]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Btrfs: rescan for qgroups
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73
74 /*
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 int metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 /*
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
94 */
95 struct async_submit_bio {
96 struct inode *inode;
97 struct bio *bio;
98 struct list_head list;
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
101 int rw;
102 int mirror_num;
103 unsigned long bio_flags;
104 /*
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
107 */
108 u64 bio_offset;
109 struct btrfs_work work;
110 int error;
111 };
112
113 /*
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
117 *
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
123 *
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
127 *
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
131 *
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
135 */
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
138 # error
139 # endif
140
141 static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
153 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
157 { .id = 0, .name_stem = "tree" },
158 };
159
160 void __init btrfs_init_lockdep(void)
161 {
162 int i, j;
163
164 /* initialize lockdep class names */
165 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
166 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
167
168 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
169 snprintf(ks->names[j], sizeof(ks->names[j]),
170 "btrfs-%s-%02d", ks->name_stem, j);
171 }
172 }
173
174 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
175 int level)
176 {
177 struct btrfs_lockdep_keyset *ks;
178
179 BUG_ON(level >= ARRAY_SIZE(ks->keys));
180
181 /* find the matching keyset, id 0 is the default entry */
182 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
183 if (ks->id == objectid)
184 break;
185
186 lockdep_set_class_and_name(&eb->lock,
187 &ks->keys[level], ks->names[level]);
188 }
189
190 #endif
191
192 /*
193 * extents on the btree inode are pretty simple, there's one extent
194 * that covers the entire device
195 */
196 static struct extent_map *btree_get_extent(struct inode *inode,
197 struct page *page, size_t pg_offset, u64 start, u64 len,
198 int create)
199 {
200 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
201 struct extent_map *em;
202 int ret;
203
204 read_lock(&em_tree->lock);
205 em = lookup_extent_mapping(em_tree, start, len);
206 if (em) {
207 em->bdev =
208 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
209 read_unlock(&em_tree->lock);
210 goto out;
211 }
212 read_unlock(&em_tree->lock);
213
214 em = alloc_extent_map();
215 if (!em) {
216 em = ERR_PTR(-ENOMEM);
217 goto out;
218 }
219 em->start = 0;
220 em->len = (u64)-1;
221 em->block_len = (u64)-1;
222 em->block_start = 0;
223 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
224
225 write_lock(&em_tree->lock);
226 ret = add_extent_mapping(em_tree, em, 0);
227 if (ret == -EEXIST) {
228 free_extent_map(em);
229 em = lookup_extent_mapping(em_tree, start, len);
230 if (!em)
231 em = ERR_PTR(-EIO);
232 } else if (ret) {
233 free_extent_map(em);
234 em = ERR_PTR(ret);
235 }
236 write_unlock(&em_tree->lock);
237
238 out:
239 return em;
240 }
241
242 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
243 {
244 return crc32c(seed, data, len);
245 }
246
247 void btrfs_csum_final(u32 crc, char *result)
248 {
249 put_unaligned_le32(~crc, result);
250 }
251
252 /*
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
255 */
256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
258 {
259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
260 char *result = NULL;
261 unsigned long len;
262 unsigned long cur_len;
263 unsigned long offset = BTRFS_CSUM_SIZE;
264 char *kaddr;
265 unsigned long map_start;
266 unsigned long map_len;
267 int err;
268 u32 crc = ~(u32)0;
269 unsigned long inline_result;
270
271 len = buf->len - offset;
272 while (len > 0) {
273 err = map_private_extent_buffer(buf, offset, 32,
274 &kaddr, &map_start, &map_len);
275 if (err)
276 return 1;
277 cur_len = min(len, map_len - (offset - map_start));
278 crc = btrfs_csum_data(kaddr + offset - map_start,
279 crc, cur_len);
280 len -= cur_len;
281 offset += cur_len;
282 }
283 if (csum_size > sizeof(inline_result)) {
284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285 if (!result)
286 return 1;
287 } else {
288 result = (char *)&inline_result;
289 }
290
291 btrfs_csum_final(crc, result);
292
293 if (verify) {
294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
295 u32 val;
296 u32 found = 0;
297 memcpy(&found, result, csum_size);
298
299 read_extent_buffer(buf, &val, 0, csum_size);
300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
301 "failed on %llu wanted %X found %X "
302 "level %d\n",
303 root->fs_info->sb->s_id,
304 (unsigned long long)buf->start, val, found,
305 btrfs_header_level(buf));
306 if (result != (char *)&inline_result)
307 kfree(result);
308 return 1;
309 }
310 } else {
311 write_extent_buffer(buf, result, 0, csum_size);
312 }
313 if (result != (char *)&inline_result)
314 kfree(result);
315 return 0;
316 }
317
318 /*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid,
326 int atomic)
327 {
328 struct extent_state *cached_state = NULL;
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
334 if (atomic)
335 return -EAGAIN;
336
337 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
338 0, &cached_state);
339 if (extent_buffer_uptodate(eb) &&
340 btrfs_header_generation(eb) == parent_transid) {
341 ret = 0;
342 goto out;
343 }
344 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
345 "found %llu\n",
346 (unsigned long long)eb->start,
347 (unsigned long long)parent_transid,
348 (unsigned long long)btrfs_header_generation(eb));
349 ret = 1;
350 clear_extent_buffer_uptodate(eb);
351 out:
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
354 return ret;
355 }
356
357 /*
358 * helper to read a given tree block, doing retries as required when
359 * the checksums don't match and we have alternate mirrors to try.
360 */
361 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
362 struct extent_buffer *eb,
363 u64 start, u64 parent_transid)
364 {
365 struct extent_io_tree *io_tree;
366 int failed = 0;
367 int ret;
368 int num_copies = 0;
369 int mirror_num = 0;
370 int failed_mirror = 0;
371
372 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
373 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
374 while (1) {
375 ret = read_extent_buffer_pages(io_tree, eb, start,
376 WAIT_COMPLETE,
377 btree_get_extent, mirror_num);
378 if (!ret) {
379 if (!verify_parent_transid(io_tree, eb,
380 parent_transid, 0))
381 break;
382 else
383 ret = -EIO;
384 }
385
386 /*
387 * This buffer's crc is fine, but its contents are corrupted, so
388 * there is no reason to read the other copies, they won't be
389 * any less wrong.
390 */
391 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
392 break;
393
394 num_copies = btrfs_num_copies(root->fs_info,
395 eb->start, eb->len);
396 if (num_copies == 1)
397 break;
398
399 if (!failed_mirror) {
400 failed = 1;
401 failed_mirror = eb->read_mirror;
402 }
403
404 mirror_num++;
405 if (mirror_num == failed_mirror)
406 mirror_num++;
407
408 if (mirror_num > num_copies)
409 break;
410 }
411
412 if (failed && !ret && failed_mirror)
413 repair_eb_io_failure(root, eb, failed_mirror);
414
415 return ret;
416 }
417
418 /*
419 * checksum a dirty tree block before IO. This has extra checks to make sure
420 * we only fill in the checksum field in the first page of a multi-page block
421 */
422
423 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
424 {
425 struct extent_io_tree *tree;
426 u64 start = page_offset(page);
427 u64 found_start;
428 struct extent_buffer *eb;
429
430 tree = &BTRFS_I(page->mapping->host)->io_tree;
431
432 eb = (struct extent_buffer *)page->private;
433 if (page != eb->pages[0])
434 return 0;
435 found_start = btrfs_header_bytenr(eb);
436 if (found_start != start) {
437 WARN_ON(1);
438 return 0;
439 }
440 if (!PageUptodate(page)) {
441 WARN_ON(1);
442 return 0;
443 }
444 csum_tree_block(root, eb, 0);
445 return 0;
446 }
447
448 static int check_tree_block_fsid(struct btrfs_root *root,
449 struct extent_buffer *eb)
450 {
451 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
452 u8 fsid[BTRFS_UUID_SIZE];
453 int ret = 1;
454
455 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
456 BTRFS_FSID_SIZE);
457 while (fs_devices) {
458 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
459 ret = 0;
460 break;
461 }
462 fs_devices = fs_devices->seed;
463 }
464 return ret;
465 }
466
467 #define CORRUPT(reason, eb, root, slot) \
468 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
469 "root=%llu, slot=%d\n", reason, \
470 (unsigned long long)btrfs_header_bytenr(eb), \
471 (unsigned long long)root->objectid, slot)
472
473 static noinline int check_leaf(struct btrfs_root *root,
474 struct extent_buffer *leaf)
475 {
476 struct btrfs_key key;
477 struct btrfs_key leaf_key;
478 u32 nritems = btrfs_header_nritems(leaf);
479 int slot;
480
481 if (nritems == 0)
482 return 0;
483
484 /* Check the 0 item */
485 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
486 BTRFS_LEAF_DATA_SIZE(root)) {
487 CORRUPT("invalid item offset size pair", leaf, root, 0);
488 return -EIO;
489 }
490
491 /*
492 * Check to make sure each items keys are in the correct order and their
493 * offsets make sense. We only have to loop through nritems-1 because
494 * we check the current slot against the next slot, which verifies the
495 * next slot's offset+size makes sense and that the current's slot
496 * offset is correct.
497 */
498 for (slot = 0; slot < nritems - 1; slot++) {
499 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
500 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
501
502 /* Make sure the keys are in the right order */
503 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
504 CORRUPT("bad key order", leaf, root, slot);
505 return -EIO;
506 }
507
508 /*
509 * Make sure the offset and ends are right, remember that the
510 * item data starts at the end of the leaf and grows towards the
511 * front.
512 */
513 if (btrfs_item_offset_nr(leaf, slot) !=
514 btrfs_item_end_nr(leaf, slot + 1)) {
515 CORRUPT("slot offset bad", leaf, root, slot);
516 return -EIO;
517 }
518
519 /*
520 * Check to make sure that we don't point outside of the leaf,
521 * just incase all the items are consistent to eachother, but
522 * all point outside of the leaf.
523 */
524 if (btrfs_item_end_nr(leaf, slot) >
525 BTRFS_LEAF_DATA_SIZE(root)) {
526 CORRUPT("slot end outside of leaf", leaf, root, slot);
527 return -EIO;
528 }
529 }
530
531 return 0;
532 }
533
534 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
535 struct page *page, int max_walk)
536 {
537 struct extent_buffer *eb;
538 u64 start = page_offset(page);
539 u64 target = start;
540 u64 min_start;
541
542 if (start < max_walk)
543 min_start = 0;
544 else
545 min_start = start - max_walk;
546
547 while (start >= min_start) {
548 eb = find_extent_buffer(tree, start, 0);
549 if (eb) {
550 /*
551 * we found an extent buffer and it contains our page
552 * horray!
553 */
554 if (eb->start <= target &&
555 eb->start + eb->len > target)
556 return eb;
557
558 /* we found an extent buffer that wasn't for us */
559 free_extent_buffer(eb);
560 return NULL;
561 }
562 if (start == 0)
563 break;
564 start -= PAGE_CACHE_SIZE;
565 }
566 return NULL;
567 }
568
569 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
570 struct extent_state *state, int mirror)
571 {
572 struct extent_io_tree *tree;
573 u64 found_start;
574 int found_level;
575 struct extent_buffer *eb;
576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
577 int ret = 0;
578 int reads_done;
579
580 if (!page->private)
581 goto out;
582
583 tree = &BTRFS_I(page->mapping->host)->io_tree;
584 eb = (struct extent_buffer *)page->private;
585
586 /* the pending IO might have been the only thing that kept this buffer
587 * in memory. Make sure we have a ref for all this other checks
588 */
589 extent_buffer_get(eb);
590
591 reads_done = atomic_dec_and_test(&eb->io_pages);
592 if (!reads_done)
593 goto err;
594
595 eb->read_mirror = mirror;
596 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
597 ret = -EIO;
598 goto err;
599 }
600
601 found_start = btrfs_header_bytenr(eb);
602 if (found_start != eb->start) {
603 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
604 "%llu %llu\n",
605 (unsigned long long)found_start,
606 (unsigned long long)eb->start);
607 ret = -EIO;
608 goto err;
609 }
610 if (check_tree_block_fsid(root, eb)) {
611 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
612 (unsigned long long)eb->start);
613 ret = -EIO;
614 goto err;
615 }
616 found_level = btrfs_header_level(eb);
617 if (found_level >= BTRFS_MAX_LEVEL) {
618 btrfs_info(root->fs_info, "bad tree block level %d\n",
619 (int)btrfs_header_level(eb));
620 ret = -EIO;
621 goto err;
622 }
623
624 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
625 eb, found_level);
626
627 ret = csum_tree_block(root, eb, 1);
628 if (ret) {
629 ret = -EIO;
630 goto err;
631 }
632
633 /*
634 * If this is a leaf block and it is corrupt, set the corrupt bit so
635 * that we don't try and read the other copies of this block, just
636 * return -EIO.
