]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Merge tag 'char-misc-3.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 #ifdef CONFIG_X86
50 #include <asm/cpufeature.h>
51 #endif
52
53 static struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void free_fs_root(struct btrfs_root *root);
56 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
57 int read_only);
58 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
59 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
61 struct btrfs_root *root);
62 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
63 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
64 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
65 struct extent_io_tree *dirty_pages,
66 int mark);
67 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
68 struct extent_io_tree *pinned_extents);
69
70 /*
71 * end_io_wq structs are used to do processing in task context when an IO is
72 * complete. This is used during reads to verify checksums, and it is used
73 * by writes to insert metadata for new file extents after IO is complete.
74 */
75 struct end_io_wq {
76 struct bio *bio;
77 bio_end_io_t *end_io;
78 void *private;
79 struct btrfs_fs_info *info;
80 int error;
81 int metadata;
82 struct list_head list;
83 struct btrfs_work work;
84 };
85
86 /*
87 * async submit bios are used to offload expensive checksumming
88 * onto the worker threads. They checksum file and metadata bios
89 * just before they are sent down the IO stack.
90 */
91 struct async_submit_bio {
92 struct inode *inode;
93 struct bio *bio;
94 struct list_head list;
95 extent_submit_bio_hook_t *submit_bio_start;
96 extent_submit_bio_hook_t *submit_bio_done;
97 int rw;
98 int mirror_num;
99 unsigned long bio_flags;
100 /*
101 * bio_offset is optional, can be used if the pages in the bio
102 * can't tell us where in the file the bio should go
103 */
104 u64 bio_offset;
105 struct btrfs_work work;
106 int error;
107 };
108
109 /*
110 * Lockdep class keys for extent_buffer->lock's in this root. For a given
111 * eb, the lockdep key is determined by the btrfs_root it belongs to and
112 * the level the eb occupies in the tree.
113 *
114 * Different roots are used for different purposes and may nest inside each
115 * other and they require separate keysets. As lockdep keys should be
116 * static, assign keysets according to the purpose of the root as indicated
117 * by btrfs_root->objectid. This ensures that all special purpose roots
118 * have separate keysets.
119 *
120 * Lock-nesting across peer nodes is always done with the immediate parent
121 * node locked thus preventing deadlock. As lockdep doesn't know this, use
122 * subclass to avoid triggering lockdep warning in such cases.
123 *
124 * The key is set by the readpage_end_io_hook after the buffer has passed
125 * csum validation but before the pages are unlocked. It is also set by
126 * btrfs_init_new_buffer on freshly allocated blocks.
127 *
128 * We also add a check to make sure the highest level of the tree is the
129 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
130 * needs update as well.
131 */
132 #ifdef CONFIG_DEBUG_LOCK_ALLOC
133 # if BTRFS_MAX_LEVEL != 8
134 # error
135 # endif
136
137 static struct btrfs_lockdep_keyset {
138 u64 id; /* root objectid */
139 const char *name_stem; /* lock name stem */
140 char names[BTRFS_MAX_LEVEL + 1][20];
141 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
142 } btrfs_lockdep_keysets[] = {
143 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
144 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
145 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
146 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
147 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
148 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
149 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
150 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
151 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
152 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
153 { .id = 0, .name_stem = "tree" },
154 };
155
156 void __init btrfs_init_lockdep(void)
157 {
158 int i, j;
159
160 /* initialize lockdep class names */
161 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
162 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
163
164 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
165 snprintf(ks->names[j], sizeof(ks->names[j]),
166 "btrfs-%s-%02d", ks->name_stem, j);
167 }
168 }
169
170 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
171 int level)
172 {
173 struct btrfs_lockdep_keyset *ks;
174
175 BUG_ON(level >= ARRAY_SIZE(ks->keys));
176
177 /* find the matching keyset, id 0 is the default entry */
178 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
179 if (ks->id == objectid)
180 break;
181
182 lockdep_set_class_and_name(&eb->lock,
183 &ks->keys[level], ks->names[level]);
184 }
185
186 #endif
187
188 /*
189 * extents on the btree inode are pretty simple, there's one extent
190 * that covers the entire device
191 */
192 static struct extent_map *btree_get_extent(struct inode *inode,
193 struct page *page, size_t pg_offset, u64 start, u64 len,
194 int create)
195 {
196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
197 struct extent_map *em;
198 int ret;
199
200 read_lock(&em_tree->lock);
201 em = lookup_extent_mapping(em_tree, start, len);
202 if (em) {
203 em->bdev =
204 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
205 read_unlock(&em_tree->lock);
206 goto out;
207 }
208 read_unlock(&em_tree->lock);
209
210 em = alloc_extent_map();
211 if (!em) {
212 em = ERR_PTR(-ENOMEM);
213 goto out;
214 }
215 em->start = 0;
216 em->len = (u64)-1;
217 em->block_len = (u64)-1;
218 em->block_start = 0;
219 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
220
221 write_lock(&em_tree->lock);
222 ret = add_extent_mapping(em_tree, em);
223 if (ret == -EEXIST) {
224 free_extent_map(em);
225 em = lookup_extent_mapping(em_tree, start, len);
226 if (!em)
227 em = ERR_PTR(-EIO);
228 } else if (ret) {
229 free_extent_map(em);
230 em = ERR_PTR(ret);
231 }
232 write_unlock(&em_tree->lock);
233
234 out:
235 return em;
236 }
237
238 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
239 {
240 return crc32c(seed, data, len);
241 }
242
243 void btrfs_csum_final(u32 crc, char *result)
244 {
245 put_unaligned_le32(~crc, result);
246 }
247
248 /*
249 * compute the csum for a btree block, and either verify it or write it
250 * into the csum field of the block.
251 */
252 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
253 int verify)
254 {
255 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
256 char *result = NULL;
257 unsigned long len;
258 unsigned long cur_len;
259 unsigned long offset = BTRFS_CSUM_SIZE;
260 char *kaddr;
261 unsigned long map_start;
262 unsigned long map_len;
263 int err;
264 u32 crc = ~(u32)0;
265 unsigned long inline_result;
266
267 len = buf->len - offset;
268 while (len > 0) {
269 err = map_private_extent_buffer(buf, offset, 32,
270 &kaddr, &map_start, &map_len);
271 if (err)
272 return 1;
273 cur_len = min(len, map_len - (offset - map_start));
274 crc = btrfs_csum_data(root, kaddr + offset - map_start,
275 crc, cur_len);
276 len -= cur_len;
277 offset += cur_len;
278 }
279 if (csum_size > sizeof(inline_result)) {
280 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
281 if (!result)
282 return 1;
283 } else {
284 result = (char *)&inline_result;
285 }
286
287 btrfs_csum_final(crc, result);
288
289 if (verify) {
290 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
291 u32 val;
292 u32 found = 0;
293 memcpy(&found, result, csum_size);
294
295 read_extent_buffer(buf, &val, 0, csum_size);
296 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
297 "failed on %llu wanted %X found %X "
298 "level %d\n",
299 root->fs_info->sb->s_id,
300 (unsigned long long)buf->start, val, found,
301 btrfs_header_level(buf));
302 if (result != (char *)&inline_result)
303 kfree(result);
304 return 1;
305 }
306 } else {
307 write_extent_buffer(buf, result, 0, csum_size);
308 }
309 if (result != (char *)&inline_result)
310 kfree(result);
311 return 0;
312 }
313
314 /*
315 * we can't consider a given block up to date unless the transid of the
316 * block matches the transid in the parent node's pointer. This is how we
317 * detect blocks that either didn't get written at all or got written
318 * in the wrong place.
319 */
320 static int verify_parent_transid(struct extent_io_tree *io_tree,
321 struct extent_buffer *eb, u64 parent_transid,
322 int atomic)
323 {
324 struct extent_state *cached_state = NULL;
325 int ret;
326
327 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
328 return 0;
329
330 if (atomic)
331 return -EAGAIN;
332
333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334 0, &cached_state);
335 if (extent_buffer_uptodate(eb) &&
336 btrfs_header_generation(eb) == parent_transid) {
337 ret = 0;
338 goto out;
339 }
340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
341 "found %llu\n",
342 (unsigned long long)eb->start,
343 (unsigned long long)parent_transid,
344 (unsigned long long)btrfs_header_generation(eb));
345 ret = 1;
346 clear_extent_buffer_uptodate(eb);
347 out:
348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state, GFP_NOFS);
350 return ret;
351 }
352
353 /*
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
356 */
357 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 struct extent_buffer *eb,
359 u64 start, u64 parent_transid)
360 {
361 struct extent_io_tree *io_tree;
362 int failed = 0;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366 int failed_mirror = 0;
367
368 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
369 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
370 while (1) {
371 ret = read_extent_buffer_pages(io_tree, eb, start,
372 WAIT_COMPLETE,
373 btree_get_extent, mirror_num);
374 if (!ret) {
375 if (!verify_parent_transid(io_tree, eb,
376 parent_transid, 0))
377 break;
378 else
379 ret = -EIO;
380 }
381
382 /*
383 * This buffer's crc is fine, but its contents are corrupted, so
384 * there is no reason to read the other copies, they won't be
385 * any less wrong.
386 */
387 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
388 break;
389
390 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
391 eb->start, eb->len);
392 if (num_copies == 1)
393 break;
394
395 if (!failed_mirror) {
396 failed = 1;
397 failed_mirror = eb->read_mirror;
398 }
399
400 mirror_num++;
401 if (mirror_num == failed_mirror)
402 mirror_num++;
403
404 if (mirror_num > num_copies)
405 break;
406 }
407
408 if (failed && !ret && failed_mirror)
409 repair_eb_io_failure(root, eb, failed_mirror);
410
411 return ret;
412 }
413
414 /*
415 * checksum a dirty tree block before IO. This has extra checks to make sure
416 * we only fill in the checksum field in the first page of a multi-page block
417 */
418
419 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
420 {
421 struct extent_io_tree *tree;
422 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
423 u64 found_start;
424 struct extent_buffer *eb;
425
426 tree = &BTRFS_I(page->mapping->host)->io_tree;
427
428 eb = (struct extent_buffer *)page->private;
429 if (page != eb->pages[0])
430 return 0;
431 found_start = btrfs_header_bytenr(eb);
432 if (found_start != start) {
433 WARN_ON(1);
434 return 0;
435 }
436 if (!PageUptodate(page)) {
437 WARN_ON(1);
438 return 0;
439 }
440 csum_tree_block(root, eb, 0);
441 return 0;
442 }
443
444 static int check_tree_block_fsid(struct btrfs_root *root,
445 struct extent_buffer *eb)
446 {
447 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
448 u8 fsid[BTRFS_UUID_SIZE];
449 int ret = 1;
450
451 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
452 BTRFS_FSID_SIZE);
453 while (fs_devices) {
454 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
455 ret = 0;
456 break;
457 }
458 fs_devices = fs_devices->seed;
459 }
460 return ret;
461 }
462
463 #define CORRUPT(reason, eb, root, slot) \
464 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
465 "root=%llu, slot=%d\n", reason, \
466 (unsigned long long)btrfs_header_bytenr(eb), \
467 (unsigned long long)root->objectid, slot)
468
469 static noinline int check_leaf(struct btrfs_root *root,
470 struct extent_buffer *leaf)
471 {
472 struct btrfs_key key;
473 struct btrfs_key leaf_key;
474 u32 nritems = btrfs_header_nritems(leaf);
475 int slot;
476
477 if (nritems == 0)
478 return 0;
479
480 /* Check the 0 item */
481 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
482 BTRFS_LEAF_DATA_SIZE(root)) {
483 CORRUPT("invalid item offset size pair", leaf, root, 0);
484 return -EIO;
485 }
486
487 /*
488 * Check to make sure each items keys are in the correct order and their
489 * offsets make sense. We only have to loop through nritems-1 because
490 * we check the current slot against the next slot, which verifies the
491 * next slot's offset+size makes sense and that the current's slot
492 * offset is correct.
493 */
494 for (slot = 0; slot < nritems - 1; slot++) {
495 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
496 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
497
498 /* Make sure the keys are in the right order */
499 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
500 CORRUPT("bad key order", leaf, root, slot);
501 return -EIO;
502 }
503
504 /*
505 * Make sure the offset and ends are right, remember that the
506 * item data starts at the end of the leaf and grows towards the
507 * front.
508 */
509 if (btrfs_item_offset_nr(leaf, slot) !=
510 btrfs_item_end_nr(leaf, slot + 1)) {
511 CORRUPT("slot offset bad", leaf, root, slot);
512 return -EIO;
513 }
514
515 /*
516 * Check to make sure that we don't point outside of the leaf,
517 * just incase all the items are consistent to eachother, but
518 * all point outside of the leaf.
519 */
520 if (btrfs_item_end_nr(leaf, slot) >
521 BTRFS_LEAF_DATA_SIZE(root)) {
522 CORRUPT("slot end outside of leaf", leaf, root, slot);
523 return -EIO;
524 }
525 }
526
527 return 0;
528 }
529
530 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
531 struct page *page, int max_walk)
532 {
533 struct extent_buffer *eb;
534 u64 start = page_offset(page);
535 u64 target = start;
536 u64 min_start;
537
538 if (start < max_walk)
539 min_start = 0;
540 else
541 min_start = start - max_walk;
542
543 while (start >= min_start) {
544 eb = find_extent_buffer(tree, start, 0);
545 if (eb) {
546 /*
547 * we found an extent buffer and it contains our page
548 * horray!
549 */
550 if (eb->start <= target &&
551 eb->start + eb->len > target)
552 return eb;
553
554 /* we found an extent buffer that wasn't for us */
555 free_extent_buffer(eb);
556 return NULL;
557 }
558 if (start == 0)
559 break;
560 start -= PAGE_CACHE_SIZE;
561 }
562 return NULL;
563 }
564
565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
566 struct extent_state *state, int mirror)
567 {
568 struct extent_io_tree *tree;
569 u64 found_start;
570 int found_level;
571 struct extent_buffer *eb;
572 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
573 int ret = 0;
574 int reads_done;
575
576 if (!page->private)
577 goto out;
578
579 tree = &BTRFS_I(page->mapping->host)->io_tree;
580 eb = (struct extent_buffer *)page->private;
581
582 /* the pending IO might have been the only thing that kept this buffer
583 * in memory. Make sure we have a ref for all this other checks
584 */
585 extent_buffer_get(eb);
586
587 reads_done = atomic_dec_and_test(&eb->io_pages);
588 if (!reads_done)
589 goto err;
590
591 eb->read_mirror = mirror;
592 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593 ret = -EIO;
594 goto err;
595 }
596
597 found_start = btrfs_header_bytenr(eb);
598 if (found_start != eb->start) {
599 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600 "%llu %llu\n",
601 (unsigned long long)found_start,
602 (unsigned long long)eb->start);
603 ret = -EIO;
604 goto err;
605 }
606 if (check_tree_block_fsid(root, eb)) {
607 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608 (unsigned long long)eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 found_level = btrfs_header_level(eb);
613
614 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615 eb, found_level);
616
617 ret = csum_tree_block(root, eb, 1);
618 if (ret) {
619 ret = -EIO;
620 goto err;
621 }
622
623 /*
624 * If this is a leaf block and it is corrupt, set the corrupt bit so
625 * that we don't try and read the other copies of this block, just
626 * return -EIO.
