]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/disk-io.c
btrfs: remove btree_readpage
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
112 struct async_submit_bio {
113 void *private_data;
114 struct bio *bio;
115 extent_submit_bio_start_t *submit_bio_start;
116 int mirror_num;
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
122 struct btrfs_work work;
123 blk_status_t status;
124 };
125
126 /*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
136 *
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
140 *
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
144 *
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
148 */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 # error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172 { .id = 0, .name_stem = "tree" },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191 {
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
214 {
215 struct extent_map_tree *em_tree = &inode->extent_tree;
216 struct extent_map *em;
217 int ret;
218
219 read_lock(&em_tree->lock);
220 em = lookup_extent_mapping(em_tree, start, len);
221 if (em) {
222 read_unlock(&em_tree->lock);
223 goto out;
224 }
225 read_unlock(&em_tree->lock);
226
227 em = alloc_extent_map();
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
233 em->len = (u64)-1;
234 em->block_len = (u64)-1;
235 em->block_start = 0;
236
237 write_lock(&em_tree->lock);
238 ret = add_extent_mapping(em_tree, em, 0);
239 if (ret == -EEXIST) {
240 free_extent_map(em);
241 em = lookup_extent_mapping(em_tree, start, len);
242 if (!em)
243 em = ERR_PTR(-EIO);
244 } else if (ret) {
245 free_extent_map(em);
246 em = ERR_PTR(ret);
247 }
248 write_unlock(&em_tree->lock);
249
250 out:
251 return em;
252 }
253
254 /*
255 * Compute the csum of a btree block and store the result to provided buffer.
256 */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 struct btrfs_fs_info *fs_info = buf->fs_info;
260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 char *kaddr;
263 int i;
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
270
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 }
275 memset(result, 0, BTRFS_CSUM_SIZE);
276 crypto_shash_final(shash, result);
277 }
278
279 /*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
288 {
289 struct extent_state *cached_state = NULL;
290 int ret;
291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
296 if (atomic)
297 return -EAGAIN;
298
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
301 btrfs_set_lock_blocking_read(eb);
302 }
303
304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 &cached_state);
306 if (extent_buffer_uptodate(eb) &&
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
314 parent_transid, btrfs_header_generation(eb));
315 ret = 1;
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
320 * block that has been freed and re-allocated. So don't clear uptodate
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
327 out:
328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 &cached_state);
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
332 return ret;
333 }
334
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
339 case BTRFS_CSUM_TYPE_XXHASH:
340 case BTRFS_CSUM_TYPE_SHA256:
341 case BTRFS_CSUM_TYPE_BLAKE2:
342 return true;
343 default:
344 return false;
345 }
346 }
347
348 /*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
354 {
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
357 char result[BTRFS_CSUM_SIZE];
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
361
362 /*
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
366 */
367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369
370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 return 1;
372
373 return 0;
374 }
375
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377 struct btrfs_key *first_key, u64 parent_transid)
378 {
379 struct btrfs_fs_info *fs_info = eb->fs_info;
380 int found_level;
381 struct btrfs_key found_key;
382 int ret;
383
384 found_level = btrfs_header_level(eb);
385 if (found_level != level) {
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 KERN_ERR "BTRFS: tree level check failed\n");
388 btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb->start, level, found_level);
391 return -EIO;
392 }
393
394 if (!first_key)
395 return 0;
396
397 /*
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
402 */
403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 return 0;
405
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb) == 0) {
408 btrfs_err(fs_info,
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 eb->start);
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 return -EUCLEAN;
413 }
414
415 if (found_level)
416 btrfs_node_key_to_cpu(eb, &found_key, 0);
417 else
418 btrfs_item_key_to_cpu(eb, &found_key, 0);
419 ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
421 if (ret) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: tree first key check failed\n");
424 btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb->start, parent_transid, first_key->objectid,
427 first_key->type, first_key->offset,
428 found_key.objectid, found_key.type,
429 found_key.offset);
430 }
431 return ret;
432 }
433
434 /*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
437 *
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
441 */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443 u64 parent_transid, int level,
444 struct btrfs_key *first_key)
445 {
446 struct btrfs_fs_info *fs_info = eb->fs_info;
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 while (1) {
456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458 if (!ret) {
459 if (verify_parent_transid(io_tree, eb,
460 parent_transid, 0))
461 ret = -EIO;
462 else if (btrfs_verify_level_key(eb, level,
463 first_key, parent_transid))
464 ret = -EUCLEAN;
465 else
466 break;
467 }
468
469 num_copies = btrfs_num_copies(fs_info,
470 eb->start, eb->len);
471 if (num_copies == 1)
472 break;
473
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
477 }
478
479 mirror_num++;
480 if (mirror_num == failed_mirror)
481 mirror_num++;
482
483 if (mirror_num > num_copies)
484 break;
485 }
486
487 if (failed && !ret && failed_mirror)
488 btrfs_repair_eb_io_failure(eb, failed_mirror);
489
490 return ret;
491 }
492
493 /*
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
496 */
497
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500 u64 start = page_offset(page);
501 u64 found_start;
502 u8 result[BTRFS_CSUM_SIZE];
503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504 struct extent_buffer *eb;
505 int ret;
506
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
510
511 found_start = btrfs_header_bytenr(eb);
512 /*
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
515 */
516 if (WARN_ON(found_start != start))
517 return -EUCLEAN;
518 if (WARN_ON(!PageUptodate(page)))
519 return -EUCLEAN;
520
521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522 offsetof(struct btrfs_header, fsid),
523 BTRFS_FSID_SIZE) == 0);
524
525 csum_tree_block(eb, result);
526
527 if (btrfs_header_level(eb))
528 ret = btrfs_check_node(eb);
529 else
530 ret = btrfs_check_leaf_full(eb);
531
532 if (ret < 0) {
533 btrfs_print_tree(eb, 0);
534 btrfs_err(fs_info,
535 "block=%llu write time tree block corruption detected",
536 eb->start);
537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538 return ret;
539 }
540 write_extent_buffer(eb, result, 0, csum_size);
541
542 return 0;
543 }
544
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547 struct btrfs_fs_info *fs_info = eb->fs_info;
548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
549 u8 fsid[BTRFS_FSID_SIZE];
550 u8 *metadata_uuid;
551
552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 BTRFS_FSID_SIZE);
554 /*
555 * Checking the incompat flag is only valid for the current fs. For
556 * seed devices it's forbidden to have their uuid changed so reading
557 * ->fsid in this case is fine
558 */
559 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
560 metadata_uuid = fs_devices->metadata_uuid;
561 else
562 metadata_uuid = fs_devices->fsid;
563
564 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
565 return 0;
566
567 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
568 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
569 return 0;
570
571 return 1;
572 }
573
574 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
575 u64 phy_offset, struct page *page,
576 u64 start, u64 end, int mirror)
577 {
578 u64 found_start;
579 int found_level;
580 struct extent_buffer *eb;
581 struct btrfs_fs_info *fs_info;
582 u16 csum_size;
583 int ret = 0;
584 u8 result[BTRFS_CSUM_SIZE];
585 int reads_done;
586
587 if (!page->private)
588 goto out;
589
590 eb = (struct extent_buffer *)page->private;
591 fs_info = eb->fs_info;
592 csum_size = btrfs_super_csum_size(fs_info->super_copy);
593
594 /* the pending IO might have been the only thing that kept this buffer
595 * in memory. Make sure we have a ref for all this other checks
596 */
597 atomic_inc(&eb->refs);
598
599 reads_done = atomic_dec_and_test(&eb->io_pages);
600 if (!reads_done)
601 goto err;
602
603 eb->read_mirror = mirror;
604 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
605 ret = -EIO;
606 goto err;
607 }
608
609 found_start = btrfs_header_bytenr(eb);
610 if (found_start != eb->start) {
611 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
612 eb->start, found_start);
613 ret = -EIO;
614 goto err;
615 }
616 if (check_tree_block_fsid(eb)) {
617 btrfs_err_rl(fs_info, "bad fsid on block %llu",
618 eb->start);
619 ret = -EIO;
620 goto err;
621 }
622 found_level = btrfs_header_level(eb);
623 if (found_level >= BTRFS_MAX_LEVEL) {
624 btrfs_err(fs_info, "bad tree block level %d on %llu",
625 (int)btrfs_header_level(eb), eb->start);
626 ret = -EIO;
627 goto err;
628 }
629
630 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
631 eb, found_level);
632
633 csum_tree_block(eb, result);
634
635 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
636 u8 val[BTRFS_CSUM_SIZE] = { 0 };
637
638 read_extent_buffer(eb, &val, 0, csum_size);
639 btrfs_warn_rl(fs_info,
640 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
641 fs_info->sb->s_id, eb->start,
642 CSUM_FMT_VALUE(csum_size, val),
643 CSUM_FMT_VALUE(csum_size, result),
644 btrfs_header_level(eb));
645 ret = -EUCLEAN;
646 goto err;
647 }
648
649 /*
650 * If this is a leaf block and it is corrupt, set the corrupt bit so
651 * that we don't try and read the other copies of this block, just
652 * return -EIO.
653 */
654 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
655 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
656 ret = -EIO;
657 }
658
659 if (found_level > 0 && btrfs_check_node(eb))
660 ret = -EIO;
661
662 if (!ret)
663 set_extent_buffer_uptodate(eb);
664 else
665 btrfs_err(fs_info,
666 "block=%llu read time tree block corruption detected",
667 eb->start);
668 err:
669 if (reads_done &&
670 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
671 btree_readahead_hook(eb, ret);
672
673 if (ret) {
674 /*
675 * our io error hook is going to dec the io pages
676 * again, we have to make sure it has something
677 * to decrement
678 */
679 atomic_inc(&eb->io_pages);
680 clear_extent_buffer_uptodate(eb);
681 }
682 free_extent_buffer(eb);
683 out:
684 return ret;
685 }
686
687 static void end_workqueue_bio(struct bio *bio)
688 {
689 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
690 struct btrfs_fs_info *fs_info;
691 struct btrfs_workqueue *wq;
692
693 fs_info = end_io_wq->info;
694 end_io_wq->status = bio->bi_status;
695
696 if (bio_op(bio) == REQ_OP_WRITE) {
697 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
698 wq = fs_info->endio_meta_write_workers;
699 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
700 wq = fs_info->endio_freespace_worker;
701 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702 wq = fs_info->endio_raid56_workers;
703 else
704 wq = fs_info->endio_write_workers;
705 } else {
706 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
707 wq = fs_info->endio_raid56_workers;
708 else if (end_io_wq->metadata)
709 wq = fs_info->endio_meta_workers;
710 else
711 wq = fs_info->endio_workers;
712 }
713
714 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
715 btrfs_queue_work(wq, &end_io_wq->work);
716 }
717
718 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719 enum btrfs_wq_endio_type metadata)
720 {
721 struct btrfs_end_io_wq *end_io_wq;
722
723 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
724 if (!end_io_wq)
725 return BLK_STS_RESOURCE;
726
727 end_io_wq->private = bio->bi_private;
728 end_io_wq->end_io = bio->bi_end_io;
729 end_io_wq->info = info;
730 end_io_wq->status = 0;
731 end_io_wq->bio = bio;
732 end_io_wq->metadata = metadata;
733
734 bio->bi_private = end_io_wq;
735 bio->bi_end_io = end_workqueue_bio;
736 return 0;
737 }
738
739 static void run_one_async_start(struct btrfs_work *work)
740 {
741 struct async_submit_bio *async;
742 blk_status_t ret;
743
744 async = container_of(work, struct async_submit_bio, work);
745 ret = async->submit_bio_start(async->private_data, async->bio,
746 async->bio_offset);
747 if (ret)
748 async->status = ret;
749 }
750
751 /*
752 * In order to insert checksums into the metadata in large chunks, we wait
753 * until bio submission time. All the pages in the bio are checksummed and
754 * sums are attached onto the ordered extent record.
755 *
756 * At IO completion time the csums attached on the ordered extent record are
757 * inserted into the tree.
758 */
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761 struct async_submit_bio *async;
762 struct inode *inode;
763 blk_status_t ret;
764
765 async = container_of(work, struct async_submit_bio, work);
766 inode = async->private_data;
767
768 /* If an error occurred we just want to clean up the bio and move on */
769 if (async->status) {
770 async->bio->bi_status = async->status;
771 bio_endio(async->bio);
772 return;
773 }
774
775 /*
776 * All of the bios that pass through here are from async helpers.
777 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
778 * This changes nothing when cgroups aren't in use.
779 */
780 async->bio->bi_opf |= REQ_CGROUP_PUNT;
781 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
782 if (ret) {
783 async->bio->bi_status = ret;
784 bio_endio(async->bio);
785 }
786 }
787
788 static void run_one_async_free(struct btrfs_work *work)
789 {
790 struct async_submit_bio *async;
791
792 async = container_of(work, struct async_submit_bio, work);
793 kfree(async);
794 }
795
796 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
797 int mirror_num, unsigned long bio_flags,
798 u64 bio_offset, void *private_data,
799 extent_submit_bio_start_t *submit_bio_start)
800 {
801 struct async_submit_bio *async;
802
803 async = kmalloc(sizeof(*async), GFP_NOFS);
804 if (!async)
805 return BLK_STS_RESOURCE;
806
807 async->private_data = private_data;
808 async->bio = bio;
809 async->mirror_num = mirror_num;
810 async->submit_bio_start = submit_bio_start;
811
812 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
813 run_one_async_free);
814
815 async->bio_offset = bio_offset;
816
817 async->status = 0;
818
819 if (op_is_sync(bio->bi_opf))
820 btrfs_set_work_high_priority(&async->work);
821
822 btrfs_queue_work(fs_info->workers, &async->work);
823 return 0;
824 }
825
826 static blk_status_t btree_csum_one_bio(struct bio *bio)
827 {
828 struct bio_vec *bvec;
829 struct btrfs_root *root;
830 int ret = 0;
831 struct bvec_iter_all iter_all;
832
833 ASSERT(!bio_flagged(bio, BIO_CLONED));
834 bio_for_each_segment_all(bvec, bio, iter_all) {
835 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
836 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
837 if (ret)
838 break;
839 }
840
841 return errno_to_blk_status(ret);
842 }
843
844 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
845 u64 bio_offset)
846 {
847 /*
848 * when we're called for a write, we're already in the async
849 * submission context. Just jump into btrfs_map_bio
850 */
851 return btree_csum_one_bio(bio);
852 }
853
854 static int check_async_write(struct btrfs_fs_info *fs_info,
855 struct btrfs_inode *bi)
856 {
857 if (atomic_read(&bi->sync_writers))
858 return 0;
859 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
860 return 0;
861 return 1;
862 }
863
864 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
865 int mirror_num,
866 unsigned long bio_flags)
867 {
868 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
869 int async = check_async_write(fs_info, BTRFS_I(inode));
870 blk_status_t ret;
871
872 if (bio_op(bio) != REQ_OP_WRITE) {
873 /*
874 * called for a read, do the setup so that checksum validation
875 * can happen in the async kernel threads
876 */
877 ret = btrfs_bio_wq_end_io(fs_info, bio,
878 BTRFS_WQ_ENDIO_METADATA);
879 if (ret)
880 goto out_w_error;
881 ret = btrfs_map_bio(fs_info, bio, mirror_num);
882 } else if (!async) {
883 ret = btree_csum_one_bio(bio);
884 if (ret)
885 goto out_w_error;
886 ret = btrfs_map_bio(fs_info, bio, mirror_num);
887 } else {
888 /*
889 * kthread helpers are used to submit writes so that
890 * checksumming can happen in parallel across all CPUs
891 */
892 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
893 0, inode, btree_submit_bio_start);
894 }
895
896 if (ret)
897 goto out_w_error;
898 return 0;
899
900 out_w_error:
901 bio->bi_status = ret;
902 bio_endio(bio);
903 return ret;
904 }
905
906 #ifdef CONFIG_MIGRATION
907 static int btree_migratepage(struct address_space *mapping,
908 struct page *newpage, struct page *page,
909 enum migrate_mode mode)
910 {
911 /*
912 * we can't safely write a btree page from here,
913 * we haven't done the locking hook
914 */
915 if (PageDirty(page))
916 return -EAGAIN;
917 /*
918 * Buffers may be managed in a filesystem specific way.
919 * We must have no buffers or drop them.
