]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/disk-io.c
btrfs: fix overflow when copying corrupt csums for a message
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
112 struct async_submit_bio {
113 void *private_data;
114 struct bio *bio;
115 extent_submit_bio_start_t *submit_bio_start;
116 int mirror_num;
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
122 struct btrfs_work work;
123 blk_status_t status;
124 };
125
126 /*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
136 *
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
140 *
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
144 *
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
148 */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 # error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172 { .id = 0, .name_stem = "tree" },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191 {
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
214 {
215 struct extent_map_tree *em_tree = &inode->extent_tree;
216 struct extent_map *em;
217 int ret;
218
219 read_lock(&em_tree->lock);
220 em = lookup_extent_mapping(em_tree, start, len);
221 if (em) {
222 read_unlock(&em_tree->lock);
223 goto out;
224 }
225 read_unlock(&em_tree->lock);
226
227 em = alloc_extent_map();
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
233 em->len = (u64)-1;
234 em->block_len = (u64)-1;
235 em->block_start = 0;
236
237 write_lock(&em_tree->lock);
238 ret = add_extent_mapping(em_tree, em, 0);
239 if (ret == -EEXIST) {
240 free_extent_map(em);
241 em = lookup_extent_mapping(em_tree, start, len);
242 if (!em)
243 em = ERR_PTR(-EIO);
244 } else if (ret) {
245 free_extent_map(em);
246 em = ERR_PTR(ret);
247 }
248 write_unlock(&em_tree->lock);
249
250 out:
251 return em;
252 }
253
254 /*
255 * Compute the csum of a btree block and store the result to provided buffer.
256 */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 struct btrfs_fs_info *fs_info = buf->fs_info;
260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 char *kaddr;
263 int i;
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
270
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 }
275 memset(result, 0, BTRFS_CSUM_SIZE);
276 crypto_shash_final(shash, result);
277 }
278
279 /*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
288 {
289 struct extent_state *cached_state = NULL;
290 int ret;
291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
296 if (atomic)
297 return -EAGAIN;
298
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
301 btrfs_set_lock_blocking_read(eb);
302 }
303
304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 &cached_state);
306 if (extent_buffer_uptodate(eb) &&
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
314 parent_transid, btrfs_header_generation(eb));
315 ret = 1;
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
320 * block that has been freed and re-allocated. So don't clear uptodate
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
327 out:
328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 &cached_state);
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
332 return ret;
333 }
334
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
339 case BTRFS_CSUM_TYPE_XXHASH:
340 case BTRFS_CSUM_TYPE_SHA256:
341 case BTRFS_CSUM_TYPE_BLAKE2:
342 return true;
343 default:
344 return false;
345 }
346 }
347
348 /*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
354 {
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
357 char result[BTRFS_CSUM_SIZE];
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
361
362 /*
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
366 */
367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369
370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 return 1;
372
373 return 0;
374 }
375
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377 struct btrfs_key *first_key, u64 parent_transid)
378 {
379 struct btrfs_fs_info *fs_info = eb->fs_info;
380 int found_level;
381 struct btrfs_key found_key;
382 int ret;
383
384 found_level = btrfs_header_level(eb);
385 if (found_level != level) {
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 KERN_ERR "BTRFS: tree level check failed\n");
388 btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb->start, level, found_level);
391 return -EIO;
392 }
393
394 if (!first_key)
395 return 0;
396
397 /*
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
402 */
403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 return 0;
405
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb) == 0) {
408 btrfs_err(fs_info,
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 eb->start);
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 return -EUCLEAN;
413 }
414
415 if (found_level)
416 btrfs_node_key_to_cpu(eb, &found_key, 0);
417 else
418 btrfs_item_key_to_cpu(eb, &found_key, 0);
419 ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
421 if (ret) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: tree first key check failed\n");
424 btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb->start, parent_transid, first_key->objectid,
427 first_key->type, first_key->offset,
428 found_key.objectid, found_key.type,
429 found_key.offset);
430 }
431 return ret;
432 }
433
434 /*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
437 *
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
441 */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443 u64 parent_transid, int level,
444 struct btrfs_key *first_key)
445 {
446 struct btrfs_fs_info *fs_info = eb->fs_info;
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 while (1) {
456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458 if (!ret) {
459 if (verify_parent_transid(io_tree, eb,
460 parent_transid, 0))
461 ret = -EIO;
462 else if (btrfs_verify_level_key(eb, level,
463 first_key, parent_transid))
464 ret = -EUCLEAN;
465 else
466 break;
467 }
468
469 num_copies = btrfs_num_copies(fs_info,
470 eb->start, eb->len);
471 if (num_copies == 1)
472 break;
473
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
477 }
478
479 mirror_num++;
480 if (mirror_num == failed_mirror)
481 mirror_num++;
482
483 if (mirror_num > num_copies)
484 break;
485 }
486
487 if (failed && !ret && failed_mirror)
488 btrfs_repair_eb_io_failure(eb, failed_mirror);
489
490 return ret;
491 }
492
493 /*
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
496 */
497
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500 u64 start = page_offset(page);
501 u64 found_start;
502 u8 result[BTRFS_CSUM_SIZE];
503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504 struct extent_buffer *eb;
505 int ret;
506
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
510
511 found_start = btrfs_header_bytenr(eb);
512 /*
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
515 */
516 if (WARN_ON(found_start != start))
517 return -EUCLEAN;
518 if (WARN_ON(!PageUptodate(page)))
519 return -EUCLEAN;
520
521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522 offsetof(struct btrfs_header, fsid),
523 BTRFS_FSID_SIZE) == 0);
524
525 csum_tree_block(eb, result);
526
527 if (btrfs_header_level(eb))
528 ret = btrfs_check_node(eb);
529 else
530 ret = btrfs_check_leaf_full(eb);
531
532 if (ret < 0) {
533 btrfs_print_tree(eb, 0);
534 btrfs_err(fs_info,
535 "block=%llu write time tree block corruption detected",
536 eb->start);
537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538 return ret;
539 }
540 write_extent_buffer(eb, result, 0, csum_size);
541
542 return 0;
543 }
544
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547 struct btrfs_fs_info *fs_info = eb->fs_info;
548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549 u8 fsid[BTRFS_FSID_SIZE];
550 int ret = 1;
551
552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 BTRFS_FSID_SIZE);
554 while (fs_devices) {
555 u8 *metadata_uuid;
556
557 /*
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
561 */
562 if (fs_devices == fs_info->fs_devices &&
563 btrfs_fs_incompat(fs_info, METADATA_UUID))
564 metadata_uuid = fs_devices->metadata_uuid;
565 else
566 metadata_uuid = fs_devices->fsid;
567
568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569 ret = 0;
570 break;
571 }
572 fs_devices = fs_devices->seed;
573 }
574 return ret;
575 }
576
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 u64 phy_offset, struct page *page,
579 u64 start, u64 end, int mirror)
580 {
581 u64 found_start;
582 int found_level;
583 struct extent_buffer *eb;
584 struct btrfs_fs_info *fs_info;
585 u16 csum_size;
586 int ret = 0;
587 u8 result[BTRFS_CSUM_SIZE];
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 eb = (struct extent_buffer *)page->private;
594 fs_info = eb->fs_info;
595 csum_size = btrfs_super_csum_size(fs_info->super_copy);
596
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 atomic_inc(&eb->refs);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
603 if (!reads_done)
604 goto err;
605
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 ret = -EIO;
609 goto err;
610 }
611
612 found_start = btrfs_header_bytenr(eb);
613 if (found_start != eb->start) {
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
616 ret = -EIO;
617 goto err;
618 }
619 if (check_tree_block_fsid(eb)) {
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
622 ret = -EIO;
623 goto err;
624 }
625 found_level = btrfs_header_level(eb);
626 if (found_level >= BTRFS_MAX_LEVEL) {
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
629 ret = -EIO;
630 goto err;
631 }
632
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
635
636 csum_tree_block(eb, result);
637
638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 u8 val[BTRFS_CSUM_SIZE] = { 0 };
640
641 read_extent_buffer(eb, &val, 0, csum_size);
642 btrfs_warn_rl(fs_info,
643 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
644 fs_info->sb->s_id, eb->start,
645 CSUM_FMT_VALUE(csum_size, val),
646 CSUM_FMT_VALUE(csum_size, result),
647 btrfs_header_level(eb));
648 ret = -EUCLEAN;
649 goto err;
650 }
651
652 /*
653 * If this is a leaf block and it is corrupt, set the corrupt bit so
654 * that we don't try and read the other copies of this block, just
655 * return -EIO.
656 */
657 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
658 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
659 ret = -EIO;
660 }
661
662 if (found_level > 0 && btrfs_check_node(eb))
663 ret = -EIO;
664
665 if (!ret)
666 set_extent_buffer_uptodate(eb);
667 else
668 btrfs_err(fs_info,
669 "block=%llu read time tree block corruption detected",
670 eb->start);
671 err:
672 if (reads_done &&
673 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
674 btree_readahead_hook(eb, ret);
675
676 if (ret) {
677 /*
678 * our io error hook is going to dec the io pages
679 * again, we have to make sure it has something
680 * to decrement
681 */
682 atomic_inc(&eb->io_pages);
683 clear_extent_buffer_uptodate(eb);
684 }
685 free_extent_buffer(eb);
686 out:
687 return ret;
688 }
689
690 static void end_workqueue_bio(struct bio *bio)
691 {
692 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
693 struct btrfs_fs_info *fs_info;
694 struct btrfs_workqueue *wq;
695
696 fs_info = end_io_wq->info;
697 end_io_wq->status = bio->bi_status;
698
699 if (bio_op(bio) == REQ_OP_WRITE) {
700 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
701 wq = fs_info->endio_meta_write_workers;
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 wq = fs_info->endio_freespace_worker;
704 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
705 wq = fs_info->endio_raid56_workers;
706 else
707 wq = fs_info->endio_write_workers;
708 } else {
709 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710 wq = fs_info->endio_raid56_workers;
711 else if (end_io_wq->metadata)
712 wq = fs_info->endio_meta_workers;
713 else
714 wq = fs_info->endio_workers;
715 }
716
717 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
718 btrfs_queue_work(wq, &end_io_wq->work);
719 }
720
721 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
722 enum btrfs_wq_endio_type metadata)
723 {
724 struct btrfs_end_io_wq *end_io_wq;
725
726 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
727 if (!end_io_wq)
728 return BLK_STS_RESOURCE;
729
730 end_io_wq->private = bio->bi_private;
731 end_io_wq->end_io = bio->bi_end_io;
732 end_io_wq->info = info;
733 end_io_wq->status = 0;
734 end_io_wq->bio = bio;
735 end_io_wq->metadata = metadata;
736
737 bio->bi_private = end_io_wq;
738 bio->bi_end_io = end_workqueue_bio;
739 return 0;
740 }
741
742 static void run_one_async_start(struct btrfs_work *work)
743 {
744 struct async_submit_bio *async;
745 blk_status_t ret;
746
747 async = container_of(work, struct async_submit_bio, work);
748 ret = async->submit_bio_start(async->private_data, async->bio,
749 async->bio_offset);
750 if (ret)
751 async->status = ret;
752 }
753
754 /*
755 * In order to insert checksums into the metadata in large chunks, we wait
756 * until bio submission time. All the pages in the bio are checksummed and
757 * sums are attached onto the ordered extent record.
758 *
759 * At IO completion time the csums attached on the ordered extent record are
760 * inserted into the tree.
761 */
762 static void run_one_async_done(struct btrfs_work *work)
763 {
764 struct async_submit_bio *async;
765 struct inode *inode;
766 blk_status_t ret;
767
768 async = container_of(work, struct async_submit_bio, work);
769 inode = async->private_data;
770
771 /* If an error occurred we just want to clean up the bio and move on */
772 if (async->status) {
773 async->bio->bi_status = async->status;
774 bio_endio(async->bio);
775 return;
776 }
777
778 /*
779 * All of the bios that pass through here are from async helpers.
780 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
781 * This changes nothing when cgroups aren't in use.
782 */
783 async->bio->bi_opf |= REQ_CGROUP_PUNT;
784 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
785 if (ret) {
786 async->bio->bi_status = ret;
787 bio_endio(async->bio);
788 }
789 }
790
791 static void run_one_async_free(struct btrfs_work *work)
792 {
793 struct async_submit_bio *async;
794
795 async = container_of(work, struct async_submit_bio, work);
796 kfree(async);
797 }
798
799 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
800 int mirror_num, unsigned long bio_flags,
801 u64 bio_offset, void *private_data,
802 extent_submit_bio_start_t *submit_bio_start)
803 {
804 struct async_submit_bio *async;
805
806 async = kmalloc(sizeof(*async), GFP_NOFS);
807 if (!async)
808 return BLK_STS_RESOURCE;
809
810 async->private_data = private_data;
811 async->bio = bio;
812 async->mirror_num = mirror_num;
813 async->submit_bio_start = submit_bio_start;
814
815 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
816 run_one_async_free);
817
818 async->bio_offset = bio_offset;
819
820 async->status = 0;
821
822 if (op_is_sync(bio->bi_opf))
823 btrfs_set_work_high_priority(&async->work);
824
825 btrfs_queue_work(fs_info->workers, &async->work);
826 return 0;
827 }
828
829 static blk_status_t btree_csum_one_bio(struct bio *bio)
830 {
831 struct bio_vec *bvec;
832 struct btrfs_root *root;
833 int ret = 0;
834 struct bvec_iter_all iter_all;
835
836 ASSERT(!bio_flagged(bio, BIO_CLONED));
837 bio_for_each_segment_all(bvec, bio, iter_all) {
838 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
839 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
840 if (ret)
841 break;
842 }
843
844 return errno_to_blk_status(ret);
845 }
846
847 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
848 u64 bio_offset)
849 {
850 /*
851 * when we're called for a write, we're already in the async
852 * submission context. Just jump into btrfs_map_bio
853 */
854 return btree_csum_one_bio(bio);
855 }
856
857 static int check_async_write(struct btrfs_fs_info *fs_info,
858 struct btrfs_inode *bi)
859 {
860 if (atomic_read(&bi->sync_writers))
861 return 0;
862 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
863 return 0;
864 return 1;
865 }
866
867 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
868 int mirror_num,
869 unsigned long bio_flags)
870 {
871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
872 int async = check_async_write(fs_info, BTRFS_I(inode));
873 blk_status_t ret;
874
875 if (bio_op(bio) != REQ_OP_WRITE) {
876 /*
877 * called for a read, do the setup so that checksum validation
878 * can happen in the async kernel threads
879 */
880 ret = btrfs_bio_wq_end_io(fs_info, bio,
881 BTRFS_WQ_ENDIO_METADATA);
882 if (ret)
883 goto out_w_error;
884 ret = btrfs_map_bio(fs_info, bio, mirror_num);
885 } else if (!async) {
886 ret = btree_csum_one_bio(bio);
887 if (ret)
888 goto out_w_error;
889 ret = btrfs_map_bio(fs_info, bio, mirror_num);
890 } else {
891 /*
892 * kthread helpers are used to submit writes so that
893 * checksumming can happen in parallel across all CPUs
894 */
895 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
896 0, inode, btree_submit_bio_start);
897 }
898
899 if (ret)
900 goto out_w_error;
901 return 0;
902
903 out_w_error:
904 bio->bi_status = ret;
905 bio_endio(bio);
906 return ret;
907 }
908
909 #ifdef CONFIG_MIGRATION
910 static int btree_migratepage(struct address_space *mapping,
911 struct page *newpage, struct page *page,
912 enum migrate_mode mode)
913 {
914 /*
915 * we can't safely write a btree page from here,
916 * we haven't done the locking hook
917 */
918 if (PageDirty(page))
919 return -EAGAIN;
920 /*
921 * Buffers may be managed in a filesystem specific way.
922 * We must have no buffers or drop them.