627 */
628 if (found_level == 0 && check_leaf(root, eb)) {
629 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
630 ret = -EIO;
631 }
632
633 if (!ret)
634 set_extent_buffer_uptodate(eb);
635 err:
636 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638 btree_readahead_hook(root, eb, eb->start, ret);
639 }
640
641 if (ret)
642 clear_extent_buffer_uptodate(eb);
643 free_extent_buffer(eb);
644 out:
645 return ret;
646 }
647
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
649 {
650 struct extent_buffer *eb;
651 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652
653 eb = (struct extent_buffer *)page->private;
654 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
655 eb->read_mirror = failed_mirror;
656 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657 btree_readahead_hook(root, eb, eb->start, -EIO);
658 return -EIO; /* we fixed nothing */
659 }
660
661 static void end_workqueue_bio(struct bio *bio, int err)
662 {
663 struct end_io_wq *end_io_wq = bio->bi_private;
664 struct btrfs_fs_info *fs_info;
665
666 fs_info = end_io_wq->info;
667 end_io_wq->error = err;
668 end_io_wq->work.func = end_workqueue_fn;
669 end_io_wq->work.flags = 0;
670
671 if (bio->bi_rw & REQ_WRITE) {
672 if (end_io_wq->metadata == 1)
673 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
674 &end_io_wq->work);
675 else if (end_io_wq->metadata == 2)
676 btrfs_queue_worker(&fs_info->endio_freespace_worker,
677 &end_io_wq->work);
678 else
679 btrfs_queue_worker(&fs_info->endio_write_workers,
680 &end_io_wq->work);
681 } else {
682 if (end_io_wq->metadata)
683 btrfs_queue_worker(&fs_info->endio_meta_workers,
684 &end_io_wq->work);
685 else
686 btrfs_queue_worker(&fs_info->endio_workers,
687 &end_io_wq->work);
688 }
689 }
690
691 /*
692 * For the metadata arg you want
693 *
694 * 0 - if data
695 * 1 - if normal metadta
696 * 2 - if writing to the free space cache area
697 */
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699 int metadata)
700 {
701 struct end_io_wq *end_io_wq;
702 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703 if (!end_io_wq)
704 return -ENOMEM;
705
706 end_io_wq->private = bio->bi_private;
707 end_io_wq->end_io = bio->bi_end_io;
708 end_io_wq->info = info;
709 end_io_wq->error = 0;
710 end_io_wq->bio = bio;
711 end_io_wq->metadata = metadata;
712
713 bio->bi_private = end_io_wq;
714 bio->bi_end_io = end_workqueue_bio;
715 return 0;
716 }
717
718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
719 {
720 unsigned long limit = min_t(unsigned long,
721 info->workers.max_workers,
722 info->fs_devices->open_devices);
723 return 256 * limit;
724 }
725
726 static void run_one_async_start(struct btrfs_work *work)
727 {
728 struct async_submit_bio *async;
729 int ret;
730
731 async = container_of(work, struct async_submit_bio, work);
732 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733 async->mirror_num, async->bio_flags,
734 async->bio_offset);
735 if (ret)
736 async->error = ret;
737 }
738
739 static void run_one_async_done(struct btrfs_work *work)
740 {
741 struct btrfs_fs_info *fs_info;
742 struct async_submit_bio *async;
743 int limit;
744
745 async = container_of(work, struct async_submit_bio, work);
746 fs_info = BTRFS_I(async->inode)->root->fs_info;
747
748 limit = btrfs_async_submit_limit(fs_info);
749 limit = limit * 2 / 3;
750
751 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
752 waitqueue_active(&fs_info->async_submit_wait))
753 wake_up(&fs_info->async_submit_wait);
754
755 /* If an error occured we just want to clean up the bio and move on */
756 if (async->error) {
757 bio_endio(async->bio, async->error);
758 return;
759 }
760
761 async->submit_bio_done(async->inode, async->rw, async->bio,
762 async->mirror_num, async->bio_flags,
763 async->bio_offset);
764 }
765
766 static void run_one_async_free(struct btrfs_work *work)
767 {
768 struct async_submit_bio *async;
769
770 async = container_of(work, struct async_submit_bio, work);
771 kfree(async);
772 }
773
774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775 int rw, struct bio *bio, int mirror_num,
776 unsigned long bio_flags,
777 u64 bio_offset,
778 extent_submit_bio_hook_t *submit_bio_start,
779 extent_submit_bio_hook_t *submit_bio_done)
780 {
781 struct async_submit_bio *async;
782
783 async = kmalloc(sizeof(*async), GFP_NOFS);
784 if (!async)
785 return -ENOMEM;
786
787 async->inode = inode;
788 async->rw = rw;
789 async->bio = bio;
790 async->mirror_num = mirror_num;
791 async->submit_bio_start = submit_bio_start;
792 async->submit_bio_done = submit_bio_done;
793
794 async->work.func = run_one_async_start;
795 async->work.ordered_func = run_one_async_done;
796 async->work.ordered_free = run_one_async_free;
797
798 async->work.flags = 0;
799 async->bio_flags = bio_flags;
800 async->bio_offset = bio_offset;
801
802 async->error = 0;
803
804 atomic_inc(&fs_info->nr_async_submits);
805
806 if (rw & REQ_SYNC)
807 btrfs_set_work_high_prio(&async->work);
808
809 btrfs_queue_worker(&fs_info->workers, &async->work);
810
811 while (atomic_read(&fs_info->async_submit_draining) &&
812 atomic_read(&fs_info->nr_async_submits)) {
813 wait_event(fs_info->async_submit_wait,
814 (atomic_read(&fs_info->nr_async_submits) == 0));
815 }
816
817 return 0;
818 }
819
820 static int btree_csum_one_bio(struct bio *bio)
821 {
822 struct bio_vec *bvec = bio->bi_io_vec;
823 int bio_index = 0;
824 struct btrfs_root *root;
825 int ret = 0;
826
827 WARN_ON(bio->bi_vcnt <= 0);
828 while (bio_index < bio->bi_vcnt) {
829 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830 ret = csum_dirty_buffer(root, bvec->bv_page);
831 if (ret)
832 break;
833 bio_index++;
834 bvec++;
835 }
836 return ret;
837 }
838
839 static int __btree_submit_bio_start(struct inode *inode, int rw,
840 struct bio *bio, int mirror_num,
841 unsigned long bio_flags,
842 u64 bio_offset)
843 {
844 /*
845 * when we're called for a write, we're already in the async
846 * submission context. Just jump into btrfs_map_bio
847 */
848 return btree_csum_one_bio(bio);
849 }
850
851 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
852 int mirror_num, unsigned long bio_flags,
853 u64 bio_offset)
854 {
855 /*
856 * when we're called for a write, we're already in the async
857 * submission context. Just jump into btrfs_map_bio
858 */
859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
860 }
861
862 static int check_async_write(struct inode *inode, unsigned long bio_flags)
863 {
864 if (bio_flags & EXTENT_BIO_TREE_LOG)
865 return 0;
866 #ifdef CONFIG_X86
867 if (cpu_has_xmm4_2)
868 return 0;
869 #endif
870 return 1;
871 }
872
873 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
874 int mirror_num, unsigned long bio_flags,
875 u64 bio_offset)
876 {
877 int async = check_async_write(inode, bio_flags);
878 int ret;
879
880 if (!(rw & REQ_WRITE)) {
881
882 /*
883 * called for a read, do the setup so that checksum validation
884 * can happen in the async kernel threads
885 */
886 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
887 bio, 1);
888 if (ret)
889 return ret;
890 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
891 mirror_num, 0);
892 } else if (!async) {
893 ret = btree_csum_one_bio(bio);
894 if (ret)
895 return ret;
896 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
897 mirror_num, 0);
898 }
899
900 /*
901 * kthread helpers are used to submit writes so that checksumming
902 * can happen in parallel across all CPUs
903 */
904 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
905 inode, rw, bio, mirror_num, 0,
906 bio_offset,
907 __btree_submit_bio_start,
908 __btree_submit_bio_done);
909 }
910
911 #ifdef CONFIG_MIGRATION
912 static int btree_migratepage(struct address_space *mapping,
913 struct page *newpage, struct page *page,
914 enum migrate_mode mode)
915 {
916 /*
917 * we can't safely write a btree page from here,
918 * we haven't done the locking hook
919 */
920 if (PageDirty(page))
921 return -EAGAIN;
922 /*
923 * Buffers may be managed in a filesystem specific way.
924 * We must have no buffers or drop them.
925 */
926 if (page_has_private(page) &&
927 !try_to_release_page(page, GFP_KERNEL))
928 return -EAGAIN;
929 return migrate_page(mapping, newpage, page, mode);
930 }
931 #endif
932
933
934 static int btree_writepages(struct address_space *mapping,
935 struct writeback_control *wbc)
936 {
937 struct extent_io_tree *tree;
938 tree = &BTRFS_I(mapping->host)->io_tree;
939 if (wbc->sync_mode == WB_SYNC_NONE) {
940 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
941 u64 num_dirty;
942 unsigned long thresh = 32 * 1024 * 1024;
943
944 if (wbc->for_kupdate)
945 return 0;
946
947 /* this is a bit racy, but that's ok */
948 num_dirty = root->fs_info->dirty_metadata_bytes;
949 if (num_dirty < thresh)
950 return 0;
951 }
952 return btree_write_cache_pages(mapping, wbc);
953 }
954
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957 struct extent_io_tree *tree;
958 tree = &BTRFS_I(page->mapping->host)->io_tree;
959 return extent_read_full_page(tree, page, btree_get_extent, 0);
960 }
961
962 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
963 {
964 if (PageWriteback(page) || PageDirty(page))
965 return 0;
966 /*
967 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
968 * slab allocation from alloc_extent_state down the callchain where
969 * it'd hit a BUG_ON as those flags are not allowed.
