.
552 */
553 if (btrfs_item_offset_nr(leaf, slot) !=
554 btrfs_item_end_nr(leaf, slot + 1)) {
555 CORRUPT("slot offset bad", leaf, root, slot);
556 return -EIO;
557 }
558
559 /*
560 * Check to make sure that we don't point outside of the leaf,
561 * just incase all the items are consistent to eachother, but
562 * all point outside of the leaf.
563 */
564 if (btrfs_item_end_nr(leaf, slot) >
565 BTRFS_LEAF_DATA_SIZE(root)) {
566 CORRUPT("slot end outside of leaf", leaf, root, slot);
567 return -EIO;
568 }
569 }
570
571 return 0;
572 }
573
574 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
575 struct extent_state *state, int mirror)
576 {
577 struct extent_io_tree *tree;
578 u64 found_start;
579 int found_level;
580 struct extent_buffer *eb;
581 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
582 int ret = 0;
583 int reads_done;
584
585 if (!page->private)
586 goto out;
587
588 tree = &BTRFS_I(page->mapping->host)->io_tree;
589 eb = (struct extent_buffer *)page->private;
590
591 /* the pending IO might have been the only thing that kept this buffer
592 * in memory. Make sure we have a ref for all this other checks
593 */
594 extent_buffer_get(eb);
595
596 reads_done = atomic_dec_and_test(&eb->io_pages);
597 if (!reads_done)
598 goto err;
599
600 eb->read_mirror = mirror;
601 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
602 ret = -EIO;
603 goto err;
604 }
605
606 found_start = btrfs_header_bytenr(eb);
607 if (found_start != eb->start) {
608 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
609 "%llu %llu\n",
610 (unsigned long long)found_start,
611 (unsigned long long)eb->start);
612 ret = -EIO;
613 goto err;
614 }
615 if (check_tree_block_fsid(root, eb)) {
616 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
617 (unsigned long long)eb->start);
618 ret = -EIO;
619 goto err;
620 }
621 found_level = btrfs_header_level(eb);
622 if (found_level >= BTRFS_MAX_LEVEL) {
623 btrfs_info(root->fs_info, "bad tree block level %d\n",
624 (int)btrfs_header_level(eb));
625 ret = -EIO;
626 goto err;
627 }
628
629 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
630 eb, found_level);
631
632 ret = csum_tree_block(root, eb, 1);
633 if (ret) {
634 ret = -EIO;
635 goto err;
636 }
637
638 /*
639 * If this is a leaf block and it is corrupt, set the corrupt bit so
640 * that we don't try and read the other copies of this block, just
641 * return -EIO.
642 */
643 if (found_level == 0 && check_leaf(root, eb)) {
644 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
645 ret = -EIO;
646 }
647
648 if (!ret)
649 set_extent_buffer_uptodate(eb);
650 err:
651 if (reads_done &&
652 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
653 btree_readahead_hook(root, eb, eb->start, ret);
654
655 if (ret) {
656 /*
657 * our io error hook is going to dec the io pages
658 * again, we have to make sure it has something
659 * to decrement
660 */
661 atomic_inc(&eb->io_pages);
662 clear_extent_buffer_uptodate(eb);
663 }
664 free_extent_buffer(eb);
665 out:
666 return ret;
667 }
668
669 static int btree_io_failed_hook(struct page *page, int failed_mirror)
670 {
671 struct extent_buffer *eb;
672 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
673
674 eb = (struct extent_buffer *)page->private;
675 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
676 eb->read_mirror = failed_mirror;
677 atomic_dec(&eb->io_pages);
678 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
679 btree_readahead_hook(root, eb, eb->start, -EIO);
680 return -EIO; /* we fixed nothing */
681 }
682
683 static void end_workqueue_bio(struct bio *bio, int err)
684 {
685 struct end_io_wq *end_io_wq = bio->bi_private;
686 struct btrfs_fs_info *fs_info;
687
688 fs_info = end_io_wq->info;
689 end_io_wq->error = err;
690 end_io_wq->work.func = end_workqueue_fn;
691 end_io_wq->work.flags = 0;
692
693 if (bio->bi_rw & REQ_WRITE) {
694 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
695 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
696 &end_io_wq->work);
697 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
698 btrfs_queue_worker(&fs_info->endio_freespace_worker,
699 &end_io_wq->work);
700 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
701 btrfs_queue_worker(&fs_info->endio_raid56_workers,
702 &end_io_wq->work);
703 else
704 btrfs_queue_worker(&fs_info->endio_write_workers,
705 &end_io_wq->work);
706 } else {
707 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
708 btrfs_queue_worker(&fs_info->endio_raid56_workers,
709 &end_io_wq->work);
710 else if (end_io_wq->metadata)
711 btrfs_queue_worker(&fs_info->endio_meta_workers,
712 &end_io_wq->work);
713 else
714 btrfs_queue_worker(&fs_info->endio_workers,
715 &end_io_wq->work);
716 }
717 }
718
719 /*
720 * For the metadata arg you want
721 *
722 * 0 - if data
723 * 1 - if normal metadta
724 * 2 - if writing to the free space cache area
725 * 3 - raid parity work
726 */
727 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
728 int metadata)
729 {
730 struct end_io_wq *end_io_wq;
731 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
732 if (!end_io_wq)
733 return -ENOMEM;
734
735 end_io_wq->private = bio->bi_private;
736 end_io_wq->end_io = bio->bi_end_io;
737 end_io_wq->info = info;
738 end_io_wq->error = 0;
739 end_io_wq->bio = bio;
740 end_io_wq->metadata = metadata;
741
742 bio->bi_private = end_io_wq;
743 bio->bi_end_io = end_workqueue_bio;
744 return 0;
745 }
746
747 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
748 {
749 unsigned long limit = min_t(unsigned long,
750 info->workers.max_workers,
751 info->fs_devices->open_devices);
752 return 256 * limit;
753 }
754
755 static void run_one_async_start(struct btrfs_work *work)
756 {
757 struct async_submit_bio *async;
758 int ret;
759
760 async = container_of(work, struct async_submit_bio, work);
761 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
762 async->mirror_num, async->bio_flags,
763 async->bio_offset);
764 if (ret)
765 async->error = ret;
766 }
767
768 static void run_one_async_done(struct btrfs_work *work)
769 {
770 struct btrfs_fs_info *fs_info;
771 struct async_submit_bio *async;
772 int limit;
773
774 async = container_of(work, struct async_submit_bio, work);
775 fs_info = BTRFS_I(async->inode)->root->fs_info;
776
777 limit = btrfs_async_submit_limit(fs_info);
778 limit = limit * 2 / 3;
779
780 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
781 waitqueue_active(&fs_info->async_submit_wait))
782 wake_up(&fs_info->async_submit_wait);
783
784 /* If an error occured we just want to clean up the bio and move on */
785 if (async->error) {
786 bio_endio(async->bio, async->error);
787 return;
788 }
789
790 async->submit_bio_done(async->inode, async->rw, async->bio,
791 async->mirror_num, async->bio_flags,
792 async->bio_offset);
793 }
794
795 static void run_one_async_free(struct btrfs_work *work)
796 {
797 struct async_submit_bio *async;
798
799 async = container_of(work, struct async_submit_bio, work);
800 kfree(async);
801 }
802
803 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
804 int rw, struct bio *bio, int mirror_num,
805 unsigned long bio_flags,
806 u64 bio_offset,
807 extent_submit_bio_hook_t *submit_bio_start,
808 extent_submit_bio_hook_t *submit_bio_done)
809 {
810 struct async_submit_bio *async;
811
812 async = kmalloc(sizeof(*async), GFP_NOFS);
813 if (!async)
814 return -ENOMEM;
815
816 async->inode = inode;
817 async->rw = rw;
818 async->bio = bio;
819 async->mirror_num = mirror_num;
820 async->submit_bio_start = submit_bio_start;
821 async->submit_bio_done = submit_bio_done;
822
823 async->work.func = run_one_async_start;
824 async->work.ordered_func = run_one_async_done;
825 async->work.ordered_free = run_one_async_free;
826
827 async->work.flags = 0;
828 async->bio_flags = bio_flags;
829 async->bio_offset = bio_offset;
830
831 async->error = 0;
832
833 atomic_inc(&fs_info->nr_async_submits);
834
835 if (rw & REQ_SYNC)
836 btrfs_set_work_high_prio(&async->work);
837
838 btrfs_queue_worker(&fs_info->workers, &async->work);
839
840 while (atomic_read(&fs_info->async_submit_draining) &&
841 atomic_read(&fs_info->nr_async_submits)) {
842 wait_event(fs_info->async_submit_wait,
843 (atomic_read(&fs_info->nr_async_submits) == 0));
844 }
845
846 return 0;
847 }
848
849 static int btree_csum_one_bio(struct bio *bio)
850 {
851 struct bio_vec *bvec = bio->bi_io_vec;
852 int bio_index = 0;
853 struct btrfs_root *root;
854 int ret = 0;
855
856 WARN_ON(bio->bi_vcnt <= 0);
857 while (bio_index < bio->bi_vcnt) {
858 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
859 ret = csum_dirty_buffer(root, bvec->bv_page);
860 if (ret)
861 break;
862 bio_index++;
863 bvec++;
864 }
865 return ret;
866 }
867
868 static int __btree_submit_bio_start(struct inode *inode, int rw,
869 struct bio *bio, int mirror_num,
870 unsigned long bio_flags,
871 u64 bio_offset)
872 {
873 /*
874 * when we're called for a write, we're already in the async
875 * submission context. Just jump into btrfs_map_bio
876 */
877 return btree_csum_one_bio(bio);
878 }
879
880 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
881 int mirror_num, unsigned long bio_flags,
882 u64 bio_offset)
883 {
884 int ret;
885
886 /*
887 * when we're called for a write, we're already in the async
888 * submission context. Just jump into btrfs_map_bio
889 */
890 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
891 if (ret)
892 bio_endio(bio, ret);
893 return ret;
894 }
895
896 static int check_async_write(struct inode *inode, unsigned long bio_flags)
897 {
898 if (bio_flags & EXTENT_BIO_TREE_LOG)
899 return 0;
900 #ifdef CONFIG_X86
901 if (cpu_has_xmm4_2)
902 return 0;
903 #endif
904 return 1;
905 }
906
907 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
908 int mirror_num, unsigned long bio_flags,
909 u64 bio_offset)
910 {
911 int async = check_async_write(inode, bio_flags);
912 int ret;
913
914 if (!(rw & REQ_WRITE)) {
915 /*
916 * called for a read, do the setup so that checksum validation
917 * can happen in the async kernel threads
918 */
919 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
920 bio, 1);
921 if (ret)
922 goto out_w_error;
923 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
924 mirror_num, 0);
925 } else if (!async) {
926 ret = btree_csum_one_bio(bio);
927 if (ret)
928 goto out_w_error;
929 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
930 mirror_num, 0);
931 } else {
932 /*
933 * kthread helpers are used to submit writes so that
934 * checksumming can happen in parallel across all CPUs
935 */
936 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
937 inode, rw, bio, mirror_num, 0,
938 bio_offset,
939 __btree_submit_bio_start,
940 __btree_submit_bio_done);
941 }
942
943 if (ret) {
944 out_w_error:
945 bio_endio(bio, ret);
946 }
947 return ret;
948 }
949
950 #ifdef CONFIG_MIGRATION
951 static int btree_migratepage(struct address_space *mapping,
952 struct page *newpage, struct page *page,
953 enum migrate_mode mode)
954 {
955 /*
956 * we can't safely write a btree page from here,
957 * we haven't done the locking hook
958 */
959 if (PageDirty(page))
960 return -EAGAIN;
961 /*
962 * Buffers may be managed in a filesystem specific way.
963 * We must have no buffers or drop them.