920 */
921 if (page_has_private(page) &&
922 !try_to_release_page(page, GFP_KERNEL))
923 return -EAGAIN;
924 return migrate_page(mapping, newpage, page, mode);
925 }
926 #endif
927
928
929 static int btree_writepages(struct address_space *mapping,
930 struct writeback_control *wbc)
931 {
932 struct btrfs_fs_info *fs_info;
933 int ret;
934
935 if (wbc->sync_mode == WB_SYNC_NONE) {
936
937 if (wbc->for_kupdate)
938 return 0;
939
940 fs_info = BTRFS_I(mapping->host)->root->fs_info;
941 /* this is a bit racy, but that's ok */
942 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
943 BTRFS_DIRTY_METADATA_THRESH,
944 fs_info->dirty_metadata_batch);
945 if (ret < 0)
946 return 0;
947 }
948 return btree_write_cache_pages(mapping, wbc);
949 }
950
951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
952 {
953 if (PageWriteback(page) || PageDirty(page))
954 return 0;
955
956 return try_release_extent_buffer(page);
957 }
958
959 static void btree_invalidatepage(struct page *page, unsigned int offset,
960 unsigned int length)
961 {
962 struct extent_io_tree *tree;
963 tree = &BTRFS_I(page->mapping->host)->io_tree;
964 extent_invalidatepage(tree, page, offset);
965 btree_releasepage(page, GFP_NOFS);
966 if (PagePrivate(page)) {
967 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
968 "page private not zero on page %llu",
969 (unsigned long long)page_offset(page));
970 detach_page_private(page);
971 }
972 }
973
974 static int btree_set_page_dirty(struct page *page)
975 {
976 #ifdef DEBUG
977 struct extent_buffer *eb;
978
979 BUG_ON(!PagePrivate(page));
980 eb = (struct extent_buffer *)page->private;
981 BUG_ON(!eb);
982 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
983 BUG_ON(!atomic_read(&eb->refs));
984 btrfs_assert_tree_locked(eb);
985 #endif
986 return __set_page_dirty_nobuffers(page);
987 }
988
989 static const struct address_space_operations btree_aops = {
990 .writepages = btree_writepages,
991 .releasepage = btree_releasepage,
992 .invalidatepage = btree_invalidatepage,
993 #ifdef CONFIG_MIGRATION
994 .migratepage = btree_migratepage,
995 #endif
996 .set_page_dirty = btree_set_page_dirty,
997 };
998
999 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1000 {
1001 struct extent_buffer *buf = NULL;
1002 int ret;
1003
1004 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1005 if (IS_ERR(buf))
1006 return;
1007
1008 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1009 if (ret < 0)
1010 free_extent_buffer_stale(buf);
1011 else
1012 free_extent_buffer(buf);
1013 }
1014
1015 struct extent_buffer *btrfs_find_create_tree_block(
1016 struct btrfs_fs_info *fs_info,
1017 u64 bytenr)
1018 {
1019 if (btrfs_is_testing(fs_info))
1020 return alloc_test_extent_buffer(fs_info, bytenr);
1021 return alloc_extent_buffer(fs_info, bytenr);
1022 }
1023
1024 /*
1025 * Read tree block at logical address @bytenr and do variant basic but critical
1026 * verification.
1027 *
1028 * @parent_transid: expected transid of this tree block, skip check if 0
1029 * @level: expected level, mandatory check
1030 * @first_key: expected key in slot 0, skip check if NULL
1031 */
1032 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1033 u64 parent_transid, int level,
1034 struct btrfs_key *first_key)
1035 {
1036 struct extent_buffer *buf = NULL;
1037 int ret;
1038
1039 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1040 if (IS_ERR(buf))
1041 return buf;
1042
1043 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1044 level, first_key);
1045 if (ret) {
1046 free_extent_buffer_stale(buf);
1047 return ERR_PTR(ret);
1048 }
1049 return buf;
1050
1051 }
1052
1053 void btrfs_clean_tree_block(struct extent_buffer *buf)
1054 {
1055 struct btrfs_fs_info *fs_info = buf->fs_info;
1056 if (btrfs_header_generation(buf) ==
1057 fs_info->running_transaction->transid) {
1058 btrfs_assert_tree_locked(buf);
1059
1060 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1061 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1062 -buf->len,
1063 fs_info->dirty_metadata_batch);
1064 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1065 btrfs_set_lock_blocking_write(buf);
1066 clear_extent_buffer_dirty(buf);
1067 }
1068 }
1069 }
1070
1071 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1072 u64 objectid)
1073 {
1074 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1075 root->fs_info = fs_info;
1076 root->node = NULL;
1077 root->commit_root = NULL;
1078 root->state = 0;
1079 root->orphan_cleanup_state = 0;
1080
1081 root->last_trans = 0;
1082 root->highest_objectid = 0;
1083 root->nr_delalloc_inodes = 0;
1084 root->nr_ordered_extents = 0;
1085 root->inode_tree = RB_ROOT;
1086 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1087 root->block_rsv = NULL;
1088
1089 INIT_LIST_HEAD(&root->dirty_list);
1090 INIT_LIST_HEAD(&root->root_list);
1091 INIT_LIST_HEAD(&root->delalloc_inodes);
1092 INIT_LIST_HEAD(&root->delalloc_root);
1093 INIT_LIST_HEAD(&root->ordered_extents);
1094 INIT_LIST_HEAD(&root->ordered_root);
1095 INIT_LIST_HEAD(&root->reloc_dirty_list);
1096 INIT_LIST_HEAD(&root->logged_list[0]);
1097 INIT_LIST_HEAD(&root->logged_list[1]);
1098 spin_lock_init(&root->inode_lock);
1099 spin_lock_init(&root->delalloc_lock);
1100 spin_lock_init(&root->ordered_extent_lock);
1101 spin_lock_init(&root->accounting_lock);
1102 spin_lock_init(&root->log_extents_lock[0]);
1103 spin_lock_init(&root->log_extents_lock[1]);
1104 spin_lock_init(&root->qgroup_meta_rsv_lock);
1105 mutex_init(&root->objectid_mutex);
1106 mutex_init(&root->log_mutex);
1107 mutex_init(&root->ordered_extent_mutex);
1108 mutex_init(&root->delalloc_mutex);
1109 init_waitqueue_head(&root->qgroup_flush_wait);
1110 init_waitqueue_head(&root->log_writer_wait);
1111 init_waitqueue_head(&root->log_commit_wait[0]);
1112 init_waitqueue_head(&root->log_commit_wait[1]);
1113 INIT_LIST_HEAD(&root->log_ctxs[0]);
1114 INIT_LIST_HEAD(&root->log_ctxs[1]);
1115 atomic_set(&root->log_commit[0], 0);
1116 atomic_set(&root->log_commit[1], 0);
1117 atomic_set(&root->log_writers, 0);
1118 atomic_set(&root->log_batch, 0);
1119 refcount_set(&root->refs, 1);
1120 atomic_set(&root->snapshot_force_cow, 0);
1121 atomic_set(&root->nr_swapfiles, 0);
1122 root->log_transid = 0;
1123 root->log_transid_committed = -1;
1124 root->last_log_commit = 0;
1125 if (!dummy) {
1126 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1127 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1128 extent_io_tree_init(fs_info, &root->log_csum_range,
1129 IO_TREE_LOG_CSUM_RANGE, NULL);
1130 }
1131
1132 memset(&root->root_key, 0, sizeof(root->root_key));
1133 memset(&root->root_item, 0, sizeof(root->root_item));
1134 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1135 root->root_key.objectid = objectid;
1136 root->anon_dev = 0;
1137
1138 spin_lock_init(&root->root_item_lock);
1139 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1140 #ifdef CONFIG_BTRFS_DEBUG
1141 INIT_LIST_HEAD(&root->leak_list);
1142 spin_lock(&fs_info->fs_roots_radix_lock);
1143 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1144 spin_unlock(&fs_info->fs_roots_radix_lock);
1145 #endif
1146 }
1147
1148 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1149 u64 objectid, gfp_t flags)
1150 {
1151 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1152 if (root)
1153 __setup_root(root, fs_info, objectid);
1154 return root;
1155 }
1156
1157 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1158 /* Should only be used by the testing infrastructure */
1159 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1160 {
1161 struct btrfs_root *root;
1162
1163 if (!fs_info)
1164 return ERR_PTR(-EINVAL);
1165
1166 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1167 if (!root)
1168 return ERR_PTR(-ENOMEM);
1169
1170 /* We don't use the stripesize in selftest, set it as sectorsize */
1171 root->alloc_bytenr = 0;
1172
1173 return root;
1174 }
1175 #endif
1176
1177 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1178 u64 objectid)
1179 {
1180 struct btrfs_fs_info *fs_info = trans->fs_info;
1181 struct extent_buffer *leaf;
1182 struct btrfs_root *tree_root = fs_info->tree_root;
1183 struct btrfs_root *root;
1184 struct btrfs_key key;
1185 unsigned int nofs_flag;
1186 int ret = 0;
1187
1188 /*
1189 * We're holding a transaction handle, so use a NOFS memory allocation
1190 * context to avoid deadlock if reclaim happens.
1191 */
1192 nofs_flag = memalloc_nofs_save();
1193 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1194 memalloc_nofs_restore(nofs_flag);
1195 if (!root)
1196 return ERR_PTR(-ENOMEM);
1197
1198 root->root_key.objectid = objectid;
1199 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1200 root->root_key.offset = 0;
1201
1202 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1203 BTRFS_NESTING_NORMAL);
1204 if (IS_ERR(leaf)) {
1205 ret = PTR_ERR(leaf);
1206 leaf = NULL;
1207 goto fail;
1208 }
1209
1210 root->node = leaf;
1211 btrfs_mark_buffer_dirty(leaf);
1212
1213 root->commit_root = btrfs_root_node(root);
1214 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1215
1216 root->root_item.flags = 0;
1217 root->root_item.byte_limit = 0;
1218 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1219 btrfs_set_root_generation(&root->root_item, trans->transid);
1220 btrfs_set_root_level(&root->root_item, 0);
1221 btrfs_set_root_refs(&root->root_item, 1);
1222 btrfs_set_root_used(&root->root_item, leaf->len);
1223 btrfs_set_root_last_snapshot(&root->root_item, 0);
1224 btrfs_set_root_dirid(&root->root_item, 0);
1225 if (is_fstree(objectid))
1226 generate_random_guid(root->root_item.uuid);
1227 else
1228 export_guid(root->root_item.uuid, &guid_null);
1229 root->root_item.drop_level = 0;
1230
1231 key.objectid = objectid;
1232 key.type = BTRFS_ROOT_ITEM_KEY;
1233 key.offset = 0;
1234 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1235 if (ret)
1236 goto fail;
1237
1238 btrfs_tree_unlock(leaf);
1239
1240 return root;
1241
1242 fail:
1243 if (leaf)
1244 btrfs_tree_unlock(leaf);
1245 btrfs_put_root(root);
1246
1247 return ERR_PTR(ret);
1248 }
1249
1250 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1251 struct btrfs_fs_info *fs_info)
1252 {
1253 struct btrfs_root *root;
1254 struct extent_buffer *leaf;
1255
1256 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1257 if (!root)
1258 return ERR_PTR(-ENOMEM);
1259
1260 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1261 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1262 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1263
1264 /*
1265 * DON'T set SHAREABLE bit for log trees.
1266 *
1267 * Log trees are not exposed to user space thus can't be snapshotted,
1268 * and they go away before a real commit is actually done.
1269 *
1270 * They do store pointers to file data extents, and those reference
1271 * counts still get updated (along with back refs to the log tree).
1272 */
1273
1274 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1275 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1276 if (IS_ERR(leaf)) {
1277 btrfs_put_root(root);
1278 return ERR_CAST(leaf);
1279 }
1280
1281 root->node = leaf;
1282
1283 btrfs_mark_buffer_dirty(root->node);
1284 btrfs_tree_unlock(root->node);
1285 return root;
1286 }
1287
1288 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1289 struct btrfs_fs_info *fs_info)
1290 {
1291 struct btrfs_root *log_root;
1292
1293 log_root = alloc_log_tree(trans, fs_info);
1294 if (IS_ERR(log_root))
1295 return PTR_ERR(log_root);
1296 WARN_ON(fs_info->log_root_tree);
1297 fs_info->log_root_tree = log_root;
1298 return 0;
1299 }
1300
1301 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1302 struct btrfs_root *root)
1303 {
1304 struct btrfs_fs_info *fs_info = root->fs_info;
1305 struct btrfs_root *log_root;
1306 struct btrfs_inode_item *inode_item;
1307
1308 log_root = alloc_log_tree(trans, fs_info);
1309 if (IS_ERR(log_root))
1310 return PTR_ERR(log_root);
1311
1312 log_root->last_trans = trans->transid;
1313 log_root->root_key.offset = root->root_key.objectid;
1314
1315 inode_item = &log_root->root_item.inode;
1316 btrfs_set_stack_inode_generation(inode_item, 1);
1317 btrfs_set_stack_inode_size(inode_item, 3);
1318 btrfs_set_stack_inode_nlink(inode_item, 1);
1319 btrfs_set_stack_inode_nbytes(inode_item,
1320 fs_info->nodesize);
1321 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1322
1323 btrfs_set_root_node(&log_root->root_item, log_root->node);
1324
1325 WARN_ON(root->log_root);
1326 root->log_root = log_root;
1327 root->log_transid = 0;
1328 root->log_transid_committed = -1;
1329 root->last_log_commit = 0;
1330 return 0;
1331 }
1332
1333 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1334 struct btrfs_key *key)
1335 {
1336 struct btrfs_root *root;
1337 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1338 struct btrfs_path *path;
1339 u64 generation;
1340 int ret;
1341 int level;
1342
1343 path = btrfs_alloc_path();
1344 if (!path)
1345 return ERR_PTR(-ENOMEM);
1346
1347 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1348 if (!root) {
1349 ret = -ENOMEM;
1350 goto alloc_fail;
1351 }
1352
1353 ret = btrfs_find_root(tree_root, key, path,
1354 &root->root_item, &root->root_key);
1355 if (ret) {
1356 if (ret > 0)
1357 ret = -ENOENT;
1358 goto find_fail;
1359 }
1360
1361 generation = btrfs_root_generation(&root->root_item);
1362 level = btrfs_root_level(&root->root_item);
1363 root->node = read_tree_block(fs_info,
1364 btrfs_root_bytenr(&root->root_item),
1365 generation, level, NULL);
1366 if (IS_ERR(root->node)) {
1367 ret = PTR_ERR(root->node);
1368 root->node = NULL;
1369 goto find_fail;
1370 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1371 ret = -EIO;
1372 goto find_fail;
1373 }
1374 root->commit_root = btrfs_root_node(root);
1375 out:
1376 btrfs_free_path(path);
1377 return root;
1378
1379 find_fail:
1380 btrfs_put_root(root);
1381 alloc_fail:
1382 root = ERR_PTR(ret);
1383 goto out;
1384 }
1385
1386 /*
1387 * Initialize subvolume root in-memory structure
1388 *
1389 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1390 */
1391 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1392 {
1393 int ret;
1394 unsigned int nofs_flag;
1395
1396 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1397 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1398 GFP_NOFS);
1399 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1400 ret = -ENOMEM;
1401 goto fail;
1402 }
1403
1404 /*
1405 * We might be called under a transaction (e.g. indirect backref
1406 * resolution) which could deadlock if it triggers memory reclaim
1407 */
1408 nofs_flag = memalloc_nofs_save();
1409 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1410 memalloc_nofs_restore(nofs_flag);
1411 if (ret)
1412 goto fail;
1413
1414 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1415 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1416 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1417 btrfs_check_and_init_root_item(&root->root_item);
1418 }
1419
1420 btrfs_init_free_ino_ctl(root);
1421 spin_lock_init(&root->ino_cache_lock);
1422 init_waitqueue_head(&root->ino_cache_wait);
1423
1424 /*
1425 * Don't assign anonymous block device to roots that are not exposed to
1426 * userspace, the id pool is limited to 1M
1427 */
1428 if (is_fstree(root->root_key.objectid) &&
1429 btrfs_root_refs(&root->root_item) > 0) {
1430 if (!anon_dev) {
1431 ret = get_anon_bdev(&root->anon_dev);
1432 if (ret)
1433 goto fail;
1434 } else {
1435 root->anon_dev = anon_dev;
1436 }
1437 }
1438
1439 mutex_lock(&root->objectid_mutex);
1440 ret = btrfs_find_highest_objectid(root,
1441 &root->highest_objectid);
1442 if (ret) {
1443 mutex_unlock(&root->objectid_mutex);
1444 goto fail;
1445 }
1446
1447 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1448
1449 mutex_unlock(&root->objectid_mutex);
1450
1451 return 0;
1452 fail:
1453 /* The caller is responsible to call btrfs_free_fs_root */
1454 return ret;
1455 }
1456
1457 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1458 u64 root_id)
1459 {
1460 struct btrfs_root *root;
1461
1462 spin_lock(&fs_info->fs_roots_radix_lock);
1463 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1464 (unsigned long)root_id);
1465 if (root)
1466 root = btrfs_grab_root(root);
1467 spin_unlock(&fs_info->fs_roots_radix_lock);
1468 return root;
1469 }
1470
1471 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1472 struct btrfs_root *root)
1473 {
1474 int ret;
1475
1476 ret = radix_tree_preload(GFP_NOFS);
1477 if (ret)
1478 return ret;
1479
1480 spin_lock(&fs_info->fs_roots_radix_lock);
1481 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1482 (unsigned long)root->root_key.objectid,
1483 root);
1484 if (ret == 0) {
1485 btrfs_grab_root(root);
1486 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1487 }
1488 spin_unlock(&fs_info->fs_roots_radix_lock);
1489 radix_tree_preload_end();
1490
1491 return ret;
1492 }
1493
1494 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1495 {
1496 #ifdef CONFIG_BTRFS_DEBUG
1497 struct btrfs_root *root;
1498
1499 while (!list_empty(&fs_info->allocated_roots)) {
1500 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1501
1502 root = list_first_entry(&fs_info->allocated_roots,
1503 struct btrfs_root, leak_list);
1504 btrfs_err(fs_info, "leaked root %s refcount %d",
1505 btrfs_root_name(root->root_key.objectid, buf),
1506 refcount_read(&root->refs));
1507 while (refcount_read(&root->refs) > 1)
1508 btrfs_put_root(root);
1509 btrfs_put_root(root);
1510 }
1511 #endif
1512 }
1513
1514 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1515 {
1516 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1517 percpu_counter_destroy(&fs_info->delalloc_bytes);
1518 percpu_counter_destroy(&fs_info->dio_bytes);
1519 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1520 btrfs_free_csum_hash(fs_info);
1521 btrfs_free_stripe_hash_table(fs_info);
1522 btrfs_free_ref_cache(fs_info);
1523 kfree(fs_info->balance_ctl);
1524 kfree(fs_info->delayed_root);
1525 btrfs_put_root(fs_info->extent_root);
1526 btrfs_put_root(fs_info->tree_root);
1527 btrfs_put_root(fs_info->chunk_root);
1528 btrfs_put_root(fs_info->dev_root);
1529 btrfs_put_root(fs_info->csum_root);
1530 btrfs_put_root(fs_info->quota_root);
1531 btrfs_put_root(fs_info->uuid_root);
1532 btrfs_put_root(fs_info->free_space_root);
1533 btrfs_put_root(fs_info->fs_root);
1534 btrfs_put_root(fs_info->data_reloc_root);
1535 btrfs_check_leaked_roots(fs_info);
1536 btrfs_extent_buffer_leak_debug_check(fs_info);
1537 kfree(fs_info->super_copy);
1538 kfree(fs_info->super_for_commit);
1539 kvfree(fs_info);
1540 }
1541
1542
1543 /*
1544 * Get an in-memory reference of a root structure.