970 */
971 gfp_flags &= ~GFP_SLAB_BUG_MASK;
972
973 return try_release_extent_buffer(page, gfp_flags);
974 }
975
976 static void btree_invalidatepage(struct page *page, unsigned long offset)
977 {
978 struct extent_io_tree *tree;
979 tree = &BTRFS_I(page->mapping->host)->io_tree;
980 extent_invalidatepage(tree, page, offset);
981 btree_releasepage(page, GFP_NOFS);
982 if (PagePrivate(page)) {
983 printk(KERN_WARNING "btrfs warning page private not zero "
984 "on page %llu\n", (unsigned long long)page_offset(page));
985 ClearPagePrivate(page);
986 set_page_private(page, 0);
987 page_cache_release(page);
988 }
989 }
990
991 static int btree_set_page_dirty(struct page *page)
992 {
993 struct extent_buffer *eb;
994
995 BUG_ON(!PagePrivate(page));
996 eb = (struct extent_buffer *)page->private;
997 BUG_ON(!eb);
998 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
999 BUG_ON(!atomic_read(&eb->refs));
1000 btrfs_assert_tree_locked(eb);
1001 return __set_page_dirty_nobuffers(page);
1002 }
1003
1004 static const struct address_space_operations btree_aops = {
1005 .readpage = btree_readpage,
1006 .writepages = btree_writepages,
1007 .releasepage = btree_releasepage,
1008 .invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010 .migratepage = btree_migratepage,
1011 #endif
1012 .set_page_dirty = btree_set_page_dirty,
1013 };
1014
1015 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1016 u64 parent_transid)
1017 {
1018 struct extent_buffer *buf = NULL;
1019 struct inode *btree_inode = root->fs_info->btree_inode;
1020 int ret = 0;
1021
1022 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1023 if (!buf)
1024 return 0;
1025 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1026 buf, 0, WAIT_NONE, btree_get_extent, 0);
1027 free_extent_buffer(buf);
1028 return ret;
1029 }
1030
1031 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1032 int mirror_num, struct extent_buffer **eb)
1033 {
1034 struct extent_buffer *buf = NULL;
1035 struct inode *btree_inode = root->fs_info->btree_inode;
1036 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1037 int ret;
1038
1039 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1040 if (!buf)
1041 return 0;
1042
1043 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1044
1045 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1046 btree_get_extent, mirror_num);
1047 if (ret) {
1048 free_extent_buffer(buf);
1049 return ret;
1050 }
1051
1052 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1053 free_extent_buffer(buf);
1054 return -EIO;
1055 } else if (extent_buffer_uptodate(buf)) {
1056 *eb = buf;
1057 } else {
1058 free_extent_buffer(buf);
1059 }
1060 return 0;
1061 }
1062
1063 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065 {
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1069 bytenr, blocksize);
1070 return eb;
1071 }
1072
1073 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1074 u64 bytenr, u32 blocksize)
1075 {
1076 struct inode *btree_inode = root->fs_info->btree_inode;
1077 struct extent_buffer *eb;
1078
1079 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1080 bytenr, blocksize);
1081 return eb;
1082 }
1083
1084
1085 int btrfs_write_tree_block(struct extent_buffer *buf)
1086 {
1087 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1088 buf->start + buf->len - 1);
1089 }
1090
1091 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1092 {
1093 return filemap_fdatawait_range(buf->pages[0]->mapping,
1094 buf->start, buf->start + buf->len - 1);
1095 }
1096
1097 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1098 u32 blocksize, u64 parent_transid)
1099 {
1100 struct extent_buffer *buf = NULL;
1101 int ret;
1102
1103 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1104 if (!buf)
1105 return NULL;
1106
1107 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1108 return buf;
1109
1110 }
1111
1112 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1113 struct extent_buffer *buf)
1114 {
1115 if (btrfs_header_generation(buf) ==
1116 root->fs_info->running_transaction->transid) {
1117 btrfs_assert_tree_locked(buf);
1118
1119 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1120 spin_lock(&root->fs_info->delalloc_lock);
1121 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1122 root->fs_info->dirty_metadata_bytes -= buf->len;
1123 else {
1124 spin_unlock(&root->fs_info->delalloc_lock);
1125 btrfs_panic(root->fs_info, -EOVERFLOW,
1126 "Can't clear %lu bytes from "
1127 " dirty_mdatadata_bytes (%llu)",
1128 buf->len,
1129 root->fs_info->dirty_metadata_bytes);
1130 }
1131 spin_unlock(&root->fs_info->delalloc_lock);
1132 }
1133
1134 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1135 btrfs_set_lock_blocking(buf);
1136 clear_extent_buffer_dirty(buf);
1137 }
1138 }
1139
1140 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1141 u32 stripesize, struct btrfs_root *root,
1142 struct btrfs_fs_info *fs_info,
1143 u64 objectid)
1144 {
1145 root->node = NULL;
1146 root->commit_root = NULL;
1147 root->sectorsize = sectorsize;
1148 root->nodesize = nodesize;
1149 root->leafsize = leafsize;
1150 root->stripesize = stripesize;
1151 root->ref_cows = 0;
1152 root->track_dirty = 0;
1153 root->in_radix = 0;
1154 root->orphan_item_inserted = 0;
1155 root->orphan_cleanup_state = 0;
1156
1157 root->objectid = objectid;
1158 root->last_trans = 0;
1159 root->highest_objectid = 0;
1160 root->name = NULL;
1161 root->inode_tree = RB_ROOT;
1162 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1163 root->block_rsv = NULL;
1164 root->orphan_block_rsv = NULL;
1165
1166 INIT_LIST_HEAD(&root->dirty_list);
1167 INIT_LIST_HEAD(&root->root_list);
1168 spin_lock_init(&root->orphan_lock);
1169 spin_lock_init(&root->inode_lock);
1170 spin_lock_init(&root->accounting_lock);
1171 mutex_init(&root->objectid_mutex);
1172 mutex_init(&root->log_mutex);
1173 init_waitqueue_head(&root->log_writer_wait);
1174 init_waitqueue_head(&root->log_commit_wait[0]);
1175 init_waitqueue_head(&root->log_commit_wait[1]);
1176 atomic_set(&root->log_commit[0], 0);
1177 atomic_set(&root->log_commit[1], 0);
1178 atomic_set(&root->log_writers, 0);
1179 atomic_set(&root->log_batch, 0);
1180 atomic_set(&root->orphan_inodes, 0);
1181 root->log_transid = 0;
1182 root->last_log_commit = 0;
1183 extent_io_tree_init(&root->dirty_log_pages,
1184 fs_info->btree_inode->i_mapping);
1185
1186 memset(&root->root_key, 0, sizeof(root->root_key));
1187 memset(&root->root_item, 0, sizeof(root->root_item));
1188 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1189 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1190 root->defrag_trans_start = fs_info->generation;
1191 init_completion(&root->kobj_unregister);
1192 root->defrag_running = 0;
1193 root->root_key.objectid = objectid;
1194 root->anon_dev = 0;
1195
1196 spin_lock_init(&root->root_times_lock);
1197 }
1198
1199 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1200 struct btrfs_fs_info *fs_info,
1201 u64 objectid,
1202 struct btrfs_root *root)
1203 {
1204 int ret;
1205 u32 blocksize;
1206 u64 generation;
1207
1208 __setup_root(tree_root->nodesize, tree_root->leafsize,
1209 tree_root->sectorsize, tree_root->stripesize,
1210 root, fs_info, objectid);
1211 ret = btrfs_find_last_root(tree_root, objectid,
1212 &root->root_item, &root->root_key);
1213 if (ret > 0)
1214 return -ENOENT;
1215 else if (ret < 0)
1216 return ret;
1217
1218 generation = btrfs_root_generation(&root->root_item);
1219 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1220 root->commit_root = NULL;
1221 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1222 blocksize, generation);
1223 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1224 free_extent_buffer(root->node);
1225 root->node = NULL;
1226 return -EIO;
1227 }
1228 root->commit_root = btrfs_root_node(root);
1229 return 0;
1230 }
1231
1232 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1233 {
1234 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1235 if (root)
1236 root->fs_info = fs_info;
1237 return root;
1238 }
1239
1240 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1241 struct btrfs_fs_info *fs_info,
1242 u64 objectid)
1243 {
1244 struct extent_buffer *leaf;
1245 struct btrfs_root *tree_root = fs_info->tree_root;
1246 struct btrfs_root *root;
1247 struct btrfs_key key;
1248 int ret = 0;
1249 u64 bytenr;
1250
1251 root = btrfs_alloc_root(fs_info);
1252 if (!root)
1253 return ERR_PTR(-ENOMEM);
1254
1255 __setup_root(tree_root->nodesize, tree_root->leafsize,
1256 tree_root->sectorsize, tree_root->stripesize,
1257 root, fs_info, objectid);
1258 root->root_key.objectid = objectid;
1259 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1260 root->root_key.offset = 0;
1261
1262 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1263 0, objectid, NULL, 0, 0, 0);
1264 if (IS_ERR(leaf)) {
1265 ret = PTR_ERR(leaf);
1266 goto fail;
1267 }
1268
1269 bytenr = leaf->start;
1270 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1271 btrfs_set_header_bytenr(leaf, leaf->start);
1272 btrfs_set_header_generation(leaf, trans->transid);
1273 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1274 btrfs_set_header_owner(leaf, objectid);
1275 root->node = leaf;
1276
1277 write_extent_buffer(leaf, fs_info->fsid,
1278 (unsigned long)btrfs_header_fsid(leaf),
1279 BTRFS_FSID_SIZE);
1280 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1281 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1282 BTRFS_UUID_SIZE);
1283 btrfs_mark_buffer_dirty(leaf);
1284
1285 root->commit_root = btrfs_root_node(root);
1286 root->track_dirty = 1;
1287
1288
1289 root->root_item.flags = 0;
1290 root->root_item.byte_limit = 0;
1291 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1292 btrfs_set_root_generation(&root->root_item, trans->transid);
1293 btrfs_set_root_level(&root->root_item, 0);
1294 btrfs_set_root_refs(&root->root_item, 1);
1295 btrfs_set_root_used(&root->root_item, leaf->len);
1296 btrfs_set_root_last_snapshot(&root->root_item, 0);
1297 btrfs_set_root_dirid(&root->root_item, 0);
1298 root->root_item.drop_level = 0;
1299
1300 key.objectid = objectid;
1301 key.type = BTRFS_ROOT_ITEM_KEY;
1302 key.offset = 0;
1303 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1304 if (ret)
1305 goto fail;
1306
1307 btrfs_tree_unlock(leaf);
1308
1309 fail:
1310 if (ret)
1311 return ERR_PTR(ret);
1312
1313 return root;
1314 }
1315
1316 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1317 struct btrfs_fs_info *fs_info)
1318 {
1319 struct btrfs_root *root;
1320 struct btrfs_root *tree_root = fs_info->tree_root;
1321 struct extent_buffer *leaf;
1322
1323 root = btrfs_alloc_root(fs_info);
1324 if (!root)
1325 return ERR_PTR(-ENOMEM);
1326
1327 __setup_root(tree_root->nodesize, tree_root->leafsize,
1328 tree_root->sectorsize, tree_root->stripesize,
1329 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1330
1331 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1332 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1333 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1334 /*
1335 * log trees do not get reference counted because they go away
1336 * before a real commit is actually done. They do store pointers
1337 * to file data extents, and those reference counts still get
1338 * updated (along with back refs to the log tree).
1339 */
1340 root->ref_cows = 0;
1341
1342 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1343 BTRFS_TREE_LOG_OBJECTID, NULL,
1344 0, 0, 0);
1345 if (IS_ERR(leaf)) {
1346 kfree(root);
1347 return ERR_CAST(leaf);
1348 }
1349
1350 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1351 btrfs_set_header_bytenr(leaf, leaf->start);
1352 btrfs_set_header_generation(leaf, trans->transid);
1353 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1354 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1355 root->node = leaf;
1356
1357 write_extent_buffer(root->node, root->fs_info->fsid,
1358 (unsigned long)btrfs_header_fsid(root->node),
1359 BTRFS_FSID_SIZE);
1360 btrfs_mark_buffer_dirty(root->node);
1361 btrfs_tree_unlock(root->node);
1362 return root;
1363 }
1364
1365 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1366 struct btrfs_fs_info *fs_info)
1367 {
1368 struct btrfs_root *log_root;
1369
1370 log_root = alloc_log_tree(trans, fs_info);
1371 if (IS_ERR(log_root))
1372 return PTR_ERR(log_root);
1373 WARN_ON(fs_info->log_root_tree);
1374 fs_info->log_root_tree = log_root;
1375 return 0;
1376 }
1377
1378 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1379 struct btrfs_root *root)
1380 {
1381 struct btrfs_root *log_root;
1382 struct btrfs_inode_item *inode_item;
1383
1384 log_root = alloc_log_tree(trans, root->fs_info);
1385 if (IS_ERR(log_root))
1386 return PTR_ERR(log_root);
1387
1388 log_root->last_trans = trans->transid;
1389 log_root->root_key.offset = root->root_key.objectid;
1390
1391 inode_item = &log_root->root_item.inode;
1392 inode_item->generation = cpu_to_le64(1);
1393 inode_item->size = cpu_to_le64(3);
1394 inode_item->nlink = cpu_to_le32(1);
1395 inode_item->nbytes = cpu_to_le64(root->leafsize);
1396 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1397
1398 btrfs_set_root_node(&log_root->root_item, log_root->node);
1399
1400 WARN_ON(root->log_root);
1401 root->log_root = log_root;
1402 root->log_transid = 0;
1403 root->last_log_commit = 0;
1404 return 0;
1405 }
1406
1407 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1408 struct btrfs_key *location)
1409 {
1410 struct btrfs_root *root;
1411 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412 struct btrfs_path *path;
1413 struct extent_buffer *l;
1414 u64 generation;
1415 u32 blocksize;
1416 int ret = 0;
1417 int slot;
1418
1419 root = btrfs_alloc_root(fs_info);
1420 if (!root)
1421 return ERR_PTR(-ENOMEM);
1422 if (location->offset == (u64)-1) {
1423 ret = find_and_setup_root(tree_root, fs_info,
1424 location->objectid, root);
1425 if (ret) {
1426 kfree(root);
1427 return ERR_PTR(ret);
1428 }
1429 goto out;
1430 }
1431
1432 __setup_root(tree_root->nodesize, tree_root->leafsize,
1433 tree_root->sectorsize, tree_root->stripesize,
1434 root, fs_info, location->objectid);
1435
1436 path = btrfs_alloc_path();
1437 if (!path) {
1438 kfree(root);
1439 return ERR_PTR(-ENOMEM);
1440 }
1441 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1442 if (ret == 0) {
1443 l = path->nodes[0];
1444 slot = path->slots[0];
1445 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1446 memcpy(&root->root_key, location, sizeof(*location));
1447 }
1448 btrfs_free_path(path);
1449 if (ret) {
1450 kfree(root);
1451 if (ret > 0)
1452 ret = -ENOENT;
1453 return ERR_PTR(ret);
1454 }
1455
1456 generation = btrfs_root_generation(&root->root_item);
1457 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1458 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1459 blocksize, generation);
1460 root->commit_root = btrfs_root_node(root);
1461 BUG_ON(!root->node); /* -ENOMEM */
1462 out:
1463 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1464 root->ref_cows = 1;
1465 btrfs_check_and_init_root_item(&root->root_item);
1466 }
1467
1468 return root;
1469 }
1470
1471 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1472 struct btrfs_key *location)
1473 {
1474 struct btrfs_root *root;
1475 int ret;
1476
1477 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1478 return fs_info->tree_root;
1479 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1480 return fs_info->extent_root;
1481 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1482 return fs_info->chunk_root;
1483 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1484 return fs_info->dev_root;
1485 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1486 return fs_info->csum_root;
1487 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1488 return fs_info->quota_root ? fs_info->quota_root :
1489 ERR_PTR(-ENOENT);
1490 again:
1491 spin_lock(&fs_info->fs_roots_radix_lock);
1492 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1493 (unsigned long)location->objectid);
1494 spin_unlock(&fs_info->fs_roots_radix_lock);
1495 if (root)
1496 return root;
1497
1498 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1499 if (IS_ERR(root))
1500 return root;
1501
1502 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1503 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1504 GFP_NOFS);
1505 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1506 ret = -ENOMEM;
1507 goto fail;
1508 }
1509
1510 btrfs_init_free_ino_ctl(root);
1511 mutex_init(&root->fs_commit_mutex);
1512 spin_lock_init(&root->cache_lock);
1513 init_waitqueue_head(&root->cache_wait);
1514
1515 ret = get_anon_bdev(&root->anon_dev);
1516 if (ret)
1517 goto fail;
1518
1519 if (btrfs_root_refs(&root->root_item) == 0) {
1520 ret = -ENOENT;
1521 goto fail;
1522 }
1523
1524 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1525 if (ret < 0)
1526 goto fail;
1527 if (ret == 0)
1528 root->orphan_item_inserted = 1;
1529
1530 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1531 if (ret)
1532 goto fail;
1533
1534 spin_lock(&fs_info->fs_roots_radix_lock);
1535 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1536 (unsigned long)root->root_key.objectid,
1537 root);
1538 if (ret == 0)
1539 root->in_radix = 1;
1540
1541 spin_unlock(&fs_info->fs_roots_radix_lock);
1542 radix_tree_preload_end();
1543 if (ret) {
1544 if (ret == -EEXIST) {
1545 free_fs_root(root);
1546 goto again;
1547 }
1548 goto fail;
1549 }
1550
1551 ret = btrfs_find_dead_roots(fs_info->tree_root,
1552 root->root_key.objectid);
1553 WARN_ON(ret);
1554 return root;
1555 fail:
1556 free_fs_root(root);
1557 return ERR_PTR(ret);
1558 }
1559
1560 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1561 {
1562 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1563 int ret = 0;
1564 struct btrfs_device *device;
1565 struct backing_dev_info *bdi;
1566
1567 rcu_read_lock();
1568 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1569 if (!device->bdev)
1570 continue;
1571 bdi = blk_get_backing_dev_info(device->bdev);
1572 if (bdi && bdi_congested(bdi, bdi_bits)) {
1573 ret = 1;
1574 break;
1575 }
1576 }
1577 rcu_read_unlock();
1578 return ret;
1579 }
1580
1581 /*
1582 * If this fails, caller must call bdi_destroy() to get rid of the
1583 * bdi again.