964 */
965 if (page_has_private(page) &&
966 !try_to_release_page(page, GFP_KERNEL))
967 return -EAGAIN;
968 return migrate_page(mapping, newpage, page, mode);
969 }
970 #endif
971
972
973 static int btree_writepages(struct address_space *mapping,
974 struct writeback_control *wbc)
975 {
976 struct extent_io_tree *tree;
977 struct btrfs_fs_info *fs_info;
978 int ret;
979
980 tree = &BTRFS_I(mapping->host)->io_tree;
981 if (wbc->sync_mode == WB_SYNC_NONE) {
982
983 if (wbc->for_kupdate)
984 return 0;
985
986 fs_info = BTRFS_I(mapping->host)->root->fs_info;
987 /* this is a bit racy, but that's ok */
988 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
989 BTRFS_DIRTY_METADATA_THRESH);
990 if (ret < 0)
991 return 0;
992 }
993 return btree_write_cache_pages(mapping, wbc);
994 }
995
996 static int btree_readpage(struct file *file, struct page *page)
997 {
998 struct extent_io_tree *tree;
999 tree = &BTRFS_I(page->mapping->host)->io_tree;
1000 return extent_read_full_page(tree, page, btree_get_extent, 0);
1001 }
1002
1003 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1004 {
1005 if (PageWriteback(page) || PageDirty(page))
1006 return 0;
1007
1008 return try_release_extent_buffer(page);
1009 }
1010
1011 static void btree_invalidatepage(struct page *page, unsigned long offset)
1012 {
1013 struct extent_io_tree *tree;
1014 tree = &BTRFS_I(page->mapping->host)->io_tree;
1015 extent_invalidatepage(tree, page, offset);
1016 btree_releasepage(page, GFP_NOFS);
1017 if (PagePrivate(page)) {
1018 printk(KERN_WARNING "btrfs warning page private not zero "
1019 "on page %llu\n", (unsigned long long)page_offset(page));
1020 ClearPagePrivate(page);
1021 set_page_private(page, 0);
1022 page_cache_release(page);
1023 }
1024 }
1025
1026 static int btree_set_page_dirty(struct page *page)
1027 {
1028 #ifdef DEBUG
1029 struct extent_buffer *eb;
1030
1031 BUG_ON(!PagePrivate(page));
1032 eb = (struct extent_buffer *)page->private;
1033 BUG_ON(!eb);
1034 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1035 BUG_ON(!atomic_read(&eb->refs));
1036 btrfs_assert_tree_locked(eb);
1037 #endif
1038 return __set_page_dirty_nobuffers(page);
1039 }
1040
1041 static const struct address_space_operations btree_aops = {
1042 .readpage = btree_readpage,
1043 .writepages = btree_writepages,
1044 .releasepage = btree_releasepage,
1045 .invalidatepage = btree_invalidatepage,
1046 #ifdef CONFIG_MIGRATION
1047 .migratepage = btree_migratepage,
1048 #endif
1049 .set_page_dirty = btree_set_page_dirty,
1050 };
1051
1052 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1053 u64 parent_transid)
1054 {
1055 struct extent_buffer *buf = NULL;
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 int ret = 0;
1058
1059 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1060 if (!buf)
1061 return 0;
1062 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1063 buf, 0, WAIT_NONE, btree_get_extent, 0);
1064 free_extent_buffer(buf);
1065 return ret;
1066 }
1067
1068 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1069 int mirror_num, struct extent_buffer **eb)
1070 {
1071 struct extent_buffer *buf = NULL;
1072 struct inode *btree_inode = root->fs_info->btree_inode;
1073 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1074 int ret;
1075
1076 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1077 if (!buf)
1078 return 0;
1079
1080 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1081
1082 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1083 btree_get_extent, mirror_num);
1084 if (ret) {
1085 free_extent_buffer(buf);
1086 return ret;
1087 }
1088
1089 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1090 free_extent_buffer(buf);
1091 return -EIO;
1092 } else if (extent_buffer_uptodate(buf)) {
1093 *eb = buf;
1094 } else {
1095 free_extent_buffer(buf);
1096 }
1097 return 0;
1098 }
1099
1100 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1101 u64 bytenr, u32 blocksize)
1102 {
1103 struct inode *btree_inode = root->fs_info->btree_inode;
1104 struct extent_buffer *eb;
1105 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1106 bytenr, blocksize);
1107 return eb;
1108 }
1109
1110 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1111 u64 bytenr, u32 blocksize)
1112 {
1113 struct inode *btree_inode = root->fs_info->btree_inode;
1114 struct extent_buffer *eb;
1115
1116 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1117 bytenr, blocksize);
1118 return eb;
1119 }
1120
1121
1122 int btrfs_write_tree_block(struct extent_buffer *buf)
1123 {
1124 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1125 buf->start + buf->len - 1);
1126 }
1127
1128 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1129 {
1130 return filemap_fdatawait_range(buf->pages[0]->mapping,
1131 buf->start, buf->start + buf->len - 1);
1132 }
1133
1134 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1135 u32 blocksize, u64 parent_transid)
1136 {
1137 struct extent_buffer *buf = NULL;
1138 int ret;
1139
1140 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1141 if (!buf)
1142 return NULL;
1143
1144 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1145 return buf;
1146
1147 }
1148
1149 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1150 struct extent_buffer *buf)
1151 {
1152 struct btrfs_fs_info *fs_info = root->fs_info;
1153
1154 if (btrfs_header_generation(buf) ==
1155 fs_info->running_transaction->transid) {
1156 btrfs_assert_tree_locked(buf);
1157
1158 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1159 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1160 -buf->len,
1161 fs_info->dirty_metadata_batch);
1162 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1163 btrfs_set_lock_blocking(buf);
1164 clear_extent_buffer_dirty(buf);
1165 }
1166 }
1167 }
1168
1169 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1170 u32 stripesize, struct btrfs_root *root,
1171 struct btrfs_fs_info *fs_info,
1172 u64 objectid)
1173 {
1174 root->node = NULL;
1175 root->commit_root = NULL;
1176 root->sectorsize = sectorsize;
1177 root->nodesize = nodesize;
1178 root->leafsize = leafsize;
1179 root->stripesize = stripesize;
1180 root->ref_cows = 0;
1181 root->track_dirty = 0;
1182 root->in_radix = 0;
1183 root->orphan_item_inserted = 0;
1184 root->orphan_cleanup_state = 0;
1185
1186 root->objectid = objectid;
1187 root->last_trans = 0;
1188 root->highest_objectid = 0;
1189 root->name = NULL;
1190 root->inode_tree = RB_ROOT;
1191 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1192 root->block_rsv = NULL;
1193 root->orphan_block_rsv = NULL;
1194
1195 INIT_LIST_HEAD(&root->dirty_list);
1196 INIT_LIST_HEAD(&root->root_list);
1197 INIT_LIST_HEAD(&root->logged_list[0]);
1198 INIT_LIST_HEAD(&root->logged_list[1]);
1199 spin_lock_init(&root->orphan_lock);
1200 spin_lock_init(&root->inode_lock);
1201 spin_lock_init(&root->accounting_lock);
1202 spin_lock_init(&root->log_extents_lock[0]);
1203 spin_lock_init(&root->log_extents_lock[1]);
1204 mutex_init(&root->objectid_mutex);
1205 mutex_init(&root->log_mutex);
1206 init_waitqueue_head(&root->log_writer_wait);
1207 init_waitqueue_head(&root->log_commit_wait[0]);
1208 init_waitqueue_head(&root->log_commit_wait[1]);
1209 atomic_set(&root->log_commit[0], 0);
1210 atomic_set(&root->log_commit[1], 0);
1211 atomic_set(&root->log_writers, 0);
1212 atomic_set(&root->log_batch, 0);
1213 atomic_set(&root->orphan_inodes, 0);
1214 root->log_transid = 0;
1215 root->last_log_commit = 0;
1216 extent_io_tree_init(&root->dirty_log_pages,
1217 fs_info->btree_inode->i_mapping);
1218
1219 memset(&root->root_key, 0, sizeof(root->root_key));
1220 memset(&root->root_item, 0, sizeof(root->root_item));
1221 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1222 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1223 root->defrag_trans_start = fs_info->generation;
1224 init_completion(&root->kobj_unregister);
1225 root->defrag_running = 0;
1226 root->root_key.objectid = objectid;
1227 root->anon_dev = 0;
1228
1229 spin_lock_init(&root->root_item_lock);
1230 }
1231
1232 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1233 struct btrfs_fs_info *fs_info,
1234 u64 objectid,
1235 struct btrfs_root *root)
1236 {
1237 int ret;
1238 u32 blocksize;
1239 u64 generation;
1240
1241 __setup_root(tree_root->nodesize, tree_root->leafsize,
1242 tree_root->sectorsize, tree_root->stripesize,
1243 root, fs_info, objectid);
1244 ret = btrfs_find_last_root(tree_root, objectid,
1245 &root->root_item, &root->root_key);
1246 if (ret > 0)
1247 return -ENOENT;
1248 else if (ret < 0)
1249 return ret;
1250
1251 generation = btrfs_root_generation(&root->root_item);
1252 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1253 root->commit_root = NULL;
1254 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1255 blocksize, generation);
1256 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1257 free_extent_buffer(root->node);
1258 root->node = NULL;
1259 return -EIO;
1260 }
1261 root->commit_root = btrfs_root_node(root);
1262 return 0;
1263 }
1264
1265 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1266 {
1267 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1268 if (root)
1269 root->fs_info = fs_info;
1270 return root;
1271 }
1272
1273 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1274 struct btrfs_fs_info *fs_info,
1275 u64 objectid)
1276 {
1277 struct extent_buffer *leaf;
1278 struct btrfs_root *tree_root = fs_info->tree_root;
1279 struct btrfs_root *root;
1280 struct btrfs_key key;
1281 int ret = 0;
1282 u64 bytenr;
1283 uuid_le uuid;
1284
1285 root = btrfs_alloc_root(fs_info);
1286 if (!root)
1287 return ERR_PTR(-ENOMEM);
1288
1289 __setup_root(tree_root->nodesize, tree_root->leafsize,
1290 tree_root->sectorsize, tree_root->stripesize,
1291 root, fs_info, objectid);
1292 root->root_key.objectid = objectid;
1293 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1294 root->root_key.offset = 0;
1295
1296 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1297 0, objectid, NULL, 0, 0, 0);
1298 if (IS_ERR(leaf)) {
1299 ret = PTR_ERR(leaf);
1300 leaf = NULL;
1301 goto fail;
1302 }
1303
1304 bytenr = leaf->start;
1305 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1306 btrfs_set_header_bytenr(leaf, leaf->start);
1307 btrfs_set_header_generation(leaf, trans->transid);
1308 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1309 btrfs_set_header_owner(leaf, objectid);
1310 root->node = leaf;
1311
1312 write_extent_buffer(leaf, fs_info->fsid,
1313 (unsigned long)btrfs_header_fsid(leaf),
1314 BTRFS_FSID_SIZE);
1315 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1316 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1317 BTRFS_UUID_SIZE);
1318 btrfs_mark_buffer_dirty(leaf);
1319
1320 root->commit_root = btrfs_root_node(root);
1321 root->track_dirty = 1;
1322
1323
1324 root->root_item.flags = 0;
1325 root->root_item.byte_limit = 0;
1326 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1327 btrfs_set_root_generation(&root->root_item, trans->transid);
1328 btrfs_set_root_level(&root->root_item, 0);
1329 btrfs_set_root_refs(&root->root_item, 1);
1330 btrfs_set_root_used(&root->root_item, leaf->len);
1331 btrfs_set_root_last_snapshot(&root->root_item, 0);
1332 btrfs_set_root_dirid(&root->root_item, 0);
1333 uuid_le_gen(&uuid);
1334 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1335 root->root_item.drop_level = 0;
1336
1337 key.objectid = objectid;
1338 key.type = BTRFS_ROOT_ITEM_KEY;
1339 key.offset = 0;
1340 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1341 if (ret)
1342 goto fail;
1343
1344 btrfs_tree_unlock(leaf);
1345
1346 return root;
1347
1348 fail:
1349 if (leaf) {
1350 btrfs_tree_unlock(leaf);
1351 free_extent_buffer(leaf);
1352 }
1353 kfree(root);
1354
1355 return ERR_PTR(ret);
1356 }
1357
1358 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1359 struct btrfs_fs_info *fs_info)
1360 {
1361 struct btrfs_root *root;
1362 struct btrfs_root *tree_root = fs_info->tree_root;
1363 struct extent_buffer *leaf;
1364
1365 root = btrfs_alloc_root(fs_info);
1366 if (!root)
1367 return ERR_PTR(-ENOMEM);
1368
1369 __setup_root(tree_root->nodesize, tree_root->leafsize,
1370 tree_root->sectorsize, tree_root->stripesize,
1371 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1372
1373 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1374 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1375 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1376 /*
1377 * log trees do not get reference counted because they go away
1378 * before a real commit is actually done. They do store pointers
1379 * to file data extents, and those reference counts still get
1380 * updated (along with back refs to the log tree).
