]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Merge tag 'v4.9-rc1' into x86/urgent, to pick up updates
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 int error;
136 };
137
138 /*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 # error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203 {
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226 {
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
230
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265 out:
266 return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 put_unaligned_le32(~crc, result);
277 }
278
279 /*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286 {
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info->sb->s_id, buf->start,
331 val, found, btrfs_header_level(buf));
332 if (result != (char *)&inline_result)
333 kfree(result);
334 return -EUCLEAN;
335 }
336 } else {
337 write_extent_buffer(buf, result, 0, csum_size);
338 }
339 if (result != (char *)&inline_result)
340 kfree(result);
341 return 0;
342 }
343
344 /*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
353 {
354 struct extent_state *cached_state = NULL;
355 int ret;
356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
361 if (atomic)
362 return -EAGAIN;
363
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state);
371 if (extent_buffer_uptodate(eb) &&
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
379 parent_transid, btrfs_header_generation(eb));
380 ret = 1;
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
392 out:
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
397 return ret;
398 }
399
400 /*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
406 {
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437 }
438
439 /*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
445 u64 parent_transid)
446 {
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 btree_get_extent, mirror_num);
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
461 parent_transid, 0))
462 break;
463 else
464 ret = -EIO;
465 }
466
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 break;
474
475 num_copies = btrfs_num_copies(root->fs_info,
476 eb->start, eb->len);
477 if (num_copies == 1)
478 break;
479
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
485 mirror_num++;
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
489 if (mirror_num > num_copies)
490 break;
491 }
492
493 if (failed && !ret && failed_mirror)
494 repair_eb_io_failure(root, eb, failed_mirror);
495
496 return ret;
497 }
498
499 /*
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
502 */
503
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506 u64 start = page_offset(page);
507 u64 found_start;
508 struct extent_buffer *eb;
509
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
513
514 found_start = btrfs_header_bytenr(eb);
515 /*
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
518 */
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
523
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
527 return csum_tree_block(fs_info, eb, 0);
528 }
529
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 struct extent_buffer *eb)
532 {
533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 u8 fsid[BTRFS_UUID_SIZE];
535 int ret = 1;
536
537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
542 }
543 fs_devices = fs_devices->seed;
544 }
545 return ret;
546 }
547
548 #define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
550 " root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556 {
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
562 if (nritems == 0) {
563 struct btrfs_root *check_root;
564
565 key.objectid = btrfs_header_owner(leaf);
566 key.type = BTRFS_ROOT_ITEM_KEY;
567 key.offset = (u64)-1;
568
569 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
570 /*
571 * The only reason we also check NULL here is that during
572 * open_ctree() some roots has not yet been set up.
573 */
574 if (!IS_ERR_OR_NULL(check_root)) {
575 /* if leaf is the root, then it's fine */
576 if (leaf->start !=
577 btrfs_root_bytenr(&check_root->root_item)) {
578 CORRUPT("non-root leaf's nritems is 0",
579 leaf, root, 0);
580 return -EIO;
581 }
582 }
583 return 0;
584 }
585
586 /* Check the 0 item */
587 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
588 BTRFS_LEAF_DATA_SIZE(root)) {
589 CORRUPT("invalid item offset size pair", leaf, root, 0);
590 return -EIO;
591 }
592
593 /*
594 * Check to make sure each items keys are in the correct order and their
595 * offsets make sense. We only have to loop through nritems-1 because
596 * we check the current slot against the next slot, which verifies the
597 * next slot's offset+size makes sense and that the current's slot
598 * offset is correct.
599 */
600 for (slot = 0; slot < nritems - 1; slot++) {
601 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
602 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
603
604 /* Make sure the keys are in the right order */
605 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
606 CORRUPT("bad key order", leaf, root, slot);
607 return -EIO;
608 }
609
610 /*
611 * Make sure the offset and ends are right, remember that the
612 * item data starts at the end of the leaf and grows towards the
613 * front.
614 */
615 if (btrfs_item_offset_nr(leaf, slot) !=
616 btrfs_item_end_nr(leaf, slot + 1)) {
617 CORRUPT("slot offset bad", leaf, root, slot);
618 return -EIO;
619 }
620
621 /*
622 * Check to make sure that we don't point outside of the leaf,
623 * just in case all the items are consistent to each other, but
624 * all point outside of the leaf.
625 */
626 if (btrfs_item_end_nr(leaf, slot) >
627 BTRFS_LEAF_DATA_SIZE(root)) {
628 CORRUPT("slot end outside of leaf", leaf, root, slot);
629 return -EIO;
630 }
631 }
632
633 return 0;
634 }
635
636 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
637 {
638 unsigned long nr = btrfs_header_nritems(node);
639 struct btrfs_key key, next_key;
640 int slot;
641 u64 bytenr;
642 int ret = 0;
643
644 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
645 btrfs_crit(root->fs_info,
646 "corrupt node: block %llu root %llu nritems %lu",
647 node->start, root->objectid, nr);
648 return -EIO;
649 }
650
651 for (slot = 0; slot < nr - 1; slot++) {
652 bytenr = btrfs_node_blockptr(node, slot);
653 btrfs_node_key_to_cpu(node, &key, slot);
654 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
655
656 if (!bytenr) {
657 CORRUPT("invalid item slot", node, root, slot);
658 ret = -EIO;
659 goto out;
660 }
661
662 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
663 CORRUPT("bad key order", node, root, slot);
664 ret = -EIO;
665 goto out;
666 }
667 }
668 out:
669 return ret;
670 }
671
672 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
673 u64 phy_offset, struct page *page,
674 u64 start, u64 end, int mirror)
675 {
676 u64 found_start;
677 int found_level;
678 struct extent_buffer *eb;
679 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680 struct btrfs_fs_info *fs_info = root->fs_info;
681 int ret = 0;
682 int reads_done;
683
684 if (!page->private)
685 goto out;
686
687 eb = (struct extent_buffer *)page->private;
688
689 /* the pending IO might have been the only thing that kept this buffer
690 * in memory. Make sure we have a ref for all this other checks
691 */
692 extent_buffer_get(eb);
693
694 reads_done = atomic_dec_and_test(&eb->io_pages);
695 if (!reads_done)
696 goto err;
697
698 eb->read_mirror = mirror;
699 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
700 ret = -EIO;
701 goto err;
702 }
703
704 found_start = btrfs_header_bytenr(eb);
705 if (found_start != eb->start) {
706 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
707 found_start, eb->start);
708 ret = -EIO;
709 goto err;
710 }
711 if (check_tree_block_fsid(fs_info, eb)) {
712 btrfs_err_rl(fs_info, "bad fsid on block %llu",
713 eb->start);
714 ret = -EIO;
715 goto err;
716 }
717 found_level = btrfs_header_level(eb);
718 if (found_level >= BTRFS_MAX_LEVEL) {
719 btrfs_err(fs_info, "bad tree block level %d",
720 (int)btrfs_header_level(eb));
721 ret = -EIO;
722 goto err;
723 }
724
725 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
726 eb, found_level);
727
728 ret = csum_tree_block(fs_info, eb, 1);
729 if (ret)
730 goto err;
731
732 /*
733 * If this is a leaf block and it is corrupt, set the corrupt bit so
734 * that we don't try and read the other copies of this block, just
735 * return -EIO.
736 */
737 if (found_level == 0 && check_leaf(root, eb)) {
738 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
739 ret = -EIO;
740 }
741
742 if (found_level > 0 && check_node(root, eb))
743 ret = -EIO;
744
745 if (!ret)
746 set_extent_buffer_uptodate(eb);
747 err:
748 if (reads_done &&
749 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
750 btree_readahead_hook(fs_info, eb, eb->start, ret);
751
752 if (ret) {
753 /*
754 * our io error hook is going to dec the io pages
755 * again, we have to make sure it has something
756 * to decrement
757 */
758 atomic_inc(&eb->io_pages);
759 clear_extent_buffer_uptodate(eb);
760 }
761 free_extent_buffer(eb);
762 out:
763 return ret;
764 }
765
766 static int btree_io_failed_hook(struct page *page, int failed_mirror)
767 {
768 struct extent_buffer *eb;
769
770 eb = (struct extent_buffer *)page->private;
771 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
772 eb->read_mirror = failed_mirror;
773 atomic_dec(&eb->io_pages);
774 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
775 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
776 return -EIO; /* we fixed nothing */
777 }
778
779 static void end_workqueue_bio(struct bio *bio)
780 {
781 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
782 struct btrfs_fs_info *fs_info;
783 struct btrfs_workqueue *wq;
784 btrfs_work_func_t func;
785
786 fs_info = end_io_wq->info;
787 end_io_wq->error = bio->bi_error;
788
789 if (bio_op(bio) == REQ_OP_WRITE) {
790 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
791 wq = fs_info->endio_meta_write_workers;
792 func = btrfs_endio_meta_write_helper;
793 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
794 wq = fs_info->endio_freespace_worker;
795 func = btrfs_freespace_write_helper;
796 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
797 wq = fs_info->endio_raid56_workers;
798 func = btrfs_endio_raid56_helper;
799 } else {
800 wq = fs_info->endio_write_workers;
801 func = btrfs_endio_write_helper;
802 }
803 } else {
804 if (unlikely(end_io_wq->metadata ==
805 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
806 wq = fs_info->endio_repair_workers;
807 func = btrfs_endio_repair_helper;
808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
809 wq = fs_info->endio_raid56_workers;
810 func = btrfs_endio_raid56_helper;
811 } else if (end_io_wq->metadata) {
812 wq = fs_info->endio_meta_workers;
813 func = btrfs_endio_meta_helper;
814 } else {
815 wq = fs_info->endio_workers;
816 func = btrfs_endio_helper;
817 }
818 }
819
820 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
821 btrfs_queue_work(wq, &end_io_wq->work);
822 }
823
824 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
825 enum btrfs_wq_endio_type metadata)
826 {
827 struct btrfs_end_io_wq *end_io_wq;
828
829 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
830 if (!end_io_wq)
831 return -ENOMEM;
832
833 end_io_wq->private = bio->bi_private;
834 end_io_wq->end_io = bio->bi_end_io;
835 end_io_wq->info = info;
836 end_io_wq->error = 0;
837 end_io_wq->bio = bio;
838 end_io_wq->metadata = metadata;
839
840 bio->bi_private = end_io_wq;
841 bio->bi_end_io = end_workqueue_bio;
842 return 0;
843 }
844
845 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
846 {
847 unsigned long limit = min_t(unsigned long,
848 info->thread_pool_size,
849 info->fs_devices->open_devices);
850 return 256 * limit;
851 }
852
853 static void run_one_async_start(struct btrfs_work *work)
854 {
855 struct async_submit_bio *async;
856 int ret;
857
858 async = container_of(work, struct async_submit_bio, work);
859 ret = async->submit_bio_start(async->inode, async->bio,
860 async->mirror_num, async->bio_flags,
861 async->bio_offset);
862 if (ret)
863 async->error = ret;
864 }
865
866 static void run_one_async_done(struct btrfs_work *work)
867 {
868 struct btrfs_fs_info *fs_info;
869 struct async_submit_bio *async;
870 int limit;
871
872 async = container_of(work, struct async_submit_bio, work);
873 fs_info = BTRFS_I(async->inode)->root->fs_info;
874
875 limit = btrfs_async_submit_limit(fs_info);
876 limit = limit * 2 / 3;
877
878 /*
879 * atomic_dec_return implies a barrier for waitqueue_active
880 */
881 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
882 waitqueue_active(&fs_info->async_submit_wait))
883 wake_up(&fs_info->async_submit_wait);
884
885 /* If an error occurred we just want to clean up the bio and move on */
886 if (async->error) {
887 async->bio->bi_error = async->error;
888 bio_endio(async->bio);
889 return;
890 }
891
892 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
893 async->bio_flags, async->bio_offset);
894 }
895
896 static void run_one_async_free(struct btrfs_work *work)
897 {
898 struct async_submit_bio *async;
899
900 async = container_of(work, struct async_submit_bio, work);
901 kfree(async);
902 }
903
904 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
905 struct bio *bio, int mirror_num,
906 unsigned long bio_flags,
907 u64 bio_offset,
908 extent_submit_bio_hook_t *submit_bio_start,
909 extent_submit_bio_hook_t *submit_bio_done)
910 {
911 struct async_submit_bio *async;
912
913 async = kmalloc(sizeof(*async), GFP_NOFS);
914 if (!async)
915 return -ENOMEM;
916
917 async->inode = inode;
918 async->bio = bio;
919 async->mirror_num = mirror_num;
920 async->submit_bio_start = submit_bio_start;
921 async->submit_bio_done = submit_bio_done;
922
923 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
924 run_one_async_done, run_one_async_free);
925
926 async->bio_flags = bio_flags;
927 async->bio_offset = bio_offset;
928
929 async->error = 0;
930
931 atomic_inc(&fs_info->nr_async_submits);
932
933 if (bio->bi_opf & REQ_SYNC)
934 btrfs_set_work_high_priority(&async->work);
935
936 btrfs_queue_work(fs_info->workers, &async->work);
937
938 while (atomic_read(&fs_info->async_submit_draining) &&
939 atomic_read(&fs_info->nr_async_submits)) {
940 wait_event(fs_info->async_submit_wait,
941 (atomic_read(&fs_info->nr_async_submits) == 0));
942 }
943
944 return 0;
945 }
946
947 static int btree_csum_one_bio(struct bio *bio)
948 {
949 struct bio_vec *bvec;
950 struct btrfs_root *root;
951 int i, ret = 0;
952
953 bio_for_each_segment_all(bvec, bio, i) {
954 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
955 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
956 if (ret)
957 break;
958 }
959
960 return ret;
961 }
962
963 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
964 int mirror_num, unsigned long bio_flags,
965 u64 bio_offset)
966 {
967 /*
968 * when we're called for a write, we're already in the async
969 * submission context. Just jump into btrfs_map_bio
970 */
971 return btree_csum_one_bio(bio);
972 }
973
974 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
975 int mirror_num, unsigned long bio_flags,
976 u64 bio_offset)
977 {
978 int ret;
979
980 /*
981 * when we're called for a write, we're already in the async
982 * submission context. Just jump into btrfs_map_bio
983 */
984 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
985 if (ret) {
986 bio->bi_error = ret;
987 bio_endio(bio);
988 }
989 return ret;
990 }
991
992 static int check_async_write(struct inode *inode, unsigned long bio_flags)
993 {
994 if (bio_flags & EXTENT_BIO_TREE_LOG)
995 return 0;
996 #ifdef CONFIG_X86
997 if (static_cpu_has(X86_FEATURE_XMM4_2))
998 return 0;
999 #endif
1000 return 1;
1001 }
1002
1003 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1004 int mirror_num, unsigned long bio_flags,
1005 u64 bio_offset)
1006 {
1007 int async = check_async_write(inode, bio_flags);
1008 int ret;
1009
1010 if (bio_op(bio) != REQ_OP_WRITE) {
1011 /*
1012 * called for a read, do the setup so that checksum validation
1013 * can happen in the async kernel threads
1014 */
1015 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
1016 bio, BTRFS_WQ_ENDIO_METADATA);
1017 if (ret)
1018 goto out_w_error;
1019 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1020 } else if (!async) {
1021 ret = btree_csum_one_bio(bio);
1022 if (ret)
1023 goto out_w_error;
1024 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1025 } else {
1026 /*
1027 * kthread helpers are used to submit writes so that
1028 * checksumming can happen in parallel across all CPUs
1029 */
1030 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1031 inode, bio, mirror_num, 0,
1032 bio_offset,
1033 __btree_submit_bio_start,
1034 __btree_submit_bio_done);
1035 }
1036
1037 if (ret)
1038 goto out_w_error;
1039 return 0;
1040
1041 out_w_error:
1042 bio->bi_error = ret;
1043 bio_endio(bio);
1044 return ret;
1045 }
1046
1047 #ifdef CONFIG_MIGRATION
1048 static int btree_migratepage(struct address_space *mapping,
1049 struct page *newpage, struct page *page,
1050 enum migrate_mode mode)
1051 {
1052 /*
1053 * we can't safely write a btree page from here,
1054 * we haven't done the locking hook
1055 */
1056 if (PageDirty(page))
1057 return -EAGAIN;
1058 /*
1059 * Buffers may be managed in a filesystem specific way.