923 */
924 if (page_has_private(page) &&
925 !try_to_release_page(page, GFP_KERNEL))
926 return -EAGAIN;
927 return migrate_page(mapping, newpage, page, mode);
928 }
929 #endif
930
931
932 static int btree_writepages(struct address_space *mapping,
933 struct writeback_control *wbc)
934 {
935 struct btrfs_fs_info *fs_info;
936 int ret;
937
938 if (wbc->sync_mode == WB_SYNC_NONE) {
939
940 if (wbc->for_kupdate)
941 return 0;
942
943 fs_info = BTRFS_I(mapping->host)->root->fs_info;
944 /* this is a bit racy, but that's ok */
945 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
946 BTRFS_DIRTY_METADATA_THRESH,
947 fs_info->dirty_metadata_batch);
948 if (ret < 0)
949 return 0;
950 }
951 return btree_write_cache_pages(mapping, wbc);
952 }
953
954 static int btree_readpage(struct file *file, struct page *page)
955 {
956 return extent_read_full_page(page, btree_get_extent, 0);
957 }
958
959 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
960 {
961 if (PageWriteback(page) || PageDirty(page))
962 return 0;
963
964 return try_release_extent_buffer(page);
965 }
966
967 static void btree_invalidatepage(struct page *page, unsigned int offset,
968 unsigned int length)
969 {
970 struct extent_io_tree *tree;
971 tree = &BTRFS_I(page->mapping->host)->io_tree;
972 extent_invalidatepage(tree, page, offset);
973 btree_releasepage(page, GFP_NOFS);
974 if (PagePrivate(page)) {
975 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
976 "page private not zero on page %llu",
977 (unsigned long long)page_offset(page));
978 detach_page_private(page);
979 }
980 }
981
982 static int btree_set_page_dirty(struct page *page)
983 {
984 #ifdef DEBUG
985 struct extent_buffer *eb;
986
987 BUG_ON(!PagePrivate(page));
988 eb = (struct extent_buffer *)page->private;
989 BUG_ON(!eb);
990 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
991 BUG_ON(!atomic_read(&eb->refs));
992 btrfs_assert_tree_locked(eb);
993 #endif
994 return __set_page_dirty_nobuffers(page);
995 }
996
997 static const struct address_space_operations btree_aops = {
998 .readpage = btree_readpage,
999 .writepages = btree_writepages,
1000 .releasepage = btree_releasepage,
1001 .invalidatepage = btree_invalidatepage,
1002 #ifdef CONFIG_MIGRATION
1003 .migratepage = btree_migratepage,
1004 #endif
1005 .set_page_dirty = btree_set_page_dirty,
1006 };
1007
1008 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1009 {
1010 struct extent_buffer *buf = NULL;
1011 int ret;
1012
1013 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014 if (IS_ERR(buf))
1015 return;
1016
1017 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1018 if (ret < 0)
1019 free_extent_buffer_stale(buf);
1020 else
1021 free_extent_buffer(buf);
1022 }
1023
1024 struct extent_buffer *btrfs_find_create_tree_block(
1025 struct btrfs_fs_info *fs_info,
1026 u64 bytenr)
1027 {
1028 if (btrfs_is_testing(fs_info))
1029 return alloc_test_extent_buffer(fs_info, bytenr);
1030 return alloc_extent_buffer(fs_info, bytenr);
1031 }
1032
1033 /*
1034 * Read tree block at logical address @bytenr and do variant basic but critical
1035 * verification.
1036 *
1037 * @parent_transid: expected transid of this tree block, skip check if 0
1038 * @level: expected level, mandatory check
1039 * @first_key: expected key in slot 0, skip check if NULL
1040 */
1041 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1042 u64 parent_transid, int level,
1043 struct btrfs_key *first_key)
1044 {
1045 struct extent_buffer *buf = NULL;
1046 int ret;
1047
1048 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1049 if (IS_ERR(buf))
1050 return buf;
1051
1052 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1053 level, first_key);
1054 if (ret) {
1055 free_extent_buffer_stale(buf);
1056 return ERR_PTR(ret);
1057 }
1058 return buf;
1059
1060 }
1061
1062 void btrfs_clean_tree_block(struct extent_buffer *buf)
1063 {
1064 struct btrfs_fs_info *fs_info = buf->fs_info;
1065 if (btrfs_header_generation(buf) ==
1066 fs_info->running_transaction->transid) {
1067 btrfs_assert_tree_locked(buf);
1068
1069 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1070 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1071 -buf->len,
1072 fs_info->dirty_metadata_batch);
1073 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1074 btrfs_set_lock_blocking_write(buf);
1075 clear_extent_buffer_dirty(buf);
1076 }
1077 }
1078 }
1079
1080 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1081 u64 objectid)
1082 {
1083 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1084 root->fs_info = fs_info;
1085 root->node = NULL;
1086 root->commit_root = NULL;
1087 root->state = 0;
1088 root->orphan_cleanup_state = 0;
1089
1090 root->last_trans = 0;
1091 root->highest_objectid = 0;
1092 root->nr_delalloc_inodes = 0;
1093 root->nr_ordered_extents = 0;
1094 root->inode_tree = RB_ROOT;
1095 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1096 root->block_rsv = NULL;
1097
1098 INIT_LIST_HEAD(&root->dirty_list);
1099 INIT_LIST_HEAD(&root->root_list);
1100 INIT_LIST_HEAD(&root->delalloc_inodes);
1101 INIT_LIST_HEAD(&root->delalloc_root);
1102 INIT_LIST_HEAD(&root->ordered_extents);
1103 INIT_LIST_HEAD(&root->ordered_root);
1104 INIT_LIST_HEAD(&root->reloc_dirty_list);
1105 INIT_LIST_HEAD(&root->logged_list[0]);
1106 INIT_LIST_HEAD(&root->logged_list[1]);
1107 spin_lock_init(&root->inode_lock);
1108 spin_lock_init(&root->delalloc_lock);
1109 spin_lock_init(&root->ordered_extent_lock);
1110 spin_lock_init(&root->accounting_lock);
1111 spin_lock_init(&root->log_extents_lock[0]);
1112 spin_lock_init(&root->log_extents_lock[1]);
1113 spin_lock_init(&root->qgroup_meta_rsv_lock);
1114 mutex_init(&root->objectid_mutex);
1115 mutex_init(&root->log_mutex);
1116 mutex_init(&root->ordered_extent_mutex);
1117 mutex_init(&root->delalloc_mutex);
1118 init_waitqueue_head(&root->qgroup_flush_wait);
1119 init_waitqueue_head(&root->log_writer_wait);
1120 init_waitqueue_head(&root->log_commit_wait[0]);
1121 init_waitqueue_head(&root->log_commit_wait[1]);
1122 INIT_LIST_HEAD(&root->log_ctxs[0]);
1123 INIT_LIST_HEAD(&root->log_ctxs[1]);
1124 atomic_set(&root->log_commit[0], 0);
1125 atomic_set(&root->log_commit[1], 0);
1126 atomic_set(&root->log_writers, 0);
1127 atomic_set(&root->log_batch, 0);
1128 refcount_set(&root->refs, 1);
1129 atomic_set(&root->snapshot_force_cow, 0);
1130 atomic_set(&root->nr_swapfiles, 0);
1131 root->log_transid = 0;
1132 root->log_transid_committed = -1;
1133 root->last_log_commit = 0;
1134 if (!dummy) {
1135 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137 extent_io_tree_init(fs_info, &root->log_csum_range,
1138 IO_TREE_LOG_CSUM_RANGE, NULL);
1139 }
1140
1141 memset(&root->root_key, 0, sizeof(root->root_key));
1142 memset(&root->root_item, 0, sizeof(root->root_item));
1143 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1144 root->root_key.objectid = objectid;
1145 root->anon_dev = 0;
1146
1147 spin_lock_init(&root->root_item_lock);
1148 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1149 #ifdef CONFIG_BTRFS_DEBUG
1150 INIT_LIST_HEAD(&root->leak_list);
1151 spin_lock(&fs_info->fs_roots_radix_lock);
1152 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153 spin_unlock(&fs_info->fs_roots_radix_lock);
1154 #endif
1155 }
1156
1157 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1158 u64 objectid, gfp_t flags)
1159 {
1160 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1161 if (root)
1162 __setup_root(root, fs_info, objectid);
1163 return root;
1164 }
1165
1166 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167 /* Should only be used by the testing infrastructure */
1168 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1169 {
1170 struct btrfs_root *root;
1171
1172 if (!fs_info)
1173 return ERR_PTR(-EINVAL);
1174
1175 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1176 if (!root)
1177 return ERR_PTR(-ENOMEM);
1178
1179 /* We don't use the stripesize in selftest, set it as sectorsize */
1180 root->alloc_bytenr = 0;
1181
1182 return root;
1183 }
1184 #endif
1185
1186 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1187 u64 objectid)
1188 {
1189 struct btrfs_fs_info *fs_info = trans->fs_info;
1190 struct extent_buffer *leaf;
1191 struct btrfs_root *tree_root = fs_info->tree_root;
1192 struct btrfs_root *root;
1193 struct btrfs_key key;
1194 unsigned int nofs_flag;
1195 int ret = 0;
1196
1197 /*
1198 * We're holding a transaction handle, so use a NOFS memory allocation
1199 * context to avoid deadlock if reclaim happens.
1200 */
1201 nofs_flag = memalloc_nofs_save();
1202 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1203 memalloc_nofs_restore(nofs_flag);
1204 if (!root)
1205 return ERR_PTR(-ENOMEM);
1206
1207 root->root_key.objectid = objectid;
1208 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209 root->root_key.offset = 0;
1210
1211 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1212 if (IS_ERR(leaf)) {
1213 ret = PTR_ERR(leaf);
1214 leaf = NULL;
1215 goto fail;
1216 }
1217
1218 root->node = leaf;
1219 btrfs_mark_buffer_dirty(leaf);
1220
1221 root->commit_root = btrfs_root_node(root);
1222 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1223
1224 root->root_item.flags = 0;
1225 root->root_item.byte_limit = 0;
1226 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227 btrfs_set_root_generation(&root->root_item, trans->transid);
1228 btrfs_set_root_level(&root->root_item, 0);
1229 btrfs_set_root_refs(&root->root_item, 1);
1230 btrfs_set_root_used(&root->root_item, leaf->len);
1231 btrfs_set_root_last_snapshot(&root->root_item, 0);
1232 btrfs_set_root_dirid(&root->root_item, 0);
1233 if (is_fstree(objectid))
1234 generate_random_guid(root->root_item.uuid);
1235 else
1236 export_guid(root->root_item.uuid, &guid_null);
1237 root->root_item.drop_level = 0;
1238
1239 key.objectid = objectid;
1240 key.type = BTRFS_ROOT_ITEM_KEY;
1241 key.offset = 0;
1242 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243 if (ret)
1244 goto fail;
1245
1246 btrfs_tree_unlock(leaf);
1247
1248 return root;
1249
1250 fail:
1251 if (leaf)
1252 btrfs_tree_unlock(leaf);
1253 btrfs_put_root(root);
1254
1255 return ERR_PTR(ret);
1256 }
1257
1258 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259 struct btrfs_fs_info *fs_info)
1260 {
1261 struct btrfs_root *root;
1262 struct extent_buffer *leaf;
1263
1264 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1265 if (!root)
1266 return ERR_PTR(-ENOMEM);
1267
1268 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1271
1272 /*
1273 * DON'T set SHAREABLE bit for log trees.
1274 *
1275 * Log trees are not exposed to user space thus can't be snapshotted,
1276 * and they go away before a real commit is actually done.
1277 *
1278 * They do store pointers to file data extents, and those reference
1279 * counts still get updated (along with back refs to the log tree).
1280 */
1281
1282 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283 NULL, 0, 0, 0);
1284 if (IS_ERR(leaf)) {
1285 btrfs_put_root(root);
1286 return ERR_CAST(leaf);
1287 }
1288
1289 root->node = leaf;
1290
1291 btrfs_mark_buffer_dirty(root->node);
1292 btrfs_tree_unlock(root->node);
1293 return root;
1294 }
1295
1296 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297 struct btrfs_fs_info *fs_info)
1298 {
1299 struct btrfs_root *log_root;
1300
1301 log_root = alloc_log_tree(trans, fs_info);
1302 if (IS_ERR(log_root))
1303 return PTR_ERR(log_root);
1304 WARN_ON(fs_info->log_root_tree);
1305 fs_info->log_root_tree = log_root;
1306 return 0;
1307 }
1308
1309 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_root *root)
1311 {
1312 struct btrfs_fs_info *fs_info = root->fs_info;
1313 struct btrfs_root *log_root;
1314 struct btrfs_inode_item *inode_item;
1315
1316 log_root = alloc_log_tree(trans, fs_info);
1317 if (IS_ERR(log_root))
1318 return PTR_ERR(log_root);
1319
1320 log_root->last_trans = trans->transid;
1321 log_root->root_key.offset = root->root_key.objectid;
1322
1323 inode_item = &log_root->root_item.inode;
1324 btrfs_set_stack_inode_generation(inode_item, 1);
1325 btrfs_set_stack_inode_size(inode_item, 3);
1326 btrfs_set_stack_inode_nlink(inode_item, 1);
1327 btrfs_set_stack_inode_nbytes(inode_item,
1328 fs_info->nodesize);
1329 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1330
1331 btrfs_set_root_node(&log_root->root_item, log_root->node);
1332
1333 WARN_ON(root->log_root);
1334 root->log_root = log_root;
1335 root->log_transid = 0;
1336 root->log_transid_committed = -1;
1337 root->last_log_commit = 0;
1338 return 0;
1339 }
1340
1341 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342 struct btrfs_key *key)
1343 {
1344 struct btrfs_root *root;
1345 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1346 struct btrfs_path *path;
1347 u64 generation;
1348 int ret;
1349 int level;
1350
1351 path = btrfs_alloc_path();
1352 if (!path)
1353 return ERR_PTR(-ENOMEM);
1354
1355 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1356 if (!root) {
1357 ret = -ENOMEM;
1358 goto alloc_fail;
1359 }
1360
1361 ret = btrfs_find_root(tree_root, key, path,
1362 &root->root_item, &root->root_key);
1363 if (ret) {
1364 if (ret > 0)
1365 ret = -ENOENT;
1366 goto find_fail;
1367 }
1368
1369 generation = btrfs_root_generation(&root->root_item);
1370 level = btrfs_root_level(&root->root_item);
1371 root->node = read_tree_block(fs_info,
1372 btrfs_root_bytenr(&root->root_item),
1373 generation, level, NULL);
1374 if (IS_ERR(root->node)) {
1375 ret = PTR_ERR(root->node);
1376 root->node = NULL;
1377 goto find_fail;
1378 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379 ret = -EIO;
1380 goto find_fail;
1381 }
1382 root->commit_root = btrfs_root_node(root);
1383 out:
1384 btrfs_free_path(path);
1385 return root;
1386
1387 find_fail:
1388 btrfs_put_root(root);
1389 alloc_fail:
1390 root = ERR_PTR(ret);
1391 goto out;
1392 }
1393
1394 /*
1395 * Initialize subvolume root in-memory structure
1396 *
1397 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1398 */
1399 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1400 {
1401 int ret;
1402 unsigned int nofs_flag;
1403
1404 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1405 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1406 GFP_NOFS);
1407 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1408 ret = -ENOMEM;
1409 goto fail;
1410 }
1411
1412 /*
1413 * We might be called under a transaction (e.g. indirect backref
1414 * resolution) which could deadlock if it triggers memory reclaim
1415 */
1416 nofs_flag = memalloc_nofs_save();
1417 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1418 memalloc_nofs_restore(nofs_flag);
1419 if (ret)
1420 goto fail;
1421
1422 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1423 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1424 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1425 btrfs_check_and_init_root_item(&root->root_item);
1426 }
1427
1428 btrfs_init_free_ino_ctl(root);
1429 spin_lock_init(&root->ino_cache_lock);
1430 init_waitqueue_head(&root->ino_cache_wait);
1431
1432 /*
1433 * Don't assign anonymous block device to roots that are not exposed to
1434 * userspace, the id pool is limited to 1M
1435 */
1436 if (is_fstree(root->root_key.objectid) &&
1437 btrfs_root_refs(&root->root_item) > 0) {
1438 if (!anon_dev) {
1439 ret = get_anon_bdev(&root->anon_dev);
1440 if (ret)
1441 goto fail;
1442 } else {
1443 root->anon_dev = anon_dev;
1444 }
1445 }
1446
1447 mutex_lock(&root->objectid_mutex);
1448 ret = btrfs_find_highest_objectid(root,
1449 &root->highest_objectid);
1450 if (ret) {
1451 mutex_unlock(&root->objectid_mutex);
1452 goto fail;
1453 }
1454
1455 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1456
1457 mutex_unlock(&root->objectid_mutex);
1458
1459 return 0;
1460 fail:
1461 /* The caller is responsible to call btrfs_free_fs_root */
1462 return ret;
1463 }
1464
1465 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1466 u64 root_id)
1467 {
1468 struct btrfs_root *root;
1469
1470 spin_lock(&fs_info->fs_roots_radix_lock);
1471 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1472 (unsigned long)root_id);
1473 if (root)
1474 root = btrfs_grab_root(root);
1475 spin_unlock(&fs_info->fs_roots_radix_lock);
1476 return root;
1477 }
1478
1479 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1480 struct btrfs_root *root)
1481 {
1482 int ret;
1483
1484 ret = radix_tree_preload(GFP_NOFS);
1485 if (ret)
1486 return ret;
1487
1488 spin_lock(&fs_info->fs_roots_radix_lock);
1489 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1490 (unsigned long)root->root_key.objectid,
1491 root);
1492 if (ret == 0) {
1493 btrfs_grab_root(root);
1494 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1495 }
1496 spin_unlock(&fs_info->fs_roots_radix_lock);
1497 radix_tree_preload_end();
1498
1499 return ret;
1500 }
1501
1502 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1503 {
1504 #ifdef CONFIG_BTRFS_DEBUG
1505 struct btrfs_root *root;
1506
1507 while (!list_empty(&fs_info->allocated_roots)) {
1508 root = list_first_entry(&fs_info->allocated_roots,
1509 struct btrfs_root, leak_list);
1510 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1511 root->root_key.objectid, root->root_key.offset,
1512 refcount_read(&root->refs));
1513 while (refcount_read(&root->refs) > 1)
1514 btrfs_put_root(root);
1515 btrfs_put_root(root);
1516 }
1517 #endif
1518 }
1519
1520 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1521 {
1522 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1523 percpu_counter_destroy(&fs_info->delalloc_bytes);
1524 percpu_counter_destroy(&fs_info->dio_bytes);
1525 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1526 btrfs_free_csum_hash(fs_info);
1527 btrfs_free_stripe_hash_table(fs_info);
1528 btrfs_free_ref_cache(fs_info);
1529 kfree(fs_info->balance_ctl);
1530 kfree(fs_info->delayed_root);
1531 btrfs_put_root(fs_info->extent_root);
1532 btrfs_put_root(fs_info->tree_root);
1533 btrfs_put_root(fs_info->chunk_root);
1534 btrfs_put_root(fs_info->dev_root);
1535 btrfs_put_root(fs_info->csum_root);
1536 btrfs_put_root(fs_info->quota_root);
1537 btrfs_put_root(fs_info->uuid_root);
1538 btrfs_put_root(fs_info->free_space_root);
1539 btrfs_put_root(fs_info->fs_root);
1540 btrfs_put_root(fs_info->data_reloc_root);
1541 btrfs_check_leaked_roots(fs_info);
1542 btrfs_extent_buffer_leak_debug_check(fs_info);
1543 kfree(fs_info->super_copy);
1544 kfree(fs_info->super_for_commit);
1545 kvfree(fs_info);
1546 }
1547
1548
1549 /*
1550 * Get an in-memory reference of a root structure.