1381 */
1382 root->ref_cows = 0;
1383
1384 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1385 BTRFS_TREE_LOG_OBJECTID, NULL,
1386 0, 0, 0);
1387 if (IS_ERR(leaf)) {
1388 kfree(root);
1389 return ERR_CAST(leaf);
1390 }
1391
1392 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1393 btrfs_set_header_bytenr(leaf, leaf->start);
1394 btrfs_set_header_generation(leaf, trans->transid);
1395 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1396 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1397 root->node = leaf;
1398
1399 write_extent_buffer(root->node, root->fs_info->fsid,
1400 (unsigned long)btrfs_header_fsid(root->node),
1401 BTRFS_FSID_SIZE);
1402 btrfs_mark_buffer_dirty(root->node);
1403 btrfs_tree_unlock(root->node);
1404 return root;
1405 }
1406
1407 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1408 struct btrfs_fs_info *fs_info)
1409 {
1410 struct btrfs_root *log_root;
1411
1412 log_root = alloc_log_tree(trans, fs_info);
1413 if (IS_ERR(log_root))
1414 return PTR_ERR(log_root);
1415 WARN_ON(fs_info->log_root_tree);
1416 fs_info->log_root_tree = log_root;
1417 return 0;
1418 }
1419
1420 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1421 struct btrfs_root *root)
1422 {
1423 struct btrfs_root *log_root;
1424 struct btrfs_inode_item *inode_item;
1425
1426 log_root = alloc_log_tree(trans, root->fs_info);
1427 if (IS_ERR(log_root))
1428 return PTR_ERR(log_root);
1429
1430 log_root->last_trans = trans->transid;
1431 log_root->root_key.offset = root->root_key.objectid;
1432
1433 inode_item = &log_root->root_item.inode;
1434 inode_item->generation = cpu_to_le64(1);
1435 inode_item->size = cpu_to_le64(3);
1436 inode_item->nlink = cpu_to_le32(1);
1437 inode_item->nbytes = cpu_to_le64(root->leafsize);
1438 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1439
1440 btrfs_set_root_node(&log_root->root_item, log_root->node);
1441
1442 WARN_ON(root->log_root);
1443 root->log_root = log_root;
1444 root->log_transid = 0;
1445 root->last_log_commit = 0;
1446 return 0;
1447 }
1448
1449 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1450 struct btrfs_key *location)
1451 {
1452 struct btrfs_root *root;
1453 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1454 struct btrfs_path *path;
1455 struct extent_buffer *l;
1456 u64 generation;
1457 u32 blocksize;
1458 int ret = 0;
1459 int slot;
1460
1461 root = btrfs_alloc_root(fs_info);
1462 if (!root)
1463 return ERR_PTR(-ENOMEM);
1464 if (location->offset == (u64)-1) {
1465 ret = find_and_setup_root(tree_root, fs_info,
1466 location->objectid, root);
1467 if (ret) {
1468 kfree(root);
1469 return ERR_PTR(ret);
1470 }
1471 goto out;
1472 }
1473
1474 __setup_root(tree_root->nodesize, tree_root->leafsize,
1475 tree_root->sectorsize, tree_root->stripesize,
1476 root, fs_info, location->objectid);
1477
1478 path = btrfs_alloc_path();
1479 if (!path) {
1480 kfree(root);
1481 return ERR_PTR(-ENOMEM);
1482 }
1483 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1484 if (ret == 0) {
1485 l = path->nodes[0];
1486 slot = path->slots[0];
1487 btrfs_read_root_item(l, slot, &root->root_item);
1488 memcpy(&root->root_key, location, sizeof(*location));
1489 }
1490 btrfs_free_path(path);
1491 if (ret) {
1492 kfree(root);
1493 if (ret > 0)
1494 ret = -ENOENT;
1495 return ERR_PTR(ret);
1496 }
1497
1498 generation = btrfs_root_generation(&root->root_item);
1499 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1500 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1501 blocksize, generation);
1502 if (!root->node || !extent_buffer_uptodate(root->node)) {
1503 ret = (!root->node) ? -ENOMEM : -EIO;
1504
1505 free_extent_buffer(root->node);
1506 kfree(root);
1507 return ERR_PTR(ret);
1508 }
1509
1510 root->commit_root = btrfs_root_node(root);
1511 BUG_ON(!root->node); /* -ENOMEM */
1512 out:
1513 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1514 root->ref_cows = 1;
1515 btrfs_check_and_init_root_item(&root->root_item);
1516 }
1517
1518 return root;
1519 }
1520
1521 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1522 struct btrfs_key *location)
1523 {
1524 struct btrfs_root *root;
1525 int ret;
1526
1527 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1528 return fs_info->tree_root;
1529 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1530 return fs_info->extent_root;
1531 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1532 return fs_info->chunk_root;
1533 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1534 return fs_info->dev_root;
1535 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1536 return fs_info->csum_root;
1537 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1538 return fs_info->quota_root ? fs_info->quota_root :
1539 ERR_PTR(-ENOENT);
1540 again:
1541 spin_lock(&fs_info->fs_roots_radix_lock);
1542 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1543 (unsigned long)location->objectid);
1544 spin_unlock(&fs_info->fs_roots_radix_lock);
1545 if (root)
1546 return root;
1547
1548 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1549 if (IS_ERR(root))
1550 return root;
1551
1552 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1553 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1554 GFP_NOFS);
1555 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1556 ret = -ENOMEM;
1557 goto fail;
1558 }
1559
1560 btrfs_init_free_ino_ctl(root);
1561 mutex_init(&root->fs_commit_mutex);
1562 spin_lock_init(&root->cache_lock);
1563 init_waitqueue_head(&root->cache_wait);
1564
1565 ret = get_anon_bdev(&root->anon_dev);
1566 if (ret)
1567 goto fail;
1568
1569 if (btrfs_root_refs(&root->root_item) == 0) {
1570 ret = -ENOENT;
1571 goto fail;
1572 }
1573
1574 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1575 if (ret < 0)
1576 goto fail;
1577 if (ret == 0)
1578 root->orphan_item_inserted = 1;
1579
1580 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1581 if (ret)
1582 goto fail;
1583
1584 spin_lock(&fs_info->fs_roots_radix_lock);
1585 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1586 (unsigned long)root->root_key.objectid,
1587 root);
1588 if (ret == 0)
1589 root->in_radix = 1;
1590
1591 spin_unlock(&fs_info->fs_roots_radix_lock);
1592 radix_tree_preload_end();
1593 if (ret) {
1594 if (ret == -EEXIST) {
1595 free_fs_root(root);
1596 goto again;
1597 }
1598 goto fail;
1599 }
1600
1601 ret = btrfs_find_dead_roots(fs_info->tree_root,
1602 root->root_key.objectid);
1603 WARN_ON(ret);
1604 return root;
1605 fail:
1606 free_fs_root(root);
1607 return ERR_PTR(ret);
1608 }
1609
1610 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1611 {
1612 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1613 int ret = 0;
1614 struct btrfs_device *device;
1615 struct backing_dev_info *bdi;
1616
1617 rcu_read_lock();
1618 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1619 if (!device->bdev)
1620 continue;
1621 bdi = blk_get_backing_dev_info(device->bdev);
1622 if (bdi && bdi_congested(bdi, bdi_bits)) {
1623 ret = 1;
1624 break;
1625 }
1626 }
1627 rcu_read_unlock();
1628 return ret;
1629 }
1630
1631 /*
1632 * If this fails, caller must call bdi_destroy() to get rid of the
1633 * bdi again.
1634 */
1635 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1636 {
1637 int err;
1638
1639 bdi->capabilities = BDI_CAP_MAP_COPY;
1640 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1641 if (err)
1642 return err;
1643
1644 bdi->ra_pages = default_backing_dev_info.ra_pages;
1645 bdi->congested_fn = btrfs_congested_fn;
1646 bdi->congested_data = info;
1647 return 0;
1648 }
1649
1650 /*
1651 * called by the kthread helper functions to finally call the bio end_io
1652 * functions. This is where read checksum verification actually happens
1653 */
1654 static void end_workqueue_fn(struct btrfs_work *work)
1655 {
1656 struct bio *bio;
1657 struct end_io_wq *end_io_wq;
1658 struct btrfs_fs_info *fs_info;
1659 int error;
1660
1661 end_io_wq = container_of(work, struct end_io_wq, work);
1662 bio = end_io_wq->bio;
1663 fs_info = end_io_wq->info;
1664
1665 error = end_io_wq->error;
1666 bio->bi_private = end_io_wq->private;
1667 bio->bi_end_io = end_io_wq->end_io;
1668 kfree(end_io_wq);
1669 bio_endio(bio, error);
1670 }
1671
1672 static int cleaner_kthread(void *arg)
1673 {
1674 struct btrfs_root *root = arg;
1675
1676 do {
1677 int again = 0;
1678
1679 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1680 down_read_trylock(&root->fs_info->sb->s_umount)) {
1681 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1682 btrfs_run_delayed_iputs(root);
1683 again = btrfs_clean_one_deleted_snapshot(root);
1684 mutex_unlock(&root->fs_info->cleaner_mutex);
1685 }
1686 btrfs_run_defrag_inodes(root->fs_info);
1687 up_read(&root->fs_info->sb->s_umount);
1688 }
1689
1690 if (!try_to_freeze() && !again) {
1691 set_current_state(TASK_INTERRUPTIBLE);
1692 if (!kthread_should_stop())
1693 schedule();
1694 __set_current_state(TASK_RUNNING);
1695 }
1696 } while (!kthread_should_stop());
1697 return 0;
1698 }
1699
1700 static int transaction_kthread(void *arg)
1701 {
1702 struct btrfs_root *root = arg;
1703 struct btrfs_trans_handle *trans;
1704 struct btrfs_transaction *cur;
1705 u64 transid;
1706 unsigned long now;
1707 unsigned long delay;
1708 bool cannot_commit;
1709
1710 do {
1711 cannot_commit = false;
1712 delay = HZ * 30;
1713 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1714
1715 spin_lock(&root->fs_info->trans_lock);
1716 cur = root->fs_info->running_transaction;
1717 if (!cur) {
1718 spin_unlock(&root->fs_info->trans_lock);
1719 goto sleep;
1720 }
1721
1722 now = get_seconds();
1723 if (!cur->blocked &&
1724 (now < cur->start_time || now - cur->start_time < 30)) {
1725 spin_unlock(&root->fs_info->trans_lock);
1726 delay = HZ * 5;
1727 goto sleep;
1728 }
1729 transid = cur->transid;
1730 spin_unlock(&root->fs_info->trans_lock);
1731
1732 /* If the file system is aborted, this will always fail. */
1733 trans = btrfs_attach_transaction(root);
1734 if (IS_ERR(trans)) {
1735 if (PTR_ERR(trans) != -ENOENT)
1736 cannot_commit = true;
1737 goto sleep;
1738 }
1739 if (transid == trans->transid) {
1740 btrfs_commit_transaction(trans, root);
1741 } else {
1742 btrfs_end_transaction(trans, root);
1743 }
1744 sleep:
1745 wake_up_process(root->fs_info->cleaner_kthread);
1746 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1747
1748 if (!try_to_freeze()) {
1749 set_current_state(TASK_INTERRUPTIBLE);
1750 if (!kthread_should_stop() &&
1751 (!btrfs_transaction_blocked(root->fs_info) ||
1752 cannot_commit))
1753 schedule_timeout(delay);
1754 __set_current_state(TASK_RUNNING);
1755 }
1756 } while (!kthread_should_stop());
1757 return 0;
1758 }
1759
1760 /*
1761 * this will find the highest generation in the array of
1762 * root backups. The index of the highest array is returned,
1763 * or -1 if we can't find anything.
1764 *
1765 * We check to make sure the array is valid by comparing the
1766 * generation of the latest root in the array with the generation
1767 * in the super block. If they don't match we pitch it.
1768 */
1769 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1770 {
1771 u64 cur;
1772 int newest_index = -1;
1773 struct btrfs_root_backup *root_backup;
1774 int i;
1775
1776 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1777 root_backup = info->super_copy->super_roots + i;
1778 cur = btrfs_backup_tree_root_gen(root_backup);
1779 if (cur == newest_gen)
1780 newest_index = i;
1781 }
1782
1783 /* check to see if we actually wrapped around */
1784 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1785 root_backup = info->super_copy->super_roots;
1786 cur = btrfs_backup_tree_root_gen(root_backup);
1787 if (cur == newest_gen)
1788 newest_index = 0;
1789 }
1790 return newest_index;
1791 }
1792
1793
1794 /*
1795 * find the oldest backup so we know where to store new entries
1796 * in the backup array. This will set the backup_root_index
1797 * field in the fs_info struct
1798 */
1799 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1800 u64 newest_gen)
1801 {
1802 int newest_index = -1;
1803
1804 newest_index = find_newest_super_backup(info, newest_gen);
1805 /* if there was garbage in there, just move along */
1806 if (newest_index == -1) {
1807 info->backup_root_index = 0;
1808 } else {
1809 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1810 }
1811 }
1812
1813 /*
1814 * copy all the root pointers into the super backup array.
1815 * this will bump the backup pointer by one when it is
1816 * done
1817 */
1818 static void backup_super_roots(struct btrfs_fs_info *info)
1819 {
1820 int next_backup;
1821 struct btrfs_root_backup *root_backup;
1822 int last_backup;
1823
1824 next_backup = info->backup_root_index;
1825 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1826 BTRFS_NUM_BACKUP_ROOTS;
1827
1828 /*
1829 * just overwrite the last backup if we're at the same generation
1830 * this happens only at umount
1831 */
1832 root_backup = info->super_for_commit->super_roots + last_backup;
1833 if (btrfs_backup_tree_root_gen(root_backup) ==
1834 btrfs_header_generation(info->tree_root->node))
1835 next_backup = last_backup;
1836
1837 root_backup = info->super_for_commit->super_roots + next_backup;
1838
1839 /*
1840 * make sure all of our padding and empty slots get zero filled
1841 * regardless of which ones we use today
1842 */
1843 memset(root_backup, 0, sizeof(*root_backup));
1844
1845 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1846
1847 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1848 btrfs_set_backup_tree_root_gen(root_backup,
1849 btrfs_header_generation(info->tree_root->node));
1850
1851 btrfs_set_backup_tree_root_level(root_backup,
1852 btrfs_header_level(info->tree_root->node));
1853
1854 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1855 btrfs_set_backup_chunk_root_gen(root_backup,
1856 btrfs_header_generation(info->chunk_root->node));
1857 btrfs_set_backup_chunk_root_level(root_backup,
1858 btrfs_header_level(info->chunk_root->node));
1859
1860 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1861 btrfs_set_backup_extent_root_gen(root_backup,
1862 btrfs_header_generation(info->extent_root->node));
1863 btrfs_set_backup_extent_root_level(root_backup,
1864 btrfs_header_level(info->extent_root->node));
1865
1866 /*
1867 * we might commit during log recovery, which happens before we set
1868 * the fs_root. Make sure it is valid before we fill it in.