1060 * We must have no buffers or drop them.
1061 */
1062 if (page_has_private(page) &&
1063 !try_to_release_page(page, GFP_KERNEL))
1064 return -EAGAIN;
1065 return migrate_page(mapping, newpage, page, mode);
1066 }
1067 #endif
1068
1069
1070 static int btree_writepages(struct address_space *mapping,
1071 struct writeback_control *wbc)
1072 {
1073 struct btrfs_fs_info *fs_info;
1074 int ret;
1075
1076 if (wbc->sync_mode == WB_SYNC_NONE) {
1077
1078 if (wbc->for_kupdate)
1079 return 0;
1080
1081 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1082 /* this is a bit racy, but that's ok */
1083 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1084 BTRFS_DIRTY_METADATA_THRESH);
1085 if (ret < 0)
1086 return 0;
1087 }
1088 return btree_write_cache_pages(mapping, wbc);
1089 }
1090
1091 static int btree_readpage(struct file *file, struct page *page)
1092 {
1093 struct extent_io_tree *tree;
1094 tree = &BTRFS_I(page->mapping->host)->io_tree;
1095 return extent_read_full_page(tree, page, btree_get_extent, 0);
1096 }
1097
1098 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1099 {
1100 if (PageWriteback(page) || PageDirty(page))
1101 return 0;
1102
1103 return try_release_extent_buffer(page);
1104 }
1105
1106 static void btree_invalidatepage(struct page *page, unsigned int offset,
1107 unsigned int length)
1108 {
1109 struct extent_io_tree *tree;
1110 tree = &BTRFS_I(page->mapping->host)->io_tree;
1111 extent_invalidatepage(tree, page, offset);
1112 btree_releasepage(page, GFP_NOFS);
1113 if (PagePrivate(page)) {
1114 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1115 "page private not zero on page %llu",
1116 (unsigned long long)page_offset(page));
1117 ClearPagePrivate(page);
1118 set_page_private(page, 0);
1119 put_page(page);
1120 }
1121 }
1122
1123 static int btree_set_page_dirty(struct page *page)
1124 {
1125 #ifdef DEBUG
1126 struct extent_buffer *eb;
1127
1128 BUG_ON(!PagePrivate(page));
1129 eb = (struct extent_buffer *)page->private;
1130 BUG_ON(!eb);
1131 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1132 BUG_ON(!atomic_read(&eb->refs));
1133 btrfs_assert_tree_locked(eb);
1134 #endif
1135 return __set_page_dirty_nobuffers(page);
1136 }
1137
1138 static const struct address_space_operations btree_aops = {
1139 .readpage = btree_readpage,
1140 .writepages = btree_writepages,
1141 .releasepage = btree_releasepage,
1142 .invalidatepage = btree_invalidatepage,
1143 #ifdef CONFIG_MIGRATION
1144 .migratepage = btree_migratepage,
1145 #endif
1146 .set_page_dirty = btree_set_page_dirty,
1147 };
1148
1149 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1150 {
1151 struct extent_buffer *buf = NULL;
1152 struct inode *btree_inode = root->fs_info->btree_inode;
1153
1154 buf = btrfs_find_create_tree_block(root, bytenr);
1155 if (IS_ERR(buf))
1156 return;
1157 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1158 buf, WAIT_NONE, btree_get_extent, 0);
1159 free_extent_buffer(buf);
1160 }
1161
1162 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1163 int mirror_num, struct extent_buffer **eb)
1164 {
1165 struct extent_buffer *buf = NULL;
1166 struct inode *btree_inode = root->fs_info->btree_inode;
1167 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1168 int ret;
1169
1170 buf = btrfs_find_create_tree_block(root, bytenr);
1171 if (IS_ERR(buf))
1172 return 0;
1173
1174 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1175
1176 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1177 btree_get_extent, mirror_num);
1178 if (ret) {
1179 free_extent_buffer(buf);
1180 return ret;
1181 }
1182
1183 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1184 free_extent_buffer(buf);
1185 return -EIO;
1186 } else if (extent_buffer_uptodate(buf)) {
1187 *eb = buf;
1188 } else {
1189 free_extent_buffer(buf);
1190 }
1191 return 0;
1192 }
1193
1194 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1195 u64 bytenr)
1196 {
1197 return find_extent_buffer(fs_info, bytenr);
1198 }
1199
1200 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1201 u64 bytenr)
1202 {
1203 if (btrfs_is_testing(root->fs_info))
1204 return alloc_test_extent_buffer(root->fs_info, bytenr,
1205 root->nodesize);
1206 return alloc_extent_buffer(root->fs_info, bytenr);
1207 }
1208
1209
1210 int btrfs_write_tree_block(struct extent_buffer *buf)
1211 {
1212 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1213 buf->start + buf->len - 1);
1214 }
1215
1216 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1217 {
1218 return filemap_fdatawait_range(buf->pages[0]->mapping,
1219 buf->start, buf->start + buf->len - 1);
1220 }
1221
1222 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1223 u64 parent_transid)
1224 {
1225 struct extent_buffer *buf = NULL;
1226 int ret;
1227
1228 buf = btrfs_find_create_tree_block(root, bytenr);
1229 if (IS_ERR(buf))
1230 return buf;
1231
1232 ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1233 if (ret) {
1234 free_extent_buffer(buf);
1235 return ERR_PTR(ret);
1236 }
1237 return buf;
1238
1239 }
1240
1241 void clean_tree_block(struct btrfs_trans_handle *trans,
1242 struct btrfs_fs_info *fs_info,
1243 struct extent_buffer *buf)
1244 {
1245 if (btrfs_header_generation(buf) ==
1246 fs_info->running_transaction->transid) {
1247 btrfs_assert_tree_locked(buf);
1248
1249 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1250 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1251 -buf->len,
1252 fs_info->dirty_metadata_batch);
1253 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1254 btrfs_set_lock_blocking(buf);
1255 clear_extent_buffer_dirty(buf);
1256 }
1257 }
1258 }
1259
1260 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1261 {
1262 struct btrfs_subvolume_writers *writers;
1263 int ret;
1264
1265 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1266 if (!writers)
1267 return ERR_PTR(-ENOMEM);
1268
1269 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1270 if (ret < 0) {
1271 kfree(writers);
1272 return ERR_PTR(ret);
1273 }
1274
1275 init_waitqueue_head(&writers->wait);
1276 return writers;
1277 }
1278
1279 static void
1280 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1281 {
1282 percpu_counter_destroy(&writers->counter);
1283 kfree(writers);
1284 }
1285
1286 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1287 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1288 u64 objectid)
1289 {
1290 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1291 root->node = NULL;
1292 root->commit_root = NULL;
1293 root->sectorsize = sectorsize;
1294 root->nodesize = nodesize;
1295 root->stripesize = stripesize;
1296 root->state = 0;
1297 root->orphan_cleanup_state = 0;
1298
1299 root->objectid = objectid;
1300 root->last_trans = 0;
1301 root->highest_objectid = 0;
1302 root->nr_delalloc_inodes = 0;
1303 root->nr_ordered_extents = 0;
1304 root->name = NULL;
1305 root->inode_tree = RB_ROOT;
1306 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1307 root->block_rsv = NULL;
1308 root->orphan_block_rsv = NULL;
1309
1310 INIT_LIST_HEAD(&root->dirty_list);
1311 INIT_LIST_HEAD(&root->root_list);
1312 INIT_LIST_HEAD(&root->delalloc_inodes);
1313 INIT_LIST_HEAD(&root->delalloc_root);
1314 INIT_LIST_HEAD(&root->ordered_extents);
1315 INIT_LIST_HEAD(&root->ordered_root);
1316 INIT_LIST_HEAD(&root->logged_list[0]);
1317 INIT_LIST_HEAD(&root->logged_list[1]);
1318 spin_lock_init(&root->orphan_lock);
1319 spin_lock_init(&root->inode_lock);
1320 spin_lock_init(&root->delalloc_lock);
1321 spin_lock_init(&root->ordered_extent_lock);
1322 spin_lock_init(&root->accounting_lock);
1323 spin_lock_init(&root->log_extents_lock[0]);
1324 spin_lock_init(&root->log_extents_lock[1]);
1325 mutex_init(&root->objectid_mutex);
1326 mutex_init(&root->log_mutex);
1327 mutex_init(&root->ordered_extent_mutex);
1328 mutex_init(&root->delalloc_mutex);
1329 init_waitqueue_head(&root->log_writer_wait);
1330 init_waitqueue_head(&root->log_commit_wait[0]);
1331 init_waitqueue_head(&root->log_commit_wait[1]);
1332 INIT_LIST_HEAD(&root->log_ctxs[0]);
1333 INIT_LIST_HEAD(&root->log_ctxs[1]);
1334 atomic_set(&root->log_commit[0], 0);
1335 atomic_set(&root->log_commit[1], 0);
1336 atomic_set(&root->log_writers, 0);
1337 atomic_set(&root->log_batch, 0);
1338 atomic_set(&root->orphan_inodes, 0);
1339 atomic_set(&root->refs, 1);
1340 atomic_set(&root->will_be_snapshoted, 0);
1341 atomic_set(&root->qgroup_meta_rsv, 0);
1342 root->log_transid = 0;
1343 root->log_transid_committed = -1;
1344 root->last_log_commit = 0;
1345 if (!dummy)
1346 extent_io_tree_init(&root->dirty_log_pages,
1347 fs_info->btree_inode->i_mapping);
1348
1349 memset(&root->root_key, 0, sizeof(root->root_key));
1350 memset(&root->root_item, 0, sizeof(root->root_item));
1351 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1352 if (!dummy)
1353 root->defrag_trans_start = fs_info->generation;
1354 else
1355 root->defrag_trans_start = 0;
1356 root->root_key.objectid = objectid;
1357 root->anon_dev = 0;
1358
1359 spin_lock_init(&root->root_item_lock);
1360 }
1361
1362 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1363 gfp_t flags)
1364 {
1365 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1366 if (root)
1367 root->fs_info = fs_info;
1368 return root;
1369 }
1370
1371 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1372 /* Should only be used by the testing infrastructure */
1373 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1374 u32 sectorsize, u32 nodesize)
1375 {
1376 struct btrfs_root *root;
1377
1378 if (!fs_info)
1379 return ERR_PTR(-EINVAL);
1380
1381 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1382 if (!root)
1383 return ERR_PTR(-ENOMEM);
1384 /* We don't use the stripesize in selftest, set it as sectorsize */
1385 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1386 BTRFS_ROOT_TREE_OBJECTID);
1387 root->alloc_bytenr = 0;
1388
1389 return root;
1390 }
1391 #endif
1392
1393 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info,
1395 u64 objectid)
1396 {
1397 struct extent_buffer *leaf;
1398 struct btrfs_root *tree_root = fs_info->tree_root;
1399 struct btrfs_root *root;
1400 struct btrfs_key key;
1401 int ret = 0;
1402 uuid_le uuid;
1403
1404 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1405 if (!root)
1406 return ERR_PTR(-ENOMEM);
1407
1408 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1409 tree_root->stripesize, root, fs_info, objectid);
1410 root->root_key.objectid = objectid;
1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412 root->root_key.offset = 0;
1413
1414 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1415 if (IS_ERR(leaf)) {
1416 ret = PTR_ERR(leaf);
1417 leaf = NULL;
1418 goto fail;
1419 }
1420
1421 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422 btrfs_set_header_bytenr(leaf, leaf->start);
1423 btrfs_set_header_generation(leaf, trans->transid);
1424 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425 btrfs_set_header_owner(leaf, objectid);
1426 root->node = leaf;
1427
1428 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1429 BTRFS_FSID_SIZE);
1430 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1431 btrfs_header_chunk_tree_uuid(leaf),
1432 BTRFS_UUID_SIZE);
1433 btrfs_mark_buffer_dirty(leaf);
1434
1435 root->commit_root = btrfs_root_node(root);
1436 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1437
1438 root->root_item.flags = 0;
1439 root->root_item.byte_limit = 0;
1440 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1441 btrfs_set_root_generation(&root->root_item, trans->transid);
1442 btrfs_set_root_level(&root->root_item, 0);
1443 btrfs_set_root_refs(&root->root_item, 1);
1444 btrfs_set_root_used(&root->root_item, leaf->len);
1445 btrfs_set_root_last_snapshot(&root->root_item, 0);
1446 btrfs_set_root_dirid(&root->root_item, 0);
1447 uuid_le_gen(&uuid);
1448 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1449 root->root_item.drop_level = 0;
1450
1451 key.objectid = objectid;
1452 key.type = BTRFS_ROOT_ITEM_KEY;
1453 key.offset = 0;
1454 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1455 if (ret)
1456 goto fail;
1457
1458 btrfs_tree_unlock(leaf);
1459
1460 return root;
1461
1462 fail:
1463 if (leaf) {
1464 btrfs_tree_unlock(leaf);
1465 free_extent_buffer(root->commit_root);
1466 free_extent_buffer(leaf);
1467 }
1468 kfree(root);
1469
1470 return ERR_PTR(ret);
1471 }
1472
1473 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1474 struct btrfs_fs_info *fs_info)
1475 {
1476 struct btrfs_root *root;
1477 struct btrfs_root *tree_root = fs_info->tree_root;
1478 struct extent_buffer *leaf;
1479
1480 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481 if (!root)
1482 return ERR_PTR(-ENOMEM);
1483
1484 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1485 tree_root->stripesize, root, fs_info,
1486 BTRFS_TREE_LOG_OBJECTID);
1487
1488 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1489 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1490 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1491
1492 /*
1493 * DON'T set REF_COWS for log trees
1494 *
1495 * log trees do not get reference counted because they go away
1496 * before a real commit is actually done. They do store pointers
1497 * to file data extents, and those reference counts still get
1498 * updated (along with back refs to the log tree).