1545 *
1546 * For essential trees like root/extent tree, we grab it from fs_info directly.
1547 * For subvolume trees, we check the cached filesystem roots first. If not
1548 * found, then read it from disk and add it to cached fs roots.
1549 *
1550 * Caller should release the root by calling btrfs_put_root() after the usage.
1551 *
1552 * NOTE: Reloc and log trees can't be read by this function as they share the
1553 * same root objectid.
1554 *
1555 * @objectid: root id
1556 * @anon_dev: preallocated anonymous block device number for new roots,
1557 * pass 0 for new allocation.
1558 * @check_ref: whether to check root item references, If true, return -ENOENT
1559 * for orphan roots
1560 */
1561 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1562 u64 objectid, dev_t anon_dev,
1563 bool check_ref)
1564 {
1565 struct btrfs_root *root;
1566 struct btrfs_path *path;
1567 struct btrfs_key key;
1568 int ret;
1569
1570 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1571 return btrfs_grab_root(fs_info->tree_root);
1572 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1573 return btrfs_grab_root(fs_info->extent_root);
1574 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1575 return btrfs_grab_root(fs_info->chunk_root);
1576 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1577 return btrfs_grab_root(fs_info->dev_root);
1578 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1579 return btrfs_grab_root(fs_info->csum_root);
1580 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1581 return btrfs_grab_root(fs_info->quota_root) ?
1582 fs_info->quota_root : ERR_PTR(-ENOENT);
1583 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1584 return btrfs_grab_root(fs_info->uuid_root) ?
1585 fs_info->uuid_root : ERR_PTR(-ENOENT);
1586 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1587 return btrfs_grab_root(fs_info->free_space_root) ?
1588 fs_info->free_space_root : ERR_PTR(-ENOENT);
1589 again:
1590 root = btrfs_lookup_fs_root(fs_info, objectid);
1591 if (root) {
1592 /* Shouldn't get preallocated anon_dev for cached roots */
1593 ASSERT(!anon_dev);
1594 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1595 btrfs_put_root(root);
1596 return ERR_PTR(-ENOENT);
1597 }
1598 return root;
1599 }
1600
1601 key.objectid = objectid;
1602 key.type = BTRFS_ROOT_ITEM_KEY;
1603 key.offset = (u64)-1;
1604 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1605 if (IS_ERR(root))
1606 return root;
1607
1608 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1609 ret = -ENOENT;
1610 goto fail;
1611 }
1612
1613 ret = btrfs_init_fs_root(root, anon_dev);
1614 if (ret)
1615 goto fail;
1616
1617 path = btrfs_alloc_path();
1618 if (!path) {
1619 ret = -ENOMEM;
1620 goto fail;
1621 }
1622 key.objectid = BTRFS_ORPHAN_OBJECTID;
1623 key.type = BTRFS_ORPHAN_ITEM_KEY;
1624 key.offset = objectid;
1625
1626 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1627 btrfs_free_path(path);
1628 if (ret < 0)
1629 goto fail;
1630 if (ret == 0)
1631 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1632
1633 ret = btrfs_insert_fs_root(fs_info, root);
1634 if (ret) {
1635 btrfs_put_root(root);
1636 if (ret == -EEXIST)
1637 goto again;
1638 goto fail;
1639 }
1640 return root;
1641 fail:
1642 btrfs_put_root(root);
1643 return ERR_PTR(ret);
1644 }
1645
1646 /*
1647 * Get in-memory reference of a root structure
1648 *
1649 * @objectid: tree objectid
1650 * @check_ref: if set, verify that the tree exists and the item has at least
1651 * one reference
1652 */
1653 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1654 u64 objectid, bool check_ref)
1655 {
1656 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1657 }
1658
1659 /*
1660 * Get in-memory reference of a root structure, created as new, optionally pass
1661 * the anonymous block device id
1662 *
1663 * @objectid: tree objectid
1664 * @anon_dev: if zero, allocate a new anonymous block device or use the
1665 * parameter value
1666 */
1667 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1668 u64 objectid, dev_t anon_dev)
1669 {
1670 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1671 }
1672
1673 /*
1674 * called by the kthread helper functions to finally call the bio end_io
1675 * functions. This is where read checksum verification actually happens
1676 */
1677 static void end_workqueue_fn(struct btrfs_work *work)
1678 {
1679 struct bio *bio;
1680 struct btrfs_end_io_wq *end_io_wq;
1681
1682 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1683 bio = end_io_wq->bio;
1684
1685 bio->bi_status = end_io_wq->status;
1686 bio->bi_private = end_io_wq->private;
1687 bio->bi_end_io = end_io_wq->end_io;
1688 bio_endio(bio);
1689 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1690 }
1691
1692 static int cleaner_kthread(void *arg)
1693 {
1694 struct btrfs_root *root = arg;
1695 struct btrfs_fs_info *fs_info = root->fs_info;
1696 int again;
1697
1698 while (1) {
1699 again = 0;
1700
1701 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1702
1703 /* Make the cleaner go to sleep early. */
1704 if (btrfs_need_cleaner_sleep(fs_info))
1705 goto sleep;
1706
1707 /*
1708 * Do not do anything if we might cause open_ctree() to block
1709 * before we have finished mounting the filesystem.
1710 */
1711 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1712 goto sleep;
1713
1714 if (!mutex_trylock(&fs_info->cleaner_mutex))
1715 goto sleep;
1716
1717 /*
1718 * Avoid the problem that we change the status of the fs
1719 * during the above check and trylock.
1720 */
1721 if (btrfs_need_cleaner_sleep(fs_info)) {
1722 mutex_unlock(&fs_info->cleaner_mutex);
1723 goto sleep;
1724 }
1725
1726 btrfs_run_delayed_iputs(fs_info);
1727
1728 again = btrfs_clean_one_deleted_snapshot(root);
1729 mutex_unlock(&fs_info->cleaner_mutex);
1730
1731 /*
1732 * The defragger has dealt with the R/O remount and umount,
1733 * needn't do anything special here.
1734 */
1735 btrfs_run_defrag_inodes(fs_info);
1736
1737 /*
1738 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1739 * with relocation (btrfs_relocate_chunk) and relocation
1740 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1741 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1742 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1743 * unused block groups.
1744 */
1745 btrfs_delete_unused_bgs(fs_info);
1746 sleep:
1747 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1748 if (kthread_should_park())
1749 kthread_parkme();
1750 if (kthread_should_stop())
1751 return 0;
1752 if (!again) {
1753 set_current_state(TASK_INTERRUPTIBLE);
1754 schedule();
1755 __set_current_state(TASK_RUNNING);
1756 }
1757 }
1758 }
1759
1760 static int transaction_kthread(void *arg)
1761 {
1762 struct btrfs_root *root = arg;
1763 struct btrfs_fs_info *fs_info = root->fs_info;
1764 struct btrfs_trans_handle *trans;
1765 struct btrfs_transaction *cur;
1766 u64 transid;
1767 time64_t now;
1768 unsigned long delay;
1769 bool cannot_commit;
1770
1771 do {
1772 cannot_commit = false;
1773 delay = HZ * fs_info->commit_interval;
1774 mutex_lock(&fs_info->transaction_kthread_mutex);
1775
1776 spin_lock(&fs_info->trans_lock);
1777 cur = fs_info->running_transaction;
1778 if (!cur) {
1779 spin_unlock(&fs_info->trans_lock);
1780 goto sleep;
1781 }
1782
1783 now = ktime_get_seconds();
1784 if (cur->state < TRANS_STATE_COMMIT_START &&
1785 (now < cur->start_time ||
1786 now - cur->start_time < fs_info->commit_interval)) {
1787 spin_unlock(&fs_info->trans_lock);
1788 delay = HZ * 5;
1789 goto sleep;
1790 }
1791 transid = cur->transid;
1792 spin_unlock(&fs_info->trans_lock);
1793
1794 /* If the file system is aborted, this will always fail. */
1795 trans = btrfs_attach_transaction(root);
1796 if (IS_ERR(trans)) {
1797 if (PTR_ERR(trans) != -ENOENT)
1798 cannot_commit = true;
1799 goto sleep;
1800 }
1801 if (transid == trans->transid) {
1802 btrfs_commit_transaction(trans);
1803 } else {
1804 btrfs_end_transaction(trans);
1805 }
1806 sleep:
1807 wake_up_process(fs_info->cleaner_kthread);
1808 mutex_unlock(&fs_info->transaction_kthread_mutex);
1809
1810 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1811 &fs_info->fs_state)))
1812 btrfs_cleanup_transaction(fs_info);
1813 if (!kthread_should_stop() &&
1814 (!btrfs_transaction_blocked(fs_info) ||
1815 cannot_commit))
1816 schedule_timeout_interruptible(delay);
1817 } while (!kthread_should_stop());
1818 return 0;
1819 }
1820
1821 /*
1822 * This will find the highest generation in the array of root backups. The
1823 * index of the highest array is returned, or -EINVAL if we can't find
1824 * anything.
1825 *
1826 * We check to make sure the array is valid by comparing the
1827 * generation of the latest root in the array with the generation
1828 * in the super block. If they don't match we pitch it.
1829 */
1830 static int find_newest_super_backup(struct btrfs_fs_info *info)
1831 {
1832 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1833 u64 cur;
1834 struct btrfs_root_backup *root_backup;
1835 int i;
1836
1837 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1838 root_backup = info->super_copy->super_roots + i;
1839 cur = btrfs_backup_tree_root_gen(root_backup);
1840 if (cur == newest_gen)
1841 return i;
1842 }
1843
1844 return -EINVAL;
1845 }
1846
1847 /*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854 const int next_backup = info->backup_root_index;
1855 struct btrfs_root_backup *root_backup;
1856
1857 root_backup = info->super_for_commit->super_roots + next_backup;
1858
1859 /*
1860 * make sure all of our padding and empty slots get zero filled
1861 * regardless of which ones we use today
1862 */
1863 memset(root_backup, 0, sizeof(*root_backup));
1864
1865 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1866
1867 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1868 btrfs_set_backup_tree_root_gen(root_backup,
1869 btrfs_header_generation(info->tree_root->node));
1870
1871 btrfs_set_backup_tree_root_level(root_backup,
1872 btrfs_header_level(info->tree_root->node));
1873
1874 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1875 btrfs_set_backup_chunk_root_gen(root_backup,
1876 btrfs_header_generation(info->chunk_root->node));
1877 btrfs_set_backup_chunk_root_level(root_backup,
1878 btrfs_header_level(info->chunk_root->node));
1879
1880 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1881 btrfs_set_backup_extent_root_gen(root_backup,
1882 btrfs_header_generation(info->extent_root->node));
1883 btrfs_set_backup_extent_root_level(root_backup,
1884 btrfs_header_level(info->extent_root->node));
1885
1886 /*
1887 * we might commit during log recovery, which happens before we set
1888 * the fs_root. Make sure it is valid before we fill it in.
1889 */
1890 if (info->fs_root && info->fs_root->node) {
1891 btrfs_set_backup_fs_root(root_backup,
1892 info->fs_root->node->start);
1893 btrfs_set_backup_fs_root_gen(root_backup,
1894 btrfs_header_generation(info->fs_root->node));
1895 btrfs_set_backup_fs_root_level(root_backup,
1896 btrfs_header_level(info->fs_root->node));
1897 }
1898
1899 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1900 btrfs_set_backup_dev_root_gen(root_backup,
1901 btrfs_header_generation(info->dev_root->node));
1902 btrfs_set_backup_dev_root_level(root_backup,
1903 btrfs_header_level(info->dev_root->node));
1904
1905 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1906 btrfs_set_backup_csum_root_gen(root_backup,
1907 btrfs_header_generation(info->csum_root->node));
1908 btrfs_set_backup_csum_root_level(root_backup,
1909 btrfs_header_level(info->csum_root->node));
1910
1911 btrfs_set_backup_total_bytes(root_backup,
1912 btrfs_super_total_bytes(info->super_copy));
1913 btrfs_set_backup_bytes_used(root_backup,
1914 btrfs_super_bytes_used(info->super_copy));
1915 btrfs_set_backup_num_devices(root_backup,
1916 btrfs_super_num_devices(info->super_copy));
1917
1918 /*
1919 * if we don't copy this out to the super_copy, it won't get remembered
1920 * for the next commit
1921 */
1922 memcpy(&info->super_copy->super_roots,
1923 &info->super_for_commit->super_roots,
1924 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1925 }
1926
1927 /*
1928 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1929 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1930 *
1931 * fs_info - filesystem whose backup roots need to be read
1932 * priority - priority of backup root required
1933 *
1934 * Returns backup root index on success and -EINVAL otherwise.