1869 */
1870 if (info->fs_root && info->fs_root->node) {
1871 btrfs_set_backup_fs_root(root_backup,
1872 info->fs_root->node->start);
1873 btrfs_set_backup_fs_root_gen(root_backup,
1874 btrfs_header_generation(info->fs_root->node));
1875 btrfs_set_backup_fs_root_level(root_backup,
1876 btrfs_header_level(info->fs_root->node));
1877 }
1878
1879 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1880 btrfs_set_backup_dev_root_gen(root_backup,
1881 btrfs_header_generation(info->dev_root->node));
1882 btrfs_set_backup_dev_root_level(root_backup,
1883 btrfs_header_level(info->dev_root->node));
1884
1885 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1886 btrfs_set_backup_csum_root_gen(root_backup,
1887 btrfs_header_generation(info->csum_root->node));
1888 btrfs_set_backup_csum_root_level(root_backup,
1889 btrfs_header_level(info->csum_root->node));
1890
1891 btrfs_set_backup_total_bytes(root_backup,
1892 btrfs_super_total_bytes(info->super_copy));
1893 btrfs_set_backup_bytes_used(root_backup,
1894 btrfs_super_bytes_used(info->super_copy));
1895 btrfs_set_backup_num_devices(root_backup,
1896 btrfs_super_num_devices(info->super_copy));
1897
1898 /*
1899 * if we don't copy this out to the super_copy, it won't get remembered
1900 * for the next commit
1901 */
1902 memcpy(&info->super_copy->super_roots,
1903 &info->super_for_commit->super_roots,
1904 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1905 }
1906
1907 /*
1908 * this copies info out of the root backup array and back into
1909 * the in-memory super block. It is meant to help iterate through
1910 * the array, so you send it the number of backups you've already
1911 * tried and the last backup index you used.
1912 *
1913 * this returns -1 when it has tried all the backups
1914 */
1915 static noinline int next_root_backup(struct btrfs_fs_info *info,
1916 struct btrfs_super_block *super,
1917 int *num_backups_tried, int *backup_index)
1918 {
1919 struct btrfs_root_backup *root_backup;
1920 int newest = *backup_index;
1921
1922 if (*num_backups_tried == 0) {
1923 u64 gen = btrfs_super_generation(super);
1924
1925 newest = find_newest_super_backup(info, gen);
1926 if (newest == -1)
1927 return -1;
1928
1929 *backup_index = newest;
1930 *num_backups_tried = 1;
1931 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1932 /* we've tried all the backups, all done */
1933 return -1;
1934 } else {
1935 /* jump to the next oldest backup */
1936 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1937 BTRFS_NUM_BACKUP_ROOTS;
1938 *backup_index = newest;
1939 *num_backups_tried += 1;
1940 }
1941 root_backup = super->super_roots + newest;
1942
1943 btrfs_set_super_generation(super,
1944 btrfs_backup_tree_root_gen(root_backup));
1945 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1946 btrfs_set_super_root_level(super,
1947 btrfs_backup_tree_root_level(root_backup));
1948 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1949
1950 /*
1951 * fixme: the total bytes and num_devices need to match or we should
1952 * need a fsck
1953 */
1954 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1955 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1956 return 0;
1957 }
1958
1959 /* helper to cleanup workers */
1960 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1961 {
1962 btrfs_stop_workers(&fs_info->generic_worker);
1963 btrfs_stop_workers(&fs_info->fixup_workers);
1964 btrfs_stop_workers(&fs_info->delalloc_workers);
1965 btrfs_stop_workers(&fs_info->workers);
1966 btrfs_stop_workers(&fs_info->endio_workers);
1967 btrfs_stop_workers(&fs_info->endio_meta_workers);
1968 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1969 btrfs_stop_workers(&fs_info->rmw_workers);
1970 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1971 btrfs_stop_workers(&fs_info->endio_write_workers);
1972 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1973 btrfs_stop_workers(&fs_info->submit_workers);
1974 btrfs_stop_workers(&fs_info->delayed_workers);
1975 btrfs_stop_workers(&fs_info->caching_workers);
1976 btrfs_stop_workers(&fs_info->readahead_workers);
1977 btrfs_stop_workers(&fs_info->flush_workers);
1978 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1979 }
1980
1981 /* helper to cleanup tree roots */
1982 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1983 {
1984 free_extent_buffer(info->tree_root->node);
1985 free_extent_buffer(info->tree_root->commit_root);
1986 free_extent_buffer(info->dev_root->node);
1987 free_extent_buffer(info->dev_root->commit_root);
1988 free_extent_buffer(info->extent_root->node);
1989 free_extent_buffer(info->extent_root->commit_root);
1990 free_extent_buffer(info->csum_root->node);
1991 free_extent_buffer(info->csum_root->commit_root);
1992 if (info->quota_root) {
1993 free_extent_buffer(info->quota_root->node);
1994 free_extent_buffer(info->quota_root->commit_root);
1995 }
1996
1997 info->tree_root->node = NULL;
1998 info->tree_root->commit_root = NULL;
1999 info->dev_root->node = NULL;
2000 info->dev_root->commit_root = NULL;
2001 info->extent_root->node = NULL;
2002 info->extent_root->commit_root = NULL;
2003 info->csum_root->node = NULL;
2004 info->csum_root->commit_root = NULL;
2005 if (info->quota_root) {
2006 info->quota_root->node = NULL;
2007 info->quota_root->commit_root = NULL;
2008 }
2009
2010 if (chunk_root) {
2011 free_extent_buffer(info->chunk_root->node);
2012 free_extent_buffer(info->chunk_root->commit_root);
2013 info->chunk_root->node = NULL;
2014 info->chunk_root->commit_root = NULL;
2015 }
2016 }
2017
2018 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2019 {
2020 int ret;
2021 struct btrfs_root *gang[8];
2022 int i;
2023
2024 while (!list_empty(&fs_info->dead_roots)) {
2025 gang[0] = list_entry(fs_info->dead_roots.next,
2026 struct btrfs_root, root_list);
2027 list_del(&gang[0]->root_list);
2028
2029 if (gang[0]->in_radix) {
2030 btrfs_free_fs_root(fs_info, gang[0]);
2031 } else {
2032 free_extent_buffer(gang[0]->node);
2033 free_extent_buffer(gang[0]->commit_root);
2034 kfree(gang[0]);
2035 }
2036 }
2037
2038 while (1) {
2039 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2040 (void **)gang, 0,
2041 ARRAY_SIZE(gang));
2042 if (!ret)
2043 break;
2044 for (i = 0; i < ret; i++)
2045 btrfs_free_fs_root(fs_info, gang[i]);
2046 }
2047 }
2048
2049 int open_ctree(struct super_block *sb,
2050 struct btrfs_fs_devices *fs_devices,
2051 char *options)
2052 {
2053 u32 sectorsize;
2054 u32 nodesize;
2055 u32 leafsize;
2056 u32 blocksize;
2057 u32 stripesize;
2058 u64 generation;
2059 u64 features;
2060 struct btrfs_key location;
2061 struct buffer_head *bh;
2062 struct btrfs_super_block *disk_super;
2063 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2064 struct btrfs_root *tree_root;
2065 struct btrfs_root *extent_root;
2066 struct btrfs_root *csum_root;
2067 struct btrfs_root *chunk_root;
2068 struct btrfs_root *dev_root;
2069 struct btrfs_root *quota_root;
2070 struct btrfs_root *log_tree_root;
2071 int ret;
2072 int err = -EINVAL;
2073 int num_backups_tried = 0;
2074 int backup_index = 0;
2075
2076 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2077 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2078 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2079 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2080 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2081 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2082
2083 if (!tree_root || !extent_root || !csum_root ||
2084 !chunk_root || !dev_root || !quota_root) {
2085 err = -ENOMEM;
2086 goto fail;
2087 }
2088
2089 ret = init_srcu_struct(&fs_info->subvol_srcu);
2090 if (ret) {
2091 err = ret;
2092 goto fail;
2093 }
2094
2095 ret = setup_bdi(fs_info, &fs_info->bdi);
2096 if (ret) {
2097 err = ret;
2098 goto fail_srcu;
2099 }
2100
2101 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2102 if (ret) {
2103 err = ret;
2104 goto fail_bdi;
2105 }
2106 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2107 (1 + ilog2(nr_cpu_ids));
2108
2109 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2110 if (ret) {
2111 err = ret;
2112 goto fail_dirty_metadata_bytes;
2113 }
2114
2115 fs_info->btree_inode = new_inode(sb);
2116 if (!fs_info->btree_inode) {
2117 err = -ENOMEM;
2118 goto fail_delalloc_bytes;
2119 }
2120
2121 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2122
2123 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2124 INIT_LIST_HEAD(&fs_info->trans_list);
2125 INIT_LIST_HEAD(&fs_info->dead_roots);
2126 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2127 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2128 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2129 spin_lock_init(&fs_info->delalloc_lock);
2130 spin_lock_init(&fs_info->trans_lock);
2131 spin_lock_init(&fs_info->fs_roots_radix_lock);
2132 spin_lock_init(&fs_info->delayed_iput_lock);
2133 spin_lock_init(&fs_info->defrag_inodes_lock);
2134 spin_lock_init(&fs_info->free_chunk_lock);
2135 spin_lock_init(&fs_info->tree_mod_seq_lock);
2136 spin_lock_init(&fs_info->super_lock);
2137 rwlock_init(&fs_info->tree_mod_log_lock);
2138 mutex_init(&fs_info->reloc_mutex);
2139 seqlock_init(&fs_info->profiles_lock);
2140
2141 init_completion(&fs_info->kobj_unregister);
2142 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2143 INIT_LIST_HEAD(&fs_info->space_info);
2144 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2145 btrfs_mapping_init(&fs_info->mapping_tree);
2146 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2147 BTRFS_BLOCK_RSV_GLOBAL);
2148 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2149 BTRFS_BLOCK_RSV_DELALLOC);
2150 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2151 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2152 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2153 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2154 BTRFS_BLOCK_RSV_DELOPS);
2155 atomic_set(&fs_info->nr_async_submits, 0);
2156 atomic_set(&fs_info->async_delalloc_pages, 0);
2157 atomic_set(&fs_info->async_submit_draining, 0);
2158 atomic_set(&fs_info->nr_async_bios, 0);
2159 atomic_set(&fs_info->defrag_running, 0);
2160 atomic64_set(&fs_info->tree_mod_seq, 0);
2161 fs_info->sb = sb;
2162 fs_info->max_inline = 8192 * 1024;
2163 fs_info->metadata_ratio = 0;
2164 fs_info->defrag_inodes = RB_ROOT;
2165 fs_info->trans_no_join = 0;
2166 fs_info->free_chunk_space = 0;
2167 fs_info->tree_mod_log = RB_ROOT;
2168
2169 /* readahead state */
2170 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2171 spin_lock_init(&fs_info->reada_lock);
2172
2173 fs_info->thread_pool_size = min_t(unsigned long,
2174 num_online_cpus() + 2, 8);
2175
2176 INIT_LIST_HEAD(&fs_info->ordered_extents);
2177 spin_lock_init(&fs_info->ordered_extent_lock);
2178 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2179 GFP_NOFS);
2180 if (!fs_info->delayed_root) {
2181 err = -ENOMEM;
2182 goto fail_iput;
2183 }
2184 btrfs_init_delayed_root(fs_info->delayed_root);
2185
2186 mutex_init(&fs_info->scrub_lock);
2187 atomic_set(&fs_info->scrubs_running, 0);
2188 atomic_set(&fs_info->scrub_pause_req, 0);
2189 atomic_set(&fs_info->scrubs_paused, 0);
2190 atomic_set(&fs_info->scrub_cancel_req, 0);
2191 init_waitqueue_head(&fs_info->scrub_pause_wait);
2192 init_rwsem(&fs_info->scrub_super_lock);
2193 fs_info->scrub_workers_refcnt = 0;
2194 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2195 fs_info->check_integrity_print_mask = 0;
2196 #endif
2197
2198 spin_lock_init(&fs_info->balance_lock);
2199 mutex_init(&fs_info->balance_mutex);
2200 atomic_set(&fs_info->balance_running, 0);
2201 atomic_set(&fs_info->balance_pause_req, 0);
2202 atomic_set(&fs_info->balance_cancel_req, 0);
2203 fs_info->balance_ctl = NULL;
2204 init_waitqueue_head(&fs_info->balance_wait_q);
2205
2206 sb->s_blocksize = 4096;
2207 sb->s_blocksize_bits = blksize_bits(4096);
2208 sb->s_bdi = &fs_info->bdi;
2209
2210 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2211 set_nlink(fs_info->btree_inode, 1);
2212 /*
2213 * we set the i_size on the btree inode to the max possible int.
