]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/disk-io.c
Btrfs: fix that repair code is spuriously executed for transid failures
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
65
66 /*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
77 int metadata;
78 struct list_head list;
79 struct btrfs_work work;
80 };
81
82 /*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
87 struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
93 int rw;
94 int mirror_num;
95 unsigned long bio_flags;
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
101 struct btrfs_work work;
102 int error;
103 };
104
105 /*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
115 *
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
119 *
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
123 *
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
127 */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 # error
131 # endif
132
133 static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
150 };
151
152 void __init btrfs_init_lockdep(void)
153 {
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164 }
165
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168 {
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180 }
181
182 #endif
183
184 /*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189 struct page *page, size_t pg_offset, u64 start, u64 len,
190 int create)
191 {
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
196 read_lock(&em_tree->lock);
197 em = lookup_extent_mapping(em_tree, start, len);
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 read_unlock(&em_tree->lock);
202 goto out;
203 }
204 read_unlock(&em_tree->lock);
205
206 em = alloc_extent_map();
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
212 em->len = (u64)-1;
213 em->block_len = (u64)-1;
214 em->block_start = 0;
215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217 write_lock(&em_tree->lock);
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
223 free_extent_map(em);
224 em = lookup_extent_mapping(em_tree, start, len);
225 if (em) {
226 ret = 0;
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
230 ret = -EIO;
231 }
232 } else if (ret) {
233 free_extent_map(em);
234 em = NULL;
235 }
236 write_unlock(&em_tree->lock);
237
238 if (ret)
239 em = ERR_PTR(ret);
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
366 {
367 struct extent_io_tree *io_tree;
368 int failed = 0;
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
372 int failed_mirror = 0;
373
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
379 btree_get_extent, mirror_num);
380 if (!ret) {
381 if (!verify_parent_transid(io_tree, eb,
382 parent_transid, 0))
383 break;
384 else
385 ret = -EIO;
386 }
387
388 /*
389 * This buffer's crc is fine, but its contents are corrupted, so
390 * there is no reason to read the other copies, they won't be
391 * any less wrong.
392 */
393 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
394 break;
395
396 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
397 eb->start, eb->len);
398 if (num_copies == 1)
399 break;
400
401 if (!failed_mirror) {
402 failed = 1;
403 failed_mirror = eb->read_mirror;
404 }
405
406 mirror_num++;
407 if (mirror_num == failed_mirror)
408 mirror_num++;
409
410 if (mirror_num > num_copies)
411 break;
412 }
413
414 if (failed && !ret && failed_mirror)
415 repair_eb_io_failure(root, eb, failed_mirror);
416
417 return ret;
418 }
419
420 /*
421 * checksum a dirty tree block before IO. This has extra checks to make sure
422 * we only fill in the checksum field in the first page of a multi-page block
423 */
424
425 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
426 {
427 struct extent_io_tree *tree;
428 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
429 u64 found_start;
430 struct extent_buffer *eb;
431
432 tree = &BTRFS_I(page->mapping->host)->io_tree;
433
434 eb = (struct extent_buffer *)page->private;
435 if (page != eb->pages[0])
436 return 0;
437 found_start = btrfs_header_bytenr(eb);
438 if (found_start != start) {
439 WARN_ON(1);
440 return 0;
441 }
442 if (eb->pages[0] != page) {
443 WARN_ON(1);
444 return 0;
445 }
446 if (!PageUptodate(page)) {
447 WARN_ON(1);
448 return 0;
449 }
450 csum_tree_block(root, eb, 0);
451 return 0;
452 }
453
454 static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
456 {
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
459 int ret = 1;
460
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 BTRFS_FSID_SIZE);
463 while (fs_devices) {
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 ret = 0;
466 break;
467 }
468 fs_devices = fs_devices->seed;
469 }
470 return ret;
471 }
472
473 #define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
478
479 static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
481 {
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
485 int slot;
486
487 if (nritems == 0)
488 return 0;
489
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
494 return -EIO;
495 }
496
497 /*
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
502 * offset is correct.
503 */
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
511 return -EIO;
512 }
513
514 /*
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
517 * front.
518 */
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
522 return -EIO;
523 }
524
525 /*
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
529 */
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
533 return -EIO;
534 }
535 }
536
537 return 0;
538 }
539
540 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
541 struct page *page, int max_walk)
542 {
543 struct extent_buffer *eb;
544 u64 start = page_offset(page);
545 u64 target = start;
546 u64 min_start;
547
548 if (start < max_walk)
549 min_start = 0;
550 else
551 min_start = start - max_walk;
552
553 while (start >= min_start) {
554 eb = find_extent_buffer(tree, start, 0);
555 if (eb) {
556 /*
557 * we found an extent buffer and it contains our page
558 * horray!
559 */
560 if (eb->start <= target &&
561 eb->start + eb->len > target)
562 return eb;
563
564 /* we found an extent buffer that wasn't for us */
565 free_extent_buffer(eb);
566 return NULL;
567 }
568 if (start == 0)
569 break;
570 start -= PAGE_CACHE_SIZE;
571 }
572 return NULL;
573 }
574
575 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
576 struct extent_state *state, int mirror)
577 {
578 struct extent_io_tree *tree;
579 u64 found_start;
580 int found_level;
581 struct extent_buffer *eb;
582 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
583 int ret = 0;
584 int reads_done;
585
586 if (!page->private)
587 goto out;
588
589 tree = &BTRFS_I(page->mapping->host)->io_tree;
590 eb = (struct extent_buffer *)page->private;
591
592 /* the pending IO might have been the only thing that kept this buffer
593 * in memory. Make sure we have a ref for all this other checks
594 */
595 extent_buffer_get(eb);
596
597 reads_done = atomic_dec_and_test(&eb->io_pages);
598 if (!reads_done)
599 goto err;
600
601 eb->read_mirror = mirror;
602 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
603 ret = -EIO;
604 goto err;
605 }
606
607 found_start = btrfs_header_bytenr(eb);
608 if (found_start != eb->start) {
609 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
610 "%llu %llu\n",
611 (unsigned long long)found_start,
612 (unsigned long long)eb->start);
613 ret = -EIO;
614 goto err;
615 }
616 if (check_tree_block_fsid(root, eb)) {
617 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
618 (unsigned long long)eb->start);
619 ret = -EIO;
620 goto err;
621 }
622 found_level = btrfs_header_level(eb);
623
624 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
625 eb, found_level);
626
627 ret = csum_tree_block(root, eb, 1);
628 if (ret) {
629 ret = -EIO;
630 goto err;
631 }
632
633 /*
634 * If this is a leaf block and it is corrupt, set the corrupt bit so
635 * that we don't try and read the other copies of this block, just
636 * return -EIO.
637 */
638 if (found_level == 0 && check_leaf(root, eb)) {
639 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
640 ret = -EIO;
641 }
642
643 if (!ret)
644 set_extent_buffer_uptodate(eb);
645 err:
646 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
647 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
648 btree_readahead_hook(root, eb, eb->start, ret);
649 }
650
651 if (ret)
652 clear_extent_buffer_uptodate(eb);
653 free_extent_buffer(eb);
654 out:
655 return ret;
656 }
657
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660 struct extent_buffer *eb;
661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
663 eb = (struct extent_buffer *)page->private;
664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665 eb->read_mirror = failed_mirror;
666 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
667 btree_readahead_hook(root, eb, eb->start, -EIO);
668 return -EIO; /* we fixed nothing */
669 }
670
671 static void end_workqueue_bio(struct bio *bio, int err)
672 {
673 struct end_io_wq *end_io_wq = bio->bi_private;
674 struct btrfs_fs_info *fs_info;
675
676 fs_info = end_io_wq->info;
677 end_io_wq->error = err;
678 end_io_wq->work.func = end_workqueue_fn;
679 end_io_wq->work.flags = 0;
680
681 if (bio->bi_rw & REQ_WRITE) {
682 if (end_io_wq->metadata == 1)
683 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
684 &end_io_wq->work);
685 else if (end_io_wq->metadata == 2)
686 btrfs_queue_worker(&fs_info->endio_freespace_worker,
687 &end_io_wq->work);
688 else
689 btrfs_queue_worker(&fs_info->endio_write_workers,
690 &end_io_wq->work);
691 } else {
692 if (end_io_wq->metadata)
693 btrfs_queue_worker(&fs_info->endio_meta_workers,
694 &end_io_wq->work);
695 else
696 btrfs_queue_worker(&fs_info->endio_workers,
697 &end_io_wq->work);
698 }
699 }
700
701 /*
702 * For the metadata arg you want
703 *
704 * 0 - if data
705 * 1 - if normal metadta
706 * 2 - if writing to the free space cache area
707 */
708 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
709 int metadata)
710 {
711 struct end_io_wq *end_io_wq;
712 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
713 if (!end_io_wq)
714 return -ENOMEM;
715
716 end_io_wq->private = bio->bi_private;
717 end_io_wq->end_io = bio->bi_end_io;
718 end_io_wq->info = info;
719 end_io_wq->error = 0;
720 end_io_wq->bio = bio;
721 end_io_wq->metadata = metadata;
722
723 bio->bi_private = end_io_wq;
724 bio->bi_end_io = end_workqueue_bio;
725 return 0;
726 }
727
728 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
729 {
730 unsigned long limit = min_t(unsigned long,
731 info->workers.max_workers,
732 info->fs_devices->open_devices);
733 return 256 * limit;
734 }
735
736 static void run_one_async_start(struct btrfs_work *work)
737 {
738 struct async_submit_bio *async;
739 int ret;
740
741 async = container_of(work, struct async_submit_bio, work);
742 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
743 async->mirror_num, async->bio_flags,
744 async->bio_offset);
745 if (ret)
746 async->error = ret;
747 }
748
749 static void run_one_async_done(struct btrfs_work *work)
750 {
751 struct btrfs_fs_info *fs_info;
752 struct async_submit_bio *async;
753 int limit;
754
755 async = container_of(work, struct async_submit_bio, work);
756 fs_info = BTRFS_I(async->inode)->root->fs_info;
757
758 limit = btrfs_async_submit_limit(fs_info);
759 limit = limit * 2 / 3;
760
761 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
762 waitqueue_active(&fs_info->async_submit_wait))
763 wake_up(&fs_info->async_submit_wait);
764
765 /* If an error occured we just want to clean up the bio and move on */
766 if (async->error) {
767 bio_endio(async->bio, async->error);
768 return;
769 }
770
771 async->submit_bio_done(async->inode, async->rw, async->bio,
772 async->mirror_num, async->bio_flags,
773 async->bio_offset);
774 }
775
776 static void run_one_async_free(struct btrfs_work *work)
777 {
778 struct async_submit_bio *async;
779
780 async = container_of(work, struct async_submit_bio, work);
781 kfree(async);
782 }
783
784 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
785 int rw, struct bio *bio, int mirror_num,
786 unsigned long bio_flags,
787 u64 bio_offset,
788 extent_submit_bio_hook_t *submit_bio_start,
789 extent_submit_bio_hook_t *submit_bio_done)
790 {
791 struct async_submit_bio *async;
792
793 async = kmalloc(sizeof(*async), GFP_NOFS);
794 if (!async)
795 return -ENOMEM;
796
797 async->inode = inode;
798 async->rw = rw;
799 async->bio = bio;
800 async->mirror_num = mirror_num;
801 async->submit_bio_start = submit_bio_start;
802 async->submit_bio_done = submit_bio_done;
803
804 async->work.func = run_one_async_start;
805 async->work.ordered_func = run_one_async_done;
806 async->work.ordered_free = run_one_async_free;
807
808 async->work.flags = 0;
809 async->bio_flags = bio_flags;
810 async->bio_offset = bio_offset;
811
812 async->error = 0;
813
814 atomic_inc(&fs_info->nr_async_submits);
815
816 if (rw & REQ_SYNC)
817 btrfs_set_work_high_prio(&async->work);
818
819 btrfs_queue_worker(&fs_info->workers, &async->work);
820
821 while (atomic_read(&fs_info->async_submit_draining) &&
822 atomic_read(&fs_info->nr_async_submits)) {
823 wait_event(fs_info->async_submit_wait,
824 (atomic_read(&fs_info->nr_async_submits) == 0));
825 }
826
827 return 0;
828 }
829
830 static int btree_csum_one_bio(struct bio *bio)
831 {
832 struct bio_vec *bvec = bio->bi_io_vec;
833 int bio_index = 0;
834 struct btrfs_root *root;
835 int ret = 0;
836
837 WARN_ON(bio->bi_vcnt <= 0);
838 while (bio_index < bio->bi_vcnt) {
839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840 ret = csum_dirty_buffer(root, bvec->bv_page);
841 if (ret)
842 break;
843 bio_index++;
844 bvec++;
845 }
846 return ret;
847 }
848
849 static int __btree_submit_bio_start(struct inode *inode, int rw,
850 struct bio *bio, int mirror_num,
851 unsigned long bio_flags,
852 u64 bio_offset)
853 {
854 /*
855 * when we're called for a write, we're already in the async
856 * submission context. Just jump into btrfs_map_bio
857 */
858 return btree_csum_one_bio(bio);
859 }
860
861 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
862 int mirror_num, unsigned long bio_flags,
863 u64 bio_offset)
864 {
865 /*
866 * when we're called for a write, we're already in the async
867 * submission context. Just jump into btrfs_map_bio
868 */
869 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
870 }
871
872 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
873 int mirror_num, unsigned long bio_flags,
874 u64 bio_offset)
875 {
876 int ret;
877
878 if (!(rw & REQ_WRITE)) {
879
880 /*
881 * called for a read, do the setup so that checksum validation
882 * can happen in the async kernel threads
883 */
884 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
885 bio, 1);
886 if (ret)
887 return ret;
888 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
889 mirror_num, 0);
890 }
891
892 /*
893 * kthread helpers are used to submit writes so that checksumming
894 * can happen in parallel across all CPUs
895 */
896 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
897 inode, rw, bio, mirror_num, 0,
898 bio_offset,
899 __btree_submit_bio_start,
900 __btree_submit_bio_done);
901 }
902
903 #ifdef CONFIG_MIGRATION
904 static int btree_migratepage(struct address_space *mapping,
905 struct page *newpage, struct page *page,
906 enum migrate_mode mode)
907 {
908 /*
909 * we can't safely write a btree page from here,
910 * we haven't done the locking hook
911 */
912 if (PageDirty(page))
913 return -EAGAIN;
914 /*
915 * Buffers may be managed in a filesystem specific way.