1499 */
1500
1501 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1502 NULL, 0, 0, 0);
1503 if (IS_ERR(leaf)) {
1504 kfree(root);
1505 return ERR_CAST(leaf);
1506 }
1507
1508 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1509 btrfs_set_header_bytenr(leaf, leaf->start);
1510 btrfs_set_header_generation(leaf, trans->transid);
1511 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1512 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1513 root->node = leaf;
1514
1515 write_extent_buffer(root->node, root->fs_info->fsid,
1516 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1517 btrfs_mark_buffer_dirty(root->node);
1518 btrfs_tree_unlock(root->node);
1519 return root;
1520 }
1521
1522 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1523 struct btrfs_fs_info *fs_info)
1524 {
1525 struct btrfs_root *log_root;
1526
1527 log_root = alloc_log_tree(trans, fs_info);
1528 if (IS_ERR(log_root))
1529 return PTR_ERR(log_root);
1530 WARN_ON(fs_info->log_root_tree);
1531 fs_info->log_root_tree = log_root;
1532 return 0;
1533 }
1534
1535 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1536 struct btrfs_root *root)
1537 {
1538 struct btrfs_root *log_root;
1539 struct btrfs_inode_item *inode_item;
1540
1541 log_root = alloc_log_tree(trans, root->fs_info);
1542 if (IS_ERR(log_root))
1543 return PTR_ERR(log_root);
1544
1545 log_root->last_trans = trans->transid;
1546 log_root->root_key.offset = root->root_key.objectid;
1547
1548 inode_item = &log_root->root_item.inode;
1549 btrfs_set_stack_inode_generation(inode_item, 1);
1550 btrfs_set_stack_inode_size(inode_item, 3);
1551 btrfs_set_stack_inode_nlink(inode_item, 1);
1552 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1553 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1554
1555 btrfs_set_root_node(&log_root->root_item, log_root->node);
1556
1557 WARN_ON(root->log_root);
1558 root->log_root = log_root;
1559 root->log_transid = 0;
1560 root->log_transid_committed = -1;
1561 root->last_log_commit = 0;
1562 return 0;
1563 }
1564
1565 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1566 struct btrfs_key *key)
1567 {
1568 struct btrfs_root *root;
1569 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1570 struct btrfs_path *path;
1571 u64 generation;
1572 int ret;
1573
1574 path = btrfs_alloc_path();
1575 if (!path)
1576 return ERR_PTR(-ENOMEM);
1577
1578 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1579 if (!root) {
1580 ret = -ENOMEM;
1581 goto alloc_fail;
1582 }
1583
1584 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1585 tree_root->stripesize, root, fs_info, key->objectid);
1586
1587 ret = btrfs_find_root(tree_root, key, path,
1588 &root->root_item, &root->root_key);
1589 if (ret) {
1590 if (ret > 0)
1591 ret = -ENOENT;
1592 goto find_fail;
1593 }
1594
1595 generation = btrfs_root_generation(&root->root_item);
1596 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1597 generation);
1598 if (IS_ERR(root->node)) {
1599 ret = PTR_ERR(root->node);
1600 goto find_fail;
1601 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1602 ret = -EIO;
1603 free_extent_buffer(root->node);
1604 goto find_fail;
1605 }
1606 root->commit_root = btrfs_root_node(root);
1607 out:
1608 btrfs_free_path(path);
1609 return root;
1610
1611 find_fail:
1612 kfree(root);
1613 alloc_fail:
1614 root = ERR_PTR(ret);
1615 goto out;
1616 }
1617
1618 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1619 struct btrfs_key *location)
1620 {
1621 struct btrfs_root *root;
1622
1623 root = btrfs_read_tree_root(tree_root, location);
1624 if (IS_ERR(root))
1625 return root;
1626
1627 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1628 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1629 btrfs_check_and_init_root_item(&root->root_item);
1630 }
1631
1632 return root;
1633 }
1634
1635 int btrfs_init_fs_root(struct btrfs_root *root)
1636 {
1637 int ret;
1638 struct btrfs_subvolume_writers *writers;
1639
1640 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1641 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1642 GFP_NOFS);
1643 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1644 ret = -ENOMEM;
1645 goto fail;
1646 }
1647
1648 writers = btrfs_alloc_subvolume_writers();
1649 if (IS_ERR(writers)) {
1650 ret = PTR_ERR(writers);
1651 goto fail;
1652 }
1653 root->subv_writers = writers;
1654
1655 btrfs_init_free_ino_ctl(root);
1656 spin_lock_init(&root->ino_cache_lock);
1657 init_waitqueue_head(&root->ino_cache_wait);
1658
1659 ret = get_anon_bdev(&root->anon_dev);
1660 if (ret)
1661 goto fail;
1662
1663 mutex_lock(&root->objectid_mutex);
1664 ret = btrfs_find_highest_objectid(root,
1665 &root->highest_objectid);
1666 if (ret) {
1667 mutex_unlock(&root->objectid_mutex);
1668 goto fail;
1669 }
1670
1671 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1672
1673 mutex_unlock(&root->objectid_mutex);
1674
1675 return 0;
1676 fail:
1677 /* the caller is responsible to call free_fs_root */
1678 return ret;
1679 }
1680
1681 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1682 u64 root_id)
1683 {
1684 struct btrfs_root *root;
1685
1686 spin_lock(&fs_info->fs_roots_radix_lock);
1687 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1688 (unsigned long)root_id);
1689 spin_unlock(&fs_info->fs_roots_radix_lock);
1690 return root;
1691 }
1692
1693 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1694 struct btrfs_root *root)
1695 {
1696 int ret;
1697
1698 ret = radix_tree_preload(GFP_NOFS);
1699 if (ret)
1700 return ret;
1701
1702 spin_lock(&fs_info->fs_roots_radix_lock);
1703 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1704 (unsigned long)root->root_key.objectid,
1705 root);
1706 if (ret == 0)
1707 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1708 spin_unlock(&fs_info->fs_roots_radix_lock);
1709 radix_tree_preload_end();
1710
1711 return ret;
1712 }
1713
1714 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1715 struct btrfs_key *location,
1716 bool check_ref)
1717 {
1718 struct btrfs_root *root;
1719 struct btrfs_path *path;
1720 struct btrfs_key key;
1721 int ret;
1722
1723 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1724 return fs_info->tree_root;
1725 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1726 return fs_info->extent_root;
1727 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1728 return fs_info->chunk_root;
1729 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1730 return fs_info->dev_root;
1731 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1732 return fs_info->csum_root;
1733 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1734 return fs_info->quota_root ? fs_info->quota_root :
1735 ERR_PTR(-ENOENT);
1736 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1737 return fs_info->uuid_root ? fs_info->uuid_root :
1738 ERR_PTR(-ENOENT);
1739 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1740 return fs_info->free_space_root ? fs_info->free_space_root :
1741 ERR_PTR(-ENOENT);
1742 again:
1743 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1744 if (root) {
1745 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1746 return ERR_PTR(-ENOENT);
1747 return root;
1748 }
1749
1750 root = btrfs_read_fs_root(fs_info->tree_root, location);
1751 if (IS_ERR(root))
1752 return root;
1753
1754 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1755 ret = -ENOENT;
1756 goto fail;
1757 }
1758
1759 ret = btrfs_init_fs_root(root);
1760 if (ret)
1761 goto fail;
1762
1763 path = btrfs_alloc_path();
1764 if (!path) {
1765 ret = -ENOMEM;
1766 goto fail;
1767 }
1768 key.objectid = BTRFS_ORPHAN_OBJECTID;
1769 key.type = BTRFS_ORPHAN_ITEM_KEY;
1770 key.offset = location->objectid;
1771
1772 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1773 btrfs_free_path(path);
1774 if (ret < 0)
1775 goto fail;
1776 if (ret == 0)
1777 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1778
1779 ret = btrfs_insert_fs_root(fs_info, root);
1780 if (ret) {
1781 if (ret == -EEXIST) {
1782 free_fs_root(root);
1783 goto again;
1784 }
1785 goto fail;
1786 }
1787 return root;
1788 fail:
1789 free_fs_root(root);
1790 return ERR_PTR(ret);
1791 }
1792
1793 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1794 {
1795 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1796 int ret = 0;
1797 struct btrfs_device *device;
1798 struct backing_dev_info *bdi;
1799
1800 rcu_read_lock();
1801 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1802 if (!device->bdev)
1803 continue;
1804 bdi = blk_get_backing_dev_info(device->bdev);
1805 if (bdi_congested(bdi, bdi_bits)) {
1806 ret = 1;
1807 break;
1808 }
1809 }
1810 rcu_read_unlock();
1811 return ret;
1812 }
1813
1814 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1815 {
1816 int err;
1817
1818 err = bdi_setup_and_register(bdi, "btrfs");
1819 if (err)
1820 return err;
1821
1822 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1823 bdi->congested_fn = btrfs_congested_fn;
1824 bdi->congested_data = info;
1825 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1826 return 0;
1827 }
1828
1829 /*
1830 * called by the kthread helper functions to finally call the bio end_io
1831 * functions. This is where read checksum verification actually happens
1832 */
1833 static void end_workqueue_fn(struct btrfs_work *work)
1834 {
1835 struct bio *bio;
1836 struct btrfs_end_io_wq *end_io_wq;
1837
1838 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1839 bio = end_io_wq->bio;
1840
1841 bio->bi_error = end_io_wq->error;
1842 bio->bi_private = end_io_wq->private;
1843 bio->bi_end_io = end_io_wq->end_io;
1844 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1845 bio_endio(bio);
1846 }
1847
1848 static int cleaner_kthread(void *arg)
1849 {
1850 struct btrfs_root *root = arg;
1851 int again;
1852 struct btrfs_trans_handle *trans;
1853
1854 do {
1855 again = 0;
1856
1857 /* Make the cleaner go to sleep early. */
1858 if (btrfs_need_cleaner_sleep(root))
1859 goto sleep;
1860
1861 /*
1862 * Do not do anything if we might cause open_ctree() to block
1863 * before we have finished mounting the filesystem.
1864 */
1865 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1866 goto sleep;
1867
1868 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1869 goto sleep;
1870
1871 /*
1872 * Avoid the problem that we change the status of the fs
1873 * during the above check and trylock.
1874 */
1875 if (btrfs_need_cleaner_sleep(root)) {
1876 mutex_unlock(&root->fs_info->cleaner_mutex);
1877 goto sleep;
1878 }
1879
1880 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1881 btrfs_run_delayed_iputs(root);
1882 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1883
1884 again = btrfs_clean_one_deleted_snapshot(root);
1885 mutex_unlock(&root->fs_info->cleaner_mutex);
1886
1887 /*
1888 * The defragger has dealt with the R/O remount and umount,
1889 * needn't do anything special here.
1890 */
1891 btrfs_run_defrag_inodes(root->fs_info);
1892
1893 /*
1894 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895 * with relocation (btrfs_relocate_chunk) and relocation
1896 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899 * unused block groups.
1900 */
1901 btrfs_delete_unused_bgs(root->fs_info);
1902 sleep:
1903 if (!again) {
1904 set_current_state(TASK_INTERRUPTIBLE);
1905 if (!kthread_should_stop())
1906 schedule();
1907 __set_current_state(TASK_RUNNING);
1908 }
1909 } while (!kthread_should_stop());
1910
1911 /*
1912 * Transaction kthread is stopped before us and wakes us up.
1913 * However we might have started a new transaction and COWed some
1914 * tree blocks when deleting unused block groups for example. So
1915 * make sure we commit the transaction we started to have a clean
1916 * shutdown when evicting the btree inode - if it has dirty pages
1917 * when we do the final iput() on it, eviction will trigger a
1918 * writeback for it which will fail with null pointer dereferences
1919 * since work queues and other resources were already released and
1920 * destroyed by the time the iput/eviction/writeback is made.
1921 */
1922 trans = btrfs_attach_transaction(root);
1923 if (IS_ERR(trans)) {
1924 if (PTR_ERR(trans) != -ENOENT)
1925 btrfs_err(root->fs_info,
1926 "cleaner transaction attach returned %ld",
1927 PTR_ERR(trans));
1928 } else {
1929 int ret;
1930
1931 ret = btrfs_commit_transaction(trans, root);
1932 if (ret)
1933 btrfs_err(root->fs_info,
1934 "cleaner open transaction commit returned %d",
1935 ret);
1936 }
1937
1938 return 0;
1939 }
1940
1941 static int transaction_kthread(void *arg)
1942 {
1943 struct btrfs_root *root = arg;
1944 struct btrfs_trans_handle *trans;
1945 struct btrfs_transaction *cur;
1946 u64 transid;
1947 unsigned long now;
1948 unsigned long delay;
1949 bool cannot_commit;
1950
1951 do {
1952 cannot_commit = false;
1953 delay = HZ * root->fs_info->commit_interval;
1954 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1955
1956 spin_lock(&root->fs_info->trans_lock);
1957 cur = root->fs_info->running_transaction;
1958 if (!cur) {
1959 spin_unlock(&root->fs_info->trans_lock);
1960 goto sleep;
1961 }
1962
1963 now = get_seconds();
1964 if (cur->state < TRANS_STATE_BLOCKED &&
1965 (now < cur->start_time ||
1966 now - cur->start_time < root->fs_info->commit_interval)) {
1967 spin_unlock(&root->fs_info->trans_lock);
1968 delay = HZ * 5;
1969 goto sleep;
1970 }
1971 transid = cur->transid;
1972 spin_unlock(&root->fs_info->trans_lock);
1973
1974 /* If the file system is aborted, this will always fail. */
1975 trans = btrfs_attach_transaction(root);
1976 if (IS_ERR(trans)) {
1977 if (PTR_ERR(trans) != -ENOENT)
1978 cannot_commit = true;
1979 goto sleep;
1980 }
1981 if (transid == trans->transid) {
1982 btrfs_commit_transaction(trans, root);
1983 } else {
1984 btrfs_end_transaction(trans, root);
1985 }
1986 sleep:
1987 wake_up_process(root->fs_info->cleaner_kthread);
1988 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1989
1990 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1991 &root->fs_info->fs_state)))
1992 btrfs_cleanup_transaction(root);
1993 set_current_state(TASK_INTERRUPTIBLE);
1994 if (!kthread_should_stop() &&
1995 (!btrfs_transaction_blocked(root->fs_info) ||
1996 cannot_commit))
1997 schedule_timeout(delay);
1998 __set_current_state(TASK_RUNNING);
1999 } while (!kthread_should_stop());
2000 return 0;
2001 }
2002
2003 /*
2004 * this will find the highest generation in the array of
2005 * root backups. The index of the highest array is returned,
2006 * or -1 if we can't find anything.
2007 *
2008 * We check to make sure the array is valid by comparing the
2009 * generation of the latest root in the array with the generation
2010 * in the super block. If they don't match we pitch it.
2011 */
2012 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2013 {
2014 u64 cur;
2015 int newest_index = -1;
2016 struct btrfs_root_backup *root_backup;
2017 int i;
2018
2019 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2020 root_backup = info->super_copy->super_roots + i;
2021 cur = btrfs_backup_tree_root_gen(root_backup);
2022 if (cur == newest_gen)
2023 newest_index = i;
2024 }
2025
2026 /* check to see if we actually wrapped around */
2027 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2028 root_backup = info->super_copy->super_roots;
2029 cur = btrfs_backup_tree_root_gen(root_backup);
2030 if (cur == newest_gen)
2031 newest_index = 0;
2032 }
2033 return newest_index;
2034 }
2035
2036
2037 /*
2038 * find the oldest backup so we know where to store new entries
2039 * in the backup array. This will set the backup_root_index
2040 * field in the fs_info struct
2041 */
2042 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2043 u64 newest_gen)
2044 {
2045 int newest_index = -1;
2046
2047 newest_index = find_newest_super_backup(info, newest_gen);
2048 /* if there was garbage in there, just move along */
2049 if (newest_index == -1) {
2050 info->backup_root_index = 0;
2051 } else {
2052 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2053 }
2054 }
2055
2056 /*
2057 * copy all the root pointers into the super backup array.
2058 * this will bump the backup pointer by one when it is
2059 * done
2060 */
2061 static void backup_super_roots(struct btrfs_fs_info *info)
2062 {
2063 int next_backup;
2064 struct btrfs_root_backup *root_backup;
2065 int last_backup;
2066
2067 next_backup = info->backup_root_index;
2068 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2069 BTRFS_NUM_BACKUP_ROOTS;
2070
2071 /*
2072 * just overwrite the last backup if we're at the same generation
2073 * this happens only at umount
2074 */
2075 root_backup = info->super_for_commit->super_roots + last_backup;
2076 if (btrfs_backup_tree_root_gen(root_backup) ==
2077 btrfs_header_generation(info->tree_root->node))
2078 next_backup = last_backup;
2079
2080 root_backup = info->super_for_commit->super_roots + next_backup;
2081
2082 /*
2083 * make sure all of our padding and empty slots get zero filled
2084 * regardless of which ones we use today
2085 */
2086 memset(root_backup, 0, sizeof(*root_backup));
2087
2088 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2089
2090 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2091 btrfs_set_backup_tree_root_gen(root_backup,
2092 btrfs_header_generation(info->tree_root->node));
2093
2094 btrfs_set_backup_tree_root_level(root_backup,
2095 btrfs_header_level(info->tree_root->node));
2096
2097 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2098 btrfs_set_backup_chunk_root_gen(root_backup,
2099 btrfs_header_generation(info->chunk_root->node));
2100 btrfs_set_backup_chunk_root_level(root_backup,
2101 btrfs_header_level(info->chunk_root->node));
2102
2103 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2104 btrfs_set_backup_extent_root_gen(root_backup,
2105 btrfs_header_generation(info->extent_root->node));
2106 btrfs_set_backup_extent_root_level(root_backup,
2107 btrfs_header_level(info->extent_root->node));
2108
2109 /*
2110 * we might commit during log recovery, which happens before we set
2111 * the fs_root. Make sure it is valid before we fill it in.