2214 * the real end of the address space is determined by all of
2215 * the devices in the system
2216 */
2217 fs_info->btree_inode->i_size = OFFSET_MAX;
2218 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2219 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2220
2221 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2222 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2223 fs_info->btree_inode->i_mapping);
2224 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2225 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2226
2227 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2228
2229 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2230 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2231 sizeof(struct btrfs_key));
2232 set_bit(BTRFS_INODE_DUMMY,
2233 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2234 insert_inode_hash(fs_info->btree_inode);
2235
2236 spin_lock_init(&fs_info->block_group_cache_lock);
2237 fs_info->block_group_cache_tree = RB_ROOT;
2238 fs_info->first_logical_byte = (u64)-1;
2239
2240 extent_io_tree_init(&fs_info->freed_extents[0],
2241 fs_info->btree_inode->i_mapping);
2242 extent_io_tree_init(&fs_info->freed_extents[1],
2243 fs_info->btree_inode->i_mapping);
2244 fs_info->pinned_extents = &fs_info->freed_extents[0];
2245 fs_info->do_barriers = 1;
2246
2247
2248 mutex_init(&fs_info->ordered_operations_mutex);
2249 mutex_init(&fs_info->tree_log_mutex);
2250 mutex_init(&fs_info->chunk_mutex);
2251 mutex_init(&fs_info->transaction_kthread_mutex);
2252 mutex_init(&fs_info->cleaner_mutex);
2253 mutex_init(&fs_info->volume_mutex);
2254 init_rwsem(&fs_info->extent_commit_sem);
2255 init_rwsem(&fs_info->cleanup_work_sem);
2256 init_rwsem(&fs_info->subvol_sem);
2257 fs_info->dev_replace.lock_owner = 0;
2258 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2259 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2260 mutex_init(&fs_info->dev_replace.lock_management_lock);
2261 mutex_init(&fs_info->dev_replace.lock);
2262
2263 spin_lock_init(&fs_info->qgroup_lock);
2264 mutex_init(&fs_info->qgroup_ioctl_lock);
2265 fs_info->qgroup_tree = RB_ROOT;
2266 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2267 fs_info->qgroup_seq = 1;
2268 fs_info->quota_enabled = 0;
2269 fs_info->pending_quota_state = 0;
2270 mutex_init(&fs_info->qgroup_rescan_lock);
2271
2272 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2273 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2274
2275 init_waitqueue_head(&fs_info->transaction_throttle);
2276 init_waitqueue_head(&fs_info->transaction_wait);
2277 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2278 init_waitqueue_head(&fs_info->async_submit_wait);
2279
2280 ret = btrfs_alloc_stripe_hash_table(fs_info);
2281 if (ret) {
2282 err = ret;
2283 goto fail_alloc;
2284 }
2285
2286 __setup_root(4096, 4096, 4096, 4096, tree_root,
2287 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2288
2289 invalidate_bdev(fs_devices->latest_bdev);
2290
2291 /*
2292 * Read super block and check the signature bytes only
2293 */
2294 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2295 if (!bh) {
2296 err = -EINVAL;
2297 goto fail_alloc;
2298 }
2299
2300 /*
2301 * We want to check superblock checksum, the type is stored inside.
2302 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2303 */
2304 if (btrfs_check_super_csum(bh->b_data)) {
2305 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2306 err = -EINVAL;
2307 goto fail_alloc;
2308 }
2309
2310 /*
2311 * super_copy is zeroed at allocation time and we never touch the
2312 * following bytes up to INFO_SIZE, the checksum is calculated from
2313 * the whole block of INFO_SIZE
2314 */
2315 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2316 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2317 sizeof(*fs_info->super_for_commit));
2318 brelse(bh);
2319
2320 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2321
2322 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2323 if (ret) {
2324 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2325 err = -EINVAL;
2326 goto fail_alloc;
2327 }
2328
2329 disk_super = fs_info->super_copy;
2330 if (!btrfs_super_root(disk_super))
2331 goto fail_alloc;
2332
2333 /* check FS state, whether FS is broken. */
2334 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2335 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2336
2337 /*
2338 * run through our array of backup supers and setup
2339 * our ring pointer to the oldest one
2340 */
2341 generation = btrfs_super_generation(disk_super);
2342 find_oldest_super_backup(fs_info, generation);
2343
2344 /*
2345 * In the long term, we'll store the compression type in the super
2346 * block, and it'll be used for per file compression control.
2347 */
2348 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2349
2350 ret = btrfs_parse_options(tree_root, options);
2351 if (ret) {
2352 err = ret;
2353 goto fail_alloc;
2354 }
2355
2356 features = btrfs_super_incompat_flags(disk_super) &
2357 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2358 if (features) {
2359 printk(KERN_ERR "BTRFS: couldn't mount because of "
2360 "unsupported optional features (%Lx).\n",
2361 (unsigned long long)features);
2362 err = -EINVAL;
2363 goto fail_alloc;
2364 }
2365
2366 if (btrfs_super_leafsize(disk_super) !=
2367 btrfs_super_nodesize(disk_super)) {
2368 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2369 "blocksizes don't match. node %d leaf %d\n",
2370 btrfs_super_nodesize(disk_super),
2371 btrfs_super_leafsize(disk_super));
2372 err = -EINVAL;
2373 goto fail_alloc;
2374 }
2375 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2376 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2377 "blocksize (%d) was too large\n",
2378 btrfs_super_leafsize(disk_super));
2379 err = -EINVAL;
2380 goto fail_alloc;
2381 }
2382
2383 features = btrfs_super_incompat_flags(disk_super);
2384 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2385 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2386 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2387
2388 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2389 printk(KERN_ERR "btrfs: has skinny extents\n");
2390
2391 /*
2392 * flag our filesystem as having big metadata blocks if
2393 * they are bigger than the page size
2394 */
2395 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2396 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2397 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2398 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2399 }
2400
2401 nodesize = btrfs_super_nodesize(disk_super);
2402 leafsize = btrfs_super_leafsize(disk_super);
2403 sectorsize = btrfs_super_sectorsize(disk_super);
2404 stripesize = btrfs_super_stripesize(disk_super);
2405 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2406 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2407
2408 /*
2409 * mixed block groups end up with duplicate but slightly offset
2410 * extent buffers for the same range. It leads to corruptions
2411 */
2412 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2413 (sectorsize != leafsize)) {
2414 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2415 "are not allowed for mixed block groups on %s\n",
2416 sb->s_id);
2417 goto fail_alloc;
2418 }
2419
2420 /*
2421 * Needn't use the lock because there is no other task which will
2422 * update the flag.
2423 */
2424 btrfs_set_super_incompat_flags(disk_super, features);
2425
2426 features = btrfs_super_compat_ro_flags(disk_super) &
2427 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2428 if (!(sb->s_flags & MS_RDONLY) && features) {
2429 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2430 "unsupported option features (%Lx).\n",
2431 (unsigned long long)features);
2432 err = -EINVAL;
2433 goto fail_alloc;
2434 }
2435
2436 btrfs_init_workers(&fs_info->generic_worker,
2437 "genwork", 1, NULL);
2438
2439 btrfs_init_workers(&fs_info->workers, "worker",
2440 fs_info->thread_pool_size,
2441 &fs_info->generic_worker);
2442
2443 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2444 fs_info->thread_pool_size,
2445 &fs_info->generic_worker);
2446
2447 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2448 fs_info->thread_pool_size,
2449 &fs_info->generic_worker);
2450
2451 btrfs_init_workers(&fs_info->submit_workers, "submit",
2452 min_t(u64, fs_devices->num_devices,
2453 fs_info->thread_pool_size),
2454 &fs_info->generic_worker);
2455
2456 btrfs_init_workers(&fs_info->caching_workers, "cache",
2457 2, &fs_info->generic_worker);
2458
2459 /* a higher idle thresh on the submit workers makes it much more
2460 * likely that bios will be send down in a sane order to the
2461 * devices
2462 */
2463 fs_info->submit_workers.idle_thresh = 64;
2464
2465 fs_info->workers.idle_thresh = 16;
2466 fs_info->workers.ordered = 1;
2467
2468 fs_info->delalloc_workers.idle_thresh = 2;
2469 fs_info->delalloc_workers.ordered = 1;
2470
2471 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2472 &fs_info->generic_worker);
2473 btrfs_init_workers(&fs_info->endio_workers, "endio",
2474 fs_info->thread_pool_size,
2475 &fs_info->generic_worker);
2476 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2477 fs_info->thread_pool_size,
2478 &fs_info->generic_worker);
2479 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2480 "endio-meta-write", fs_info->thread_pool_size,
2481 &fs_info->generic_worker);
2482 btrfs_init_workers(&fs_info->endio_raid56_workers,
2483 "endio-raid56", fs_info->thread_pool_size,
2484 &fs_info->generic_worker);
2485 btrfs_init_workers(&fs_info->rmw_workers,
2486 "rmw", fs_info->thread_pool_size,
2487 &fs_info->generic_worker);
2488 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2489 fs_info->thread_pool_size,
2490 &fs_info->generic_worker);
2491 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2492 1, &fs_info->generic_worker);
2493 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2494 fs_info->thread_pool_size,
2495 &fs_info->generic_worker);
2496 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2497 fs_info->thread_pool_size,
2498 &fs_info->generic_worker);
2499 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2500 &fs_info->generic_worker);
2501
2502 /*
2503 * endios are largely parallel and should have a very
2504 * low idle thresh
2505 */
2506 fs_info->endio_workers.idle_thresh = 4;
2507 fs_info->endio_meta_workers.idle_thresh = 4;
2508 fs_info->endio_raid56_workers.idle_thresh = 4;
2509 fs_info->rmw_workers.idle_thresh = 2;
2510
2511 fs_info->endio_write_workers.idle_thresh = 2;
2512 fs_info->endio_meta_write_workers.idle_thresh = 2;
2513 fs_info->readahead_workers.idle_thresh = 2;
2514
2515 /*
2516 * btrfs_start_workers can really only fail because of ENOMEM so just
2517 * return -ENOMEM if any of these fail.