1551 *
1552 * For essential trees like root/extent tree, we grab it from fs_info directly.
1553 * For subvolume trees, we check the cached filesystem roots first. If not
1554 * found, then read it from disk and add it to cached fs roots.
1555 *
1556 * Caller should release the root by calling btrfs_put_root() after the usage.
1557 *
1558 * NOTE: Reloc and log trees can't be read by this function as they share the
1559 * same root objectid.
1560 *
1561 * @objectid: root id
1562 * @anon_dev: preallocated anonymous block device number for new roots,
1563 * pass 0 for new allocation.
1564 * @check_ref: whether to check root item references, If true, return -ENOENT
1565 * for orphan roots
1566 */
1567 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1568 u64 objectid, dev_t anon_dev,
1569 bool check_ref)
1570 {
1571 struct btrfs_root *root;
1572 struct btrfs_path *path;
1573 struct btrfs_key key;
1574 int ret;
1575
1576 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1577 return btrfs_grab_root(fs_info->tree_root);
1578 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579 return btrfs_grab_root(fs_info->extent_root);
1580 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581 return btrfs_grab_root(fs_info->chunk_root);
1582 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1583 return btrfs_grab_root(fs_info->dev_root);
1584 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1585 return btrfs_grab_root(fs_info->csum_root);
1586 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587 return btrfs_grab_root(fs_info->quota_root) ?
1588 fs_info->quota_root : ERR_PTR(-ENOENT);
1589 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1590 return btrfs_grab_root(fs_info->uuid_root) ?
1591 fs_info->uuid_root : ERR_PTR(-ENOENT);
1592 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593 return btrfs_grab_root(fs_info->free_space_root) ?
1594 fs_info->free_space_root : ERR_PTR(-ENOENT);
1595 again:
1596 root = btrfs_lookup_fs_root(fs_info, objectid);
1597 if (root) {
1598 /* Shouldn't get preallocated anon_dev for cached roots */
1599 ASSERT(!anon_dev);
1600 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1601 btrfs_put_root(root);
1602 return ERR_PTR(-ENOENT);
1603 }
1604 return root;
1605 }
1606
1607 key.objectid = objectid;
1608 key.type = BTRFS_ROOT_ITEM_KEY;
1609 key.offset = (u64)-1;
1610 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1611 if (IS_ERR(root))
1612 return root;
1613
1614 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615 ret = -ENOENT;
1616 goto fail;
1617 }
1618
1619 ret = btrfs_init_fs_root(root, anon_dev);
1620 if (ret)
1621 goto fail;
1622
1623 path = btrfs_alloc_path();
1624 if (!path) {
1625 ret = -ENOMEM;
1626 goto fail;
1627 }
1628 key.objectid = BTRFS_ORPHAN_OBJECTID;
1629 key.type = BTRFS_ORPHAN_ITEM_KEY;
1630 key.offset = objectid;
1631
1632 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1633 btrfs_free_path(path);
1634 if (ret < 0)
1635 goto fail;
1636 if (ret == 0)
1637 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1638
1639 ret = btrfs_insert_fs_root(fs_info, root);
1640 if (ret) {
1641 btrfs_put_root(root);
1642 if (ret == -EEXIST)
1643 goto again;
1644 goto fail;
1645 }
1646 return root;
1647 fail:
1648 btrfs_put_root(root);
1649 return ERR_PTR(ret);
1650 }
1651
1652 /*
1653 * Get in-memory reference of a root structure
1654 *
1655 * @objectid: tree objectid
1656 * @check_ref: if set, verify that the tree exists and the item has at least
1657 * one reference
1658 */
1659 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660 u64 objectid, bool check_ref)
1661 {
1662 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1663 }
1664
1665 /*
1666 * Get in-memory reference of a root structure, created as new, optionally pass
1667 * the anonymous block device id
1668 *
1669 * @objectid: tree objectid
1670 * @anon_dev: if zero, allocate a new anonymous block device or use the
1671 * parameter value
1672 */
1673 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1674 u64 objectid, dev_t anon_dev)
1675 {
1676 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1677 }
1678
1679 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1680 {
1681 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1682 int ret = 0;
1683 struct btrfs_device *device;
1684 struct backing_dev_info *bdi;
1685
1686 rcu_read_lock();
1687 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1688 if (!device->bdev)
1689 continue;
1690 bdi = device->bdev->bd_bdi;
1691 if (bdi_congested(bdi, bdi_bits)) {
1692 ret = 1;
1693 break;
1694 }
1695 }
1696 rcu_read_unlock();
1697 return ret;
1698 }
1699
1700 /*
1701 * called by the kthread helper functions to finally call the bio end_io
1702 * functions. This is where read checksum verification actually happens
1703 */
1704 static void end_workqueue_fn(struct btrfs_work *work)
1705 {
1706 struct bio *bio;
1707 struct btrfs_end_io_wq *end_io_wq;
1708
1709 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1710 bio = end_io_wq->bio;
1711
1712 bio->bi_status = end_io_wq->status;
1713 bio->bi_private = end_io_wq->private;
1714 bio->bi_end_io = end_io_wq->end_io;
1715 bio_endio(bio);
1716 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1717 }
1718
1719 static int cleaner_kthread(void *arg)
1720 {
1721 struct btrfs_root *root = arg;
1722 struct btrfs_fs_info *fs_info = root->fs_info;
1723 int again;
1724
1725 while (1) {
1726 again = 0;
1727
1728 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1729
1730 /* Make the cleaner go to sleep early. */
1731 if (btrfs_need_cleaner_sleep(fs_info))
1732 goto sleep;
1733
1734 /*
1735 * Do not do anything if we might cause open_ctree() to block
1736 * before we have finished mounting the filesystem.
1737 */
1738 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1739 goto sleep;
1740
1741 if (!mutex_trylock(&fs_info->cleaner_mutex))
1742 goto sleep;
1743
1744 /*
1745 * Avoid the problem that we change the status of the fs
1746 * during the above check and trylock.
1747 */
1748 if (btrfs_need_cleaner_sleep(fs_info)) {
1749 mutex_unlock(&fs_info->cleaner_mutex);
1750 goto sleep;
1751 }
1752
1753 btrfs_run_delayed_iputs(fs_info);
1754
1755 again = btrfs_clean_one_deleted_snapshot(root);
1756 mutex_unlock(&fs_info->cleaner_mutex);
1757
1758 /*
1759 * The defragger has dealt with the R/O remount and umount,
1760 * needn't do anything special here.
1761 */
1762 btrfs_run_defrag_inodes(fs_info);
1763
1764 /*
1765 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1766 * with relocation (btrfs_relocate_chunk) and relocation
1767 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1768 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1769 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1770 * unused block groups.
1771 */
1772 btrfs_delete_unused_bgs(fs_info);
1773 sleep:
1774 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1775 if (kthread_should_park())
1776 kthread_parkme();
1777 if (kthread_should_stop())
1778 return 0;
1779 if (!again) {
1780 set_current_state(TASK_INTERRUPTIBLE);
1781 schedule();
1782 __set_current_state(TASK_RUNNING);
1783 }
1784 }
1785 }
1786
1787 static int transaction_kthread(void *arg)
1788 {
1789 struct btrfs_root *root = arg;
1790 struct btrfs_fs_info *fs_info = root->fs_info;
1791 struct btrfs_trans_handle *trans;
1792 struct btrfs_transaction *cur;
1793 u64 transid;
1794 time64_t now;
1795 unsigned long delay;
1796 bool cannot_commit;
1797
1798 do {
1799 cannot_commit = false;
1800 delay = HZ * fs_info->commit_interval;
1801 mutex_lock(&fs_info->transaction_kthread_mutex);
1802
1803 spin_lock(&fs_info->trans_lock);
1804 cur = fs_info->running_transaction;
1805 if (!cur) {
1806 spin_unlock(&fs_info->trans_lock);
1807 goto sleep;
1808 }
1809
1810 now = ktime_get_seconds();
1811 if (cur->state < TRANS_STATE_COMMIT_START &&
1812 (now < cur->start_time ||
1813 now - cur->start_time < fs_info->commit_interval)) {
1814 spin_unlock(&fs_info->trans_lock);
1815 delay = HZ * 5;
1816 goto sleep;
1817 }
1818 transid = cur->transid;
1819 spin_unlock(&fs_info->trans_lock);
1820
1821 /* If the file system is aborted, this will always fail. */
1822 trans = btrfs_attach_transaction(root);
1823 if (IS_ERR(trans)) {
1824 if (PTR_ERR(trans) != -ENOENT)
1825 cannot_commit = true;
1826 goto sleep;
1827 }
1828 if (transid == trans->transid) {
1829 btrfs_commit_transaction(trans);
1830 } else {
1831 btrfs_end_transaction(trans);
1832 }
1833 sleep:
1834 wake_up_process(fs_info->cleaner_kthread);
1835 mutex_unlock(&fs_info->transaction_kthread_mutex);
1836
1837 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1838 &fs_info->fs_state)))
1839 btrfs_cleanup_transaction(fs_info);
1840 if (!kthread_should_stop() &&
1841 (!btrfs_transaction_blocked(fs_info) ||
1842 cannot_commit))
1843 schedule_timeout_interruptible(delay);
1844 } while (!kthread_should_stop());
1845 return 0;
1846 }
1847
1848 /*
1849 * This will find the highest generation in the array of root backups. The
1850 * index of the highest array is returned, or -EINVAL if we can't find
1851 * anything.
1852 *
1853 * We check to make sure the array is valid by comparing the
1854 * generation of the latest root in the array with the generation
1855 * in the super block. If they don't match we pitch it.
1856 */
1857 static int find_newest_super_backup(struct btrfs_fs_info *info)
1858 {
1859 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1860 u64 cur;
1861 struct btrfs_root_backup *root_backup;
1862 int i;
1863
1864 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1865 root_backup = info->super_copy->super_roots + i;
1866 cur = btrfs_backup_tree_root_gen(root_backup);
1867 if (cur == newest_gen)
1868 return i;
1869 }
1870
1871 return -EINVAL;
1872 }
1873
1874 /*
1875 * copy all the root pointers into the super backup array.
1876 * this will bump the backup pointer by one when it is
1877 * done
1878 */
1879 static void backup_super_roots(struct btrfs_fs_info *info)
1880 {
1881 const int next_backup = info->backup_root_index;
1882 struct btrfs_root_backup *root_backup;
1883
1884 root_backup = info->super_for_commit->super_roots + next_backup;
1885
1886 /*
1887 * make sure all of our padding and empty slots get zero filled
1888 * regardless of which ones we use today
1889 */
1890 memset(root_backup, 0, sizeof(*root_backup));
1891
1892 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1893
1894 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1895 btrfs_set_backup_tree_root_gen(root_backup,
1896 btrfs_header_generation(info->tree_root->node));
1897
1898 btrfs_set_backup_tree_root_level(root_backup,
1899 btrfs_header_level(info->tree_root->node));
1900
1901 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1902 btrfs_set_backup_chunk_root_gen(root_backup,
1903 btrfs_header_generation(info->chunk_root->node));
1904 btrfs_set_backup_chunk_root_level(root_backup,
1905 btrfs_header_level(info->chunk_root->node));
1906
1907 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1908 btrfs_set_backup_extent_root_gen(root_backup,
1909 btrfs_header_generation(info->extent_root->node));
1910 btrfs_set_backup_extent_root_level(root_backup,
1911 btrfs_header_level(info->extent_root->node));
1912
1913 /*
1914 * we might commit during log recovery, which happens before we set
1915 * the fs_root. Make sure it is valid before we fill it in.
1916 */
1917 if (info->fs_root && info->fs_root->node) {
1918 btrfs_set_backup_fs_root(root_backup,
1919 info->fs_root->node->start);
1920 btrfs_set_backup_fs_root_gen(root_backup,
1921 btrfs_header_generation(info->fs_root->node));
1922 btrfs_set_backup_fs_root_level(root_backup,
1923 btrfs_header_level(info->fs_root->node));
1924 }
1925
1926 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1927 btrfs_set_backup_dev_root_gen(root_backup,
1928 btrfs_header_generation(info->dev_root->node));
1929 btrfs_set_backup_dev_root_level(root_backup,
1930 btrfs_header_level(info->dev_root->node));
1931
1932 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1933 btrfs_set_backup_csum_root_gen(root_backup,
1934 btrfs_header_generation(info->csum_root->node));
1935 btrfs_set_backup_csum_root_level(root_backup,
1936 btrfs_header_level(info->csum_root->node));
1937
1938 btrfs_set_backup_total_bytes(root_backup,
1939 btrfs_super_total_bytes(info->super_copy));
1940 btrfs_set_backup_bytes_used(root_backup,
1941 btrfs_super_bytes_used(info->super_copy));
1942 btrfs_set_backup_num_devices(root_backup,
1943 btrfs_super_num_devices(info->super_copy));
1944
1945 /*
1946 * if we don't copy this out to the super_copy, it won't get remembered
1947 * for the next commit
1948 */
1949 memcpy(&info->super_copy->super_roots,
1950 &info->super_for_commit->super_roots,
1951 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1952 }
1953
1954 /*
1955 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1956 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1957 *
1958 * fs_info - filesystem whose backup roots need to be read
1959 * priority - priority of backup root required
1960 *
1961 * Returns backup root index on success and -EINVAL otherwise.