2112 */
2113 if (info->fs_root && info->fs_root->node) {
2114 btrfs_set_backup_fs_root(root_backup,
2115 info->fs_root->node->start);
2116 btrfs_set_backup_fs_root_gen(root_backup,
2117 btrfs_header_generation(info->fs_root->node));
2118 btrfs_set_backup_fs_root_level(root_backup,
2119 btrfs_header_level(info->fs_root->node));
2120 }
2121
2122 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2123 btrfs_set_backup_dev_root_gen(root_backup,
2124 btrfs_header_generation(info->dev_root->node));
2125 btrfs_set_backup_dev_root_level(root_backup,
2126 btrfs_header_level(info->dev_root->node));
2127
2128 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2129 btrfs_set_backup_csum_root_gen(root_backup,
2130 btrfs_header_generation(info->csum_root->node));
2131 btrfs_set_backup_csum_root_level(root_backup,
2132 btrfs_header_level(info->csum_root->node));
2133
2134 btrfs_set_backup_total_bytes(root_backup,
2135 btrfs_super_total_bytes(info->super_copy));
2136 btrfs_set_backup_bytes_used(root_backup,
2137 btrfs_super_bytes_used(info->super_copy));
2138 btrfs_set_backup_num_devices(root_backup,
2139 btrfs_super_num_devices(info->super_copy));
2140
2141 /*
2142 * if we don't copy this out to the super_copy, it won't get remembered
2143 * for the next commit
2144 */
2145 memcpy(&info->super_copy->super_roots,
2146 &info->super_for_commit->super_roots,
2147 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2148 }
2149
2150 /*
2151 * this copies info out of the root backup array and back into
2152 * the in-memory super block. It is meant to help iterate through
2153 * the array, so you send it the number of backups you've already
2154 * tried and the last backup index you used.
2155 *
2156 * this returns -1 when it has tried all the backups
2157 */
2158 static noinline int next_root_backup(struct btrfs_fs_info *info,
2159 struct btrfs_super_block *super,
2160 int *num_backups_tried, int *backup_index)
2161 {
2162 struct btrfs_root_backup *root_backup;
2163 int newest = *backup_index;
2164
2165 if (*num_backups_tried == 0) {
2166 u64 gen = btrfs_super_generation(super);
2167
2168 newest = find_newest_super_backup(info, gen);
2169 if (newest == -1)
2170 return -1;
2171
2172 *backup_index = newest;
2173 *num_backups_tried = 1;
2174 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2175 /* we've tried all the backups, all done */
2176 return -1;
2177 } else {
2178 /* jump to the next oldest backup */
2179 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2180 BTRFS_NUM_BACKUP_ROOTS;
2181 *backup_index = newest;
2182 *num_backups_tried += 1;
2183 }
2184 root_backup = super->super_roots + newest;
2185
2186 btrfs_set_super_generation(super,
2187 btrfs_backup_tree_root_gen(root_backup));
2188 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2189 btrfs_set_super_root_level(super,
2190 btrfs_backup_tree_root_level(root_backup));
2191 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2192
2193 /*
2194 * fixme: the total bytes and num_devices need to match or we should
2195 * need a fsck
2196 */
2197 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2198 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2199 return 0;
2200 }
2201
2202 /* helper to cleanup workers */
2203 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2204 {
2205 btrfs_destroy_workqueue(fs_info->fixup_workers);
2206 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2207 btrfs_destroy_workqueue(fs_info->workers);
2208 btrfs_destroy_workqueue(fs_info->endio_workers);
2209 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2210 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2211 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2212 btrfs_destroy_workqueue(fs_info->rmw_workers);
2213 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2214 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2215 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2216 btrfs_destroy_workqueue(fs_info->submit_workers);
2217 btrfs_destroy_workqueue(fs_info->delayed_workers);
2218 btrfs_destroy_workqueue(fs_info->caching_workers);
2219 btrfs_destroy_workqueue(fs_info->readahead_workers);
2220 btrfs_destroy_workqueue(fs_info->flush_workers);
2221 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2222 btrfs_destroy_workqueue(fs_info->extent_workers);
2223 }
2224
2225 static void free_root_extent_buffers(struct btrfs_root *root)
2226 {
2227 if (root) {
2228 free_extent_buffer(root->node);
2229 free_extent_buffer(root->commit_root);
2230 root->node = NULL;
2231 root->commit_root = NULL;
2232 }
2233 }
2234
2235 /* helper to cleanup tree roots */
2236 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2237 {
2238 free_root_extent_buffers(info->tree_root);
2239
2240 free_root_extent_buffers(info->dev_root);
2241 free_root_extent_buffers(info->extent_root);
2242 free_root_extent_buffers(info->csum_root);
2243 free_root_extent_buffers(info->quota_root);
2244 free_root_extent_buffers(info->uuid_root);
2245 if (chunk_root)
2246 free_root_extent_buffers(info->chunk_root);
2247 free_root_extent_buffers(info->free_space_root);
2248 }
2249
2250 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2251 {
2252 int ret;
2253 struct btrfs_root *gang[8];
2254 int i;
2255
2256 while (!list_empty(&fs_info->dead_roots)) {
2257 gang[0] = list_entry(fs_info->dead_roots.next,
2258 struct btrfs_root, root_list);
2259 list_del(&gang[0]->root_list);
2260
2261 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2262 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2263 } else {
2264 free_extent_buffer(gang[0]->node);
2265 free_extent_buffer(gang[0]->commit_root);
2266 btrfs_put_fs_root(gang[0]);
2267 }
2268 }
2269
2270 while (1) {
2271 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2272 (void **)gang, 0,
2273 ARRAY_SIZE(gang));
2274 if (!ret)
2275 break;
2276 for (i = 0; i < ret; i++)
2277 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2278 }
2279
2280 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2281 btrfs_free_log_root_tree(NULL, fs_info);
2282 btrfs_destroy_pinned_extent(fs_info->tree_root,
2283 fs_info->pinned_extents);
2284 }
2285 }
2286
2287 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288 {
2289 mutex_init(&fs_info->scrub_lock);
2290 atomic_set(&fs_info->scrubs_running, 0);
2291 atomic_set(&fs_info->scrub_pause_req, 0);
2292 atomic_set(&fs_info->scrubs_paused, 0);
2293 atomic_set(&fs_info->scrub_cancel_req, 0);
2294 init_waitqueue_head(&fs_info->scrub_pause_wait);
2295 fs_info->scrub_workers_refcnt = 0;
2296 }
2297
2298 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299 {
2300 spin_lock_init(&fs_info->balance_lock);
2301 mutex_init(&fs_info->balance_mutex);
2302 atomic_set(&fs_info->balance_running, 0);
2303 atomic_set(&fs_info->balance_pause_req, 0);
2304 atomic_set(&fs_info->balance_cancel_req, 0);
2305 fs_info->balance_ctl = NULL;
2306 init_waitqueue_head(&fs_info->balance_wait_q);
2307 }
2308
2309 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2310 struct btrfs_root *tree_root)
2311 {
2312 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2313 set_nlink(fs_info->btree_inode, 1);
2314 /*
2315 * we set the i_size on the btree inode to the max possible int.
2316 * the real end of the address space is determined by all of
2317 * the devices in the system
2318 */
2319 fs_info->btree_inode->i_size = OFFSET_MAX;
2320 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2321
2322 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2323 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2324 fs_info->btree_inode->i_mapping);
2325 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2326 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2327
2328 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2331 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2332 sizeof(struct btrfs_key));
2333 set_bit(BTRFS_INODE_DUMMY,
2334 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2335 btrfs_insert_inode_hash(fs_info->btree_inode);
2336 }
2337
2338 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2339 {
2340 fs_info->dev_replace.lock_owner = 0;
2341 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2342 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2343 rwlock_init(&fs_info->dev_replace.lock);
2344 atomic_set(&fs_info->dev_replace.read_locks, 0);
2345 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2346 init_waitqueue_head(&fs_info->replace_wait);
2347 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2348 }
2349
2350 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2351 {
2352 spin_lock_init(&fs_info->qgroup_lock);
2353 mutex_init(&fs_info->qgroup_ioctl_lock);
2354 fs_info->qgroup_tree = RB_ROOT;
2355 fs_info->qgroup_op_tree = RB_ROOT;
2356 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2357 fs_info->qgroup_seq = 1;
2358 fs_info->qgroup_ulist = NULL;
2359 fs_info->qgroup_rescan_running = false;
2360 mutex_init(&fs_info->qgroup_rescan_lock);
2361 }
2362
2363 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2364 struct btrfs_fs_devices *fs_devices)
2365 {
2366 int max_active = fs_info->thread_pool_size;
2367 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2368
2369 fs_info->workers =
2370 btrfs_alloc_workqueue(fs_info, "worker",
2371 flags | WQ_HIGHPRI, max_active, 16);
2372
2373 fs_info->delalloc_workers =
2374 btrfs_alloc_workqueue(fs_info, "delalloc",
2375 flags, max_active, 2);
2376
2377 fs_info->flush_workers =
2378 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2379 flags, max_active, 0);
2380
2381 fs_info->caching_workers =
2382 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2383
2384 /*
2385 * a higher idle thresh on the submit workers makes it much more
2386 * likely that bios will be send down in a sane order to the
2387 * devices
2388 */
2389 fs_info->submit_workers =
2390 btrfs_alloc_workqueue(fs_info, "submit", flags,
2391 min_t(u64, fs_devices->num_devices,
2392 max_active), 64);
2393
2394 fs_info->fixup_workers =
2395 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2396
2397 /*
2398 * endios are largely parallel and should have a very
2399 * low idle thresh
2400 */
2401 fs_info->endio_workers =
2402 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2403 fs_info->endio_meta_workers =
2404 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2405 max_active, 4);
2406 fs_info->endio_meta_write_workers =
2407 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2408 max_active, 2);
2409 fs_info->endio_raid56_workers =
2410 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2411 max_active, 4);
2412 fs_info->endio_repair_workers =
2413 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2414 fs_info->rmw_workers =
2415 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2416 fs_info->endio_write_workers =
2417 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2418 max_active, 2);
2419 fs_info->endio_freespace_worker =
2420 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2421 max_active, 0);
2422 fs_info->delayed_workers =
2423 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2424 max_active, 0);
2425 fs_info->readahead_workers =
2426 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2427 max_active, 2);
2428 fs_info->qgroup_rescan_workers =
2429 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2430 fs_info->extent_workers =
2431 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2432 min_t(u64, fs_devices->num_devices,
2433 max_active), 8);
2434
2435 if (!(fs_info->workers && fs_info->delalloc_workers &&
2436 fs_info->submit_workers && fs_info->flush_workers &&
2437 fs_info->endio_workers && fs_info->endio_meta_workers &&
2438 fs_info->endio_meta_write_workers &&
2439 fs_info->endio_repair_workers &&
2440 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2441 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2442 fs_info->caching_workers && fs_info->readahead_workers &&
2443 fs_info->fixup_workers && fs_info->delayed_workers &&
2444 fs_info->extent_workers &&
2445 fs_info->qgroup_rescan_workers)) {
2446 return -ENOMEM;
2447 }
2448
2449 return 0;
2450 }
2451
2452 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2453 struct btrfs_fs_devices *fs_devices)
2454 {
2455 int ret;
2456 struct btrfs_root *tree_root = fs_info->tree_root;
2457 struct btrfs_root *log_tree_root;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 u64 bytenr = btrfs_super_log_root(disk_super);
2460
2461 if (fs_devices->rw_devices == 0) {
2462 btrfs_warn(fs_info, "log replay required on RO media");
2463 return -EIO;
2464 }
2465
2466 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2467 if (!log_tree_root)
2468 return -ENOMEM;
2469
2470 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2471 tree_root->stripesize, log_tree_root, fs_info,
2472 BTRFS_TREE_LOG_OBJECTID);
2473
2474 log_tree_root->node = read_tree_block(tree_root, bytenr,
2475 fs_info->generation + 1);
2476 if (IS_ERR(log_tree_root->node)) {
2477 btrfs_warn(fs_info, "failed to read log tree");
2478 ret = PTR_ERR(log_tree_root->node);
2479 kfree(log_tree_root);
2480 return ret;
2481 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2482 btrfs_err(fs_info, "failed to read log tree");
2483 free_extent_buffer(log_tree_root->node);
2484 kfree(log_tree_root);
2485 return -EIO;
2486 }
2487 /* returns with log_tree_root freed on success */
2488 ret = btrfs_recover_log_trees(log_tree_root);
2489 if (ret) {
2490 btrfs_handle_fs_error(tree_root->fs_info, ret,
2491 "Failed to recover log tree");
2492 free_extent_buffer(log_tree_root->node);
2493 kfree(log_tree_root);
2494 return ret;
2495 }
2496
2497 if (fs_info->sb->s_flags & MS_RDONLY) {
2498 ret = btrfs_commit_super(tree_root);
2499 if (ret)
2500 return ret;
2501 }
2502
2503 return 0;
2504 }
2505
2506 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2507 struct btrfs_root *tree_root)
2508 {
2509 struct btrfs_root *root;
2510 struct btrfs_key location;
2511 int ret;
2512
2513 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2514 location.type = BTRFS_ROOT_ITEM_KEY;
2515 location.offset = 0;
2516
2517 root = btrfs_read_tree_root(tree_root, &location);
2518 if (IS_ERR(root))
2519 return PTR_ERR(root);
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 fs_info->extent_root = root;
2522
2523 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2524 root = btrfs_read_tree_root(tree_root, &location);
2525 if (IS_ERR(root))
2526 return PTR_ERR(root);
2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528 fs_info->dev_root = root;
2529 btrfs_init_devices_late(fs_info);
2530
2531 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2532 root = btrfs_read_tree_root(tree_root, &location);
2533 if (IS_ERR(root))
2534 return PTR_ERR(root);
2535 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2536 fs_info->csum_root = root;
2537
2538 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2539 root = btrfs_read_tree_root(tree_root, &location);
2540 if (!IS_ERR(root)) {
2541 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2542 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2543 fs_info->quota_root = root;
2544 }
2545
2546 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2547 root = btrfs_read_tree_root(tree_root, &location);
2548 if (IS_ERR(root)) {
2549 ret = PTR_ERR(root);
2550 if (ret != -ENOENT)
2551 return ret;
2552 } else {
2553 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2554 fs_info->uuid_root = root;
2555 }
2556
2557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2558 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2559 root = btrfs_read_tree_root(tree_root, &location);
2560 if (IS_ERR(root))
2561 return PTR_ERR(root);
2562 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2563 fs_info->free_space_root = root;
2564 }
2565
2566 return 0;
2567 }
2568
2569 int open_ctree(struct super_block *sb,
2570 struct btrfs_fs_devices *fs_devices,
2571 char *options)
2572 {