2518 */
2519 ret = btrfs_start_workers(&fs_info->workers);
2520 ret |= btrfs_start_workers(&fs_info->generic_worker);
2521 ret |= btrfs_start_workers(&fs_info->submit_workers);
2522 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2523 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2524 ret |= btrfs_start_workers(&fs_info->endio_workers);
2525 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2526 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2527 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2528 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2529 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2530 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2531 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2532 ret |= btrfs_start_workers(&fs_info->caching_workers);
2533 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2534 ret |= btrfs_start_workers(&fs_info->flush_workers);
2535 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2536 if (ret) {
2537 err = -ENOMEM;
2538 goto fail_sb_buffer;
2539 }
2540
2541 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2542 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2543 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2544
2545 tree_root->nodesize = nodesize;
2546 tree_root->leafsize = leafsize;
2547 tree_root->sectorsize = sectorsize;
2548 tree_root->stripesize = stripesize;
2549
2550 sb->s_blocksize = sectorsize;
2551 sb->s_blocksize_bits = blksize_bits(sectorsize);
2552
2553 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2554 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2555 goto fail_sb_buffer;
2556 }
2557
2558 if (sectorsize != PAGE_SIZE) {
2559 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2560 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2561 goto fail_sb_buffer;
2562 }
2563
2564 mutex_lock(&fs_info->chunk_mutex);
2565 ret = btrfs_read_sys_array(tree_root);
2566 mutex_unlock(&fs_info->chunk_mutex);
2567 if (ret) {
2568 printk(KERN_WARNING "btrfs: failed to read the system "
2569 "array on %s\n", sb->s_id);
2570 goto fail_sb_buffer;
2571 }
2572
2573 blocksize = btrfs_level_size(tree_root,
2574 btrfs_super_chunk_root_level(disk_super));
2575 generation = btrfs_super_chunk_root_generation(disk_super);
2576
2577 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2578 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2579
2580 chunk_root->node = read_tree_block(chunk_root,
2581 btrfs_super_chunk_root(disk_super),
2582 blocksize, generation);
2583 if (!chunk_root->node ||
2584 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2585 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2586 sb->s_id);
2587 goto fail_tree_roots;
2588 }
2589 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2590 chunk_root->commit_root = btrfs_root_node(chunk_root);
2591
2592 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2593 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2594 BTRFS_UUID_SIZE);
2595
2596 ret = btrfs_read_chunk_tree(chunk_root);
2597 if (ret) {
2598 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2599 sb->s_id);
2600 goto fail_tree_roots;
2601 }
2602
2603 /*
2604 * keep the device that is marked to be the target device for the
2605 * dev_replace procedure
2606 */
2607 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2608
2609 if (!fs_devices->latest_bdev) {
2610 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2611 sb->s_id);
2612 goto fail_tree_roots;
2613 }
2614
2615 retry_root_backup:
2616 blocksize = btrfs_level_size(tree_root,
2617 btrfs_super_root_level(disk_super));
2618 generation = btrfs_super_generation(disk_super);
2619
2620 tree_root->node = read_tree_block(tree_root,
2621 btrfs_super_root(disk_super),
2622 blocksize, generation);
2623 if (!tree_root->node ||
2624 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2625 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2626 sb->s_id);
2627
2628 goto recovery_tree_root;
2629 }
2630
2631 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2632 tree_root->commit_root = btrfs_root_node(tree_root);
2633
2634 ret = find_and_setup_root(tree_root, fs_info,
2635 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2636 if (ret)
2637 goto recovery_tree_root;
2638 extent_root->track_dirty = 1;
2639
2640 ret = find_and_setup_root(tree_root, fs_info,
2641 BTRFS_DEV_TREE_OBJECTID, dev_root);
2642 if (ret)
2643 goto recovery_tree_root;
2644 dev_root->track_dirty = 1;
2645
2646 ret = find_and_setup_root(tree_root, fs_info,
2647 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2648 if (ret)
2649 goto recovery_tree_root;
2650 csum_root->track_dirty = 1;
2651
2652 ret = find_and_setup_root(tree_root, fs_info,
2653 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2654 if (ret) {
2655 kfree(quota_root);
2656 quota_root = fs_info->quota_root = NULL;
2657 } else {
2658 quota_root->track_dirty = 1;
2659 fs_info->quota_enabled = 1;
2660 fs_info->pending_quota_state = 1;
2661 }
2662
2663 fs_info->generation = generation;
2664 fs_info->last_trans_committed = generation;
2665
2666 ret = btrfs_recover_balance(fs_info);
2667 if (ret) {
2668 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2669 goto fail_block_groups;
2670 }
2671
2672 ret = btrfs_init_dev_stats(fs_info);
2673 if (ret) {
2674 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2675 ret);
2676 goto fail_block_groups;
2677 }
2678
2679 ret = btrfs_init_dev_replace(fs_info);
2680 if (ret) {
2681 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2682 goto fail_block_groups;
2683 }
2684
2685 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2686
2687 ret = btrfs_init_space_info(fs_info);
2688 if (ret) {
2689 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2690 goto fail_block_groups;
2691 }
2692
2693 ret = btrfs_read_block_groups(extent_root);
2694 if (ret) {
2695 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2696 goto fail_block_groups;
2697 }
2698 fs_info->num_tolerated_disk_barrier_failures =
2699 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2700 if (fs_info->fs_devices->missing_devices >
2701 fs_info->num_tolerated_disk_barrier_failures &&
2702 !(sb->s_flags & MS_RDONLY)) {
2703 printk(KERN_WARNING
2704 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2705 goto fail_block_groups;
2706 }
2707
2708 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2709 "btrfs-cleaner");
2710 if (IS_ERR(fs_info->cleaner_kthread))
2711 goto fail_block_groups;
2712
2713 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2714 tree_root,
2715 "btrfs-transaction");
2716 if (IS_ERR(fs_info->transaction_kthread))
2717 goto fail_cleaner;
2718
2719 if (!btrfs_test_opt(tree_root, SSD) &&
2720 !btrfs_test_opt(tree_root, NOSSD) &&
2721 !fs_info->fs_devices->rotating) {
2722 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2723 "mode\n");
2724 btrfs_set_opt(fs_info->mount_opt, SSD);
2725 }
2726
2727 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2728 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2729 ret = btrfsic_mount(tree_root, fs_devices,
2730 btrfs_test_opt(tree_root,
2731 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2732 1 : 0,
2733 fs_info->check_integrity_print_mask);
2734 if (ret)
2735 printk(KERN_WARNING "btrfs: failed to initialize"
2736 " integrity check module %s\n", sb->s_id);
2737 }
2738 #endif
2739 ret = btrfs_read_qgroup_config(fs_info);
2740 if (ret)
2741 goto fail_trans_kthread;
2742
2743 /* do not make disk changes in broken FS */
2744 if (btrfs_super_log_root(disk_super) != 0) {
2745 u64 bytenr = btrfs_super_log_root(disk_super);
2746
2747 if (fs_devices->rw_devices == 0) {
2748 printk(KERN_WARNING "Btrfs log replay required "
2749 "on RO media\n");
2750 err = -EIO;
2751 goto fail_qgroup;
2752 }
2753 blocksize =
2754 btrfs_level_size(tree_root,
2755 btrfs_super_log_root_level(disk_super));
2756
2757 log_tree_root = btrfs_alloc_root(fs_info);
2758 if (!log_tree_root) {
2759 err = -ENOMEM;
2760 goto fail_qgroup;
2761 }
2762
2763 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2764 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2765
2766 log_tree_root->node = read_tree_block(tree_root, bytenr,
2767 blocksize,
2768 generation + 1);
2769 if (!log_tree_root->node ||
2770 !extent_buffer_uptodate(log_tree_root->node)) {
2771 printk(KERN_ERR "btrfs: failed to read log tree\n");
2772 free_extent_buffer(log_tree_root->node);
2773 kfree(log_tree_root);
2774 goto fail_trans_kthread;
2775 }
2776 /* returns with log_tree_root freed on success */
2777 ret = btrfs_recover_log_trees(log_tree_root);
2778 if (ret) {
2779 btrfs_error(tree_root->fs_info, ret,
2780 "Failed to recover log tree");
2781 free_extent_buffer(log_tree_root->node);
2782 kfree(log_tree_root);
2783 goto fail_trans_kthread;
2784 }
2785
2786 if (sb->s_flags & MS_RDONLY) {
2787 ret = btrfs_commit_super(tree_root);
2788 if (ret)
2789 goto fail_trans_kthread;
2790 }
2791 }
2792
2793 ret = btrfs_find_orphan_roots(tree_root);
2794 if (ret)
2795 goto fail_trans_kthread;
2796
2797 if (!(sb->s_flags & MS_RDONLY)) {
2798 ret = btrfs_cleanup_fs_roots(fs_info);
2799 if (ret)
2800 goto fail_trans_kthread;
2801
2802 ret = btrfs_recover_relocation(tree_root);
2803 if (ret < 0) {
2804 printk(KERN_WARNING
2805 "btrfs: failed to recover relocation\n");
2806 err = -EINVAL;
2807 goto fail_qgroup;
2808 }
2809 }
2810
2811 location.objectid = BTRFS_FS_TREE_OBJECTID;
2812 location.type = BTRFS_ROOT_ITEM_KEY;
2813 location.offset = (u64)-1;
2814
2815 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2816 if (!fs_info->fs_root)
2817 goto fail_qgroup;
2818 if (IS_ERR(fs_info->fs_root)) {
2819 err = PTR_ERR(fs_info->fs_root);
2820 goto fail_qgroup;
2821 }
2822
2823 if (sb->s_flags & MS_RDONLY)
2824 return 0;
2825
2826 down_read(&fs_info->cleanup_work_sem);
2827 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2828 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2829 up_read(&fs_info->cleanup_work_sem);
2830 close_ctree(tree_root);
2831 return ret;
2832 }
2833 up_read(&fs_info->cleanup_work_sem);
2834
2835 ret = btrfs_resume_balance_async(fs_info);
2836 if (ret) {
2837 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2838 close_ctree(tree_root);
2839 return ret;
2840 }
2841
2842 ret = btrfs_resume_dev_replace_async(fs_info);
2843 if (ret) {
2844 pr_warn("btrfs: failed to resume dev_replace\n");
2845 close_ctree(tree_root);
2846 return ret;
2847 }
2848
2849 return 0;
2850
2851 fail_qgroup:
2852 btrfs_free_qgroup_config(fs_info);
2853 fail_trans_kthread:
2854 kthread_stop(fs_info->transaction_kthread);
2855 del_fs_roots(fs_info);
2856 btrfs_cleanup_transaction(fs_info->tree_root);
2857 fail_cleaner:
2858 kthread_stop(fs_info->cleaner_kthread);
2859
2860 /*
2861 * make sure we're done with the btree inode before we stop our
2862 * kthreads
2863 */
2864 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2865
2866 fail_block_groups:
2867 btrfs_put_block_group_cache(fs_info);
2868 btrfs_free_block_groups(fs_info);
2869
2870 fail_tree_roots:
2871 free_root_pointers(fs_info, 1);
2872 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2873
2874 fail_sb_buffer:
2875 btrfs_stop_all_workers(fs_info);
2876 fail_alloc:
2877 fail_iput:
2878 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2879
2880 iput(fs_info->btree_inode);
2881 fail_delalloc_bytes:
2882 percpu_counter_destroy(&fs_info->delalloc_bytes);
2883 fail_dirty_metadata_bytes:
2884 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2885 fail_bdi:
2886 bdi_destroy(&fs_info->bdi);
2887 fail_srcu:
2888 cleanup_srcu_struct(&fs_info->subvol_srcu);
2889 fail:
2890 btrfs_free_stripe_hash_table(fs_info);
2891 btrfs_close_devices(fs_info->fs_devices);
2892 return err;
2893
2894 recovery_tree_root:
2895 if (!btrfs_test_opt(tree_root, RECOVERY))
2896 goto fail_tree_roots;
2897
2898 free_root_pointers(fs_info, 0);
2899
2900 /* don't use the log in recovery mode, it won't be valid */
2901 btrfs_set_super_log_root(disk_super, 0);
2902
2903 /* we can't trust the free space cache either */
2904 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2905
2906 ret = next_root_backup(fs_info, fs_info->super_copy,
2907 &num_backups_tried, &backup_index);
2908 if (ret == -1)
2909 goto fail_block_groups;
2910 goto retry_root_backup;
2911 }
2912
2913 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2914 {
2915 if (uptodate) {
2916 set_buffer_uptodate(bh);
2917 } else {
2918 struct btrfs_device *device = (struct btrfs_device *)
2919 bh->b_private;
2920
2921 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2922 "I/O error on %s\n",
2923 rcu_str_deref(device->name));
2924 /* note, we dont' set_buffer_write_io_error because we have
2925 * our own ways of dealing with the IO errors
2926 */
2927 clear_buffer_uptodate(bh);
2928 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2929 }
2930 unlock_buffer(bh);
2931 put_bh(bh);
2932 }
2933
2934 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2935 {
2936 struct buffer_head *bh;
2937 struct buffer_head *latest = NULL;
2938 struct btrfs_super_block *super;
2939 int i;
2940 u64 transid = 0;
2941 u64 bytenr;
2942
2943 /* we would like to check all the supers, but that would make
2944 * a btrfs mount succeed after a mkfs from a different FS.
2945 * So, we need to add a special mount option to scan for
2946 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2947 */
2948 for (i = 0; i < 1; i++) {
2949 bytenr = btrfs_sb_offset(i);
2950 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2951 break;
2952 bh = __bread(bdev, bytenr / 4096, 4096);
2953 if (!bh)
2954 continue;
2955
2956 super = (struct btrfs_super_block *)bh->b_data;
2957 if (btrfs_super_bytenr(super) != bytenr ||
2958 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2959 brelse(bh);
2960 continue;
2961 }
2962
2963 if (!latest || btrfs_super_generation(super) > transid) {
2964 brelse(latest);
2965 latest = bh;
2966 transid = btrfs_super_generation(super);
2967 } else {
2968 brelse(bh);
2969 }
2970 }
2971 return latest;
2972 }
2973
2974 /*
2975 * this should be called twice, once with wait == 0 and
2976 * once with wait == 1. When wait == 0 is done, all the buffer heads
2977 * we write are pinned.
2978 *
2979 * They are released when wait == 1 is done.
2980 * max_mirrors must be the same for both runs, and it indicates how
2981 * many supers on this one device should be written.
2982 *
2983 * max_mirrors == 0 means to write them all.
2984 */
2985 static int write_dev_supers(struct btrfs_device *device,
2986 struct btrfs_super_block *sb,
2987 int do_barriers, int wait, int max_mirrors)
2988 {
2989 struct buffer_head *bh;
2990 int i;
2991 int ret;
2992 int errors = 0;
2993 u32 crc;
2994 u64 bytenr;
2995
2996 if (max_mirrors == 0)
2997 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2998
2999 for (i = 0; i < max_mirrors; i++) {
3000 bytenr = btrfs_sb_offset(i);
3001 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3002 break;
3003
3004 if (wait) {
3005 bh = __find_get_block(device->bdev, bytenr / 4096,
3006 BTRFS_SUPER_INFO_SIZE);
3007 if (!bh) {
3008 errors++;
3009 continue;
3010 }
3011 wait_on_buffer(bh);
3012 if (!buffer_uptodate(bh))
3013 errors++;
3014
3015 /* drop our reference */
3016 brelse(bh);
3017
3018 /* drop the reference from the wait == 0 run */
3019 brelse(bh);
3020 continue;
3021 } else {
3022 btrfs_set_super_bytenr(sb, bytenr);
3023
3024 crc = ~(u32)0;
3025 crc = btrfs_csum_data((char *)sb +
3026 BTRFS_CSUM_SIZE, crc,
3027 BTRFS_SUPER_INFO_SIZE -
3028 BTRFS_CSUM_SIZE);
3029 btrfs_csum_final(crc, sb->csum);
3030
3031 /*
3032 * one reference for us, and we leave it for the
3033 * caller
3034 */
3035 bh = __getblk(device->bdev, bytenr / 4096,
3036 BTRFS_SUPER_INFO_SIZE);
3037 if (!bh) {
3038 printk(KERN_ERR "btrfs: couldn't get super "
3039 "buffer head for bytenr %Lu\n", bytenr);
3040 errors++;
3041 continue;
3042 }
3043
3044 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3045
3046 /* one reference for submit_bh */
3047 get_bh(bh);
3048
3049 set_buffer_uptodate(bh);
3050 lock_buffer(bh);
3051 bh->b_end_io = btrfs_end_buffer_write_sync;
3052 bh->b_private = device;
3053 }
3054
3055 /*
3056 * we fua the first super. The others we allow
3057 * to go down lazy.
3058 */
3059 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3060 if (ret)
3061 errors++;
3062 }
3063 return errors < i ? 0 : -1;
3064 }
3065
3066 /*
3067 * endio for the write_dev_flush, this will wake anyone waiting
3068 * for the barrier when it is done
3069 */
3070 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3071 {
3072 if (err) {
3073 if (err == -EOPNOTSUPP)
3074 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3075 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3076 }
3077 if (bio->bi_private)
3078 complete(bio->bi_private);
3079 bio_put(bio);
3080 }
3081
3082 /*
3083 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3084 * sent down. With wait == 1, it waits for the previous flush.