1935 */
1936 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1937 {
1938 int backup_index = find_newest_super_backup(fs_info);
1939 struct btrfs_super_block *super = fs_info->super_copy;
1940 struct btrfs_root_backup *root_backup;
1941
1942 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1943 if (priority == 0)
1944 return backup_index;
1945
1946 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1947 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1948 } else {
1949 return -EINVAL;
1950 }
1951
1952 root_backup = super->super_roots + backup_index;
1953
1954 btrfs_set_super_generation(super,
1955 btrfs_backup_tree_root_gen(root_backup));
1956 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1957 btrfs_set_super_root_level(super,
1958 btrfs_backup_tree_root_level(root_backup));
1959 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1960
1961 /*
1962 * Fixme: the total bytes and num_devices need to match or we should
1963 * need a fsck
1964 */
1965 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1966 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1967
1968 return backup_index;
1969 }
1970
1971 /* helper to cleanup workers */
1972 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1973 {
1974 btrfs_destroy_workqueue(fs_info->fixup_workers);
1975 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1976 btrfs_destroy_workqueue(fs_info->workers);
1977 btrfs_destroy_workqueue(fs_info->endio_workers);
1978 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1979 btrfs_destroy_workqueue(fs_info->rmw_workers);
1980 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1981 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1982 btrfs_destroy_workqueue(fs_info->delayed_workers);
1983 btrfs_destroy_workqueue(fs_info->caching_workers);
1984 btrfs_destroy_workqueue(fs_info->readahead_workers);
1985 btrfs_destroy_workqueue(fs_info->flush_workers);
1986 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1987 if (fs_info->discard_ctl.discard_workers)
1988 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1989 /*
1990 * Now that all other work queues are destroyed, we can safely destroy
1991 * the queues used for metadata I/O, since tasks from those other work
1992 * queues can do metadata I/O operations.
1993 */
1994 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1995 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1996 }
1997
1998 static void free_root_extent_buffers(struct btrfs_root *root)
1999 {
2000 if (root) {
2001 free_extent_buffer(root->node);
2002 free_extent_buffer(root->commit_root);
2003 root->node = NULL;
2004 root->commit_root = NULL;
2005 }
2006 }
2007
2008 /* helper to cleanup tree roots */
2009 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2010 {
2011 free_root_extent_buffers(info->tree_root);
2012
2013 free_root_extent_buffers(info->dev_root);
2014 free_root_extent_buffers(info->extent_root);
2015 free_root_extent_buffers(info->csum_root);
2016 free_root_extent_buffers(info->quota_root);
2017 free_root_extent_buffers(info->uuid_root);
2018 free_root_extent_buffers(info->fs_root);
2019 free_root_extent_buffers(info->data_reloc_root);
2020 if (free_chunk_root)
2021 free_root_extent_buffers(info->chunk_root);
2022 free_root_extent_buffers(info->free_space_root);
2023 }
2024
2025 void btrfs_put_root(struct btrfs_root *root)
2026 {
2027 if (!root)
2028 return;
2029
2030 if (refcount_dec_and_test(&root->refs)) {
2031 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2032 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2033 if (root->anon_dev)
2034 free_anon_bdev(root->anon_dev);
2035 btrfs_drew_lock_destroy(&root->snapshot_lock);
2036 free_root_extent_buffers(root);
2037 kfree(root->free_ino_ctl);
2038 kfree(root->free_ino_pinned);
2039 #ifdef CONFIG_BTRFS_DEBUG
2040 spin_lock(&root->fs_info->fs_roots_radix_lock);
2041 list_del_init(&root->leak_list);
2042 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2043 #endif
2044 kfree(root);
2045 }
2046 }
2047
2048 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2049 {
2050 int ret;
2051 struct btrfs_root *gang[8];
2052 int i;
2053
2054 while (!list_empty(&fs_info->dead_roots)) {
2055 gang[0] = list_entry(fs_info->dead_roots.next,
2056 struct btrfs_root, root_list);
2057 list_del(&gang[0]->root_list);
2058
2059 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2060 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2061 btrfs_put_root(gang[0]);
2062 }
2063
2064 while (1) {
2065 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2066 (void **)gang, 0,
2067 ARRAY_SIZE(gang));
2068 if (!ret)
2069 break;
2070 for (i = 0; i < ret; i++)
2071 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2072 }
2073 }
2074
2075 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2076 {
2077 mutex_init(&fs_info->scrub_lock);
2078 atomic_set(&fs_info->scrubs_running, 0);
2079 atomic_set(&fs_info->scrub_pause_req, 0);
2080 atomic_set(&fs_info->scrubs_paused, 0);
2081 atomic_set(&fs_info->scrub_cancel_req, 0);
2082 init_waitqueue_head(&fs_info->scrub_pause_wait);
2083 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2084 }
2085
2086 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2087 {
2088 spin_lock_init(&fs_info->balance_lock);
2089 mutex_init(&fs_info->balance_mutex);
2090 atomic_set(&fs_info->balance_pause_req, 0);
2091 atomic_set(&fs_info->balance_cancel_req, 0);
2092 fs_info->balance_ctl = NULL;
2093 init_waitqueue_head(&fs_info->balance_wait_q);
2094 }
2095
2096 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2097 {
2098 struct inode *inode = fs_info->btree_inode;
2099
2100 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2101 set_nlink(inode, 1);
2102 /*
2103 * we set the i_size on the btree inode to the max possible int.
2104 * the real end of the address space is determined by all of
2105 * the devices in the system
2106 */
2107 inode->i_size = OFFSET_MAX;
2108 inode->i_mapping->a_ops = &btree_aops;
2109
2110 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2111 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2112 IO_TREE_INODE_IO, inode);
2113 BTRFS_I(inode)->io_tree.track_uptodate = false;
2114 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2115
2116 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2117
2118 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2119 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2120 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2121 btrfs_insert_inode_hash(inode);
2122 }
2123
2124 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2125 {
2126 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2127 init_rwsem(&fs_info->dev_replace.rwsem);
2128 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2129 }
2130
2131 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2132 {
2133 spin_lock_init(&fs_info->qgroup_lock);
2134 mutex_init(&fs_info->qgroup_ioctl_lock);
2135 fs_info->qgroup_tree = RB_ROOT;
2136 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2137 fs_info->qgroup_seq = 1;
2138 fs_info->qgroup_ulist = NULL;
2139 fs_info->qgroup_rescan_running = false;
2140 mutex_init(&fs_info->qgroup_rescan_lock);
2141 }
2142
2143 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2144 struct btrfs_fs_devices *fs_devices)
2145 {
2146 u32 max_active = fs_info->thread_pool_size;
2147 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2148
2149 fs_info->workers =
2150 btrfs_alloc_workqueue(fs_info, "worker",
2151 flags | WQ_HIGHPRI, max_active, 16);
2152
2153 fs_info->delalloc_workers =
2154 btrfs_alloc_workqueue(fs_info, "delalloc",
2155 flags, max_active, 2);
2156
2157 fs_info->flush_workers =
2158 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2159 flags, max_active, 0);
2160
2161 fs_info->caching_workers =
2162 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2163
2164 fs_info->fixup_workers =
2165 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2166
2167 /*
2168 * endios are largely parallel and should have a very
2169 * low idle thresh
2170 */
2171 fs_info->endio_workers =
2172 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2173 fs_info->endio_meta_workers =
2174 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2175 max_active, 4);
2176 fs_info->endio_meta_write_workers =
2177 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2178 max_active, 2);
2179 fs_info->endio_raid56_workers =
2180 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2181 max_active, 4);
2182 fs_info->rmw_workers =
2183 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2184 fs_info->endio_write_workers =
2185 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2186 max_active, 2);
2187 fs_info->endio_freespace_worker =
2188 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2189 max_active, 0);
2190 fs_info->delayed_workers =
2191 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2192 max_active, 0);
2193 fs_info->readahead_workers =
2194 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2195 max_active, 2);
2196 fs_info->qgroup_rescan_workers =
2197 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2198 fs_info->discard_ctl.discard_workers =
2199 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2200
2201 if (!(fs_info->workers && fs_info->delalloc_workers &&
2202 fs_info->flush_workers &&
2203 fs_info->endio_workers && fs_info->endio_meta_workers &&
2204 fs_info->endio_meta_write_workers &&
2205 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2206 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2207 fs_info->caching_workers && fs_info->readahead_workers &&
2208 fs_info->fixup_workers && fs_info->delayed_workers &&
2209 fs_info->qgroup_rescan_workers &&
2210 fs_info->discard_ctl.discard_workers)) {
2211 return -ENOMEM;
2212 }
2213
2214 return 0;
2215 }
2216
2217 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2218 {
2219 struct crypto_shash *csum_shash;
2220 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2221
2222 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2223
2224 if (IS_ERR(csum_shash)) {
2225 btrfs_err(fs_info, "error allocating %s hash for checksum",
2226 csum_driver);
2227 return PTR_ERR(csum_shash);
2228 }
2229
2230 fs_info->csum_shash = csum_shash;
2231
2232 return 0;
2233 }
2234
2235 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2236 struct btrfs_fs_devices *fs_devices)
2237 {
2238 int ret;
2239 struct btrfs_root *log_tree_root;
2240 struct btrfs_super_block *disk_super = fs_info->super_copy;
2241 u64 bytenr = btrfs_super_log_root(disk_super);
2242 int level = btrfs_super_log_root_level(disk_super);
2243
2244 if (fs_devices->rw_devices == 0) {
2245 btrfs_warn(fs_info, "log replay required on RO media");
2246 return -EIO;
2247 }
2248
2249 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2250 GFP_KERNEL);
2251 if (!log_tree_root)
2252 return -ENOMEM;
2253
2254 log_tree_root->node = read_tree_block(fs_info, bytenr,
2255 fs_info->generation + 1,
2256 level, NULL);
2257 if (IS_ERR(log_tree_root->node)) {
2258 btrfs_warn(fs_info, "failed to read log tree");
2259 ret = PTR_ERR(log_tree_root->node);
2260 log_tree_root->node = NULL;
2261 btrfs_put_root(log_tree_root);
2262 return ret;
2263 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2264 btrfs_err(fs_info, "failed to read log tree");
2265 btrfs_put_root(log_tree_root);
2266 return -EIO;
2267 }
2268 /* returns with log_tree_root freed on success */
2269 ret = btrfs_recover_log_trees(log_tree_root);
2270 if (ret) {
2271 btrfs_handle_fs_error(fs_info, ret,
2272 "Failed to recover log tree");
2273 btrfs_put_root(log_tree_root);
2274 return ret;
2275 }
2276
2277 if (sb_rdonly(fs_info->sb)) {
2278 ret = btrfs_commit_super(fs_info);
2279 if (ret)
2280 return ret;
2281 }
2282
2283 return 0;
2284 }
2285
2286 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2287 {
2288 struct btrfs_root *tree_root = fs_info->tree_root;
2289 struct btrfs_root *root;
2290 struct btrfs_key location;
2291 int ret;
2292
2293 BUG_ON(!fs_info->tree_root);
2294
2295 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2296 location.type = BTRFS_ROOT_ITEM_KEY;
2297 location.offset = 0;
2298
2299 root = btrfs_read_tree_root(tree_root, &location);
2300 if (IS_ERR(root)) {
2301 ret = PTR_ERR(root);
2302 goto out;
2303 }
2304 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2305 fs_info->extent_root = root;
2306
2307 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2308 root = btrfs_read_tree_root(tree_root, &location);
2309 if (IS_ERR(root)) {
2310 ret = PTR_ERR(root);
2311 goto out;
2312 }
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 fs_info->dev_root = root;
2315 btrfs_init_devices_late(fs_info);
2316
2317 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2318 root = btrfs_read_tree_root(tree_root, &location);
2319 if (IS_ERR(root)) {
2320 ret = PTR_ERR(root);
2321 goto out;
2322 }
2323 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324 fs_info->csum_root = root;
2325
2326 /*
2327 * This tree can share blocks with some other fs tree during relocation
2328 * and we need a proper setup by btrfs_get_fs_root
2329 */
2330 root = btrfs_get_fs_root(tree_root->fs_info,
2331 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2332 if (IS_ERR(root)) {
2333 ret = PTR_ERR(root);
2334 goto out;
2335 }
2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337 fs_info->data_reloc_root = root;
2338
2339 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2340 root = btrfs_read_tree_root(tree_root, &location);
2341 if (!IS_ERR(root)) {
2342 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2344 fs_info->quota_root = root;
2345 }
2346
2347 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2348 root = btrfs_read_tree_root(tree_root, &location);
2349 if (IS_ERR(root)) {
2350 ret = PTR_ERR(root);
2351 if (ret != -ENOENT)
2352 goto out;
2353 } else {
2354 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355 fs_info->uuid_root = root;
2356 }
2357
2358 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2359 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2360 root = btrfs_read_tree_root(tree_root, &location);
2361 if (IS_ERR(root)) {
2362 ret = PTR_ERR(root);
2363 goto out;
2364 }
2365 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2366 fs_info->free_space_root = root;
2367 }
2368
2369 return 0;
2370 out:
2371 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2372 location.objectid, ret);
2373 return ret;
2374 }
2375
2376 /*
2377 * Real super block validation
2378 * NOTE: super csum type and incompat features will not be checked here.
2379 *
2380 * @sb: super block to check
2381 * @mirror_num: the super block number to check its bytenr:
2382 * 0 the primary (1st) sb
2383 * 1, 2 2nd and 3rd backup copy
2384 * -1 skip bytenr check
2385 */
2386 static int validate_super(struct btrfs_fs_info *fs_info,
2387 struct btrfs_super_block *sb, int mirror_num)
2388 {
2389 u64 nodesize = btrfs_super_nodesize(sb);
2390 u64 sectorsize = btrfs_super_sectorsize(sb);
2391 int ret = 0;
2392
2393 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2394 btrfs_err(fs_info, "no valid FS found");
2395 ret = -EINVAL;
2396 }
2397 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2398 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2399 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2400 ret = -EINVAL;
2401 }
2402 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2403 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2404 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2405 ret = -EINVAL;
2406 }
2407 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2408 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2409 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2410 ret = -EINVAL;
2411 }
2412 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2413 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2414 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2415 ret = -EINVAL;
2416 }
2417
2418 /*
2419 * Check sectorsize and nodesize first, other check will need it.
2420 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2421 */
2422 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2423 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2424 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2425 ret = -EINVAL;
2426 }
2427 /* Only PAGE SIZE is supported yet */
2428 if (sectorsize != PAGE_SIZE) {
2429 btrfs_err(fs_info,
2430 "sectorsize %llu not supported yet, only support %lu",
2431 sectorsize, PAGE_SIZE);
2432 ret = -EINVAL;
2433 }
2434 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2435 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2436 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2437 ret = -EINVAL;
2438 }
2439 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2440 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2441 le32_to_cpu(sb->__unused_leafsize), nodesize);
2442 ret = -EINVAL;
2443 }
2444
2445 /* Root alignment check */
2446 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2447 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2448 btrfs_super_root(sb));
2449 ret = -EINVAL;
2450 }
2451 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2452 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2453 btrfs_super_chunk_root(sb));
2454 ret = -EINVAL;
2455 }
2456 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2457 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2458 btrfs_super_log_root(sb));
2459 ret = -EINVAL;
2460 }
2461
2462 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2463 BTRFS_FSID_SIZE) != 0) {
2464 btrfs_err(fs_info,
2465 "dev_item UUID does not match metadata fsid: %pU != %pU",
2466 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2467 ret = -EINVAL;
2468 }
2469
2470 /*
2471 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2472 * done later
2473 */
2474 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2475 btrfs_err(fs_info, "bytes_used is too small %llu",
2476 btrfs_super_bytes_used(sb));
2477 ret = -EINVAL;
2478 }
2479 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2480 btrfs_err(fs_info, "invalid stripesize %u",
2481 btrfs_super_stripesize(sb));
2482 ret = -EINVAL;
2483 }
2484 if (btrfs_super_num_devices(sb) > (1UL << 31))
2485 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2486 btrfs_super_num_devices(sb));
2487 if (btrfs_super_num_devices(sb) == 0) {
2488 btrfs_err(fs_info, "number of devices is 0");
2489 ret = -EINVAL;
2490 }
2491
2492 if (mirror_num >= 0 &&
2493 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2494 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2495 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2496 ret = -EINVAL;
2497 }
2498
2499 /*
2500 * Obvious sys_chunk_array corruptions, it must hold at least one key
2501 * and one chunk
2502 */
2503 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2504 btrfs_err(fs_info, "system chunk array too big %u > %u",
2505 btrfs_super_sys_array_size(sb),
2506 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2507 ret = -EINVAL;
2508 }
2509 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2510 + sizeof(struct btrfs_chunk)) {
2511 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2512 btrfs_super_sys_array_size(sb),
2513 sizeof(struct btrfs_disk_key)
2514 + sizeof(struct btrfs_chunk));
2515 ret = -EINVAL;
2516 }
2517
2518 /*
2519 * The generation is a global counter, we'll trust it more than the others
2520 * but it's still possible that it's the one that's wrong.