916 * We must have no buffers or drop them.
917 */
918 if (page_has_private(page) &&
919 !try_to_release_page(page, GFP_KERNEL))
920 return -EAGAIN;
921 return migrate_page(mapping, newpage, page, mode);
922 }
923 #endif
924
925
926 static int btree_writepages(struct address_space *mapping,
927 struct writeback_control *wbc)
928 {
929 struct extent_io_tree *tree;
930 tree = &BTRFS_I(mapping->host)->io_tree;
931 if (wbc->sync_mode == WB_SYNC_NONE) {
932 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
933 u64 num_dirty;
934 unsigned long thresh = 32 * 1024 * 1024;
935
936 if (wbc->for_kupdate)
937 return 0;
938
939 /* this is a bit racy, but that's ok */
940 num_dirty = root->fs_info->dirty_metadata_bytes;
941 if (num_dirty < thresh)
942 return 0;
943 }
944 return btree_write_cache_pages(mapping, wbc);
945 }
946
947 static int btree_readpage(struct file *file, struct page *page)
948 {
949 struct extent_io_tree *tree;
950 tree = &BTRFS_I(page->mapping->host)->io_tree;
951 return extent_read_full_page(tree, page, btree_get_extent, 0);
952 }
953
954 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
955 {
956 if (PageWriteback(page) || PageDirty(page))
957 return 0;
958 /*
959 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
960 * slab allocation from alloc_extent_state down the callchain where
961 * it'd hit a BUG_ON as those flags are not allowed.
962 */
963 gfp_flags &= ~GFP_SLAB_BUG_MASK;
964
965 return try_release_extent_buffer(page, gfp_flags);
966 }
967
968 static void btree_invalidatepage(struct page *page, unsigned long offset)
969 {
970 struct extent_io_tree *tree;
971 tree = &BTRFS_I(page->mapping->host)->io_tree;
972 extent_invalidatepage(tree, page, offset);
973 btree_releasepage(page, GFP_NOFS);
974 if (PagePrivate(page)) {
975 printk(KERN_WARNING "btrfs warning page private not zero "
976 "on page %llu\n", (unsigned long long)page_offset(page));
977 ClearPagePrivate(page);
978 set_page_private(page, 0);
979 page_cache_release(page);
980 }
981 }
982
983 static int btree_set_page_dirty(struct page *page)
984 {
985 struct extent_buffer *eb;
986
987 BUG_ON(!PagePrivate(page));
988 eb = (struct extent_buffer *)page->private;
989 BUG_ON(!eb);
990 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
991 BUG_ON(!atomic_read(&eb->refs));
992 btrfs_assert_tree_locked(eb);
993 return __set_page_dirty_nobuffers(page);
994 }
995
996 static const struct address_space_operations btree_aops = {
997 .readpage = btree_readpage,
998 .writepages = btree_writepages,
999 .releasepage = btree_releasepage,
1000 .invalidatepage = btree_invalidatepage,
1001 #ifdef CONFIG_MIGRATION
1002 .migratepage = btree_migratepage,
1003 #endif
1004 .set_page_dirty = btree_set_page_dirty,
1005 };
1006
1007 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1008 u64 parent_transid)
1009 {
1010 struct extent_buffer *buf = NULL;
1011 struct inode *btree_inode = root->fs_info->btree_inode;
1012 int ret = 0;
1013
1014 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1015 if (!buf)
1016 return 0;
1017 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1018 buf, 0, WAIT_NONE, btree_get_extent, 0);
1019 free_extent_buffer(buf);
1020 return ret;
1021 }
1022
1023 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1024 int mirror_num, struct extent_buffer **eb)
1025 {
1026 struct extent_buffer *buf = NULL;
1027 struct inode *btree_inode = root->fs_info->btree_inode;
1028 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1029 int ret;
1030
1031 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1032 if (!buf)
1033 return 0;
1034
1035 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1036
1037 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1038 btree_get_extent, mirror_num);
1039 if (ret) {
1040 free_extent_buffer(buf);
1041 return ret;
1042 }
1043
1044 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1045 free_extent_buffer(buf);
1046 return -EIO;
1047 } else if (extent_buffer_uptodate(buf)) {
1048 *eb = buf;
1049 } else {
1050 free_extent_buffer(buf);
1051 }
1052 return 0;
1053 }
1054
1055 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1056 u64 bytenr, u32 blocksize)
1057 {
1058 struct inode *btree_inode = root->fs_info->btree_inode;
1059 struct extent_buffer *eb;
1060 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1061 bytenr, blocksize);
1062 return eb;
1063 }
1064
1065 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1066 u64 bytenr, u32 blocksize)
1067 {
1068 struct inode *btree_inode = root->fs_info->btree_inode;
1069 struct extent_buffer *eb;
1070
1071 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1072 bytenr, blocksize);
1073 return eb;
1074 }
1075
1076
1077 int btrfs_write_tree_block(struct extent_buffer *buf)
1078 {
1079 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1080 buf->start + buf->len - 1);
1081 }
1082
1083 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1084 {
1085 return filemap_fdatawait_range(buf->pages[0]->mapping,
1086 buf->start, buf->start + buf->len - 1);
1087 }
1088
1089 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1090 u32 blocksize, u64 parent_transid)
1091 {
1092 struct extent_buffer *buf = NULL;
1093 int ret;
1094
1095 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1096 if (!buf)
1097 return NULL;
1098
1099 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1100 return buf;
1101
1102 }
1103
1104 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1105 struct extent_buffer *buf)
1106 {
1107 if (btrfs_header_generation(buf) ==
1108 root->fs_info->running_transaction->transid) {
1109 btrfs_assert_tree_locked(buf);
1110
1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1112 spin_lock(&root->fs_info->delalloc_lock);
1113 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1114 root->fs_info->dirty_metadata_bytes -= buf->len;
1115 else {
1116 spin_unlock(&root->fs_info->delalloc_lock);
1117 btrfs_panic(root->fs_info, -EOVERFLOW,
1118 "Can't clear %lu bytes from "
1119 " dirty_mdatadata_bytes (%lu)",
1120 buf->len,
1121 root->fs_info->dirty_metadata_bytes);
1122 }
1123 spin_unlock(&root->fs_info->delalloc_lock);
1124 }
1125
1126 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1127 btrfs_set_lock_blocking(buf);
1128 clear_extent_buffer_dirty(buf);
1129 }
1130 }
1131
1132 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1133 u32 stripesize, struct btrfs_root *root,
1134 struct btrfs_fs_info *fs_info,
1135 u64 objectid)
1136 {
1137 root->node = NULL;
1138 root->commit_root = NULL;
1139 root->sectorsize = sectorsize;
1140 root->nodesize = nodesize;
1141 root->leafsize = leafsize;
1142 root->stripesize = stripesize;
1143 root->ref_cows = 0;
1144 root->track_dirty = 0;
1145 root->in_radix = 0;
1146 root->orphan_item_inserted = 0;
1147 root->orphan_cleanup_state = 0;
1148
1149 root->objectid = objectid;
1150 root->last_trans = 0;
1151 root->highest_objectid = 0;
1152 root->name = NULL;
1153 root->inode_tree = RB_ROOT;
1154 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155 root->block_rsv = NULL;
1156 root->orphan_block_rsv = NULL;
1157
1158 INIT_LIST_HEAD(&root->dirty_list);
1159 INIT_LIST_HEAD(&root->root_list);
1160 spin_lock_init(&root->orphan_lock);
1161 spin_lock_init(&root->inode_lock);
1162 spin_lock_init(&root->accounting_lock);
1163 mutex_init(&root->objectid_mutex);
1164 mutex_init(&root->log_mutex);
1165 init_waitqueue_head(&root->log_writer_wait);
1166 init_waitqueue_head(&root->log_commit_wait[0]);
1167 init_waitqueue_head(&root->log_commit_wait[1]);
1168 atomic_set(&root->log_commit[0], 0);
1169 atomic_set(&root->log_commit[1], 0);
1170 atomic_set(&root->log_writers, 0);
1171 atomic_set(&root->orphan_inodes, 0);
1172 root->log_batch = 0;
1173 root->log_transid = 0;
1174 root->last_log_commit = 0;
1175 extent_io_tree_init(&root->dirty_log_pages,
1176 fs_info->btree_inode->i_mapping);
1177
1178 memset(&root->root_key, 0, sizeof(root->root_key));
1179 memset(&root->root_item, 0, sizeof(root->root_item));
1180 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1181 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1182 root->defrag_trans_start = fs_info->generation;
1183 init_completion(&root->kobj_unregister);
1184 root->defrag_running = 0;
1185 root->root_key.objectid = objectid;
1186 root->anon_dev = 0;
1187
1188 spin_lock_init(&root->root_times_lock);
1189 }
1190
1191 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1192 struct btrfs_fs_info *fs_info,
1193 u64 objectid,
1194 struct btrfs_root *root)
1195 {
1196 int ret;
1197 u32 blocksize;
1198 u64 generation;
1199
1200 __setup_root(tree_root->nodesize, tree_root->leafsize,
1201 tree_root->sectorsize, tree_root->stripesize,
1202 root, fs_info, objectid);
1203 ret = btrfs_find_last_root(tree_root, objectid,
1204 &root->root_item, &root->root_key);
1205 if (ret > 0)
1206 return -ENOENT;
1207 else if (ret < 0)
1208 return ret;
1209
1210 generation = btrfs_root_generation(&root->root_item);
1211 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1212 root->commit_root = NULL;
1213 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1214 blocksize, generation);
1215 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1216 free_extent_buffer(root->node);
1217 root->node = NULL;
1218 return -EIO;
1219 }
1220 root->commit_root = btrfs_root_node(root);
1221 return 0;
1222 }
1223
1224 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1225 {
1226 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1227 if (root)
1228 root->fs_info = fs_info;
1229 return root;
1230 }
1231
1232 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1233 struct btrfs_fs_info *fs_info,
1234 u64 objectid)
1235 {
1236 struct extent_buffer *leaf;
1237 struct btrfs_root *tree_root = fs_info->tree_root;
1238 struct btrfs_root *root;
1239 struct btrfs_key key;
1240 int ret = 0;
1241 u64 bytenr;
1242
1243 root = btrfs_alloc_root(fs_info);
1244 if (!root)
1245 return ERR_PTR(-ENOMEM);
1246
1247 __setup_root(tree_root->nodesize, tree_root->leafsize,
1248 tree_root->sectorsize, tree_root->stripesize,
1249 root, fs_info, objectid);
1250 root->root_key.objectid = objectid;
1251 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1252 root->root_key.offset = 0;
1253
1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1255 0, objectid, NULL, 0, 0, 0);
1256 if (IS_ERR(leaf)) {
1257 ret = PTR_ERR(leaf);
1258 goto fail;
1259 }
1260
1261 bytenr = leaf->start;
1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 btrfs_set_header_bytenr(leaf, leaf->start);
1264 btrfs_set_header_generation(leaf, trans->transid);
1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 btrfs_set_header_owner(leaf, objectid);
1267 root->node = leaf;
1268
1269 write_extent_buffer(leaf, fs_info->fsid,
1270 (unsigned long)btrfs_header_fsid(leaf),
1271 BTRFS_FSID_SIZE);
1272 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1273 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1274 BTRFS_UUID_SIZE);
1275 btrfs_mark_buffer_dirty(leaf);
1276
1277 root->commit_root = btrfs_root_node(root);
1278 root->track_dirty = 1;
1279
1280
1281 root->root_item.flags = 0;
1282 root->root_item.byte_limit = 0;
1283 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1284 btrfs_set_root_generation(&root->root_item, trans->transid);
1285 btrfs_set_root_level(&root->root_item, 0);
1286 btrfs_set_root_refs(&root->root_item, 1);
1287 btrfs_set_root_used(&root->root_item, leaf->len);
1288 btrfs_set_root_last_snapshot(&root->root_item, 0);
1289 btrfs_set_root_dirid(&root->root_item, 0);
1290 root->root_item.drop_level = 0;
1291
1292 key.objectid = objectid;
1293 key.type = BTRFS_ROOT_ITEM_KEY;
1294 key.offset = 0;
1295 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1296 if (ret)
1297 goto fail;
1298
1299 btrfs_tree_unlock(leaf);
1300
1301 fail:
1302 if (ret)
1303 return ERR_PTR(ret);
1304
1305 return root;
1306 }
1307
1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info)
1310 {
1311 struct btrfs_root *root;
1312 struct btrfs_root *tree_root = fs_info->tree_root;
1313 struct extent_buffer *leaf;
1314
1315 root = btrfs_alloc_root(fs_info);
1316 if (!root)
1317 return ERR_PTR(-ENOMEM);
1318
1319 __setup_root(tree_root->nodesize, tree_root->leafsize,
1320 tree_root->sectorsize, tree_root->stripesize,
1321 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1322
1323 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1324 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1325 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1326 /*
1327 * log trees do not get reference counted because they go away
1328 * before a real commit is actually done. They do store pointers
1329 * to file data extents, and those reference counts still get
1330 * updated (along with back refs to the log tree).