3085 *
3086 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3087 * capable
3088 */
3089 static int write_dev_flush(struct btrfs_device *device, int wait)
3090 {
3091 struct bio *bio;
3092 int ret = 0;
3093
3094 if (device->nobarriers)
3095 return 0;
3096
3097 if (wait) {
3098 bio = device->flush_bio;
3099 if (!bio)
3100 return 0;
3101
3102 wait_for_completion(&device->flush_wait);
3103
3104 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3105 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3106 rcu_str_deref(device->name));
3107 device->nobarriers = 1;
3108 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3109 ret = -EIO;
3110 btrfs_dev_stat_inc_and_print(device,
3111 BTRFS_DEV_STAT_FLUSH_ERRS);
3112 }
3113
3114 /* drop the reference from the wait == 0 run */
3115 bio_put(bio);
3116 device->flush_bio = NULL;
3117
3118 return ret;
3119 }
3120
3121 /*
3122 * one reference for us, and we leave it for the
3123 * caller
3124 */
3125 device->flush_bio = NULL;
3126 bio = bio_alloc(GFP_NOFS, 0);
3127 if (!bio)
3128 return -ENOMEM;
3129
3130 bio->bi_end_io = btrfs_end_empty_barrier;
3131 bio->bi_bdev = device->bdev;
3132 init_completion(&device->flush_wait);
3133 bio->bi_private = &device->flush_wait;
3134 device->flush_bio = bio;
3135
3136 bio_get(bio);
3137 btrfsic_submit_bio(WRITE_FLUSH, bio);
3138
3139 return 0;
3140 }
3141
3142 /*
3143 * send an empty flush down to each device in parallel,
3144 * then wait for them
3145 */
3146 static int barrier_all_devices(struct btrfs_fs_info *info)
3147 {
3148 struct list_head *head;
3149 struct btrfs_device *dev;
3150 int errors_send = 0;
3151 int errors_wait = 0;
3152 int ret;
3153
3154 /* send down all the barriers */
3155 head = &info->fs_devices->devices;
3156 list_for_each_entry_rcu(dev, head, dev_list) {
3157 if (!dev->bdev) {
3158 errors_send++;
3159 continue;
3160 }
3161 if (!dev->in_fs_metadata || !dev->writeable)
3162 continue;
3163
3164 ret = write_dev_flush(dev, 0);
3165 if (ret)
3166 errors_send++;
3167 }
3168
3169 /* wait for all the barriers */
3170 list_for_each_entry_rcu(dev, head, dev_list) {
3171 if (!dev->bdev) {
3172 errors_wait++;
3173 continue;
3174 }
3175 if (!dev->in_fs_metadata || !dev->writeable)
3176 continue;
3177
3178 ret = write_dev_flush(dev, 1);
3179 if (ret)
3180 errors_wait++;
3181 }
3182 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3183 errors_wait > info->num_tolerated_disk_barrier_failures)
3184 return -EIO;
3185 return 0;
3186 }
3187
3188 int btrfs_calc_num_tolerated_disk_barrier_failures(
3189 struct btrfs_fs_info *fs_info)
3190 {
3191 struct btrfs_ioctl_space_info space;
3192 struct btrfs_space_info *sinfo;
3193 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3194 BTRFS_BLOCK_GROUP_SYSTEM,
3195 BTRFS_BLOCK_GROUP_METADATA,
3196 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3197 int num_types = 4;
3198 int i;
3199 int c;
3200 int num_tolerated_disk_barrier_failures =
3201 (int)fs_info->fs_devices->num_devices;
3202
3203 for (i = 0; i < num_types; i++) {
3204 struct btrfs_space_info *tmp;
3205
3206 sinfo = NULL;
3207 rcu_read_lock();
3208 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3209 if (tmp->flags == types[i]) {
3210 sinfo = tmp;
3211 break;
3212 }
3213 }
3214 rcu_read_unlock();
3215
3216 if (!sinfo)
3217 continue;
3218
3219 down_read(&sinfo->groups_sem);
3220 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3221 if (!list_empty(&sinfo->block_groups[c])) {
3222 u64 flags;
3223
3224 btrfs_get_block_group_info(
3225 &sinfo->block_groups[c], &space);
3226 if (space.total_bytes == 0 ||
3227 space.used_bytes == 0)
3228 continue;
3229 flags = space.flags;
3230 /*
3231 * return
3232 * 0: if dup, single or RAID0 is configured for
3233 * any of metadata, system or data, else
3234 * 1: if RAID5 is configured, or if RAID1 or
3235 * RAID10 is configured and only two mirrors
3236 * are used, else
3237 * 2: if RAID6 is configured, else
3238 * num_mirrors - 1: if RAID1 or RAID10 is
3239 * configured and more than
3240 * 2 mirrors are used.
3241 */
3242 if (num_tolerated_disk_barrier_failures > 0 &&
3243 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3244 BTRFS_BLOCK_GROUP_RAID0)) ||
3245 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3246 == 0)))
3247 num_tolerated_disk_barrier_failures = 0;
3248 else if (num_tolerated_disk_barrier_failures > 1) {
3249 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3250 BTRFS_BLOCK_GROUP_RAID5 |
3251 BTRFS_BLOCK_GROUP_RAID10)) {
3252 num_tolerated_disk_barrier_failures = 1;
3253 } else if (flags &
3254 BTRFS_BLOCK_GROUP_RAID5) {
3255 num_tolerated_disk_barrier_failures = 2;
3256 }
3257 }
3258 }
3259 }
3260 up_read(&sinfo->groups_sem);
3261 }
3262
3263 return num_tolerated_disk_barrier_failures;
3264 }
3265
3266 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3267 {
3268 struct list_head *head;
3269 struct btrfs_device *dev;
3270 struct btrfs_super_block *sb;
3271 struct btrfs_dev_item *dev_item;
3272 int ret;
3273 int do_barriers;
3274 int max_errors;
3275 int total_errors = 0;
3276 u64 flags;
3277
3278 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3279 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3280 backup_super_roots(root->fs_info);
3281
3282 sb = root->fs_info->super_for_commit;
3283 dev_item = &sb->dev_item;
3284
3285 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3286 head = &root->fs_info->fs_devices->devices;
3287
3288 if (do_barriers) {
3289 ret = barrier_all_devices(root->fs_info);
3290 if (ret) {
3291 mutex_unlock(
3292 &root->fs_info->fs_devices->device_list_mutex);
3293 btrfs_error(root->fs_info, ret,
3294 "errors while submitting device barriers.");
3295 return ret;
3296 }
3297 }
3298
3299 list_for_each_entry_rcu(dev, head, dev_list) {
3300 if (!dev->bdev) {
3301 total_errors++;
3302 continue;
3303 }
3304 if (!dev->in_fs_metadata || !dev->writeable)
3305 continue;
3306
3307 btrfs_set_stack_device_generation(dev_item, 0);
3308 btrfs_set_stack_device_type(dev_item, dev->type);
3309 btrfs_set_stack_device_id(dev_item, dev->devid);
3310 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3311 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3312 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3313 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3314 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3315 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3316 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3317
3318 flags = btrfs_super_flags(sb);
3319 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3320
3321 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3322 if (ret)
3323 total_errors++;
3324 }
3325 if (total_errors > max_errors) {
3326 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3327 total_errors);
3328
3329 /* This shouldn't happen. FUA is masked off if unsupported */
3330 BUG();
3331 }
3332
3333 total_errors = 0;
3334 list_for_each_entry_rcu(dev, head, dev_list) {
3335 if (!dev->bdev)
3336 continue;
3337 if (!dev->in_fs_metadata || !dev->writeable)
3338 continue;
3339
3340 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3341 if (ret)
3342 total_errors++;
3343 }
3344 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3345 if (total_errors > max_errors) {
3346 btrfs_error(root->fs_info, -EIO,
3347 "%d errors while writing supers", total_errors);
3348 return -EIO;
3349 }
3350 return 0;
3351 }
3352
3353 int write_ctree_super(struct btrfs_trans_handle *trans,
3354 struct btrfs_root *root, int max_mirrors)
3355 {
3356 int ret;
3357
3358 ret = write_all_supers(root, max_mirrors);
3359 return ret;
3360 }
3361
3362 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3363 {
3364 spin_lock(&fs_info->fs_roots_radix_lock);
3365 radix_tree_delete(&fs_info->fs_roots_radix,
3366 (unsigned long)root->root_key.objectid);
3367 spin_unlock(&fs_info->fs_roots_radix_lock);
3368
3369 if (btrfs_root_refs(&root->root_item) == 0)
3370 synchronize_srcu(&fs_info->subvol_srcu);
3371
3372 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3373 btrfs_free_log(NULL, root);
3374 btrfs_free_log_root_tree(NULL, fs_info);
3375 }
3376
3377 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3378 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3379 free_fs_root(root);
3380 }
3381
3382 static void free_fs_root(struct btrfs_root *root)
3383 {
3384 iput(root->cache_inode);
3385 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3386 if (root->anon_dev)
3387 free_anon_bdev(root->anon_dev);
3388 free_extent_buffer(root->node);
3389 free_extent_buffer(root->commit_root);
3390 kfree(root->free_ino_ctl);
3391 kfree(root->free_ino_pinned);
3392 kfree(root->name);
3393 kfree(root);
3394 }
3395
3396 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3397 {
3398 u64 root_objectid = 0;
3399 struct btrfs_root *gang[8];
3400 int i;
3401 int ret;
3402
3403 while (1) {
3404 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3405 (void **)gang, root_objectid,
3406 ARRAY_SIZE(gang));
3407 if (!ret)
3408 break;
3409
3410 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3411 for (i = 0; i < ret; i++) {
3412 int err;
3413
3414 root_objectid = gang[i]->root_key.objectid;
3415 err = btrfs_orphan_cleanup(gang[i]);
3416 if (err)
3417 return err;
3418 }
3419 root_objectid++;
3420 }
3421 return 0;
3422 }
3423
3424 int btrfs_commit_super(struct btrfs_root *root)
3425 {
3426 struct btrfs_trans_handle *trans;
3427 int ret;
3428
3429 mutex_lock(&root->fs_info->cleaner_mutex);
3430 btrfs_run_delayed_iputs(root);
3431 mutex_unlock(&root->fs_info->cleaner_mutex);
3432 wake_up_process(root->fs_info->cleaner_kthread);
3433
3434 /* wait until ongoing cleanup work done */
3435 down_write(&root->fs_info->cleanup_work_sem);
3436 up_write(&root->fs_info->cleanup_work_sem);
3437
3438 trans = btrfs_join_transaction(root);
3439 if (IS_ERR(trans))
3440 return PTR_ERR(trans);
3441 ret = btrfs_commit_transaction(trans, root);
3442 if (ret)
3443 return ret;
3444 /* run commit again to drop the original snapshot */
3445 trans = btrfs_join_transaction(root);
3446 if (IS_ERR(trans))
3447 return PTR_ERR(trans);
3448 ret = btrfs_commit_transaction(trans, root);
3449 if (ret)
3450 return ret;
3451 ret = btrfs_write_and_wait_transaction(NULL, root);
3452 if (ret) {
3453 btrfs_error(root->fs_info, ret,
3454 "Failed to sync btree inode to disk.");
3455 return ret;
3456 }
3457
3458 ret = write_ctree_super(NULL, root, 0);
3459 return ret;
3460 }
3461
3462 int close_ctree(struct btrfs_root *root)
3463 {
3464 struct btrfs_fs_info *fs_info = root->fs_info;
3465 int ret;
3466
3467 fs_info->closing = 1;
3468 smp_mb();
3469
3470 /* pause restriper - we want to resume on mount */
3471 btrfs_pause_balance(fs_info);
3472
3473 btrfs_dev_replace_suspend_for_unmount(fs_info);
3474
3475 btrfs_scrub_cancel(fs_info);
3476
3477 /* wait for any defraggers to finish */
3478 wait_event(fs_info->transaction_wait,
3479 (atomic_read(&fs_info->defrag_running) == 0));
3480
3481 /* clear out the rbtree of defraggable inodes */
3482 btrfs_cleanup_defrag_inodes(fs_info);
3483
3484 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3485 ret = btrfs_commit_super(root);
3486 if (ret)
3487 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3488 }
3489
3490 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3491 btrfs_error_commit_super(root);
3492
3493 btrfs_put_block_group_cache(fs_info);
3494
3495 kthread_stop(fs_info->transaction_kthread);
3496 kthread_stop(fs_info->cleaner_kthread);
3497
3498 fs_info->closing = 2;
3499 smp_mb();
3500
3501 btrfs_free_qgroup_config(root->fs_info);
3502
3503 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3504 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3505 percpu_counter_sum(&fs_info->delalloc_bytes));
3506 }
3507
3508 free_root_pointers(fs_info, 1);
3509
3510 btrfs_free_block_groups(fs_info);
3511
3512 del_fs_roots(fs_info);
3513
3514 iput(fs_info->btree_inode);
3515
3516 btrfs_stop_all_workers(fs_info);
3517
3518 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3519 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3520 btrfsic_unmount(root, fs_info->fs_devices);
3521 #endif
3522
3523 btrfs_close_devices(fs_info->fs_devices);
3524 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3525