1584 */
1585 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1586 {
1587 int err;
1588
1589 bdi->capabilities = BDI_CAP_MAP_COPY;
1590 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1591 if (err)
1592 return err;
1593
1594 bdi->ra_pages = default_backing_dev_info.ra_pages;
1595 bdi->congested_fn = btrfs_congested_fn;
1596 bdi->congested_data = info;
1597 return 0;
1598 }
1599
1600 /*
1601 * called by the kthread helper functions to finally call the bio end_io
1602 * functions. This is where read checksum verification actually happens
1603 */
1604 static void end_workqueue_fn(struct btrfs_work *work)
1605 {
1606 struct bio *bio;
1607 struct end_io_wq *end_io_wq;
1608 struct btrfs_fs_info *fs_info;
1609 int error;
1610
1611 end_io_wq = container_of(work, struct end_io_wq, work);
1612 bio = end_io_wq->bio;
1613 fs_info = end_io_wq->info;
1614
1615 error = end_io_wq->error;
1616 bio->bi_private = end_io_wq->private;
1617 bio->bi_end_io = end_io_wq->end_io;
1618 kfree(end_io_wq);
1619 bio_endio(bio, error);
1620 }
1621
1622 static int cleaner_kthread(void *arg)
1623 {
1624 struct btrfs_root *root = arg;
1625
1626 do {
1627 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1628 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1629 btrfs_run_delayed_iputs(root);
1630 btrfs_clean_old_snapshots(root);
1631 mutex_unlock(&root->fs_info->cleaner_mutex);
1632 btrfs_run_defrag_inodes(root->fs_info);
1633 }
1634
1635 if (!try_to_freeze()) {
1636 set_current_state(TASK_INTERRUPTIBLE);
1637 if (!kthread_should_stop())
1638 schedule();
1639 __set_current_state(TASK_RUNNING);
1640 }
1641 } while (!kthread_should_stop());
1642 return 0;
1643 }
1644
1645 static int transaction_kthread(void *arg)
1646 {
1647 struct btrfs_root *root = arg;
1648 struct btrfs_trans_handle *trans;
1649 struct btrfs_transaction *cur;
1650 u64 transid;
1651 unsigned long now;
1652 unsigned long delay;
1653 bool cannot_commit;
1654
1655 do {
1656 cannot_commit = false;
1657 delay = HZ * 30;
1658 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1659
1660 spin_lock(&root->fs_info->trans_lock);
1661 cur = root->fs_info->running_transaction;
1662 if (!cur) {
1663 spin_unlock(&root->fs_info->trans_lock);
1664 goto sleep;
1665 }
1666
1667 now = get_seconds();
1668 if (!cur->blocked &&
1669 (now < cur->start_time || now - cur->start_time < 30)) {
1670 spin_unlock(&root->fs_info->trans_lock);
1671 delay = HZ * 5;
1672 goto sleep;
1673 }
1674 transid = cur->transid;
1675 spin_unlock(&root->fs_info->trans_lock);
1676
1677 /* If the file system is aborted, this will always fail. */
1678 trans = btrfs_attach_transaction(root);
1679 if (IS_ERR(trans)) {
1680 if (PTR_ERR(trans) != -ENOENT)
1681 cannot_commit = true;
1682 goto sleep;
1683 }
1684 if (transid == trans->transid) {
1685 btrfs_commit_transaction(trans, root);
1686 } else {
1687 btrfs_end_transaction(trans, root);
1688 }
1689 sleep:
1690 wake_up_process(root->fs_info->cleaner_kthread);
1691 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1692
1693 if (!try_to_freeze()) {
1694 set_current_state(TASK_INTERRUPTIBLE);
1695 if (!kthread_should_stop() &&
1696 (!btrfs_transaction_blocked(root->fs_info) ||
1697 cannot_commit))
1698 schedule_timeout(delay);
1699 __set_current_state(TASK_RUNNING);
1700 }
1701 } while (!kthread_should_stop());
1702 return 0;
1703 }
1704
1705 /*
1706 * this will find the highest generation in the array of
1707 * root backups. The index of the highest array is returned,
1708 * or -1 if we can't find anything.
1709 *
1710 * We check to make sure the array is valid by comparing the
1711 * generation of the latest root in the array with the generation
1712 * in the super block. If they don't match we pitch it.
1713 */
1714 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1715 {
1716 u64 cur;
1717 int newest_index = -1;
1718 struct btrfs_root_backup *root_backup;
1719 int i;
1720
1721 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1722 root_backup = info->super_copy->super_roots + i;
1723 cur = btrfs_backup_tree_root_gen(root_backup);
1724 if (cur == newest_gen)
1725 newest_index = i;
1726 }
1727
1728 /* check to see if we actually wrapped around */
1729 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1730 root_backup = info->super_copy->super_roots;
1731 cur = btrfs_backup_tree_root_gen(root_backup);
1732 if (cur == newest_gen)
1733 newest_index = 0;
1734 }
1735 return newest_index;
1736 }
1737
1738
1739 /*
1740 * find the oldest backup so we know where to store new entries
1741 * in the backup array. This will set the backup_root_index
1742 * field in the fs_info struct
1743 */
1744 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1745 u64 newest_gen)
1746 {
1747 int newest_index = -1;
1748
1749 newest_index = find_newest_super_backup(info, newest_gen);
1750 /* if there was garbage in there, just move along */
1751 if (newest_index == -1) {
1752 info->backup_root_index = 0;
1753 } else {
1754 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1755 }
1756 }
1757
1758 /*
1759 * copy all the root pointers into the super backup array.
1760 * this will bump the backup pointer by one when it is
1761 * done
1762 */
1763 static void backup_super_roots(struct btrfs_fs_info *info)
1764 {
1765 int next_backup;
1766 struct btrfs_root_backup *root_backup;
1767 int last_backup;
1768
1769 next_backup = info->backup_root_index;
1770 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1771 BTRFS_NUM_BACKUP_ROOTS;
1772
1773 /*
1774 * just overwrite the last backup if we're at the same generation
1775 * this happens only at umount
1776 */
1777 root_backup = info->super_for_commit->super_roots + last_backup;
1778 if (btrfs_backup_tree_root_gen(root_backup) ==
1779 btrfs_header_generation(info->tree_root->node))
1780 next_backup = last_backup;
1781
1782 root_backup = info->super_for_commit->super_roots + next_backup;
1783
1784 /*
1785 * make sure all of our padding and empty slots get zero filled
1786 * regardless of which ones we use today
1787 */
1788 memset(root_backup, 0, sizeof(*root_backup));
1789
1790 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1791
1792 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1793 btrfs_set_backup_tree_root_gen(root_backup,
1794 btrfs_header_generation(info->tree_root->node));
1795
1796 btrfs_set_backup_tree_root_level(root_backup,
1797 btrfs_header_level(info->tree_root->node));
1798
1799 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1800 btrfs_set_backup_chunk_root_gen(root_backup,
1801 btrfs_header_generation(info->chunk_root->node));
1802 btrfs_set_backup_chunk_root_level(root_backup,
1803 btrfs_header_level(info->chunk_root->node));
1804
1805 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1806 btrfs_set_backup_extent_root_gen(root_backup,
1807 btrfs_header_generation(info->extent_root->node));
1808 btrfs_set_backup_extent_root_level(root_backup,
1809 btrfs_header_level(info->extent_root->node));
1810
1811 /*
1812 * we might commit during log recovery, which happens before we set
1813 * the fs_root. Make sure it is valid before we fill it in.
1814 */
1815 if (info->fs_root && info->fs_root->node) {
1816 btrfs_set_backup_fs_root(root_backup,
1817 info->fs_root->node->start);
1818 btrfs_set_backup_fs_root_gen(root_backup,
1819 btrfs_header_generation(info->fs_root->node));
1820 btrfs_set_backup_fs_root_level(root_backup,
1821 btrfs_header_level(info->fs_root->node));
1822 }
1823
1824 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1825 btrfs_set_backup_dev_root_gen(root_backup,
1826 btrfs_header_generation(info->dev_root->node));
1827 btrfs_set_backup_dev_root_level(root_backup,
1828 btrfs_header_level(info->dev_root->node));
1829
1830 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1831 btrfs_set_backup_csum_root_gen(root_backup,
1832 btrfs_header_generation(info->csum_root->node));
1833 btrfs_set_backup_csum_root_level(root_backup,
1834 btrfs_header_level(info->csum_root->node));
1835
1836 btrfs_set_backup_total_bytes(root_backup,
1837 btrfs_super_total_bytes(info->super_copy));
1838 btrfs_set_backup_bytes_used(root_backup,
1839 btrfs_super_bytes_used(info->super_copy));
1840 btrfs_set_backup_num_devices(root_backup,
1841 btrfs_super_num_devices(info->super_copy));
1842
1843 /*
1844 * if we don't copy this out to the super_copy, it won't get remembered
1845 * for the next commit
1846 */
1847 memcpy(&info->super_copy->super_roots,
1848 &info->super_for_commit->super_roots,
1849 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1850 }
1851
1852 /*
1853 * this copies info out of the root backup array and back into
1854 * the in-memory super block. It is meant to help iterate through
1855 * the array, so you send it the number of backups you've already
1856 * tried and the last backup index you used.
1857 *
1858 * this returns -1 when it has tried all the backups
1859 */
1860 static noinline int next_root_backup(struct btrfs_fs_info *info,
1861 struct btrfs_super_block *super,
1862 int *num_backups_tried, int *backup_index)
1863 {
1864 struct btrfs_root_backup *root_backup;
1865 int newest = *backup_index;
1866
1867 if (*num_backups_tried == 0) {
1868 u64 gen = btrfs_super_generation(super);
1869
1870 newest = find_newest_super_backup(info, gen);
1871 if (newest == -1)
1872 return -1;
1873
1874 *backup_index = newest;
1875 *num_backups_tried = 1;
1876 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1877 /* we've tried all the backups, all done */
1878 return -1;
1879 } else {
1880 /* jump to the next oldest backup */
1881 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1882 BTRFS_NUM_BACKUP_ROOTS;
1883 *backup_index = newest;
1884 *num_backups_tried += 1;
1885 }
1886 root_backup = super->super_roots + newest;
1887
1888 btrfs_set_super_generation(super,
1889 btrfs_backup_tree_root_gen(root_backup));
1890 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1891 btrfs_set_super_root_level(super,
1892 btrfs_backup_tree_root_level(root_backup));
1893 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1894
1895 /*
1896 * fixme: the total bytes and num_devices need to match or we should
1897 * need a fsck
1898 */
1899 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1900 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1901 return 0;
1902 }
1903
1904 /* helper to cleanup tree roots */
1905 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1906 {
1907 free_extent_buffer(info->tree_root->node);
1908 free_extent_buffer(info->tree_root->commit_root);
1909 free_extent_buffer(info->dev_root->node);
1910 free_extent_buffer(info->dev_root->commit_root);
1911 free_extent_buffer(info->extent_root->node);
1912 free_extent_buffer(info->extent_root->commit_root);
1913 free_extent_buffer(info->csum_root->node);
1914 free_extent_buffer(info->csum_root->commit_root);
1915 if (info->quota_root) {
1916 free_extent_buffer(info->quota_root->node);
1917 free_extent_buffer(info->quota_root->commit_root);
1918 }
1919
1920 info->tree_root->node = NULL;
1921 info->tree_root->commit_root = NULL;
1922 info->dev_root->node = NULL;
1923 info->dev_root->commit_root = NULL;
1924 info->extent_root->node = NULL;
1925 info->extent_root->commit_root = NULL;
1926 info->csum_root->node = NULL;
1927 info->csum_root->commit_root = NULL;
1928 if (info->quota_root) {
1929 info->quota_root->node = NULL;
1930 info->quota_root->commit_root = NULL;
1931 }
1932
1933 if (chunk_root) {
1934 free_extent_buffer(info->chunk_root->node);
1935 free_extent_buffer(info->chunk_root->commit_root);
1936 info->chunk_root->node = NULL;
1937 info->chunk_root->commit_root = NULL;
1938 }
1939 }
1940
1941
1942 int open_ctree(struct super_block *sb,
1943 struct btrfs_fs_devices *fs_devices,
1944 char *options)
1945 {
1946 u32 sectorsize;
1947 u32 nodesize;
1948 u32 leafsize;
1949 u32 blocksize;
1950 u32 stripesize;
1951 u64 generation;
1952 u64 features;
1953 struct btrfs_key location;
1954 struct buffer_head *bh;
1955 struct btrfs_super_block *disk_super;
1956 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1957 struct btrfs_root *tree_root;
1958 struct btrfs_root *extent_root;
1959 struct btrfs_root *csum_root;
1960 struct btrfs_root *chunk_root;
1961 struct btrfs_root *dev_root;
1962 struct btrfs_root *quota_root;
1963 struct btrfs_root *log_tree_root;
1964 int ret;
1965 int err = -EINVAL;
1966 int num_backups_tried = 0;
1967 int backup_index = 0;
1968
1969 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1970 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1971 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1972 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1973 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1974 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1975
1976 if (!tree_root || !extent_root || !csum_root ||
1977 !chunk_root || !dev_root || !quota_root) {
1978 err = -ENOMEM;
1979 goto fail;
1980 }
1981
1982 ret = init_srcu_struct(&fs_info->subvol_srcu);
1983 if (ret) {
1984 err = ret;
1985 goto fail;
1986 }
1987
1988 ret = setup_bdi(fs_info, &fs_info->bdi);
1989 if (ret) {
1990 err = ret;
1991 goto fail_srcu;
1992 }
1993
1994 fs_info->btree_inode = new_inode(sb);
1995 if (!fs_info->btree_inode) {
1996 err = -ENOMEM;
1997 goto fail_bdi;
1998 }
1999
2000 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2001
2002 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2003 INIT_LIST_HEAD(&fs_info->trans_list);
2004 INIT_LIST_HEAD(&fs_info->dead_roots);
2005 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2006 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2007 INIT_LIST_HEAD(&fs_info->ordered_operations);
2008 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2009 spin_lock_init(&fs_info->delalloc_lock);
2010 spin_lock_init(&fs_info->trans_lock);
2011 spin_lock_init(&fs_info->fs_roots_radix_lock);
2012 spin_lock_init(&fs_info->delayed_iput_lock);
2013 spin_lock_init(&fs_info->defrag_inodes_lock);
2014 spin_lock_init(&fs_info->free_chunk_lock);
2015 spin_lock_init(&fs_info->tree_mod_seq_lock);
2016 rwlock_init(&fs_info->tree_mod_log_lock);
2017 mutex_init(&fs_info->reloc_mutex);
2018
2019 init_completion(&fs_info->kobj_unregister);
2020 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2021 INIT_LIST_HEAD(&fs_info->space_info);
2022 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2023 btrfs_mapping_init(&fs_info->mapping_tree);
2024 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2025 BTRFS_BLOCK_RSV_GLOBAL);
2026 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2027 BTRFS_BLOCK_RSV_DELALLOC);
2028 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2029 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2030 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2031 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2032 BTRFS_BLOCK_RSV_DELOPS);
2033 atomic_set(&fs_info->nr_async_submits, 0);
2034 atomic_set(&fs_info->async_delalloc_pages, 0);
2035 atomic_set(&fs_info->async_submit_draining, 0);
2036 atomic_set(&fs_info->nr_async_bios, 0);
2037 atomic_set(&fs_info->defrag_running, 0);
2038 atomic_set(&fs_info->tree_mod_seq, 0);
2039 fs_info->sb = sb;
2040 fs_info->max_inline = 8192 * 1024;
2041 fs_info->metadata_ratio = 0;
2042 fs_info->defrag_inodes = RB_ROOT;
2043 fs_info->trans_no_join = 0;
2044 fs_info->free_chunk_space = 0;
2045 fs_info->tree_mod_log = RB_ROOT;
2046
2047 /* readahead state */
2048 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2049 spin_lock_init(&fs_info->reada_lock);
2050
2051 fs_info->thread_pool_size = min_t(unsigned long,
2052 num_online_cpus() + 2, 8);
2053
2054 INIT_LIST_HEAD(&fs_info->ordered_extents);
2055 spin_lock_init(&fs_info->ordered_extent_lock);
2056 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2057 GFP_NOFS);
2058 if (!fs_info->delayed_root) {
2059 err = -ENOMEM;
2060 goto fail_iput;
2061 }
2062 btrfs_init_delayed_root(fs_info->delayed_root);
2063
2064 mutex_init(&fs_info->scrub_lock);
2065 atomic_set(&fs_info->scrubs_running, 0);
2066 atomic_set(&fs_info->scrub_pause_req, 0);
2067 atomic_set(&fs_info->scrubs_paused, 0);
2068 atomic_set(&fs_info->scrub_cancel_req, 0);
2069 init_waitqueue_head(&fs_info->scrub_pause_wait);
2070 init_rwsem(&fs_info->scrub_super_lock);
2071 fs_info->scrub_workers_refcnt = 0;
2072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2073 fs_info->check_integrity_print_mask = 0;
2074 #endif
2075
2076 spin_lock_init(&fs_info->balance_lock);
2077 mutex_init(&fs_info->balance_mutex);
2078 atomic_set(&fs_info->balance_running, 0);
2079 atomic_set(&fs_info->balance_pause_req, 0);
2080 atomic_set(&fs_info->balance_cancel_req, 0);
2081 fs_info->balance_ctl = NULL;
2082 init_waitqueue_head(&fs_info->balance_wait_q);
2083
2084 sb->s_blocksize = 4096;
2085 sb->s_blocksize_bits = blksize_bits(4096);
2086 sb->s_bdi = &fs_info->bdi;
2087
2088 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2089 set_nlink(fs_info->btree_inode, 1);
2090 /*
2091 * we set the i_size on the btree inode to the max possible int.