637 */
638 if (found_level == 0 && check_leaf(root, eb)) {
639 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
640 ret = -EIO;
641 }
642
643 if (!ret)
644 set_extent_buffer_uptodate(eb);
645 err:
646 if (reads_done &&
647 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
648 btree_readahead_hook(root, eb, eb->start, ret);
649
650 if (ret) {
651 /*
652 * our io error hook is going to dec the io pages
653 * again, we have to make sure it has something
654 * to decrement
655 */
656 atomic_inc(&eb->io_pages);
657 clear_extent_buffer_uptodate(eb);
658 }
659 free_extent_buffer(eb);
660 out:
661 return ret;
662 }
663
664 static int btree_io_failed_hook(struct page *page, int failed_mirror)
665 {
666 struct extent_buffer *eb;
667 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
668
669 eb = (struct extent_buffer *)page->private;
670 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
671 eb->read_mirror = failed_mirror;
672 atomic_dec(&eb->io_pages);
673 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
674 btree_readahead_hook(root, eb, eb->start, -EIO);
675 return -EIO; /* we fixed nothing */
676 }
677
678 static void end_workqueue_bio(struct bio *bio, int err)
679 {
680 struct end_io_wq *end_io_wq = bio->bi_private;
681 struct btrfs_fs_info *fs_info;
682
683 fs_info = end_io_wq->info;
684 end_io_wq->error = err;
685 end_io_wq->work.func = end_workqueue_fn;
686 end_io_wq->work.flags = 0;
687
688 if (bio->bi_rw & REQ_WRITE) {
689 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
690 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
691 &end_io_wq->work);
692 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
693 btrfs_queue_worker(&fs_info->endio_freespace_worker,
694 &end_io_wq->work);
695 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
696 btrfs_queue_worker(&fs_info->endio_raid56_workers,
697 &end_io_wq->work);
698 else
699 btrfs_queue_worker(&fs_info->endio_write_workers,
700 &end_io_wq->work);
701 } else {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
703 btrfs_queue_worker(&fs_info->endio_raid56_workers,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata)
706 btrfs_queue_worker(&fs_info->endio_meta_workers,
707 &end_io_wq->work);
708 else
709 btrfs_queue_worker(&fs_info->endio_workers,
710 &end_io_wq->work);
711 }
712 }
713
714 /*
715 * For the metadata arg you want
716 *
717 * 0 - if data
718 * 1 - if normal metadta
719 * 2 - if writing to the free space cache area
720 * 3 - raid parity work
721 */
722 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723 int metadata)
724 {
725 struct end_io_wq *end_io_wq;
726 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
727 if (!end_io_wq)
728 return -ENOMEM;
729
730 end_io_wq->private = bio->bi_private;
731 end_io_wq->end_io = bio->bi_end_io;
732 end_io_wq->info = info;
733 end_io_wq->error = 0;
734 end_io_wq->bio = bio;
735 end_io_wq->metadata = metadata;
736
737 bio->bi_private = end_io_wq;
738 bio->bi_end_io = end_workqueue_bio;
739 return 0;
740 }
741
742 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
743 {
744 unsigned long limit = min_t(unsigned long,
745 info->workers.max_workers,
746 info->fs_devices->open_devices);
747 return 256 * limit;
748 }
749
750 static void run_one_async_start(struct btrfs_work *work)
751 {
752 struct async_submit_bio *async;
753 int ret;
754
755 async = container_of(work, struct async_submit_bio, work);
756 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
757 async->mirror_num, async->bio_flags,
758 async->bio_offset);
759 if (ret)
760 async->error = ret;
761 }
762
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765 struct btrfs_fs_info *fs_info;
766 struct async_submit_bio *async;
767 int limit;
768
769 async = container_of(work, struct async_submit_bio, work);
770 fs_info = BTRFS_I(async->inode)->root->fs_info;
771
772 limit = btrfs_async_submit_limit(fs_info);
773 limit = limit * 2 / 3;
774
775 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
776 waitqueue_active(&fs_info->async_submit_wait))
777 wake_up(&fs_info->async_submit_wait);
778
779 /* If an error occured we just want to clean up the bio and move on */
780 if (async->error) {
781 bio_endio(async->bio, async->error);
782 return;
783 }
784
785 async->submit_bio_done(async->inode, async->rw, async->bio,
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
788 }
789
790 static void run_one_async_free(struct btrfs_work *work)
791 {
792 struct async_submit_bio *async;
793
794 async = container_of(work, struct async_submit_bio, work);
795 kfree(async);
796 }
797
798 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
799 int rw, struct bio *bio, int mirror_num,
800 unsigned long bio_flags,
801 u64 bio_offset,
802 extent_submit_bio_hook_t *submit_bio_start,
803 extent_submit_bio_hook_t *submit_bio_done)
804 {
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
809 return -ENOMEM;
810
811 async->inode = inode;
812 async->rw = rw;
813 async->bio = bio;
814 async->mirror_num = mirror_num;
815 async->submit_bio_start = submit_bio_start;
816 async->submit_bio_done = submit_bio_done;
817
818 async->work.func = run_one_async_start;
819 async->work.ordered_func = run_one_async_done;
820 async->work.ordered_free = run_one_async_free;
821
822 async->work.flags = 0;
823 async->bio_flags = bio_flags;
824 async->bio_offset = bio_offset;
825
826 async->error = 0;
827
828 atomic_inc(&fs_info->nr_async_submits);
829
830 if (rw & REQ_SYNC)
831 btrfs_set_work_high_prio(&async->work);
832
833 btrfs_queue_worker(&fs_info->workers, &async->work);
834
835 while (atomic_read(&fs_info->async_submit_draining) &&
836 atomic_read(&fs_info->nr_async_submits)) {
837 wait_event(fs_info->async_submit_wait,
838 (atomic_read(&fs_info->nr_async_submits) == 0));
839 }
840
841 return 0;
842 }
843
844 static int btree_csum_one_bio(struct bio *bio)
845 {
846 struct bio_vec *bvec = bio->bi_io_vec;
847 int bio_index = 0;
848 struct btrfs_root *root;
849 int ret = 0;
850
851 WARN_ON(bio->bi_vcnt <= 0);
852 while (bio_index < bio->bi_vcnt) {
853 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
854 ret = csum_dirty_buffer(root, bvec->bv_page);
855 if (ret)
856 break;
857 bio_index++;
858 bvec++;
859 }
860 return ret;
861 }
862
863 static int __btree_submit_bio_start(struct inode *inode, int rw,
864 struct bio *bio, int mirror_num,
865 unsigned long bio_flags,
866 u64 bio_offset)
867 {
868 /*
869 * when we're called for a write, we're already in the async
870 * submission context. Just jump into btrfs_map_bio
871 */
872 return btree_csum_one_bio(bio);
873 }
874
875 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
876 int mirror_num, unsigned long bio_flags,
877 u64 bio_offset)
878 {
879 int ret;
880
881 /*
882 * when we're called for a write, we're already in the async
883 * submission context. Just jump into btrfs_map_bio
884 */
885 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
886 if (ret)
887 bio_endio(bio, ret);
888 return ret;
889 }
890
891 static int check_async_write(struct inode *inode, unsigned long bio_flags)
892 {
893 if (bio_flags & EXTENT_BIO_TREE_LOG)
894 return 0;
895 #ifdef CONFIG_X86
896 if (cpu_has_xmm4_2)
897 return 0;
898 #endif
899 return 1;
900 }
901
902 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
903 int mirror_num, unsigned long bio_flags,
904 u64 bio_offset)
905 {
906 int async = check_async_write(inode, bio_flags);
907 int ret;
908
909 if (!(rw & REQ_WRITE)) {
910 /*
911 * called for a read, do the setup so that checksum validation
912 * can happen in the async kernel threads
913 */
914 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
915 bio, 1);
916 if (ret)
917 goto out_w_error;
918 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919 mirror_num, 0);
920 } else if (!async) {
921 ret = btree_csum_one_bio(bio);
922 if (ret)
923 goto out_w_error;
924 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
925 mirror_num, 0);
926 } else {
927 /*
928 * kthread helpers are used to submit writes so that
929 * checksumming can happen in parallel across all CPUs
930 */
931 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
932 inode, rw, bio, mirror_num, 0,
933 bio_offset,
934 __btree_submit_bio_start,
935 __btree_submit_bio_done);
936 }
937
938 if (ret) {
939 out_w_error:
940 bio_endio(bio, ret);
941 }
942 return ret;
943 }
944
945 #ifdef CONFIG_MIGRATION
946 static int btree_migratepage(struct address_space *mapping,
947 struct page *newpage, struct page *page,
948 enum migrate_mode mode)
949 {
950 /*
951 * we can't safely write a btree page from here,
952 * we haven't done the locking hook
953 */
954 if (PageDirty(page))
955 return -EAGAIN;
956 /*
957 * Buffers may be managed in a filesystem specific way.
958 * We must have no buffers or drop them.
959 */
960 if (page_has_private(page) &&
961 !try_to_release_page(page, GFP_KERNEL))
962 return -EAGAIN;
963 return migrate_page(mapping, newpage, page, mode);
964 }
965 #endif
966
967
968 static int btree_writepages(struct address_space *mapping,
969 struct writeback_control *wbc)
970 {
971 struct extent_io_tree *tree;
972 struct btrfs_fs_info *fs_info;
973 int ret;
974
975 tree = &BTRFS_I(mapping->host)->io_tree;
976 if (wbc->sync_mode == WB_SYNC_NONE) {
977
978 if (wbc->for_kupdate)
979 return 0;
980
981 fs_info = BTRFS_I(mapping->host)->root->fs_info;
982 /* this is a bit racy, but that's ok */
983 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
984 BTRFS_DIRTY_METADATA_THRESH);
985 if (ret < 0)
986 return 0;
987 }
988 return btree_write_cache_pages(mapping, wbc);
989 }
990
991 static int btree_readpage(struct file *file, struct page *page)
992 {
993 struct extent_io_tree *tree;
994 tree = &BTRFS_I(page->mapping->host)->io_tree;
995 return extent_read_full_page(tree, page, btree_get_extent, 0);
996 }
997
998 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
999 {
1000 if (PageWriteback(page) || PageDirty(page))
1001 return 0;
1002 /*
1003 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
1004 * slab allocation from alloc_extent_state down the callchain where
1005 * it'd hit a BUG_ON as those flags are not allowed.
1006 */
1007 gfp_flags &= ~GFP_SLAB_BUG_MASK;
1008
1009 return try_release_extent_buffer(page, gfp_flags);
1010 }
1011
1012 static void btree_invalidatepage(struct page *page, unsigned long offset)
1013 {
1014 struct extent_io_tree *tree;
1015 tree = &BTRFS_I(page->mapping->host)->io_tree;
1016 extent_invalidatepage(tree, page, offset);
1017 btree_releasepage(page, GFP_NOFS);
1018 if (PagePrivate(page)) {
1019 printk(KERN_WARNING "btrfs warning page private not zero "
1020 "on page %llu\n", (unsigned long long)page_offset(page));
1021 ClearPagePrivate(page);
1022 set_page_private(page, 0);
1023 page_cache_release(page);
1024 }
1025 }
1026
1027 static int btree_set_page_dirty(struct page *page)
1028 {
1029 #ifdef DEBUG
1030 struct extent_buffer *eb;
1031
1032 BUG_ON(!PagePrivate(page));
1033 eb = (struct extent_buffer *)page->private;
1034 BUG_ON(!eb);
1035 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1036 BUG_ON(!atomic_read(&eb->refs));
1037 btrfs_assert_tree_locked(eb);
1038 #endif
1039 return __set_page_dirty_nobuffers(page);
1040 }
1041
1042 static const struct address_space_operations btree_aops = {
1043 .readpage = btree_readpage,
1044 .writepages = btree_writepages,
1045 .releasepage = btree_releasepage,
1046 .invalidatepage = btree_invalidatepage,
1047 #ifdef CONFIG_MIGRATION
1048 .migratepage = btree_migratepage,
1049 #endif
1050 .set_page_dirty = btree_set_page_dirty,
1051 };
1052
1053 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1054 u64 parent_transid)
1055 {
1056 struct extent_buffer *buf = NULL;
1057 struct inode *btree_inode = root->fs_info->btree_inode;
1058 int ret = 0;
1059
1060 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1061 if (!buf)
1062 return 0;
1063 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1064 buf, 0, WAIT_NONE, btree_get_extent, 0);
1065 free_extent_buffer(buf);
1066 return ret;
1067 }
1068
1069 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1070 int mirror_num, struct extent_buffer **eb)
1071 {
1072 struct extent_buffer *buf = NULL;
1073 struct inode *btree_inode = root->fs_info->btree_inode;
1074 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1075 int ret;
1076
1077 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1078 if (!buf)
1079 return 0;
1080
1081 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1082
1083 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1084 btree_get_extent, mirror_num);
1085 if (ret) {
1086 free_extent_buffer(buf);
1087 return ret;
1088 }
1089
1090 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1091 free_extent_buffer(buf);
1092 return -EIO;
1093 } else if (extent_buffer_uptodate(buf)) {
1094 *eb = buf;
1095 } else {
1096 free_extent_buffer(buf);
1097 }
1098 return 0;
1099 }
1100
1101 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1102 u64 bytenr, u32 blocksize)
1103 {
1104 struct inode *btree_inode = root->fs_info->btree_inode;
1105 struct extent_buffer *eb;
1106 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1107 bytenr, blocksize);
1108 return eb;
1109 }
1110
1111 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112 u64 bytenr, u32 blocksize)
1113 {
1114 struct inode *btree_inode = root->fs_info->btree_inode;
1115 struct extent_buffer *eb;
1116
1117 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1118 bytenr, blocksize);
1119 return eb;
1120 }
1121
1122
1123 int btrfs_write_tree_block(struct extent_buffer *buf)
1124 {
1125 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1126 buf->start + buf->len - 1);
1127 }
1128
1129 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1130 {
1131 return filemap_fdatawait_range(buf->pages[0]->mapping,
1132 buf->start, buf->start + buf->len - 1);
1133 }
1134
1135 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1136 u32 blocksize, u64 parent_transid)
1137 {
1138 struct extent_buffer *buf = NULL;
1139 int ret;
1140
1141 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1142 if (!buf)
1143 return NULL;
1144
1145 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1146 return buf;
1147
1148 }
1149
1150 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1151 struct extent_buffer *buf)
1152 {
1153 struct btrfs_fs_info *fs_info = root->fs_info;
1154
1155 if (btrfs_header_generation(buf) ==
1156 fs_info->running_transaction->transid) {