1331 */
1332 root->ref_cows = 0;
1333
1334 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1335 BTRFS_TREE_LOG_OBJECTID, NULL,
1336 0, 0, 0);
1337 if (IS_ERR(leaf)) {
1338 kfree(root);
1339 return ERR_CAST(leaf);
1340 }
1341
1342 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1343 btrfs_set_header_bytenr(leaf, leaf->start);
1344 btrfs_set_header_generation(leaf, trans->transid);
1345 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1346 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1347 root->node = leaf;
1348
1349 write_extent_buffer(root->node, root->fs_info->fsid,
1350 (unsigned long)btrfs_header_fsid(root->node),
1351 BTRFS_FSID_SIZE);
1352 btrfs_mark_buffer_dirty(root->node);
1353 btrfs_tree_unlock(root->node);
1354 return root;
1355 }
1356
1357 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1358 struct btrfs_fs_info *fs_info)
1359 {
1360 struct btrfs_root *log_root;
1361
1362 log_root = alloc_log_tree(trans, fs_info);
1363 if (IS_ERR(log_root))
1364 return PTR_ERR(log_root);
1365 WARN_ON(fs_info->log_root_tree);
1366 fs_info->log_root_tree = log_root;
1367 return 0;
1368 }
1369
1370 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root)
1372 {
1373 struct btrfs_root *log_root;
1374 struct btrfs_inode_item *inode_item;
1375
1376 log_root = alloc_log_tree(trans, root->fs_info);
1377 if (IS_ERR(log_root))
1378 return PTR_ERR(log_root);
1379
1380 log_root->last_trans = trans->transid;
1381 log_root->root_key.offset = root->root_key.objectid;
1382
1383 inode_item = &log_root->root_item.inode;
1384 inode_item->generation = cpu_to_le64(1);
1385 inode_item->size = cpu_to_le64(3);
1386 inode_item->nlink = cpu_to_le32(1);
1387 inode_item->nbytes = cpu_to_le64(root->leafsize);
1388 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1389
1390 btrfs_set_root_node(&log_root->root_item, log_root->node);
1391
1392 WARN_ON(root->log_root);
1393 root->log_root = log_root;
1394 root->log_transid = 0;
1395 root->last_log_commit = 0;
1396 return 0;
1397 }
1398
1399 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1400 struct btrfs_key *location)
1401 {
1402 struct btrfs_root *root;
1403 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1404 struct btrfs_path *path;
1405 struct extent_buffer *l;
1406 u64 generation;
1407 u32 blocksize;
1408 int ret = 0;
1409 int slot;
1410
1411 root = btrfs_alloc_root(fs_info);
1412 if (!root)
1413 return ERR_PTR(-ENOMEM);
1414 if (location->offset == (u64)-1) {
1415 ret = find_and_setup_root(tree_root, fs_info,
1416 location->objectid, root);
1417 if (ret) {
1418 kfree(root);
1419 return ERR_PTR(ret);
1420 }
1421 goto out;
1422 }
1423
1424 __setup_root(tree_root->nodesize, tree_root->leafsize,
1425 tree_root->sectorsize, tree_root->stripesize,
1426 root, fs_info, location->objectid);
1427
1428 path = btrfs_alloc_path();
1429 if (!path) {
1430 kfree(root);
1431 return ERR_PTR(-ENOMEM);
1432 }
1433 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1434 if (ret == 0) {
1435 l = path->nodes[0];
1436 slot = path->slots[0];
1437 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1438 memcpy(&root->root_key, location, sizeof(*location));
1439 }
1440 btrfs_free_path(path);
1441 if (ret) {
1442 kfree(root);
1443 if (ret > 0)
1444 ret = -ENOENT;
1445 return ERR_PTR(ret);
1446 }
1447
1448 generation = btrfs_root_generation(&root->root_item);
1449 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1450 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1451 blocksize, generation);
1452 root->commit_root = btrfs_root_node(root);
1453 BUG_ON(!root->node); /* -ENOMEM */
1454 out:
1455 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1456 root->ref_cows = 1;
1457 btrfs_check_and_init_root_item(&root->root_item);
1458 }
1459
1460 return root;
1461 }
1462
1463 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1464 struct btrfs_key *location)
1465 {
1466 struct btrfs_root *root;
1467 int ret;
1468
1469 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1470 return fs_info->tree_root;
1471 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1472 return fs_info->extent_root;
1473 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1474 return fs_info->chunk_root;
1475 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1476 return fs_info->dev_root;
1477 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1478 return fs_info->csum_root;
1479 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1480 return fs_info->quota_root ? fs_info->quota_root :
1481 ERR_PTR(-ENOENT);
1482 again:
1483 spin_lock(&fs_info->fs_roots_radix_lock);
1484 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1485 (unsigned long)location->objectid);
1486 spin_unlock(&fs_info->fs_roots_radix_lock);
1487 if (root)
1488 return root;
1489
1490 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1491 if (IS_ERR(root))
1492 return root;
1493
1494 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1495 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1496 GFP_NOFS);
1497 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1498 ret = -ENOMEM;
1499 goto fail;
1500 }
1501
1502 btrfs_init_free_ino_ctl(root);
1503 mutex_init(&root->fs_commit_mutex);
1504 spin_lock_init(&root->cache_lock);
1505 init_waitqueue_head(&root->cache_wait);
1506
1507 ret = get_anon_bdev(&root->anon_dev);
1508 if (ret)
1509 goto fail;
1510
1511 if (btrfs_root_refs(&root->root_item) == 0) {
1512 ret = -ENOENT;
1513 goto fail;
1514 }
1515
1516 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1517 if (ret < 0)
1518 goto fail;
1519 if (ret == 0)
1520 root->orphan_item_inserted = 1;
1521
1522 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1523 if (ret)
1524 goto fail;
1525
1526 spin_lock(&fs_info->fs_roots_radix_lock);
1527 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1528 (unsigned long)root->root_key.objectid,
1529 root);
1530 if (ret == 0)
1531 root->in_radix = 1;
1532
1533 spin_unlock(&fs_info->fs_roots_radix_lock);
1534 radix_tree_preload_end();
1535 if (ret) {
1536 if (ret == -EEXIST) {
1537 free_fs_root(root);
1538 goto again;
1539 }
1540 goto fail;
1541 }
1542
1543 ret = btrfs_find_dead_roots(fs_info->tree_root,
1544 root->root_key.objectid);
1545 WARN_ON(ret);
1546 return root;
1547 fail:
1548 free_fs_root(root);
1549 return ERR_PTR(ret);
1550 }
1551
1552 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1553 {
1554 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1555 int ret = 0;
1556 struct btrfs_device *device;
1557 struct backing_dev_info *bdi;
1558
1559 rcu_read_lock();
1560 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1561 if (!device->bdev)
1562 continue;
1563 bdi = blk_get_backing_dev_info(device->bdev);
1564 if (bdi && bdi_congested(bdi, bdi_bits)) {
1565 ret = 1;
1566 break;
1567 }
1568 }
1569 rcu_read_unlock();
1570 return ret;
1571 }
1572
1573 /*
1574 * If this fails, caller must call bdi_destroy() to get rid of the
1575 * bdi again.
1576 */
1577 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1578 {
1579 int err;
1580
1581 bdi->capabilities = BDI_CAP_MAP_COPY;
1582 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1583 if (err)
1584 return err;
1585
1586 bdi->ra_pages = default_backing_dev_info.ra_pages;
1587 bdi->congested_fn = btrfs_congested_fn;
1588 bdi->congested_data = info;
1589 return 0;
1590 }
1591
1592 /*
1593 * called by the kthread helper functions to finally call the bio end_io
1594 * functions. This is where read checksum verification actually happens
1595 */
1596 static void end_workqueue_fn(struct btrfs_work *work)
1597 {
1598 struct bio *bio;
1599 struct end_io_wq *end_io_wq;
1600 struct btrfs_fs_info *fs_info;
1601 int error;
1602
1603 end_io_wq = container_of(work, struct end_io_wq, work);
1604 bio = end_io_wq->bio;
1605 fs_info = end_io_wq->info;
1606
1607 error = end_io_wq->error;
1608 bio->bi_private = end_io_wq->private;
1609 bio->bi_end_io = end_io_wq->end_io;
1610 kfree(end_io_wq);
1611 bio_endio(bio, error);
1612 }
1613
1614 static int cleaner_kthread(void *arg)
1615 {
1616 struct btrfs_root *root = arg;
1617
1618 do {
1619 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1620
1621 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1622 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1623 btrfs_run_delayed_iputs(root);
1624 btrfs_clean_old_snapshots(root);
1625 mutex_unlock(&root->fs_info->cleaner_mutex);
1626 btrfs_run_defrag_inodes(root->fs_info);
1627 }
1628
1629 if (!try_to_freeze()) {
1630 set_current_state(TASK_INTERRUPTIBLE);
1631 if (!kthread_should_stop())
1632 schedule();
1633 __set_current_state(TASK_RUNNING);
1634 }
1635 } while (!kthread_should_stop());
1636 return 0;
1637 }
1638
1639 static int transaction_kthread(void *arg)
1640 {
1641 struct btrfs_root *root = arg;
1642 struct btrfs_trans_handle *trans;
1643 struct btrfs_transaction *cur;
1644 u64 transid;
1645 unsigned long now;
1646 unsigned long delay;
1647 bool cannot_commit;
1648
1649 do {
1650 cannot_commit = false;
1651 delay = HZ * 30;
1652 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1653 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1654
1655 spin_lock(&root->fs_info->trans_lock);
1656 cur = root->fs_info->running_transaction;
1657 if (!cur) {
1658 spin_unlock(&root->fs_info->trans_lock);
1659 goto sleep;
1660 }
1661
1662 now = get_seconds();
1663 if (!cur->blocked &&
1664 (now < cur->start_time || now - cur->start_time < 30)) {
1665 spin_unlock(&root->fs_info->trans_lock);
1666 delay = HZ * 5;
1667 goto sleep;
1668 }
1669 transid = cur->transid;
1670 spin_unlock(&root->fs_info->trans_lock);
1671
1672 /* If the file system is aborted, this will always fail. */
1673 trans = btrfs_join_transaction(root);
1674 if (IS_ERR(trans)) {
1675 cannot_commit = true;
1676 goto sleep;
1677 }
1678 if (transid == trans->transid) {
1679 btrfs_commit_transaction(trans, root);
1680 } else {
1681 btrfs_end_transaction(trans, root);
1682 }
1683 sleep:
1684 wake_up_process(root->fs_info->cleaner_kthread);
1685 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1686
1687 if (!try_to_freeze()) {
1688 set_current_state(TASK_INTERRUPTIBLE);
1689 if (!kthread_should_stop() &&
1690 (!btrfs_transaction_blocked(root->fs_info) ||
1691 cannot_commit))
1692 schedule_timeout(delay);
1693 __set_current_state(TASK_RUNNING);
1694 }
1695 } while (!kthread_should_stop());
1696 return 0;
1697 }
1698
1699 /*
1700 * this will find the highest generation in the array of
1701 * root backups. The index of the highest array is returned,
1702 * or -1 if we can't find anything.
1703 *
1704 * We check to make sure the array is valid by comparing the
1705 * generation of the latest root in the array with the generation
1706 * in the super block. If they don't match we pitch it.
1707 */
1708 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1709 {
1710 u64 cur;
1711 int newest_index = -1;
1712 struct btrfs_root_backup *root_backup;
1713 int i;
1714
1715 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1716 root_backup = info->super_copy->super_roots + i;
1717 cur = btrfs_backup_tree_root_gen(root_backup);
1718 if (cur == newest_gen)
1719 newest_index = i;
1720 }
1721
1722 /* check to see if we actually wrapped around */
1723 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1724 root_backup = info->super_copy->super_roots;
1725 cur = btrfs_backup_tree_root_gen(root_backup);
1726 if (cur == newest_gen)
1727 newest_index = 0;
1728 }
1729 return newest_index;
1730 }
1731
1732
1733 /*
1734 * find the oldest backup so we know where to store new entries
1735 * in the backup array. This will set the backup_root_index
1736 * field in the fs_info struct
1737 */
1738 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1739 u64 newest_gen)
1740 {
1741 int newest_index = -1;
1742
1743 newest_index = find_newest_super_backup(info, newest_gen);
1744 /* if there was garbage in there, just move along */
1745 if (newest_index == -1) {
1746 info->backup_root_index = 0;
1747 } else {
1748 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1749 }
1750 }
1751
1752 /*
1753 * copy all the root pointers into the super backup array.