2092 * the real end of the address space is determined by all of
2093 * the devices in the system
2094 */
2095 fs_info->btree_inode->i_size = OFFSET_MAX;
2096 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2097 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2098
2099 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2100 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2101 fs_info->btree_inode->i_mapping);
2102 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2103 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2104
2105 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2106
2107 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2108 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2109 sizeof(struct btrfs_key));
2110 set_bit(BTRFS_INODE_DUMMY,
2111 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2112 insert_inode_hash(fs_info->btree_inode);
2113
2114 spin_lock_init(&fs_info->block_group_cache_lock);
2115 fs_info->block_group_cache_tree = RB_ROOT;
2116
2117 extent_io_tree_init(&fs_info->freed_extents[0],
2118 fs_info->btree_inode->i_mapping);
2119 extent_io_tree_init(&fs_info->freed_extents[1],
2120 fs_info->btree_inode->i_mapping);
2121 fs_info->pinned_extents = &fs_info->freed_extents[0];
2122 fs_info->do_barriers = 1;
2123
2124
2125 mutex_init(&fs_info->ordered_operations_mutex);
2126 mutex_init(&fs_info->tree_log_mutex);
2127 mutex_init(&fs_info->chunk_mutex);
2128 mutex_init(&fs_info->transaction_kthread_mutex);
2129 mutex_init(&fs_info->cleaner_mutex);
2130 mutex_init(&fs_info->volume_mutex);
2131 init_rwsem(&fs_info->extent_commit_sem);
2132 init_rwsem(&fs_info->cleanup_work_sem);
2133 init_rwsem(&fs_info->subvol_sem);
2134
2135 spin_lock_init(&fs_info->qgroup_lock);
2136 fs_info->qgroup_tree = RB_ROOT;
2137 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2138 fs_info->qgroup_seq = 1;
2139 fs_info->quota_enabled = 0;
2140 fs_info->pending_quota_state = 0;
2141
2142 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2143 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2144
2145 init_waitqueue_head(&fs_info->transaction_throttle);
2146 init_waitqueue_head(&fs_info->transaction_wait);
2147 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2148 init_waitqueue_head(&fs_info->async_submit_wait);
2149
2150 __setup_root(4096, 4096, 4096, 4096, tree_root,
2151 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2152
2153 invalidate_bdev(fs_devices->latest_bdev);
2154 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2155 if (!bh) {
2156 err = -EINVAL;
2157 goto fail_alloc;
2158 }
2159
2160 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2161 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2162 sizeof(*fs_info->super_for_commit));
2163 brelse(bh);
2164
2165 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2166
2167 disk_super = fs_info->super_copy;
2168 if (!btrfs_super_root(disk_super))
2169 goto fail_alloc;
2170
2171 /* check FS state, whether FS is broken. */
2172 fs_info->fs_state |= btrfs_super_flags(disk_super);
2173
2174 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2175 if (ret) {
2176 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2177 err = ret;
2178 goto fail_alloc;
2179 }
2180
2181 /*
2182 * run through our array of backup supers and setup
2183 * our ring pointer to the oldest one
2184 */
2185 generation = btrfs_super_generation(disk_super);
2186 find_oldest_super_backup(fs_info, generation);
2187
2188 /*
2189 * In the long term, we'll store the compression type in the super
2190 * block, and it'll be used for per file compression control.
2191 */
2192 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2193
2194 ret = btrfs_parse_options(tree_root, options);
2195 if (ret) {
2196 err = ret;
2197 goto fail_alloc;
2198 }
2199
2200 features = btrfs_super_incompat_flags(disk_super) &
2201 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2202 if (features) {
2203 printk(KERN_ERR "BTRFS: couldn't mount because of "
2204 "unsupported optional features (%Lx).\n",
2205 (unsigned long long)features);
2206 err = -EINVAL;
2207 goto fail_alloc;
2208 }
2209
2210 if (btrfs_super_leafsize(disk_super) !=
2211 btrfs_super_nodesize(disk_super)) {
2212 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2213 "blocksizes don't match. node %d leaf %d\n",
2214 btrfs_super_nodesize(disk_super),
2215 btrfs_super_leafsize(disk_super));
2216 err = -EINVAL;
2217 goto fail_alloc;
2218 }
2219 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2220 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2221 "blocksize (%d) was too large\n",
2222 btrfs_super_leafsize(disk_super));
2223 err = -EINVAL;
2224 goto fail_alloc;
2225 }
2226
2227 features = btrfs_super_incompat_flags(disk_super);
2228 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2229 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2230 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2231
2232 /*
2233 * flag our filesystem as having big metadata blocks if
2234 * they are bigger than the page size
2235 */
2236 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2237 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2238 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2239 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2240 }
2241
2242 nodesize = btrfs_super_nodesize(disk_super);
2243 leafsize = btrfs_super_leafsize(disk_super);
2244 sectorsize = btrfs_super_sectorsize(disk_super);
2245 stripesize = btrfs_super_stripesize(disk_super);
2246
2247 /*
2248 * mixed block groups end up with duplicate but slightly offset
2249 * extent buffers for the same range. It leads to corruptions
2250 */
2251 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2252 (sectorsize != leafsize)) {
2253 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2254 "are not allowed for mixed block groups on %s\n",
2255 sb->s_id);
2256 goto fail_alloc;
2257 }
2258
2259 btrfs_set_super_incompat_flags(disk_super, features);
2260
2261 features = btrfs_super_compat_ro_flags(disk_super) &
2262 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2263 if (!(sb->s_flags & MS_RDONLY) && features) {
2264 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2265 "unsupported option features (%Lx).\n",
2266 (unsigned long long)features);
2267 err = -EINVAL;
2268 goto fail_alloc;
2269 }
2270
2271 btrfs_init_workers(&fs_info->generic_worker,
2272 "genwork", 1, NULL);
2273
2274 btrfs_init_workers(&fs_info->workers, "worker",
2275 fs_info->thread_pool_size,
2276 &fs_info->generic_worker);
2277
2278 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2279 fs_info->thread_pool_size,
2280 &fs_info->generic_worker);
2281
2282 btrfs_init_workers(&fs_info->submit_workers, "submit",
2283 min_t(u64, fs_devices->num_devices,
2284 fs_info->thread_pool_size),
2285 &fs_info->generic_worker);
2286
2287 btrfs_init_workers(&fs_info->caching_workers, "cache",
2288 2, &fs_info->generic_worker);
2289
2290 /* a higher idle thresh on the submit workers makes it much more
2291 * likely that bios will be send down in a sane order to the
2292 * devices
2293 */
2294 fs_info->submit_workers.idle_thresh = 64;
2295
2296 fs_info->workers.idle_thresh = 16;
2297 fs_info->workers.ordered = 1;
2298
2299 fs_info->delalloc_workers.idle_thresh = 2;
2300 fs_info->delalloc_workers.ordered = 1;
2301
2302 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2303 &fs_info->generic_worker);
2304 btrfs_init_workers(&fs_info->endio_workers, "endio",
2305 fs_info->thread_pool_size,
2306 &fs_info->generic_worker);
2307 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2308 fs_info->thread_pool_size,
2309 &fs_info->generic_worker);
2310 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2311 "endio-meta-write", fs_info->thread_pool_size,
2312 &fs_info->generic_worker);
2313 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2314 fs_info->thread_pool_size,
2315 &fs_info->generic_worker);
2316 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2317 1, &fs_info->generic_worker);
2318 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2319 fs_info->thread_pool_size,
2320 &fs_info->generic_worker);
2321 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2322 fs_info->thread_pool_size,
2323 &fs_info->generic_worker);
2324
2325 /*
2326 * endios are largely parallel and should have a very
2327 * low idle thresh
2328 */
2329 fs_info->endio_workers.idle_thresh = 4;
2330 fs_info->endio_meta_workers.idle_thresh = 4;
2331
2332 fs_info->endio_write_workers.idle_thresh = 2;
2333 fs_info->endio_meta_write_workers.idle_thresh = 2;
2334 fs_info->readahead_workers.idle_thresh = 2;
2335
2336 /*
2337 * btrfs_start_workers can really only fail because of ENOMEM so just
2338 * return -ENOMEM if any of these fail.