2573 u32 sectorsize;
2574 u32 nodesize;
2575 u32 stripesize;
2576 u64 generation;
2577 u64 features;
2578 struct btrfs_key location;
2579 struct buffer_head *bh;
2580 struct btrfs_super_block *disk_super;
2581 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2582 struct btrfs_root *tree_root;
2583 struct btrfs_root *chunk_root;
2584 int ret;
2585 int err = -EINVAL;
2586 int num_backups_tried = 0;
2587 int backup_index = 0;
2588 int max_active;
2589 int clear_free_space_tree = 0;
2590
2591 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2592 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2593 if (!tree_root || !chunk_root) {
2594 err = -ENOMEM;
2595 goto fail;
2596 }
2597
2598 ret = init_srcu_struct(&fs_info->subvol_srcu);
2599 if (ret) {
2600 err = ret;
2601 goto fail;
2602 }
2603
2604 ret = setup_bdi(fs_info, &fs_info->bdi);
2605 if (ret) {
2606 err = ret;
2607 goto fail_srcu;
2608 }
2609
2610 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2611 if (ret) {
2612 err = ret;
2613 goto fail_bdi;
2614 }
2615 fs_info->dirty_metadata_batch = PAGE_SIZE *
2616 (1 + ilog2(nr_cpu_ids));
2617
2618 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2619 if (ret) {
2620 err = ret;
2621 goto fail_dirty_metadata_bytes;
2622 }
2623
2624 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2625 if (ret) {
2626 err = ret;
2627 goto fail_delalloc_bytes;
2628 }
2629
2630 fs_info->btree_inode = new_inode(sb);
2631 if (!fs_info->btree_inode) {
2632 err = -ENOMEM;
2633 goto fail_bio_counter;
2634 }
2635
2636 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2637
2638 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2639 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2640 INIT_LIST_HEAD(&fs_info->trans_list);
2641 INIT_LIST_HEAD(&fs_info->dead_roots);
2642 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2643 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2644 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2645 spin_lock_init(&fs_info->delalloc_root_lock);
2646 spin_lock_init(&fs_info->trans_lock);
2647 spin_lock_init(&fs_info->fs_roots_radix_lock);
2648 spin_lock_init(&fs_info->delayed_iput_lock);
2649 spin_lock_init(&fs_info->defrag_inodes_lock);
2650 spin_lock_init(&fs_info->free_chunk_lock);
2651 spin_lock_init(&fs_info->tree_mod_seq_lock);
2652 spin_lock_init(&fs_info->super_lock);
2653 spin_lock_init(&fs_info->qgroup_op_lock);
2654 spin_lock_init(&fs_info->buffer_lock);
2655 spin_lock_init(&fs_info->unused_bgs_lock);
2656 rwlock_init(&fs_info->tree_mod_log_lock);
2657 mutex_init(&fs_info->unused_bg_unpin_mutex);
2658 mutex_init(&fs_info->delete_unused_bgs_mutex);
2659 mutex_init(&fs_info->reloc_mutex);
2660 mutex_init(&fs_info->delalloc_root_mutex);
2661 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2662 seqlock_init(&fs_info->profiles_lock);
2663
2664 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2665 INIT_LIST_HEAD(&fs_info->space_info);
2666 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2667 INIT_LIST_HEAD(&fs_info->unused_bgs);
2668 btrfs_mapping_init(&fs_info->mapping_tree);
2669 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2670 BTRFS_BLOCK_RSV_GLOBAL);
2671 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2672 BTRFS_BLOCK_RSV_DELALLOC);
2673 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2674 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2675 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2676 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2677 BTRFS_BLOCK_RSV_DELOPS);
2678 atomic_set(&fs_info->nr_async_submits, 0);
2679 atomic_set(&fs_info->async_delalloc_pages, 0);
2680 atomic_set(&fs_info->async_submit_draining, 0);
2681 atomic_set(&fs_info->nr_async_bios, 0);
2682 atomic_set(&fs_info->defrag_running, 0);
2683 atomic_set(&fs_info->qgroup_op_seq, 0);
2684 atomic_set(&fs_info->reada_works_cnt, 0);
2685 atomic64_set(&fs_info->tree_mod_seq, 0);
2686 fs_info->fs_frozen = 0;
2687 fs_info->sb = sb;
2688 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2689 fs_info->metadata_ratio = 0;
2690 fs_info->defrag_inodes = RB_ROOT;
2691 fs_info->free_chunk_space = 0;
2692 fs_info->tree_mod_log = RB_ROOT;
2693 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2694 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2695 /* readahead state */
2696 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2697 spin_lock_init(&fs_info->reada_lock);
2698
2699 fs_info->thread_pool_size = min_t(unsigned long,
2700 num_online_cpus() + 2, 8);
2701
2702 INIT_LIST_HEAD(&fs_info->ordered_roots);
2703 spin_lock_init(&fs_info->ordered_root_lock);
2704 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2705 GFP_KERNEL);
2706 if (!fs_info->delayed_root) {
2707 err = -ENOMEM;
2708 goto fail_iput;
2709 }
2710 btrfs_init_delayed_root(fs_info->delayed_root);
2711
2712 btrfs_init_scrub(fs_info);
2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2714 fs_info->check_integrity_print_mask = 0;
2715 #endif
2716 btrfs_init_balance(fs_info);
2717 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2718
2719 sb->s_blocksize = 4096;
2720 sb->s_blocksize_bits = blksize_bits(4096);
2721 sb->s_bdi = &fs_info->bdi;
2722
2723 btrfs_init_btree_inode(fs_info, tree_root);
2724
2725 spin_lock_init(&fs_info->block_group_cache_lock);
2726 fs_info->block_group_cache_tree = RB_ROOT;
2727 fs_info->first_logical_byte = (u64)-1;
2728
2729 extent_io_tree_init(&fs_info->freed_extents[0],
2730 fs_info->btree_inode->i_mapping);
2731 extent_io_tree_init(&fs_info->freed_extents[1],
2732 fs_info->btree_inode->i_mapping);
2733 fs_info->pinned_extents = &fs_info->freed_extents[0];
2734 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2735
2736 mutex_init(&fs_info->ordered_operations_mutex);
2737 mutex_init(&fs_info->tree_log_mutex);
2738 mutex_init(&fs_info->chunk_mutex);
2739 mutex_init(&fs_info->transaction_kthread_mutex);
2740 mutex_init(&fs_info->cleaner_mutex);
2741 mutex_init(&fs_info->volume_mutex);
2742 mutex_init(&fs_info->ro_block_group_mutex);
2743 init_rwsem(&fs_info->commit_root_sem);
2744 init_rwsem(&fs_info->cleanup_work_sem);
2745 init_rwsem(&fs_info->subvol_sem);
2746 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2747
2748 btrfs_init_dev_replace_locks(fs_info);
2749 btrfs_init_qgroup(fs_info);
2750
2751 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2752 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2753
2754 init_waitqueue_head(&fs_info->transaction_throttle);
2755 init_waitqueue_head(&fs_info->transaction_wait);
2756 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2757 init_waitqueue_head(&fs_info->async_submit_wait);
2758
2759 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2760
2761 ret = btrfs_alloc_stripe_hash_table(fs_info);
2762 if (ret) {
2763 err = ret;
2764 goto fail_alloc;
2765 }
2766
2767 __setup_root(4096, 4096, 4096, tree_root,
2768 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2769
2770 invalidate_bdev(fs_devices->latest_bdev);
2771
2772 /*
2773 * Read super block and check the signature bytes only
2774 */
2775 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2776 if (IS_ERR(bh)) {
2777 err = PTR_ERR(bh);
2778 goto fail_alloc;
2779 }
2780
2781 /*
2782 * We want to check superblock checksum, the type is stored inside.
2783 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2784 */
2785 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2786 btrfs_err(fs_info, "superblock checksum mismatch");
2787 err = -EINVAL;
2788 brelse(bh);
2789 goto fail_alloc;
2790 }
2791
2792 /*
2793 * super_copy is zeroed at allocation time and we never touch the
2794 * following bytes up to INFO_SIZE, the checksum is calculated from
2795 * the whole block of INFO_SIZE
2796 */
2797 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2798 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2799 sizeof(*fs_info->super_for_commit));
2800 brelse(bh);
2801
2802 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2803
2804 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2805 if (ret) {
2806 btrfs_err(fs_info, "superblock contains fatal errors");
2807 err = -EINVAL;
2808 goto fail_alloc;
2809 }
2810
2811 disk_super = fs_info->super_copy;
2812 if (!btrfs_super_root(disk_super))
2813 goto fail_alloc;
2814
2815 /* check FS state, whether FS is broken. */
2816 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2817 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2818
2819 /*
2820 * run through our array of backup supers and setup
2821 * our ring pointer to the oldest one
2822 */
2823 generation = btrfs_super_generation(disk_super);
2824 find_oldest_super_backup(fs_info, generation);
2825
2826 /*
2827 * In the long term, we'll store the compression type in the super
2828 * block, and it'll be used for per file compression control.
2829 */
2830 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2831
2832 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2833 if (ret) {
2834 err = ret;
2835 goto fail_alloc;
2836 }
2837
2838 features = btrfs_super_incompat_flags(disk_super) &
2839 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2840 if (features) {
2841 btrfs_err(fs_info,
2842 "cannot mount because of unsupported optional features (%llx)",
2843 features);
2844 err = -EINVAL;
2845 goto fail_alloc;
2846 }
2847
2848 features = btrfs_super_incompat_flags(disk_super);
2849 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2850 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2851 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2852
2853 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2854 btrfs_info(fs_info, "has skinny extents");
2855
2856 /*
2857 * flag our filesystem as having big metadata blocks if
2858 * they are bigger than the page size
2859 */
2860 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2861 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2862 btrfs_info(fs_info,
2863 "flagging fs with big metadata feature");
2864 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2865 }
2866
2867 nodesize = btrfs_super_nodesize(disk_super);
2868 sectorsize = btrfs_super_sectorsize(disk_super);
2869 stripesize = sectorsize;
2870 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2871 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2872
2873 /*
2874 * mixed block groups end up with duplicate but slightly offset
2875 * extent buffers for the same range. It leads to corruptions
2876 */
2877 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2878 (sectorsize != nodesize)) {
2879 btrfs_err(fs_info,
2880 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2881 nodesize, sectorsize);
2882 goto fail_alloc;
2883 }
2884
2885 /*
2886 * Needn't use the lock because there is no other task which will
2887 * update the flag.
2888 */
2889 btrfs_set_super_incompat_flags(disk_super, features);
2890
2891 features = btrfs_super_compat_ro_flags(disk_super) &
2892 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2893 if (!(sb->s_flags & MS_RDONLY) && features) {
2894 btrfs_err(fs_info,
2895 "cannot mount read-write because of unsupported optional features (%llx)",
2896 features);
2897 err = -EINVAL;
2898 goto fail_alloc;
2899 }
2900
2901 max_active = fs_info->thread_pool_size;
2902
2903 ret = btrfs_init_workqueues(fs_info, fs_devices);
2904 if (ret) {
2905 err = ret;
2906 goto fail_sb_buffer;
2907 }
2908
2909 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2910 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2911 SZ_4M / PAGE_SIZE);
2912
2913 tree_root->nodesize = nodesize;
2914 tree_root->sectorsize = sectorsize;
2915 tree_root->stripesize = stripesize;
2916
2917 sb->s_blocksize = sectorsize;
2918 sb->s_blocksize_bits = blksize_bits(sectorsize);
2919
2920 mutex_lock(&fs_info->chunk_mutex);
2921 ret = btrfs_read_sys_array(tree_root);
2922 mutex_unlock(&fs_info->chunk_mutex);
2923 if (ret) {
2924 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2925 goto fail_sb_buffer;
2926 }
2927
2928 generation = btrfs_super_chunk_root_generation(disk_super);
2929
2930 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2931 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2932
2933 chunk_root->node = read_tree_block(chunk_root,
2934 btrfs_super_chunk_root(disk_super),
2935 generation);
2936 if (IS_ERR(chunk_root->node) ||
2937 !extent_buffer_uptodate(chunk_root->node)) {
2938 btrfs_err(fs_info, "failed to read chunk root");
2939 if (!IS_ERR(chunk_root->node))
2940 free_extent_buffer(chunk_root->node);
2941 chunk_root->node = NULL;
2942 goto fail_tree_roots;
2943 }
2944 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2945 chunk_root->commit_root = btrfs_root_node(chunk_root);
2946
2947 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2948 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2949
2950 ret = btrfs_read_chunk_tree(chunk_root);
2951 if (ret) {
2952 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2953 goto fail_tree_roots;
2954 }
2955
2956 /*
2957 * keep the device that is marked to be the target device for the
2958 * dev_replace procedure
2959 */
2960 btrfs_close_extra_devices(fs_devices, 0);
2961
2962 if (!fs_devices->latest_bdev) {
2963 btrfs_err(fs_info, "failed to read devices");
2964 goto fail_tree_roots;
2965 }
2966
2967 retry_root_backup:
2968 generation = btrfs_super_generation(disk_super);
2969
2970 tree_root->node = read_tree_block(tree_root,
2971 btrfs_super_root(disk_super),
2972 generation);
2973 if (IS_ERR(tree_root->node) ||
2974 !extent_buffer_uptodate(tree_root->node)) {
2975 btrfs_warn(fs_info, "failed to read tree root");
2976 if (!IS_ERR(tree_root->node))
2977 free_extent_buffer(tree_root->node);
2978 tree_root->node = NULL;
2979 goto recovery_tree_root;
2980 }
2981
2982 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2983 tree_root->commit_root = btrfs_root_node(tree_root);
2984 btrfs_set_root_refs(&tree_root->root_item, 1);
2985
2986 mutex_lock(&tree_root->objectid_mutex);
2987 ret = btrfs_find_highest_objectid(tree_root,
2988 &tree_root->highest_objectid);
2989 if (ret) {
2990 mutex_unlock(&tree_root->objectid_mutex);
2991 goto recovery_tree_root;
2992 }
2993
2994 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2995
2996 mutex_unlock(&tree_root->objectid_mutex);
2997
2998 ret = btrfs_read_roots(fs_info, tree_root);
2999 if (ret)
3000 goto recovery_tree_root;
3001
3002 fs_info->generation = generation;
3003 fs_info->last_trans_committed = generation;
3004
3005 ret = btrfs_recover_balance(fs_info);
3006 if (ret) {
3007 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3008 goto fail_block_groups;
3009 }
3010
3011 ret = btrfs_init_dev_stats(fs_info);
3012 if (ret) {
3013 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3014 goto fail_block_groups;
3015 }
3016
3017 ret = btrfs_init_dev_replace(fs_info);
3018 if (ret) {
3019 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3020 goto fail_block_groups;
3021 }
3022
3023 btrfs_close_extra_devices(fs_devices, 1);
3024
3025 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3026 if (ret) {
3027 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3028 ret);
3029 goto fail_block_groups;
3030 }
3031
3032 ret = btrfs_sysfs_add_device(fs_devices);
3033 if (ret) {
3034 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3035 ret);
3036 goto fail_fsdev_sysfs;
3037 }
3038
3039 ret = btrfs_sysfs_add_mounted(fs_info);
3040 if (ret) {
3041 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3042 goto fail_fsdev_sysfs;
3043 }
3044
3045 ret = btrfs_init_space_info(fs_info);
3046 if (ret) {
3047 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3048 goto fail_sysfs;
3049 }
3050
3051 ret = btrfs_read_block_groups(fs_info->extent_root);
3052 if (ret) {
3053 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3054 goto fail_sysfs;
3055 }
3056 fs_info->num_tolerated_disk_barrier_failures =
3057 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3058 if (fs_info->fs_devices->missing_devices >