1962 */
1963 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1964 {
1965 int backup_index = find_newest_super_backup(fs_info);
1966 struct btrfs_super_block *super = fs_info->super_copy;
1967 struct btrfs_root_backup *root_backup;
1968
1969 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1970 if (priority == 0)
1971 return backup_index;
1972
1973 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1974 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1975 } else {
1976 return -EINVAL;
1977 }
1978
1979 root_backup = super->super_roots + backup_index;
1980
1981 btrfs_set_super_generation(super,
1982 btrfs_backup_tree_root_gen(root_backup));
1983 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1984 btrfs_set_super_root_level(super,
1985 btrfs_backup_tree_root_level(root_backup));
1986 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1987
1988 /*
1989 * Fixme: the total bytes and num_devices need to match or we should
1990 * need a fsck
1991 */
1992 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1993 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1994
1995 return backup_index;
1996 }
1997
1998 /* helper to cleanup workers */
1999 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2000 {
2001 btrfs_destroy_workqueue(fs_info->fixup_workers);
2002 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2003 btrfs_destroy_workqueue(fs_info->workers);
2004 btrfs_destroy_workqueue(fs_info->endio_workers);
2005 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2006 btrfs_destroy_workqueue(fs_info->rmw_workers);
2007 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2008 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2009 btrfs_destroy_workqueue(fs_info->delayed_workers);
2010 btrfs_destroy_workqueue(fs_info->caching_workers);
2011 btrfs_destroy_workqueue(fs_info->readahead_workers);
2012 btrfs_destroy_workqueue(fs_info->flush_workers);
2013 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2014 if (fs_info->discard_ctl.discard_workers)
2015 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2016 /*
2017 * Now that all other work queues are destroyed, we can safely destroy
2018 * the queues used for metadata I/O, since tasks from those other work
2019 * queues can do metadata I/O operations.
2020 */
2021 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2022 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2023 }
2024
2025 static void free_root_extent_buffers(struct btrfs_root *root)
2026 {
2027 if (root) {
2028 free_extent_buffer(root->node);
2029 free_extent_buffer(root->commit_root);
2030 root->node = NULL;
2031 root->commit_root = NULL;
2032 }
2033 }
2034
2035 /* helper to cleanup tree roots */
2036 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2037 {
2038 free_root_extent_buffers(info->tree_root);
2039
2040 free_root_extent_buffers(info->dev_root);
2041 free_root_extent_buffers(info->extent_root);
2042 free_root_extent_buffers(info->csum_root);
2043 free_root_extent_buffers(info->quota_root);
2044 free_root_extent_buffers(info->uuid_root);
2045 free_root_extent_buffers(info->fs_root);
2046 free_root_extent_buffers(info->data_reloc_root);
2047 if (free_chunk_root)
2048 free_root_extent_buffers(info->chunk_root);
2049 free_root_extent_buffers(info->free_space_root);
2050 }
2051
2052 void btrfs_put_root(struct btrfs_root *root)
2053 {
2054 if (!root)
2055 return;
2056
2057 if (refcount_dec_and_test(&root->refs)) {
2058 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2059 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2060 if (root->anon_dev)
2061 free_anon_bdev(root->anon_dev);
2062 btrfs_drew_lock_destroy(&root->snapshot_lock);
2063 free_root_extent_buffers(root);
2064 kfree(root->free_ino_ctl);
2065 kfree(root->free_ino_pinned);
2066 #ifdef CONFIG_BTRFS_DEBUG
2067 spin_lock(&root->fs_info->fs_roots_radix_lock);
2068 list_del_init(&root->leak_list);
2069 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2070 #endif
2071 kfree(root);
2072 }
2073 }
2074
2075 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2076 {
2077 int ret;
2078 struct btrfs_root *gang[8];
2079 int i;
2080
2081 while (!list_empty(&fs_info->dead_roots)) {
2082 gang[0] = list_entry(fs_info->dead_roots.next,
2083 struct btrfs_root, root_list);
2084 list_del(&gang[0]->root_list);
2085
2086 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2087 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2088 btrfs_put_root(gang[0]);
2089 }
2090
2091 while (1) {
2092 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2093 (void **)gang, 0,
2094 ARRAY_SIZE(gang));
2095 if (!ret)
2096 break;
2097 for (i = 0; i < ret; i++)
2098 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2099 }
2100 }
2101
2102 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2103 {
2104 mutex_init(&fs_info->scrub_lock);
2105 atomic_set(&fs_info->scrubs_running, 0);
2106 atomic_set(&fs_info->scrub_pause_req, 0);
2107 atomic_set(&fs_info->scrubs_paused, 0);
2108 atomic_set(&fs_info->scrub_cancel_req, 0);
2109 init_waitqueue_head(&fs_info->scrub_pause_wait);
2110 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2111 }
2112
2113 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2114 {
2115 spin_lock_init(&fs_info->balance_lock);
2116 mutex_init(&fs_info->balance_mutex);
2117 atomic_set(&fs_info->balance_pause_req, 0);
2118 atomic_set(&fs_info->balance_cancel_req, 0);
2119 fs_info->balance_ctl = NULL;
2120 init_waitqueue_head(&fs_info->balance_wait_q);
2121 }
2122
2123 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2124 {
2125 struct inode *inode = fs_info->btree_inode;
2126
2127 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2128 set_nlink(inode, 1);
2129 /*
2130 * we set the i_size on the btree inode to the max possible int.
2131 * the real end of the address space is determined by all of
2132 * the devices in the system
2133 */
2134 inode->i_size = OFFSET_MAX;
2135 inode->i_mapping->a_ops = &btree_aops;
2136
2137 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2138 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2139 IO_TREE_INODE_IO, inode);
2140 BTRFS_I(inode)->io_tree.track_uptodate = false;
2141 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2142
2143 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2144
2145 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2146 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2147 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2148 btrfs_insert_inode_hash(inode);
2149 }
2150
2151 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2152 {
2153 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2154 init_rwsem(&fs_info->dev_replace.rwsem);
2155 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2156 }
2157
2158 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2159 {
2160 spin_lock_init(&fs_info->qgroup_lock);
2161 mutex_init(&fs_info->qgroup_ioctl_lock);
2162 fs_info->qgroup_tree = RB_ROOT;
2163 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2164 fs_info->qgroup_seq = 1;
2165 fs_info->qgroup_ulist = NULL;
2166 fs_info->qgroup_rescan_running = false;
2167 mutex_init(&fs_info->qgroup_rescan_lock);
2168 }
2169
2170 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2171 struct btrfs_fs_devices *fs_devices)
2172 {
2173 u32 max_active = fs_info->thread_pool_size;
2174 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2175
2176 fs_info->workers =
2177 btrfs_alloc_workqueue(fs_info, "worker",
2178 flags | WQ_HIGHPRI, max_active, 16);
2179
2180 fs_info->delalloc_workers =
2181 btrfs_alloc_workqueue(fs_info, "delalloc",
2182 flags, max_active, 2);
2183
2184 fs_info->flush_workers =
2185 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2186 flags, max_active, 0);
2187
2188 fs_info->caching_workers =
2189 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2190
2191 fs_info->fixup_workers =
2192 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2193
2194 /*
2195 * endios are largely parallel and should have a very
2196 * low idle thresh
2197 */
2198 fs_info->endio_workers =
2199 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2200 fs_info->endio_meta_workers =
2201 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2202 max_active, 4);
2203 fs_info->endio_meta_write_workers =
2204 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2205 max_active, 2);
2206 fs_info->endio_raid56_workers =
2207 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2208 max_active, 4);
2209 fs_info->rmw_workers =
2210 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2211 fs_info->endio_write_workers =
2212 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2213 max_active, 2);
2214 fs_info->endio_freespace_worker =
2215 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2216 max_active, 0);
2217 fs_info->delayed_workers =
2218 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2219 max_active, 0);
2220 fs_info->readahead_workers =
2221 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2222 max_active, 2);
2223 fs_info->qgroup_rescan_workers =
2224 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2225 fs_info->discard_ctl.discard_workers =
2226 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2227
2228 if (!(fs_info->workers && fs_info->delalloc_workers &&
2229 fs_info->flush_workers &&
2230 fs_info->endio_workers && fs_info->endio_meta_workers &&
2231 fs_info->endio_meta_write_workers &&
2232 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2233 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2234 fs_info->caching_workers && fs_info->readahead_workers &&
2235 fs_info->fixup_workers && fs_info->delayed_workers &&
2236 fs_info->qgroup_rescan_workers &&
2237 fs_info->discard_ctl.discard_workers)) {
2238 return -ENOMEM;
2239 }
2240
2241 return 0;
2242 }
2243
2244 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2245 {
2246 struct crypto_shash *csum_shash;
2247 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2248
2249 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2250
2251 if (IS_ERR(csum_shash)) {
2252 btrfs_err(fs_info, "error allocating %s hash for checksum",
2253 csum_driver);
2254 return PTR_ERR(csum_shash);
2255 }
2256
2257 fs_info->csum_shash = csum_shash;
2258
2259 return 0;
2260 }
2261
2262 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2263 struct btrfs_fs_devices *fs_devices)
2264 {
2265 int ret;
2266 struct btrfs_root *log_tree_root;
2267 struct btrfs_super_block *disk_super = fs_info->super_copy;
2268 u64 bytenr = btrfs_super_log_root(disk_super);
2269 int level = btrfs_super_log_root_level(disk_super);
2270
2271 if (fs_devices->rw_devices == 0) {
2272 btrfs_warn(fs_info, "log replay required on RO media");
2273 return -EIO;
2274 }
2275
2276 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2277 GFP_KERNEL);
2278 if (!log_tree_root)
2279 return -ENOMEM;
2280
2281 log_tree_root->node = read_tree_block(fs_info, bytenr,
2282 fs_info->generation + 1,
2283 level, NULL);
2284 if (IS_ERR(log_tree_root->node)) {
2285 btrfs_warn(fs_info, "failed to read log tree");
2286 ret = PTR_ERR(log_tree_root->node);
2287 log_tree_root->node = NULL;
2288 btrfs_put_root(log_tree_root);
2289 return ret;
2290 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2291 btrfs_err(fs_info, "failed to read log tree");
2292 btrfs_put_root(log_tree_root);
2293 return -EIO;
2294 }
2295 /* returns with log_tree_root freed on success */
2296 ret = btrfs_recover_log_trees(log_tree_root);
2297 if (ret) {
2298 btrfs_handle_fs_error(fs_info, ret,
2299 "Failed to recover log tree");
2300 btrfs_put_root(log_tree_root);
2301 return ret;
2302 }
2303
2304 if (sb_rdonly(fs_info->sb)) {
2305 ret = btrfs_commit_super(fs_info);
2306 if (ret)
2307 return ret;
2308 }
2309
2310 return 0;
2311 }
2312
2313 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2314 {
2315 struct btrfs_root *tree_root = fs_info->tree_root;
2316 struct btrfs_root *root;
2317 struct btrfs_key location;
2318 int ret;
2319
2320 BUG_ON(!fs_info->tree_root);
2321
2322 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2323 location.type = BTRFS_ROOT_ITEM_KEY;
2324 location.offset = 0;
2325
2326 root = btrfs_read_tree_root(tree_root, &location);
2327 if (IS_ERR(root)) {
2328 ret = PTR_ERR(root);
2329 goto out;
2330 }
2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 fs_info->extent_root = root;
2333
2334 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2335 root = btrfs_read_tree_root(tree_root, &location);
2336 if (IS_ERR(root)) {
2337 ret = PTR_ERR(root);
2338 goto out;
2339 }
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->dev_root = root;
2342 btrfs_init_devices_late(fs_info);
2343
2344 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2345 root = btrfs_read_tree_root(tree_root, &location);
2346 if (IS_ERR(root)) {
2347 ret = PTR_ERR(root);
2348 goto out;
2349 }
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 fs_info->csum_root = root;
2352
2353 /*
2354 * This tree can share blocks with some other fs tree during relocation
2355 * and we need a proper setup by btrfs_get_fs_root
2356 */
2357 root = btrfs_get_fs_root(tree_root->fs_info,
2358 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2359 if (IS_ERR(root)) {
2360 ret = PTR_ERR(root);
2361 goto out;
2362 }
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 fs_info->data_reloc_root = root;
2365
2366 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2367 root = btrfs_read_tree_root(tree_root, &location);
2368 if (!IS_ERR(root)) {
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2371 fs_info->quota_root = root;
2372 }
2373
2374 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2375 root = btrfs_read_tree_root(tree_root, &location);
2376 if (IS_ERR(root)) {
2377 ret = PTR_ERR(root);
2378 if (ret != -ENOENT)
2379 goto out;
2380 } else {
2381 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382 fs_info->uuid_root = root;
2383 }
2384
2385 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2386 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2387 root = btrfs_read_tree_root(tree_root, &location);
2388 if (IS_ERR(root)) {
2389 ret = PTR_ERR(root);
2390 goto out;
2391 }
2392 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2393 fs_info->free_space_root = root;
2394 }
2395
2396 return 0;
2397 out:
2398 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2399 location.objectid, ret);
2400 return ret;
2401 }
2402
2403 /*
2404 * Real super block validation
2405 * NOTE: super csum type and incompat features will not be checked here.
2406 *
2407 * @sb: super block to check
2408 * @mirror_num: the super block number to check its bytenr:
2409 * 0 the primary (1st) sb
2410 * 1, 2 2nd and 3rd backup copy
2411 * -1 skip bytenr check
2412 */
2413 static int validate_super(struct btrfs_fs_info *fs_info,
2414 struct btrfs_super_block *sb, int mirror_num)
2415 {
2416 u64 nodesize = btrfs_super_nodesize(sb);
2417 u64 sectorsize = btrfs_super_sectorsize(sb);
2418 int ret = 0;
2419
2420 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2421 btrfs_err(fs_info, "no valid FS found");
2422 ret = -EINVAL;
2423 }
2424 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2425 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2426 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2427 ret = -EINVAL;
2428 }
2429 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2430 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2431 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2432 ret = -EINVAL;
2433 }
2434 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2435 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2436 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2437 ret = -EINVAL;
2438 }
2439 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2440 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2441 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2442 ret = -EINVAL;
2443 }
2444
2445 /*
2446 * Check sectorsize and nodesize first, other check will need it.
2447 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2448 */
2449 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2450 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2452 ret = -EINVAL;
2453 }
2454 /* Only PAGE SIZE is supported yet */
2455 if (sectorsize != PAGE_SIZE) {
2456 btrfs_err(fs_info,
2457 "sectorsize %llu not supported yet, only support %lu",
2458 sectorsize, PAGE_SIZE);
2459 ret = -EINVAL;
2460 }
2461 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2462 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2463 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2464 ret = -EINVAL;
2465 }
2466 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2467 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2468 le32_to_cpu(sb->__unused_leafsize), nodesize);
2469 ret = -EINVAL;
2470 }
2471
2472 /* Root alignment check */
2473 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2474 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2475 btrfs_super_root(sb));
2476 ret = -EINVAL;
2477 }
2478 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2479 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2480 btrfs_super_chunk_root(sb));
2481 ret = -EINVAL;
2482 }
2483 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2484 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2485 btrfs_super_log_root(sb));
2486 ret = -EINVAL;
2487 }
2488
2489 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2490 BTRFS_FSID_SIZE) != 0) {
2491 btrfs_err(fs_info,
2492 "dev_item UUID does not match metadata fsid: %pU != %pU",
2493 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2494 ret = -EINVAL;
2495 }
2496
2497 /*
2498 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2499 * done later
2500 */
2501 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2502 btrfs_err(fs_info, "bytes_used is too small %llu",
2503 btrfs_super_bytes_used(sb));
2504 ret = -EINVAL;
2505 }
2506 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2507 btrfs_err(fs_info, "invalid stripesize %u",
2508 btrfs_super_stripesize(sb));
2509 ret = -EINVAL;
2510 }
2511 if (btrfs_super_num_devices(sb) > (1UL << 31))
2512 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2513 btrfs_super_num_devices(sb));
2514 if (btrfs_super_num_devices(sb) == 0) {
2515 btrfs_err(fs_info, "number of devices is 0");
2516 ret = -EINVAL;
2517 }
2518
2519 if (mirror_num >= 0 &&
2520 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2521 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2522 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2523 ret = -EINVAL;
2524 }
2525
2526 /*
2527 * Obvious sys_chunk_array corruptions, it must hold at least one key
2528 * and one chunk
2529 */
2530 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2531 btrfs_err(fs_info, "system chunk array too big %u > %u",
2532 btrfs_super_sys_array_size(sb),
2533 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2534 ret = -EINVAL;
2535 }
2536 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2537 + sizeof(struct btrfs_chunk)) {
2538 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2539 btrfs_super_sys_array_size(sb),
2540 sizeof(struct btrfs_disk_key)
2541 + sizeof(struct btrfs_chunk));
2542 ret = -EINVAL;
2543 }
2544
2545 /*
2546 * The generation is a global counter, we'll trust it more than the others
2547 * but it's still possible that it's the one that's wrong.