2521 */
2522 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2523 btrfs_warn(fs_info,
2524 "suspicious: generation < chunk_root_generation: %llu < %llu",
2525 btrfs_super_generation(sb),
2526 btrfs_super_chunk_root_generation(sb));
2527 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2528 && btrfs_super_cache_generation(sb) != (u64)-1)
2529 btrfs_warn(fs_info,
2530 "suspicious: generation < cache_generation: %llu < %llu",
2531 btrfs_super_generation(sb),
2532 btrfs_super_cache_generation(sb));
2533
2534 return ret;
2535 }
2536
2537 /*
2538 * Validation of super block at mount time.
2539 * Some checks already done early at mount time, like csum type and incompat
2540 * flags will be skipped.
2541 */
2542 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2543 {
2544 return validate_super(fs_info, fs_info->super_copy, 0);
2545 }
2546
2547 /*
2548 * Validation of super block at write time.
2549 * Some checks like bytenr check will be skipped as their values will be
2550 * overwritten soon.
2551 * Extra checks like csum type and incompat flags will be done here.
2552 */
2553 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2554 struct btrfs_super_block *sb)
2555 {
2556 int ret;
2557
2558 ret = validate_super(fs_info, sb, -1);
2559 if (ret < 0)
2560 goto out;
2561 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2562 ret = -EUCLEAN;
2563 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2564 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2565 goto out;
2566 }
2567 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2568 ret = -EUCLEAN;
2569 btrfs_err(fs_info,
2570 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2571 btrfs_super_incompat_flags(sb),
2572 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2573 goto out;
2574 }
2575 out:
2576 if (ret < 0)
2577 btrfs_err(fs_info,
2578 "super block corruption detected before writing it to disk");
2579 return ret;
2580 }
2581
2582 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2583 {
2584 int backup_index = find_newest_super_backup(fs_info);
2585 struct btrfs_super_block *sb = fs_info->super_copy;
2586 struct btrfs_root *tree_root = fs_info->tree_root;
2587 bool handle_error = false;
2588 int ret = 0;
2589 int i;
2590
2591 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2592 u64 generation;
2593 int level;
2594
2595 if (handle_error) {
2596 if (!IS_ERR(tree_root->node))
2597 free_extent_buffer(tree_root->node);
2598 tree_root->node = NULL;
2599
2600 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2601 break;
2602
2603 free_root_pointers(fs_info, 0);
2604
2605 /*
2606 * Don't use the log in recovery mode, it won't be
2607 * valid
2608 */
2609 btrfs_set_super_log_root(sb, 0);
2610
2611 /* We can't trust the free space cache either */
2612 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2613
2614 ret = read_backup_root(fs_info, i);
2615 backup_index = ret;
2616 if (ret < 0)
2617 return ret;
2618 }
2619 generation = btrfs_super_generation(sb);
2620 level = btrfs_super_root_level(sb);
2621 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2622 generation, level, NULL);
2623 if (IS_ERR(tree_root->node)) {
2624 handle_error = true;
2625 ret = PTR_ERR(tree_root->node);
2626 tree_root->node = NULL;
2627 btrfs_warn(fs_info, "couldn't read tree root");
2628 continue;
2629
2630 } else if (!extent_buffer_uptodate(tree_root->node)) {
2631 handle_error = true;
2632 ret = -EIO;
2633 btrfs_warn(fs_info, "error while reading tree root");
2634 continue;
2635 }
2636
2637 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2638 tree_root->commit_root = btrfs_root_node(tree_root);
2639 btrfs_set_root_refs(&tree_root->root_item, 1);
2640
2641 /*
2642 * No need to hold btrfs_root::objectid_mutex since the fs
2643 * hasn't been fully initialised and we are the only user
2644 */
2645 ret = btrfs_find_highest_objectid(tree_root,
2646 &tree_root->highest_objectid);
2647 if (ret < 0) {
2648 handle_error = true;
2649 continue;
2650 }
2651
2652 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2653
2654 ret = btrfs_read_roots(fs_info);
2655 if (ret < 0) {
2656 handle_error = true;
2657 continue;
2658 }
2659
2660 /* All successful */
2661 fs_info->generation = generation;
2662 fs_info->last_trans_committed = generation;
2663
2664 /* Always begin writing backup roots after the one being used */
2665 if (backup_index < 0) {
2666 fs_info->backup_root_index = 0;
2667 } else {
2668 fs_info->backup_root_index = backup_index + 1;
2669 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2670 }
2671 break;
2672 }
2673
2674 return ret;
2675 }
2676
2677 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2678 {
2679 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2680 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2681 INIT_LIST_HEAD(&fs_info->trans_list);
2682 INIT_LIST_HEAD(&fs_info->dead_roots);
2683 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2684 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2685 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2686 spin_lock_init(&fs_info->delalloc_root_lock);
2687 spin_lock_init(&fs_info->trans_lock);
2688 spin_lock_init(&fs_info->fs_roots_radix_lock);
2689 spin_lock_init(&fs_info->delayed_iput_lock);
2690 spin_lock_init(&fs_info->defrag_inodes_lock);
2691 spin_lock_init(&fs_info->super_lock);
2692 spin_lock_init(&fs_info->buffer_lock);
2693 spin_lock_init(&fs_info->unused_bgs_lock);
2694 rwlock_init(&fs_info->tree_mod_log_lock);
2695 mutex_init(&fs_info->unused_bg_unpin_mutex);
2696 mutex_init(&fs_info->delete_unused_bgs_mutex);
2697 mutex_init(&fs_info->reloc_mutex);
2698 mutex_init(&fs_info->delalloc_root_mutex);
2699 seqlock_init(&fs_info->profiles_lock);
2700
2701 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2702 INIT_LIST_HEAD(&fs_info->space_info);
2703 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2704 INIT_LIST_HEAD(&fs_info->unused_bgs);
2705 #ifdef CONFIG_BTRFS_DEBUG
2706 INIT_LIST_HEAD(&fs_info->allocated_roots);
2707 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2708 spin_lock_init(&fs_info->eb_leak_lock);
2709 #endif
2710 extent_map_tree_init(&fs_info->mapping_tree);
2711 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2712 BTRFS_BLOCK_RSV_GLOBAL);
2713 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2714 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2715 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2716 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2717 BTRFS_BLOCK_RSV_DELOPS);
2718 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2719 BTRFS_BLOCK_RSV_DELREFS);
2720
2721 atomic_set(&fs_info->async_delalloc_pages, 0);
2722 atomic_set(&fs_info->defrag_running, 0);
2723 atomic_set(&fs_info->reada_works_cnt, 0);
2724 atomic_set(&fs_info->nr_delayed_iputs, 0);
2725 atomic64_set(&fs_info->tree_mod_seq, 0);
2726 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2727 fs_info->metadata_ratio = 0;
2728 fs_info->defrag_inodes = RB_ROOT;
2729 atomic64_set(&fs_info->free_chunk_space, 0);
2730 fs_info->tree_mod_log = RB_ROOT;
2731 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2732 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2733 /* readahead state */
2734 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2735 spin_lock_init(&fs_info->reada_lock);
2736 btrfs_init_ref_verify(fs_info);
2737
2738 fs_info->thread_pool_size = min_t(unsigned long,
2739 num_online_cpus() + 2, 8);
2740
2741 INIT_LIST_HEAD(&fs_info->ordered_roots);
2742 spin_lock_init(&fs_info->ordered_root_lock);
2743
2744 btrfs_init_scrub(fs_info);
2745 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2746 fs_info->check_integrity_print_mask = 0;
2747 #endif
2748 btrfs_init_balance(fs_info);
2749 btrfs_init_async_reclaim_work(fs_info);
2750
2751 spin_lock_init(&fs_info->block_group_cache_lock);
2752 fs_info->block_group_cache_tree = RB_ROOT;
2753 fs_info->first_logical_byte = (u64)-1;
2754
2755 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2756 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2757 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2758
2759 mutex_init(&fs_info->ordered_operations_mutex);
2760 mutex_init(&fs_info->tree_log_mutex);
2761 mutex_init(&fs_info->chunk_mutex);
2762 mutex_init(&fs_info->transaction_kthread_mutex);
2763 mutex_init(&fs_info->cleaner_mutex);
2764 mutex_init(&fs_info->ro_block_group_mutex);
2765 init_rwsem(&fs_info->commit_root_sem);
2766 init_rwsem(&fs_info->cleanup_work_sem);
2767 init_rwsem(&fs_info->subvol_sem);
2768 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2769
2770 btrfs_init_dev_replace_locks(fs_info);
2771 btrfs_init_qgroup(fs_info);
2772 btrfs_discard_init(fs_info);
2773
2774 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2775 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2776
2777 init_waitqueue_head(&fs_info->transaction_throttle);
2778 init_waitqueue_head(&fs_info->transaction_wait);
2779 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2780 init_waitqueue_head(&fs_info->async_submit_wait);
2781 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2782
2783 /* Usable values until the real ones are cached from the superblock */
2784 fs_info->nodesize = 4096;
2785 fs_info->sectorsize = 4096;
2786 fs_info->stripesize = 4096;
2787
2788 spin_lock_init(&fs_info->swapfile_pins_lock);
2789 fs_info->swapfile_pins = RB_ROOT;
2790
2791 fs_info->send_in_progress = 0;
2792 }
2793
2794 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2795 {
2796 int ret;
2797
2798 fs_info->sb = sb;
2799 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2800 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2801
2802 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2803 if (ret)
2804 return ret;
2805
2806 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2807 if (ret)
2808 return ret;
2809
2810 fs_info->dirty_metadata_batch = PAGE_SIZE *
2811 (1 + ilog2(nr_cpu_ids));
2812
2813 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2814 if (ret)
2815 return ret;
2816
2817 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2818 GFP_KERNEL);
2819 if (ret)
2820 return ret;
2821
2822 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2823 GFP_KERNEL);
2824 if (!fs_info->delayed_root)
2825 return -ENOMEM;
2826 btrfs_init_delayed_root(fs_info->delayed_root);
2827
2828 return btrfs_alloc_stripe_hash_table(fs_info);
2829 }
2830
2831 static int btrfs_uuid_rescan_kthread(void *data)
2832 {
2833 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2834 int ret;
2835
2836 /*
2837 * 1st step is to iterate through the existing UUID tree and
2838 * to delete all entries that contain outdated data.
2839 * 2nd step is to add all missing entries to the UUID tree.
2840 */
2841 ret = btrfs_uuid_tree_iterate(fs_info);
2842 if (ret < 0) {
2843 if (ret != -EINTR)
2844 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2845 ret);
2846 up(&fs_info->uuid_tree_rescan_sem);
2847 return ret;
2848 }
2849 return btrfs_uuid_scan_kthread(data);
2850 }
2851
2852 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2853 {
2854 struct task_struct *task;
2855
2856 down(&fs_info->uuid_tree_rescan_sem);
2857 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2858 if (IS_ERR(task)) {
2859 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2860 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2861 up(&fs_info->uuid_tree_rescan_sem);
2862 return PTR_ERR(task);
2863 }
2864
2865 return 0;
2866 }
2867
2868 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2869 char *options)
2870 {
2871 u32 sectorsize;
2872 u32 nodesize;
2873 u32 stripesize;
2874 u64 generation;
2875 u64 features;
2876 u16 csum_type;
2877 struct btrfs_super_block *disk_super;
2878 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2879 struct btrfs_root *tree_root;
2880 struct btrfs_root *chunk_root;
2881 int ret;
2882 int err = -EINVAL;
2883 int clear_free_space_tree = 0;
2884 int level;
2885
2886 ret = init_mount_fs_info(fs_info, sb);
2887 if (ret) {
2888 err = ret;
2889 goto fail;
2890 }
2891
2892 /* These need to be init'ed before we start creating inodes and such. */
2893 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2894 GFP_KERNEL);
2895 fs_info->tree_root = tree_root;
2896 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2897 GFP_KERNEL);
2898 fs_info->chunk_root = chunk_root;
2899 if (!tree_root || !chunk_root) {
2900 err = -ENOMEM;
2901 goto fail;
2902 }
2903
2904 fs_info->btree_inode = new_inode(sb);
2905 if (!fs_info->btree_inode) {
2906 err = -ENOMEM;
2907 goto fail;
2908 }
2909 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2910 btrfs_init_btree_inode(fs_info);
2911
2912 invalidate_bdev(fs_devices->latest_bdev);
2913
2914 /*
2915 * Read super block and check the signature bytes only
2916 */
2917 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2918 if (IS_ERR(disk_super)) {
2919 err = PTR_ERR(disk_super);
2920 goto fail_alloc;
2921 }
2922
2923 /*
2924 * Verify the type first, if that or the checksum value are
2925 * corrupted, we'll find out
2926 */
2927 csum_type = btrfs_super_csum_type(disk_super);
2928 if (!btrfs_supported_super_csum(csum_type)) {
2929 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2930 csum_type);
2931 err = -EINVAL;
2932 btrfs_release_disk_super(disk_super);
2933 goto fail_alloc;
2934 }
2935
2936 ret = btrfs_init_csum_hash(fs_info, csum_type);
2937 if (ret) {
2938 err = ret;
2939 btrfs_release_disk_super(disk_super);
2940 goto fail_alloc;
2941 }
2942
2943 /*
2944 * We want to check superblock checksum, the type is stored inside.
2945 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2946 */
2947 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2948 btrfs_err(fs_info, "superblock checksum mismatch");
2949 err = -EINVAL;
2950 btrfs_release_disk_super(disk_super);
2951 goto fail_alloc;
2952 }
2953
2954 /*
2955 * super_copy is zeroed at allocation time and we never touch the
2956 * following bytes up to INFO_SIZE, the checksum is calculated from
2957 * the whole block of INFO_SIZE
2958 */
2959 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2960 btrfs_release_disk_super(disk_super);
2961
2962 disk_super = fs_info->super_copy;
2963
2964 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2965 BTRFS_FSID_SIZE));
2966
2967 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2968 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2969 fs_info->super_copy->metadata_uuid,
2970 BTRFS_FSID_SIZE));
2971 }
2972
2973 features = btrfs_super_flags(disk_super);
2974 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2975 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2976 btrfs_set_super_flags(disk_super, features);
2977 btrfs_info(fs_info,
2978 "found metadata UUID change in progress flag, clearing");
2979 }
2980
2981 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2982 sizeof(*fs_info->super_for_commit));
2983
2984 ret = btrfs_validate_mount_super(fs_info);
2985 if (ret) {
2986 btrfs_err(fs_info, "superblock contains fatal errors");
2987 err = -EINVAL;
2988 goto fail_alloc;
2989 }
2990
2991 if (!btrfs_super_root(disk_super))
2992 goto fail_alloc;
2993
2994 /* check FS state, whether FS is broken. */
2995 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2996 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2997
2998 /*
2999 * In the long term, we'll store the compression type in the super
3000 * block, and it'll be used for per file compression control.
3001 */
3002 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3003
3004 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3005 if (ret) {
3006 err = ret;
3007 goto fail_alloc;
3008 }
3009
3010 features = btrfs_super_incompat_flags(disk_super) &
3011 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3012 if (features) {
3013 btrfs_err(fs_info,
3014 "cannot mount because of unsupported optional features (%llx)",
3015 features);
3016 err = -EINVAL;
3017 goto fail_alloc;
3018 }
3019
3020 features = btrfs_super_incompat_flags(disk_super);
3021 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3022 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3023 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3024 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3025 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3026
3027 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3028 btrfs_info(fs_info, "has skinny extents");
3029
3030 /*
3031 * flag our filesystem as having big metadata blocks if
3032 * they are bigger than the page size
3033 */
3034 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3035 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3036 btrfs_info(fs_info,
3037 "flagging fs with big metadata feature");
3038 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3039 }
3040
3041 nodesize = btrfs_super_nodesize(disk_super);
3042 sectorsize = btrfs_super_sectorsize(disk_super);
3043 stripesize = sectorsize;
3044 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3045 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3046
3047 /* Cache block sizes */
3048 fs_info->nodesize = nodesize;
3049 fs_info->sectorsize = sectorsize;
3050 fs_info->stripesize = stripesize;
3051
3052 /*
3053 * mixed block groups end up with duplicate but slightly offset
3054 * extent buffers for the same range. It leads to corruptions
3055 */
3056 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3057 (sectorsize != nodesize)) {
3058 btrfs_err(fs_info,
3059 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3060 nodesize, sectorsize);
3061 goto fail_alloc;
3062 }
3063
3064 /*
3065 * Needn't use the lock because there is no other task which will
3066 * update the flag.