1157 btrfs_assert_tree_locked(buf);
1158
1159 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1160 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1161 -buf->len,
1162 fs_info->dirty_metadata_batch);
1163 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1164 btrfs_set_lock_blocking(buf);
1165 clear_extent_buffer_dirty(buf);
1166 }
1167 }
1168 }
1169
1170 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1171 u32 stripesize, struct btrfs_root *root,
1172 struct btrfs_fs_info *fs_info,
1173 u64 objectid)
1174 {
1175 root->node = NULL;
1176 root->commit_root = NULL;
1177 root->sectorsize = sectorsize;
1178 root->nodesize = nodesize;
1179 root->leafsize = leafsize;
1180 root->stripesize = stripesize;
1181 root->ref_cows = 0;
1182 root->track_dirty = 0;
1183 root->in_radix = 0;
1184 root->orphan_item_inserted = 0;
1185 root->orphan_cleanup_state = 0;
1186
1187 root->objectid = objectid;
1188 root->last_trans = 0;
1189 root->highest_objectid = 0;
1190 root->name = NULL;
1191 root->inode_tree = RB_ROOT;
1192 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1193 root->block_rsv = NULL;
1194 root->orphan_block_rsv = NULL;
1195
1196 INIT_LIST_HEAD(&root->dirty_list);
1197 INIT_LIST_HEAD(&root->root_list);
1198 INIT_LIST_HEAD(&root->logged_list[0]);
1199 INIT_LIST_HEAD(&root->logged_list[1]);
1200 spin_lock_init(&root->orphan_lock);
1201 spin_lock_init(&root->inode_lock);
1202 spin_lock_init(&root->accounting_lock);
1203 spin_lock_init(&root->log_extents_lock[0]);
1204 spin_lock_init(&root->log_extents_lock[1]);
1205 mutex_init(&root->objectid_mutex);
1206 mutex_init(&root->log_mutex);
1207 init_waitqueue_head(&root->log_writer_wait);
1208 init_waitqueue_head(&root->log_commit_wait[0]);
1209 init_waitqueue_head(&root->log_commit_wait[1]);
1210 atomic_set(&root->log_commit[0], 0);
1211 atomic_set(&root->log_commit[1], 0);
1212 atomic_set(&root->log_writers, 0);
1213 atomic_set(&root->log_batch, 0);
1214 atomic_set(&root->orphan_inodes, 0);
1215 root->log_transid = 0;
1216 root->last_log_commit = 0;
1217 extent_io_tree_init(&root->dirty_log_pages,
1218 fs_info->btree_inode->i_mapping);
1219
1220 memset(&root->root_key, 0, sizeof(root->root_key));
1221 memset(&root->root_item, 0, sizeof(root->root_item));
1222 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1223 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1224 root->defrag_trans_start = fs_info->generation;
1225 init_completion(&root->kobj_unregister);
1226 root->defrag_running = 0;
1227 root->root_key.objectid = objectid;
1228 root->anon_dev = 0;
1229
1230 spin_lock_init(&root->root_item_lock);
1231 }
1232
1233 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1234 struct btrfs_fs_info *fs_info,
1235 u64 objectid,
1236 struct btrfs_root *root)
1237 {
1238 int ret;
1239 u32 blocksize;
1240 u64 generation;
1241
1242 __setup_root(tree_root->nodesize, tree_root->leafsize,
1243 tree_root->sectorsize, tree_root->stripesize,
1244 root, fs_info, objectid);
1245 ret = btrfs_find_last_root(tree_root, objectid,
1246 &root->root_item, &root->root_key);
1247 if (ret > 0)
1248 return -ENOENT;
1249 else if (ret < 0)
1250 return ret;
1251
1252 generation = btrfs_root_generation(&root->root_item);
1253 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1254 root->commit_root = NULL;
1255 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1256 blocksize, generation);
1257 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1258 free_extent_buffer(root->node);
1259 root->node = NULL;
1260 return -EIO;
1261 }
1262 root->commit_root = btrfs_root_node(root);
1263 return 0;
1264 }
1265
1266 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1267 {
1268 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1269 if (root)
1270 root->fs_info = fs_info;
1271 return root;
1272 }
1273
1274 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1275 struct btrfs_fs_info *fs_info,
1276 u64 objectid)
1277 {
1278 struct extent_buffer *leaf;
1279 struct btrfs_root *tree_root = fs_info->tree_root;
1280 struct btrfs_root *root;
1281 struct btrfs_key key;
1282 int ret = 0;
1283 u64 bytenr;
1284 uuid_le uuid;
1285
1286 root = btrfs_alloc_root(fs_info);
1287 if (!root)
1288 return ERR_PTR(-ENOMEM);
1289
1290 __setup_root(tree_root->nodesize, tree_root->leafsize,
1291 tree_root->sectorsize, tree_root->stripesize,
1292 root, fs_info, objectid);
1293 root->root_key.objectid = objectid;
1294 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1295 root->root_key.offset = 0;
1296
1297 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1298 0, objectid, NULL, 0, 0, 0);
1299 if (IS_ERR(leaf)) {
1300 ret = PTR_ERR(leaf);
1301 leaf = NULL;
1302 goto fail;
1303 }
1304
1305 bytenr = leaf->start;
1306 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1307 btrfs_set_header_bytenr(leaf, leaf->start);
1308 btrfs_set_header_generation(leaf, trans->transid);
1309 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1310 btrfs_set_header_owner(leaf, objectid);
1311 root->node = leaf;
1312
1313 write_extent_buffer(leaf, fs_info->fsid,
1314 (unsigned long)btrfs_header_fsid(leaf),
1315 BTRFS_FSID_SIZE);
1316 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1317 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1318 BTRFS_UUID_SIZE);
1319 btrfs_mark_buffer_dirty(leaf);
1320
1321 root->commit_root = btrfs_root_node(root);
1322 root->track_dirty = 1;
1323
1324
1325 root->root_item.flags = 0;
1326 root->root_item.byte_limit = 0;
1327 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1328 btrfs_set_root_generation(&root->root_item, trans->transid);
1329 btrfs_set_root_level(&root->root_item, 0);
1330 btrfs_set_root_refs(&root->root_item, 1);
1331 btrfs_set_root_used(&root->root_item, leaf->len);
1332 btrfs_set_root_last_snapshot(&root->root_item, 0);
1333 btrfs_set_root_dirid(&root->root_item, 0);
1334 uuid_le_gen(&uuid);
1335 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1336 root->root_item.drop_level = 0;
1337
1338 key.objectid = objectid;
1339 key.type = BTRFS_ROOT_ITEM_KEY;
1340 key.offset = 0;
1341 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1342 if (ret)
1343 goto fail;
1344
1345 btrfs_tree_unlock(leaf);
1346
1347 return root;
1348
1349 fail:
1350 if (leaf) {
1351 btrfs_tree_unlock(leaf);
1352 free_extent_buffer(leaf);
1353 }
1354 kfree(root);
1355
1356 return ERR_PTR(ret);
1357 }
1358
1359 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1360 struct btrfs_fs_info *fs_info)
1361 {
1362 struct btrfs_root *root;
1363 struct btrfs_root *tree_root = fs_info->tree_root;
1364 struct extent_buffer *leaf;
1365
1366 root = btrfs_alloc_root(fs_info);
1367 if (!root)
1368 return ERR_PTR(-ENOMEM);
1369
1370 __setup_root(tree_root->nodesize, tree_root->leafsize,
1371 tree_root->sectorsize, tree_root->stripesize,
1372 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1373
1374 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1375 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1376 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1377 /*
1378 * log trees do not get reference counted because they go away
1379 * before a real commit is actually done. They do store pointers
1380 * to file data extents, and those reference counts still get
1381 * updated (along with back refs to the log tree).
1382 */
1383 root->ref_cows = 0;
1384
1385 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1386 BTRFS_TREE_LOG_OBJECTID, NULL,
1387 0, 0, 0);
1388 if (IS_ERR(leaf)) {
1389 kfree(root);
1390 return ERR_CAST(leaf);
1391 }
1392
1393 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1394 btrfs_set_header_bytenr(leaf, leaf->start);
1395 btrfs_set_header_generation(leaf, trans->transid);
1396 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1397 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1398 root->node = leaf;
1399
1400 write_extent_buffer(root->node, root->fs_info->fsid,
1401 (unsigned long)btrfs_header_fsid(root->node),
1402 BTRFS_FSID_SIZE);
1403 btrfs_mark_buffer_dirty(root->node);
1404 btrfs_tree_unlock(root->node);
1405 return root;
1406 }
1407
1408 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1409 struct btrfs_fs_info *fs_info)
1410 {
1411 struct btrfs_root *log_root;
1412
1413 log_root = alloc_log_tree(trans, fs_info);
1414 if (IS_ERR(log_root))
1415 return PTR_ERR(log_root);
1416 WARN_ON(fs_info->log_root_tree);
1417 fs_info->log_root_tree = log_root;
1418 return 0;
1419 }
1420
1421 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1422 struct btrfs_root *root)
1423 {
1424 struct btrfs_root *log_root;
1425 struct btrfs_inode_item *inode_item;
1426
1427 log_root = alloc_log_tree(trans, root->fs_info);
1428 if (IS_ERR(log_root))
1429 return PTR_ERR(log_root);
1430
1431 log_root->last_trans = trans->transid;
1432 log_root->root_key.offset = root->root_key.objectid;
1433
1434 inode_item = &log_root->root_item.inode;
1435 inode_item->generation = cpu_to_le64(1);
1436 inode_item->size = cpu_to_le64(3);
1437 inode_item->nlink = cpu_to_le32(1);
1438 inode_item->nbytes = cpu_to_le64(root->leafsize);
1439 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1440
1441 btrfs_set_root_node(&log_root->root_item, log_root->node);
1442
1443 WARN_ON(root->log_root);
1444 root->log_root = log_root;
1445 root->log_transid = 0;
1446 root->last_log_commit = 0;
1447 return 0;
1448 }
1449
1450 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1451 struct btrfs_key *location)
1452 {
1453 struct btrfs_root *root;
1454 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1455 struct btrfs_path *path;
1456 struct extent_buffer *l;
1457 u64 generation;
1458 u32 blocksize;
1459 int ret = 0;
1460 int slot;
1461
1462 root = btrfs_alloc_root(fs_info);
1463 if (!root)
1464 return ERR_PTR(-ENOMEM);
1465 if (location->offset == (u64)-1) {
1466 ret = find_and_setup_root(tree_root, fs_info,
1467 location->objectid, root);
1468 if (ret) {
1469 kfree(root);
1470 return ERR_PTR(ret);
1471 }
1472 goto out;
1473 }
1474
1475 __setup_root(tree_root->nodesize, tree_root->leafsize,
1476 tree_root->sectorsize, tree_root->stripesize,
1477 root, fs_info, location->objectid);
1478
1479 path = btrfs_alloc_path();
1480 if (!path) {
1481 kfree(root);
1482 return ERR_PTR(-ENOMEM);
1483 }
1484 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1485 if (ret == 0) {
1486 l = path->nodes[0];
1487 slot = path->slots[0];
1488 btrfs_read_root_item(l, slot, &root->root_item);
1489 memcpy(&root->root_key, location, sizeof(*location));
1490 }
1491 btrfs_free_path(path);
1492 if (ret) {
1493 kfree(root);
1494 if (ret > 0)
1495 ret = -ENOENT;
1496 return ERR_PTR(ret);
1497 }
1498
1499 generation = btrfs_root_generation(&root->root_item);
1500 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1501 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1502 blocksize, generation);
1503 if (!root->node || !extent_buffer_uptodate(root->node)) {
1504 ret = (!root->node) ? -ENOMEM : -EIO;
1505
1506 free_extent_buffer(root->node);
1507 kfree(root);
1508 return ERR_PTR(ret);
1509 }
1510
1511 root->commit_root = btrfs_root_node(root);
1512 BUG_ON(!root->node); /* -ENOMEM */
1513 out:
1514 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1515 root->ref_cows = 1;
1516 btrfs_check_and_init_root_item(&root->root_item);
1517 }
1518
1519 return root;
1520 }
1521
1522 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1523 struct btrfs_key *location)
1524 {
1525 struct btrfs_root *root;
1526 int ret;
1527
1528 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1529 return fs_info->tree_root;
1530 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1531 return fs_info->extent_root;
1532 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1533 return fs_info->chunk_root;
1534 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1535 return fs_info->dev_root;
1536 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1537 return fs_info->csum_root;
1538 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1539 return fs_info->quota_root ? fs_info->quota_root :
1540 ERR_PTR(-ENOENT);
1541 again:
1542 spin_lock(&fs_info->fs_roots_radix_lock);
1543 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1544 (unsigned long)location->objectid);
1545 spin_unlock(&fs_info->fs_roots_radix_lock);
1546 if (root)
1547 return root;
1548
1549 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1550 if (IS_ERR(root))
1551 return root;
1552
1553 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1554 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1555 GFP_NOFS);
1556 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1557 ret = -ENOMEM;
1558 goto fail;
1559 }
1560
1561 btrfs_init_free_ino_ctl(root);
1562 mutex_init(&root->fs_commit_mutex);
1563 spin_lock_init(&root->cache_lock);
1564 init_waitqueue_head(&root->cache_wait);
1565
1566 ret = get_anon_bdev(&root->anon_dev);
1567 if (ret)
1568 goto fail;
1569
1570 if (btrfs_root_refs(&root->root_item) == 0) {
1571 ret = -ENOENT;
1572 goto fail;
1573 }
1574
1575 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1576 if (ret < 0)
1577 goto fail;
1578 if (ret == 0)
1579 root->orphan_item_inserted = 1;
1580
1581 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1582 if (ret)
1583 goto fail;
1584
1585 spin_lock(&fs_info->fs_roots_radix_lock);
1586 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1587 (unsigned long)root->root_key.objectid,
1588 root);
1589 if (ret == 0)
1590 root->in_radix = 1;
1591
1592 spin_unlock(&fs_info->fs_roots_radix_lock);
1593 radix_tree_preload_end();
1594 if (ret) {
1595 if (ret == -EEXIST) {
1596 free_fs_root(root);
1597 goto again;
1598 }
1599 goto fail;
1600 }
1601
1602 ret = btrfs_find_dead_roots(fs_info->tree_root,
1603 root->root_key.objectid);
1604 WARN_ON(ret);
1605 return root;
1606 fail:
1607 free_fs_root(root);
1608 return ERR_PTR(ret);
1609 }
1610
1611 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1612 {
1613 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1614 int ret = 0;
1615 struct btrfs_device *device;
1616 struct backing_dev_info *bdi;
1617
1618 rcu_read_lock();
1619 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1620 if (!device->bdev)
1621 continue;
1622 bdi = blk_get_backing_dev_info(device->bdev);
1623 if (bdi && bdi_congested(bdi, bdi_bits)) {
1624 ret = 1;
1625 break;
1626 }
1627 }
1628 rcu_read_unlock();
1629 return ret;
1630 }
1631
1632 /*
1633 * If this fails, caller must call bdi_destroy() to get rid of the
1634 * bdi again.