1754 * this will bump the backup pointer by one when it is
1755 * done
1756 */
1757 static void backup_super_roots(struct btrfs_fs_info *info)
1758 {
1759 int next_backup;
1760 struct btrfs_root_backup *root_backup;
1761 int last_backup;
1762
1763 next_backup = info->backup_root_index;
1764 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1765 BTRFS_NUM_BACKUP_ROOTS;
1766
1767 /*
1768 * just overwrite the last backup if we're at the same generation
1769 * this happens only at umount
1770 */
1771 root_backup = info->super_for_commit->super_roots + last_backup;
1772 if (btrfs_backup_tree_root_gen(root_backup) ==
1773 btrfs_header_generation(info->tree_root->node))
1774 next_backup = last_backup;
1775
1776 root_backup = info->super_for_commit->super_roots + next_backup;
1777
1778 /*
1779 * make sure all of our padding and empty slots get zero filled
1780 * regardless of which ones we use today
1781 */
1782 memset(root_backup, 0, sizeof(*root_backup));
1783
1784 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1785
1786 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1787 btrfs_set_backup_tree_root_gen(root_backup,
1788 btrfs_header_generation(info->tree_root->node));
1789
1790 btrfs_set_backup_tree_root_level(root_backup,
1791 btrfs_header_level(info->tree_root->node));
1792
1793 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1794 btrfs_set_backup_chunk_root_gen(root_backup,
1795 btrfs_header_generation(info->chunk_root->node));
1796 btrfs_set_backup_chunk_root_level(root_backup,
1797 btrfs_header_level(info->chunk_root->node));
1798
1799 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1800 btrfs_set_backup_extent_root_gen(root_backup,
1801 btrfs_header_generation(info->extent_root->node));
1802 btrfs_set_backup_extent_root_level(root_backup,
1803 btrfs_header_level(info->extent_root->node));
1804
1805 /*
1806 * we might commit during log recovery, which happens before we set
1807 * the fs_root. Make sure it is valid before we fill it in.
1808 */
1809 if (info->fs_root && info->fs_root->node) {
1810 btrfs_set_backup_fs_root(root_backup,
1811 info->fs_root->node->start);
1812 btrfs_set_backup_fs_root_gen(root_backup,
1813 btrfs_header_generation(info->fs_root->node));
1814 btrfs_set_backup_fs_root_level(root_backup,
1815 btrfs_header_level(info->fs_root->node));
1816 }
1817
1818 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1819 btrfs_set_backup_dev_root_gen(root_backup,
1820 btrfs_header_generation(info->dev_root->node));
1821 btrfs_set_backup_dev_root_level(root_backup,
1822 btrfs_header_level(info->dev_root->node));
1823
1824 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1825 btrfs_set_backup_csum_root_gen(root_backup,
1826 btrfs_header_generation(info->csum_root->node));
1827 btrfs_set_backup_csum_root_level(root_backup,
1828 btrfs_header_level(info->csum_root->node));
1829
1830 btrfs_set_backup_total_bytes(root_backup,
1831 btrfs_super_total_bytes(info->super_copy));
1832 btrfs_set_backup_bytes_used(root_backup,
1833 btrfs_super_bytes_used(info->super_copy));
1834 btrfs_set_backup_num_devices(root_backup,
1835 btrfs_super_num_devices(info->super_copy));
1836
1837 /*
1838 * if we don't copy this out to the super_copy, it won't get remembered
1839 * for the next commit
1840 */
1841 memcpy(&info->super_copy->super_roots,
1842 &info->super_for_commit->super_roots,
1843 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1844 }
1845
1846 /*
1847 * this copies info out of the root backup array and back into
1848 * the in-memory super block. It is meant to help iterate through
1849 * the array, so you send it the number of backups you've already
1850 * tried and the last backup index you used.
1851 *
1852 * this returns -1 when it has tried all the backups
1853 */
1854 static noinline int next_root_backup(struct btrfs_fs_info *info,
1855 struct btrfs_super_block *super,
1856 int *num_backups_tried, int *backup_index)
1857 {
1858 struct btrfs_root_backup *root_backup;
1859 int newest = *backup_index;
1860
1861 if (*num_backups_tried == 0) {
1862 u64 gen = btrfs_super_generation(super);
1863
1864 newest = find_newest_super_backup(info, gen);
1865 if (newest == -1)
1866 return -1;
1867
1868 *backup_index = newest;
1869 *num_backups_tried = 1;
1870 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1871 /* we've tried all the backups, all done */
1872 return -1;
1873 } else {
1874 /* jump to the next oldest backup */
1875 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1876 BTRFS_NUM_BACKUP_ROOTS;
1877 *backup_index = newest;
1878 *num_backups_tried += 1;
1879 }
1880 root_backup = super->super_roots + newest;
1881
1882 btrfs_set_super_generation(super,
1883 btrfs_backup_tree_root_gen(root_backup));
1884 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1885 btrfs_set_super_root_level(super,
1886 btrfs_backup_tree_root_level(root_backup));
1887 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1888
1889 /*
1890 * fixme: the total bytes and num_devices need to match or we should
1891 * need a fsck
1892 */
1893 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1894 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1895 return 0;
1896 }
1897
1898 /* helper to cleanup tree roots */
1899 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1900 {
1901 free_extent_buffer(info->tree_root->node);
1902 free_extent_buffer(info->tree_root->commit_root);
1903 free_extent_buffer(info->dev_root->node);
1904 free_extent_buffer(info->dev_root->commit_root);
1905 free_extent_buffer(info->extent_root->node);
1906 free_extent_buffer(info->extent_root->commit_root);
1907 free_extent_buffer(info->csum_root->node);
1908 free_extent_buffer(info->csum_root->commit_root);
1909 if (info->quota_root) {
1910 free_extent_buffer(info->quota_root->node);
1911 free_extent_buffer(info->quota_root->commit_root);
1912 }
1913
1914 info->tree_root->node = NULL;
1915 info->tree_root->commit_root = NULL;
1916 info->dev_root->node = NULL;
1917 info->dev_root->commit_root = NULL;
1918 info->extent_root->node = NULL;
1919 info->extent_root->commit_root = NULL;
1920 info->csum_root->node = NULL;
1921 info->csum_root->commit_root = NULL;
1922 if (info->quota_root) {
1923 info->quota_root->node = NULL;
1924 info->quota_root->commit_root = NULL;
1925 }
1926
1927 if (chunk_root) {
1928 free_extent_buffer(info->chunk_root->node);
1929 free_extent_buffer(info->chunk_root->commit_root);
1930 info->chunk_root->node = NULL;
1931 info->chunk_root->commit_root = NULL;
1932 }
1933 }
1934
1935
1936 int open_ctree(struct super_block *sb,
1937 struct btrfs_fs_devices *fs_devices,
1938 char *options)
1939 {
1940 u32 sectorsize;
1941 u32 nodesize;
1942 u32 leafsize;
1943 u32 blocksize;
1944 u32 stripesize;
1945 u64 generation;
1946 u64 features;
1947 struct btrfs_key location;
1948 struct buffer_head *bh;
1949 struct btrfs_super_block *disk_super;
1950 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1951 struct btrfs_root *tree_root;
1952 struct btrfs_root *extent_root;
1953 struct btrfs_root *csum_root;
1954 struct btrfs_root *chunk_root;
1955 struct btrfs_root *dev_root;
1956 struct btrfs_root *quota_root;
1957 struct btrfs_root *log_tree_root;
1958 int ret;
1959 int err = -EINVAL;
1960 int num_backups_tried = 0;
1961 int backup_index = 0;
1962
1963 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1964 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1965 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1966 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1967 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1968 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1969
1970 if (!tree_root || !extent_root || !csum_root ||
1971 !chunk_root || !dev_root || !quota_root) {
1972 err = -ENOMEM;
1973 goto fail;
1974 }
1975
1976 ret = init_srcu_struct(&fs_info->subvol_srcu);
1977 if (ret) {
1978 err = ret;
1979 goto fail;
1980 }
1981
1982 ret = setup_bdi(fs_info, &fs_info->bdi);
1983 if (ret) {
1984 err = ret;
1985 goto fail_srcu;
1986 }
1987
1988 fs_info->btree_inode = new_inode(sb);
1989 if (!fs_info->btree_inode) {
1990 err = -ENOMEM;
1991 goto fail_bdi;
1992 }
1993
1994 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1995
1996 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1997 INIT_LIST_HEAD(&fs_info->trans_list);
1998 INIT_LIST_HEAD(&fs_info->dead_roots);
1999 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2000 INIT_LIST_HEAD(&fs_info->hashers);
2001 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2002 INIT_LIST_HEAD(&fs_info->ordered_operations);
2003 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2004 spin_lock_init(&fs_info->delalloc_lock);
2005 spin_lock_init(&fs_info->trans_lock);
2006 spin_lock_init(&fs_info->ref_cache_lock);
2007 spin_lock_init(&fs_info->fs_roots_radix_lock);
2008 spin_lock_init(&fs_info->delayed_iput_lock);
2009 spin_lock_init(&fs_info->defrag_inodes_lock);
2010 spin_lock_init(&fs_info->free_chunk_lock);
2011 spin_lock_init(&fs_info->tree_mod_seq_lock);
2012 rwlock_init(&fs_info->tree_mod_log_lock);
2013 mutex_init(&fs_info->reloc_mutex);
2014
2015 init_completion(&fs_info->kobj_unregister);
2016 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2017 INIT_LIST_HEAD(&fs_info->space_info);
2018 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2019 btrfs_mapping_init(&fs_info->mapping_tree);
2020 btrfs_init_block_rsv(&fs_info->global_block_rsv);
2021 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2022 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2023 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2024 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
2025 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
2026 atomic_set(&fs_info->nr_async_submits, 0);
2027 atomic_set(&fs_info->async_delalloc_pages, 0);
2028 atomic_set(&fs_info->async_submit_draining, 0);
2029 atomic_set(&fs_info->nr_async_bios, 0);
2030 atomic_set(&fs_info->defrag_running, 0);
2031 atomic_set(&fs_info->tree_mod_seq, 0);
2032 fs_info->sb = sb;
2033 fs_info->max_inline = 8192 * 1024;
2034 fs_info->metadata_ratio = 0;
2035 fs_info->defrag_inodes = RB_ROOT;
2036 fs_info->trans_no_join = 0;
2037 fs_info->free_chunk_space = 0;
2038 fs_info->tree_mod_log = RB_ROOT;
2039
2040 /* readahead state */
2041 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2042 spin_lock_init(&fs_info->reada_lock);
2043
2044 fs_info->thread_pool_size = min_t(unsigned long,
2045 num_online_cpus() + 2, 8);
2046
2047 INIT_LIST_HEAD(&fs_info->ordered_extents);
2048 spin_lock_init(&fs_info->ordered_extent_lock);
2049 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2050 GFP_NOFS);
2051 if (!fs_info->delayed_root) {
2052 err = -ENOMEM;
2053 goto fail_iput;
2054 }
2055 btrfs_init_delayed_root(fs_info->delayed_root);
2056
2057 mutex_init(&fs_info->scrub_lock);
2058 atomic_set(&fs_info->scrubs_running, 0);
2059 atomic_set(&fs_info->scrub_pause_req, 0);
2060 atomic_set(&fs_info->scrubs_paused, 0);
2061 atomic_set(&fs_info->scrub_cancel_req, 0);
2062 init_waitqueue_head(&fs_info->scrub_pause_wait);
2063 init_rwsem(&fs_info->scrub_super_lock);
2064 fs_info->scrub_workers_refcnt = 0;
2065 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2066 fs_info->check_integrity_print_mask = 0;
2067 #endif
2068
2069 spin_lock_init(&fs_info->balance_lock);
2070 mutex_init(&fs_info->balance_mutex);
2071 atomic_set(&fs_info->balance_running, 0);
2072 atomic_set(&fs_info->balance_pause_req, 0);
2073 atomic_set(&fs_info->balance_cancel_req, 0);
2074 fs_info->balance_ctl = NULL;
2075 init_waitqueue_head(&fs_info->balance_wait_q);
2076
2077 sb->s_blocksize = 4096;
2078 sb->s_blocksize_bits = blksize_bits(4096);
2079 sb->s_bdi = &fs_info->bdi;
2080
2081 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2082 set_nlink(fs_info->btree_inode, 1);
2083 /*
2084 * we set the i_size on the btree inode to the max possible int.