3067 */
3068 btrfs_set_super_incompat_flags(disk_super, features);
3069
3070 features = btrfs_super_compat_ro_flags(disk_super) &
3071 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3072 if (!sb_rdonly(sb) && features) {
3073 btrfs_err(fs_info,
3074 "cannot mount read-write because of unsupported optional features (%llx)",
3075 features);
3076 err = -EINVAL;
3077 goto fail_alloc;
3078 }
3079
3080 ret = btrfs_init_workqueues(fs_info, fs_devices);
3081 if (ret) {
3082 err = ret;
3083 goto fail_sb_buffer;
3084 }
3085
3086 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3087 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3088 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3089 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3090
3091 sb->s_blocksize = sectorsize;
3092 sb->s_blocksize_bits = blksize_bits(sectorsize);
3093 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3094
3095 mutex_lock(&fs_info->chunk_mutex);
3096 ret = btrfs_read_sys_array(fs_info);
3097 mutex_unlock(&fs_info->chunk_mutex);
3098 if (ret) {
3099 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3100 goto fail_sb_buffer;
3101 }
3102
3103 generation = btrfs_super_chunk_root_generation(disk_super);
3104 level = btrfs_super_chunk_root_level(disk_super);
3105
3106 chunk_root->node = read_tree_block(fs_info,
3107 btrfs_super_chunk_root(disk_super),
3108 generation, level, NULL);
3109 if (IS_ERR(chunk_root->node) ||
3110 !extent_buffer_uptodate(chunk_root->node)) {
3111 btrfs_err(fs_info, "failed to read chunk root");
3112 if (!IS_ERR(chunk_root->node))
3113 free_extent_buffer(chunk_root->node);
3114 chunk_root->node = NULL;
3115 goto fail_tree_roots;
3116 }
3117 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3118 chunk_root->commit_root = btrfs_root_node(chunk_root);
3119
3120 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3121 offsetof(struct btrfs_header, chunk_tree_uuid),
3122 BTRFS_UUID_SIZE);
3123
3124 ret = btrfs_read_chunk_tree(fs_info);
3125 if (ret) {
3126 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3127 goto fail_tree_roots;
3128 }
3129
3130 /*
3131 * Keep the devid that is marked to be the target device for the
3132 * device replace procedure
3133 */
3134 btrfs_free_extra_devids(fs_devices, 0);
3135
3136 if (!fs_devices->latest_bdev) {
3137 btrfs_err(fs_info, "failed to read devices");
3138 goto fail_tree_roots;
3139 }
3140
3141 ret = init_tree_roots(fs_info);
3142 if (ret)
3143 goto fail_tree_roots;
3144
3145 /*
3146 * If we have a uuid root and we're not being told to rescan we need to
3147 * check the generation here so we can set the
3148 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3149 * transaction during a balance or the log replay without updating the
3150 * uuid generation, and then if we crash we would rescan the uuid tree,
3151 * even though it was perfectly fine.
3152 */
3153 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3154 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3155 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3156
3157 ret = btrfs_verify_dev_extents(fs_info);
3158 if (ret) {
3159 btrfs_err(fs_info,
3160 "failed to verify dev extents against chunks: %d",
3161 ret);
3162 goto fail_block_groups;
3163 }
3164 ret = btrfs_recover_balance(fs_info);
3165 if (ret) {
3166 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3167 goto fail_block_groups;
3168 }
3169
3170 ret = btrfs_init_dev_stats(fs_info);
3171 if (ret) {
3172 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3173 goto fail_block_groups;
3174 }
3175
3176 ret = btrfs_init_dev_replace(fs_info);
3177 if (ret) {
3178 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3179 goto fail_block_groups;
3180 }
3181
3182 btrfs_free_extra_devids(fs_devices, 1);
3183
3184 ret = btrfs_sysfs_add_fsid(fs_devices);
3185 if (ret) {
3186 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3187 ret);
3188 goto fail_block_groups;
3189 }
3190
3191 ret = btrfs_sysfs_add_mounted(fs_info);
3192 if (ret) {
3193 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3194 goto fail_fsdev_sysfs;
3195 }
3196
3197 ret = btrfs_init_space_info(fs_info);
3198 if (ret) {
3199 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3200 goto fail_sysfs;
3201 }
3202
3203 ret = btrfs_read_block_groups(fs_info);
3204 if (ret) {
3205 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3206 goto fail_sysfs;
3207 }
3208
3209 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3210 btrfs_warn(fs_info,
3211 "writable mount is not allowed due to too many missing devices");
3212 goto fail_sysfs;
3213 }
3214
3215 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3216 "btrfs-cleaner");
3217 if (IS_ERR(fs_info->cleaner_kthread))
3218 goto fail_sysfs;
3219
3220 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3221 tree_root,
3222 "btrfs-transaction");
3223 if (IS_ERR(fs_info->transaction_kthread))
3224 goto fail_cleaner;
3225
3226 if (!btrfs_test_opt(fs_info, NOSSD) &&
3227 !fs_info->fs_devices->rotating) {
3228 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3229 }
3230
3231 /*
3232 * Mount does not set all options immediately, we can do it now and do
3233 * not have to wait for transaction commit
3234 */
3235 btrfs_apply_pending_changes(fs_info);
3236
3237 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3238 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3239 ret = btrfsic_mount(fs_info, fs_devices,
3240 btrfs_test_opt(fs_info,
3241 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3242 1 : 0,
3243 fs_info->check_integrity_print_mask);
3244 if (ret)
3245 btrfs_warn(fs_info,
3246 "failed to initialize integrity check module: %d",
3247 ret);
3248 }
3249 #endif
3250 ret = btrfs_read_qgroup_config(fs_info);
3251 if (ret)
3252 goto fail_trans_kthread;
3253
3254 if (btrfs_build_ref_tree(fs_info))
3255 btrfs_err(fs_info, "couldn't build ref tree");
3256
3257 /* do not make disk changes in broken FS or nologreplay is given */
3258 if (btrfs_super_log_root(disk_super) != 0 &&
3259 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3260 btrfs_info(fs_info, "start tree-log replay");
3261 ret = btrfs_replay_log(fs_info, fs_devices);
3262 if (ret) {
3263 err = ret;
3264 goto fail_qgroup;
3265 }
3266 }
3267
3268 ret = btrfs_find_orphan_roots(fs_info);
3269 if (ret)
3270 goto fail_qgroup;
3271
3272 if (!sb_rdonly(sb)) {
3273 ret = btrfs_cleanup_fs_roots(fs_info);
3274 if (ret)
3275 goto fail_qgroup;
3276
3277 mutex_lock(&fs_info->cleaner_mutex);
3278 ret = btrfs_recover_relocation(tree_root);
3279 mutex_unlock(&fs_info->cleaner_mutex);
3280 if (ret < 0) {
3281 btrfs_warn(fs_info, "failed to recover relocation: %d",
3282 ret);
3283 err = -EINVAL;
3284 goto fail_qgroup;
3285 }
3286 }
3287
3288 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3289 if (IS_ERR(fs_info->fs_root)) {
3290 err = PTR_ERR(fs_info->fs_root);
3291 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3292 fs_info->fs_root = NULL;
3293 goto fail_qgroup;
3294 }
3295
3296 if (sb_rdonly(sb))
3297 return 0;
3298
3299 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3300 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3301 clear_free_space_tree = 1;
3302 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3303 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3304 btrfs_warn(fs_info, "free space tree is invalid");
3305 clear_free_space_tree = 1;
3306 }
3307
3308 if (clear_free_space_tree) {
3309 btrfs_info(fs_info, "clearing free space tree");
3310 ret = btrfs_clear_free_space_tree(fs_info);
3311 if (ret) {
3312 btrfs_warn(fs_info,
3313 "failed to clear free space tree: %d", ret);
3314 close_ctree(fs_info);
3315 return ret;
3316 }
3317 }
3318
3319 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3320 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3321 btrfs_info(fs_info, "creating free space tree");
3322 ret = btrfs_create_free_space_tree(fs_info);
3323 if (ret) {
3324 btrfs_warn(fs_info,
3325 "failed to create free space tree: %d", ret);
3326 close_ctree(fs_info);
3327 return ret;
3328 }
3329 }
3330
3331 down_read(&fs_info->cleanup_work_sem);
3332 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3333 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3334 up_read(&fs_info->cleanup_work_sem);
3335 close_ctree(fs_info);
3336 return ret;
3337 }
3338 up_read(&fs_info->cleanup_work_sem);
3339
3340 ret = btrfs_resume_balance_async(fs_info);
3341 if (ret) {
3342 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3343 close_ctree(fs_info);
3344 return ret;
3345 }
3346
3347 ret = btrfs_resume_dev_replace_async(fs_info);
3348 if (ret) {
3349 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3350 close_ctree(fs_info);
3351 return ret;
3352 }
3353
3354 btrfs_qgroup_rescan_resume(fs_info);
3355 btrfs_discard_resume(fs_info);
3356
3357 if (!fs_info->uuid_root) {
3358 btrfs_info(fs_info, "creating UUID tree");
3359 ret = btrfs_create_uuid_tree(fs_info);
3360 if (ret) {
3361 btrfs_warn(fs_info,
3362 "failed to create the UUID tree: %d", ret);
3363 close_ctree(fs_info);
3364 return ret;
3365 }
3366 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3367 fs_info->generation !=
3368 btrfs_super_uuid_tree_generation(disk_super)) {
3369 btrfs_info(fs_info, "checking UUID tree");
3370 ret = btrfs_check_uuid_tree(fs_info);
3371 if (ret) {
3372 btrfs_warn(fs_info,
3373 "failed to check the UUID tree: %d", ret);
3374 close_ctree(fs_info);
3375 return ret;
3376 }
3377 }
3378 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3379
3380 /*
3381 * backuproot only affect mount behavior, and if open_ctree succeeded,
3382 * no need to keep the flag
3383 */
3384 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3385
3386 return 0;
3387
3388 fail_qgroup:
3389 btrfs_free_qgroup_config(fs_info);
3390 fail_trans_kthread:
3391 kthread_stop(fs_info->transaction_kthread);
3392 btrfs_cleanup_transaction(fs_info);
3393 btrfs_free_fs_roots(fs_info);
3394 fail_cleaner:
3395 kthread_stop(fs_info->cleaner_kthread);
3396
3397 /*
3398 * make sure we're done with the btree inode before we stop our
3399 * kthreads
3400 */
3401 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3402
3403 fail_sysfs:
3404 btrfs_sysfs_remove_mounted(fs_info);
3405
3406 fail_fsdev_sysfs:
3407 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3408
3409 fail_block_groups:
3410 btrfs_put_block_group_cache(fs_info);
3411
3412 fail_tree_roots:
3413 if (fs_info->data_reloc_root)
3414 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3415 free_root_pointers(fs_info, true);
3416 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3417
3418 fail_sb_buffer:
3419 btrfs_stop_all_workers(fs_info);
3420 btrfs_free_block_groups(fs_info);
3421 fail_alloc:
3422 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3423
3424 iput(fs_info->btree_inode);
3425 fail:
3426 btrfs_close_devices(fs_info->fs_devices);
3427 return err;
3428 }
3429 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3430
3431 static void btrfs_end_super_write(struct bio *bio)
3432 {
3433 struct btrfs_device *device = bio->bi_private;
3434 struct bio_vec *bvec;
3435 struct bvec_iter_all iter_all;
3436 struct page *page;
3437
3438 bio_for_each_segment_all(bvec, bio, iter_all) {
3439 page = bvec->bv_page;
3440
3441 if (bio->bi_status) {
3442 btrfs_warn_rl_in_rcu(device->fs_info,
3443 "lost page write due to IO error on %s (%d)",
3444 rcu_str_deref(device->name),
3445 blk_status_to_errno(bio->bi_status));
3446 ClearPageUptodate(page);
3447 SetPageError(page);
3448 btrfs_dev_stat_inc_and_print(device,
3449 BTRFS_DEV_STAT_WRITE_ERRS);
3450 } else {
3451 SetPageUptodate(page);
3452 }
3453
3454 put_page(page);
3455 unlock_page(page);
3456 }
3457
3458 bio_put(bio);
3459 }
3460
3461 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3462 int copy_num)
3463 {
3464 struct btrfs_super_block *super;
3465 struct page *page;
3466 u64 bytenr;
3467 struct address_space *mapping = bdev->bd_inode->i_mapping;
3468
3469 bytenr = btrfs_sb_offset(copy_num);
3470 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3471 return ERR_PTR(-EINVAL);
3472
3473 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3474 if (IS_ERR(page))
3475 return ERR_CAST(page);
3476
3477 super = page_address(page);
3478 if (btrfs_super_bytenr(super) != bytenr ||
3479 btrfs_super_magic(super) != BTRFS_MAGIC) {
3480 btrfs_release_disk_super(super);
3481 return ERR_PTR(-EINVAL);
3482 }
3483
3484 return super;
3485 }
3486
3487
3488 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3489 {
3490 struct btrfs_super_block *super, *latest = NULL;
3491 int i;
3492 u64 transid = 0;
3493
3494 /* we would like to check all the supers, but that would make
3495 * a btrfs mount succeed after a mkfs from a different FS.
3496 * So, we need to add a special mount option to scan for
3497 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3498 */
3499 for (i = 0; i < 1; i++) {
3500 super = btrfs_read_dev_one_super(bdev, i);
3501 if (IS_ERR(super))
3502 continue;
3503
3504 if (!latest || btrfs_super_generation(super) > transid) {
3505 if (latest)
3506 btrfs_release_disk_super(super);
3507
3508 latest = super;
3509 transid = btrfs_super_generation(super);
3510 }
3511 }
3512
3513 return super;
3514 }
3515
3516 /*
3517 * Write superblock @sb to the @device. Do not wait for completion, all the
3518 * pages we use for writing are locked.
3519 *
3520 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3521 * the expected device size at commit time. Note that max_mirrors must be
3522 * same for write and wait phases.
3523 *
3524 * Return number of errors when page is not found or submission fails.
3525 */
3526 static int write_dev_supers(struct btrfs_device *device,
3527 struct btrfs_super_block *sb, int max_mirrors)
3528 {
3529 struct btrfs_fs_info *fs_info = device->fs_info;
3530 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3531 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3532 int i;
3533 int errors = 0;
3534 u64 bytenr;
3535
3536 if (max_mirrors == 0)
3537 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3538
3539 shash->tfm = fs_info->csum_shash;
3540
3541 for (i = 0; i < max_mirrors; i++) {
3542 struct page *page;
3543 struct bio *bio;
3544 struct btrfs_super_block *disk_super;
3545
3546 bytenr = btrfs_sb_offset(i);
3547 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3548 device->commit_total_bytes)
3549 break;
3550
3551 btrfs_set_super_bytenr(sb, bytenr);
3552
3553 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3554 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3555 sb->csum);
3556
3557 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3558 GFP_NOFS);
3559 if (!page) {
3560 btrfs_err(device->fs_info,
3561 "couldn't get super block page for bytenr %llu",
3562 bytenr);
3563 errors++;
3564 continue;
3565 }
3566
3567 /* Bump the refcount for wait_dev_supers() */
3568 get_page(page);
3569
3570 disk_super = page_address(page);
3571 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3572
3573 /*
3574 * Directly use bios here instead of relying on the page cache
3575 * to do I/O, so we don't lose the ability to do integrity
3576 * checking.
3577 */
3578 bio = bio_alloc(GFP_NOFS, 1);
3579 bio_set_dev(bio, device->bdev);
3580 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3581 bio->bi_private = device;
3582 bio->bi_end_io = btrfs_end_super_write;
3583 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3584 offset_in_page(bytenr));
3585
3586 /*
3587 * We FUA only the first super block. The others we allow to
3588 * go down lazy and there's a short window where the on-disk
3589 * copies might still contain the older version.
3590 */
3591 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3592 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3593 bio->bi_opf |= REQ_FUA;
3594
3595 btrfsic_submit_bio(bio);
3596 }
3597 return errors < i ? 0 : -1;
3598 }
3599
3600 /*
3601 * Wait for write completion of superblocks done by write_dev_supers,
3602 * @max_mirrors same for write and wait phases.
3603 *
3604 * Return number of errors when page is not found or not marked up to
3605 * date.