2339 */
2340 ret = btrfs_start_workers(&fs_info->workers);
2341 ret |= btrfs_start_workers(&fs_info->generic_worker);
2342 ret |= btrfs_start_workers(&fs_info->submit_workers);
2343 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2344 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2345 ret |= btrfs_start_workers(&fs_info->endio_workers);
2346 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2347 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2348 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2349 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2350 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2351 ret |= btrfs_start_workers(&fs_info->caching_workers);
2352 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2353 if (ret) {
2354 err = -ENOMEM;
2355 goto fail_sb_buffer;
2356 }
2357
2358 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2359 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2360 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2361
2362 tree_root->nodesize = nodesize;
2363 tree_root->leafsize = leafsize;
2364 tree_root->sectorsize = sectorsize;
2365 tree_root->stripesize = stripesize;
2366
2367 sb->s_blocksize = sectorsize;
2368 sb->s_blocksize_bits = blksize_bits(sectorsize);
2369
2370 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2371 sizeof(disk_super->magic))) {
2372 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2373 goto fail_sb_buffer;
2374 }
2375
2376 if (sectorsize != PAGE_SIZE) {
2377 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2378 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2379 goto fail_sb_buffer;
2380 }
2381
2382 mutex_lock(&fs_info->chunk_mutex);
2383 ret = btrfs_read_sys_array(tree_root);
2384 mutex_unlock(&fs_info->chunk_mutex);
2385 if (ret) {
2386 printk(KERN_WARNING "btrfs: failed to read the system "
2387 "array on %s\n", sb->s_id);
2388 goto fail_sb_buffer;
2389 }
2390
2391 blocksize = btrfs_level_size(tree_root,
2392 btrfs_super_chunk_root_level(disk_super));
2393 generation = btrfs_super_chunk_root_generation(disk_super);
2394
2395 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2396 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2397
2398 chunk_root->node = read_tree_block(chunk_root,
2399 btrfs_super_chunk_root(disk_super),
2400 blocksize, generation);
2401 BUG_ON(!chunk_root->node); /* -ENOMEM */
2402 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2403 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2404 sb->s_id);
2405 goto fail_tree_roots;
2406 }
2407 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2408 chunk_root->commit_root = btrfs_root_node(chunk_root);
2409
2410 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2411 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2412 BTRFS_UUID_SIZE);
2413
2414 ret = btrfs_read_chunk_tree(chunk_root);
2415 if (ret) {
2416 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2417 sb->s_id);
2418 goto fail_tree_roots;
2419 }
2420
2421 btrfs_close_extra_devices(fs_devices);
2422
2423 if (!fs_devices->latest_bdev) {
2424 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2425 sb->s_id);
2426 goto fail_tree_roots;
2427 }
2428
2429 retry_root_backup:
2430 blocksize = btrfs_level_size(tree_root,
2431 btrfs_super_root_level(disk_super));
2432 generation = btrfs_super_generation(disk_super);
2433
2434 tree_root->node = read_tree_block(tree_root,
2435 btrfs_super_root(disk_super),
2436 blocksize, generation);
2437 if (!tree_root->node ||
2438 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2439 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2440 sb->s_id);
2441
2442 goto recovery_tree_root;
2443 }
2444
2445 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2446 tree_root->commit_root = btrfs_root_node(tree_root);
2447
2448 ret = find_and_setup_root(tree_root, fs_info,
2449 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2450 if (ret)
2451 goto recovery_tree_root;
2452 extent_root->track_dirty = 1;
2453
2454 ret = find_and_setup_root(tree_root, fs_info,
2455 BTRFS_DEV_TREE_OBJECTID, dev_root);
2456 if (ret)
2457 goto recovery_tree_root;
2458 dev_root->track_dirty = 1;
2459
2460 ret = find_and_setup_root(tree_root, fs_info,
2461 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2462 if (ret)
2463 goto recovery_tree_root;
2464 csum_root->track_dirty = 1;
2465
2466 ret = find_and_setup_root(tree_root, fs_info,
2467 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2468 if (ret) {
2469 kfree(quota_root);
2470 quota_root = fs_info->quota_root = NULL;
2471 } else {
2472 quota_root->track_dirty = 1;
2473 fs_info->quota_enabled = 1;
2474 fs_info->pending_quota_state = 1;
2475 }
2476
2477 fs_info->generation = generation;
2478 fs_info->last_trans_committed = generation;
2479
2480 ret = btrfs_recover_balance(fs_info);
2481 if (ret) {
2482 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2483 goto fail_block_groups;
2484 }
2485
2486 ret = btrfs_init_dev_stats(fs_info);
2487 if (ret) {
2488 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2489 ret);
2490 goto fail_block_groups;
2491 }
2492
2493 ret = btrfs_init_space_info(fs_info);
2494 if (ret) {
2495 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2496 goto fail_block_groups;
2497 }
2498
2499 ret = btrfs_read_block_groups(extent_root);
2500 if (ret) {
2501 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2502 goto fail_block_groups;
2503 }
2504 fs_info->num_tolerated_disk_barrier_failures =
2505 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2506
2507 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2508 "btrfs-cleaner");
2509 if (IS_ERR(fs_info->cleaner_kthread))
2510 goto fail_block_groups;
2511
2512 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2513 tree_root,
2514 "btrfs-transaction");
2515 if (IS_ERR(fs_info->transaction_kthread))
2516 goto fail_cleaner;
2517
2518 if (!btrfs_test_opt(tree_root, SSD) &&
2519 !btrfs_test_opt(tree_root, NOSSD) &&
2520 !fs_info->fs_devices->rotating) {
2521 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2522 "mode\n");
2523 btrfs_set_opt(fs_info->mount_opt, SSD);
2524 }
2525
2526 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2527 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2528 ret = btrfsic_mount(tree_root, fs_devices,
2529 btrfs_test_opt(tree_root,
2530 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2531 1 : 0,
2532 fs_info->check_integrity_print_mask);
2533 if (ret)
2534 printk(KERN_WARNING "btrfs: failed to initialize"
2535 " integrity check module %s\n", sb->s_id);
2536 }
2537 #endif
2538 ret = btrfs_read_qgroup_config(fs_info);
2539 if (ret)
2540 goto fail_trans_kthread;
2541
2542 /* do not make disk changes in broken FS */
2543 if (btrfs_super_log_root(disk_super) != 0) {
2544 u64 bytenr = btrfs_super_log_root(disk_super);
2545
2546 if (fs_devices->rw_devices == 0) {
2547 printk(KERN_WARNING "Btrfs log replay required "
2548 "on RO media\n");
2549 err = -EIO;
2550 goto fail_qgroup;
2551 }
2552 blocksize =
2553 btrfs_level_size(tree_root,
2554 btrfs_super_log_root_level(disk_super));
2555
2556 log_tree_root = btrfs_alloc_root(fs_info);
2557 if (!log_tree_root) {
2558 err = -ENOMEM;
2559 goto fail_qgroup;
2560 }
2561
2562 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2563 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2564
2565 log_tree_root->node = read_tree_block(tree_root, bytenr,
2566 blocksize,
2567 generation + 1);
2568 /* returns with log_tree_root freed on success */
2569 ret = btrfs_recover_log_trees(log_tree_root);
2570 if (ret) {
2571 btrfs_error(tree_root->fs_info, ret,
2572 "Failed to recover log tree");
2573 free_extent_buffer(log_tree_root->node);
2574 kfree(log_tree_root);
2575 goto fail_trans_kthread;
2576 }
2577
2578 if (sb->s_flags & MS_RDONLY) {
2579 ret = btrfs_commit_super(tree_root);
2580 if (ret)
2581 goto fail_trans_kthread;
2582 }
2583 }
2584
2585 ret = btrfs_find_orphan_roots(tree_root);
2586 if (ret)
2587 goto fail_trans_kthread;
2588
2589 if (!(sb->s_flags & MS_RDONLY)) {
2590 ret = btrfs_cleanup_fs_roots(fs_info);
2591 if (ret)
2592 goto fail_trans_kthread;
2593
2594 ret = btrfs_recover_relocation(tree_root);
2595 if (ret < 0) {
2596 printk(KERN_WARNING
2597 "btrfs: failed to recover relocation\n");
2598 err = -EINVAL;
2599 goto fail_qgroup;
2600 }
2601 }
2602
2603 location.objectid = BTRFS_FS_TREE_OBJECTID;
2604 location.type = BTRFS_ROOT_ITEM_KEY;
2605 location.offset = (u64)-1;
2606
2607 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2608 if (!fs_info->fs_root)
2609 goto fail_qgroup;
2610 if (IS_ERR(fs_info->fs_root)) {
2611 err = PTR_ERR(fs_info->fs_root);
2612 goto fail_qgroup;
2613 }
2614
2615 if (sb->s_flags & MS_RDONLY)
2616 return 0;
2617
2618 down_read(&fs_info->cleanup_work_sem);
2619 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2620 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2621 up_read(&fs_info->cleanup_work_sem);
2622 close_ctree(tree_root);
2623 return ret;
2624 }
2625 up_read(&fs_info->cleanup_work_sem);
2626
2627 ret = btrfs_resume_balance_async(fs_info);
2628 if (ret) {
2629 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2630 close_ctree(tree_root);
2631 return ret;
2632 }
2633
2634 return 0;
2635
2636 fail_qgroup:
2637 btrfs_free_qgroup_config(fs_info);
2638 fail_trans_kthread:
2639 kthread_stop(fs_info->transaction_kthread);
2640 fail_cleaner:
2641 kthread_stop(fs_info->cleaner_kthread);
2642
2643 /*
2644 * make sure we're done with the btree inode before we stop our
2645 * kthreads
2646 */
2647 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2648 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2649
2650 fail_block_groups:
2651 btrfs_free_block_groups(fs_info);
2652
2653 fail_tree_roots:
2654 free_root_pointers(fs_info, 1);
2655
2656 fail_sb_buffer:
2657 btrfs_stop_workers(&fs_info->generic_worker);
2658 btrfs_stop_workers(&fs_info->readahead_workers);
2659 btrfs_stop_workers(&fs_info->fixup_workers);
2660 btrfs_stop_workers(&fs_info->delalloc_workers);
2661 btrfs_stop_workers(&fs_info->workers);
2662 btrfs_stop_workers(&fs_info->endio_workers);
2663 btrfs_stop_workers(&fs_info->endio_meta_workers);
2664 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2665 btrfs_stop_workers(&fs_info->endio_write_workers);
2666 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2667 btrfs_stop_workers(&fs_info->submit_workers);
2668 btrfs_stop_workers(&fs_info->delayed_workers);
2669 btrfs_stop_workers(&fs_info->caching_workers);
2670 fail_alloc:
2671 fail_iput:
2672 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2673
2674 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2675 iput(fs_info->btree_inode);
2676 fail_bdi:
2677 bdi_destroy(&fs_info->bdi);
2678 fail_srcu:
2679 cleanup_srcu_struct(&fs_info->subvol_srcu);
2680 fail:
2681 btrfs_close_devices(fs_info->fs_devices);
2682 return err;
2683
2684 recovery_tree_root:
2685 if (!btrfs_test_opt(tree_root, RECOVERY))
2686 goto fail_tree_roots;
2687
2688 free_root_pointers(fs_info, 0);
2689
2690 /* don't use the log in recovery mode, it won't be valid */
2691 btrfs_set_super_log_root(disk_super, 0);
2692
2693 /* we can't trust the free space cache either */
2694 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2695
2696 ret = next_root_backup(fs_info, fs_info->super_copy,
2697 &num_backups_tried, &backup_index);
2698 if (ret == -1)
2699 goto fail_block_groups;
2700 goto retry_root_backup;
2701 }
2702
2703 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2704 {
2705 if (uptodate) {
2706 set_buffer_uptodate(bh);
2707 } else {
2708 struct btrfs_device *device = (struct btrfs_device *)
2709 bh->b_private;
2710
2711 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2712 "I/O error on %s\n",
2713 rcu_str_deref(device->name));
2714 /* note, we dont' set_buffer_write_io_error because we have
2715 * our own ways of dealing with the IO errors
2716 */
2717 clear_buffer_uptodate(bh);
2718 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2719 }
2720 unlock_buffer(bh);
2721 put_bh(bh);
2722 }
2723
2724 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2725 {
2726 struct buffer_head *bh;
2727 struct buffer_head *latest = NULL;
2728 struct btrfs_super_block *super;
2729 int i;
2730 u64 transid = 0;
2731 u64 bytenr;
2732
2733 /* we would like to check all the supers, but that would make
2734 * a btrfs mount succeed after a mkfs from a different FS.
2735 * So, we need to add a special mount option to scan for
2736 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2737 */
2738 for (i = 0; i < 1; i++) {
2739 bytenr = btrfs_sb_offset(i);
2740 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2741 break;
2742 bh = __bread(bdev, bytenr / 4096, 4096);
2743 if (!bh)
2744 continue;
2745
2746 super = (struct btrfs_super_block *)bh->b_data;
2747 if (btrfs_super_bytenr(super) != bytenr ||
2748 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2749 sizeof(super->magic))) {
2750 brelse(bh);
2751 continue;
2752 }
2753
2754 if (!latest || btrfs_super_generation(super) > transid) {
2755 brelse(latest);
2756 latest = bh;
2757 transid = btrfs_super_generation(super);
2758 } else {
2759 brelse(bh);
2760 }
2761 }
2762 return latest;
2763 }
2764
2765 /*
2766 * this should be called twice, once with wait == 0 and
2767 * once with wait == 1. When wait == 0 is done, all the buffer heads
2768 * we write are pinned.
2769 *
2770 * They are released when wait == 1 is done.
2771 * max_mirrors must be the same for both runs, and it indicates how
2772 * many supers on this one device should be written.
2773 *
2774 * max_mirrors == 0 means to write them all.
2775 */
2776 static int write_dev_supers(struct btrfs_device *device,
2777 struct btrfs_super_block *sb,
2778 int do_barriers, int wait, int max_mirrors)
2779 {
2780 struct buffer_head *bh;
2781 int i;
2782 int ret;
2783 int errors = 0;
2784 u32 crc;
2785 u64 bytenr;
2786
2787 if (max_mirrors == 0)
2788 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2789
2790 for (i = 0; i < max_mirrors; i++) {
2791 bytenr = btrfs_sb_offset(i);
2792 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2793 break;
2794
2795 if (wait) {
2796 bh = __find_get_block(device->bdev, bytenr / 4096,
2797 BTRFS_SUPER_INFO_SIZE);
2798 BUG_ON(!bh);
2799 wait_on_buffer(bh);
2800 if (!buffer_uptodate(bh))
2801 errors++;
2802
2803 /* drop our reference */
2804 brelse(bh);
2805
2806 /* drop the reference from the wait == 0 run */
2807 brelse(bh);
2808 continue;
2809 } else {
2810 btrfs_set_super_bytenr(sb, bytenr);
2811
2812 crc = ~(u32)0;
2813 crc = btrfs_csum_data(NULL, (char *)sb +
2814 BTRFS_CSUM_SIZE, crc,
2815 BTRFS_SUPER_INFO_SIZE -
2816 BTRFS_CSUM_SIZE);
2817 btrfs_csum_final(crc, sb->csum);
2818
2819 /*
2820 * one reference for us, and we leave it for the
2821 * caller
2822 */
2823 bh = __getblk(device->bdev, bytenr / 4096,
2824 BTRFS_SUPER_INFO_SIZE);
2825 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2826
2827 /* one reference for submit_bh */
2828 get_bh(bh);
2829
2830 set_buffer_uptodate(bh);
2831 lock_buffer(bh);
2832 bh->b_end_io = btrfs_end_buffer_write_sync;
2833 bh->b_private = device;
2834 }
2835
2836 /*
2837 * we fua the first super. The others we allow
2838 * to go down lazy.
2839 */
2840 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2841 if (ret)
2842 errors++;
2843 }
2844 return errors < i ? 0 : -1;
2845 }
2846
2847 /*
2848 * endio for the write_dev_flush, this will wake anyone waiting
2849 * for the barrier when it is done
2850 */
2851 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2852 {
2853 if (err) {
2854 if (err == -EOPNOTSUPP)
2855 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2856 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2857 }
2858 if (bio->bi_private)
2859 complete(bio->bi_private);
2860 bio_put(bio);
2861 }
2862
2863 /*
2864 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2865 * sent down. With wait == 1, it waits for the previous flush.