2085 * the real end of the address space is determined by all of
2086 * the devices in the system
2087 */
2088 fs_info->btree_inode->i_size = OFFSET_MAX;
2089 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2090 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2091
2092 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2093 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2094 fs_info->btree_inode->i_mapping);
2095 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2096 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2097
2098 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2099
2100 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2101 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2102 sizeof(struct btrfs_key));
2103 set_bit(BTRFS_INODE_DUMMY,
2104 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2105 insert_inode_hash(fs_info->btree_inode);
2106
2107 spin_lock_init(&fs_info->block_group_cache_lock);
2108 fs_info->block_group_cache_tree = RB_ROOT;
2109
2110 extent_io_tree_init(&fs_info->freed_extents[0],
2111 fs_info->btree_inode->i_mapping);
2112 extent_io_tree_init(&fs_info->freed_extents[1],
2113 fs_info->btree_inode->i_mapping);
2114 fs_info->pinned_extents = &fs_info->freed_extents[0];
2115 fs_info->do_barriers = 1;
2116
2117
2118 mutex_init(&fs_info->ordered_operations_mutex);
2119 mutex_init(&fs_info->tree_log_mutex);
2120 mutex_init(&fs_info->chunk_mutex);
2121 mutex_init(&fs_info->transaction_kthread_mutex);
2122 mutex_init(&fs_info->cleaner_mutex);
2123 mutex_init(&fs_info->volume_mutex);
2124 init_rwsem(&fs_info->extent_commit_sem);
2125 init_rwsem(&fs_info->cleanup_work_sem);
2126 init_rwsem(&fs_info->subvol_sem);
2127
2128 spin_lock_init(&fs_info->qgroup_lock);
2129 fs_info->qgroup_tree = RB_ROOT;
2130 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2131 fs_info->qgroup_seq = 1;
2132 fs_info->quota_enabled = 0;
2133 fs_info->pending_quota_state = 0;
2134
2135 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2136 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2137
2138 init_waitqueue_head(&fs_info->transaction_throttle);
2139 init_waitqueue_head(&fs_info->transaction_wait);
2140 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2141 init_waitqueue_head(&fs_info->async_submit_wait);
2142
2143 __setup_root(4096, 4096, 4096, 4096, tree_root,
2144 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2145
2146 invalidate_bdev(fs_devices->latest_bdev);
2147 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2148 if (!bh) {
2149 err = -EINVAL;
2150 goto fail_alloc;
2151 }
2152
2153 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2154 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2155 sizeof(*fs_info->super_for_commit));
2156 brelse(bh);
2157
2158 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2159
2160 disk_super = fs_info->super_copy;
2161 if (!btrfs_super_root(disk_super))
2162 goto fail_alloc;
2163
2164 /* check FS state, whether FS is broken. */
2165 fs_info->fs_state |= btrfs_super_flags(disk_super);
2166
2167 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2168 if (ret) {
2169 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2170 err = ret;
2171 goto fail_alloc;
2172 }
2173
2174 /*
2175 * run through our array of backup supers and setup
2176 * our ring pointer to the oldest one
2177 */
2178 generation = btrfs_super_generation(disk_super);
2179 find_oldest_super_backup(fs_info, generation);
2180
2181 /*
2182 * In the long term, we'll store the compression type in the super
2183 * block, and it'll be used for per file compression control.
2184 */
2185 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2186
2187 ret = btrfs_parse_options(tree_root, options);
2188 if (ret) {
2189 err = ret;
2190 goto fail_alloc;
2191 }
2192
2193 features = btrfs_super_incompat_flags(disk_super) &
2194 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2195 if (features) {
2196 printk(KERN_ERR "BTRFS: couldn't mount because of "
2197 "unsupported optional features (%Lx).\n",
2198 (unsigned long long)features);
2199 err = -EINVAL;
2200 goto fail_alloc;
2201 }
2202
2203 if (btrfs_super_leafsize(disk_super) !=
2204 btrfs_super_nodesize(disk_super)) {
2205 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2206 "blocksizes don't match. node %d leaf %d\n",
2207 btrfs_super_nodesize(disk_super),
2208 btrfs_super_leafsize(disk_super));
2209 err = -EINVAL;
2210 goto fail_alloc;
2211 }
2212 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2213 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2214 "blocksize (%d) was too large\n",
2215 btrfs_super_leafsize(disk_super));
2216 err = -EINVAL;
2217 goto fail_alloc;
2218 }
2219
2220 features = btrfs_super_incompat_flags(disk_super);
2221 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2222 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2223 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2224
2225 /*
2226 * flag our filesystem as having big metadata blocks if
2227 * they are bigger than the page size
2228 */
2229 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2230 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2231 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2232 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2233 }
2234
2235 nodesize = btrfs_super_nodesize(disk_super);
2236 leafsize = btrfs_super_leafsize(disk_super);
2237 sectorsize = btrfs_super_sectorsize(disk_super);
2238 stripesize = btrfs_super_stripesize(disk_super);
2239
2240 /*
2241 * mixed block groups end up with duplicate but slightly offset
2242 * extent buffers for the same range. It leads to corruptions
2243 */
2244 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2245 (sectorsize != leafsize)) {
2246 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2247 "are not allowed for mixed block groups on %s\n",
2248 sb->s_id);
2249 goto fail_alloc;
2250 }
2251
2252 btrfs_set_super_incompat_flags(disk_super, features);
2253
2254 features = btrfs_super_compat_ro_flags(disk_super) &
2255 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2256 if (!(sb->s_flags & MS_RDONLY) && features) {
2257 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2258 "unsupported option features (%Lx).\n",
2259 (unsigned long long)features);
2260 err = -EINVAL;
2261 goto fail_alloc;
2262 }
2263
2264 btrfs_init_workers(&fs_info->generic_worker,
2265 "genwork", 1, NULL);
2266
2267 btrfs_init_workers(&fs_info->workers, "worker",
2268 fs_info->thread_pool_size,
2269 &fs_info->generic_worker);
2270
2271 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2272 fs_info->thread_pool_size,
2273 &fs_info->generic_worker);
2274
2275 btrfs_init_workers(&fs_info->submit_workers, "submit",
2276 min_t(u64, fs_devices->num_devices,
2277 fs_info->thread_pool_size),
2278 &fs_info->generic_worker);
2279
2280 btrfs_init_workers(&fs_info->caching_workers, "cache",
2281 2, &fs_info->generic_worker);
2282
2283 /* a higher idle thresh on the submit workers makes it much more
2284 * likely that bios will be send down in a sane order to the
2285 * devices
2286 */
2287 fs_info->submit_workers.idle_thresh = 64;
2288
2289 fs_info->workers.idle_thresh = 16;
2290 fs_info->workers.ordered = 1;
2291
2292 fs_info->delalloc_workers.idle_thresh = 2;
2293 fs_info->delalloc_workers.ordered = 1;
2294
2295 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2296 &fs_info->generic_worker);
2297 btrfs_init_workers(&fs_info->endio_workers, "endio",
2298 fs_info->thread_pool_size,
2299 &fs_info->generic_worker);
2300 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2301 fs_info->thread_pool_size,
2302 &fs_info->generic_worker);
2303 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2304 "endio-meta-write", fs_info->thread_pool_size,
2305 &fs_info->generic_worker);
2306 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2307 fs_info->thread_pool_size,
2308 &fs_info->generic_worker);
2309 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2310 1, &fs_info->generic_worker);
2311 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2312 fs_info->thread_pool_size,
2313 &fs_info->generic_worker);
2314 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2315 fs_info->thread_pool_size,
2316 &fs_info->generic_worker);
2317
2318 /*
2319 * endios are largely parallel and should have a very
2320 * low idle thresh
2321 */
2322 fs_info->endio_workers.idle_thresh = 4;
2323 fs_info->endio_meta_workers.idle_thresh = 4;
2324
2325 fs_info->endio_write_workers.idle_thresh = 2;
2326 fs_info->endio_meta_write_workers.idle_thresh = 2;
2327 fs_info->readahead_workers.idle_thresh = 2;
2328
2329 /*
2330 * btrfs_start_workers can really only fail because of ENOMEM so just
2331 * return -ENOMEM if any of these fail.
2332 */
2333 ret = btrfs_start_workers(&fs_info->workers);
2334 ret |= btrfs_start_workers(&fs_info->generic_worker);
2335 ret |= btrfs_start_workers(&fs_info->submit_workers);
2336 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2337 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2338 ret |= btrfs_start_workers(&fs_info->endio_workers);
2339 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2340 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2341 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2342 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2343 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2344 ret |= btrfs_start_workers(&fs_info->caching_workers);
2345 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2346 if (ret) {
2347 err = -ENOMEM;
2348 goto fail_sb_buffer;
2349 }
2350
2351 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2352 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2353 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2354
2355 tree_root->nodesize = nodesize;
2356 tree_root->leafsize = leafsize;
2357 tree_root->sectorsize = sectorsize;
2358 tree_root->stripesize = stripesize;
2359
2360 sb->s_blocksize = sectorsize;
2361 sb->s_blocksize_bits = blksize_bits(sectorsize);
2362
2363 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2364 sizeof(disk_super->magic))) {
2365 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2366 goto fail_sb_buffer;
2367 }
2368
2369 if (sectorsize != PAGE_SIZE) {
2370 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2371 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2372 goto fail_sb_buffer;
2373 }
2374
2375 mutex_lock(&fs_info->chunk_mutex);
2376 ret = btrfs_read_sys_array(tree_root);
2377 mutex_unlock(&fs_info->chunk_mutex);
2378 if (ret) {
2379 printk(KERN_WARNING "btrfs: failed to read the system "
2380 "array on %s\n", sb->s_id);
2381 goto fail_sb_buffer;
2382 }
2383
2384 blocksize = btrfs_level_size(tree_root,
2385 btrfs_super_chunk_root_level(disk_super));
2386 generation = btrfs_super_chunk_root_generation(disk_super);
2387
2388 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2389 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2390
2391 chunk_root->node = read_tree_block(chunk_root,
2392 btrfs_super_chunk_root(disk_super),
2393 blocksize, generation);
2394 BUG_ON(!chunk_root->node); /* -ENOMEM */
2395 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2396 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2397 sb->s_id);
2398 goto fail_tree_roots;
2399 }
2400 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2401 chunk_root->commit_root = btrfs_root_node(chunk_root);
2402
2403 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2404 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2405 BTRFS_UUID_SIZE);
2406
2407 ret = btrfs_read_chunk_tree(chunk_root);
2408 if (ret) {
2409 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2410 sb->s_id);
2411 goto fail_tree_roots;
2412 }
2413
2414 btrfs_close_extra_devices(fs_devices);
2415
2416 if (!fs_devices->latest_bdev) {
2417 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2418 sb->s_id);
2419 goto fail_tree_roots;
2420 }
2421
2422 retry_root_backup:
2423 blocksize = btrfs_level_size(tree_root,
2424 btrfs_super_root_level(disk_super));
2425 generation = btrfs_super_generation(disk_super);
2426
2427 tree_root->node = read_tree_block(tree_root,
2428 btrfs_super_root(disk_super),
2429 blocksize, generation);
2430 if (!tree_root->node ||