1635 */
1636 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1637 {
1638 int err;
1639
1640 bdi->capabilities = BDI_CAP_MAP_COPY;
1641 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1642 if (err)
1643 return err;
1644
1645 bdi->ra_pages = default_backing_dev_info.ra_pages;
1646 bdi->congested_fn = btrfs_congested_fn;
1647 bdi->congested_data = info;
1648 return 0;
1649 }
1650
1651 /*
1652 * called by the kthread helper functions to finally call the bio end_io
1653 * functions. This is where read checksum verification actually happens
1654 */
1655 static void end_workqueue_fn(struct btrfs_work *work)
1656 {
1657 struct bio *bio;
1658 struct end_io_wq *end_io_wq;
1659 struct btrfs_fs_info *fs_info;
1660 int error;
1661
1662 end_io_wq = container_of(work, struct end_io_wq, work);
1663 bio = end_io_wq->bio;
1664 fs_info = end_io_wq->info;
1665
1666 error = end_io_wq->error;
1667 bio->bi_private = end_io_wq->private;
1668 bio->bi_end_io = end_io_wq->end_io;
1669 kfree(end_io_wq);
1670 bio_endio(bio, error);
1671 }
1672
1673 static int cleaner_kthread(void *arg)
1674 {
1675 struct btrfs_root *root = arg;
1676
1677 do {
1678 int again = 0;
1679
1680 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1681 down_read_trylock(&root->fs_info->sb->s_umount)) {
1682 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1683 btrfs_run_delayed_iputs(root);
1684 again = btrfs_clean_one_deleted_snapshot(root);
1685 mutex_unlock(&root->fs_info->cleaner_mutex);
1686 }
1687 btrfs_run_defrag_inodes(root->fs_info);
1688 up_read(&root->fs_info->sb->s_umount);
1689 }
1690
1691 if (!try_to_freeze() && !again) {
1692 set_current_state(TASK_INTERRUPTIBLE);
1693 if (!kthread_should_stop())
1694 schedule();
1695 __set_current_state(TASK_RUNNING);
1696 }
1697 } while (!kthread_should_stop());
1698 return 0;
1699 }
1700
1701 static int transaction_kthread(void *arg)
1702 {
1703 struct btrfs_root *root = arg;
1704 struct btrfs_trans_handle *trans;
1705 struct btrfs_transaction *cur;
1706 u64 transid;
1707 unsigned long now;
1708 unsigned long delay;
1709 bool cannot_commit;
1710
1711 do {
1712 cannot_commit = false;
1713 delay = HZ * 30;
1714 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1715
1716 spin_lock(&root->fs_info->trans_lock);
1717 cur = root->fs_info->running_transaction;
1718 if (!cur) {
1719 spin_unlock(&root->fs_info->trans_lock);
1720 goto sleep;
1721 }
1722
1723 now = get_seconds();
1724 if (!cur->blocked &&
1725 (now < cur->start_time || now - cur->start_time < 30)) {
1726 spin_unlock(&root->fs_info->trans_lock);
1727 delay = HZ * 5;
1728 goto sleep;
1729 }
1730 transid = cur->transid;
1731 spin_unlock(&root->fs_info->trans_lock);
1732
1733 /* If the file system is aborted, this will always fail. */
1734 trans = btrfs_attach_transaction(root);
1735 if (IS_ERR(trans)) {
1736 if (PTR_ERR(trans) != -ENOENT)
1737 cannot_commit = true;
1738 goto sleep;
1739 }
1740 if (transid == trans->transid) {
1741 btrfs_commit_transaction(trans, root);
1742 } else {
1743 btrfs_end_transaction(trans, root);
1744 }
1745 sleep:
1746 wake_up_process(root->fs_info->cleaner_kthread);
1747 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1748
1749 if (!try_to_freeze()) {
1750 set_current_state(TASK_INTERRUPTIBLE);
1751 if (!kthread_should_stop() &&
1752 (!btrfs_transaction_blocked(root->fs_info) ||
1753 cannot_commit))
1754 schedule_timeout(delay);
1755 __set_current_state(TASK_RUNNING);
1756 }
1757 } while (!kthread_should_stop());
1758 return 0;
1759 }
1760
1761 /*
1762 * this will find the highest generation in the array of
1763 * root backups. The index of the highest array is returned,
1764 * or -1 if we can't find anything.
1765 *
1766 * We check to make sure the array is valid by comparing the
1767 * generation of the latest root in the array with the generation
1768 * in the super block. If they don't match we pitch it.
1769 */
1770 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1771 {
1772 u64 cur;
1773 int newest_index = -1;
1774 struct btrfs_root_backup *root_backup;
1775 int i;
1776
1777 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1778 root_backup = info->super_copy->super_roots + i;
1779 cur = btrfs_backup_tree_root_gen(root_backup);
1780 if (cur == newest_gen)
1781 newest_index = i;
1782 }
1783
1784 /* check to see if we actually wrapped around */
1785 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1786 root_backup = info->super_copy->super_roots;
1787 cur = btrfs_backup_tree_root_gen(root_backup);
1788 if (cur == newest_gen)
1789 newest_index = 0;
1790 }
1791 return newest_index;
1792 }
1793
1794
1795 /*
1796 * find the oldest backup so we know where to store new entries
1797 * in the backup array. This will set the backup_root_index
1798 * field in the fs_info struct
1799 */
1800 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1801 u64 newest_gen)
1802 {
1803 int newest_index = -1;
1804
1805 newest_index = find_newest_super_backup(info, newest_gen);
1806 /* if there was garbage in there, just move along */
1807 if (newest_index == -1) {
1808 info->backup_root_index = 0;
1809 } else {
1810 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1811 }
1812 }
1813
1814 /*
1815 * copy all the root pointers into the super backup array.
1816 * this will bump the backup pointer by one when it is
1817 * done
1818 */
1819 static void backup_super_roots(struct btrfs_fs_info *info)
1820 {
1821 int next_backup;
1822 struct btrfs_root_backup *root_backup;
1823 int last_backup;
1824
1825 next_backup = info->backup_root_index;
1826 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1827 BTRFS_NUM_BACKUP_ROOTS;
1828
1829 /*
1830 * just overwrite the last backup if we're at the same generation
1831 * this happens only at umount
1832 */
1833 root_backup = info->super_for_commit->super_roots + last_backup;
1834 if (btrfs_backup_tree_root_gen(root_backup) ==
1835 btrfs_header_generation(info->tree_root->node))
1836 next_backup = last_backup;
1837
1838 root_backup = info->super_for_commit->super_roots + next_backup;
1839
1840 /*
1841 * make sure all of our padding and empty slots get zero filled
1842 * regardless of which ones we use today
1843 */
1844 memset(root_backup, 0, sizeof(*root_backup));
1845
1846 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1847
1848 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1849 btrfs_set_backup_tree_root_gen(root_backup,
1850 btrfs_header_generation(info->tree_root->node));
1851
1852 btrfs_set_backup_tree_root_level(root_backup,
1853 btrfs_header_level(info->tree_root->node));
1854
1855 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1856 btrfs_set_backup_chunk_root_gen(root_backup,
1857 btrfs_header_generation(info->chunk_root->node));
1858 btrfs_set_backup_chunk_root_level(root_backup,
1859 btrfs_header_level(info->chunk_root->node));
1860
1861 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1862 btrfs_set_backup_extent_root_gen(root_backup,
1863 btrfs_header_generation(info->extent_root->node));
1864 btrfs_set_backup_extent_root_level(root_backup,
1865 btrfs_header_level(info->extent_root->node));
1866
1867 /*
1868 * we might commit during log recovery, which happens before we set
1869 * the fs_root. Make sure it is valid before we fill it in.
1870 */
1871 if (info->fs_root && info->fs_root->node) {
1872 btrfs_set_backup_fs_root(root_backup,
1873 info->fs_root->node->start);
1874 btrfs_set_backup_fs_root_gen(root_backup,
1875 btrfs_header_generation(info->fs_root->node));
1876 btrfs_set_backup_fs_root_level(root_backup,
1877 btrfs_header_level(info->fs_root->node));
1878 }
1879
1880 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1881 btrfs_set_backup_dev_root_gen(root_backup,
1882 btrfs_header_generation(info->dev_root->node));
1883 btrfs_set_backup_dev_root_level(root_backup,
1884 btrfs_header_level(info->dev_root->node));
1885
1886 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1887 btrfs_set_backup_csum_root_gen(root_backup,
1888 btrfs_header_generation(info->csum_root->node));
1889 btrfs_set_backup_csum_root_level(root_backup,
1890 btrfs_header_level(info->csum_root->node));
1891
1892 btrfs_set_backup_total_bytes(root_backup,
1893 btrfs_super_total_bytes(info->super_copy));
1894 btrfs_set_backup_bytes_used(root_backup,
1895 btrfs_super_bytes_used(info->super_copy));
1896 btrfs_set_backup_num_devices(root_backup,
1897 btrfs_super_num_devices(info->super_copy));
1898
1899 /*
1900 * if we don't copy this out to the super_copy, it won't get remembered
1901 * for the next commit
1902 */
1903 memcpy(&info->super_copy->super_roots,
1904 &info->super_for_commit->super_roots,
1905 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1906 }
1907
1908 /*
1909 * this copies info out of the root backup array and back into
1910 * the in-memory super block. It is meant to help iterate through
1911 * the array, so you send it the number of backups you've already
1912 * tried and the last backup index you used.
1913 *
1914 * this returns -1 when it has tried all the backups
1915 */
1916 static noinline int next_root_backup(struct btrfs_fs_info *info,
1917 struct btrfs_super_block *super,
1918 int *num_backups_tried, int *backup_index)
1919 {
1920 struct btrfs_root_backup *root_backup;
1921 int newest = *backup_index;
1922
1923 if (*num_backups_tried == 0) {
1924 u64 gen = btrfs_super_generation(super);
1925
1926 newest = find_newest_super_backup(info, gen);
1927 if (newest == -1)
1928 return -1;
1929
1930 *backup_index = newest;
1931 *num_backups_tried = 1;
1932 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1933 /* we've tried all the backups, all done */
1934 return -1;
1935 } else {
1936 /* jump to the next oldest backup */
1937 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1938 BTRFS_NUM_BACKUP_ROOTS;
1939 *backup_index = newest;
1940 *num_backups_tried += 1;
1941 }
1942 root_backup = super->super_roots + newest;
1943
1944 btrfs_set_super_generation(super,
1945 btrfs_backup_tree_root_gen(root_backup));
1946 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1947 btrfs_set_super_root_level(super,
1948 btrfs_backup_tree_root_level(root_backup));
1949 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1950
1951 /*
1952 * fixme: the total bytes and num_devices need to match or we should
1953 * need a fsck
1954 */
1955 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1956 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1957 return 0;
1958 }
1959
1960 /* helper to cleanup workers */
1961 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1962 {
1963 btrfs_stop_workers(&fs_info->generic_worker);
1964 btrfs_stop_workers(&fs_info->fixup_workers);
1965 btrfs_stop_workers(&fs_info->delalloc_workers);
1966 btrfs_stop_workers(&fs_info->workers);
1967 btrfs_stop_workers(&fs_info->endio_workers);
1968 btrfs_stop_workers(&fs_info->endio_meta_workers);
1969 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1970 btrfs_stop_workers(&fs_info->rmw_workers);
1971 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1972 btrfs_stop_workers(&fs_info->endio_write_workers);
1973 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1974 btrfs_stop_workers(&fs_info->submit_workers);
1975 btrfs_stop_workers(&fs_info->delayed_workers);
1976 btrfs_stop_workers(&fs_info->caching_workers);
1977 btrfs_stop_workers(&fs_info->readahead_workers);
1978 btrfs_stop_workers(&fs_info->flush_workers);
1979 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1980 }
1981
1982 /* helper to cleanup tree roots */
1983 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1984 {
1985 free_extent_buffer(info->tree_root->node);
1986 free_extent_buffer(info->tree_root->commit_root);
1987 free_extent_buffer(info->dev_root->node);
1988 free_extent_buffer(info->dev_root->commit_root);
1989 free_extent_buffer(info->extent_root->node);
1990 free_extent_buffer(info->extent_root->commit_root);
1991 free_extent_buffer(info->csum_root->node);
1992 free_extent_buffer(info->csum_root->commit_root);
1993 if (info->quota_root) {
1994 free_extent_buffer(info->quota_root->node);
1995 free_extent_buffer(info->quota_root->commit_root);
1996 }
1997
1998 info->tree_root->node = NULL;
1999 info->tree_root->commit_root = NULL;
2000 info->dev_root->node = NULL;
2001 info->dev_root->commit_root = NULL;
2002 info->extent_root->node = NULL;
2003 info->extent_root->commit_root = NULL;
2004 info->csum_root->node = NULL;
2005 info->csum_root->commit_root = NULL;
2006 if (info->quota_root) {
2007 info->quota_root->node = NULL;
2008 info->quota_root->commit_root = NULL;
2009 }
2010
2011 if (chunk_root) {
2012 free_extent_buffer(info->chunk_root->node);
2013 free_extent_buffer(info->chunk_root->commit_root);
2014 info->chunk_root->node = NULL;
2015 info->chunk_root->commit_root = NULL;
2016 }
2017 }
2018
2019 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2020 {
2021 int ret;
2022 struct btrfs_root *gang[8];
2023 int i;
2024
2025 while (!list_empty(&fs_info->dead_roots)) {
2026 gang[0] = list_entry(fs_info->dead_roots.next,
2027 struct btrfs_root, root_list);
2028 list_del(&gang[0]->root_list);
2029
2030 if (gang[0]->in_radix) {
2031 btrfs_free_fs_root(fs_info, gang[0]);
2032 } else {
2033 free_extent_buffer(gang[0]->node);
2034 free_extent_buffer(gang[0]->commit_root);
2035 kfree(gang[0]);
2036 }
2037 }
2038
2039 while (1) {
2040 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2041 (void **)gang, 0,
2042 ARRAY_SIZE(gang));
2043 if (!ret)
2044 break;
2045 for (i = 0; i < ret; i++)
2046 btrfs_free_fs_root(fs_info, gang[i]);
2047 }
2048 }
2049
2050 int open_ctree(struct super_block *sb,
2051 struct btrfs_fs_devices *fs_devices,
2052 char *options)
2053 {
2054 u32 sectorsize;
2055 u32 nodesize;
2056 u32 leafsize;
2057 u32 blocksize;
2058 u32 stripesize;
2059 u64 generation;
2060 u64 features;
2061 struct btrfs_key location;
2062 struct buffer_head *bh;
2063 struct btrfs_super_block *disk_super;
2064 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2065 struct btrfs_root *tree_root;
2066 struct btrfs_root *extent_root;
2067 struct btrfs_root *csum_root;
2068 struct btrfs_root *chunk_root;
2069 struct btrfs_root *dev_root;
2070 struct btrfs_root *quota_root;
2071 struct btrfs_root *log_tree_root;
2072 int ret;
2073 int err = -EINVAL;
2074 int num_backups_tried = 0;
2075 int backup_index = 0;
2076
2077 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2078 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2079 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2080 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2081 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2082 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2083
2084 if (!tree_root || !extent_root || !csum_root ||
2085 !chunk_root || !dev_root || !quota_root) {