2866 *
2867 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2868 * capable
2869 */
2870 static int write_dev_flush(struct btrfs_device *device, int wait)
2871 {
2872 struct bio *bio;
2873 int ret = 0;
2874
2875 if (device->nobarriers)
2876 return 0;
2877
2878 if (wait) {
2879 bio = device->flush_bio;
2880 if (!bio)
2881 return 0;
2882
2883 wait_for_completion(&device->flush_wait);
2884
2885 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2886 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2887 rcu_str_deref(device->name));
2888 device->nobarriers = 1;
2889 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2890 ret = -EIO;
2891 btrfs_dev_stat_inc_and_print(device,
2892 BTRFS_DEV_STAT_FLUSH_ERRS);
2893 }
2894
2895 /* drop the reference from the wait == 0 run */
2896 bio_put(bio);
2897 device->flush_bio = NULL;
2898
2899 return ret;
2900 }
2901
2902 /*
2903 * one reference for us, and we leave it for the
2904 * caller
2905 */
2906 device->flush_bio = NULL;
2907 bio = bio_alloc(GFP_NOFS, 0);
2908 if (!bio)
2909 return -ENOMEM;
2910
2911 bio->bi_end_io = btrfs_end_empty_barrier;
2912 bio->bi_bdev = device->bdev;
2913 init_completion(&device->flush_wait);
2914 bio->bi_private = &device->flush_wait;
2915 device->flush_bio = bio;
2916
2917 bio_get(bio);
2918 btrfsic_submit_bio(WRITE_FLUSH, bio);
2919
2920 return 0;
2921 }
2922
2923 /*
2924 * send an empty flush down to each device in parallel,
2925 * then wait for them
2926 */
2927 static int barrier_all_devices(struct btrfs_fs_info *info)
2928 {
2929 struct list_head *head;
2930 struct btrfs_device *dev;
2931 int errors_send = 0;
2932 int errors_wait = 0;
2933 int ret;
2934
2935 /* send down all the barriers */
2936 head = &info->fs_devices->devices;
2937 list_for_each_entry_rcu(dev, head, dev_list) {
2938 if (!dev->bdev) {
2939 errors_send++;
2940 continue;
2941 }
2942 if (!dev->in_fs_metadata || !dev->writeable)
2943 continue;
2944
2945 ret = write_dev_flush(dev, 0);
2946 if (ret)
2947 errors_send++;
2948 }
2949
2950 /* wait for all the barriers */
2951 list_for_each_entry_rcu(dev, head, dev_list) {
2952 if (!dev->bdev) {
2953 errors_wait++;
2954 continue;
2955 }
2956 if (!dev->in_fs_metadata || !dev->writeable)
2957 continue;
2958
2959 ret = write_dev_flush(dev, 1);
2960 if (ret)
2961 errors_wait++;
2962 }
2963 if (errors_send > info->num_tolerated_disk_barrier_failures ||
2964 errors_wait > info->num_tolerated_disk_barrier_failures)
2965 return -EIO;
2966 return 0;
2967 }
2968
2969 int btrfs_calc_num_tolerated_disk_barrier_failures(
2970 struct btrfs_fs_info *fs_info)
2971 {
2972 struct btrfs_ioctl_space_info space;
2973 struct btrfs_space_info *sinfo;
2974 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2975 BTRFS_BLOCK_GROUP_SYSTEM,
2976 BTRFS_BLOCK_GROUP_METADATA,
2977 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2978 int num_types = 4;
2979 int i;
2980 int c;
2981 int num_tolerated_disk_barrier_failures =
2982 (int)fs_info->fs_devices->num_devices;
2983
2984 for (i = 0; i < num_types; i++) {
2985 struct btrfs_space_info *tmp;
2986
2987 sinfo = NULL;
2988 rcu_read_lock();
2989 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
2990 if (tmp->flags == types[i]) {
2991 sinfo = tmp;
2992 break;
2993 }
2994 }
2995 rcu_read_unlock();
2996
2997 if (!sinfo)
2998 continue;
2999
3000 down_read(&sinfo->groups_sem);
3001 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3002 if (!list_empty(&sinfo->block_groups[c])) {
3003 u64 flags;
3004
3005 btrfs_get_block_group_info(
3006 &sinfo->block_groups[c], &space);
3007 if (space.total_bytes == 0 ||
3008 space.used_bytes == 0)
3009 continue;
3010 flags = space.flags;
3011 /*
3012 * return
3013 * 0: if dup, single or RAID0 is configured for
3014 * any of metadata, system or data, else
3015 * 1: if RAID5 is configured, or if RAID1 or
3016 * RAID10 is configured and only two mirrors
3017 * are used, else
3018 * 2: if RAID6 is configured, else
3019 * num_mirrors - 1: if RAID1 or RAID10 is
3020 * configured and more than
3021 * 2 mirrors are used.
3022 */
3023 if (num_tolerated_disk_barrier_failures > 0 &&
3024 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3025 BTRFS_BLOCK_GROUP_RAID0)) ||
3026 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3027 == 0)))
3028 num_tolerated_disk_barrier_failures = 0;
3029 else if (num_tolerated_disk_barrier_failures > 1
3030 &&
3031 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3032 BTRFS_BLOCK_GROUP_RAID10)))
3033 num_tolerated_disk_barrier_failures = 1;
3034 }
3035 }
3036 up_read(&sinfo->groups_sem);
3037 }
3038
3039 return num_tolerated_disk_barrier_failures;
3040 }
3041
3042 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3043 {
3044 struct list_head *head;
3045 struct btrfs_device *dev;
3046 struct btrfs_super_block *sb;
3047 struct btrfs_dev_item *dev_item;
3048 int ret;
3049 int do_barriers;
3050 int max_errors;
3051 int total_errors = 0;
3052 u64 flags;
3053
3054 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3055 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3056 backup_super_roots(root->fs_info);
3057
3058 sb = root->fs_info->super_for_commit;
3059 dev_item = &sb->dev_item;
3060
3061 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3062 head = &root->fs_info->fs_devices->devices;
3063
3064 if (do_barriers) {
3065 ret = barrier_all_devices(root->fs_info);
3066 if (ret) {
3067 mutex_unlock(
3068 &root->fs_info->fs_devices->device_list_mutex);
3069 btrfs_error(root->fs_info, ret,
3070 "errors while submitting device barriers.");
3071 return ret;
3072 }
3073 }
3074
3075 list_for_each_entry_rcu(dev, head, dev_list) {
3076 if (!dev->bdev) {
3077 total_errors++;
3078 continue;
3079 }
3080 if (!dev->in_fs_metadata || !dev->writeable)
3081 continue;
3082
3083 btrfs_set_stack_device_generation(dev_item, 0);
3084 btrfs_set_stack_device_type(dev_item, dev->type);
3085 btrfs_set_stack_device_id(dev_item, dev->devid);
3086 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3087 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3088 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3089 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3090 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3091 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3092 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3093
3094 flags = btrfs_super_flags(sb);
3095 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3096
3097 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3098 if (ret)
3099 total_errors++;
3100 }
3101 if (total_errors > max_errors) {
3102 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3103 total_errors);
3104
3105 /* This shouldn't happen. FUA is masked off if unsupported */
3106 BUG();
3107 }
3108
3109 total_errors = 0;
3110 list_for_each_entry_rcu(dev, head, dev_list) {
3111 if (!dev->bdev)
3112 continue;
3113 if (!dev->in_fs_metadata || !dev->writeable)
3114 continue;
3115
3116 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3117 if (ret)
3118 total_errors++;
3119 }
3120 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3121 if (total_errors > max_errors) {
3122 btrfs_error(root->fs_info, -EIO,
3123 "%d errors while writing supers", total_errors);
3124 return -EIO;
3125 }
3126 return 0;
3127 }
3128
3129 int write_ctree_super(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root, int max_mirrors)
3131 {
3132 int ret;
3133
3134 ret = write_all_supers(root, max_mirrors);
3135 return ret;
3136 }
3137
3138 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3139 {
3140 spin_lock(&fs_info->fs_roots_radix_lock);
3141 radix_tree_delete(&fs_info->fs_roots_radix,
3142 (unsigned long)root->root_key.objectid);
3143 spin_unlock(&fs_info->fs_roots_radix_lock);
3144
3145 if (btrfs_root_refs(&root->root_item) == 0)
3146 synchronize_srcu(&fs_info->subvol_srcu);
3147
3148 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3149 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3150 free_fs_root(root);
3151 }
3152
3153 static void free_fs_root(struct btrfs_root *root)
3154 {
3155 iput(root->cache_inode);
3156 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3157 if (root->anon_dev)
3158 free_anon_bdev(root->anon_dev);
3159 free_extent_buffer(root->node);
3160 free_extent_buffer(root->commit_root);
3161 kfree(root->free_ino_ctl);
3162 kfree(root->free_ino_pinned);
3163 kfree(root->name);
3164 kfree(root);
3165 }
3166
3167 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3168 {
3169 int ret;
3170 struct btrfs_root *gang[8];
3171 int i;
3172
3173 while (!list_empty(&fs_info->dead_roots)) {
3174 gang[0] = list_entry(fs_info->dead_roots.next,
3175 struct btrfs_root, root_list);
3176 list_del(&gang[0]->root_list);
3177
3178 if (gang[0]->in_radix) {
3179 btrfs_free_fs_root(fs_info, gang[0]);
3180 } else {
3181 free_extent_buffer(gang[0]->node);
3182 free_extent_buffer(gang[0]->commit_root);
3183 kfree(gang[0]);
3184 }
3185 }
3186
3187 while (1) {
3188 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3189 (void **)gang, 0,
3190 ARRAY_SIZE(gang));
3191 if (!ret)
3192 break;
3193 for (i = 0; i < ret; i++)
3194 btrfs_free_fs_root(fs_info, gang[i]);
3195 }
3196 }
3197
3198 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3199 {
3200 u64 root_objectid = 0;
3201 struct btrfs_root *gang[8];
3202 int i;
3203 int ret;
3204
3205 while (1) {
3206 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3207 (void **)gang, root_objectid,
3208 ARRAY_SIZE(gang));
3209 if (!ret)
3210 break;
3211
3212 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3213 for (i = 0; i < ret; i++) {
3214 int err;
3215
3216 root_objectid = gang[i]->root_key.objectid;
3217 err = btrfs_orphan_cleanup(gang[i]);
3218 if (err)
3219 return err;
3220 }
3221 root_objectid++;
3222 }
3223 return 0;
3224 }
3225
3226 int btrfs_commit_super(struct btrfs_root *root)
3227 {
3228 struct btrfs_trans_handle *trans;
3229 int ret;
3230
3231 mutex_lock(&root->fs_info->cleaner_mutex);
3232 btrfs_run_delayed_iputs(root);
3233 btrfs_clean_old_snapshots(root);
3234 mutex_unlock(&root->fs_info->cleaner_mutex);
3235
3236 /* wait until ongoing cleanup work done */
3237 down_write(&root->fs_info->cleanup_work_sem);
3238 up_write(&root->fs_info->cleanup_work_sem);
3239
3240 trans = btrfs_join_transaction(root);
3241 if (IS_ERR(trans))
3242 return PTR_ERR(trans);
3243 ret = btrfs_commit_transaction(trans, root);
3244 if (ret)
3245 return ret;
3246 /* run commit again to drop the original snapshot */
3247 trans = btrfs_join_transaction(root);
3248 if (IS_ERR(trans))
3249 return PTR_ERR(trans);
3250 ret = btrfs_commit_transaction(trans, root);
3251 if (ret)
3252 return ret;
3253 ret = btrfs_write_and_wait_transaction(NULL, root);
3254 if (ret) {
3255 btrfs_error(root->fs_info, ret,
3256 "Failed to sync btree inode to disk.");
3257 return ret;
3258 }
3259
3260 ret = write_ctree_super(NULL, root, 0);
3261 return ret;
3262 }
3263
3264 int close_ctree(struct btrfs_root *root)
3265 {
3266 struct btrfs_fs_info *fs_info = root->fs_info;
3267 int ret;
3268
3269 fs_info->closing = 1;
3270 smp_mb();
3271
3272 /* pause restriper - we want to resume on mount */
3273 btrfs_pause_balance(root->fs_info);
3274
3275 btrfs_scrub_cancel(root);
3276
3277 /* wait for any defraggers to finish */
3278 wait_event(fs_info->transaction_wait,
3279 (atomic_read(&fs_info->defrag_running) == 0));
3280
3281 /* clear out the rbtree of defraggable inodes */
3282 btrfs_run_defrag_inodes(fs_info);
3283
3284 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3285 ret = btrfs_commit_super(root);
3286 if (ret)
3287 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3288 }
3289
3290 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3291 btrfs_error_commit_super(root);
3292
3293 btrfs_put_block_group_cache(fs_info);
3294
3295 kthread_stop(fs_info->transaction_kthread);
3296 kthread_stop(fs_info->cleaner_kthread);
3297
3298 fs_info->closing = 2;
3299 smp_mb();
3300
3301 btrfs_free_qgroup_config(root->fs_info);
3302
3303 if (fs_info->delalloc_bytes) {
3304 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3305 (unsigned long long)fs_info->delalloc_bytes);
3306 }
3307
3308 free_extent_buffer(fs_info->extent_root->node);
3309 free_extent_buffer(fs_info->extent_root->commit_root);
3310 free_extent_buffer(fs_info->tree_root->node);
3311 free_extent_buffer(fs_info->tree_root->commit_root);
3312 free_extent_buffer(fs_info->chunk_root->node);
3313 free_extent_buffer(fs_info->chunk_root->commit_root);
3314 free_extent_buffer(fs_info->dev_root->node);
3315 free_extent_buffer(fs_info->dev_root->commit_root);
3316 free_extent_buffer(fs_info->csum_root->node);
3317 free_extent_buffer(fs_info->csum_root->commit_root);
3318 if (fs_info->quota_root) {
3319 free_extent_buffer(fs_info->quota_root->node);
3320 free_extent_buffer(fs_info->quota_root->commit_root);
3321 }
3322
3323 btrfs_free_block_groups(fs_info);
3324
3325 del_fs_roots(fs_info);
3326
3327 iput(fs_info->btree_inode);
3328
3329 btrfs_stop_workers(&fs_info->generic_worker);
3330 btrfs_stop_workers(&fs_info->fixup_workers);
3331 btrfs_stop_workers(&fs_info->delalloc_workers);
3332 btrfs_stop_workers(&fs_info->workers);
3333 btrfs_stop_workers(&fs_info->endio_workers);
3334 btrfs_stop_workers(&fs_info->endio_meta_workers);
3335 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3336 btrfs_stop_workers(&fs_info->endio_write_workers);
3337 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3338 btrfs_stop_workers(&fs_info->submit_workers);
3339 btrfs_stop_workers(&fs_info->delayed_workers);
3340 btrfs_stop_workers(&fs_info->caching_workers);
3341 btrfs_stop_workers(&fs_info->readahead_workers);
3342
3343 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3344 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3345 btrfsic_unmount(root, fs_info->fs_devices);
3346 #endif