2548 */
2549 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2550 btrfs_warn(fs_info,
2551 "suspicious: generation < chunk_root_generation: %llu < %llu",
2552 btrfs_super_generation(sb),
2553 btrfs_super_chunk_root_generation(sb));
2554 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2555 && btrfs_super_cache_generation(sb) != (u64)-1)
2556 btrfs_warn(fs_info,
2557 "suspicious: generation < cache_generation: %llu < %llu",
2558 btrfs_super_generation(sb),
2559 btrfs_super_cache_generation(sb));
2560
2561 return ret;
2562 }
2563
2564 /*
2565 * Validation of super block at mount time.
2566 * Some checks already done early at mount time, like csum type and incompat
2567 * flags will be skipped.
2568 */
2569 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2570 {
2571 return validate_super(fs_info, fs_info->super_copy, 0);
2572 }
2573
2574 /*
2575 * Validation of super block at write time.
2576 * Some checks like bytenr check will be skipped as their values will be
2577 * overwritten soon.
2578 * Extra checks like csum type and incompat flags will be done here.
2579 */
2580 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2581 struct btrfs_super_block *sb)
2582 {
2583 int ret;
2584
2585 ret = validate_super(fs_info, sb, -1);
2586 if (ret < 0)
2587 goto out;
2588 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2589 ret = -EUCLEAN;
2590 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2591 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2592 goto out;
2593 }
2594 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2595 ret = -EUCLEAN;
2596 btrfs_err(fs_info,
2597 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2598 btrfs_super_incompat_flags(sb),
2599 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2600 goto out;
2601 }
2602 out:
2603 if (ret < 0)
2604 btrfs_err(fs_info,
2605 "super block corruption detected before writing it to disk");
2606 return ret;
2607 }
2608
2609 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2610 {
2611 int backup_index = find_newest_super_backup(fs_info);
2612 struct btrfs_super_block *sb = fs_info->super_copy;
2613 struct btrfs_root *tree_root = fs_info->tree_root;
2614 bool handle_error = false;
2615 int ret = 0;
2616 int i;
2617
2618 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2619 u64 generation;
2620 int level;
2621
2622 if (handle_error) {
2623 if (!IS_ERR(tree_root->node))
2624 free_extent_buffer(tree_root->node);
2625 tree_root->node = NULL;
2626
2627 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2628 break;
2629
2630 free_root_pointers(fs_info, 0);
2631
2632 /*
2633 * Don't use the log in recovery mode, it won't be
2634 * valid
2635 */
2636 btrfs_set_super_log_root(sb, 0);
2637
2638 /* We can't trust the free space cache either */
2639 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2640
2641 ret = read_backup_root(fs_info, i);
2642 backup_index = ret;
2643 if (ret < 0)
2644 return ret;
2645 }
2646 generation = btrfs_super_generation(sb);
2647 level = btrfs_super_root_level(sb);
2648 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2649 generation, level, NULL);
2650 if (IS_ERR(tree_root->node) ||
2651 !extent_buffer_uptodate(tree_root->node)) {
2652 handle_error = true;
2653
2654 if (IS_ERR(tree_root->node)) {
2655 ret = PTR_ERR(tree_root->node);
2656 tree_root->node = NULL;
2657 } else if (!extent_buffer_uptodate(tree_root->node)) {
2658 ret = -EUCLEAN;
2659 }
2660
2661 btrfs_warn(fs_info, "failed to read tree root");
2662 continue;
2663 }
2664
2665 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2666 tree_root->commit_root = btrfs_root_node(tree_root);
2667 btrfs_set_root_refs(&tree_root->root_item, 1);
2668
2669 /*
2670 * No need to hold btrfs_root::objectid_mutex since the fs
2671 * hasn't been fully initialised and we are the only user
2672 */
2673 ret = btrfs_find_highest_objectid(tree_root,
2674 &tree_root->highest_objectid);
2675 if (ret < 0) {
2676 handle_error = true;
2677 continue;
2678 }
2679
2680 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2681
2682 ret = btrfs_read_roots(fs_info);
2683 if (ret < 0) {
2684 handle_error = true;
2685 continue;
2686 }
2687
2688 /* All successful */
2689 fs_info->generation = generation;
2690 fs_info->last_trans_committed = generation;
2691
2692 /* Always begin writing backup roots after the one being used */
2693 if (backup_index < 0) {
2694 fs_info->backup_root_index = 0;
2695 } else {
2696 fs_info->backup_root_index = backup_index + 1;
2697 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2698 }
2699 break;
2700 }
2701
2702 return ret;
2703 }
2704
2705 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2706 {
2707 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2708 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2709 INIT_LIST_HEAD(&fs_info->trans_list);
2710 INIT_LIST_HEAD(&fs_info->dead_roots);
2711 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2712 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2713 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2714 spin_lock_init(&fs_info->delalloc_root_lock);
2715 spin_lock_init(&fs_info->trans_lock);
2716 spin_lock_init(&fs_info->fs_roots_radix_lock);
2717 spin_lock_init(&fs_info->delayed_iput_lock);
2718 spin_lock_init(&fs_info->defrag_inodes_lock);
2719 spin_lock_init(&fs_info->super_lock);
2720 spin_lock_init(&fs_info->buffer_lock);
2721 spin_lock_init(&fs_info->unused_bgs_lock);
2722 rwlock_init(&fs_info->tree_mod_log_lock);
2723 mutex_init(&fs_info->unused_bg_unpin_mutex);
2724 mutex_init(&fs_info->delete_unused_bgs_mutex);
2725 mutex_init(&fs_info->reloc_mutex);
2726 mutex_init(&fs_info->delalloc_root_mutex);
2727 seqlock_init(&fs_info->profiles_lock);
2728
2729 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2730 INIT_LIST_HEAD(&fs_info->space_info);
2731 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2732 INIT_LIST_HEAD(&fs_info->unused_bgs);
2733 #ifdef CONFIG_BTRFS_DEBUG
2734 INIT_LIST_HEAD(&fs_info->allocated_roots);
2735 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2736 spin_lock_init(&fs_info->eb_leak_lock);
2737 #endif
2738 extent_map_tree_init(&fs_info->mapping_tree);
2739 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2740 BTRFS_BLOCK_RSV_GLOBAL);
2741 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2742 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2743 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2744 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2745 BTRFS_BLOCK_RSV_DELOPS);
2746 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2747 BTRFS_BLOCK_RSV_DELREFS);
2748
2749 atomic_set(&fs_info->async_delalloc_pages, 0);
2750 atomic_set(&fs_info->defrag_running, 0);
2751 atomic_set(&fs_info->reada_works_cnt, 0);
2752 atomic_set(&fs_info->nr_delayed_iputs, 0);
2753 atomic64_set(&fs_info->tree_mod_seq, 0);
2754 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2755 fs_info->metadata_ratio = 0;
2756 fs_info->defrag_inodes = RB_ROOT;
2757 atomic64_set(&fs_info->free_chunk_space, 0);
2758 fs_info->tree_mod_log = RB_ROOT;
2759 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2760 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2761 /* readahead state */
2762 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2763 spin_lock_init(&fs_info->reada_lock);
2764 btrfs_init_ref_verify(fs_info);
2765
2766 fs_info->thread_pool_size = min_t(unsigned long,
2767 num_online_cpus() + 2, 8);
2768
2769 INIT_LIST_HEAD(&fs_info->ordered_roots);
2770 spin_lock_init(&fs_info->ordered_root_lock);
2771
2772 btrfs_init_scrub(fs_info);
2773 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2774 fs_info->check_integrity_print_mask = 0;
2775 #endif
2776 btrfs_init_balance(fs_info);
2777 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2778
2779 spin_lock_init(&fs_info->block_group_cache_lock);
2780 fs_info->block_group_cache_tree = RB_ROOT;
2781 fs_info->first_logical_byte = (u64)-1;
2782
2783 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2784 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2785 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2786
2787 mutex_init(&fs_info->ordered_operations_mutex);
2788 mutex_init(&fs_info->tree_log_mutex);
2789 mutex_init(&fs_info->chunk_mutex);
2790 mutex_init(&fs_info->transaction_kthread_mutex);
2791 mutex_init(&fs_info->cleaner_mutex);
2792 mutex_init(&fs_info->ro_block_group_mutex);
2793 init_rwsem(&fs_info->commit_root_sem);
2794 init_rwsem(&fs_info->cleanup_work_sem);
2795 init_rwsem(&fs_info->subvol_sem);
2796 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2797
2798 btrfs_init_dev_replace_locks(fs_info);
2799 btrfs_init_qgroup(fs_info);
2800 btrfs_discard_init(fs_info);
2801
2802 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2803 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2804
2805 init_waitqueue_head(&fs_info->transaction_throttle);
2806 init_waitqueue_head(&fs_info->transaction_wait);
2807 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2808 init_waitqueue_head(&fs_info->async_submit_wait);
2809 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2810
2811 /* Usable values until the real ones are cached from the superblock */
2812 fs_info->nodesize = 4096;
2813 fs_info->sectorsize = 4096;
2814 fs_info->stripesize = 4096;
2815
2816 spin_lock_init(&fs_info->swapfile_pins_lock);
2817 fs_info->swapfile_pins = RB_ROOT;
2818
2819 fs_info->send_in_progress = 0;
2820 }
2821
2822 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2823 {
2824 int ret;
2825
2826 fs_info->sb = sb;
2827 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2828 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2829
2830 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2831 if (ret)
2832 return ret;
2833
2834 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2835 if (ret)
2836 return ret;
2837
2838 fs_info->dirty_metadata_batch = PAGE_SIZE *
2839 (1 + ilog2(nr_cpu_ids));
2840
2841 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2842 if (ret)
2843 return ret;
2844
2845 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2846 GFP_KERNEL);
2847 if (ret)
2848 return ret;
2849
2850 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2851 GFP_KERNEL);
2852 if (!fs_info->delayed_root)
2853 return -ENOMEM;
2854 btrfs_init_delayed_root(fs_info->delayed_root);
2855
2856 return btrfs_alloc_stripe_hash_table(fs_info);
2857 }
2858
2859 static int btrfs_uuid_rescan_kthread(void *data)
2860 {
2861 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2862 int ret;
2863
2864 /*
2865 * 1st step is to iterate through the existing UUID tree and
2866 * to delete all entries that contain outdated data.
2867 * 2nd step is to add all missing entries to the UUID tree.
2868 */
2869 ret = btrfs_uuid_tree_iterate(fs_info);
2870 if (ret < 0) {
2871 if (ret != -EINTR)
2872 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2873 ret);
2874 up(&fs_info->uuid_tree_rescan_sem);
2875 return ret;
2876 }
2877 return btrfs_uuid_scan_kthread(data);
2878 }
2879
2880 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2881 {
2882 struct task_struct *task;
2883
2884 down(&fs_info->uuid_tree_rescan_sem);
2885 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2886 if (IS_ERR(task)) {
2887 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2888 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2889 up(&fs_info->uuid_tree_rescan_sem);
2890 return PTR_ERR(task);
2891 }
2892
2893 return 0;
2894 }
2895
2896 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2897 char *options)
2898 {
2899 u32 sectorsize;
2900 u32 nodesize;
2901 u32 stripesize;
2902 u64 generation;
2903 u64 features;
2904 u16 csum_type;
2905 struct btrfs_super_block *disk_super;
2906 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2907 struct btrfs_root *tree_root;
2908 struct btrfs_root *chunk_root;
2909 int ret;
2910 int err = -EINVAL;
2911 int clear_free_space_tree = 0;
2912 int level;
2913
2914 ret = init_mount_fs_info(fs_info, sb);
2915 if (ret) {
2916 err = ret;
2917 goto fail;
2918 }
2919
2920 /* These need to be init'ed before we start creating inodes and such. */
2921 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2922 GFP_KERNEL);
2923 fs_info->tree_root = tree_root;
2924 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2925 GFP_KERNEL);
2926 fs_info->chunk_root = chunk_root;
2927 if (!tree_root || !chunk_root) {
2928 err = -ENOMEM;
2929 goto fail;
2930 }
2931
2932 fs_info->btree_inode = new_inode(sb);
2933 if (!fs_info->btree_inode) {
2934 err = -ENOMEM;
2935 goto fail;
2936 }
2937 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2938 btrfs_init_btree_inode(fs_info);
2939
2940 invalidate_bdev(fs_devices->latest_bdev);
2941
2942 /*
2943 * Read super block and check the signature bytes only
2944 */
2945 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2946 if (IS_ERR(disk_super)) {
2947 err = PTR_ERR(disk_super);
2948 goto fail_alloc;
2949 }
2950
2951 /*
2952 * Verify the type first, if that or the the checksum value are
2953 * corrupted, we'll find out
2954 */
2955 csum_type = btrfs_super_csum_type(disk_super);
2956 if (!btrfs_supported_super_csum(csum_type)) {
2957 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2958 csum_type);
2959 err = -EINVAL;
2960 btrfs_release_disk_super(disk_super);
2961 goto fail_alloc;
2962 }
2963
2964 ret = btrfs_init_csum_hash(fs_info, csum_type);
2965 if (ret) {
2966 err = ret;
2967 btrfs_release_disk_super(disk_super);
2968 goto fail_alloc;
2969 }
2970
2971 /*
2972 * We want to check superblock checksum, the type is stored inside.
2973 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2974 */
2975 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2976 btrfs_err(fs_info, "superblock checksum mismatch");
2977 err = -EINVAL;
2978 btrfs_release_disk_super(disk_super);
2979 goto fail_alloc;
2980 }
2981
2982 /*
2983 * super_copy is zeroed at allocation time and we never touch the
2984 * following bytes up to INFO_SIZE, the checksum is calculated from
2985 * the whole block of INFO_SIZE
2986 */
2987 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2988 btrfs_release_disk_super(disk_super);
2989
2990 disk_super = fs_info->super_copy;
2991
2992 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2993 BTRFS_FSID_SIZE));
2994
2995 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2996 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2997 fs_info->super_copy->metadata_uuid,
2998 BTRFS_FSID_SIZE));
2999 }
3000
3001 features = btrfs_super_flags(disk_super);
3002 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3003 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3004 btrfs_set_super_flags(disk_super, features);
3005 btrfs_info(fs_info,
3006 "found metadata UUID change in progress flag, clearing");
3007 }
3008
3009 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3010 sizeof(*fs_info->super_for_commit));
3011
3012 ret = btrfs_validate_mount_super(fs_info);
3013 if (ret) {
3014 btrfs_err(fs_info, "superblock contains fatal errors");
3015 err = -EINVAL;
3016 goto fail_alloc;
3017 }
3018
3019 if (!btrfs_super_root(disk_super))
3020 goto fail_alloc;
3021
3022 /* check FS state, whether FS is broken. */
3023 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3024 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3025
3026 /*
3027 * In the long term, we'll store the compression type in the super
3028 * block, and it'll be used for per file compression control.
3029 */
3030 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3031
3032 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3033 if (ret) {
3034 err = ret;
3035 goto fail_alloc;
3036 }
3037
3038 features = btrfs_super_incompat_flags(disk_super) &
3039 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3040 if (features) {
3041 btrfs_err(fs_info,
3042 "cannot mount because of unsupported optional features (%llx)",
3043 features);
3044 err = -EINVAL;
3045 goto fail_alloc;
3046 }
3047
3048 features = btrfs_super_incompat_flags(disk_super);
3049 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3050 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3051 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3052 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3053 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3054
3055 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3056 btrfs_info(fs_info, "has skinny extents");
3057
3058 /*
3059 * flag our filesystem as having big metadata blocks if
3060 * they are bigger than the page size
3061 */
3062 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3063 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3064 btrfs_info(fs_info,
3065 "flagging fs with big metadata feature");
3066 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3067 }
3068
3069 nodesize = btrfs_super_nodesize(disk_super);
3070 sectorsize = btrfs_super_sectorsize(disk_super);
3071 stripesize = sectorsize;
3072 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3073 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3074
3075 /* Cache block sizes */
3076 fs_info->nodesize = nodesize;
3077 fs_info->sectorsize = sectorsize;
3078 fs_info->stripesize = stripesize;
3079
3080 /*
3081 * mixed block groups end up with duplicate but slightly offset
3082 * extent buffers for the same range. It leads to corruptions
3083 */
3084 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3085 (sectorsize != nodesize)) {
3086 btrfs_err(fs_info,
3087 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3088 nodesize, sectorsize);
3089 goto fail_alloc;
3090 }
3091
3092 /*
3093 * Needn't use the lock because there is no other task which will
3094 * update the flag.