2086 err = -ENOMEM;
2087 goto fail;
2088 }
2089
2090 ret = init_srcu_struct(&fs_info->subvol_srcu);
2091 if (ret) {
2092 err = ret;
2093 goto fail;
2094 }
2095
2096 ret = setup_bdi(fs_info, &fs_info->bdi);
2097 if (ret) {
2098 err = ret;
2099 goto fail_srcu;
2100 }
2101
2102 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2103 if (ret) {
2104 err = ret;
2105 goto fail_bdi;
2106 }
2107 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2108 (1 + ilog2(nr_cpu_ids));
2109
2110 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2111 if (ret) {
2112 err = ret;
2113 goto fail_dirty_metadata_bytes;
2114 }
2115
2116 fs_info->btree_inode = new_inode(sb);
2117 if (!fs_info->btree_inode) {
2118 err = -ENOMEM;
2119 goto fail_delalloc_bytes;
2120 }
2121
2122 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2123
2124 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2125 INIT_LIST_HEAD(&fs_info->trans_list);
2126 INIT_LIST_HEAD(&fs_info->dead_roots);
2127 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2128 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2129 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2130 spin_lock_init(&fs_info->delalloc_lock);
2131 spin_lock_init(&fs_info->trans_lock);
2132 spin_lock_init(&fs_info->fs_roots_radix_lock);
2133 spin_lock_init(&fs_info->delayed_iput_lock);
2134 spin_lock_init(&fs_info->defrag_inodes_lock);
2135 spin_lock_init(&fs_info->free_chunk_lock);
2136 spin_lock_init(&fs_info->tree_mod_seq_lock);
2137 spin_lock_init(&fs_info->super_lock);
2138 rwlock_init(&fs_info->tree_mod_log_lock);
2139 mutex_init(&fs_info->reloc_mutex);
2140 seqlock_init(&fs_info->profiles_lock);
2141
2142 init_completion(&fs_info->kobj_unregister);
2143 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2144 INIT_LIST_HEAD(&fs_info->space_info);
2145 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2146 btrfs_mapping_init(&fs_info->mapping_tree);
2147 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2148 BTRFS_BLOCK_RSV_GLOBAL);
2149 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2150 BTRFS_BLOCK_RSV_DELALLOC);
2151 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2152 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2153 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2154 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2155 BTRFS_BLOCK_RSV_DELOPS);
2156 atomic_set(&fs_info->nr_async_submits, 0);
2157 atomic_set(&fs_info->async_delalloc_pages, 0);
2158 atomic_set(&fs_info->async_submit_draining, 0);
2159 atomic_set(&fs_info->nr_async_bios, 0);
2160 atomic_set(&fs_info->defrag_running, 0);
2161 atomic64_set(&fs_info->tree_mod_seq, 0);
2162 fs_info->sb = sb;
2163 fs_info->max_inline = 8192 * 1024;
2164 fs_info->metadata_ratio = 0;
2165 fs_info->defrag_inodes = RB_ROOT;
2166 fs_info->trans_no_join = 0;
2167 fs_info->free_chunk_space = 0;
2168 fs_info->tree_mod_log = RB_ROOT;
2169
2170 /* readahead state */
2171 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2172 spin_lock_init(&fs_info->reada_lock);
2173
2174 fs_info->thread_pool_size = min_t(unsigned long,
2175 num_online_cpus() + 2, 8);
2176
2177 INIT_LIST_HEAD(&fs_info->ordered_extents);
2178 spin_lock_init(&fs_info->ordered_extent_lock);
2179 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2180 GFP_NOFS);
2181 if (!fs_info->delayed_root) {
2182 err = -ENOMEM;
2183 goto fail_iput;
2184 }
2185 btrfs_init_delayed_root(fs_info->delayed_root);
2186
2187 mutex_init(&fs_info->scrub_lock);
2188 atomic_set(&fs_info->scrubs_running, 0);
2189 atomic_set(&fs_info->scrub_pause_req, 0);
2190 atomic_set(&fs_info->scrubs_paused, 0);
2191 atomic_set(&fs_info->scrub_cancel_req, 0);
2192 init_waitqueue_head(&fs_info->scrub_pause_wait);
2193 init_rwsem(&fs_info->scrub_super_lock);
2194 fs_info->scrub_workers_refcnt = 0;
2195 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2196 fs_info->check_integrity_print_mask = 0;
2197 #endif
2198
2199 spin_lock_init(&fs_info->balance_lock);
2200 mutex_init(&fs_info->balance_mutex);
2201 atomic_set(&fs_info->balance_running, 0);
2202 atomic_set(&fs_info->balance_pause_req, 0);
2203 atomic_set(&fs_info->balance_cancel_req, 0);
2204 fs_info->balance_ctl = NULL;
2205 init_waitqueue_head(&fs_info->balance_wait_q);
2206
2207 sb->s_blocksize = 4096;
2208 sb->s_blocksize_bits = blksize_bits(4096);
2209 sb->s_bdi = &fs_info->bdi;
2210
2211 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2212 set_nlink(fs_info->btree_inode, 1);
2213 /*
2214 * we set the i_size on the btree inode to the max possible int.
2215 * the real end of the address space is determined by all of
2216 * the devices in the system
2217 */
2218 fs_info->btree_inode->i_size = OFFSET_MAX;
2219 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2220 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2221
2222 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2223 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2224 fs_info->btree_inode->i_mapping);
2225 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2226 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2227
2228 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2229
2230 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2231 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2232 sizeof(struct btrfs_key));
2233 set_bit(BTRFS_INODE_DUMMY,
2234 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2235 insert_inode_hash(fs_info->btree_inode);
2236
2237 spin_lock_init(&fs_info->block_group_cache_lock);
2238 fs_info->block_group_cache_tree = RB_ROOT;
2239 fs_info->first_logical_byte = (u64)-1;
2240
2241 extent_io_tree_init(&fs_info->freed_extents[0],
2242 fs_info->btree_inode->i_mapping);
2243 extent_io_tree_init(&fs_info->freed_extents[1],
2244 fs_info->btree_inode->i_mapping);
2245 fs_info->pinned_extents = &fs_info->freed_extents[0];
2246 fs_info->do_barriers = 1;
2247
2248
2249 mutex_init(&fs_info->ordered_operations_mutex);
2250 mutex_init(&fs_info->tree_log_mutex);
2251 mutex_init(&fs_info->chunk_mutex);
2252 mutex_init(&fs_info->transaction_kthread_mutex);
2253 mutex_init(&fs_info->cleaner_mutex);
2254 mutex_init(&fs_info->volume_mutex);
2255 init_rwsem(&fs_info->extent_commit_sem);
2256 init_rwsem(&fs_info->cleanup_work_sem);
2257 init_rwsem(&fs_info->subvol_sem);
2258 fs_info->dev_replace.lock_owner = 0;
2259 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2260 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2261 mutex_init(&fs_info->dev_replace.lock_management_lock);
2262 mutex_init(&fs_info->dev_replace.lock);
2263
2264 spin_lock_init(&fs_info->qgroup_lock);
2265 mutex_init(&fs_info->qgroup_ioctl_lock);
2266 fs_info->qgroup_tree = RB_ROOT;
2267 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2268 fs_info->qgroup_seq = 1;
2269 fs_info->quota_enabled = 0;
2270 fs_info->pending_quota_state = 0;
2271 mutex_init(&fs_info->qgroup_rescan_lock);
2272
2273 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2274 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2275
2276 init_waitqueue_head(&fs_info->transaction_throttle);
2277 init_waitqueue_head(&fs_info->transaction_wait);
2278 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2279 init_waitqueue_head(&fs_info->async_submit_wait);
2280
2281 ret = btrfs_alloc_stripe_hash_table(fs_info);
2282 if (ret) {
2283 err = ret;
2284 goto fail_alloc;
2285 }
2286
2287 __setup_root(4096, 4096, 4096, 4096, tree_root,
2288 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2289
2290 invalidate_bdev(fs_devices->latest_bdev);
2291 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2292 if (!bh) {
2293 err = -EINVAL;
2294 goto fail_alloc;
2295 }
2296
2297 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2298 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2299 sizeof(*fs_info->super_for_commit));
2300 brelse(bh);
2301
2302 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2303
2304 disk_super = fs_info->super_copy;
2305 if (!btrfs_super_root(disk_super))
2306 goto fail_alloc;
2307
2308 /* check FS state, whether FS is broken. */
2309 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2310 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2311
2312 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2313 if (ret) {
2314 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2315 err = ret;
2316 goto fail_alloc;
2317 }
2318
2319 /*
2320 * run through our array of backup supers and setup
2321 * our ring pointer to the oldest one
2322 */
2323 generation = btrfs_super_generation(disk_super);
2324 find_oldest_super_backup(fs_info, generation);
2325
2326 /*
2327 * In the long term, we'll store the compression type in the super
2328 * block, and it'll be used for per file compression control.
2329 */
2330 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2331
2332 ret = btrfs_parse_options(tree_root, options);
2333 if (ret) {
2334 err = ret;
2335 goto fail_alloc;
2336 }
2337
2338 features = btrfs_super_incompat_flags(disk_super) &
2339 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2340 if (features) {
2341 printk(KERN_ERR "BTRFS: couldn't mount because of "
2342 "unsupported optional features (%Lx).\n",
2343 (unsigned long long)features);
2344 err = -EINVAL;
2345 goto fail_alloc;
2346 }
2347
2348 if (btrfs_super_leafsize(disk_super) !=
2349 btrfs_super_nodesize(disk_super)) {
2350 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2351 "blocksizes don't match. node %d leaf %d\n",
2352 btrfs_super_nodesize(disk_super),
2353 btrfs_super_leafsize(disk_super));
2354 err = -EINVAL;
2355 goto fail_alloc;
2356 }
2357 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2358 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2359 "blocksize (%d) was too large\n",
2360 btrfs_super_leafsize(disk_super));
2361 err = -EINVAL;
2362 goto fail_alloc;
2363 }
2364
2365 features = btrfs_super_incompat_flags(disk_super);
2366 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2367 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2368 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2369
2370 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2371 printk(KERN_ERR "btrfs: has skinny extents\n");
2372
2373 /*
2374 * flag our filesystem as having big metadata blocks if
2375 * they are bigger than the page size
2376 */
2377 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2378 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2379 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2380 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2381 }
2382
2383 nodesize = btrfs_super_nodesize(disk_super);
2384 leafsize = btrfs_super_leafsize(disk_super);
2385 sectorsize = btrfs_super_sectorsize(disk_super);
2386 stripesize = btrfs_super_stripesize(disk_super);
2387 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2388 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2389
2390 /*
2391 * mixed block groups end up with duplicate but slightly offset
2392 * extent buffers for the same range. It leads to corruptions
2393 */
2394 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2395 (sectorsize != leafsize)) {
2396 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2397 "are not allowed for mixed block groups on %s\n",
2398 sb->s_id);
2399 goto fail_alloc;
2400 }
2401
2402 /*
2403 * Needn't use the lock because there is no other task which will
2404 * update the flag.
2405 */
2406 btrfs_set_super_incompat_flags(disk_super, features);
2407
2408 features = btrfs_super_compat_ro_flags(disk_super) &
2409 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2410 if (!(sb->s_flags & MS_RDONLY) && features) {
2411 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2412 "unsupported option features (%Lx).\n",
2413 (unsigned long long)features);
2414 err = -EINVAL;
2415 goto fail_alloc;
2416 }
2417
2418 btrfs_init_workers(&fs_info->generic_worker,
2419 "genwork", 1, NULL);
2420
2421 btrfs_init_workers(&fs_info->workers, "worker",
2422 fs_info->thread_pool_size,
2423 &fs_info->generic_worker);
2424
2425 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2426 fs_info->thread_pool_size,
2427 &fs_info->generic_worker);
2428
2429 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2430 fs_info->thread_pool_size,
2431 &fs_info->generic_worker);
2432
2433 btrfs_init_workers(&fs_info->submit_workers, "submit",
2434 min_t(u64, fs_devices->num_devices,
2435 fs_info->thread_pool_size),
2436 &fs_info->generic_worker);
2437
2438 btrfs_init_workers(&fs_info->caching_workers, "cache",
2439 2, &fs_info->generic_worker);
2440
2441 /* a higher idle thresh on the submit workers makes it much more
2442 * likely that bios will be send down in a sane order to the
2443 * devices
2444 */
2445 fs_info->submit_workers.idle_thresh = 64;
2446
2447 fs_info->workers.idle_thresh = 16;
2448 fs_info->workers.ordered = 1;
2449
2450 fs_info->delalloc_workers.idle_thresh = 2;
2451 fs_info->delalloc_workers.ordered = 1;
2452
2453 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2454 &fs_info->generic_worker);
2455 btrfs_init_workers(&fs_info->endio_workers, "endio",
2456 fs_info->thread_pool_size,
2457 &fs_info->generic_worker);
2458 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2459 fs_info->thread_pool_size,
2460 &fs_info->generic_worker);
2461 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2462 "endio-meta-write", fs_info->thread_pool_size,
2463 &fs_info->generic_worker);
2464 btrfs_init_workers(&fs_info->endio_raid56_workers,
2465 "endio-raid56", fs_info->thread_pool_size,
2466 &fs_info->generic_worker);
2467 btrfs_init_workers(&fs_info->rmw_workers,
2468 "rmw", fs_info->thread_pool_size,
2469 &fs_info->generic_worker);
2470 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2471 fs_info->thread_pool_size,
2472 &fs_info->generic_worker);
2473 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2474 1, &fs_info->generic_worker);
2475 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2476 fs_info->thread_pool_size,
2477 &fs_info->generic_worker);
2478 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2479 fs_info->thread_pool_size,
2480 &fs_info->generic_worker);
2481 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2482 &fs_info->generic_worker);
2483
2484 /*
2485 * endios are largely parallel and should have a very
2486 * low idle thresh
2487 */
2488 fs_info->endio_workers.idle_thresh = 4;
2489 fs_info->endio_meta_workers.idle_thresh = 4;
2490 fs_info->endio_raid56_workers.idle_thresh = 4;
2491 fs_info->rmw_workers.idle_thresh = 2;
2492
2493 fs_info->endio_write_workers.idle_thresh = 2;
2494 fs_info->endio_meta_write_workers.idle_thresh = 2;
2495 fs_info->readahead_workers.idle_thresh = 2;
2496
2497 /*
2498 * btrfs_start_workers can really only fail because of ENOMEM so just
2499 * return -ENOMEM if any of these fail.