2431 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2432 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2433 sb->s_id);
2434
2435 goto recovery_tree_root;
2436 }
2437
2438 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2439 tree_root->commit_root = btrfs_root_node(tree_root);
2440
2441 ret = find_and_setup_root(tree_root, fs_info,
2442 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2443 if (ret)
2444 goto recovery_tree_root;
2445 extent_root->track_dirty = 1;
2446
2447 ret = find_and_setup_root(tree_root, fs_info,
2448 BTRFS_DEV_TREE_OBJECTID, dev_root);
2449 if (ret)
2450 goto recovery_tree_root;
2451 dev_root->track_dirty = 1;
2452
2453 ret = find_and_setup_root(tree_root, fs_info,
2454 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2455 if (ret)
2456 goto recovery_tree_root;
2457 csum_root->track_dirty = 1;
2458
2459 ret = find_and_setup_root(tree_root, fs_info,
2460 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2461 if (ret) {
2462 kfree(quota_root);
2463 quota_root = fs_info->quota_root = NULL;
2464 } else {
2465 quota_root->track_dirty = 1;
2466 fs_info->quota_enabled = 1;
2467 fs_info->pending_quota_state = 1;
2468 }
2469
2470 fs_info->generation = generation;
2471 fs_info->last_trans_committed = generation;
2472
2473 ret = btrfs_recover_balance(fs_info);
2474 if (ret) {
2475 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2476 goto fail_block_groups;
2477 }
2478
2479 ret = btrfs_init_dev_stats(fs_info);
2480 if (ret) {
2481 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2482 ret);
2483 goto fail_block_groups;
2484 }
2485
2486 ret = btrfs_init_space_info(fs_info);
2487 if (ret) {
2488 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2489 goto fail_block_groups;
2490 }
2491
2492 ret = btrfs_read_block_groups(extent_root);
2493 if (ret) {
2494 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2495 goto fail_block_groups;
2496 }
2497
2498 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2499 "btrfs-cleaner");
2500 if (IS_ERR(fs_info->cleaner_kthread))
2501 goto fail_block_groups;
2502
2503 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2504 tree_root,
2505 "btrfs-transaction");
2506 if (IS_ERR(fs_info->transaction_kthread))
2507 goto fail_cleaner;
2508
2509 if (!btrfs_test_opt(tree_root, SSD) &&
2510 !btrfs_test_opt(tree_root, NOSSD) &&
2511 !fs_info->fs_devices->rotating) {
2512 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2513 "mode\n");
2514 btrfs_set_opt(fs_info->mount_opt, SSD);
2515 }
2516
2517 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2518 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2519 ret = btrfsic_mount(tree_root, fs_devices,
2520 btrfs_test_opt(tree_root,
2521 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2522 1 : 0,
2523 fs_info->check_integrity_print_mask);
2524 if (ret)
2525 printk(KERN_WARNING "btrfs: failed to initialize"
2526 " integrity check module %s\n", sb->s_id);
2527 }
2528 #endif
2529 ret = btrfs_read_qgroup_config(fs_info);
2530 if (ret)
2531 goto fail_trans_kthread;
2532
2533 /* do not make disk changes in broken FS */
2534 if (btrfs_super_log_root(disk_super) != 0) {
2535 u64 bytenr = btrfs_super_log_root(disk_super);
2536
2537 if (fs_devices->rw_devices == 0) {
2538 printk(KERN_WARNING "Btrfs log replay required "
2539 "on RO media\n");
2540 err = -EIO;
2541 goto fail_qgroup;
2542 }
2543 blocksize =
2544 btrfs_level_size(tree_root,
2545 btrfs_super_log_root_level(disk_super));
2546
2547 log_tree_root = btrfs_alloc_root(fs_info);
2548 if (!log_tree_root) {
2549 err = -ENOMEM;
2550 goto fail_qgroup;
2551 }
2552
2553 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2554 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2555
2556 log_tree_root->node = read_tree_block(tree_root, bytenr,
2557 blocksize,
2558 generation + 1);
2559 /* returns with log_tree_root freed on success */
2560 ret = btrfs_recover_log_trees(log_tree_root);
2561 if (ret) {
2562 btrfs_error(tree_root->fs_info, ret,
2563 "Failed to recover log tree");
2564 free_extent_buffer(log_tree_root->node);
2565 kfree(log_tree_root);
2566 goto fail_trans_kthread;
2567 }
2568
2569 if (sb->s_flags & MS_RDONLY) {
2570 ret = btrfs_commit_super(tree_root);
2571 if (ret)
2572 goto fail_trans_kthread;
2573 }
2574 }
2575
2576 ret = btrfs_find_orphan_roots(tree_root);
2577 if (ret)
2578 goto fail_trans_kthread;
2579
2580 if (!(sb->s_flags & MS_RDONLY)) {
2581 ret = btrfs_cleanup_fs_roots(fs_info);
2582 if (ret)
2583 goto fail_trans_kthread;
2584
2585 ret = btrfs_recover_relocation(tree_root);
2586 if (ret < 0) {
2587 printk(KERN_WARNING
2588 "btrfs: failed to recover relocation\n");
2589 err = -EINVAL;
2590 goto fail_qgroup;
2591 }
2592 }
2593
2594 location.objectid = BTRFS_FS_TREE_OBJECTID;
2595 location.type = BTRFS_ROOT_ITEM_KEY;
2596 location.offset = (u64)-1;
2597
2598 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2599 if (!fs_info->fs_root)
2600 goto fail_qgroup;
2601 if (IS_ERR(fs_info->fs_root)) {
2602 err = PTR_ERR(fs_info->fs_root);
2603 goto fail_qgroup;
2604 }
2605
2606 if (sb->s_flags & MS_RDONLY)
2607 return 0;
2608
2609 down_read(&fs_info->cleanup_work_sem);
2610 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2611 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2612 up_read(&fs_info->cleanup_work_sem);
2613 close_ctree(tree_root);
2614 return ret;
2615 }
2616 up_read(&fs_info->cleanup_work_sem);
2617
2618 ret = btrfs_resume_balance_async(fs_info);
2619 if (ret) {
2620 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2621 close_ctree(tree_root);
2622 return ret;
2623 }
2624
2625 return 0;
2626
2627 fail_qgroup:
2628 btrfs_free_qgroup_config(fs_info);
2629 fail_trans_kthread:
2630 kthread_stop(fs_info->transaction_kthread);
2631 fail_cleaner:
2632 kthread_stop(fs_info->cleaner_kthread);
2633
2634 /*
2635 * make sure we're done with the btree inode before we stop our
2636 * kthreads
2637 */
2638 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2639 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2640
2641 fail_block_groups:
2642 btrfs_free_block_groups(fs_info);
2643
2644 fail_tree_roots:
2645 free_root_pointers(fs_info, 1);
2646
2647 fail_sb_buffer:
2648 btrfs_stop_workers(&fs_info->generic_worker);
2649 btrfs_stop_workers(&fs_info->readahead_workers);
2650 btrfs_stop_workers(&fs_info->fixup_workers);
2651 btrfs_stop_workers(&fs_info->delalloc_workers);
2652 btrfs_stop_workers(&fs_info->workers);
2653 btrfs_stop_workers(&fs_info->endio_workers);
2654 btrfs_stop_workers(&fs_info->endio_meta_workers);
2655 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2656 btrfs_stop_workers(&fs_info->endio_write_workers);
2657 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2658 btrfs_stop_workers(&fs_info->submit_workers);
2659 btrfs_stop_workers(&fs_info->delayed_workers);
2660 btrfs_stop_workers(&fs_info->caching_workers);
2661 fail_alloc:
2662 fail_iput:
2663 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2664
2665 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2666 iput(fs_info->btree_inode);
2667 fail_bdi:
2668 bdi_destroy(&fs_info->bdi);
2669 fail_srcu:
2670 cleanup_srcu_struct(&fs_info->subvol_srcu);
2671 fail:
2672 btrfs_close_devices(fs_info->fs_devices);
2673 return err;
2674
2675 recovery_tree_root:
2676 if (!btrfs_test_opt(tree_root, RECOVERY))
2677 goto fail_tree_roots;
2678
2679 free_root_pointers(fs_info, 0);
2680
2681 /* don't use the log in recovery mode, it won't be valid */
2682 btrfs_set_super_log_root(disk_super, 0);
2683
2684 /* we can't trust the free space cache either */
2685 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2686
2687 ret = next_root_backup(fs_info, fs_info->super_copy,
2688 &num_backups_tried, &backup_index);
2689 if (ret == -1)
2690 goto fail_block_groups;
2691 goto retry_root_backup;
2692 }
2693
2694 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2695 {
2696 if (uptodate) {
2697 set_buffer_uptodate(bh);
2698 } else {
2699 struct btrfs_device *device = (struct btrfs_device *)
2700 bh->b_private;
2701
2702 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2703 "I/O error on %s\n",
2704 rcu_str_deref(device->name));
2705 /* note, we dont' set_buffer_write_io_error because we have
2706 * our own ways of dealing with the IO errors
2707 */
2708 clear_buffer_uptodate(bh);
2709 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2710 }
2711 unlock_buffer(bh);
2712 put_bh(bh);
2713 }
2714
2715 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2716 {
2717 struct buffer_head *bh;
2718 struct buffer_head *latest = NULL;
2719 struct btrfs_super_block *super;
2720 int i;
2721 u64 transid = 0;
2722 u64 bytenr;
2723
2724 /* we would like to check all the supers, but that would make
2725 * a btrfs mount succeed after a mkfs from a different FS.
2726 * So, we need to add a special mount option to scan for
2727 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2728 */
2729 for (i = 0; i < 1; i++) {
2730 bytenr = btrfs_sb_offset(i);
2731 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2732 break;
2733 bh = __bread(bdev, bytenr / 4096, 4096);
2734 if (!bh)
2735 continue;
2736
2737 super = (struct btrfs_super_block *)bh->b_data;
2738 if (btrfs_super_bytenr(super) != bytenr ||
2739 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2740 sizeof(super->magic))) {
2741 brelse(bh);
2742 continue;
2743 }
2744
2745 if (!latest || btrfs_super_generation(super) > transid) {
2746 brelse(latest);
2747 latest = bh;
2748 transid = btrfs_super_generation(super);
2749 } else {
2750 brelse(bh);
2751 }
2752 }
2753 return latest;
2754 }
2755
2756 /*
2757 * this should be called twice, once with wait == 0 and
2758 * once with wait == 1. When wait == 0 is done, all the buffer heads
2759 * we write are pinned.
2760 *
2761 * They are released when wait == 1 is done.
2762 * max_mirrors must be the same for both runs, and it indicates how
2763 * many supers on this one device should be written.
2764 *
2765 * max_mirrors == 0 means to write them all.
2766 */
2767 static int write_dev_supers(struct btrfs_device *device,
2768 struct btrfs_super_block *sb,
2769 int do_barriers, int wait, int max_mirrors)
2770 {
2771 struct buffer_head *bh;
2772 int i;
2773 int ret;
2774 int errors = 0;
2775 u32 crc;
2776 u64 bytenr;
2777
2778 if (max_mirrors == 0)
2779 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2780
2781 for (i = 0; i < max_mirrors; i++) {
2782 bytenr = btrfs_sb_offset(i);
2783 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2784 break;
2785
2786 if (wait) {
2787 bh = __find_get_block(device->bdev, bytenr / 4096,
2788 BTRFS_SUPER_INFO_SIZE);
2789 BUG_ON(!bh);
2790 wait_on_buffer(bh);
2791 if (!buffer_uptodate(bh))
2792 errors++;
2793
2794 /* drop our reference */
2795 brelse(bh);
2796
2797 /* drop the reference from the wait == 0 run */
2798 brelse(bh);
2799 continue;
2800 } else {
2801 btrfs_set_super_bytenr(sb, bytenr);
2802
2803 crc = ~(u32)0;
2804 crc = btrfs_csum_data(NULL, (char *)sb +
2805 BTRFS_CSUM_SIZE, crc,
2806 BTRFS_SUPER_INFO_SIZE -
2807 BTRFS_CSUM_SIZE);
2808 btrfs_csum_final(crc, sb->csum);
2809
2810 /*
2811 * one reference for us, and we leave it for the
2812 * caller
2813 */
2814 bh = __getblk(device->bdev, bytenr / 4096,
2815 BTRFS_SUPER_INFO_SIZE);
2816 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2817
2818 /* one reference for submit_bh */
2819 get_bh(bh);
2820
2821 set_buffer_uptodate(bh);
2822 lock_buffer(bh);
2823 bh->b_end_io = btrfs_end_buffer_write_sync;
2824 bh->b_private = device;
2825 }
2826
2827 /*
2828 * we fua the first super. The others we allow
2829 * to go down lazy.
2830 */
2831 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2832 if (ret)
2833 errors++;
2834 }
2835 return errors < i ? 0 : -1;
2836 }
2837
2838 /*
2839 * endio for the write_dev_flush, this will wake anyone waiting
2840 * for the barrier when it is done
2841 */
2842 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2843 {
2844 if (err) {
2845 if (err == -EOPNOTSUPP)
2846 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2847 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2848 }
2849 if (bio->bi_private)
2850 complete(bio->bi_private);
2851 bio_put(bio);
2852 }
2853
2854 /*
2855 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2856 * sent down. With wait == 1, it waits for the previous flush.