3606 */
3607 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3608 {
3609 int i;
3610 int errors = 0;
3611 bool primary_failed = false;
3612 u64 bytenr;
3613
3614 if (max_mirrors == 0)
3615 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3616
3617 for (i = 0; i < max_mirrors; i++) {
3618 struct page *page;
3619
3620 bytenr = btrfs_sb_offset(i);
3621 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3622 device->commit_total_bytes)
3623 break;
3624
3625 page = find_get_page(device->bdev->bd_inode->i_mapping,
3626 bytenr >> PAGE_SHIFT);
3627 if (!page) {
3628 errors++;
3629 if (i == 0)
3630 primary_failed = true;
3631 continue;
3632 }
3633 /* Page is submitted locked and unlocked once the IO completes */
3634 wait_on_page_locked(page);
3635 if (PageError(page)) {
3636 errors++;
3637 if (i == 0)
3638 primary_failed = true;
3639 }
3640
3641 /* Drop our reference */
3642 put_page(page);
3643
3644 /* Drop the reference from the writing run */
3645 put_page(page);
3646 }
3647
3648 /* log error, force error return */
3649 if (primary_failed) {
3650 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3651 device->devid);
3652 return -1;
3653 }
3654
3655 return errors < i ? 0 : -1;
3656 }
3657
3658 /*
3659 * endio for the write_dev_flush, this will wake anyone waiting
3660 * for the barrier when it is done
3661 */
3662 static void btrfs_end_empty_barrier(struct bio *bio)
3663 {
3664 complete(bio->bi_private);
3665 }
3666
3667 /*
3668 * Submit a flush request to the device if it supports it. Error handling is
3669 * done in the waiting counterpart.
3670 */
3671 static void write_dev_flush(struct btrfs_device *device)
3672 {
3673 struct request_queue *q = bdev_get_queue(device->bdev);
3674 struct bio *bio = device->flush_bio;
3675
3676 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3677 return;
3678
3679 bio_reset(bio);
3680 bio->bi_end_io = btrfs_end_empty_barrier;
3681 bio_set_dev(bio, device->bdev);
3682 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3683 init_completion(&device->flush_wait);
3684 bio->bi_private = &device->flush_wait;
3685
3686 btrfsic_submit_bio(bio);
3687 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3688 }
3689
3690 /*
3691 * If the flush bio has been submitted by write_dev_flush, wait for it.
3692 */
3693 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3694 {
3695 struct bio *bio = device->flush_bio;
3696
3697 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3698 return BLK_STS_OK;
3699
3700 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3701 wait_for_completion_io(&device->flush_wait);
3702
3703 return bio->bi_status;
3704 }
3705
3706 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3707 {
3708 if (!btrfs_check_rw_degradable(fs_info, NULL))
3709 return -EIO;
3710 return 0;
3711 }
3712
3713 /*
3714 * send an empty flush down to each device in parallel,
3715 * then wait for them
3716 */
3717 static int barrier_all_devices(struct btrfs_fs_info *info)
3718 {
3719 struct list_head *head;
3720 struct btrfs_device *dev;
3721 int errors_wait = 0;
3722 blk_status_t ret;
3723
3724 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3725 /* send down all the barriers */
3726 head = &info->fs_devices->devices;
3727 list_for_each_entry(dev, head, dev_list) {
3728 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3729 continue;
3730 if (!dev->bdev)
3731 continue;
3732 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3733 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3734 continue;
3735
3736 write_dev_flush(dev);
3737 dev->last_flush_error = BLK_STS_OK;
3738 }
3739
3740 /* wait for all the barriers */
3741 list_for_each_entry(dev, head, dev_list) {
3742 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3743 continue;
3744 if (!dev->bdev) {
3745 errors_wait++;
3746 continue;
3747 }
3748 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3749 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3750 continue;
3751
3752 ret = wait_dev_flush(dev);
3753 if (ret) {
3754 dev->last_flush_error = ret;
3755 btrfs_dev_stat_inc_and_print(dev,
3756 BTRFS_DEV_STAT_FLUSH_ERRS);
3757 errors_wait++;
3758 }
3759 }
3760
3761 if (errors_wait) {
3762 /*
3763 * At some point we need the status of all disks
3764 * to arrive at the volume status. So error checking
3765 * is being pushed to a separate loop.
3766 */
3767 return check_barrier_error(info);
3768 }
3769 return 0;
3770 }
3771
3772 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3773 {
3774 int raid_type;
3775 int min_tolerated = INT_MAX;
3776
3777 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3778 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3779 min_tolerated = min_t(int, min_tolerated,
3780 btrfs_raid_array[BTRFS_RAID_SINGLE].
3781 tolerated_failures);
3782
3783 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3784 if (raid_type == BTRFS_RAID_SINGLE)
3785 continue;
3786 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3787 continue;
3788 min_tolerated = min_t(int, min_tolerated,
3789 btrfs_raid_array[raid_type].
3790 tolerated_failures);
3791 }
3792
3793 if (min_tolerated == INT_MAX) {
3794 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3795 min_tolerated = 0;
3796 }
3797
3798 return min_tolerated;
3799 }
3800
3801 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3802 {
3803 struct list_head *head;
3804 struct btrfs_device *dev;
3805 struct btrfs_super_block *sb;
3806 struct btrfs_dev_item *dev_item;
3807 int ret;
3808 int do_barriers;
3809 int max_errors;
3810 int total_errors = 0;
3811 u64 flags;
3812
3813 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3814
3815 /*
3816 * max_mirrors == 0 indicates we're from commit_transaction,
3817 * not from fsync where the tree roots in fs_info have not
3818 * been consistent on disk.
3819 */
3820 if (max_mirrors == 0)
3821 backup_super_roots(fs_info);
3822
3823 sb = fs_info->super_for_commit;
3824 dev_item = &sb->dev_item;
3825
3826 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3827 head = &fs_info->fs_devices->devices;
3828 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3829
3830 if (do_barriers) {
3831 ret = barrier_all_devices(fs_info);
3832 if (ret) {
3833 mutex_unlock(
3834 &fs_info->fs_devices->device_list_mutex);
3835 btrfs_handle_fs_error(fs_info, ret,
3836 "errors while submitting device barriers.");
3837 return ret;
3838 }
3839 }
3840
3841 list_for_each_entry(dev, head, dev_list) {
3842 if (!dev->bdev) {
3843 total_errors++;
3844 continue;
3845 }
3846 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3847 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3848 continue;
3849
3850 btrfs_set_stack_device_generation(dev_item, 0);
3851 btrfs_set_stack_device_type(dev_item, dev->type);
3852 btrfs_set_stack_device_id(dev_item, dev->devid);
3853 btrfs_set_stack_device_total_bytes(dev_item,
3854 dev->commit_total_bytes);
3855 btrfs_set_stack_device_bytes_used(dev_item,
3856 dev->commit_bytes_used);
3857 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3858 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3859 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3860 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3861 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3862 BTRFS_FSID_SIZE);
3863
3864 flags = btrfs_super_flags(sb);
3865 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3866
3867 ret = btrfs_validate_write_super(fs_info, sb);
3868 if (ret < 0) {
3869 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3870 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3871 "unexpected superblock corruption detected");
3872 return -EUCLEAN;
3873 }
3874
3875 ret = write_dev_supers(dev, sb, max_mirrors);
3876 if (ret)
3877 total_errors++;
3878 }
3879 if (total_errors > max_errors) {
3880 btrfs_err(fs_info, "%d errors while writing supers",
3881 total_errors);
3882 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3883
3884 /* FUA is masked off if unsupported and can't be the reason */
3885 btrfs_handle_fs_error(fs_info, -EIO,
3886 "%d errors while writing supers",
3887 total_errors);
3888 return -EIO;
3889 }
3890
3891 total_errors = 0;
3892 list_for_each_entry(dev, head, dev_list) {
3893 if (!dev->bdev)
3894 continue;
3895 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3896 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3897 continue;
3898
3899 ret = wait_dev_supers(dev, max_mirrors);
3900 if (ret)
3901 total_errors++;
3902 }
3903 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3904 if (total_errors > max_errors) {
3905 btrfs_handle_fs_error(fs_info, -EIO,
3906 "%d errors while writing supers",
3907 total_errors);
3908 return -EIO;
3909 }
3910 return 0;
3911 }
3912
3913 /* Drop a fs root from the radix tree and free it. */
3914 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3915 struct btrfs_root *root)
3916 {
3917 bool drop_ref = false;
3918
3919 spin_lock(&fs_info->fs_roots_radix_lock);
3920 radix_tree_delete(&fs_info->fs_roots_radix,
3921 (unsigned long)root->root_key.objectid);
3922 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3923 drop_ref = true;
3924 spin_unlock(&fs_info->fs_roots_radix_lock);
3925
3926 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3927 ASSERT(root->log_root == NULL);
3928 if (root->reloc_root) {
3929 btrfs_put_root(root->reloc_root);
3930 root->reloc_root = NULL;
3931 }
3932 }
3933
3934 if (root->free_ino_pinned)
3935 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3936 if (root->free_ino_ctl)
3937 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3938 if (root->ino_cache_inode) {
3939 iput(root->ino_cache_inode);
3940 root->ino_cache_inode = NULL;
3941 }
3942 if (drop_ref)
3943 btrfs_put_root(root);
3944 }
3945
3946 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3947 {
3948 u64 root_objectid = 0;
3949 struct btrfs_root *gang[8];
3950 int i = 0;
3951 int err = 0;
3952 unsigned int ret = 0;
3953
3954 while (1) {
3955 spin_lock(&fs_info->fs_roots_radix_lock);
3956 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3957 (void **)gang, root_objectid,
3958 ARRAY_SIZE(gang));
3959 if (!ret) {
3960 spin_unlock(&fs_info->fs_roots_radix_lock);
3961 break;
3962 }
3963 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3964
3965 for (i = 0; i < ret; i++) {
3966 /* Avoid to grab roots in dead_roots */
3967 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3968 gang[i] = NULL;
3969 continue;
3970 }
3971 /* grab all the search result for later use */
3972 gang[i] = btrfs_grab_root(gang[i]);
3973 }
3974 spin_unlock(&fs_info->fs_roots_radix_lock);
3975
3976 for (i = 0; i < ret; i++) {
3977 if (!gang[i])
3978 continue;
3979 root_objectid = gang[i]->root_key.objectid;
3980 err = btrfs_orphan_cleanup(gang[i]);
3981 if (err)
3982 break;
3983 btrfs_put_root(gang[i]);
3984 }
3985 root_objectid++;
3986 }
3987
3988 /* release the uncleaned roots due to error */
3989 for (; i < ret; i++) {
3990 if (gang[i])
3991 btrfs_put_root(gang[i]);
3992 }
3993 return err;
3994 }
3995
3996 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3997 {
3998 struct btrfs_root *root = fs_info->tree_root;
3999 struct btrfs_trans_handle *trans;
4000
4001 mutex_lock(&fs_info->cleaner_mutex);
4002 btrfs_run_delayed_iputs(fs_info);
4003 mutex_unlock(&fs_info->cleaner_mutex);
4004 wake_up_process(fs_info->cleaner_kthread);
4005
4006 /* wait until ongoing cleanup work done */
4007 down_write(&fs_info->cleanup_work_sem);
4008 up_write(&fs_info->cleanup_work_sem);
4009
4010 trans = btrfs_join_transaction(root);
4011 if (IS_ERR(trans))
4012 return PTR_ERR(trans);
4013 return btrfs_commit_transaction(trans);
4014 }
4015
4016 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4017 {
4018 int ret;
4019
4020 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4021 /*
4022 * We don't want the cleaner to start new transactions, add more delayed
4023 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4024 * because that frees the task_struct, and the transaction kthread might
4025 * still try to wake up the cleaner.
4026 */
4027 kthread_park(fs_info->cleaner_kthread);
4028
4029 /* wait for the qgroup rescan worker to stop */
4030 btrfs_qgroup_wait_for_completion(fs_info, false);
4031
4032 /* wait for the uuid_scan task to finish */
4033 down(&fs_info->uuid_tree_rescan_sem);
4034 /* avoid complains from lockdep et al., set sem back to initial state */
4035 up(&fs_info->uuid_tree_rescan_sem);
4036
4037 /* pause restriper - we want to resume on mount */
4038 btrfs_pause_balance(fs_info);
4039
4040 btrfs_dev_replace_suspend_for_unmount(fs_info);
4041
4042 btrfs_scrub_cancel(fs_info);
4043
4044 /* wait for any defraggers to finish */
4045 wait_event(fs_info->transaction_wait,
4046 (atomic_read(&fs_info->defrag_running) == 0));
4047
4048 /* clear out the rbtree of defraggable inodes */
4049 btrfs_cleanup_defrag_inodes(fs_info);
4050
4051 cancel_work_sync(&fs_info->async_reclaim_work);
4052 cancel_work_sync(&fs_info->async_data_reclaim_work);
4053
4054 /* Cancel or finish ongoing discard work */
4055 btrfs_discard_cleanup(fs_info);
4056
4057 if (!sb_rdonly(fs_info->sb)) {
4058 /*
4059 * The cleaner kthread is stopped, so do one final pass over
4060 * unused block groups.
4061 */
4062 btrfs_delete_unused_bgs(fs_info);
4063
4064 /*
4065 * There might be existing delayed inode workers still running
4066 * and holding an empty delayed inode item. We must wait for
4067 * them to complete first because they can create a transaction.
4068 * This happens when someone calls btrfs_balance_delayed_items()
4069 * and then a transaction commit runs the same delayed nodes
4070 * before any delayed worker has done something with the nodes.
4071 * We must wait for any worker here and not at transaction
4072 * commit time since that could cause a deadlock.
4073 * This is a very rare case.
4074 */
4075 btrfs_flush_workqueue(fs_info->delayed_workers);
4076
4077 ret = btrfs_commit_super(fs_info);
4078 if (ret)
4079 btrfs_err(fs_info, "commit super ret %d", ret);
4080 }
4081
4082 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4083 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4084 btrfs_error_commit_super(fs_info);
4085
4086 kthread_stop(fs_info->transaction_kthread);
4087 kthread_stop(fs_info->cleaner_kthread);
4088
4089 ASSERT(list_empty(&fs_info->delayed_iputs));
4090 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4091
4092 if (btrfs_check_quota_leak(fs_info)) {
4093 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4094 btrfs_err(fs_info, "qgroup reserved space leaked");
4095 }
4096
4097 btrfs_free_qgroup_config(fs_info);
4098 ASSERT(list_empty(&fs_info->delalloc_roots));
4099
4100 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4101 btrfs_info(fs_info, "at unmount delalloc count %lld",
4102 percpu_counter_sum(&fs_info->delalloc_bytes));
4103 }
4104
4105 if (percpu_counter_sum(&fs_info->dio_bytes))
4106 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4107 percpu_counter_sum(&fs_info->dio_bytes));
4108
4109 btrfs_sysfs_remove_mounted(fs_info);
4110 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4111
4112 btrfs_put_block_group_cache(fs_info);
4113
4114 /*
4115 * we must make sure there is not any read request to
4116 * submit after we stopping all workers.
4117 */
4118 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4119 btrfs_stop_all_workers(fs_info);
4120
4121 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4122 free_root_pointers(fs_info, true);
4123 btrfs_free_fs_roots(fs_info);
4124
4125 /*
4126 * We must free the block groups after dropping the fs_roots as we could
4127 * have had an IO error and have left over tree log blocks that aren't
4128 * cleaned up until the fs roots are freed. This makes the block group
4129 * accounting appear to be wrong because there's pending reserved bytes,
4130 * so make sure we do the block group cleanup afterwards.
4131 */
4132 btrfs_free_block_groups(fs_info);
4133
4134 iput(fs_info->btree_inode);
4135
4136 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4137 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4138 btrfsic_unmount(fs_info->fs_devices);
4139 #endif
4140
4141 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4142 btrfs_close_devices(fs_info->fs_devices);
4143 }
4144
4145 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4146 int atomic)
4147 {
4148 int ret;
4149 struct inode *btree_inode = buf->pages[0]->mapping->host;
4150
4151 ret = extent_buffer_uptodate(buf);
4152 if (!ret)
4153 return ret;
4154
4155 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4156 parent_transid, atomic);
4157 if (ret == -EAGAIN)
4158 return ret;
4159 return !ret;
4160 }
4161
4162 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4163 {
4164 struct btrfs_fs_info *fs_info;
4165 struct btrfs_root *root;
4166 u64 transid = btrfs_header_generation(buf);
4167 int was_dirty;
4168
4169 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4170 /*
4171 * This is a fast path so only do this check if we have sanity tests
4172 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4173 * outside of the sanity tests.
4174 */
4175 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4176 return;
4177 #endif
4178 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4179 fs_info = root->fs_info;
4180 btrfs_assert_tree_locked(buf);
4181 if (transid != fs_info->generation)
4182 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4183 buf->start, transid, fs_info->generation);
4184 was_dirty = set_extent_buffer_dirty(buf);
4185 if (!was_dirty)
4186 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4187 buf->len,
4188 fs_info->dirty_metadata_batch);
4189 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4190 /*
4191 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4192 * but item data not updated.