2500 */
2501 ret = btrfs_start_workers(&fs_info->workers);
2502 ret |= btrfs_start_workers(&fs_info->generic_worker);
2503 ret |= btrfs_start_workers(&fs_info->submit_workers);
2504 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2505 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2506 ret |= btrfs_start_workers(&fs_info->endio_workers);
2507 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2508 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2509 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2510 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2511 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2512 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2513 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2514 ret |= btrfs_start_workers(&fs_info->caching_workers);
2515 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2516 ret |= btrfs_start_workers(&fs_info->flush_workers);
2517 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2518 if (ret) {
2519 err = -ENOMEM;
2520 goto fail_sb_buffer;
2521 }
2522
2523 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2524 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2525 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2526
2527 tree_root->nodesize = nodesize;
2528 tree_root->leafsize = leafsize;
2529 tree_root->sectorsize = sectorsize;
2530 tree_root->stripesize = stripesize;
2531
2532 sb->s_blocksize = sectorsize;
2533 sb->s_blocksize_bits = blksize_bits(sectorsize);
2534
2535 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2536 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2537 goto fail_sb_buffer;
2538 }
2539
2540 if (sectorsize != PAGE_SIZE) {
2541 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2542 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2543 goto fail_sb_buffer;
2544 }
2545
2546 mutex_lock(&fs_info->chunk_mutex);
2547 ret = btrfs_read_sys_array(tree_root);
2548 mutex_unlock(&fs_info->chunk_mutex);
2549 if (ret) {
2550 printk(KERN_WARNING "btrfs: failed to read the system "
2551 "array on %s\n", sb->s_id);
2552 goto fail_sb_buffer;
2553 }
2554
2555 blocksize = btrfs_level_size(tree_root,
2556 btrfs_super_chunk_root_level(disk_super));
2557 generation = btrfs_super_chunk_root_generation(disk_super);
2558
2559 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2560 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2561
2562 chunk_root->node = read_tree_block(chunk_root,
2563 btrfs_super_chunk_root(disk_super),
2564 blocksize, generation);
2565 if (!chunk_root->node ||
2566 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2567 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2568 sb->s_id);
2569 goto fail_tree_roots;
2570 }
2571 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2572 chunk_root->commit_root = btrfs_root_node(chunk_root);
2573
2574 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2575 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2576 BTRFS_UUID_SIZE);
2577
2578 ret = btrfs_read_chunk_tree(chunk_root);
2579 if (ret) {
2580 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2581 sb->s_id);
2582 goto fail_tree_roots;
2583 }
2584
2585 /*
2586 * keep the device that is marked to be the target device for the
2587 * dev_replace procedure
2588 */
2589 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2590
2591 if (!fs_devices->latest_bdev) {
2592 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2593 sb->s_id);
2594 goto fail_tree_roots;
2595 }
2596
2597 retry_root_backup:
2598 blocksize = btrfs_level_size(tree_root,
2599 btrfs_super_root_level(disk_super));
2600 generation = btrfs_super_generation(disk_super);
2601
2602 tree_root->node = read_tree_block(tree_root,
2603 btrfs_super_root(disk_super),
2604 blocksize, generation);
2605 if (!tree_root->node ||
2606 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2607 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2608 sb->s_id);
2609
2610 goto recovery_tree_root;
2611 }
2612
2613 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2614 tree_root->commit_root = btrfs_root_node(tree_root);
2615
2616 ret = find_and_setup_root(tree_root, fs_info,
2617 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2618 if (ret)
2619 goto recovery_tree_root;
2620 extent_root->track_dirty = 1;
2621
2622 ret = find_and_setup_root(tree_root, fs_info,
2623 BTRFS_DEV_TREE_OBJECTID, dev_root);
2624 if (ret)
2625 goto recovery_tree_root;
2626 dev_root->track_dirty = 1;
2627
2628 ret = find_and_setup_root(tree_root, fs_info,
2629 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2630 if (ret)
2631 goto recovery_tree_root;
2632 csum_root->track_dirty = 1;
2633
2634 ret = find_and_setup_root(tree_root, fs_info,
2635 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2636 if (ret) {
2637 kfree(quota_root);
2638 quota_root = fs_info->quota_root = NULL;
2639 } else {
2640 quota_root->track_dirty = 1;
2641 fs_info->quota_enabled = 1;
2642 fs_info->pending_quota_state = 1;
2643 }
2644
2645 fs_info->generation = generation;
2646 fs_info->last_trans_committed = generation;
2647
2648 ret = btrfs_recover_balance(fs_info);
2649 if (ret) {
2650 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2651 goto fail_block_groups;
2652 }
2653
2654 ret = btrfs_init_dev_stats(fs_info);
2655 if (ret) {
2656 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2657 ret);
2658 goto fail_block_groups;
2659 }
2660
2661 ret = btrfs_init_dev_replace(fs_info);
2662 if (ret) {
2663 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2664 goto fail_block_groups;
2665 }
2666
2667 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2668
2669 ret = btrfs_init_space_info(fs_info);
2670 if (ret) {
2671 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2672 goto fail_block_groups;
2673 }
2674
2675 ret = btrfs_read_block_groups(extent_root);
2676 if (ret) {
2677 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2678 goto fail_block_groups;
2679 }
2680 fs_info->num_tolerated_disk_barrier_failures =
2681 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2682 if (fs_info->fs_devices->missing_devices >
2683 fs_info->num_tolerated_disk_barrier_failures &&
2684 !(sb->s_flags & MS_RDONLY)) {
2685 printk(KERN_WARNING
2686 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2687 goto fail_block_groups;
2688 }
2689
2690 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2691 "btrfs-cleaner");
2692 if (IS_ERR(fs_info->cleaner_kthread))
2693 goto fail_block_groups;
2694
2695 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2696 tree_root,
2697 "btrfs-transaction");
2698 if (IS_ERR(fs_info->transaction_kthread))
2699 goto fail_cleaner;
2700
2701 if (!btrfs_test_opt(tree_root, SSD) &&
2702 !btrfs_test_opt(tree_root, NOSSD) &&
2703 !fs_info->fs_devices->rotating) {
2704 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2705 "mode\n");
2706 btrfs_set_opt(fs_info->mount_opt, SSD);
2707 }
2708
2709 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2710 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2711 ret = btrfsic_mount(tree_root, fs_devices,
2712 btrfs_test_opt(tree_root,
2713 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2714 1 : 0,
2715 fs_info->check_integrity_print_mask);
2716 if (ret)
2717 printk(KERN_WARNING "btrfs: failed to initialize"
2718 " integrity check module %s\n", sb->s_id);
2719 }
2720 #endif
2721 ret = btrfs_read_qgroup_config(fs_info);
2722 if (ret)
2723 goto fail_trans_kthread;
2724
2725 /* do not make disk changes in broken FS */
2726 if (btrfs_super_log_root(disk_super) != 0) {
2727 u64 bytenr = btrfs_super_log_root(disk_super);
2728
2729 if (fs_devices->rw_devices == 0) {
2730 printk(KERN_WARNING "Btrfs log replay required "
2731 "on RO media\n");
2732 err = -EIO;
2733 goto fail_qgroup;
2734 }
2735 blocksize =
2736 btrfs_level_size(tree_root,
2737 btrfs_super_log_root_level(disk_super));
2738
2739 log_tree_root = btrfs_alloc_root(fs_info);
2740 if (!log_tree_root) {
2741 err = -ENOMEM;
2742 goto fail_qgroup;
2743 }
2744
2745 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2746 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2747
2748 log_tree_root->node = read_tree_block(tree_root, bytenr,
2749 blocksize,
2750 generation + 1);
2751 if (!log_tree_root->node ||
2752 !extent_buffer_uptodate(log_tree_root->node)) {
2753 printk(KERN_ERR "btrfs: failed to read log tree\n");
2754 free_extent_buffer(log_tree_root->node);
2755 kfree(log_tree_root);
2756 goto fail_trans_kthread;
2757 }
2758 /* returns with log_tree_root freed on success */
2759 ret = btrfs_recover_log_trees(log_tree_root);
2760 if (ret) {
2761 btrfs_error(tree_root->fs_info, ret,
2762 "Failed to recover log tree");
2763 free_extent_buffer(log_tree_root->node);
2764 kfree(log_tree_root);
2765 goto fail_trans_kthread;
2766 }
2767
2768 if (sb->s_flags & MS_RDONLY) {
2769 ret = btrfs_commit_super(tree_root);
2770 if (ret)
2771 goto fail_trans_kthread;
2772 }
2773 }
2774
2775 ret = btrfs_find_orphan_roots(tree_root);
2776 if (ret)
2777 goto fail_trans_kthread;
2778
2779 if (!(sb->s_flags & MS_RDONLY)) {
2780 ret = btrfs_cleanup_fs_roots(fs_info);
2781 if (ret)
2782 goto fail_trans_kthread;
2783
2784 ret = btrfs_recover_relocation(tree_root);
2785 if (ret < 0) {
2786 printk(KERN_WARNING
2787 "btrfs: failed to recover relocation\n");
2788 err = -EINVAL;
2789 goto fail_qgroup;
2790 }
2791 }
2792
2793 location.objectid = BTRFS_FS_TREE_OBJECTID;
2794 location.type = BTRFS_ROOT_ITEM_KEY;
2795 location.offset = (u64)-1;
2796
2797 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2798 if (!fs_info->fs_root)
2799 goto fail_qgroup;
2800 if (IS_ERR(fs_info->fs_root)) {
2801 err = PTR_ERR(fs_info->fs_root);
2802 goto fail_qgroup;
2803 }
2804
2805 if (sb->s_flags & MS_RDONLY)
2806 return 0;
2807
2808 down_read(&fs_info->cleanup_work_sem);
2809 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2810 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2811 up_read(&fs_info->cleanup_work_sem);
2812 close_ctree(tree_root);
2813 return ret;
2814 }
2815 up_read(&fs_info->cleanup_work_sem);
2816
2817 ret = btrfs_resume_balance_async(fs_info);
2818 if (ret) {
2819 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2820 close_ctree(tree_root);
2821 return ret;
2822 }
2823
2824 ret = btrfs_resume_dev_replace_async(fs_info);
2825 if (ret) {
2826 pr_warn("btrfs: failed to resume dev_replace\n");
2827 close_ctree(tree_root);
2828 return ret;
2829 }
2830
2831 return 0;
2832
2833 fail_qgroup:
2834 btrfs_free_qgroup_config(fs_info);
2835 fail_trans_kthread:
2836 kthread_stop(fs_info->transaction_kthread);
2837 del_fs_roots(fs_info);
2838 btrfs_cleanup_transaction(fs_info->tree_root);
2839 fail_cleaner:
2840 kthread_stop(fs_info->cleaner_kthread);
2841
2842 /*
2843 * make sure we're done with the btree inode before we stop our
2844 * kthreads
2845 */
2846 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2847
2848 fail_block_groups:
2849 btrfs_put_block_group_cache(fs_info);
2850 btrfs_free_block_groups(fs_info);
2851
2852 fail_tree_roots:
2853 free_root_pointers(fs_info, 1);
2854 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2855
2856 fail_sb_buffer:
2857 btrfs_stop_all_workers(fs_info);
2858 fail_alloc:
2859 fail_iput:
2860 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2861
2862 iput(fs_info->btree_inode);
2863 fail_delalloc_bytes:
2864 percpu_counter_destroy(&fs_info->delalloc_bytes);
2865 fail_dirty_metadata_bytes:
2866 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2867 fail_bdi:
2868 bdi_destroy(&fs_info->bdi);
2869 fail_srcu:
2870 cleanup_srcu_struct(&fs_info->subvol_srcu);
2871 fail:
2872 btrfs_free_stripe_hash_table(fs_info);
2873 btrfs_close_devices(fs_info->fs_devices);
2874 return err;
2875
2876 recovery_tree_root:
2877 if (!btrfs_test_opt(tree_root, RECOVERY))
2878 goto fail_tree_roots;
2879
2880 free_root_pointers(fs_info, 0);
2881
2882 /* don't use the log in recovery mode, it won't be valid */
2883 btrfs_set_super_log_root(disk_super, 0);
2884
2885 /* we can't trust the free space cache either */
2886 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2887
2888 ret = next_root_backup(fs_info, fs_info->super_copy,
2889 &num_backups_tried, &backup_index);
2890 if (ret == -1)
2891 goto fail_block_groups;
2892 goto retry_root_backup;
2893 }
2894
2895 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2896 {
2897 if (uptodate) {
2898 set_buffer_uptodate(bh);
2899 } else {
2900 struct btrfs_device *device = (struct btrfs_device *)
2901 bh->b_private;
2902
2903 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2904 "I/O error on %s\n",
2905 rcu_str_deref(device->name));
2906 /* note, we dont' set_buffer_write_io_error because we have
2907 * our own ways of dealing with the IO errors
2908 */
2909 clear_buffer_uptodate(bh);
2910 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2911 }
2912 unlock_buffer(bh);
2913 put_bh(bh);
2914 }
2915
2916 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2917 {
2918 struct buffer_head *bh;
2919 struct buffer_head *latest = NULL;
2920 struct btrfs_super_block *super;
2921 int i;
2922 u64 transid = 0;
2923 u64 bytenr;
2924
2925 /* we would like to check all the supers, but that would make
2926 * a btrfs mount succeed after a mkfs from a different FS.
2927 * So, we need to add a special mount option to scan for
2928 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2929 */
2930 for (i = 0; i < 1; i++) {
2931 bytenr = btrfs_sb_offset(i);
2932 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2933 break;
2934 bh = __bread(bdev, bytenr / 4096, 4096);
2935 if (!bh)
2936 continue;
2937
2938 super = (struct btrfs_super_block *)bh->b_data;
2939 if (btrfs_super_bytenr(super) != bytenr ||
2940 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2941 brelse(bh);
2942 continue;
2943 }
2944
2945 if (!latest || btrfs_super_generation(super) > transid) {
2946 brelse(latest);
2947 latest = bh;
2948 transid = btrfs_super_generation(super);
2949 } else {
2950 brelse(bh);
2951 }
2952 }
2953 return latest;
2954 }
2955
2956 /*
2957 * this should be called twice, once with wait == 0 and
2958 * once with wait == 1. When wait == 0 is done, all the buffer heads
2959 * we write are pinned.
2960 *
2961 * They are released when wait == 1 is done.
2962 * max_mirrors must be the same for both runs, and it indicates how
2963 * many supers on this one device should be written.
2964 *
2965 * max_mirrors == 0 means to write them all.