3526 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3527 percpu_counter_destroy(&fs_info->delalloc_bytes);
3528 bdi_destroy(&fs_info->bdi);
3529 cleanup_srcu_struct(&fs_info->subvol_srcu);
3530
3531 btrfs_free_stripe_hash_table(fs_info);
3532
3533 return 0;
3534 }
3535
3536 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3537 int atomic)
3538 {
3539 int ret;
3540 struct inode *btree_inode = buf->pages[0]->mapping->host;
3541
3542 ret = extent_buffer_uptodate(buf);
3543 if (!ret)
3544 return ret;
3545
3546 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3547 parent_transid, atomic);
3548 if (ret == -EAGAIN)
3549 return ret;
3550 return !ret;
3551 }
3552
3553 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3554 {
3555 return set_extent_buffer_uptodate(buf);
3556 }
3557
3558 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3559 {
3560 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3561 u64 transid = btrfs_header_generation(buf);
3562 int was_dirty;
3563
3564 btrfs_assert_tree_locked(buf);
3565 if (transid != root->fs_info->generation)
3566 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3567 "found %llu running %llu\n",
3568 (unsigned long long)buf->start,
3569 (unsigned long long)transid,
3570 (unsigned long long)root->fs_info->generation);
3571 was_dirty = set_extent_buffer_dirty(buf);
3572 if (!was_dirty)
3573 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3574 buf->len,
3575 root->fs_info->dirty_metadata_batch);
3576 }
3577
3578 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3579 int flush_delayed)
3580 {
3581 /*
3582 * looks as though older kernels can get into trouble with
3583 * this code, they end up stuck in balance_dirty_pages forever
3584 */
3585 int ret;
3586
3587 if (current->flags & PF_MEMALLOC)
3588 return;
3589
3590 if (flush_delayed)
3591 btrfs_balance_delayed_items(root);
3592
3593 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3594 BTRFS_DIRTY_METADATA_THRESH);
3595 if (ret > 0) {
3596 balance_dirty_pages_ratelimited(
3597 root->fs_info->btree_inode->i_mapping);
3598 }
3599 return;
3600 }
3601
3602 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3603 {
3604 __btrfs_btree_balance_dirty(root, 1);
3605 }
3606
3607 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3608 {
3609 __btrfs_btree_balance_dirty(root, 0);
3610 }
3611
3612 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3613 {
3614 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3615 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3616 }
3617
3618 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3619 int read_only)
3620 {
3621 /*
3622 * Placeholder for checks
3623 */
3624 return 0;
3625 }
3626
3627 static void btrfs_error_commit_super(struct btrfs_root *root)
3628 {
3629 mutex_lock(&root->fs_info->cleaner_mutex);
3630 btrfs_run_delayed_iputs(root);
3631 mutex_unlock(&root->fs_info->cleaner_mutex);
3632
3633 down_write(&root->fs_info->cleanup_work_sem);
3634 up_write(&root->fs_info->cleanup_work_sem);
3635
3636 /* cleanup FS via transaction */
3637 btrfs_cleanup_transaction(root);
3638 }
3639
3640 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3641 struct btrfs_root *root)
3642 {
3643 struct btrfs_inode *btrfs_inode;
3644 struct list_head splice;
3645
3646 INIT_LIST_HEAD(&splice);
3647
3648 mutex_lock(&root->fs_info->ordered_operations_mutex);
3649 spin_lock(&root->fs_info->ordered_extent_lock);
3650
3651 list_splice_init(&t->ordered_operations, &splice);
3652 while (!list_empty(&splice)) {
3653 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3654 ordered_operations);
3655
3656 list_del_init(&btrfs_inode->ordered_operations);
3657
3658 btrfs_invalidate_inodes(btrfs_inode->root);
3659 }
3660
3661 spin_unlock(&root->fs_info->ordered_extent_lock);
3662 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3663 }
3664
3665 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3666 {
3667 struct btrfs_ordered_extent *ordered;
3668
3669 spin_lock(&root->fs_info->ordered_extent_lock);
3670 /*
3671 * This will just short circuit the ordered completion stuff which will
3672 * make sure the ordered extent gets properly cleaned up.
3673 */
3674 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3675 root_extent_list)
3676 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3677 spin_unlock(&root->fs_info->ordered_extent_lock);
3678 }
3679
3680 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3681 struct btrfs_root *root)
3682 {
3683 struct rb_node *node;
3684 struct btrfs_delayed_ref_root *delayed_refs;
3685 struct btrfs_delayed_ref_node *ref;
3686 int ret = 0;
3687
3688 delayed_refs = &trans->delayed_refs;
3689
3690 spin_lock(&delayed_refs->lock);
3691 if (delayed_refs->num_entries == 0) {
3692 spin_unlock(&delayed_refs->lock);
3693 printk(KERN_INFO "delayed_refs has NO entry\n");
3694 return ret;
3695 }
3696
3697 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3698 struct btrfs_delayed_ref_head *head = NULL;
3699
3700 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3701 atomic_set(&ref->refs, 1);
3702 if (btrfs_delayed_ref_is_head(ref)) {
3703
3704 head = btrfs_delayed_node_to_head(ref);
3705 if (!mutex_trylock(&head->mutex)) {
3706 atomic_inc(&ref->refs);
3707 spin_unlock(&delayed_refs->lock);
3708
3709 /* Need to wait for the delayed ref to run */
3710 mutex_lock(&head->mutex);
3711 mutex_unlock(&head->mutex);
3712 btrfs_put_delayed_ref(ref);
3713
3714 spin_lock(&delayed_refs->lock);
3715 continue;
3716 }
3717
3718 if (head->must_insert_reserved)
3719 btrfs_pin_extent(root, ref->bytenr,
3720 ref->num_bytes, 1);
3721 btrfs_free_delayed_extent_op(head->extent_op);
3722 delayed_refs->num_heads--;
3723 if (list_empty(&head->cluster))
3724 delayed_refs->num_heads_ready--;
3725 list_del_init(&head->cluster);
3726 }
3727
3728 ref->in_tree = 0;
3729 rb_erase(&ref->rb_node, &delayed_refs->root);
3730 delayed_refs->num_entries--;
3731 if (head)
3732 mutex_unlock(&head->mutex);
3733 spin_unlock(&delayed_refs->lock);
3734 btrfs_put_delayed_ref(ref);
3735
3736 cond_resched();
3737 spin_lock(&delayed_refs->lock);
3738 }
3739
3740 spin_unlock(&delayed_refs->lock);
3741
3742 return ret;
3743 }
3744
3745 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3746 {
3747 struct btrfs_pending_snapshot *snapshot;
3748 struct list_head splice;
3749
3750 INIT_LIST_HEAD(&splice);
3751
3752 list_splice_init(&t->pending_snapshots, &splice);
3753
3754 while (!list_empty(&splice)) {
3755 snapshot = list_entry(splice.next,
3756 struct btrfs_pending_snapshot,
3757 list);
3758 snapshot->error = -ECANCELED;
3759 list_del_init(&snapshot->list);
3760 }
3761 }
3762
3763 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3764 {
3765 struct btrfs_inode *btrfs_inode;
3766 struct list_head splice;
3767
3768 INIT_LIST_HEAD(&splice);
3769
3770 spin_lock(&root->fs_info->delalloc_lock);
3771 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3772
3773 while (!list_empty(&splice)) {
3774 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3775 delalloc_inodes);
3776
3777 list_del_init(&btrfs_inode->delalloc_inodes);
3778 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3779 &btrfs_inode->runtime_flags);
3780
3781 btrfs_invalidate_inodes(btrfs_inode->root);
3782 }
3783
3784 spin_unlock(&root->fs_info->delalloc_lock);
3785 }
3786
3787 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3788 struct extent_io_tree *dirty_pages,
3789 int mark)
3790 {
3791 int ret;
3792 struct extent_buffer *eb;
3793 u64 start = 0;
3794 u64 end;
3795
3796 while (1) {
3797 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3798 mark, NULL);
3799 if (ret)
3800 break;
3801
3802 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3803 while (start <= end) {
3804 eb = btrfs_find_tree_block(root, start,
3805 root->leafsize);
3806 start += eb->len;
3807 if (!eb)
3808 continue;
3809 wait_on_extent_buffer_writeback(eb);
3810
3811 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3812 &eb->bflags))
3813 clear_extent_buffer_dirty(eb);
3814 free_extent_buffer_stale(eb);
3815 }
3816 }
3817
3818 return ret;
3819 }
3820
3821 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3822 struct extent_io_tree *pinned_extents)
3823 {
3824 struct extent_io_tree *unpin;
3825 u64 start;
3826 u64 end;
3827 int ret;
3828 bool loop = true;
3829
3830 unpin = pinned_extents;
3831 again:
3832 while (1) {
3833 ret = find_first_extent_bit(unpin, 0, &start, &end,
3834 EXTENT_DIRTY, NULL);
3835 if (ret)
3836 break;
3837
3838 /* opt_discard */
3839 if (btrfs_test_opt(root, DISCARD))
3840 ret = btrfs_error_discard_extent(root, start,
3841 end + 1 - start,
3842 NULL);
3843
3844 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3845 btrfs_error_unpin_extent_range(root, start, end);
3846 cond_resched();
3847 }
3848
3849 if (loop) {
3850 if (unpin == &root->fs_info->freed_extents[0])
3851 unpin = &root->fs_info->freed_extents[1];
3852 else
3853 unpin = &root->fs_info->freed_extents[0];
3854 loop = false;
3855 goto again;
3856 }
3857
3858 return 0;
3859 }
3860
3861 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3862 struct btrfs_root *root)
3863 {
3864 btrfs_destroy_delayed_refs(cur_trans, root);
3865 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3866 cur_trans->dirty_pages.dirty_bytes);
3867
3868 /* FIXME: cleanup wait for commit */
3869 cur_trans->in_commit = 1;
3870 cur_trans->blocked = 1;
3871 wake_up(&root->fs_info->transaction_blocked_wait);
3872
3873 btrfs_evict_pending_snapshots(cur_trans);
3874
3875 cur_trans->blocked = 0;
3876 wake_up(&root->fs_info->transaction_wait);
3877
3878 cur_trans->commit_done = 1;
3879 wake_up(&cur_trans->commit_wait);
3880
3881 btrfs_destroy_delayed_inodes(root);
3882 btrfs_assert_delayed_root_empty(root);
3883
3884 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3885 EXTENT_DIRTY);
3886 btrfs_destroy_pinned_extent(root,
3887 root->fs_info->pinned_extents);
3888
3889 /*
3890 memset(cur_trans, 0, sizeof(*cur_trans));
3891 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3892 */
3893 }
3894
3895 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3896 {
3897 struct btrfs_transaction *t;
3898 LIST_HEAD(list);
3899
3900 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3901
3902 spin_lock(&root->fs_info->trans_lock);
3903 list_splice_init(&root->fs_info->trans_list, &list);
3904 root->fs_info->trans_no_join = 1;
3905 spin_unlock(&root->fs_info->trans_lock);
3906
3907 while (!list_empty(&list)) {
3908 t = list_entry(list.next, struct btrfs_transaction, list);
3909
3910 btrfs_destroy_ordered_operations(t, root);
3911
3912 btrfs_destroy_ordered_extents(root);
3913
3914 btrfs_destroy_delayed_refs(t, root);
3915
3916 /* FIXME: cleanup wait for commit */
3917 t->in_commit = 1;
3918 t->blocked = 1;
3919 smp_mb();
3920 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3921 wake_up(&root->fs_info->transaction_blocked_wait);
3922
3923 btrfs_evict_pending_snapshots(t);
3924
3925 t->blocked = 0;
3926 smp_mb();
3927 if (waitqueue_active(&root->fs_info->transaction_wait))
3928 wake_up(&root->fs_info->transaction_wait);
3929
3930 t->commit_done = 1;
3931 smp_mb();
3932 if (waitqueue_active(&t->commit_wait))
3933 wake_up(&t->commit_wait);
3934
3935 btrfs_destroy_delayed_inodes(root);
3936 btrfs_assert_delayed_root_empty(root);
3937
3938 btrfs_destroy_delalloc_inodes(root);
3939
3940 spin_lock(&root->fs_info->trans_lock);
3941 root->fs_info->running_transaction = NULL;
3942 spin_unlock(&root->fs_info->trans_lock);
3943
3944 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3945 EXTENT_DIRTY);
3946
3947 btrfs_destroy_pinned_extent(root,
3948 root->fs_info->pinned_extents);
3949
3950 atomic_set(&t->use_count, 0);
3951 list_del_init(&t->list);
3952 memset(t, 0, sizeof(*t));
3953 kmem_cache_free(btrfs_transaction_cachep, t);
3954 }
3955
3956 spin_lock(&root->fs_info->trans_lock);
3957 root->fs_info->trans_no_join = 0;
3958 spin_unlock(&root->fs_info->trans_lock);
3959 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3960
3961 return 0;
3962 }
3963
3964 static struct extent_io_ops btree_extent_io_ops = {
3965 .readpage_end_io_hook = btree_readpage_end_io_hook,
3966 .readpage_io_failed_hook = btree_io_failed_hook,
3967 .submit_bio_hook = btree_submit_bio_hook,
3968 /* note we're sharing with inode.c for the merge bio hook */
3969 .merge_bio_hook = btrfs_merge_bio_hook,
3970 };