4193 * So here we should only check item pointers, not item data.
4194 */
4195 if (btrfs_header_level(buf) == 0 &&
4196 btrfs_check_leaf_relaxed(buf)) {
4197 btrfs_print_leaf(buf);
4198 ASSERT(0);
4199 }
4200 #endif
4201 }
4202
4203 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4204 int flush_delayed)
4205 {
4206 /*
4207 * looks as though older kernels can get into trouble with
4208 * this code, they end up stuck in balance_dirty_pages forever
4209 */
4210 int ret;
4211
4212 if (current->flags & PF_MEMALLOC)
4213 return;
4214
4215 if (flush_delayed)
4216 btrfs_balance_delayed_items(fs_info);
4217
4218 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4219 BTRFS_DIRTY_METADATA_THRESH,
4220 fs_info->dirty_metadata_batch);
4221 if (ret > 0) {
4222 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4223 }
4224 }
4225
4226 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4227 {
4228 __btrfs_btree_balance_dirty(fs_info, 1);
4229 }
4230
4231 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4232 {
4233 __btrfs_btree_balance_dirty(fs_info, 0);
4234 }
4235
4236 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4237 struct btrfs_key *first_key)
4238 {
4239 return btree_read_extent_buffer_pages(buf, parent_transid,
4240 level, first_key);
4241 }
4242
4243 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4244 {
4245 /* cleanup FS via transaction */
4246 btrfs_cleanup_transaction(fs_info);
4247
4248 mutex_lock(&fs_info->cleaner_mutex);
4249 btrfs_run_delayed_iputs(fs_info);
4250 mutex_unlock(&fs_info->cleaner_mutex);
4251
4252 down_write(&fs_info->cleanup_work_sem);
4253 up_write(&fs_info->cleanup_work_sem);
4254 }
4255
4256 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4257 {
4258 struct btrfs_root *gang[8];
4259 u64 root_objectid = 0;
4260 int ret;
4261
4262 spin_lock(&fs_info->fs_roots_radix_lock);
4263 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4264 (void **)gang, root_objectid,
4265 ARRAY_SIZE(gang))) != 0) {
4266 int i;
4267
4268 for (i = 0; i < ret; i++)
4269 gang[i] = btrfs_grab_root(gang[i]);
4270 spin_unlock(&fs_info->fs_roots_radix_lock);
4271
4272 for (i = 0; i < ret; i++) {
4273 if (!gang[i])
4274 continue;
4275 root_objectid = gang[i]->root_key.objectid;
4276 btrfs_free_log(NULL, gang[i]);
4277 btrfs_put_root(gang[i]);
4278 }
4279 root_objectid++;
4280 spin_lock(&fs_info->fs_roots_radix_lock);
4281 }
4282 spin_unlock(&fs_info->fs_roots_radix_lock);
4283 btrfs_free_log_root_tree(NULL, fs_info);
4284 }
4285
4286 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4287 {
4288 struct btrfs_ordered_extent *ordered;
4289
4290 spin_lock(&root->ordered_extent_lock);
4291 /*
4292 * This will just short circuit the ordered completion stuff which will
4293 * make sure the ordered extent gets properly cleaned up.
4294 */
4295 list_for_each_entry(ordered, &root->ordered_extents,
4296 root_extent_list)
4297 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4298 spin_unlock(&root->ordered_extent_lock);
4299 }
4300
4301 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302 {
4303 struct btrfs_root *root;
4304 struct list_head splice;
4305
4306 INIT_LIST_HEAD(&splice);
4307
4308 spin_lock(&fs_info->ordered_root_lock);
4309 list_splice_init(&fs_info->ordered_roots, &splice);
4310 while (!list_empty(&splice)) {
4311 root = list_first_entry(&splice, struct btrfs_root,
4312 ordered_root);
4313 list_move_tail(&root->ordered_root,
4314 &fs_info->ordered_roots);
4315
4316 spin_unlock(&fs_info->ordered_root_lock);
4317 btrfs_destroy_ordered_extents(root);
4318
4319 cond_resched();
4320 spin_lock(&fs_info->ordered_root_lock);
4321 }
4322 spin_unlock(&fs_info->ordered_root_lock);
4323
4324 /*
4325 * We need this here because if we've been flipped read-only we won't
4326 * get sync() from the umount, so we need to make sure any ordered
4327 * extents that haven't had their dirty pages IO start writeout yet
4328 * actually get run and error out properly.
4329 */
4330 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4331 }
4332
4333 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4334 struct btrfs_fs_info *fs_info)
4335 {
4336 struct rb_node *node;
4337 struct btrfs_delayed_ref_root *delayed_refs;
4338 struct btrfs_delayed_ref_node *ref;
4339 int ret = 0;
4340
4341 delayed_refs = &trans->delayed_refs;
4342
4343 spin_lock(&delayed_refs->lock);
4344 if (atomic_read(&delayed_refs->num_entries) == 0) {
4345 spin_unlock(&delayed_refs->lock);
4346 btrfs_debug(fs_info, "delayed_refs has NO entry");
4347 return ret;
4348 }
4349
4350 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4351 struct btrfs_delayed_ref_head *head;
4352 struct rb_node *n;
4353 bool pin_bytes = false;
4354
4355 head = rb_entry(node, struct btrfs_delayed_ref_head,
4356 href_node);
4357 if (btrfs_delayed_ref_lock(delayed_refs, head))
4358 continue;
4359
4360 spin_lock(&head->lock);
4361 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4362 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4363 ref_node);
4364 ref->in_tree = 0;
4365 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4366 RB_CLEAR_NODE(&ref->ref_node);
4367 if (!list_empty(&ref->add_list))
4368 list_del(&ref->add_list);
4369 atomic_dec(&delayed_refs->num_entries);
4370 btrfs_put_delayed_ref(ref);
4371 }
4372 if (head->must_insert_reserved)
4373 pin_bytes = true;
4374 btrfs_free_delayed_extent_op(head->extent_op);
4375 btrfs_delete_ref_head(delayed_refs, head);
4376 spin_unlock(&head->lock);
4377 spin_unlock(&delayed_refs->lock);
4378 mutex_unlock(&head->mutex);
4379
4380 if (pin_bytes) {
4381 struct btrfs_block_group *cache;
4382
4383 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4384 BUG_ON(!cache);
4385
4386 spin_lock(&cache->space_info->lock);
4387 spin_lock(&cache->lock);
4388 cache->pinned += head->num_bytes;
4389 btrfs_space_info_update_bytes_pinned(fs_info,
4390 cache->space_info, head->num_bytes);
4391 cache->reserved -= head->num_bytes;
4392 cache->space_info->bytes_reserved -= head->num_bytes;
4393 spin_unlock(&cache->lock);
4394 spin_unlock(&cache->space_info->lock);
4395 percpu_counter_add_batch(
4396 &cache->space_info->total_bytes_pinned,
4397 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4398
4399 btrfs_put_block_group(cache);
4400
4401 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4402 head->bytenr + head->num_bytes - 1);
4403 }
4404 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4405 btrfs_put_delayed_ref_head(head);
4406 cond_resched();
4407 spin_lock(&delayed_refs->lock);
4408 }
4409 btrfs_qgroup_destroy_extent_records(trans);
4410
4411 spin_unlock(&delayed_refs->lock);
4412
4413 return ret;
4414 }
4415
4416 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4417 {
4418 struct btrfs_inode *btrfs_inode;
4419 struct list_head splice;
4420
4421 INIT_LIST_HEAD(&splice);
4422
4423 spin_lock(&root->delalloc_lock);
4424 list_splice_init(&root->delalloc_inodes, &splice);
4425
4426 while (!list_empty(&splice)) {
4427 struct inode *inode = NULL;
4428 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4429 delalloc_inodes);
4430 __btrfs_del_delalloc_inode(root, btrfs_inode);
4431 spin_unlock(&root->delalloc_lock);
4432
4433 /*
4434 * Make sure we get a live inode and that it'll not disappear
4435 * meanwhile.
4436 */
4437 inode = igrab(&btrfs_inode->vfs_inode);
4438 if (inode) {
4439 invalidate_inode_pages2(inode->i_mapping);
4440 iput(inode);
4441 }
4442 spin_lock(&root->delalloc_lock);
4443 }
4444 spin_unlock(&root->delalloc_lock);
4445 }
4446
4447 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4448 {
4449 struct btrfs_root *root;
4450 struct list_head splice;
4451
4452 INIT_LIST_HEAD(&splice);
4453
4454 spin_lock(&fs_info->delalloc_root_lock);
4455 list_splice_init(&fs_info->delalloc_roots, &splice);
4456 while (!list_empty(&splice)) {
4457 root = list_first_entry(&splice, struct btrfs_root,
4458 delalloc_root);
4459 root = btrfs_grab_root(root);
4460 BUG_ON(!root);
4461 spin_unlock(&fs_info->delalloc_root_lock);
4462
4463 btrfs_destroy_delalloc_inodes(root);
4464 btrfs_put_root(root);
4465
4466 spin_lock(&fs_info->delalloc_root_lock);
4467 }
4468 spin_unlock(&fs_info->delalloc_root_lock);
4469 }
4470
4471 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4472 struct extent_io_tree *dirty_pages,
4473 int mark)
4474 {
4475 int ret;
4476 struct extent_buffer *eb;
4477 u64 start = 0;
4478 u64 end;
4479
4480 while (1) {
4481 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4482 mark, NULL);
4483 if (ret)
4484 break;
4485
4486 clear_extent_bits(dirty_pages, start, end, mark);
4487 while (start <= end) {
4488 eb = find_extent_buffer(fs_info, start);
4489 start += fs_info->nodesize;
4490 if (!eb)
4491 continue;
4492 wait_on_extent_buffer_writeback(eb);
4493
4494 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4495 &eb->bflags))
4496 clear_extent_buffer_dirty(eb);
4497 free_extent_buffer_stale(eb);
4498 }
4499 }
4500
4501 return ret;
4502 }
4503
4504 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4505 struct extent_io_tree *unpin)
4506 {
4507 u64 start;
4508 u64 end;
4509 int ret;
4510
4511 while (1) {
4512 struct extent_state *cached_state = NULL;
4513
4514 /*
4515 * The btrfs_finish_extent_commit() may get the same range as
4516 * ours between find_first_extent_bit and clear_extent_dirty.
4517 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4518 * the same extent range.
4519 */
4520 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4521 ret = find_first_extent_bit(unpin, 0, &start, &end,
4522 EXTENT_DIRTY, &cached_state);
4523 if (ret) {
4524 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4525 break;
4526 }
4527
4528 clear_extent_dirty(unpin, start, end, &cached_state);
4529 free_extent_state(cached_state);
4530 btrfs_error_unpin_extent_range(fs_info, start, end);
4531 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4532 cond_resched();
4533 }
4534
4535 return 0;
4536 }
4537
4538 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4539 {
4540 struct inode *inode;
4541
4542 inode = cache->io_ctl.inode;
4543 if (inode) {
4544 invalidate_inode_pages2(inode->i_mapping);
4545 BTRFS_I(inode)->generation = 0;
4546 cache->io_ctl.inode = NULL;
4547 iput(inode);
4548 }
4549 ASSERT(cache->io_ctl.pages == NULL);
4550 btrfs_put_block_group(cache);
4551 }
4552
4553 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4554 struct btrfs_fs_info *fs_info)
4555 {
4556 struct btrfs_block_group *cache;
4557
4558 spin_lock(&cur_trans->dirty_bgs_lock);
4559 while (!list_empty(&cur_trans->dirty_bgs)) {
4560 cache = list_first_entry(&cur_trans->dirty_bgs,
4561 struct btrfs_block_group,
4562 dirty_list);
4563
4564 if (!list_empty(&cache->io_list)) {
4565 spin_unlock(&cur_trans->dirty_bgs_lock);
4566 list_del_init(&cache->io_list);
4567 btrfs_cleanup_bg_io(cache);
4568 spin_lock(&cur_trans->dirty_bgs_lock);
4569 }
4570
4571 list_del_init(&cache->dirty_list);
4572 spin_lock(&cache->lock);
4573 cache->disk_cache_state = BTRFS_DC_ERROR;
4574 spin_unlock(&cache->lock);
4575
4576 spin_unlock(&cur_trans->dirty_bgs_lock);
4577 btrfs_put_block_group(cache);
4578 btrfs_delayed_refs_rsv_release(fs_info, 1);
4579 spin_lock(&cur_trans->dirty_bgs_lock);
4580 }
4581 spin_unlock(&cur_trans->dirty_bgs_lock);
4582
4583 /*
4584 * Refer to the definition of io_bgs member for details why it's safe
4585 * to use it without any locking
4586 */
4587 while (!list_empty(&cur_trans->io_bgs)) {
4588 cache = list_first_entry(&cur_trans->io_bgs,
4589 struct btrfs_block_group,
4590 io_list);
4591
4592 list_del_init(&cache->io_list);
4593 spin_lock(&cache->lock);
4594 cache->disk_cache_state = BTRFS_DC_ERROR;
4595 spin_unlock(&cache->lock);
4596 btrfs_cleanup_bg_io(cache);
4597 }
4598 }
4599
4600 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4601 struct btrfs_fs_info *fs_info)
4602 {
4603 struct btrfs_device *dev, *tmp;
4604
4605 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4606 ASSERT(list_empty(&cur_trans->dirty_bgs));
4607 ASSERT(list_empty(&cur_trans->io_bgs));
4608
4609 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4610 post_commit_list) {
4611 list_del_init(&dev->post_commit_list);
4612 }
4613
4614 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4615
4616 cur_trans->state = TRANS_STATE_COMMIT_START;
4617 wake_up(&fs_info->transaction_blocked_wait);
4618
4619 cur_trans->state = TRANS_STATE_UNBLOCKED;
4620 wake_up(&fs_info->transaction_wait);
4621
4622 btrfs_destroy_delayed_inodes(fs_info);
4623
4624 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4625 EXTENT_DIRTY);
4626 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4627
4628 cur_trans->state =TRANS_STATE_COMPLETED;
4629 wake_up(&cur_trans->commit_wait);
4630 }
4631
4632 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4633 {
4634 struct btrfs_transaction *t;
4635
4636 mutex_lock(&fs_info->transaction_kthread_mutex);
4637
4638 spin_lock(&fs_info->trans_lock);
4639 while (!list_empty(&fs_info->trans_list)) {
4640 t = list_first_entry(&fs_info->trans_list,
4641 struct btrfs_transaction, list);
4642 if (t->state >= TRANS_STATE_COMMIT_START) {
4643 refcount_inc(&t->use_count);
4644 spin_unlock(&fs_info->trans_lock);
4645 btrfs_wait_for_commit(fs_info, t->transid);
4646 btrfs_put_transaction(t);
4647 spin_lock(&fs_info->trans_lock);
4648 continue;
4649 }
4650 if (t == fs_info->running_transaction) {
4651 t->state = TRANS_STATE_COMMIT_DOING;
4652 spin_unlock(&fs_info->trans_lock);
4653 /*
4654 * We wait for 0 num_writers since we don't hold a trans
4655 * handle open currently for this transaction.
4656 */
4657 wait_event(t->writer_wait,
4658 atomic_read(&t->num_writers) == 0);
4659 } else {
4660 spin_unlock(&fs_info->trans_lock);
4661 }
4662 btrfs_cleanup_one_transaction(t, fs_info);
4663
4664 spin_lock(&fs_info->trans_lock);
4665 if (t == fs_info->running_transaction)
4666 fs_info->running_transaction = NULL;
4667 list_del_init(&t->list);
4668 spin_unlock(&fs_info->trans_lock);
4669
4670 btrfs_put_transaction(t);
4671 trace_btrfs_transaction_commit(fs_info->tree_root);
4672 spin_lock(&fs_info->trans_lock);
4673 }
4674 spin_unlock(&fs_info->trans_lock);
4675 btrfs_destroy_all_ordered_extents(fs_info);
4676 btrfs_destroy_delayed_inodes(fs_info);
4677 btrfs_assert_delayed_root_empty(fs_info);
4678 btrfs_destroy_all_delalloc_inodes(fs_info);
4679 btrfs_drop_all_logs(fs_info);
4680 mutex_unlock(&fs_info->transaction_kthread_mutex);
4681
4682 return 0;
4683 }
4684
4685 static const struct extent_io_ops btree_extent_io_ops = {
4686 /* mandatory callbacks */
4687 .submit_bio_hook = btree_submit_bio_hook,
4688 .readpage_end_io_hook = btree_readpage_end_io_hook,
4689 };