3059 fs_info->num_tolerated_disk_barrier_failures &&
3060 !(sb->s_flags & MS_RDONLY)) {
3061 btrfs_warn(fs_info,
3062 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3063 fs_info->fs_devices->missing_devices,
3064 fs_info->num_tolerated_disk_barrier_failures);
3065 goto fail_sysfs;
3066 }
3067
3068 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3069 "btrfs-cleaner");
3070 if (IS_ERR(fs_info->cleaner_kthread))
3071 goto fail_sysfs;
3072
3073 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3074 tree_root,
3075 "btrfs-transaction");
3076 if (IS_ERR(fs_info->transaction_kthread))
3077 goto fail_cleaner;
3078
3079 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3080 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3081 !fs_info->fs_devices->rotating) {
3082 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3083 btrfs_set_opt(fs_info->mount_opt, SSD);
3084 }
3085
3086 /*
3087 * Mount does not set all options immediately, we can do it now and do
3088 * not have to wait for transaction commit
3089 */
3090 btrfs_apply_pending_changes(fs_info);
3091
3092 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3093 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3094 ret = btrfsic_mount(tree_root, fs_devices,
3095 btrfs_test_opt(tree_root->fs_info,
3096 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3097 1 : 0,
3098 fs_info->check_integrity_print_mask);
3099 if (ret)
3100 btrfs_warn(fs_info,
3101 "failed to initialize integrity check module: %d",
3102 ret);
3103 }
3104 #endif
3105 ret = btrfs_read_qgroup_config(fs_info);
3106 if (ret)
3107 goto fail_trans_kthread;
3108
3109 /* do not make disk changes in broken FS or nologreplay is given */
3110 if (btrfs_super_log_root(disk_super) != 0 &&
3111 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3112 ret = btrfs_replay_log(fs_info, fs_devices);
3113 if (ret) {
3114 err = ret;
3115 goto fail_qgroup;
3116 }
3117 }
3118
3119 ret = btrfs_find_orphan_roots(tree_root);
3120 if (ret)
3121 goto fail_qgroup;
3122
3123 if (!(sb->s_flags & MS_RDONLY)) {
3124 ret = btrfs_cleanup_fs_roots(fs_info);
3125 if (ret)
3126 goto fail_qgroup;
3127
3128 mutex_lock(&fs_info->cleaner_mutex);
3129 ret = btrfs_recover_relocation(tree_root);
3130 mutex_unlock(&fs_info->cleaner_mutex);
3131 if (ret < 0) {
3132 btrfs_warn(fs_info, "failed to recover relocation: %d",
3133 ret);
3134 err = -EINVAL;
3135 goto fail_qgroup;
3136 }
3137 }
3138
3139 location.objectid = BTRFS_FS_TREE_OBJECTID;
3140 location.type = BTRFS_ROOT_ITEM_KEY;
3141 location.offset = 0;
3142
3143 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3144 if (IS_ERR(fs_info->fs_root)) {
3145 err = PTR_ERR(fs_info->fs_root);
3146 goto fail_qgroup;
3147 }
3148
3149 if (sb->s_flags & MS_RDONLY)
3150 return 0;
3151
3152 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3153 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3154 clear_free_space_tree = 1;
3155 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3156 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3157 btrfs_warn(fs_info, "free space tree is invalid");
3158 clear_free_space_tree = 1;
3159 }
3160
3161 if (clear_free_space_tree) {
3162 btrfs_info(fs_info, "clearing free space tree");
3163 ret = btrfs_clear_free_space_tree(fs_info);
3164 if (ret) {
3165 btrfs_warn(fs_info,
3166 "failed to clear free space tree: %d", ret);
3167 close_ctree(tree_root);
3168 return ret;
3169 }
3170 }
3171
3172 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3173 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3174 btrfs_info(fs_info, "creating free space tree");
3175 ret = btrfs_create_free_space_tree(fs_info);
3176 if (ret) {
3177 btrfs_warn(fs_info,
3178 "failed to create free space tree: %d", ret);
3179 close_ctree(tree_root);
3180 return ret;
3181 }
3182 }
3183
3184 down_read(&fs_info->cleanup_work_sem);
3185 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3186 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3187 up_read(&fs_info->cleanup_work_sem);
3188 close_ctree(tree_root);
3189 return ret;
3190 }
3191 up_read(&fs_info->cleanup_work_sem);
3192
3193 ret = btrfs_resume_balance_async(fs_info);
3194 if (ret) {
3195 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3196 close_ctree(tree_root);
3197 return ret;
3198 }
3199
3200 ret = btrfs_resume_dev_replace_async(fs_info);
3201 if (ret) {
3202 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3203 close_ctree(tree_root);
3204 return ret;
3205 }
3206
3207 btrfs_qgroup_rescan_resume(fs_info);
3208
3209 if (!fs_info->uuid_root) {
3210 btrfs_info(fs_info, "creating UUID tree");
3211 ret = btrfs_create_uuid_tree(fs_info);
3212 if (ret) {
3213 btrfs_warn(fs_info,
3214 "failed to create the UUID tree: %d", ret);
3215 close_ctree(tree_root);
3216 return ret;
3217 }
3218 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3219 fs_info->generation !=
3220 btrfs_super_uuid_tree_generation(disk_super)) {
3221 btrfs_info(fs_info, "checking UUID tree");
3222 ret = btrfs_check_uuid_tree(fs_info);
3223 if (ret) {
3224 btrfs_warn(fs_info,
3225 "failed to check the UUID tree: %d", ret);
3226 close_ctree(tree_root);
3227 return ret;
3228 }
3229 } else {
3230 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3231 }
3232 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3233
3234 /*
3235 * backuproot only affect mount behavior, and if open_ctree succeeded,
3236 * no need to keep the flag
3237 */
3238 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3239
3240 return 0;
3241
3242 fail_qgroup:
3243 btrfs_free_qgroup_config(fs_info);
3244 fail_trans_kthread:
3245 kthread_stop(fs_info->transaction_kthread);
3246 btrfs_cleanup_transaction(fs_info->tree_root);
3247 btrfs_free_fs_roots(fs_info);
3248 fail_cleaner:
3249 kthread_stop(fs_info->cleaner_kthread);
3250
3251 /*
3252 * make sure we're done with the btree inode before we stop our
3253 * kthreads
3254 */
3255 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3256
3257 fail_sysfs:
3258 btrfs_sysfs_remove_mounted(fs_info);
3259
3260 fail_fsdev_sysfs:
3261 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3262
3263 fail_block_groups:
3264 btrfs_put_block_group_cache(fs_info);
3265 btrfs_free_block_groups(fs_info);
3266
3267 fail_tree_roots:
3268 free_root_pointers(fs_info, 1);
3269 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3270
3271 fail_sb_buffer:
3272 btrfs_stop_all_workers(fs_info);
3273 fail_alloc:
3274 fail_iput:
3275 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3276
3277 iput(fs_info->btree_inode);
3278 fail_bio_counter:
3279 percpu_counter_destroy(&fs_info->bio_counter);
3280 fail_delalloc_bytes:
3281 percpu_counter_destroy(&fs_info->delalloc_bytes);
3282 fail_dirty_metadata_bytes:
3283 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3284 fail_bdi:
3285 bdi_destroy(&fs_info->bdi);
3286 fail_srcu:
3287 cleanup_srcu_struct(&fs_info->subvol_srcu);
3288 fail:
3289 btrfs_free_stripe_hash_table(fs_info);
3290 btrfs_close_devices(fs_info->fs_devices);
3291 return err;
3292
3293 recovery_tree_root:
3294 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3295 goto fail_tree_roots;
3296
3297 free_root_pointers(fs_info, 0);
3298
3299 /* don't use the log in recovery mode, it won't be valid */
3300 btrfs_set_super_log_root(disk_super, 0);
3301
3302 /* we can't trust the free space cache either */
3303 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3304
3305 ret = next_root_backup(fs_info, fs_info->super_copy,
3306 &num_backups_tried, &backup_index);
3307 if (ret == -1)
3308 goto fail_block_groups;
3309 goto retry_root_backup;
3310 }
3311
3312 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3313 {
3314 if (uptodate) {
3315 set_buffer_uptodate(bh);
3316 } else {
3317 struct btrfs_device *device = (struct btrfs_device *)
3318 bh->b_private;
3319
3320 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3321 "lost page write due to IO error on %s",
3322 rcu_str_deref(device->name));
3323 /* note, we don't set_buffer_write_io_error because we have
3324 * our own ways of dealing with the IO errors
3325 */
3326 clear_buffer_uptodate(bh);
3327 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3328 }
3329 unlock_buffer(bh);
3330 put_bh(bh);
3331 }
3332
3333 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3334 struct buffer_head **bh_ret)
3335 {
3336 struct buffer_head *bh;
3337 struct btrfs_super_block *super;
3338 u64 bytenr;
3339
3340 bytenr = btrfs_sb_offset(copy_num);
3341 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3342 return -EINVAL;
3343
3344 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3345 /*
3346 * If we fail to read from the underlying devices, as of now
3347 * the best option we have is to mark it EIO.
3348 */
3349 if (!bh)
3350 return -EIO;
3351
3352 super = (struct btrfs_super_block *)bh->b_data;
3353 if (btrfs_super_bytenr(super) != bytenr ||
3354 btrfs_super_magic(super) != BTRFS_MAGIC) {
3355 brelse(bh);
3356 return -EINVAL;
3357 }
3358
3359 *bh_ret = bh;
3360 return 0;
3361 }
3362
3363
3364 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3365 {
3366 struct buffer_head *bh;
3367 struct buffer_head *latest = NULL;
3368 struct btrfs_super_block *super;
3369 int i;
3370 u64 transid = 0;
3371 int ret = -EINVAL;
3372
3373 /* we would like to check all the supers, but that would make
3374 * a btrfs mount succeed after a mkfs from a different FS.
3375 * So, we need to add a special mount option to scan for
3376 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3377 */
3378 for (i = 0; i < 1; i++) {
3379 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3380 if (ret)
3381 continue;
3382
3383 super = (struct btrfs_super_block *)bh->b_data;
3384
3385 if (!latest || btrfs_super_generation(super) > transid) {
3386 brelse(latest);
3387 latest = bh;
3388 transid = btrfs_super_generation(super);
3389 } else {
3390 brelse(bh);
3391 }
3392 }
3393
3394 if (!latest)
3395 return ERR_PTR(ret);
3396
3397 return latest;
3398 }
3399
3400 /*
3401 * this should be called twice, once with wait == 0 and
3402 * once with wait == 1. When wait == 0 is done, all the buffer heads
3403 * we write are pinned.
3404 *
3405 * They are released when wait == 1 is done.
3406 * max_mirrors must be the same for both runs, and it indicates how
3407 * many supers on this one device should be written.
3408 *
3409 * max_mirrors == 0 means to write them all.
3410 */
3411 static int write_dev_supers(struct btrfs_device *device,
3412 struct btrfs_super_block *sb,
3413 int do_barriers, int wait, int max_mirrors)
3414 {
3415 struct buffer_head *bh;
3416 int i;
3417 int ret;
3418 int errors = 0;
3419 u32 crc;
3420 u64 bytenr;
3421
3422 if (max_mirrors == 0)
3423 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3424
3425 for (i = 0; i < max_mirrors; i++) {
3426 bytenr = btrfs_sb_offset(i);
3427 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3428 device->commit_total_bytes)
3429 break;
3430
3431 if (wait) {
3432 bh = __find_get_block(device->bdev, bytenr / 4096,
3433 BTRFS_SUPER_INFO_SIZE);
3434 if (!bh) {
3435 errors++;
3436 continue;
3437 }
3438 wait_on_buffer(bh);
3439 if (!buffer_uptodate(bh))
3440 errors++;
3441
3442 /* drop our reference */
3443 brelse(bh);
3444
3445 /* drop the reference from the wait == 0 run */
3446 brelse(bh);
3447 continue;
3448 } else {
3449 btrfs_set_super_bytenr(sb, bytenr);
3450
3451 crc = ~(u32)0;
3452 crc = btrfs_csum_data((char *)sb +
3453 BTRFS_CSUM_SIZE, crc,
3454 BTRFS_SUPER_INFO_SIZE -
3455 BTRFS_CSUM_SIZE);
3456 btrfs_csum_final(crc, sb->csum);
3457
3458 /*
3459 * one reference for us, and we leave it for the
3460 * caller
3461 */
3462 bh = __getblk(device->bdev, bytenr / 4096,
3463 BTRFS_SUPER_INFO_SIZE);
3464 if (!bh) {
3465 btrfs_err(device->dev_root->fs_info,
3466 "couldn't get super buffer head for bytenr %llu",
3467 bytenr);
3468 errors++;
3469 continue;
3470 }
3471
3472 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3473
3474 /* one reference for submit_bh */
3475 get_bh(bh);
3476
3477 set_buffer_uptodate(bh);
3478 lock_buffer(bh);
3479 bh->b_end_io = btrfs_end_buffer_write_sync;
3480 bh->b_private = device;
3481 }
3482
3483 /*
3484 * we fua the first super. The others we allow
3485 * to go down lazy.
3486 */
3487 if (i == 0)
3488 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3489 else
3490 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3491 if (ret)
3492 errors++;
3493 }
3494 return errors < i ? 0 : -1;
3495 }
3496
3497 /*
3498 * endio for the write_dev_flush, this will wake anyone waiting
3499 * for the barrier when it is done
3500 */
3501 static void btrfs_end_empty_barrier(struct bio *bio)
3502 {
3503 if (bio->bi_private)
3504 complete(bio->bi_private);
3505 bio_put(bio);
3506 }
3507
3508 /*
3509 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3510 * sent down. With wait == 1, it waits for the previous flush.
3511 *
3512 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3513 * capable
3514 */
3515 static int write_dev_flush(struct btrfs_device *device, int wait)
3516 {
3517 struct bio *bio;
3518 int ret = 0;
3519
3520 if (device->nobarriers)
3521 return 0;
3522
3523 if (wait) {
3524 bio = device->flush_bio;
3525 if (!bio)
3526 return 0;
3527
3528 wait_for_completion(&device->flush_wait);
3529
3530 if (bio->bi_error) {
3531 ret = bio->bi_error;
3532 btrfs_dev_stat_inc_and_print(device,
3533 BTRFS_DEV_STAT_FLUSH_ERRS);
3534 }
3535
3536 /* drop the reference from the wait == 0 run */
3537 bio_put(bio);
3538 device->flush_bio = NULL;
3539
3540 return ret;
3541 }
3542
3543 /*
3544 * one reference for us, and we leave it for the
3545 * caller
3546 */
3547 device->flush_bio = NULL;
3548 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3549 if (!bio)
3550 return -ENOMEM;
3551
3552 bio->bi_end_io = btrfs_end_empty_barrier;
3553 bio->bi_bdev = device->bdev;
3554 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3555 init_completion(&device->flush_wait);
3556 bio->bi_private = &device->flush_wait;
3557 device->flush_bio = bio;
3558
3559 bio_get(bio);
3560 btrfsic_submit_bio(bio);
3561
3562 return 0;
3563 }
3564
3565 /*
3566 * send an empty flush down to each device in parallel,
3567 * then wait for them
3568 */
3569 static int barrier_all_devices(struct btrfs_fs_info *info)
3570 {
3571 struct list_head *head;
3572 struct btrfs_device *dev;
3573 int errors_send = 0;
3574 int errors_wait = 0;
3575 int ret;
3576
3577 /* send down all the barriers */
3578 head = &info->fs_devices->devices;
3579 list_for_each_entry_rcu(dev, head, dev_list) {
3580 if (dev->missing)
3581 continue;
3582 if (!dev->bdev) {
3583 errors_send++;
3584 continue;
3585 }
3586 if (!dev->in_fs_metadata || !dev->writeable)
3587 continue;
3588
3589 ret = write_dev_flush(dev, 0);
3590 if (ret)
3591 errors_send++;
3592 }
3593
3594 /* wait for all the barriers */
3595 list_for_each_entry_rcu(dev, head, dev_list) {
3596 if (dev->missing)
3597 continue;
3598 if (!dev->bdev) {
3599 errors_wait++;
3600 continue;
3601 }
3602 if (!dev->in_fs_metadata || !dev->writeable)
3603 continue;
3604
3605 ret = write_dev_flush(dev, 1);
3606 if (ret)
3607 errors_wait++;
3608 }
3609 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3610 errors_wait > info->num_tolerated_disk_barrier_failures)
3611 return -EIO;
3612 return 0;
3613 }
3614
3615 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3616 {
3617 int raid_type;
3618 int min_tolerated = INT_MAX;
3619
3620 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3621 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3622 min_tolerated = min(min_tolerated,
3623 btrfs_raid_array[BTRFS_RAID_SINGLE].
3624 tolerated_failures);
3625
3626 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3627 if (raid_type == BTRFS_RAID_SINGLE)
3628 continue;
3629 if (!(flags & btrfs_raid_group[raid_type]))
3630 continue;
3631 min_tolerated = min(min_tolerated,
3632 btrfs_raid_array[raid_type].