2857 *
2858 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2859 * capable
2860 */
2861 static int write_dev_flush(struct btrfs_device *device, int wait)
2862 {
2863 struct bio *bio;
2864 int ret = 0;
2865
2866 if (device->nobarriers)
2867 return 0;
2868
2869 if (wait) {
2870 bio = device->flush_bio;
2871 if (!bio)
2872 return 0;
2873
2874 wait_for_completion(&device->flush_wait);
2875
2876 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2877 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2878 rcu_str_deref(device->name));
2879 device->nobarriers = 1;
2880 }
2881 if (!bio_flagged(bio, BIO_UPTODATE)) {
2882 ret = -EIO;
2883 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2884 btrfs_dev_stat_inc_and_print(device,
2885 BTRFS_DEV_STAT_FLUSH_ERRS);
2886 }
2887
2888 /* drop the reference from the wait == 0 run */
2889 bio_put(bio);
2890 device->flush_bio = NULL;
2891
2892 return ret;
2893 }
2894
2895 /*
2896 * one reference for us, and we leave it for the
2897 * caller
2898 */
2899 device->flush_bio = NULL;
2900 bio = bio_alloc(GFP_NOFS, 0);
2901 if (!bio)
2902 return -ENOMEM;
2903
2904 bio->bi_end_io = btrfs_end_empty_barrier;
2905 bio->bi_bdev = device->bdev;
2906 init_completion(&device->flush_wait);
2907 bio->bi_private = &device->flush_wait;
2908 device->flush_bio = bio;
2909
2910 bio_get(bio);
2911 btrfsic_submit_bio(WRITE_FLUSH, bio);
2912
2913 return 0;
2914 }
2915
2916 /*
2917 * send an empty flush down to each device in parallel,
2918 * then wait for them
2919 */
2920 static int barrier_all_devices(struct btrfs_fs_info *info)
2921 {
2922 struct list_head *head;
2923 struct btrfs_device *dev;
2924 int errors = 0;
2925 int ret;
2926
2927 /* send down all the barriers */
2928 head = &info->fs_devices->devices;
2929 list_for_each_entry_rcu(dev, head, dev_list) {
2930 if (!dev->bdev) {
2931 errors++;
2932 continue;
2933 }
2934 if (!dev->in_fs_metadata || !dev->writeable)
2935 continue;
2936
2937 ret = write_dev_flush(dev, 0);
2938 if (ret)
2939 errors++;
2940 }
2941
2942 /* wait for all the barriers */
2943 list_for_each_entry_rcu(dev, head, dev_list) {
2944 if (!dev->bdev) {
2945 errors++;
2946 continue;
2947 }
2948 if (!dev->in_fs_metadata || !dev->writeable)
2949 continue;
2950
2951 ret = write_dev_flush(dev, 1);
2952 if (ret)
2953 errors++;
2954 }
2955 if (errors)
2956 return -EIO;
2957 return 0;
2958 }
2959
2960 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2961 {
2962 struct list_head *head;
2963 struct btrfs_device *dev;
2964 struct btrfs_super_block *sb;
2965 struct btrfs_dev_item *dev_item;
2966 int ret;
2967 int do_barriers;
2968 int max_errors;
2969 int total_errors = 0;
2970 u64 flags;
2971
2972 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2973 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2974 backup_super_roots(root->fs_info);
2975
2976 sb = root->fs_info->super_for_commit;
2977 dev_item = &sb->dev_item;
2978
2979 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2980 head = &root->fs_info->fs_devices->devices;
2981
2982 if (do_barriers)
2983 barrier_all_devices(root->fs_info);
2984
2985 list_for_each_entry_rcu(dev, head, dev_list) {
2986 if (!dev->bdev) {
2987 total_errors++;
2988 continue;
2989 }
2990 if (!dev->in_fs_metadata || !dev->writeable)
2991 continue;
2992
2993 btrfs_set_stack_device_generation(dev_item, 0);
2994 btrfs_set_stack_device_type(dev_item, dev->type);
2995 btrfs_set_stack_device_id(dev_item, dev->devid);
2996 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2997 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2998 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2999 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3000 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3001 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3002 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3003
3004 flags = btrfs_super_flags(sb);
3005 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3006
3007 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3008 if (ret)
3009 total_errors++;
3010 }
3011 if (total_errors > max_errors) {
3012 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3013 total_errors);
3014
3015 /* This shouldn't happen. FUA is masked off if unsupported */
3016 BUG();
3017 }
3018
3019 total_errors = 0;
3020 list_for_each_entry_rcu(dev, head, dev_list) {
3021 if (!dev->bdev)
3022 continue;
3023 if (!dev->in_fs_metadata || !dev->writeable)
3024 continue;
3025
3026 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3027 if (ret)
3028 total_errors++;
3029 }
3030 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3031 if (total_errors > max_errors) {
3032 btrfs_error(root->fs_info, -EIO,
3033 "%d errors while writing supers", total_errors);
3034 return -EIO;
3035 }
3036 return 0;
3037 }
3038
3039 int write_ctree_super(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root, int max_mirrors)
3041 {
3042 int ret;
3043
3044 ret = write_all_supers(root, max_mirrors);
3045 return ret;
3046 }
3047
3048 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3049 {
3050 spin_lock(&fs_info->fs_roots_radix_lock);
3051 radix_tree_delete(&fs_info->fs_roots_radix,
3052 (unsigned long)root->root_key.objectid);
3053 spin_unlock(&fs_info->fs_roots_radix_lock);
3054
3055 if (btrfs_root_refs(&root->root_item) == 0)
3056 synchronize_srcu(&fs_info->subvol_srcu);
3057
3058 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3059 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3060 free_fs_root(root);
3061 }
3062
3063 static void free_fs_root(struct btrfs_root *root)
3064 {
3065 iput(root->cache_inode);
3066 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3067 if (root->anon_dev)
3068 free_anon_bdev(root->anon_dev);
3069 free_extent_buffer(root->node);
3070 free_extent_buffer(root->commit_root);
3071 kfree(root->free_ino_ctl);
3072 kfree(root->free_ino_pinned);
3073 kfree(root->name);
3074 kfree(root);
3075 }
3076
3077 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3078 {
3079 int ret;
3080 struct btrfs_root *gang[8];
3081 int i;
3082
3083 while (!list_empty(&fs_info->dead_roots)) {
3084 gang[0] = list_entry(fs_info->dead_roots.next,
3085 struct btrfs_root, root_list);
3086 list_del(&gang[0]->root_list);
3087
3088 if (gang[0]->in_radix) {
3089 btrfs_free_fs_root(fs_info, gang[0]);
3090 } else {
3091 free_extent_buffer(gang[0]->node);
3092 free_extent_buffer(gang[0]->commit_root);
3093 kfree(gang[0]);
3094 }
3095 }
3096
3097 while (1) {
3098 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3099 (void **)gang, 0,
3100 ARRAY_SIZE(gang));
3101 if (!ret)
3102 break;
3103 for (i = 0; i < ret; i++)
3104 btrfs_free_fs_root(fs_info, gang[i]);
3105 }
3106 }
3107
3108 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3109 {
3110 u64 root_objectid = 0;
3111 struct btrfs_root *gang[8];
3112 int i;
3113 int ret;
3114
3115 while (1) {
3116 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3117 (void **)gang, root_objectid,
3118 ARRAY_SIZE(gang));
3119 if (!ret)
3120 break;
3121
3122 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3123 for (i = 0; i < ret; i++) {
3124 int err;
3125
3126 root_objectid = gang[i]->root_key.objectid;
3127 err = btrfs_orphan_cleanup(gang[i]);
3128 if (err)
3129 return err;
3130 }
3131 root_objectid++;
3132 }
3133 return 0;
3134 }
3135
3136 int btrfs_commit_super(struct btrfs_root *root)
3137 {
3138 struct btrfs_trans_handle *trans;
3139 int ret;
3140
3141 mutex_lock(&root->fs_info->cleaner_mutex);
3142 btrfs_run_delayed_iputs(root);
3143 btrfs_clean_old_snapshots(root);
3144 mutex_unlock(&root->fs_info->cleaner_mutex);
3145
3146 /* wait until ongoing cleanup work done */
3147 down_write(&root->fs_info->cleanup_work_sem);
3148 up_write(&root->fs_info->cleanup_work_sem);
3149
3150 trans = btrfs_join_transaction(root);
3151 if (IS_ERR(trans))
3152 return PTR_ERR(trans);
3153 ret = btrfs_commit_transaction(trans, root);
3154 if (ret)
3155 return ret;
3156 /* run commit again to drop the original snapshot */
3157 trans = btrfs_join_transaction(root);
3158 if (IS_ERR(trans))
3159 return PTR_ERR(trans);
3160 ret = btrfs_commit_transaction(trans, root);
3161 if (ret)
3162 return ret;
3163 ret = btrfs_write_and_wait_transaction(NULL, root);
3164 if (ret) {
3165 btrfs_error(root->fs_info, ret,
3166 "Failed to sync btree inode to disk.");
3167 return ret;
3168 }
3169
3170 ret = write_ctree_super(NULL, root, 0);
3171 return ret;
3172 }
3173
3174 int close_ctree(struct btrfs_root *root)
3175 {
3176 struct btrfs_fs_info *fs_info = root->fs_info;
3177 int ret;
3178
3179 fs_info->closing = 1;
3180 smp_mb();
3181
3182 /* pause restriper - we want to resume on mount */
3183 btrfs_pause_balance(root->fs_info);
3184
3185 btrfs_scrub_cancel(root);
3186
3187 /* wait for any defraggers to finish */
3188 wait_event(fs_info->transaction_wait,
3189 (atomic_read(&fs_info->defrag_running) == 0));
3190
3191 /* clear out the rbtree of defraggable inodes */
3192 btrfs_run_defrag_inodes(fs_info);
3193
3194 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3195 ret = btrfs_commit_super(root);
3196 if (ret)
3197 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3198 }
3199
3200 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3201 btrfs_error_commit_super(root);
3202
3203 btrfs_put_block_group_cache(fs_info);
3204
3205 kthread_stop(fs_info->transaction_kthread);
3206 kthread_stop(fs_info->cleaner_kthread);
3207
3208 fs_info->closing = 2;
3209 smp_mb();
3210
3211 btrfs_free_qgroup_config(root->fs_info);
3212
3213 if (fs_info->delalloc_bytes) {
3214 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3215 (unsigned long long)fs_info->delalloc_bytes);
3216 }
3217 if (fs_info->total_ref_cache_size) {
3218 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3219 (unsigned long long)fs_info->total_ref_cache_size);
3220 }
3221
3222 free_extent_buffer(fs_info->extent_root->node);
3223 free_extent_buffer(fs_info->extent_root->commit_root);
3224 free_extent_buffer(fs_info->tree_root->node);
3225 free_extent_buffer(fs_info->tree_root->commit_root);
3226 free_extent_buffer(fs_info->chunk_root->node);
3227 free_extent_buffer(fs_info->chunk_root->commit_root);
3228 free_extent_buffer(fs_info->dev_root->node);
3229 free_extent_buffer(fs_info->dev_root->commit_root);
3230 free_extent_buffer(fs_info->csum_root->node);
3231 free_extent_buffer(fs_info->csum_root->commit_root);
3232 if (fs_info->quota_root) {
3233 free_extent_buffer(fs_info->quota_root->node);
3234 free_extent_buffer(fs_info->quota_root->commit_root);
3235 }
3236
3237 btrfs_free_block_groups(fs_info);
3238
3239 del_fs_roots(fs_info);
3240
3241 iput(fs_info->btree_inode);
3242
3243 btrfs_stop_workers(&fs_info->generic_worker);
3244 btrfs_stop_workers(&fs_info->fixup_workers);
3245 btrfs_stop_workers(&fs_info->delalloc_workers);
3246 btrfs_stop_workers(&fs_info->workers);
3247 btrfs_stop_workers(&fs_info->endio_workers);
3248 btrfs_stop_workers(&fs_info->endio_meta_workers);
3249 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3250 btrfs_stop_workers(&fs_info->endio_write_workers);
3251 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3252 btrfs_stop_workers(&fs_info->submit_workers);
3253 btrfs_stop_workers(&fs_info->delayed_workers);
3254 btrfs_stop_workers(&fs_info->caching_workers);
3255 btrfs_stop_workers(&fs_info->readahead_workers);
3256
3257 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3258 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3259 btrfsic_unmount(root, fs_info->fs_devices);
3260 #endif
3261
3262 btrfs_close_devices(fs_info->fs_devices);
3263 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3264
3265 bdi_destroy(&fs_info->bdi);
3266 cleanup_srcu_struct(&fs_info->subvol_srcu);
3267
3268 return 0;
3269 }
3270
3271 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3272 int atomic)
3273 {
3274 int ret;
3275 struct inode *btree_inode = buf->pages[0]->mapping->host;
3276
3277 ret = extent_buffer_uptodate(buf);
3278 if (!ret)
3279 return ret;
3280
3281 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3282 parent_transid, atomic);
3283 if (ret == -EAGAIN)
3284 return ret;
3285 return !ret;
3286 }
3287
3288 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3289 {
3290 return set_extent_buffer_uptodate(buf);
3291 }
3292
3293 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3294 {
3295 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3296 u64 transid = btrfs_header_generation(buf);
3297 int was_dirty;
3298
3299 btrfs_assert_tree_locked(buf);
3300 if (transid != root->fs_info->generation) {
3301 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3302 "found %llu running %llu\n",
3303 (unsigned long long)buf->start,
3304 (unsigned long long)transid,
3305 (unsigned long long)root->fs_info->generation);
3306 WARN_ON(1);
3307 }
3308 was_dirty = set_extent_buffer_dirty(buf);
3309 if (!was_dirty) {
3310 spin_lock(&root->fs_info->delalloc_lock);
3311 root->fs_info->dirty_metadata_bytes += buf->len;
3312 spin_unlock(&root->fs_info->delalloc_lock);
3313 }
3314 }
3315
3316 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3317 {
3318 /*
3319 * looks as though older kernels can get into trouble with
3320 * this code, they end up stuck in balance_dirty_pages forever
3321 */
3322 u64 num_dirty;
3323 unsigned long thresh = 32 * 1024 * 1024;
3324
3325 if (current->flags & PF_MEMALLOC)
3326 return;
3327
3328 btrfs_balance_delayed_items(root);
3329
3330 num_dirty = root->fs_info->dirty_metadata_bytes;
3331
3332 if (num_dirty > thresh) {
3333 balance_dirty_pages_ratelimited_nr(
3334 root->fs_info->btree_inode->i_mapping, 1);
3335 }
3336 return;
3337 }
3338
3339 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3340 {
3341 /*
3342 * looks as though older kernels can get into trouble with
3343 * this code, they end up stuck in balance_dirty_pages forever
3344 */
3345 u64 num_dirty;
3346 unsigned long thresh = 32 * 1024 * 1024;
3347
3348 if (current->flags & PF_MEMALLOC)
3349 return;
3350
3351 num_dirty = root->fs_info->dirty_metadata_bytes;
3352
3353 if (num_dirty > thresh) {
3354 balance_dirty_pages_ratelimited_nr(
3355 root->fs_info->btree_inode->i_mapping, 1);
3356 }
3357 return;
3358 }
3359
3360 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3361 {
3362 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3363 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3364 }
3365
3366 int btree_lock_page_hook(struct page *page, void *data,
3367 void (*flush_fn)(void *))
3368 {
3369 struct inode *inode = page->mapping->host;
3370 struct btrfs_root *root = BTRFS_I(inode)->root;
3371 struct extent_buffer *eb;
3372
3373 /*
3374 * We culled this eb but the page is still hanging out on the mapping,
3375 * carry on.