3095 */
3096 btrfs_set_super_incompat_flags(disk_super, features);
3097
3098 features = btrfs_super_compat_ro_flags(disk_super) &
3099 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3100 if (!sb_rdonly(sb) && features) {
3101 btrfs_err(fs_info,
3102 "cannot mount read-write because of unsupported optional features (%llx)",
3103 features);
3104 err = -EINVAL;
3105 goto fail_alloc;
3106 }
3107
3108 ret = btrfs_init_workqueues(fs_info, fs_devices);
3109 if (ret) {
3110 err = ret;
3111 goto fail_sb_buffer;
3112 }
3113
3114 sb->s_bdi->congested_fn = btrfs_congested_fn;
3115 sb->s_bdi->congested_data = fs_info;
3116 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3117 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3118 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3119 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3120
3121 sb->s_blocksize = sectorsize;
3122 sb->s_blocksize_bits = blksize_bits(sectorsize);
3123 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3124
3125 mutex_lock(&fs_info->chunk_mutex);
3126 ret = btrfs_read_sys_array(fs_info);
3127 mutex_unlock(&fs_info->chunk_mutex);
3128 if (ret) {
3129 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3130 goto fail_sb_buffer;
3131 }
3132
3133 generation = btrfs_super_chunk_root_generation(disk_super);
3134 level = btrfs_super_chunk_root_level(disk_super);
3135
3136 chunk_root->node = read_tree_block(fs_info,
3137 btrfs_super_chunk_root(disk_super),
3138 generation, level, NULL);
3139 if (IS_ERR(chunk_root->node) ||
3140 !extent_buffer_uptodate(chunk_root->node)) {
3141 btrfs_err(fs_info, "failed to read chunk root");
3142 if (!IS_ERR(chunk_root->node))
3143 free_extent_buffer(chunk_root->node);
3144 chunk_root->node = NULL;
3145 goto fail_tree_roots;
3146 }
3147 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3148 chunk_root->commit_root = btrfs_root_node(chunk_root);
3149
3150 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3151 offsetof(struct btrfs_header, chunk_tree_uuid),
3152 BTRFS_UUID_SIZE);
3153
3154 ret = btrfs_read_chunk_tree(fs_info);
3155 if (ret) {
3156 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3157 goto fail_tree_roots;
3158 }
3159
3160 /*
3161 * Keep the devid that is marked to be the target device for the
3162 * device replace procedure
3163 */
3164 btrfs_free_extra_devids(fs_devices, 0);
3165
3166 if (!fs_devices->latest_bdev) {
3167 btrfs_err(fs_info, "failed to read devices");
3168 goto fail_tree_roots;
3169 }
3170
3171 ret = init_tree_roots(fs_info);
3172 if (ret)
3173 goto fail_tree_roots;
3174
3175 /*
3176 * If we have a uuid root and we're not being told to rescan we need to
3177 * check the generation here so we can set the
3178 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3179 * transaction during a balance or the log replay without updating the
3180 * uuid generation, and then if we crash we would rescan the uuid tree,
3181 * even though it was perfectly fine.
3182 */
3183 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3184 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3185 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3186
3187 ret = btrfs_verify_dev_extents(fs_info);
3188 if (ret) {
3189 btrfs_err(fs_info,
3190 "failed to verify dev extents against chunks: %d",
3191 ret);
3192 goto fail_block_groups;
3193 }
3194 ret = btrfs_recover_balance(fs_info);
3195 if (ret) {
3196 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3197 goto fail_block_groups;
3198 }
3199
3200 ret = btrfs_init_dev_stats(fs_info);
3201 if (ret) {
3202 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3203 goto fail_block_groups;
3204 }
3205
3206 ret = btrfs_init_dev_replace(fs_info);
3207 if (ret) {
3208 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3209 goto fail_block_groups;
3210 }
3211
3212 btrfs_free_extra_devids(fs_devices, 1);
3213
3214 ret = btrfs_sysfs_add_fsid(fs_devices);
3215 if (ret) {
3216 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3217 ret);
3218 goto fail_block_groups;
3219 }
3220
3221 ret = btrfs_sysfs_add_mounted(fs_info);
3222 if (ret) {
3223 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3224 goto fail_fsdev_sysfs;
3225 }
3226
3227 ret = btrfs_init_space_info(fs_info);
3228 if (ret) {
3229 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3230 goto fail_sysfs;
3231 }
3232
3233 ret = btrfs_read_block_groups(fs_info);
3234 if (ret) {
3235 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3236 goto fail_sysfs;
3237 }
3238
3239 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3240 btrfs_warn(fs_info,
3241 "writable mount is not allowed due to too many missing devices");
3242 goto fail_sysfs;
3243 }
3244
3245 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3246 "btrfs-cleaner");
3247 if (IS_ERR(fs_info->cleaner_kthread))
3248 goto fail_sysfs;
3249
3250 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3251 tree_root,
3252 "btrfs-transaction");
3253 if (IS_ERR(fs_info->transaction_kthread))
3254 goto fail_cleaner;
3255
3256 if (!btrfs_test_opt(fs_info, NOSSD) &&
3257 !fs_info->fs_devices->rotating) {
3258 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3259 }
3260
3261 /*
3262 * Mount does not set all options immediately, we can do it now and do
3263 * not have to wait for transaction commit
3264 */
3265 btrfs_apply_pending_changes(fs_info);
3266
3267 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3268 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3269 ret = btrfsic_mount(fs_info, fs_devices,
3270 btrfs_test_opt(fs_info,
3271 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3272 1 : 0,
3273 fs_info->check_integrity_print_mask);
3274 if (ret)
3275 btrfs_warn(fs_info,
3276 "failed to initialize integrity check module: %d",
3277 ret);
3278 }
3279 #endif
3280 ret = btrfs_read_qgroup_config(fs_info);
3281 if (ret)
3282 goto fail_trans_kthread;
3283
3284 if (btrfs_build_ref_tree(fs_info))
3285 btrfs_err(fs_info, "couldn't build ref tree");
3286
3287 /* do not make disk changes in broken FS or nologreplay is given */
3288 if (btrfs_super_log_root(disk_super) != 0 &&
3289 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3290 btrfs_info(fs_info, "start tree-log replay");
3291 ret = btrfs_replay_log(fs_info, fs_devices);
3292 if (ret) {
3293 err = ret;
3294 goto fail_qgroup;
3295 }
3296 }
3297
3298 ret = btrfs_find_orphan_roots(fs_info);
3299 if (ret)
3300 goto fail_qgroup;
3301
3302 if (!sb_rdonly(sb)) {
3303 ret = btrfs_cleanup_fs_roots(fs_info);
3304 if (ret)
3305 goto fail_qgroup;
3306
3307 mutex_lock(&fs_info->cleaner_mutex);
3308 ret = btrfs_recover_relocation(tree_root);
3309 mutex_unlock(&fs_info->cleaner_mutex);
3310 if (ret < 0) {
3311 btrfs_warn(fs_info, "failed to recover relocation: %d",
3312 ret);
3313 err = -EINVAL;
3314 goto fail_qgroup;
3315 }
3316 }
3317
3318 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3319 if (IS_ERR(fs_info->fs_root)) {
3320 err = PTR_ERR(fs_info->fs_root);
3321 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3322 fs_info->fs_root = NULL;
3323 goto fail_qgroup;
3324 }
3325
3326 if (sb_rdonly(sb))
3327 return 0;
3328
3329 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3330 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3331 clear_free_space_tree = 1;
3332 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3333 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3334 btrfs_warn(fs_info, "free space tree is invalid");
3335 clear_free_space_tree = 1;
3336 }
3337
3338 if (clear_free_space_tree) {
3339 btrfs_info(fs_info, "clearing free space tree");
3340 ret = btrfs_clear_free_space_tree(fs_info);
3341 if (ret) {
3342 btrfs_warn(fs_info,
3343 "failed to clear free space tree: %d", ret);
3344 close_ctree(fs_info);
3345 return ret;
3346 }
3347 }
3348
3349 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3350 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3351 btrfs_info(fs_info, "creating free space tree");
3352 ret = btrfs_create_free_space_tree(fs_info);
3353 if (ret) {
3354 btrfs_warn(fs_info,
3355 "failed to create free space tree: %d", ret);
3356 close_ctree(fs_info);
3357 return ret;
3358 }
3359 }
3360
3361 down_read(&fs_info->cleanup_work_sem);
3362 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3363 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3364 up_read(&fs_info->cleanup_work_sem);
3365 close_ctree(fs_info);
3366 return ret;
3367 }
3368 up_read(&fs_info->cleanup_work_sem);
3369
3370 ret = btrfs_resume_balance_async(fs_info);
3371 if (ret) {
3372 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3373 close_ctree(fs_info);
3374 return ret;
3375 }
3376
3377 ret = btrfs_resume_dev_replace_async(fs_info);
3378 if (ret) {
3379 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3380 close_ctree(fs_info);
3381 return ret;
3382 }
3383
3384 btrfs_qgroup_rescan_resume(fs_info);
3385 btrfs_discard_resume(fs_info);
3386
3387 if (!fs_info->uuid_root) {
3388 btrfs_info(fs_info, "creating UUID tree");
3389 ret = btrfs_create_uuid_tree(fs_info);
3390 if (ret) {
3391 btrfs_warn(fs_info,
3392 "failed to create the UUID tree: %d", ret);
3393 close_ctree(fs_info);
3394 return ret;
3395 }
3396 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3397 fs_info->generation !=
3398 btrfs_super_uuid_tree_generation(disk_super)) {
3399 btrfs_info(fs_info, "checking UUID tree");
3400 ret = btrfs_check_uuid_tree(fs_info);
3401 if (ret) {
3402 btrfs_warn(fs_info,
3403 "failed to check the UUID tree: %d", ret);
3404 close_ctree(fs_info);
3405 return ret;
3406 }
3407 }
3408 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3409
3410 /*
3411 * backuproot only affect mount behavior, and if open_ctree succeeded,
3412 * no need to keep the flag
3413 */
3414 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3415
3416 return 0;
3417
3418 fail_qgroup:
3419 btrfs_free_qgroup_config(fs_info);
3420 fail_trans_kthread:
3421 kthread_stop(fs_info->transaction_kthread);
3422 btrfs_cleanup_transaction(fs_info);
3423 btrfs_free_fs_roots(fs_info);
3424 fail_cleaner:
3425 kthread_stop(fs_info->cleaner_kthread);
3426
3427 /*
3428 * make sure we're done with the btree inode before we stop our
3429 * kthreads
3430 */
3431 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3432
3433 fail_sysfs:
3434 btrfs_sysfs_remove_mounted(fs_info);
3435
3436 fail_fsdev_sysfs:
3437 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3438
3439 fail_block_groups:
3440 btrfs_put_block_group_cache(fs_info);
3441
3442 fail_tree_roots:
3443 if (fs_info->data_reloc_root)
3444 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3445 free_root_pointers(fs_info, true);
3446 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3447
3448 fail_sb_buffer:
3449 btrfs_stop_all_workers(fs_info);
3450 btrfs_free_block_groups(fs_info);
3451 fail_alloc:
3452 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3453
3454 iput(fs_info->btree_inode);
3455 fail:
3456 btrfs_close_devices(fs_info->fs_devices);
3457 return err;
3458 }
3459 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3460
3461 static void btrfs_end_super_write(struct bio *bio)
3462 {
3463 struct btrfs_device *device = bio->bi_private;
3464 struct bio_vec *bvec;
3465 struct bvec_iter_all iter_all;
3466 struct page *page;
3467
3468 bio_for_each_segment_all(bvec, bio, iter_all) {
3469 page = bvec->bv_page;
3470
3471 if (bio->bi_status) {
3472 btrfs_warn_rl_in_rcu(device->fs_info,
3473 "lost page write due to IO error on %s (%d)",
3474 rcu_str_deref(device->name),
3475 blk_status_to_errno(bio->bi_status));
3476 ClearPageUptodate(page);
3477 SetPageError(page);
3478 btrfs_dev_stat_inc_and_print(device,
3479 BTRFS_DEV_STAT_WRITE_ERRS);
3480 } else {
3481 SetPageUptodate(page);
3482 }
3483
3484 put_page(page);
3485 unlock_page(page);
3486 }
3487
3488 bio_put(bio);
3489 }
3490
3491 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3492 int copy_num)
3493 {
3494 struct btrfs_super_block *super;
3495 struct page *page;
3496 u64 bytenr;
3497 struct address_space *mapping = bdev->bd_inode->i_mapping;
3498
3499 bytenr = btrfs_sb_offset(copy_num);
3500 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3501 return ERR_PTR(-EINVAL);
3502
3503 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3504 if (IS_ERR(page))
3505 return ERR_CAST(page);
3506
3507 super = page_address(page);
3508 if (btrfs_super_bytenr(super) != bytenr ||
3509 btrfs_super_magic(super) != BTRFS_MAGIC) {
3510 btrfs_release_disk_super(super);
3511 return ERR_PTR(-EINVAL);
3512 }
3513
3514 return super;
3515 }
3516
3517
3518 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3519 {
3520 struct btrfs_super_block *super, *latest = NULL;
3521 int i;
3522 u64 transid = 0;
3523
3524 /* we would like to check all the supers, but that would make
3525 * a btrfs mount succeed after a mkfs from a different FS.
3526 * So, we need to add a special mount option to scan for
3527 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3528 */
3529 for (i = 0; i < 1; i++) {
3530 super = btrfs_read_dev_one_super(bdev, i);
3531 if (IS_ERR(super))
3532 continue;
3533
3534 if (!latest || btrfs_super_generation(super) > transid) {
3535 if (latest)
3536 btrfs_release_disk_super(super);
3537
3538 latest = super;
3539 transid = btrfs_super_generation(super);
3540 }
3541 }
3542
3543 return super;
3544 }
3545
3546 /*
3547 * Write superblock @sb to the @device. Do not wait for completion, all the
3548 * pages we use for writing are locked.
3549 *
3550 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3551 * the expected device size at commit time. Note that max_mirrors must be
3552 * same for write and wait phases.
3553 *
3554 * Return number of errors when page is not found or submission fails.
3555 */
3556 static int write_dev_supers(struct btrfs_device *device,
3557 struct btrfs_super_block *sb, int max_mirrors)
3558 {
3559 struct btrfs_fs_info *fs_info = device->fs_info;
3560 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3561 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3562 int i;
3563 int errors = 0;
3564 u64 bytenr;
3565
3566 if (max_mirrors == 0)
3567 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3568
3569 shash->tfm = fs_info->csum_shash;
3570
3571 for (i = 0; i < max_mirrors; i++) {
3572 struct page *page;
3573 struct bio *bio;
3574 struct btrfs_super_block *disk_super;
3575
3576 bytenr = btrfs_sb_offset(i);
3577 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3578 device->commit_total_bytes)
3579 break;
3580
3581 btrfs_set_super_bytenr(sb, bytenr);
3582
3583 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3584 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3585 sb->csum);
3586
3587 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3588 GFP_NOFS);
3589 if (!page) {
3590 btrfs_err(device->fs_info,
3591 "couldn't get super block page for bytenr %llu",
3592 bytenr);
3593 errors++;
3594 continue;
3595 }
3596
3597 /* Bump the refcount for wait_dev_supers() */
3598 get_page(page);
3599
3600 disk_super = page_address(page);
3601 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3602
3603 /*
3604 * Directly use bios here instead of relying on the page cache
3605 * to do I/O, so we don't lose the ability to do integrity
3606 * checking.
3607 */
3608 bio = bio_alloc(GFP_NOFS, 1);
3609 bio_set_dev(bio, device->bdev);
3610 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3611 bio->bi_private = device;
3612 bio->bi_end_io = btrfs_end_super_write;
3613 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3614 offset_in_page(bytenr));
3615
3616 /*
3617 * We FUA only the first super block. The others we allow to
3618 * go down lazy and there's a short window where the on-disk
3619 * copies might still contain the older version.
3620 */
3621 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3622 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3623 bio->bi_opf |= REQ_FUA;
3624
3625 btrfsic_submit_bio(bio);
3626 }
3627 return errors < i ? 0 : -1;
3628 }
3629
3630 /*
3631 * Wait for write completion of superblocks done by write_dev_supers,
3632 * @max_mirrors same for write and wait phases.
3633 *
3634 * Return number of errors when page is not found or not marked up to
3635 * date.