3633 tolerated_failures);
3634 }
3635
3636 if (min_tolerated == INT_MAX) {
3637 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3638 min_tolerated = 0;
3639 }
3640
3641 return min_tolerated;
3642 }
3643
3644 int btrfs_calc_num_tolerated_disk_barrier_failures(
3645 struct btrfs_fs_info *fs_info)
3646 {
3647 struct btrfs_ioctl_space_info space;
3648 struct btrfs_space_info *sinfo;
3649 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3650 BTRFS_BLOCK_GROUP_SYSTEM,
3651 BTRFS_BLOCK_GROUP_METADATA,
3652 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3653 int i;
3654 int c;
3655 int num_tolerated_disk_barrier_failures =
3656 (int)fs_info->fs_devices->num_devices;
3657
3658 for (i = 0; i < ARRAY_SIZE(types); i++) {
3659 struct btrfs_space_info *tmp;
3660
3661 sinfo = NULL;
3662 rcu_read_lock();
3663 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3664 if (tmp->flags == types[i]) {
3665 sinfo = tmp;
3666 break;
3667 }
3668 }
3669 rcu_read_unlock();
3670
3671 if (!sinfo)
3672 continue;
3673
3674 down_read(&sinfo->groups_sem);
3675 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3676 u64 flags;
3677
3678 if (list_empty(&sinfo->block_groups[c]))
3679 continue;
3680
3681 btrfs_get_block_group_info(&sinfo->block_groups[c],
3682 &space);
3683 if (space.total_bytes == 0 || space.used_bytes == 0)
3684 continue;
3685 flags = space.flags;
3686
3687 num_tolerated_disk_barrier_failures = min(
3688 num_tolerated_disk_barrier_failures,
3689 btrfs_get_num_tolerated_disk_barrier_failures(
3690 flags));
3691 }
3692 up_read(&sinfo->groups_sem);
3693 }
3694
3695 return num_tolerated_disk_barrier_failures;
3696 }
3697
3698 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3699 {
3700 struct list_head *head;
3701 struct btrfs_device *dev;
3702 struct btrfs_super_block *sb;
3703 struct btrfs_dev_item *dev_item;
3704 int ret;
3705 int do_barriers;
3706 int max_errors;
3707 int total_errors = 0;
3708 u64 flags;
3709
3710 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3711 backup_super_roots(root->fs_info);
3712
3713 sb = root->fs_info->super_for_commit;
3714 dev_item = &sb->dev_item;
3715
3716 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3717 head = &root->fs_info->fs_devices->devices;
3718 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3719
3720 if (do_barriers) {
3721 ret = barrier_all_devices(root->fs_info);
3722 if (ret) {
3723 mutex_unlock(
3724 &root->fs_info->fs_devices->device_list_mutex);
3725 btrfs_handle_fs_error(root->fs_info, ret,
3726 "errors while submitting device barriers.");
3727 return ret;
3728 }
3729 }
3730
3731 list_for_each_entry_rcu(dev, head, dev_list) {
3732 if (!dev->bdev) {
3733 total_errors++;
3734 continue;
3735 }
3736 if (!dev->in_fs_metadata || !dev->writeable)
3737 continue;
3738
3739 btrfs_set_stack_device_generation(dev_item, 0);
3740 btrfs_set_stack_device_type(dev_item, dev->type);
3741 btrfs_set_stack_device_id(dev_item, dev->devid);
3742 btrfs_set_stack_device_total_bytes(dev_item,
3743 dev->commit_total_bytes);
3744 btrfs_set_stack_device_bytes_used(dev_item,
3745 dev->commit_bytes_used);
3746 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3747 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3748 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3749 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3750 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3751
3752 flags = btrfs_super_flags(sb);
3753 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3754
3755 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3756 if (ret)
3757 total_errors++;
3758 }
3759 if (total_errors > max_errors) {
3760 btrfs_err(root->fs_info, "%d errors while writing supers",
3761 total_errors);
3762 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3763
3764 /* FUA is masked off if unsupported and can't be the reason */
3765 btrfs_handle_fs_error(root->fs_info, -EIO,
3766 "%d errors while writing supers", total_errors);
3767 return -EIO;
3768 }
3769
3770 total_errors = 0;
3771 list_for_each_entry_rcu(dev, head, dev_list) {
3772 if (!dev->bdev)
3773 continue;
3774 if (!dev->in_fs_metadata || !dev->writeable)
3775 continue;
3776
3777 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3778 if (ret)
3779 total_errors++;
3780 }
3781 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3782 if (total_errors > max_errors) {
3783 btrfs_handle_fs_error(root->fs_info, -EIO,
3784 "%d errors while writing supers", total_errors);
3785 return -EIO;
3786 }
3787 return 0;
3788 }
3789
3790 int write_ctree_super(struct btrfs_trans_handle *trans,
3791 struct btrfs_root *root, int max_mirrors)
3792 {
3793 return write_all_supers(root, max_mirrors);
3794 }
3795
3796 /* Drop a fs root from the radix tree and free it. */
3797 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3798 struct btrfs_root *root)
3799 {
3800 spin_lock(&fs_info->fs_roots_radix_lock);
3801 radix_tree_delete(&fs_info->fs_roots_radix,
3802 (unsigned long)root->root_key.objectid);
3803 spin_unlock(&fs_info->fs_roots_radix_lock);
3804
3805 if (btrfs_root_refs(&root->root_item) == 0)
3806 synchronize_srcu(&fs_info->subvol_srcu);
3807
3808 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3809 btrfs_free_log(NULL, root);
3810 if (root->reloc_root) {
3811 free_extent_buffer(root->reloc_root->node);
3812 free_extent_buffer(root->reloc_root->commit_root);
3813 btrfs_put_fs_root(root->reloc_root);
3814 root->reloc_root = NULL;
3815 }
3816 }
3817
3818 if (root->free_ino_pinned)
3819 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3820 if (root->free_ino_ctl)
3821 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3822 free_fs_root(root);
3823 }
3824
3825 static void free_fs_root(struct btrfs_root *root)
3826 {
3827 iput(root->ino_cache_inode);
3828 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3829 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3830 root->orphan_block_rsv = NULL;
3831 if (root->anon_dev)
3832 free_anon_bdev(root->anon_dev);
3833 if (root->subv_writers)
3834 btrfs_free_subvolume_writers(root->subv_writers);
3835 free_extent_buffer(root->node);
3836 free_extent_buffer(root->commit_root);
3837 kfree(root->free_ino_ctl);
3838 kfree(root->free_ino_pinned);
3839 kfree(root->name);
3840 btrfs_put_fs_root(root);
3841 }
3842
3843 void btrfs_free_fs_root(struct btrfs_root *root)
3844 {
3845 free_fs_root(root);
3846 }
3847
3848 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3849 {
3850 u64 root_objectid = 0;
3851 struct btrfs_root *gang[8];
3852 int i = 0;
3853 int err = 0;
3854 unsigned int ret = 0;
3855 int index;
3856
3857 while (1) {
3858 index = srcu_read_lock(&fs_info->subvol_srcu);
3859 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3860 (void **)gang, root_objectid,
3861 ARRAY_SIZE(gang));
3862 if (!ret) {
3863 srcu_read_unlock(&fs_info->subvol_srcu, index);
3864 break;
3865 }
3866 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3867
3868 for (i = 0; i < ret; i++) {
3869 /* Avoid to grab roots in dead_roots */
3870 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3871 gang[i] = NULL;
3872 continue;
3873 }
3874 /* grab all the search result for later use */
3875 gang[i] = btrfs_grab_fs_root(gang[i]);
3876 }
3877 srcu_read_unlock(&fs_info->subvol_srcu, index);
3878
3879 for (i = 0; i < ret; i++) {
3880 if (!gang[i])
3881 continue;
3882 root_objectid = gang[i]->root_key.objectid;
3883 err = btrfs_orphan_cleanup(gang[i]);
3884 if (err)
3885 break;
3886 btrfs_put_fs_root(gang[i]);
3887 }
3888 root_objectid++;
3889 }
3890
3891 /* release the uncleaned roots due to error */
3892 for (; i < ret; i++) {
3893 if (gang[i])
3894 btrfs_put_fs_root(gang[i]);
3895 }
3896 return err;
3897 }
3898
3899 int btrfs_commit_super(struct btrfs_root *root)
3900 {
3901 struct btrfs_trans_handle *trans;
3902
3903 mutex_lock(&root->fs_info->cleaner_mutex);
3904 btrfs_run_delayed_iputs(root);
3905 mutex_unlock(&root->fs_info->cleaner_mutex);
3906 wake_up_process(root->fs_info->cleaner_kthread);
3907
3908 /* wait until ongoing cleanup work done */
3909 down_write(&root->fs_info->cleanup_work_sem);
3910 up_write(&root->fs_info->cleanup_work_sem);
3911
3912 trans = btrfs_join_transaction(root);
3913 if (IS_ERR(trans))
3914 return PTR_ERR(trans);
3915 return btrfs_commit_transaction(trans, root);
3916 }
3917
3918 void close_ctree(struct btrfs_root *root)
3919 {
3920 struct btrfs_fs_info *fs_info = root->fs_info;
3921 int ret;
3922
3923 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3924
3925 /* wait for the qgroup rescan worker to stop */
3926 btrfs_qgroup_wait_for_completion(fs_info, false);
3927
3928 /* wait for the uuid_scan task to finish */
3929 down(&fs_info->uuid_tree_rescan_sem);
3930 /* avoid complains from lockdep et al., set sem back to initial state */
3931 up(&fs_info->uuid_tree_rescan_sem);
3932
3933 /* pause restriper - we want to resume on mount */
3934 btrfs_pause_balance(fs_info);
3935
3936 btrfs_dev_replace_suspend_for_unmount(fs_info);
3937
3938 btrfs_scrub_cancel(fs_info);
3939
3940 /* wait for any defraggers to finish */
3941 wait_event(fs_info->transaction_wait,
3942 (atomic_read(&fs_info->defrag_running) == 0));
3943
3944 /* clear out the rbtree of defraggable inodes */
3945 btrfs_cleanup_defrag_inodes(fs_info);
3946
3947 cancel_work_sync(&fs_info->async_reclaim_work);
3948
3949 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3950 /*
3951 * If the cleaner thread is stopped and there are
3952 * block groups queued for removal, the deletion will be
3953 * skipped when we quit the cleaner thread.
3954 */
3955 btrfs_delete_unused_bgs(root->fs_info);
3956
3957 ret = btrfs_commit_super(root);
3958 if (ret)
3959 btrfs_err(fs_info, "commit super ret %d", ret);
3960 }
3961
3962 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3963 btrfs_error_commit_super(root);
3964
3965 kthread_stop(fs_info->transaction_kthread);
3966 kthread_stop(fs_info->cleaner_kthread);
3967
3968 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3969
3970 btrfs_free_qgroup_config(fs_info);
3971
3972 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3973 btrfs_info(fs_info, "at unmount delalloc count %lld",
3974 percpu_counter_sum(&fs_info->delalloc_bytes));
3975 }
3976
3977 btrfs_sysfs_remove_mounted(fs_info);
3978 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3979
3980 btrfs_free_fs_roots(fs_info);
3981
3982 btrfs_put_block_group_cache(fs_info);
3983
3984 btrfs_free_block_groups(fs_info);
3985
3986 /*
3987 * we must make sure there is not any read request to
3988 * submit after we stopping all workers.
3989 */
3990 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3991 btrfs_stop_all_workers(fs_info);
3992
3993 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3994 free_root_pointers(fs_info, 1);
3995
3996 iput(fs_info->btree_inode);
3997
3998 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3999 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
4000 btrfsic_unmount(root, fs_info->fs_devices);
4001 #endif
4002
4003 btrfs_close_devices(fs_info->fs_devices);
4004 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4005
4006 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4007 percpu_counter_destroy(&fs_info->delalloc_bytes);
4008 percpu_counter_destroy(&fs_info->bio_counter);
4009 bdi_destroy(&fs_info->bdi);
4010 cleanup_srcu_struct(&fs_info->subvol_srcu);
4011
4012 btrfs_free_stripe_hash_table(fs_info);
4013
4014 __btrfs_free_block_rsv(root->orphan_block_rsv);
4015 root->orphan_block_rsv = NULL;
4016
4017 lock_chunks(root);
4018 while (!list_empty(&fs_info->pinned_chunks)) {
4019 struct extent_map *em;
4020
4021 em = list_first_entry(&fs_info->pinned_chunks,
4022 struct extent_map, list);
4023 list_del_init(&em->list);
4024 free_extent_map(em);
4025 }
4026 unlock_chunks(root);
4027 }
4028
4029 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4030 int atomic)
4031 {
4032 int ret;
4033 struct inode *btree_inode = buf->pages[0]->mapping->host;
4034
4035 ret = extent_buffer_uptodate(buf);
4036 if (!ret)
4037 return ret;
4038
4039 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4040 parent_transid, atomic);
4041 if (ret == -EAGAIN)
4042 return ret;
4043 return !ret;
4044 }
4045
4046 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4047 {
4048 struct btrfs_root *root;
4049 u64 transid = btrfs_header_generation(buf);
4050 int was_dirty;
4051
4052 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4053 /*
4054 * This is a fast path so only do this check if we have sanity tests
4055 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4056 * outside of the sanity tests.
4057 */
4058 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4059 return;
4060 #endif
4061 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4062 btrfs_assert_tree_locked(buf);
4063 if (transid != root->fs_info->generation)
4064 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4065 buf->start, transid, root->fs_info->generation);
4066 was_dirty = set_extent_buffer_dirty(buf);
4067 if (!was_dirty)
4068 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4069 buf->len,
4070 root->fs_info->dirty_metadata_batch);
4071 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4072 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4073 btrfs_print_leaf(root, buf);
4074 ASSERT(0);
4075 }
4076 #endif
4077 }
4078
4079 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4080 int flush_delayed)
4081 {
4082 /*
4083 * looks as though older kernels can get into trouble with
4084 * this code, they end up stuck in balance_dirty_pages forever
4085 */
4086 int ret;
4087
4088 if (current->flags & PF_MEMALLOC)
4089 return;
4090
4091 if (flush_delayed)
4092 btrfs_balance_delayed_items(root);
4093
4094 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4095 BTRFS_DIRTY_METADATA_THRESH);
4096 if (ret > 0) {
4097 balance_dirty_pages_ratelimited(
4098 root->fs_info->btree_inode->i_mapping);
4099 }
4100 }
4101
4102 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4103 {
4104 __btrfs_btree_balance_dirty(root, 1);
4105 }
4106
4107 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4108 {
4109 __btrfs_btree_balance_dirty(root, 0);
4110 }
4111
4112 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4113 {
4114 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4115 return btree_read_extent_buffer_pages(root, buf, parent_transid);
4116 }
4117
4118 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4119 int read_only)
4120 {
4121 struct btrfs_super_block *sb = fs_info->super_copy;
4122 u64 nodesize = btrfs_super_nodesize(sb);
4123 u64 sectorsize = btrfs_super_sectorsize(sb);
4124 int ret = 0;
4125
4126 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4127 btrfs_err(fs_info, "no valid FS found");
4128 ret = -EINVAL;
4129 }
4130 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4131 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4132 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4133 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4134 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4135 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4136 ret = -EINVAL;
4137 }
4138 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4139 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4140 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4141 ret = -EINVAL;
4142 }
4143 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4144 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4145 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4146 ret = -EINVAL;
4147 }
4148
4149 /*
4150 * Check sectorsize and nodesize first, other check will need it.