3376 */
3377 if (!PagePrivate(page))
3378 goto out;
3379
3380 eb = (struct extent_buffer *)page->private;
3381 if (!eb) {
3382 WARN_ON(1);
3383 goto out;
3384 }
3385 if (page != eb->pages[0])
3386 goto out;
3387
3388 if (!btrfs_try_tree_write_lock(eb)) {
3389 flush_fn(data);
3390 btrfs_tree_lock(eb);
3391 }
3392 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3393
3394 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3395 spin_lock(&root->fs_info->delalloc_lock);
3396 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3397 root->fs_info->dirty_metadata_bytes -= eb->len;
3398 else
3399 WARN_ON(1);
3400 spin_unlock(&root->fs_info->delalloc_lock);
3401 }
3402
3403 btrfs_tree_unlock(eb);
3404 out:
3405 if (!trylock_page(page)) {
3406 flush_fn(data);
3407 lock_page(page);
3408 }
3409 return 0;
3410 }
3411
3412 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3413 int read_only)
3414 {
3415 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3416 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3417 return -EINVAL;
3418 }
3419
3420 if (read_only)
3421 return 0;
3422
3423 return 0;
3424 }
3425
3426 void btrfs_error_commit_super(struct btrfs_root *root)
3427 {
3428 mutex_lock(&root->fs_info->cleaner_mutex);
3429 btrfs_run_delayed_iputs(root);
3430 mutex_unlock(&root->fs_info->cleaner_mutex);
3431
3432 down_write(&root->fs_info->cleanup_work_sem);
3433 up_write(&root->fs_info->cleanup_work_sem);
3434
3435 /* cleanup FS via transaction */
3436 btrfs_cleanup_transaction(root);
3437 }
3438
3439 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3440 {
3441 struct btrfs_inode *btrfs_inode;
3442 struct list_head splice;
3443
3444 INIT_LIST_HEAD(&splice);
3445
3446 mutex_lock(&root->fs_info->ordered_operations_mutex);
3447 spin_lock(&root->fs_info->ordered_extent_lock);
3448
3449 list_splice_init(&root->fs_info->ordered_operations, &splice);
3450 while (!list_empty(&splice)) {
3451 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3452 ordered_operations);
3453
3454 list_del_init(&btrfs_inode->ordered_operations);
3455
3456 btrfs_invalidate_inodes(btrfs_inode->root);
3457 }
3458
3459 spin_unlock(&root->fs_info->ordered_extent_lock);
3460 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3461 }
3462
3463 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3464 {
3465 struct list_head splice;
3466 struct btrfs_ordered_extent *ordered;
3467 struct inode *inode;
3468
3469 INIT_LIST_HEAD(&splice);
3470
3471 spin_lock(&root->fs_info->ordered_extent_lock);
3472
3473 list_splice_init(&root->fs_info->ordered_extents, &splice);
3474 while (!list_empty(&splice)) {
3475 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3476 root_extent_list);
3477
3478 list_del_init(&ordered->root_extent_list);
3479 atomic_inc(&ordered->refs);
3480
3481 /* the inode may be getting freed (in sys_unlink path). */
3482 inode = igrab(ordered->inode);
3483
3484 spin_unlock(&root->fs_info->ordered_extent_lock);
3485 if (inode)
3486 iput(inode);
3487
3488 atomic_set(&ordered->refs, 1);
3489 btrfs_put_ordered_extent(ordered);
3490
3491 spin_lock(&root->fs_info->ordered_extent_lock);
3492 }
3493
3494 spin_unlock(&root->fs_info->ordered_extent_lock);
3495 }
3496
3497 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3498 struct btrfs_root *root)
3499 {
3500 struct rb_node *node;
3501 struct btrfs_delayed_ref_root *delayed_refs;
3502 struct btrfs_delayed_ref_node *ref;
3503 int ret = 0;
3504
3505 delayed_refs = &trans->delayed_refs;
3506
3507 spin_lock(&delayed_refs->lock);
3508 if (delayed_refs->num_entries == 0) {
3509 spin_unlock(&delayed_refs->lock);
3510 printk(KERN_INFO "delayed_refs has NO entry\n");
3511 return ret;
3512 }
3513
3514 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3515 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3516
3517 atomic_set(&ref->refs, 1);
3518 if (btrfs_delayed_ref_is_head(ref)) {
3519 struct btrfs_delayed_ref_head *head;
3520
3521 head = btrfs_delayed_node_to_head(ref);
3522 if (!mutex_trylock(&head->mutex)) {
3523 atomic_inc(&ref->refs);
3524 spin_unlock(&delayed_refs->lock);
3525
3526 /* Need to wait for the delayed ref to run */
3527 mutex_lock(&head->mutex);
3528 mutex_unlock(&head->mutex);
3529 btrfs_put_delayed_ref(ref);
3530
3531 spin_lock(&delayed_refs->lock);
3532 continue;
3533 }
3534
3535 kfree(head->extent_op);
3536 delayed_refs->num_heads--;
3537 if (list_empty(&head->cluster))
3538 delayed_refs->num_heads_ready--;
3539 list_del_init(&head->cluster);
3540 }
3541 ref->in_tree = 0;
3542 rb_erase(&ref->rb_node, &delayed_refs->root);
3543 delayed_refs->num_entries--;
3544
3545 spin_unlock(&delayed_refs->lock);
3546 btrfs_put_delayed_ref(ref);
3547
3548 cond_resched();
3549 spin_lock(&delayed_refs->lock);
3550 }
3551
3552 spin_unlock(&delayed_refs->lock);
3553
3554 return ret;
3555 }
3556
3557 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3558 {
3559 struct btrfs_pending_snapshot *snapshot;
3560 struct list_head splice;
3561
3562 INIT_LIST_HEAD(&splice);
3563
3564 list_splice_init(&t->pending_snapshots, &splice);
3565
3566 while (!list_empty(&splice)) {
3567 snapshot = list_entry(splice.next,
3568 struct btrfs_pending_snapshot,
3569 list);
3570
3571 list_del_init(&snapshot->list);
3572
3573 kfree(snapshot);
3574 }
3575 }
3576
3577 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3578 {
3579 struct btrfs_inode *btrfs_inode;
3580 struct list_head splice;
3581
3582 INIT_LIST_HEAD(&splice);
3583
3584 spin_lock(&root->fs_info->delalloc_lock);
3585 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3586
3587 while (!list_empty(&splice)) {
3588 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3589 delalloc_inodes);
3590
3591 list_del_init(&btrfs_inode->delalloc_inodes);
3592
3593 btrfs_invalidate_inodes(btrfs_inode->root);
3594 }
3595
3596 spin_unlock(&root->fs_info->delalloc_lock);
3597 }
3598
3599 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3600 struct extent_io_tree *dirty_pages,
3601 int mark)
3602 {
3603 int ret;
3604 struct page *page;
3605 struct inode *btree_inode = root->fs_info->btree_inode;
3606 struct extent_buffer *eb;
3607 u64 start = 0;
3608 u64 end;
3609 u64 offset;
3610 unsigned long index;
3611
3612 while (1) {
3613 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3614 mark);
3615 if (ret)
3616 break;
3617
3618 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3619 while (start <= end) {
3620 index = start >> PAGE_CACHE_SHIFT;
3621 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3622 page = find_get_page(btree_inode->i_mapping, index);
3623 if (!page)
3624 continue;
3625 offset = page_offset(page);
3626
3627 spin_lock(&dirty_pages->buffer_lock);
3628 eb = radix_tree_lookup(
3629 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3630 offset >> PAGE_CACHE_SHIFT);
3631 spin_unlock(&dirty_pages->buffer_lock);
3632 if (eb)
3633 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3634 &eb->bflags);
3635 if (PageWriteback(page))
3636 end_page_writeback(page);
3637
3638 lock_page(page);
3639 if (PageDirty(page)) {
3640 clear_page_dirty_for_io(page);
3641 spin_lock_irq(&page->mapping->tree_lock);
3642 radix_tree_tag_clear(&page->mapping->page_tree,
3643 page_index(page),
3644 PAGECACHE_TAG_DIRTY);
3645 spin_unlock_irq(&page->mapping->tree_lock);
3646 }
3647
3648 unlock_page(page);
3649 page_cache_release(page);
3650 }
3651 }
3652
3653 return ret;
3654 }
3655
3656 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3657 struct extent_io_tree *pinned_extents)
3658 {
3659 struct extent_io_tree *unpin;
3660 u64 start;
3661 u64 end;
3662 int ret;
3663 bool loop = true;
3664
3665 unpin = pinned_extents;
3666 again:
3667 while (1) {
3668 ret = find_first_extent_bit(unpin, 0, &start, &end,
3669 EXTENT_DIRTY);
3670 if (ret)
3671 break;
3672
3673 /* opt_discard */
3674 if (btrfs_test_opt(root, DISCARD))
3675 ret = btrfs_error_discard_extent(root, start,
3676 end + 1 - start,
3677 NULL);
3678
3679 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3680 btrfs_error_unpin_extent_range(root, start, end);
3681 cond_resched();
3682 }
3683
3684 if (loop) {
3685 if (unpin == &root->fs_info->freed_extents[0])
3686 unpin = &root->fs_info->freed_extents[1];
3687 else
3688 unpin = &root->fs_info->freed_extents[0];
3689 loop = false;
3690 goto again;
3691 }
3692
3693 return 0;
3694 }
3695
3696 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3697 struct btrfs_root *root)
3698 {
3699 btrfs_destroy_delayed_refs(cur_trans, root);
3700 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3701 cur_trans->dirty_pages.dirty_bytes);
3702
3703 /* FIXME: cleanup wait for commit */
3704 cur_trans->in_commit = 1;
3705 cur_trans->blocked = 1;
3706 wake_up(&root->fs_info->transaction_blocked_wait);
3707
3708 cur_trans->blocked = 0;
3709 wake_up(&root->fs_info->transaction_wait);
3710
3711 cur_trans->commit_done = 1;
3712 wake_up(&cur_trans->commit_wait);
3713
3714 btrfs_destroy_delayed_inodes(root);
3715 btrfs_assert_delayed_root_empty(root);
3716
3717 btrfs_destroy_pending_snapshots(cur_trans);
3718
3719 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3720 EXTENT_DIRTY);
3721 btrfs_destroy_pinned_extent(root,
3722 root->fs_info->pinned_extents);
3723
3724 /*
3725 memset(cur_trans, 0, sizeof(*cur_trans));
3726 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3727 */
3728 }
3729
3730 int btrfs_cleanup_transaction(struct btrfs_root *root)
3731 {
3732 struct btrfs_transaction *t;
3733 LIST_HEAD(list);
3734
3735 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3736
3737 spin_lock(&root->fs_info->trans_lock);
3738 list_splice_init(&root->fs_info->trans_list, &list);
3739 root->fs_info->trans_no_join = 1;
3740 spin_unlock(&root->fs_info->trans_lock);
3741
3742 while (!list_empty(&list)) {
3743 t = list_entry(list.next, struct btrfs_transaction, list);
3744 if (!t)
3745 break;
3746
3747 btrfs_destroy_ordered_operations(root);
3748
3749 btrfs_destroy_ordered_extents(root);
3750
3751 btrfs_destroy_delayed_refs(t, root);
3752
3753 btrfs_block_rsv_release(root,
3754 &root->fs_info->trans_block_rsv,
3755 t->dirty_pages.dirty_bytes);
3756
3757 /* FIXME: cleanup wait for commit */
3758 t->in_commit = 1;
3759 t->blocked = 1;
3760 smp_mb();
3761 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3762 wake_up(&root->fs_info->transaction_blocked_wait);
3763
3764 t->blocked = 0;
3765 smp_mb();
3766 if (waitqueue_active(&root->fs_info->transaction_wait))
3767 wake_up(&root->fs_info->transaction_wait);
3768
3769 t->commit_done = 1;
3770 smp_mb();
3771 if (waitqueue_active(&t->commit_wait))
3772 wake_up(&t->commit_wait);
3773
3774 btrfs_destroy_delayed_inodes(root);
3775 btrfs_assert_delayed_root_empty(root);
3776
3777 btrfs_destroy_pending_snapshots(t);
3778
3779 btrfs_destroy_delalloc_inodes(root);
3780
3781 spin_lock(&root->fs_info->trans_lock);
3782 root->fs_info->running_transaction = NULL;
3783 spin_unlock(&root->fs_info->trans_lock);
3784
3785 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3786 EXTENT_DIRTY);
3787
3788 btrfs_destroy_pinned_extent(root,
3789 root->fs_info->pinned_extents);
3790
3791 atomic_set(&t->use_count, 0);
3792 list_del_init(&t->list);
3793 memset(t, 0, sizeof(*t));
3794 kmem_cache_free(btrfs_transaction_cachep, t);
3795 }
3796
3797 spin_lock(&root->fs_info->trans_lock);
3798 root->fs_info->trans_no_join = 0;
3799 spin_unlock(&root->fs_info->trans_lock);
3800 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3801
3802 return 0;
3803 }
3804
3805 static struct extent_io_ops btree_extent_io_ops = {
3806 .write_cache_pages_lock_hook = btree_lock_page_hook,
3807 .readpage_end_io_hook = btree_readpage_end_io_hook,
3808 .readpage_io_failed_hook = btree_io_failed_hook,
3809 .submit_bio_hook = btree_submit_bio_hook,
3810 /* note we're sharing with inode.c for the merge bio hook */
3811 .merge_bio_hook = btrfs_merge_bio_hook,
3812 };