3636 */
3637 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3638 {
3639 int i;
3640 int errors = 0;
3641 bool primary_failed = false;
3642 u64 bytenr;
3643
3644 if (max_mirrors == 0)
3645 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3646
3647 for (i = 0; i < max_mirrors; i++) {
3648 struct page *page;
3649
3650 bytenr = btrfs_sb_offset(i);
3651 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3652 device->commit_total_bytes)
3653 break;
3654
3655 page = find_get_page(device->bdev->bd_inode->i_mapping,
3656 bytenr >> PAGE_SHIFT);
3657 if (!page) {
3658 errors++;
3659 if (i == 0)
3660 primary_failed = true;
3661 continue;
3662 }
3663 /* Page is submitted locked and unlocked once the IO completes */
3664 wait_on_page_locked(page);
3665 if (PageError(page)) {
3666 errors++;
3667 if (i == 0)
3668 primary_failed = true;
3669 }
3670
3671 /* Drop our reference */
3672 put_page(page);
3673
3674 /* Drop the reference from the writing run */
3675 put_page(page);
3676 }
3677
3678 /* log error, force error return */
3679 if (primary_failed) {
3680 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3681 device->devid);
3682 return -1;
3683 }
3684
3685 return errors < i ? 0 : -1;
3686 }
3687
3688 /*
3689 * endio for the write_dev_flush, this will wake anyone waiting
3690 * for the barrier when it is done
3691 */
3692 static void btrfs_end_empty_barrier(struct bio *bio)
3693 {
3694 complete(bio->bi_private);
3695 }
3696
3697 /*
3698 * Submit a flush request to the device if it supports it. Error handling is
3699 * done in the waiting counterpart.
3700 */
3701 static void write_dev_flush(struct btrfs_device *device)
3702 {
3703 struct request_queue *q = bdev_get_queue(device->bdev);
3704 struct bio *bio = device->flush_bio;
3705
3706 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3707 return;
3708
3709 bio_reset(bio);
3710 bio->bi_end_io = btrfs_end_empty_barrier;
3711 bio_set_dev(bio, device->bdev);
3712 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3713 init_completion(&device->flush_wait);
3714 bio->bi_private = &device->flush_wait;
3715
3716 btrfsic_submit_bio(bio);
3717 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3718 }
3719
3720 /*
3721 * If the flush bio has been submitted by write_dev_flush, wait for it.
3722 */
3723 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3724 {
3725 struct bio *bio = device->flush_bio;
3726
3727 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3728 return BLK_STS_OK;
3729
3730 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3731 wait_for_completion_io(&device->flush_wait);
3732
3733 return bio->bi_status;
3734 }
3735
3736 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3737 {
3738 if (!btrfs_check_rw_degradable(fs_info, NULL))
3739 return -EIO;
3740 return 0;
3741 }
3742
3743 /*
3744 * send an empty flush down to each device in parallel,
3745 * then wait for them
3746 */
3747 static int barrier_all_devices(struct btrfs_fs_info *info)
3748 {
3749 struct list_head *head;
3750 struct btrfs_device *dev;
3751 int errors_wait = 0;
3752 blk_status_t ret;
3753
3754 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3755 /* send down all the barriers */
3756 head = &info->fs_devices->devices;
3757 list_for_each_entry(dev, head, dev_list) {
3758 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3759 continue;
3760 if (!dev->bdev)
3761 continue;
3762 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3763 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3764 continue;
3765
3766 write_dev_flush(dev);
3767 dev->last_flush_error = BLK_STS_OK;
3768 }
3769
3770 /* wait for all the barriers */
3771 list_for_each_entry(dev, head, dev_list) {
3772 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3773 continue;
3774 if (!dev->bdev) {
3775 errors_wait++;
3776 continue;
3777 }
3778 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3779 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3780 continue;
3781
3782 ret = wait_dev_flush(dev);
3783 if (ret) {
3784 dev->last_flush_error = ret;
3785 btrfs_dev_stat_inc_and_print(dev,
3786 BTRFS_DEV_STAT_FLUSH_ERRS);
3787 errors_wait++;
3788 }
3789 }
3790
3791 if (errors_wait) {
3792 /*
3793 * At some point we need the status of all disks
3794 * to arrive at the volume status. So error checking
3795 * is being pushed to a separate loop.
3796 */
3797 return check_barrier_error(info);
3798 }
3799 return 0;
3800 }
3801
3802 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3803 {
3804 int raid_type;
3805 int min_tolerated = INT_MAX;
3806
3807 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3808 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3809 min_tolerated = min_t(int, min_tolerated,
3810 btrfs_raid_array[BTRFS_RAID_SINGLE].
3811 tolerated_failures);
3812
3813 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3814 if (raid_type == BTRFS_RAID_SINGLE)
3815 continue;
3816 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3817 continue;
3818 min_tolerated = min_t(int, min_tolerated,
3819 btrfs_raid_array[raid_type].
3820 tolerated_failures);
3821 }
3822
3823 if (min_tolerated == INT_MAX) {
3824 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3825 min_tolerated = 0;
3826 }
3827
3828 return min_tolerated;
3829 }
3830
3831 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3832 {
3833 struct list_head *head;
3834 struct btrfs_device *dev;
3835 struct btrfs_super_block *sb;
3836 struct btrfs_dev_item *dev_item;
3837 int ret;
3838 int do_barriers;
3839 int max_errors;
3840 int total_errors = 0;
3841 u64 flags;
3842
3843 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3844
3845 /*
3846 * max_mirrors == 0 indicates we're from commit_transaction,
3847 * not from fsync where the tree roots in fs_info have not
3848 * been consistent on disk.
3849 */
3850 if (max_mirrors == 0)
3851 backup_super_roots(fs_info);
3852
3853 sb = fs_info->super_for_commit;
3854 dev_item = &sb->dev_item;
3855
3856 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3857 head = &fs_info->fs_devices->devices;
3858 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3859
3860 if (do_barriers) {
3861 ret = barrier_all_devices(fs_info);
3862 if (ret) {
3863 mutex_unlock(
3864 &fs_info->fs_devices->device_list_mutex);
3865 btrfs_handle_fs_error(fs_info, ret,
3866 "errors while submitting device barriers.");
3867 return ret;
3868 }
3869 }
3870
3871 list_for_each_entry(dev, head, dev_list) {
3872 if (!dev->bdev) {
3873 total_errors++;
3874 continue;
3875 }
3876 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3877 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3878 continue;
3879
3880 btrfs_set_stack_device_generation(dev_item, 0);
3881 btrfs_set_stack_device_type(dev_item, dev->type);
3882 btrfs_set_stack_device_id(dev_item, dev->devid);
3883 btrfs_set_stack_device_total_bytes(dev_item,
3884 dev->commit_total_bytes);
3885 btrfs_set_stack_device_bytes_used(dev_item,
3886 dev->commit_bytes_used);
3887 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3888 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3889 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3890 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3891 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3892 BTRFS_FSID_SIZE);
3893
3894 flags = btrfs_super_flags(sb);
3895 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3896
3897 ret = btrfs_validate_write_super(fs_info, sb);
3898 if (ret < 0) {
3899 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3900 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3901 "unexpected superblock corruption detected");
3902 return -EUCLEAN;
3903 }
3904
3905 ret = write_dev_supers(dev, sb, max_mirrors);
3906 if (ret)
3907 total_errors++;
3908 }
3909 if (total_errors > max_errors) {
3910 btrfs_err(fs_info, "%d errors while writing supers",
3911 total_errors);
3912 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3913
3914 /* FUA is masked off if unsupported and can't be the reason */
3915 btrfs_handle_fs_error(fs_info, -EIO,
3916 "%d errors while writing supers",
3917 total_errors);
3918 return -EIO;
3919 }
3920
3921 total_errors = 0;
3922 list_for_each_entry(dev, head, dev_list) {
3923 if (!dev->bdev)
3924 continue;
3925 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3926 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3927 continue;
3928
3929 ret = wait_dev_supers(dev, max_mirrors);
3930 if (ret)
3931 total_errors++;
3932 }
3933 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3934 if (total_errors > max_errors) {
3935 btrfs_handle_fs_error(fs_info, -EIO,
3936 "%d errors while writing supers",
3937 total_errors);
3938 return -EIO;
3939 }
3940 return 0;
3941 }
3942
3943 /* Drop a fs root from the radix tree and free it. */
3944 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3945 struct btrfs_root *root)
3946 {
3947 bool drop_ref = false;
3948
3949 spin_lock(&fs_info->fs_roots_radix_lock);
3950 radix_tree_delete(&fs_info->fs_roots_radix,
3951 (unsigned long)root->root_key.objectid);
3952 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3953 drop_ref = true;
3954 spin_unlock(&fs_info->fs_roots_radix_lock);
3955
3956 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3957 ASSERT(root->log_root == NULL);
3958 if (root->reloc_root) {
3959 btrfs_put_root(root->reloc_root);
3960 root->reloc_root = NULL;
3961 }
3962 }
3963
3964 if (root->free_ino_pinned)
3965 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3966 if (root->free_ino_ctl)
3967 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3968 if (root->ino_cache_inode) {
3969 iput(root->ino_cache_inode);
3970 root->ino_cache_inode = NULL;
3971 }
3972 if (drop_ref)
3973 btrfs_put_root(root);
3974 }
3975
3976 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3977 {
3978 u64 root_objectid = 0;
3979 struct btrfs_root *gang[8];
3980 int i = 0;
3981 int err = 0;
3982 unsigned int ret = 0;
3983
3984 while (1) {
3985 spin_lock(&fs_info->fs_roots_radix_lock);
3986 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3987 (void **)gang, root_objectid,
3988 ARRAY_SIZE(gang));
3989 if (!ret) {
3990 spin_unlock(&fs_info->fs_roots_radix_lock);
3991 break;
3992 }
3993 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3994
3995 for (i = 0; i < ret; i++) {
3996 /* Avoid to grab roots in dead_roots */
3997 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3998 gang[i] = NULL;
3999 continue;
4000 }
4001 /* grab all the search result for later use */
4002 gang[i] = btrfs_grab_root(gang[i]);
4003 }
4004 spin_unlock(&fs_info->fs_roots_radix_lock);
4005
4006 for (i = 0; i < ret; i++) {
4007 if (!gang[i])
4008 continue;
4009 root_objectid = gang[i]->root_key.objectid;
4010 err = btrfs_orphan_cleanup(gang[i]);
4011 if (err)
4012 break;
4013 btrfs_put_root(gang[i]);
4014 }
4015 root_objectid++;
4016 }
4017
4018 /* release the uncleaned roots due to error */
4019 for (; i < ret; i++) {
4020 if (gang[i])
4021 btrfs_put_root(gang[i]);
4022 }
4023 return err;
4024 }
4025
4026 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4027 {
4028 struct btrfs_root *root = fs_info->tree_root;
4029 struct btrfs_trans_handle *trans;
4030
4031 mutex_lock(&fs_info->cleaner_mutex);
4032 btrfs_run_delayed_iputs(fs_info);
4033 mutex_unlock(&fs_info->cleaner_mutex);
4034 wake_up_process(fs_info->cleaner_kthread);
4035
4036 /* wait until ongoing cleanup work done */
4037 down_write(&fs_info->cleanup_work_sem);
4038 up_write(&fs_info->cleanup_work_sem);
4039
4040 trans = btrfs_join_transaction(root);
4041 if (IS_ERR(trans))
4042 return PTR_ERR(trans);
4043 return btrfs_commit_transaction(trans);
4044 }
4045
4046 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4047 {
4048 int ret;
4049
4050 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4051 /*
4052 * We don't want the cleaner to start new transactions, add more delayed
4053 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4054 * because that frees the task_struct, and the transaction kthread might
4055 * still try to wake up the cleaner.
4056 */
4057 kthread_park(fs_info->cleaner_kthread);
4058
4059 /* wait for the qgroup rescan worker to stop */
4060 btrfs_qgroup_wait_for_completion(fs_info, false);
4061
4062 /* wait for the uuid_scan task to finish */
4063 down(&fs_info->uuid_tree_rescan_sem);
4064 /* avoid complains from lockdep et al., set sem back to initial state */
4065 up(&fs_info->uuid_tree_rescan_sem);
4066
4067 /* pause restriper - we want to resume on mount */
4068 btrfs_pause_balance(fs_info);
4069
4070 btrfs_dev_replace_suspend_for_unmount(fs_info);
4071
4072 btrfs_scrub_cancel(fs_info);
4073
4074 /* wait for any defraggers to finish */
4075 wait_event(fs_info->transaction_wait,
4076 (atomic_read(&fs_info->defrag_running) == 0));
4077
4078 /* clear out the rbtree of defraggable inodes */
4079 btrfs_cleanup_defrag_inodes(fs_info);
4080
4081 cancel_work_sync(&fs_info->async_reclaim_work);
4082
4083 /* Cancel or finish ongoing discard work */
4084 btrfs_discard_cleanup(fs_info);
4085
4086 if (!sb_rdonly(fs_info->sb)) {
4087 /*
4088 * The cleaner kthread is stopped, so do one final pass over
4089 * unused block groups.
4090 */
4091 btrfs_delete_unused_bgs(fs_info);
4092
4093 /*
4094 * There might be existing delayed inode workers still running
4095 * and holding an empty delayed inode item. We must wait for
4096 * them to complete first because they can create a transaction.
4097 * This happens when someone calls btrfs_balance_delayed_items()
4098 * and then a transaction commit runs the same delayed nodes
4099 * before any delayed worker has done something with the nodes.
4100 * We must wait for any worker here and not at transaction
4101 * commit time since that could cause a deadlock.
4102 * This is a very rare case.
4103 */
4104 btrfs_flush_workqueue(fs_info->delayed_workers);
4105
4106 ret = btrfs_commit_super(fs_info);
4107 if (ret)
4108 btrfs_err(fs_info, "commit super ret %d", ret);
4109 }
4110
4111 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4112 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4113 btrfs_error_commit_super(fs_info);
4114
4115 kthread_stop(fs_info->transaction_kthread);
4116 kthread_stop(fs_info->cleaner_kthread);
4117
4118 ASSERT(list_empty(&fs_info->delayed_iputs));
4119 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4120
4121 if (btrfs_check_quota_leak(fs_info)) {
4122 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4123 btrfs_err(fs_info, "qgroup reserved space leaked");
4124 }
4125
4126 btrfs_free_qgroup_config(fs_info);
4127 ASSERT(list_empty(&fs_info->delalloc_roots));
4128
4129 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4130 btrfs_info(fs_info, "at unmount delalloc count %lld",
4131 percpu_counter_sum(&fs_info->delalloc_bytes));
4132 }
4133
4134 if (percpu_counter_sum(&fs_info->dio_bytes))
4135 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4136 percpu_counter_sum(&fs_info->dio_bytes));
4137
4138 btrfs_sysfs_remove_mounted(fs_info);
4139 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4140
4141 btrfs_put_block_group_cache(fs_info);
4142
4143 /*
4144 * we must make sure there is not any read request to
4145 * submit after we stopping all workers.
4146 */
4147 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4148 btrfs_stop_all_workers(fs_info);
4149
4150 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4151 free_root_pointers(fs_info, true);
4152 btrfs_free_fs_roots(fs_info);
4153
4154 /*
4155 * We must free the block groups after dropping the fs_roots as we could
4156 * have had an IO error and have left over tree log blocks that aren't
4157 * cleaned up until the fs roots are freed. This makes the block group
4158 * accounting appear to be wrong because there's pending reserved bytes,
4159 * so make sure we do the block group cleanup afterwards.
4160 */
4161 btrfs_free_block_groups(fs_info);
4162
4163 iput(fs_info->btree_inode);
4164
4165 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4166 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4167 btrfsic_unmount(fs_info->fs_devices);
4168 #endif
4169
4170 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4171 btrfs_close_devices(fs_info->fs_devices);
4172 }
4173
4174 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4175 int atomic)
4176 {
4177 int ret;
4178 struct inode *btree_inode = buf->pages[0]->mapping->host;
4179
4180 ret = extent_buffer_uptodate(buf);
4181 if (!ret)
4182 return ret;
4183
4184 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4185 parent_transid, atomic);
4186 if (ret == -EAGAIN)
4187 return ret;
4188 return !ret;
4189 }
4190
4191 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4192 {
4193 struct btrfs_fs_info *fs_info;
4194 struct btrfs_root *root;
4195 u64 transid = btrfs_header_generation(buf);
4196 int was_dirty;
4197
4198 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4199 /*
4200 * This is a fast path so only do this check if we have sanity tests
4201 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4202 * outside of the sanity tests.
4203 */
4204 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4205 return;
4206 #endif
4207 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4208 fs_info = root->fs_info;
4209 btrfs_assert_tree_locked(buf);
4210 if (transid != fs_info->generation)
4211 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4212 buf->start, transid, fs_info->generation);
4213 was_dirty = set_extent_buffer_dirty(buf);
4214 if (!was_dirty)
4215 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4216 buf->len,
4217 fs_info->dirty_metadata_batch);
4218 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4219 /*
4220 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4221 * but item data not updated.