2966 */
2967 static int write_dev_supers(struct btrfs_device *device,
2968 struct btrfs_super_block *sb,
2969 int do_barriers, int wait, int max_mirrors)
2970 {
2971 struct buffer_head *bh;
2972 int i;
2973 int ret;
2974 int errors = 0;
2975 u32 crc;
2976 u64 bytenr;
2977
2978 if (max_mirrors == 0)
2979 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2980
2981 for (i = 0; i < max_mirrors; i++) {
2982 bytenr = btrfs_sb_offset(i);
2983 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2984 break;
2985
2986 if (wait) {
2987 bh = __find_get_block(device->bdev, bytenr / 4096,
2988 BTRFS_SUPER_INFO_SIZE);
2989 BUG_ON(!bh);
2990 wait_on_buffer(bh);
2991 if (!buffer_uptodate(bh))
2992 errors++;
2993
2994 /* drop our reference */
2995 brelse(bh);
2996
2997 /* drop the reference from the wait == 0 run */
2998 brelse(bh);
2999 continue;
3000 } else {
3001 btrfs_set_super_bytenr(sb, bytenr);
3002
3003 crc = ~(u32)0;
3004 crc = btrfs_csum_data((char *)sb +
3005 BTRFS_CSUM_SIZE, crc,
3006 BTRFS_SUPER_INFO_SIZE -
3007 BTRFS_CSUM_SIZE);
3008 btrfs_csum_final(crc, sb->csum);
3009
3010 /*
3011 * one reference for us, and we leave it for the
3012 * caller
3013 */
3014 bh = __getblk(device->bdev, bytenr / 4096,
3015 BTRFS_SUPER_INFO_SIZE);
3016 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3017
3018 /* one reference for submit_bh */
3019 get_bh(bh);
3020
3021 set_buffer_uptodate(bh);
3022 lock_buffer(bh);
3023 bh->b_end_io = btrfs_end_buffer_write_sync;
3024 bh->b_private = device;
3025 }
3026
3027 /*
3028 * we fua the first super. The others we allow
3029 * to go down lazy.
3030 */
3031 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3032 if (ret)
3033 errors++;
3034 }
3035 return errors < i ? 0 : -1;
3036 }
3037
3038 /*
3039 * endio for the write_dev_flush, this will wake anyone waiting
3040 * for the barrier when it is done
3041 */
3042 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3043 {
3044 if (err) {
3045 if (err == -EOPNOTSUPP)
3046 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3047 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3048 }
3049 if (bio->bi_private)
3050 complete(bio->bi_private);
3051 bio_put(bio);
3052 }
3053
3054 /*
3055 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3056 * sent down. With wait == 1, it waits for the previous flush.
3057 *
3058 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3059 * capable
3060 */
3061 static int write_dev_flush(struct btrfs_device *device, int wait)
3062 {
3063 struct bio *bio;
3064 int ret = 0;
3065
3066 if (device->nobarriers)
3067 return 0;
3068
3069 if (wait) {
3070 bio = device->flush_bio;
3071 if (!bio)
3072 return 0;
3073
3074 wait_for_completion(&device->flush_wait);
3075
3076 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3077 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3078 rcu_str_deref(device->name));
3079 device->nobarriers = 1;
3080 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3081 ret = -EIO;
3082 btrfs_dev_stat_inc_and_print(device,
3083 BTRFS_DEV_STAT_FLUSH_ERRS);
3084 }
3085
3086 /* drop the reference from the wait == 0 run */
3087 bio_put(bio);
3088 device->flush_bio = NULL;
3089
3090 return ret;
3091 }
3092
3093 /*
3094 * one reference for us, and we leave it for the
3095 * caller
3096 */
3097 device->flush_bio = NULL;
3098 bio = bio_alloc(GFP_NOFS, 0);
3099 if (!bio)
3100 return -ENOMEM;
3101
3102 bio->bi_end_io = btrfs_end_empty_barrier;
3103 bio->bi_bdev = device->bdev;
3104 init_completion(&device->flush_wait);
3105 bio->bi_private = &device->flush_wait;
3106 device->flush_bio = bio;
3107
3108 bio_get(bio);
3109 btrfsic_submit_bio(WRITE_FLUSH, bio);
3110
3111 return 0;
3112 }
3113
3114 /*
3115 * send an empty flush down to each device in parallel,
3116 * then wait for them
3117 */
3118 static int barrier_all_devices(struct btrfs_fs_info *info)
3119 {
3120 struct list_head *head;
3121 struct btrfs_device *dev;
3122 int errors_send = 0;
3123 int errors_wait = 0;
3124 int ret;
3125
3126 /* send down all the barriers */
3127 head = &info->fs_devices->devices;
3128 list_for_each_entry_rcu(dev, head, dev_list) {
3129 if (!dev->bdev) {
3130 errors_send++;
3131 continue;
3132 }
3133 if (!dev->in_fs_metadata || !dev->writeable)
3134 continue;
3135
3136 ret = write_dev_flush(dev, 0);
3137 if (ret)
3138 errors_send++;
3139 }
3140
3141 /* wait for all the barriers */
3142 list_for_each_entry_rcu(dev, head, dev_list) {
3143 if (!dev->bdev) {
3144 errors_wait++;
3145 continue;
3146 }
3147 if (!dev->in_fs_metadata || !dev->writeable)
3148 continue;
3149
3150 ret = write_dev_flush(dev, 1);
3151 if (ret)
3152 errors_wait++;
3153 }
3154 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3155 errors_wait > info->num_tolerated_disk_barrier_failures)
3156 return -EIO;
3157 return 0;
3158 }
3159
3160 int btrfs_calc_num_tolerated_disk_barrier_failures(
3161 struct btrfs_fs_info *fs_info)
3162 {
3163 struct btrfs_ioctl_space_info space;
3164 struct btrfs_space_info *sinfo;
3165 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3166 BTRFS_BLOCK_GROUP_SYSTEM,
3167 BTRFS_BLOCK_GROUP_METADATA,
3168 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3169 int num_types = 4;
3170 int i;
3171 int c;
3172 int num_tolerated_disk_barrier_failures =
3173 (int)fs_info->fs_devices->num_devices;
3174
3175 for (i = 0; i < num_types; i++) {
3176 struct btrfs_space_info *tmp;
3177
3178 sinfo = NULL;
3179 rcu_read_lock();
3180 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3181 if (tmp->flags == types[i]) {
3182 sinfo = tmp;
3183 break;
3184 }
3185 }
3186 rcu_read_unlock();
3187
3188 if (!sinfo)
3189 continue;
3190
3191 down_read(&sinfo->groups_sem);
3192 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3193 if (!list_empty(&sinfo->block_groups[c])) {
3194 u64 flags;
3195
3196 btrfs_get_block_group_info(
3197 &sinfo->block_groups[c], &space);
3198 if (space.total_bytes == 0 ||
3199 space.used_bytes == 0)
3200 continue;
3201 flags = space.flags;
3202 /*
3203 * return
3204 * 0: if dup, single or RAID0 is configured for
3205 * any of metadata, system or data, else
3206 * 1: if RAID5 is configured, or if RAID1 or
3207 * RAID10 is configured and only two mirrors
3208 * are used, else
3209 * 2: if RAID6 is configured, else
3210 * num_mirrors - 1: if RAID1 or RAID10 is
3211 * configured and more than
3212 * 2 mirrors are used.
3213 */
3214 if (num_tolerated_disk_barrier_failures > 0 &&
3215 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3216 BTRFS_BLOCK_GROUP_RAID0)) ||
3217 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3218 == 0)))
3219 num_tolerated_disk_barrier_failures = 0;
3220 else if (num_tolerated_disk_barrier_failures > 1) {
3221 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3222 BTRFS_BLOCK_GROUP_RAID5 |
3223 BTRFS_BLOCK_GROUP_RAID10)) {
3224 num_tolerated_disk_barrier_failures = 1;
3225 } else if (flags &
3226 BTRFS_BLOCK_GROUP_RAID5) {
3227 num_tolerated_disk_barrier_failures = 2;
3228 }
3229 }
3230 }
3231 }
3232 up_read(&sinfo->groups_sem);
3233 }
3234
3235 return num_tolerated_disk_barrier_failures;
3236 }
3237
3238 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3239 {
3240 struct list_head *head;
3241 struct btrfs_device *dev;
3242 struct btrfs_super_block *sb;
3243 struct btrfs_dev_item *dev_item;
3244 int ret;
3245 int do_barriers;
3246 int max_errors;
3247 int total_errors = 0;
3248 u64 flags;
3249
3250 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3251 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3252 backup_super_roots(root->fs_info);
3253
3254 sb = root->fs_info->super_for_commit;
3255 dev_item = &sb->dev_item;
3256
3257 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3258 head = &root->fs_info->fs_devices->devices;
3259
3260 if (do_barriers) {
3261 ret = barrier_all_devices(root->fs_info);
3262 if (ret) {
3263 mutex_unlock(
3264 &root->fs_info->fs_devices->device_list_mutex);
3265 btrfs_error(root->fs_info, ret,
3266 "errors while submitting device barriers.");
3267 return ret;
3268 }
3269 }
3270
3271 list_for_each_entry_rcu(dev, head, dev_list) {
3272 if (!dev->bdev) {
3273 total_errors++;
3274 continue;
3275 }
3276 if (!dev->in_fs_metadata || !dev->writeable)
3277 continue;
3278
3279 btrfs_set_stack_device_generation(dev_item, 0);
3280 btrfs_set_stack_device_type(dev_item, dev->type);
3281 btrfs_set_stack_device_id(dev_item, dev->devid);
3282 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3283 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3284 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3285 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3286 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3287 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3288 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3289
3290 flags = btrfs_super_flags(sb);
3291 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3292
3293 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3294 if (ret)
3295 total_errors++;
3296 }
3297 if (total_errors > max_errors) {
3298 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3299 total_errors);
3300
3301 /* This shouldn't happen. FUA is masked off if unsupported */
3302 BUG();
3303 }
3304
3305 total_errors = 0;
3306 list_for_each_entry_rcu(dev, head, dev_list) {
3307 if (!dev->bdev)
3308 continue;
3309 if (!dev->in_fs_metadata || !dev->writeable)
3310 continue;
3311
3312 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3313 if (ret)
3314 total_errors++;
3315 }
3316 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3317 if (total_errors > max_errors) {
3318 btrfs_error(root->fs_info, -EIO,
3319 "%d errors while writing supers", total_errors);
3320 return -EIO;
3321 }
3322 return 0;
3323 }
3324
3325 int write_ctree_super(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root, int max_mirrors)
3327 {
3328 int ret;
3329
3330 ret = write_all_supers(root, max_mirrors);
3331 return ret;
3332 }
3333
3334 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3335 {
3336 spin_lock(&fs_info->fs_roots_radix_lock);
3337 radix_tree_delete(&fs_info->fs_roots_radix,
3338 (unsigned long)root->root_key.objectid);
3339 spin_unlock(&fs_info->fs_roots_radix_lock);
3340
3341 if (btrfs_root_refs(&root->root_item) == 0)
3342 synchronize_srcu(&fs_info->subvol_srcu);
3343
3344 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3345 btrfs_free_log(NULL, root);
3346 btrfs_free_log_root_tree(NULL, fs_info);
3347 }
3348
3349 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3350 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3351 free_fs_root(root);
3352 }
3353
3354 static void free_fs_root(struct btrfs_root *root)
3355 {
3356 iput(root->cache_inode);
3357 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3358 if (root->anon_dev)
3359 free_anon_bdev(root->anon_dev);
3360 free_extent_buffer(root->node);
3361 free_extent_buffer(root->commit_root);
3362 kfree(root->free_ino_ctl);
3363 kfree(root->free_ino_pinned);
3364 kfree(root->name);
3365 kfree(root);
3366 }
3367
3368 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3369 {
3370 u64 root_objectid = 0;
3371 struct btrfs_root *gang[8];
3372 int i;
3373 int ret;
3374
3375 while (1) {
3376 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3377 (void **)gang, root_objectid,
3378 ARRAY_SIZE(gang));
3379 if (!ret)
3380 break;
3381
3382 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3383 for (i = 0; i < ret; i++) {
3384 int err;
3385
3386 root_objectid = gang[i]->root_key.objectid;
3387 err = btrfs_orphan_cleanup(gang[i]);
3388 if (err)
3389 return err;
3390 }
3391 root_objectid++;
3392 }
3393 return 0;
3394 }
3395
3396 int btrfs_commit_super(struct btrfs_root *root)
3397 {
3398 struct btrfs_trans_handle *trans;
3399 int ret;
3400
3401 mutex_lock(&root->fs_info->cleaner_mutex);
3402 btrfs_run_delayed_iputs(root);
3403 mutex_unlock(&root->fs_info->cleaner_mutex);
3404 wake_up_process(root->fs_info->cleaner_kthread);
3405
3406 /* wait until ongoing cleanup work done */
3407 down_write(&root->fs_info->cleanup_work_sem);
3408 up_write(&root->fs_info->cleanup_work_sem);
3409
3410 trans = btrfs_join_transaction(root);
3411 if (IS_ERR(trans))
3412 return PTR_ERR(trans);
3413 ret = btrfs_commit_transaction(trans, root);
3414 if (ret)
3415 return ret;
3416 /* run commit again to drop the original snapshot */
3417 trans = btrfs_join_transaction(root);
3418 if (IS_ERR(trans))
3419 return PTR_ERR(trans);
3420 ret = btrfs_commit_transaction(trans, root);
3421 if (ret)
3422 return ret;
3423 ret = btrfs_write_and_wait_transaction(NULL, root);
3424 if (ret) {
3425 btrfs_error(root->fs_info, ret,
3426 "Failed to sync btree inode to disk.");
3427 return ret;
3428 }
3429
3430 ret = write_ctree_super(NULL, root, 0);
3431 return ret;
3432 }
3433
3434 int close_ctree(struct btrfs_root *root)
3435 {
3436 struct btrfs_fs_info *fs_info = root->fs_info;
3437 int ret;
3438
3439 fs_info->closing = 1;
3440 smp_mb();
3441
3442 /* pause restriper - we want to resume on mount */
3443 btrfs_pause_balance(fs_info);
3444
3445 btrfs_dev_replace_suspend_for_unmount(fs_info);
3446
3447 btrfs_scrub_cancel(fs_info);
3448
3449 /* wait for any defraggers to finish */
3450 wait_event(fs_info->transaction_wait,
3451 (atomic_read(&fs_info->defrag_running) == 0));
3452
3453 /* clear out the rbtree of defraggable inodes */
3454 btrfs_cleanup_defrag_inodes(fs_info);
3455
3456 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3457 ret = btrfs_commit_super(root);
3458 if (ret)
3459 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3460 }