4151 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4152 */
4153 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4154 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4155 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4156 ret = -EINVAL;
4157 }
4158 /* Only PAGE SIZE is supported yet */
4159 if (sectorsize != PAGE_SIZE) {
4160 btrfs_err(fs_info,
4161 "sectorsize %llu not supported yet, only support %lu",
4162 sectorsize, PAGE_SIZE);
4163 ret = -EINVAL;
4164 }
4165 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4166 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4167 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4168 ret = -EINVAL;
4169 }
4170 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4171 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4172 le32_to_cpu(sb->__unused_leafsize), nodesize);
4173 ret = -EINVAL;
4174 }
4175
4176 /* Root alignment check */
4177 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4178 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4179 btrfs_super_root(sb));
4180 ret = -EINVAL;
4181 }
4182 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4183 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4184 btrfs_super_chunk_root(sb));
4185 ret = -EINVAL;
4186 }
4187 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4188 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4189 btrfs_super_log_root(sb));
4190 ret = -EINVAL;
4191 }
4192
4193 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4194 btrfs_err(fs_info,
4195 "dev_item UUID does not match fsid: %pU != %pU",
4196 fs_info->fsid, sb->dev_item.fsid);
4197 ret = -EINVAL;
4198 }
4199
4200 /*
4201 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4202 * done later
4203 */
4204 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4205 btrfs_err(fs_info, "bytes_used is too small %llu",
4206 btrfs_super_bytes_used(sb));
4207 ret = -EINVAL;
4208 }
4209 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4210 btrfs_err(fs_info, "invalid stripesize %u",
4211 btrfs_super_stripesize(sb));
4212 ret = -EINVAL;
4213 }
4214 if (btrfs_super_num_devices(sb) > (1UL << 31))
4215 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4216 btrfs_super_num_devices(sb));
4217 if (btrfs_super_num_devices(sb) == 0) {
4218 btrfs_err(fs_info, "number of devices is 0");
4219 ret = -EINVAL;
4220 }
4221
4222 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4223 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4224 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4225 ret = -EINVAL;
4226 }
4227
4228 /*
4229 * Obvious sys_chunk_array corruptions, it must hold at least one key
4230 * and one chunk
4231 */
4232 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4233 btrfs_err(fs_info, "system chunk array too big %u > %u",
4234 btrfs_super_sys_array_size(sb),
4235 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4236 ret = -EINVAL;
4237 }
4238 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4239 + sizeof(struct btrfs_chunk)) {
4240 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4241 btrfs_super_sys_array_size(sb),
4242 sizeof(struct btrfs_disk_key)
4243 + sizeof(struct btrfs_chunk));
4244 ret = -EINVAL;
4245 }
4246
4247 /*
4248 * The generation is a global counter, we'll trust it more than the others
4249 * but it's still possible that it's the one that's wrong.
4250 */
4251 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4252 btrfs_warn(fs_info,
4253 "suspicious: generation < chunk_root_generation: %llu < %llu",
4254 btrfs_super_generation(sb),
4255 btrfs_super_chunk_root_generation(sb));
4256 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4257 && btrfs_super_cache_generation(sb) != (u64)-1)
4258 btrfs_warn(fs_info,
4259 "suspicious: generation < cache_generation: %llu < %llu",
4260 btrfs_super_generation(sb),
4261 btrfs_super_cache_generation(sb));
4262
4263 return ret;
4264 }
4265
4266 static void btrfs_error_commit_super(struct btrfs_root *root)
4267 {
4268 mutex_lock(&root->fs_info->cleaner_mutex);
4269 btrfs_run_delayed_iputs(root);
4270 mutex_unlock(&root->fs_info->cleaner_mutex);
4271
4272 down_write(&root->fs_info->cleanup_work_sem);
4273 up_write(&root->fs_info->cleanup_work_sem);
4274
4275 /* cleanup FS via transaction */
4276 btrfs_cleanup_transaction(root);
4277 }
4278
4279 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4280 {
4281 struct btrfs_ordered_extent *ordered;
4282
4283 spin_lock(&root->ordered_extent_lock);
4284 /*
4285 * This will just short circuit the ordered completion stuff which will
4286 * make sure the ordered extent gets properly cleaned up.
4287 */
4288 list_for_each_entry(ordered, &root->ordered_extents,
4289 root_extent_list)
4290 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4291 spin_unlock(&root->ordered_extent_lock);
4292 }
4293
4294 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4295 {
4296 struct btrfs_root *root;
4297 struct list_head splice;
4298
4299 INIT_LIST_HEAD(&splice);
4300
4301 spin_lock(&fs_info->ordered_root_lock);
4302 list_splice_init(&fs_info->ordered_roots, &splice);
4303 while (!list_empty(&splice)) {
4304 root = list_first_entry(&splice, struct btrfs_root,
4305 ordered_root);
4306 list_move_tail(&root->ordered_root,
4307 &fs_info->ordered_roots);
4308
4309 spin_unlock(&fs_info->ordered_root_lock);
4310 btrfs_destroy_ordered_extents(root);
4311
4312 cond_resched();
4313 spin_lock(&fs_info->ordered_root_lock);
4314 }
4315 spin_unlock(&fs_info->ordered_root_lock);
4316 }
4317
4318 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4319 struct btrfs_root *root)
4320 {
4321 struct rb_node *node;
4322 struct btrfs_delayed_ref_root *delayed_refs;
4323 struct btrfs_delayed_ref_node *ref;
4324 int ret = 0;
4325
4326 delayed_refs = &trans->delayed_refs;
4327
4328 spin_lock(&delayed_refs->lock);
4329 if (atomic_read(&delayed_refs->num_entries) == 0) {
4330 spin_unlock(&delayed_refs->lock);
4331 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4332 return ret;
4333 }
4334
4335 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4336 struct btrfs_delayed_ref_head *head;
4337 struct btrfs_delayed_ref_node *tmp;
4338 bool pin_bytes = false;
4339
4340 head = rb_entry(node, struct btrfs_delayed_ref_head,
4341 href_node);
4342 if (!mutex_trylock(&head->mutex)) {
4343 atomic_inc(&head->node.refs);
4344 spin_unlock(&delayed_refs->lock);
4345
4346 mutex_lock(&head->mutex);
4347 mutex_unlock(&head->mutex);
4348 btrfs_put_delayed_ref(&head->node);
4349 spin_lock(&delayed_refs->lock);
4350 continue;
4351 }
4352 spin_lock(&head->lock);
4353 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4354 list) {
4355 ref->in_tree = 0;
4356 list_del(&ref->list);
4357 atomic_dec(&delayed_refs->num_entries);
4358 btrfs_put_delayed_ref(ref);
4359 }
4360 if (head->must_insert_reserved)
4361 pin_bytes = true;
4362 btrfs_free_delayed_extent_op(head->extent_op);
4363 delayed_refs->num_heads--;
4364 if (head->processing == 0)
4365 delayed_refs->num_heads_ready--;
4366 atomic_dec(&delayed_refs->num_entries);
4367 head->node.in_tree = 0;
4368 rb_erase(&head->href_node, &delayed_refs->href_root);
4369 spin_unlock(&head->lock);
4370 spin_unlock(&delayed_refs->lock);
4371 mutex_unlock(&head->mutex);
4372
4373 if (pin_bytes)
4374 btrfs_pin_extent(root, head->node.bytenr,
4375 head->node.num_bytes, 1);
4376 btrfs_put_delayed_ref(&head->node);
4377 cond_resched();
4378 spin_lock(&delayed_refs->lock);
4379 }
4380
4381 spin_unlock(&delayed_refs->lock);
4382
4383 return ret;
4384 }
4385
4386 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4387 {
4388 struct btrfs_inode *btrfs_inode;
4389 struct list_head splice;
4390
4391 INIT_LIST_HEAD(&splice);
4392
4393 spin_lock(&root->delalloc_lock);
4394 list_splice_init(&root->delalloc_inodes, &splice);
4395
4396 while (!list_empty(&splice)) {
4397 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4398 delalloc_inodes);
4399
4400 list_del_init(&btrfs_inode->delalloc_inodes);
4401 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4402 &btrfs_inode->runtime_flags);
4403 spin_unlock(&root->delalloc_lock);
4404
4405 btrfs_invalidate_inodes(btrfs_inode->root);
4406
4407 spin_lock(&root->delalloc_lock);
4408 }
4409
4410 spin_unlock(&root->delalloc_lock);
4411 }
4412
4413 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4414 {
4415 struct btrfs_root *root;
4416 struct list_head splice;
4417
4418 INIT_LIST_HEAD(&splice);
4419
4420 spin_lock(&fs_info->delalloc_root_lock);
4421 list_splice_init(&fs_info->delalloc_roots, &splice);
4422 while (!list_empty(&splice)) {
4423 root = list_first_entry(&splice, struct btrfs_root,
4424 delalloc_root);
4425 list_del_init(&root->delalloc_root);
4426 root = btrfs_grab_fs_root(root);
4427 BUG_ON(!root);
4428 spin_unlock(&fs_info->delalloc_root_lock);
4429
4430 btrfs_destroy_delalloc_inodes(root);
4431 btrfs_put_fs_root(root);
4432
4433 spin_lock(&fs_info->delalloc_root_lock);
4434 }
4435 spin_unlock(&fs_info->delalloc_root_lock);
4436 }
4437
4438 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4439 struct extent_io_tree *dirty_pages,
4440 int mark)
4441 {
4442 int ret;
4443 struct extent_buffer *eb;
4444 u64 start = 0;
4445 u64 end;
4446
4447 while (1) {
4448 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4449 mark, NULL);
4450 if (ret)
4451 break;
4452
4453 clear_extent_bits(dirty_pages, start, end, mark);
4454 while (start <= end) {
4455 eb = btrfs_find_tree_block(root->fs_info, start);
4456 start += root->nodesize;
4457 if (!eb)
4458 continue;
4459 wait_on_extent_buffer_writeback(eb);
4460
4461 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4462 &eb->bflags))
4463 clear_extent_buffer_dirty(eb);
4464 free_extent_buffer_stale(eb);
4465 }
4466 }
4467
4468 return ret;
4469 }
4470
4471 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4472 struct extent_io_tree *pinned_extents)
4473 {
4474 struct extent_io_tree *unpin;
4475 u64 start;
4476 u64 end;
4477 int ret;
4478 bool loop = true;
4479
4480 unpin = pinned_extents;
4481 again:
4482 while (1) {
4483 ret = find_first_extent_bit(unpin, 0, &start, &end,
4484 EXTENT_DIRTY, NULL);
4485 if (ret)
4486 break;
4487
4488 clear_extent_dirty(unpin, start, end);
4489 btrfs_error_unpin_extent_range(root, start, end);
4490 cond_resched();
4491 }
4492
4493 if (loop) {
4494 if (unpin == &root->fs_info->freed_extents[0])
4495 unpin = &root->fs_info->freed_extents[1];
4496 else
4497 unpin = &root->fs_info->freed_extents[0];
4498 loop = false;
4499 goto again;
4500 }
4501
4502 return 0;
4503 }
4504
4505 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4506 {
4507 struct inode *inode;
4508
4509 inode = cache->io_ctl.inode;
4510 if (inode) {
4511 invalidate_inode_pages2(inode->i_mapping);
4512 BTRFS_I(inode)->generation = 0;
4513 cache->io_ctl.inode = NULL;
4514 iput(inode);
4515 }
4516 btrfs_put_block_group(cache);
4517 }
4518
4519 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4520 struct btrfs_root *root)
4521 {
4522 struct btrfs_block_group_cache *cache;
4523
4524 spin_lock(&cur_trans->dirty_bgs_lock);
4525 while (!list_empty(&cur_trans->dirty_bgs)) {
4526 cache = list_first_entry(&cur_trans->dirty_bgs,
4527 struct btrfs_block_group_cache,
4528 dirty_list);
4529 if (!cache) {
4530 btrfs_err(root->fs_info,
4531 "orphan block group dirty_bgs list");
4532 spin_unlock(&cur_trans->dirty_bgs_lock);
4533 return;
4534 }
4535
4536 if (!list_empty(&cache->io_list)) {
4537 spin_unlock(&cur_trans->dirty_bgs_lock);
4538 list_del_init(&cache->io_list);
4539 btrfs_cleanup_bg_io(cache);
4540 spin_lock(&cur_trans->dirty_bgs_lock);
4541 }
4542
4543 list_del_init(&cache->dirty_list);
4544 spin_lock(&cache->lock);
4545 cache->disk_cache_state = BTRFS_DC_ERROR;
4546 spin_unlock(&cache->lock);
4547
4548 spin_unlock(&cur_trans->dirty_bgs_lock);
4549 btrfs_put_block_group(cache);
4550 spin_lock(&cur_trans->dirty_bgs_lock);
4551 }
4552 spin_unlock(&cur_trans->dirty_bgs_lock);
4553
4554 while (!list_empty(&cur_trans->io_bgs)) {
4555 cache = list_first_entry(&cur_trans->io_bgs,
4556 struct btrfs_block_group_cache,
4557 io_list);
4558 if (!cache) {
4559 btrfs_err(root->fs_info,
4560 "orphan block group on io_bgs list");
4561 return;
4562 }
4563
4564 list_del_init(&cache->io_list);
4565 spin_lock(&cache->lock);
4566 cache->disk_cache_state = BTRFS_DC_ERROR;
4567 spin_unlock(&cache->lock);
4568 btrfs_cleanup_bg_io(cache);
4569 }
4570 }
4571
4572 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4573 struct btrfs_root *root)
4574 {
4575 btrfs_cleanup_dirty_bgs(cur_trans, root);
4576 ASSERT(list_empty(&cur_trans->dirty_bgs));
4577 ASSERT(list_empty(&cur_trans->io_bgs));
4578
4579 btrfs_destroy_delayed_refs(cur_trans, root);
4580
4581 cur_trans->state = TRANS_STATE_COMMIT_START;
4582 wake_up(&root->fs_info->transaction_blocked_wait);
4583
4584 cur_trans->state = TRANS_STATE_UNBLOCKED;
4585 wake_up(&root->fs_info->transaction_wait);
4586
4587 btrfs_destroy_delayed_inodes(root);
4588 btrfs_assert_delayed_root_empty(root);
4589
4590 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4591 EXTENT_DIRTY);
4592 btrfs_destroy_pinned_extent(root,
4593 root->fs_info->pinned_extents);
4594
4595 cur_trans->state =TRANS_STATE_COMPLETED;
4596 wake_up(&cur_trans->commit_wait);
4597
4598 /*
4599 memset(cur_trans, 0, sizeof(*cur_trans));
4600 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4601 */
4602 }
4603
4604 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4605 {
4606 struct btrfs_transaction *t;
4607
4608 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4609
4610 spin_lock(&root->fs_info->trans_lock);
4611 while (!list_empty(&root->fs_info->trans_list)) {
4612 t = list_first_entry(&root->fs_info->trans_list,
4613 struct btrfs_transaction, list);
4614 if (t->state >= TRANS_STATE_COMMIT_START) {
4615 atomic_inc(&t->use_count);
4616 spin_unlock(&root->fs_info->trans_lock);
4617 btrfs_wait_for_commit(root, t->transid);
4618 btrfs_put_transaction(t);
4619 spin_lock(&root->fs_info->trans_lock);
4620 continue;
4621 }
4622 if (t == root->fs_info->running_transaction) {
4623 t->state = TRANS_STATE_COMMIT_DOING;
4624 spin_unlock(&root->fs_info->trans_lock);
4625 /*
4626 * We wait for 0 num_writers since we don't hold a trans
4627 * handle open currently for this transaction.
4628 */
4629 wait_event(t->writer_wait,
4630 atomic_read(&t->num_writers) == 0);
4631 } else {
4632 spin_unlock(&root->fs_info->trans_lock);
4633 }
4634 btrfs_cleanup_one_transaction(t, root);
4635
4636 spin_lock(&root->fs_info->trans_lock);
4637 if (t == root->fs_info->running_transaction)
4638 root->fs_info->running_transaction = NULL;
4639 list_del_init(&t->list);
4640 spin_unlock(&root->fs_info->trans_lock);
4641
4642 btrfs_put_transaction(t);
4643 trace_btrfs_transaction_commit(root);
4644 spin_lock(&root->fs_info->trans_lock);
4645 }
4646 spin_unlock(&root->fs_info->trans_lock);
4647 btrfs_destroy_all_ordered_extents(root->fs_info);
4648 btrfs_destroy_delayed_inodes(root);
4649 btrfs_assert_delayed_root_empty(root);
4650 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4651 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4652 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4653
4654 return 0;
4655 }
4656
4657 static const struct extent_io_ops btree_extent_io_ops = {
4658 .readpage_end_io_hook = btree_readpage_end_io_hook,
4659 .readpage_io_failed_hook = btree_io_failed_hook,
4660 .submit_bio_hook = btree_submit_bio_hook,
4661 /* note we're sharing with inode.c for the merge bio hook */
4662 .merge_bio_hook = btrfs_merge_bio_hook,
4663 };