4222 * So here we should only check item pointers, not item data.
4223 */
4224 if (btrfs_header_level(buf) == 0 &&
4225 btrfs_check_leaf_relaxed(buf)) {
4226 btrfs_print_leaf(buf);
4227 ASSERT(0);
4228 }
4229 #endif
4230 }
4231
4232 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4233 int flush_delayed)
4234 {
4235 /*
4236 * looks as though older kernels can get into trouble with
4237 * this code, they end up stuck in balance_dirty_pages forever
4238 */
4239 int ret;
4240
4241 if (current->flags & PF_MEMALLOC)
4242 return;
4243
4244 if (flush_delayed)
4245 btrfs_balance_delayed_items(fs_info);
4246
4247 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4248 BTRFS_DIRTY_METADATA_THRESH,
4249 fs_info->dirty_metadata_batch);
4250 if (ret > 0) {
4251 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4252 }
4253 }
4254
4255 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4256 {
4257 __btrfs_btree_balance_dirty(fs_info, 1);
4258 }
4259
4260 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4261 {
4262 __btrfs_btree_balance_dirty(fs_info, 0);
4263 }
4264
4265 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4266 struct btrfs_key *first_key)
4267 {
4268 return btree_read_extent_buffer_pages(buf, parent_transid,
4269 level, first_key);
4270 }
4271
4272 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4273 {
4274 /* cleanup FS via transaction */
4275 btrfs_cleanup_transaction(fs_info);
4276
4277 mutex_lock(&fs_info->cleaner_mutex);
4278 btrfs_run_delayed_iputs(fs_info);
4279 mutex_unlock(&fs_info->cleaner_mutex);
4280
4281 down_write(&fs_info->cleanup_work_sem);
4282 up_write(&fs_info->cleanup_work_sem);
4283 }
4284
4285 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4286 {
4287 struct btrfs_root *gang[8];
4288 u64 root_objectid = 0;
4289 int ret;
4290
4291 spin_lock(&fs_info->fs_roots_radix_lock);
4292 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4293 (void **)gang, root_objectid,
4294 ARRAY_SIZE(gang))) != 0) {
4295 int i;
4296
4297 for (i = 0; i < ret; i++)
4298 gang[i] = btrfs_grab_root(gang[i]);
4299 spin_unlock(&fs_info->fs_roots_radix_lock);
4300
4301 for (i = 0; i < ret; i++) {
4302 if (!gang[i])
4303 continue;
4304 root_objectid = gang[i]->root_key.objectid;
4305 btrfs_free_log(NULL, gang[i]);
4306 btrfs_put_root(gang[i]);
4307 }
4308 root_objectid++;
4309 spin_lock(&fs_info->fs_roots_radix_lock);
4310 }
4311 spin_unlock(&fs_info->fs_roots_radix_lock);
4312 btrfs_free_log_root_tree(NULL, fs_info);
4313 }
4314
4315 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4316 {
4317 struct btrfs_ordered_extent *ordered;
4318
4319 spin_lock(&root->ordered_extent_lock);
4320 /*
4321 * This will just short circuit the ordered completion stuff which will
4322 * make sure the ordered extent gets properly cleaned up.
4323 */
4324 list_for_each_entry(ordered, &root->ordered_extents,
4325 root_extent_list)
4326 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4327 spin_unlock(&root->ordered_extent_lock);
4328 }
4329
4330 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4331 {
4332 struct btrfs_root *root;
4333 struct list_head splice;
4334
4335 INIT_LIST_HEAD(&splice);
4336
4337 spin_lock(&fs_info->ordered_root_lock);
4338 list_splice_init(&fs_info->ordered_roots, &splice);
4339 while (!list_empty(&splice)) {
4340 root = list_first_entry(&splice, struct btrfs_root,
4341 ordered_root);
4342 list_move_tail(&root->ordered_root,
4343 &fs_info->ordered_roots);
4344
4345 spin_unlock(&fs_info->ordered_root_lock);
4346 btrfs_destroy_ordered_extents(root);
4347
4348 cond_resched();
4349 spin_lock(&fs_info->ordered_root_lock);
4350 }
4351 spin_unlock(&fs_info->ordered_root_lock);
4352
4353 /*
4354 * We need this here because if we've been flipped read-only we won't
4355 * get sync() from the umount, so we need to make sure any ordered
4356 * extents that haven't had their dirty pages IO start writeout yet
4357 * actually get run and error out properly.
4358 */
4359 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4360 }
4361
4362 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4363 struct btrfs_fs_info *fs_info)
4364 {
4365 struct rb_node *node;
4366 struct btrfs_delayed_ref_root *delayed_refs;
4367 struct btrfs_delayed_ref_node *ref;
4368 int ret = 0;
4369
4370 delayed_refs = &trans->delayed_refs;
4371
4372 spin_lock(&delayed_refs->lock);
4373 if (atomic_read(&delayed_refs->num_entries) == 0) {
4374 spin_unlock(&delayed_refs->lock);
4375 btrfs_debug(fs_info, "delayed_refs has NO entry");
4376 return ret;
4377 }
4378
4379 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4380 struct btrfs_delayed_ref_head *head;
4381 struct rb_node *n;
4382 bool pin_bytes = false;
4383
4384 head = rb_entry(node, struct btrfs_delayed_ref_head,
4385 href_node);
4386 if (btrfs_delayed_ref_lock(delayed_refs, head))
4387 continue;
4388
4389 spin_lock(&head->lock);
4390 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4391 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4392 ref_node);
4393 ref->in_tree = 0;
4394 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4395 RB_CLEAR_NODE(&ref->ref_node);
4396 if (!list_empty(&ref->add_list))
4397 list_del(&ref->add_list);
4398 atomic_dec(&delayed_refs->num_entries);
4399 btrfs_put_delayed_ref(ref);
4400 }
4401 if (head->must_insert_reserved)
4402 pin_bytes = true;
4403 btrfs_free_delayed_extent_op(head->extent_op);
4404 btrfs_delete_ref_head(delayed_refs, head);
4405 spin_unlock(&head->lock);
4406 spin_unlock(&delayed_refs->lock);
4407 mutex_unlock(&head->mutex);
4408
4409 if (pin_bytes) {
4410 struct btrfs_block_group *cache;
4411
4412 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4413 BUG_ON(!cache);
4414
4415 spin_lock(&cache->space_info->lock);
4416 spin_lock(&cache->lock);
4417 cache->pinned += head->num_bytes;
4418 btrfs_space_info_update_bytes_pinned(fs_info,
4419 cache->space_info, head->num_bytes);
4420 cache->reserved -= head->num_bytes;
4421 cache->space_info->bytes_reserved -= head->num_bytes;
4422 spin_unlock(&cache->lock);
4423 spin_unlock(&cache->space_info->lock);
4424 percpu_counter_add_batch(
4425 &cache->space_info->total_bytes_pinned,
4426 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4427
4428 btrfs_put_block_group(cache);
4429
4430 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4431 head->bytenr + head->num_bytes - 1);
4432 }
4433 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4434 btrfs_put_delayed_ref_head(head);
4435 cond_resched();
4436 spin_lock(&delayed_refs->lock);
4437 }
4438 btrfs_qgroup_destroy_extent_records(trans);
4439
4440 spin_unlock(&delayed_refs->lock);
4441
4442 return ret;
4443 }
4444
4445 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4446 {
4447 struct btrfs_inode *btrfs_inode;
4448 struct list_head splice;
4449
4450 INIT_LIST_HEAD(&splice);
4451
4452 spin_lock(&root->delalloc_lock);
4453 list_splice_init(&root->delalloc_inodes, &splice);
4454
4455 while (!list_empty(&splice)) {
4456 struct inode *inode = NULL;
4457 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4458 delalloc_inodes);
4459 __btrfs_del_delalloc_inode(root, btrfs_inode);
4460 spin_unlock(&root->delalloc_lock);
4461
4462 /*
4463 * Make sure we get a live inode and that it'll not disappear
4464 * meanwhile.
4465 */
4466 inode = igrab(&btrfs_inode->vfs_inode);
4467 if (inode) {
4468 invalidate_inode_pages2(inode->i_mapping);
4469 iput(inode);
4470 }
4471 spin_lock(&root->delalloc_lock);
4472 }
4473 spin_unlock(&root->delalloc_lock);
4474 }
4475
4476 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4477 {
4478 struct btrfs_root *root;
4479 struct list_head splice;
4480
4481 INIT_LIST_HEAD(&splice);
4482
4483 spin_lock(&fs_info->delalloc_root_lock);
4484 list_splice_init(&fs_info->delalloc_roots, &splice);
4485 while (!list_empty(&splice)) {
4486 root = list_first_entry(&splice, struct btrfs_root,
4487 delalloc_root);
4488 root = btrfs_grab_root(root);
4489 BUG_ON(!root);
4490 spin_unlock(&fs_info->delalloc_root_lock);
4491
4492 btrfs_destroy_delalloc_inodes(root);
4493 btrfs_put_root(root);
4494
4495 spin_lock(&fs_info->delalloc_root_lock);
4496 }
4497 spin_unlock(&fs_info->delalloc_root_lock);
4498 }
4499
4500 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4501 struct extent_io_tree *dirty_pages,
4502 int mark)
4503 {
4504 int ret;
4505 struct extent_buffer *eb;
4506 u64 start = 0;
4507 u64 end;
4508
4509 while (1) {
4510 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4511 mark, NULL);
4512 if (ret)
4513 break;
4514
4515 clear_extent_bits(dirty_pages, start, end, mark);
4516 while (start <= end) {
4517 eb = find_extent_buffer(fs_info, start);
4518 start += fs_info->nodesize;
4519 if (!eb)
4520 continue;
4521 wait_on_extent_buffer_writeback(eb);
4522
4523 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4524 &eb->bflags))
4525 clear_extent_buffer_dirty(eb);
4526 free_extent_buffer_stale(eb);
4527 }
4528 }
4529
4530 return ret;
4531 }
4532
4533 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4534 struct extent_io_tree *unpin)
4535 {
4536 u64 start;
4537 u64 end;
4538 int ret;
4539
4540 while (1) {
4541 struct extent_state *cached_state = NULL;
4542
4543 /*
4544 * The btrfs_finish_extent_commit() may get the same range as
4545 * ours between find_first_extent_bit and clear_extent_dirty.
4546 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4547 * the same extent range.
4548 */
4549 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4550 ret = find_first_extent_bit(unpin, 0, &start, &end,
4551 EXTENT_DIRTY, &cached_state);
4552 if (ret) {
4553 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4554 break;
4555 }
4556
4557 clear_extent_dirty(unpin, start, end, &cached_state);
4558 free_extent_state(cached_state);
4559 btrfs_error_unpin_extent_range(fs_info, start, end);
4560 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4561 cond_resched();
4562 }
4563
4564 return 0;
4565 }
4566
4567 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4568 {
4569 struct inode *inode;
4570
4571 inode = cache->io_ctl.inode;
4572 if (inode) {
4573 invalidate_inode_pages2(inode->i_mapping);
4574 BTRFS_I(inode)->generation = 0;
4575 cache->io_ctl.inode = NULL;
4576 iput(inode);
4577 }
4578 ASSERT(cache->io_ctl.pages == NULL);
4579 btrfs_put_block_group(cache);
4580 }
4581
4582 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4583 struct btrfs_fs_info *fs_info)
4584 {
4585 struct btrfs_block_group *cache;
4586
4587 spin_lock(&cur_trans->dirty_bgs_lock);
4588 while (!list_empty(&cur_trans->dirty_bgs)) {
4589 cache = list_first_entry(&cur_trans->dirty_bgs,
4590 struct btrfs_block_group,
4591 dirty_list);
4592
4593 if (!list_empty(&cache->io_list)) {
4594 spin_unlock(&cur_trans->dirty_bgs_lock);
4595 list_del_init(&cache->io_list);
4596 btrfs_cleanup_bg_io(cache);
4597 spin_lock(&cur_trans->dirty_bgs_lock);
4598 }
4599
4600 list_del_init(&cache->dirty_list);
4601 spin_lock(&cache->lock);
4602 cache->disk_cache_state = BTRFS_DC_ERROR;
4603 spin_unlock(&cache->lock);
4604
4605 spin_unlock(&cur_trans->dirty_bgs_lock);
4606 btrfs_put_block_group(cache);
4607 btrfs_delayed_refs_rsv_release(fs_info, 1);
4608 spin_lock(&cur_trans->dirty_bgs_lock);
4609 }
4610 spin_unlock(&cur_trans->dirty_bgs_lock);
4611
4612 /*
4613 * Refer to the definition of io_bgs member for details why it's safe
4614 * to use it without any locking
4615 */
4616 while (!list_empty(&cur_trans->io_bgs)) {
4617 cache = list_first_entry(&cur_trans->io_bgs,
4618 struct btrfs_block_group,
4619 io_list);
4620
4621 list_del_init(&cache->io_list);
4622 spin_lock(&cache->lock);
4623 cache->disk_cache_state = BTRFS_DC_ERROR;
4624 spin_unlock(&cache->lock);
4625 btrfs_cleanup_bg_io(cache);
4626 }
4627 }
4628
4629 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4630 struct btrfs_fs_info *fs_info)
4631 {
4632 struct btrfs_device *dev, *tmp;
4633
4634 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4635 ASSERT(list_empty(&cur_trans->dirty_bgs));
4636 ASSERT(list_empty(&cur_trans->io_bgs));
4637
4638 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4639 post_commit_list) {
4640 list_del_init(&dev->post_commit_list);
4641 }
4642
4643 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4644
4645 cur_trans->state = TRANS_STATE_COMMIT_START;
4646 wake_up(&fs_info->transaction_blocked_wait);
4647
4648 cur_trans->state = TRANS_STATE_UNBLOCKED;
4649 wake_up(&fs_info->transaction_wait);
4650
4651 btrfs_destroy_delayed_inodes(fs_info);
4652
4653 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4654 EXTENT_DIRTY);
4655 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4656
4657 cur_trans->state =TRANS_STATE_COMPLETED;
4658 wake_up(&cur_trans->commit_wait);
4659 }
4660
4661 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4662 {
4663 struct btrfs_transaction *t;
4664
4665 mutex_lock(&fs_info->transaction_kthread_mutex);
4666
4667 spin_lock(&fs_info->trans_lock);
4668 while (!list_empty(&fs_info->trans_list)) {
4669 t = list_first_entry(&fs_info->trans_list,
4670 struct btrfs_transaction, list);
4671 if (t->state >= TRANS_STATE_COMMIT_START) {
4672 refcount_inc(&t->use_count);
4673 spin_unlock(&fs_info->trans_lock);
4674 btrfs_wait_for_commit(fs_info, t->transid);
4675 btrfs_put_transaction(t);
4676 spin_lock(&fs_info->trans_lock);
4677 continue;
4678 }
4679 if (t == fs_info->running_transaction) {
4680 t->state = TRANS_STATE_COMMIT_DOING;
4681 spin_unlock(&fs_info->trans_lock);
4682 /*
4683 * We wait for 0 num_writers since we don't hold a trans
4684 * handle open currently for this transaction.
4685 */
4686 wait_event(t->writer_wait,
4687 atomic_read(&t->num_writers) == 0);
4688 } else {
4689 spin_unlock(&fs_info->trans_lock);
4690 }
4691 btrfs_cleanup_one_transaction(t, fs_info);
4692
4693 spin_lock(&fs_info->trans_lock);
4694 if (t == fs_info->running_transaction)
4695 fs_info->running_transaction = NULL;
4696 list_del_init(&t->list);
4697 spin_unlock(&fs_info->trans_lock);
4698
4699 btrfs_put_transaction(t);
4700 trace_btrfs_transaction_commit(fs_info->tree_root);
4701 spin_lock(&fs_info->trans_lock);
4702 }
4703 spin_unlock(&fs_info->trans_lock);
4704 btrfs_destroy_all_ordered_extents(fs_info);
4705 btrfs_destroy_delayed_inodes(fs_info);
4706 btrfs_assert_delayed_root_empty(fs_info);
4707 btrfs_destroy_all_delalloc_inodes(fs_info);
4708 btrfs_drop_all_logs(fs_info);
4709 mutex_unlock(&fs_info->transaction_kthread_mutex);
4710
4711 return 0;
4712 }
4713
4714 static const struct extent_io_ops btree_extent_io_ops = {
4715 /* mandatory callbacks */
4716 .submit_bio_hook = btree_submit_bio_hook,
4717 .readpage_end_io_hook = btree_readpage_end_io_hook,
4718 };