3461
3462 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3463 btrfs_error_commit_super(root);
3464
3465 btrfs_put_block_group_cache(fs_info);
3466
3467 kthread_stop(fs_info->transaction_kthread);
3468 kthread_stop(fs_info->cleaner_kthread);
3469
3470 fs_info->closing = 2;
3471 smp_mb();
3472
3473 btrfs_free_qgroup_config(root->fs_info);
3474
3475 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3476 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3477 percpu_counter_sum(&fs_info->delalloc_bytes));
3478 }
3479
3480 free_root_pointers(fs_info, 1);
3481
3482 btrfs_free_block_groups(fs_info);
3483
3484 del_fs_roots(fs_info);
3485
3486 iput(fs_info->btree_inode);
3487
3488 btrfs_stop_all_workers(fs_info);
3489
3490 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3491 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3492 btrfsic_unmount(root, fs_info->fs_devices);
3493 #endif
3494
3495 btrfs_close_devices(fs_info->fs_devices);
3496 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3497
3498 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3499 percpu_counter_destroy(&fs_info->delalloc_bytes);
3500 bdi_destroy(&fs_info->bdi);
3501 cleanup_srcu_struct(&fs_info->subvol_srcu);
3502
3503 btrfs_free_stripe_hash_table(fs_info);
3504
3505 return 0;
3506 }
3507
3508 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3509 int atomic)
3510 {
3511 int ret;
3512 struct inode *btree_inode = buf->pages[0]->mapping->host;
3513
3514 ret = extent_buffer_uptodate(buf);
3515 if (!ret)
3516 return ret;
3517
3518 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3519 parent_transid, atomic);
3520 if (ret == -EAGAIN)
3521 return ret;
3522 return !ret;
3523 }
3524
3525 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3526 {
3527 return set_extent_buffer_uptodate(buf);
3528 }
3529
3530 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3531 {
3532 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3533 u64 transid = btrfs_header_generation(buf);
3534 int was_dirty;
3535
3536 btrfs_assert_tree_locked(buf);
3537 if (transid != root->fs_info->generation)
3538 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3539 "found %llu running %llu\n",
3540 (unsigned long long)buf->start,
3541 (unsigned long long)transid,
3542 (unsigned long long)root->fs_info->generation);
3543 was_dirty = set_extent_buffer_dirty(buf);
3544 if (!was_dirty)
3545 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3546 buf->len,
3547 root->fs_info->dirty_metadata_batch);
3548 }
3549
3550 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3551 int flush_delayed)
3552 {
3553 /*
3554 * looks as though older kernels can get into trouble with
3555 * this code, they end up stuck in balance_dirty_pages forever
3556 */
3557 int ret;
3558
3559 if (current->flags & PF_MEMALLOC)
3560 return;
3561
3562 if (flush_delayed)
3563 btrfs_balance_delayed_items(root);
3564
3565 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3566 BTRFS_DIRTY_METADATA_THRESH);
3567 if (ret > 0) {
3568 balance_dirty_pages_ratelimited(
3569 root->fs_info->btree_inode->i_mapping);
3570 }
3571 return;
3572 }
3573
3574 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3575 {
3576 __btrfs_btree_balance_dirty(root, 1);
3577 }
3578
3579 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3580 {
3581 __btrfs_btree_balance_dirty(root, 0);
3582 }
3583
3584 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3585 {
3586 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3587 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3588 }
3589
3590 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3591 int read_only)
3592 {
3593 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3594 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3595 return -EINVAL;
3596 }
3597
3598 if (read_only)
3599 return 0;
3600
3601 return 0;
3602 }
3603
3604 void btrfs_error_commit_super(struct btrfs_root *root)
3605 {
3606 mutex_lock(&root->fs_info->cleaner_mutex);
3607 btrfs_run_delayed_iputs(root);
3608 mutex_unlock(&root->fs_info->cleaner_mutex);
3609
3610 down_write(&root->fs_info->cleanup_work_sem);
3611 up_write(&root->fs_info->cleanup_work_sem);
3612
3613 /* cleanup FS via transaction */
3614 btrfs_cleanup_transaction(root);
3615 }
3616
3617 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3618 struct btrfs_root *root)
3619 {
3620 struct btrfs_inode *btrfs_inode;
3621 struct list_head splice;
3622
3623 INIT_LIST_HEAD(&splice);
3624
3625 mutex_lock(&root->fs_info->ordered_operations_mutex);
3626 spin_lock(&root->fs_info->ordered_extent_lock);
3627
3628 list_splice_init(&t->ordered_operations, &splice);
3629 while (!list_empty(&splice)) {
3630 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3631 ordered_operations);
3632
3633 list_del_init(&btrfs_inode->ordered_operations);
3634
3635 btrfs_invalidate_inodes(btrfs_inode->root);
3636 }
3637
3638 spin_unlock(&root->fs_info->ordered_extent_lock);
3639 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3640 }
3641
3642 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3643 {
3644 struct btrfs_ordered_extent *ordered;
3645
3646 spin_lock(&root->fs_info->ordered_extent_lock);
3647 /*
3648 * This will just short circuit the ordered completion stuff which will
3649 * make sure the ordered extent gets properly cleaned up.
3650 */
3651 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3652 root_extent_list)
3653 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3654 spin_unlock(&root->fs_info->ordered_extent_lock);
3655 }
3656
3657 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3658 struct btrfs_root *root)
3659 {
3660 struct rb_node *node;
3661 struct btrfs_delayed_ref_root *delayed_refs;
3662 struct btrfs_delayed_ref_node *ref;
3663 int ret = 0;
3664
3665 delayed_refs = &trans->delayed_refs;
3666
3667 spin_lock(&delayed_refs->lock);
3668 if (delayed_refs->num_entries == 0) {
3669 spin_unlock(&delayed_refs->lock);
3670 printk(KERN_INFO "delayed_refs has NO entry\n");
3671 return ret;
3672 }
3673
3674 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3675 struct btrfs_delayed_ref_head *head = NULL;
3676
3677 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3678 atomic_set(&ref->refs, 1);
3679 if (btrfs_delayed_ref_is_head(ref)) {
3680
3681 head = btrfs_delayed_node_to_head(ref);
3682 if (!mutex_trylock(&head->mutex)) {
3683 atomic_inc(&ref->refs);
3684 spin_unlock(&delayed_refs->lock);
3685
3686 /* Need to wait for the delayed ref to run */
3687 mutex_lock(&head->mutex);
3688 mutex_unlock(&head->mutex);
3689 btrfs_put_delayed_ref(ref);
3690
3691 spin_lock(&delayed_refs->lock);
3692 continue;
3693 }
3694
3695 if (head->must_insert_reserved)
3696 btrfs_pin_extent(root, ref->bytenr,
3697 ref->num_bytes, 1);
3698 btrfs_free_delayed_extent_op(head->extent_op);
3699 delayed_refs->num_heads--;
3700 if (list_empty(&head->cluster))
3701 delayed_refs->num_heads_ready--;
3702 list_del_init(&head->cluster);
3703 }
3704
3705 ref->in_tree = 0;
3706 rb_erase(&ref->rb_node, &delayed_refs->root);
3707 delayed_refs->num_entries--;
3708 if (head)
3709 mutex_unlock(&head->mutex);
3710 spin_unlock(&delayed_refs->lock);
3711 btrfs_put_delayed_ref(ref);
3712
3713 cond_resched();
3714 spin_lock(&delayed_refs->lock);
3715 }
3716
3717 spin_unlock(&delayed_refs->lock);
3718
3719 return ret;
3720 }
3721
3722 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3723 {
3724 struct btrfs_pending_snapshot *snapshot;
3725 struct list_head splice;
3726
3727 INIT_LIST_HEAD(&splice);
3728
3729 list_splice_init(&t->pending_snapshots, &splice);
3730
3731 while (!list_empty(&splice)) {
3732 snapshot = list_entry(splice.next,
3733 struct btrfs_pending_snapshot,
3734 list);
3735 snapshot->error = -ECANCELED;
3736 list_del_init(&snapshot->list);
3737 }
3738 }
3739
3740 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3741 {
3742 struct btrfs_inode *btrfs_inode;
3743 struct list_head splice;
3744
3745 INIT_LIST_HEAD(&splice);
3746
3747 spin_lock(&root->fs_info->delalloc_lock);
3748 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3749
3750 while (!list_empty(&splice)) {
3751 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3752 delalloc_inodes);
3753
3754 list_del_init(&btrfs_inode->delalloc_inodes);
3755 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3756 &btrfs_inode->runtime_flags);
3757
3758 btrfs_invalidate_inodes(btrfs_inode->root);
3759 }
3760
3761 spin_unlock(&root->fs_info->delalloc_lock);
3762 }
3763
3764 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3765 struct extent_io_tree *dirty_pages,
3766 int mark)
3767 {
3768 int ret;
3769 struct extent_buffer *eb;
3770 u64 start = 0;
3771 u64 end;
3772
3773 while (1) {
3774 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3775 mark, NULL);
3776 if (ret)
3777 break;
3778
3779 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3780 while (start <= end) {
3781 eb = btrfs_find_tree_block(root, start,
3782 root->leafsize);
3783 start += eb->len;
3784 if (!eb)
3785 continue;
3786 wait_on_extent_buffer_writeback(eb);
3787
3788 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3789 &eb->bflags))
3790 clear_extent_buffer_dirty(eb);
3791 free_extent_buffer_stale(eb);
3792 }
3793 }
3794
3795 return ret;
3796 }
3797
3798 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3799 struct extent_io_tree *pinned_extents)
3800 {
3801 struct extent_io_tree *unpin;
3802 u64 start;
3803 u64 end;
3804 int ret;
3805 bool loop = true;
3806
3807 unpin = pinned_extents;
3808 again:
3809 while (1) {
3810 ret = find_first_extent_bit(unpin, 0, &start, &end,
3811 EXTENT_DIRTY, NULL);
3812 if (ret)
3813 break;
3814
3815 /* opt_discard */
3816 if (btrfs_test_opt(root, DISCARD))
3817 ret = btrfs_error_discard_extent(root, start,
3818 end + 1 - start,
3819 NULL);
3820
3821 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3822 btrfs_error_unpin_extent_range(root, start, end);
3823 cond_resched();
3824 }
3825
3826 if (loop) {
3827 if (unpin == &root->fs_info->freed_extents[0])
3828 unpin = &root->fs_info->freed_extents[1];
3829 else
3830 unpin = &root->fs_info->freed_extents[0];
3831 loop = false;
3832 goto again;
3833 }
3834
3835 return 0;
3836 }
3837
3838 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3839 struct btrfs_root *root)
3840 {
3841 btrfs_destroy_delayed_refs(cur_trans, root);
3842 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3843 cur_trans->dirty_pages.dirty_bytes);
3844
3845 /* FIXME: cleanup wait for commit */
3846 cur_trans->in_commit = 1;
3847 cur_trans->blocked = 1;
3848 wake_up(&root->fs_info->transaction_blocked_wait);
3849
3850 btrfs_evict_pending_snapshots(cur_trans);
3851
3852 cur_trans->blocked = 0;
3853 wake_up(&root->fs_info->transaction_wait);
3854
3855 cur_trans->commit_done = 1;
3856 wake_up(&cur_trans->commit_wait);
3857
3858 btrfs_destroy_delayed_inodes(root);
3859 btrfs_assert_delayed_root_empty(root);
3860
3861 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3862 EXTENT_DIRTY);
3863 btrfs_destroy_pinned_extent(root,
3864 root->fs_info->pinned_extents);
3865
3866 /*
3867 memset(cur_trans, 0, sizeof(*cur_trans));
3868 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3869 */
3870 }
3871
3872 int btrfs_cleanup_transaction(struct btrfs_root *root)
3873 {
3874 struct btrfs_transaction *t;
3875 LIST_HEAD(list);
3876
3877 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3878
3879 spin_lock(&root->fs_info->trans_lock);
3880 list_splice_init(&root->fs_info->trans_list, &list);
3881 root->fs_info->trans_no_join = 1;
3882 spin_unlock(&root->fs_info->trans_lock);
3883
3884 while (!list_empty(&list)) {
3885 t = list_entry(list.next, struct btrfs_transaction, list);
3886
3887 btrfs_destroy_ordered_operations(t, root);
3888
3889 btrfs_destroy_ordered_extents(root);
3890
3891 btrfs_destroy_delayed_refs(t, root);
3892
3893 /* FIXME: cleanup wait for commit */
3894 t->in_commit = 1;
3895 t->blocked = 1;
3896 smp_mb();
3897 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3898 wake_up(&root->fs_info->transaction_blocked_wait);
3899
3900 btrfs_evict_pending_snapshots(t);
3901
3902 t->blocked = 0;
3903 smp_mb();
3904 if (waitqueue_active(&root->fs_info->transaction_wait))
3905 wake_up(&root->fs_info->transaction_wait);
3906
3907 t->commit_done = 1;
3908 smp_mb();
3909 if (waitqueue_active(&t->commit_wait))
3910 wake_up(&t->commit_wait);
3911
3912 btrfs_destroy_delayed_inodes(root);
3913 btrfs_assert_delayed_root_empty(root);
3914
3915 btrfs_destroy_delalloc_inodes(root);
3916
3917 spin_lock(&root->fs_info->trans_lock);
3918 root->fs_info->running_transaction = NULL;
3919 spin_unlock(&root->fs_info->trans_lock);
3920
3921 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3922 EXTENT_DIRTY);
3923
3924 btrfs_destroy_pinned_extent(root,
3925 root->fs_info->pinned_extents);
3926
3927 atomic_set(&t->use_count, 0);
3928 list_del_init(&t->list);
3929 memset(t, 0, sizeof(*t));
3930 kmem_cache_free(btrfs_transaction_cachep, t);
3931 }
3932
3933 spin_lock(&root->fs_info->trans_lock);
3934 root->fs_info->trans_no_join = 0;
3935 spin_unlock(&root->fs_info->trans_lock);
3936 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3937
3938 return 0;
3939 }
3940
3941 static struct extent_io_ops btree_extent_io_ops = {
3942 .readpage_end_io_hook = btree_readpage_end_io_hook,
3943 .readpage_io_failed_hook = btree_io_failed_hook,
3944 .submit_bio_hook = btree_submit_bio_hook,
3945 /* note we're sharing with inode.c for the merge bio hook */
3946 .merge_bio_hook = btrfs_merge_bio_hook,
3947 };