3347
3348 btrfs_close_devices(fs_info->fs_devices);
3349 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3350
3351 bdi_destroy(&fs_info->bdi);
3352 cleanup_srcu_struct(&fs_info->subvol_srcu);
3353
3354 return 0;
3355 }
3356
3357 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3358 int atomic)
3359 {
3360 int ret;
3361 struct inode *btree_inode = buf->pages[0]->mapping->host;
3362
3363 ret = extent_buffer_uptodate(buf);
3364 if (!ret)
3365 return ret;
3366
3367 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3368 parent_transid, atomic);
3369 if (ret == -EAGAIN)
3370 return ret;
3371 return !ret;
3372 }
3373
3374 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3375 {
3376 return set_extent_buffer_uptodate(buf);
3377 }
3378
3379 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3380 {
3381 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3382 u64 transid = btrfs_header_generation(buf);
3383 int was_dirty;
3384
3385 btrfs_assert_tree_locked(buf);
3386 if (transid != root->fs_info->generation) {
3387 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3388 "found %llu running %llu\n",
3389 (unsigned long long)buf->start,
3390 (unsigned long long)transid,
3391 (unsigned long long)root->fs_info->generation);
3392 WARN_ON(1);
3393 }
3394 was_dirty = set_extent_buffer_dirty(buf);
3395 if (!was_dirty) {
3396 spin_lock(&root->fs_info->delalloc_lock);
3397 root->fs_info->dirty_metadata_bytes += buf->len;
3398 spin_unlock(&root->fs_info->delalloc_lock);
3399 }
3400 }
3401
3402 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3403 {
3404 /*
3405 * looks as though older kernels can get into trouble with
3406 * this code, they end up stuck in balance_dirty_pages forever
3407 */
3408 u64 num_dirty;
3409 unsigned long thresh = 32 * 1024 * 1024;
3410
3411 if (current->flags & PF_MEMALLOC)
3412 return;
3413
3414 btrfs_balance_delayed_items(root);
3415
3416 num_dirty = root->fs_info->dirty_metadata_bytes;
3417
3418 if (num_dirty > thresh) {
3419 balance_dirty_pages_ratelimited(
3420 root->fs_info->btree_inode->i_mapping);
3421 }
3422 return;
3423 }
3424
3425 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3426 {
3427 /*
3428 * looks as though older kernels can get into trouble with
3429 * this code, they end up stuck in balance_dirty_pages forever
3430 */
3431 u64 num_dirty;
3432 unsigned long thresh = 32 * 1024 * 1024;
3433
3434 if (current->flags & PF_MEMALLOC)
3435 return;
3436
3437 num_dirty = root->fs_info->dirty_metadata_bytes;
3438
3439 if (num_dirty > thresh) {
3440 balance_dirty_pages_ratelimited(
3441 root->fs_info->btree_inode->i_mapping);
3442 }
3443 return;
3444 }
3445
3446 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3447 {
3448 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3449 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3450 }
3451
3452 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3453 int read_only)
3454 {
3455 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3456 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3457 return -EINVAL;
3458 }
3459
3460 if (read_only)
3461 return 0;
3462
3463 return 0;
3464 }
3465
3466 void btrfs_error_commit_super(struct btrfs_root *root)
3467 {
3468 mutex_lock(&root->fs_info->cleaner_mutex);
3469 btrfs_run_delayed_iputs(root);
3470 mutex_unlock(&root->fs_info->cleaner_mutex);
3471
3472 down_write(&root->fs_info->cleanup_work_sem);
3473 up_write(&root->fs_info->cleanup_work_sem);
3474
3475 /* cleanup FS via transaction */
3476 btrfs_cleanup_transaction(root);
3477 }
3478
3479 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3480 {
3481 struct btrfs_inode *btrfs_inode;
3482 struct list_head splice;
3483
3484 INIT_LIST_HEAD(&splice);
3485
3486 mutex_lock(&root->fs_info->ordered_operations_mutex);
3487 spin_lock(&root->fs_info->ordered_extent_lock);
3488
3489 list_splice_init(&root->fs_info->ordered_operations, &splice);
3490 while (!list_empty(&splice)) {
3491 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3492 ordered_operations);
3493
3494 list_del_init(&btrfs_inode->ordered_operations);
3495
3496 btrfs_invalidate_inodes(btrfs_inode->root);
3497 }
3498
3499 spin_unlock(&root->fs_info->ordered_extent_lock);
3500 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3501 }
3502
3503 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3504 {
3505 struct list_head splice;
3506 struct btrfs_ordered_extent *ordered;
3507 struct inode *inode;
3508
3509 INIT_LIST_HEAD(&splice);
3510
3511 spin_lock(&root->fs_info->ordered_extent_lock);
3512
3513 list_splice_init(&root->fs_info->ordered_extents, &splice);
3514 while (!list_empty(&splice)) {
3515 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3516 root_extent_list);
3517
3518 list_del_init(&ordered->root_extent_list);
3519 atomic_inc(&ordered->refs);
3520
3521 /* the inode may be getting freed (in sys_unlink path). */
3522 inode = igrab(ordered->inode);
3523
3524 spin_unlock(&root->fs_info->ordered_extent_lock);
3525 if (inode)
3526 iput(inode);
3527
3528 atomic_set(&ordered->refs, 1);
3529 btrfs_put_ordered_extent(ordered);
3530
3531 spin_lock(&root->fs_info->ordered_extent_lock);
3532 }
3533
3534 spin_unlock(&root->fs_info->ordered_extent_lock);
3535 }
3536
3537 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3538 struct btrfs_root *root)
3539 {
3540 struct rb_node *node;
3541 struct btrfs_delayed_ref_root *delayed_refs;
3542 struct btrfs_delayed_ref_node *ref;
3543 int ret = 0;
3544
3545 delayed_refs = &trans->delayed_refs;
3546
3547 spin_lock(&delayed_refs->lock);
3548 if (delayed_refs->num_entries == 0) {
3549 spin_unlock(&delayed_refs->lock);
3550 printk(KERN_INFO "delayed_refs has NO entry\n");
3551 return ret;
3552 }
3553
3554 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3555 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3556
3557 atomic_set(&ref->refs, 1);
3558 if (btrfs_delayed_ref_is_head(ref)) {
3559 struct btrfs_delayed_ref_head *head;
3560
3561 head = btrfs_delayed_node_to_head(ref);
3562 if (!mutex_trylock(&head->mutex)) {
3563 atomic_inc(&ref->refs);
3564 spin_unlock(&delayed_refs->lock);
3565
3566 /* Need to wait for the delayed ref to run */
3567 mutex_lock(&head->mutex);
3568 mutex_unlock(&head->mutex);
3569 btrfs_put_delayed_ref(ref);
3570
3571 spin_lock(&delayed_refs->lock);
3572 continue;
3573 }
3574
3575 kfree(head->extent_op);
3576 delayed_refs->num_heads--;
3577 if (list_empty(&head->cluster))
3578 delayed_refs->num_heads_ready--;
3579 list_del_init(&head->cluster);
3580 }
3581 ref->in_tree = 0;
3582 rb_erase(&ref->rb_node, &delayed_refs->root);
3583 delayed_refs->num_entries--;
3584
3585 spin_unlock(&delayed_refs->lock);
3586 btrfs_put_delayed_ref(ref);
3587
3588 cond_resched();
3589 spin_lock(&delayed_refs->lock);
3590 }
3591
3592 spin_unlock(&delayed_refs->lock);
3593
3594 return ret;
3595 }
3596
3597 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3598 {
3599 struct btrfs_pending_snapshot *snapshot;
3600 struct list_head splice;
3601
3602 INIT_LIST_HEAD(&splice);
3603
3604 list_splice_init(&t->pending_snapshots, &splice);
3605
3606 while (!list_empty(&splice)) {
3607 snapshot = list_entry(splice.next,
3608 struct btrfs_pending_snapshot,
3609 list);
3610
3611 list_del_init(&snapshot->list);
3612
3613 kfree(snapshot);
3614 }
3615 }
3616
3617 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3618 {
3619 struct btrfs_inode *btrfs_inode;
3620 struct list_head splice;
3621
3622 INIT_LIST_HEAD(&splice);
3623
3624 spin_lock(&root->fs_info->delalloc_lock);
3625 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3626
3627 while (!list_empty(&splice)) {
3628 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3629 delalloc_inodes);
3630
3631 list_del_init(&btrfs_inode->delalloc_inodes);
3632
3633 btrfs_invalidate_inodes(btrfs_inode->root);
3634 }
3635
3636 spin_unlock(&root->fs_info->delalloc_lock);
3637 }
3638
3639 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3640 struct extent_io_tree *dirty_pages,
3641 int mark)
3642 {
3643 int ret;
3644 struct page *page;
3645 struct inode *btree_inode = root->fs_info->btree_inode;
3646 struct extent_buffer *eb;
3647 u64 start = 0;
3648 u64 end;
3649 u64 offset;
3650 unsigned long index;
3651
3652 while (1) {
3653 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3654 mark, NULL);
3655 if (ret)
3656 break;
3657
3658 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3659 while (start <= end) {
3660 index = start >> PAGE_CACHE_SHIFT;
3661 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3662 page = find_get_page(btree_inode->i_mapping, index);
3663 if (!page)
3664 continue;
3665 offset = page_offset(page);
3666
3667 spin_lock(&dirty_pages->buffer_lock);
3668 eb = radix_tree_lookup(
3669 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3670 offset >> PAGE_CACHE_SHIFT);
3671 spin_unlock(&dirty_pages->buffer_lock);
3672 if (eb)
3673 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3674 &eb->bflags);
3675 if (PageWriteback(page))
3676 end_page_writeback(page);
3677
3678 lock_page(page);
3679 if (PageDirty(page)) {
3680 clear_page_dirty_for_io(page);
3681 spin_lock_irq(&page->mapping->tree_lock);
3682 radix_tree_tag_clear(&page->mapping->page_tree,
3683 page_index(page),
3684 PAGECACHE_TAG_DIRTY);
3685 spin_unlock_irq(&page->mapping->tree_lock);
3686 }
3687
3688 unlock_page(page);
3689 page_cache_release(page);
3690 }
3691 }
3692
3693 return ret;
3694 }
3695
3696 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3697 struct extent_io_tree *pinned_extents)
3698 {
3699 struct extent_io_tree *unpin;
3700 u64 start;
3701 u64 end;
3702 int ret;
3703 bool loop = true;
3704
3705 unpin = pinned_extents;
3706 again:
3707 while (1) {
3708 ret = find_first_extent_bit(unpin, 0, &start, &end,
3709 EXTENT_DIRTY, NULL);
3710 if (ret)
3711 break;
3712
3713 /* opt_discard */
3714 if (btrfs_test_opt(root, DISCARD))
3715 ret = btrfs_error_discard_extent(root, start,
3716 end + 1 - start,
3717 NULL);
3718
3719 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3720 btrfs_error_unpin_extent_range(root, start, end);
3721 cond_resched();
3722 }
3723
3724 if (loop) {
3725 if (unpin == &root->fs_info->freed_extents[0])
3726 unpin = &root->fs_info->freed_extents[1];
3727 else
3728 unpin = &root->fs_info->freed_extents[0];
3729 loop = false;
3730 goto again;
3731 }
3732
3733 return 0;
3734 }
3735
3736 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3737 struct btrfs_root *root)
3738 {
3739 btrfs_destroy_delayed_refs(cur_trans, root);
3740 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3741 cur_trans->dirty_pages.dirty_bytes);
3742
3743 /* FIXME: cleanup wait for commit */
3744 cur_trans->in_commit = 1;
3745 cur_trans->blocked = 1;
3746 wake_up(&root->fs_info->transaction_blocked_wait);
3747
3748 cur_trans->blocked = 0;
3749 wake_up(&root->fs_info->transaction_wait);
3750
3751 cur_trans->commit_done = 1;
3752 wake_up(&cur_trans->commit_wait);
3753
3754 btrfs_destroy_delayed_inodes(root);
3755 btrfs_assert_delayed_root_empty(root);
3756
3757 btrfs_destroy_pending_snapshots(cur_trans);
3758
3759 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3760 EXTENT_DIRTY);
3761 btrfs_destroy_pinned_extent(root,
3762 root->fs_info->pinned_extents);
3763
3764 /*
3765 memset(cur_trans, 0, sizeof(*cur_trans));
3766 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3767 */
3768 }
3769
3770 int btrfs_cleanup_transaction(struct btrfs_root *root)
3771 {
3772 struct btrfs_transaction *t;
3773 LIST_HEAD(list);
3774
3775 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3776
3777 spin_lock(&root->fs_info->trans_lock);
3778 list_splice_init(&root->fs_info->trans_list, &list);
3779 root->fs_info->trans_no_join = 1;
3780 spin_unlock(&root->fs_info->trans_lock);
3781
3782 while (!list_empty(&list)) {
3783 t = list_entry(list.next, struct btrfs_transaction, list);
3784 if (!t)
3785 break;
3786
3787 btrfs_destroy_ordered_operations(root);
3788
3789 btrfs_destroy_ordered_extents(root);
3790
3791 btrfs_destroy_delayed_refs(t, root);
3792
3793 btrfs_block_rsv_release(root,
3794 &root->fs_info->trans_block_rsv,
3795 t->dirty_pages.dirty_bytes);
3796
3797 /* FIXME: cleanup wait for commit */
3798 t->in_commit = 1;
3799 t->blocked = 1;
3800 smp_mb();
3801 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3802 wake_up(&root->fs_info->transaction_blocked_wait);
3803
3804 t->blocked = 0;
3805 smp_mb();
3806 if (waitqueue_active(&root->fs_info->transaction_wait))
3807 wake_up(&root->fs_info->transaction_wait);
3808
3809 t->commit_done = 1;
3810 smp_mb();
3811 if (waitqueue_active(&t->commit_wait))
3812 wake_up(&t->commit_wait);
3813
3814 btrfs_destroy_delayed_inodes(root);
3815 btrfs_assert_delayed_root_empty(root);
3816
3817 btrfs_destroy_pending_snapshots(t);
3818
3819 btrfs_destroy_delalloc_inodes(root);
3820
3821 spin_lock(&root->fs_info->trans_lock);
3822 root->fs_info->running_transaction = NULL;
3823 spin_unlock(&root->fs_info->trans_lock);
3824
3825 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3826 EXTENT_DIRTY);
3827
3828 btrfs_destroy_pinned_extent(root,
3829 root->fs_info->pinned_extents);
3830
3831 atomic_set(&t->use_count, 0);
3832 list_del_init(&t->list);
3833 memset(t, 0, sizeof(*t));
3834 kmem_cache_free(btrfs_transaction_cachep, t);
3835 }
3836
3837 spin_lock(&root->fs_info->trans_lock);
3838 root->fs_info->trans_no_join = 0;
3839 spin_unlock(&root->fs_info->trans_lock);
3840 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3841
3842 return 0;
3843 }
3844
3845 static struct extent_io_ops btree_extent_io_ops = {
3846 .readpage_end_io_hook = btree_readpage_end_io_hook,
3847 .readpage_io_failed_hook = btree_io_failed_hook,
3848 .submit_bio_hook = btree_submit_bio_hook,
3849 /* note we're sharing with inode.c for the merge bio hook */
3850 .merge_bio_hook = btrfs_merge_bio_hook,
3851 };