2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
55 #include <asm/cpufeature.h>
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
64 static const struct extent_io_ops btree_extent_io_ops
;
65 static void end_workqueue_fn(struct btrfs_work
*work
);
66 static void free_fs_root(struct btrfs_root
*root
);
67 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
);
68 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
70 struct btrfs_fs_info
*fs_info
);
71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
73 struct extent_io_tree
*dirty_pages
,
75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
76 struct extent_io_tree
*pinned_extents
);
77 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
78 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
82 * is complete. This is used during reads to verify checksums, and it is used
83 * by writes to insert metadata for new file extents after IO is complete.
85 struct btrfs_end_io_wq
{
89 struct btrfs_fs_info
*info
;
91 enum btrfs_wq_endio_type metadata
;
92 struct list_head list
;
93 struct btrfs_work work
;
96 static struct kmem_cache
*btrfs_end_io_wq_cache
;
98 int __init
btrfs_end_io_wq_init(void)
100 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
101 sizeof(struct btrfs_end_io_wq
),
105 if (!btrfs_end_io_wq_cache
)
110 void btrfs_end_io_wq_exit(void)
112 kmem_cache_destroy(btrfs_end_io_wq_cache
);
116 * async submit bios are used to offload expensive checksumming
117 * onto the worker threads. They checksum file and metadata bios
118 * just before they are sent down the IO stack.
120 struct async_submit_bio
{
123 struct list_head list
;
124 extent_submit_bio_hook_t
*submit_bio_start
;
125 extent_submit_bio_hook_t
*submit_bio_done
;
127 unsigned long bio_flags
;
129 * bio_offset is optional, can be used if the pages in the bio
130 * can't tell us where in the file the bio should go
133 struct btrfs_work work
;
138 * Lockdep class keys for extent_buffer->lock's in this root. For a given
139 * eb, the lockdep key is determined by the btrfs_root it belongs to and
140 * the level the eb occupies in the tree.
142 * Different roots are used for different purposes and may nest inside each
143 * other and they require separate keysets. As lockdep keys should be
144 * static, assign keysets according to the purpose of the root as indicated
145 * by btrfs_root->objectid. This ensures that all special purpose roots
146 * have separate keysets.
148 * Lock-nesting across peer nodes is always done with the immediate parent
149 * node locked thus preventing deadlock. As lockdep doesn't know this, use
150 * subclass to avoid triggering lockdep warning in such cases.
152 * The key is set by the readpage_end_io_hook after the buffer has passed
153 * csum validation but before the pages are unlocked. It is also set by
154 * btrfs_init_new_buffer on freshly allocated blocks.
156 * We also add a check to make sure the highest level of the tree is the
157 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
158 * needs update as well.
160 #ifdef CONFIG_DEBUG_LOCK_ALLOC
161 # if BTRFS_MAX_LEVEL != 8
165 static struct btrfs_lockdep_keyset
{
166 u64 id
; /* root objectid */
167 const char *name_stem
; /* lock name stem */
168 char names
[BTRFS_MAX_LEVEL
+ 1][20];
169 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
170 } btrfs_lockdep_keysets
[] = {
171 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
172 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
173 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
174 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
175 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
176 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
177 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
178 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
179 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
180 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
181 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
182 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
183 { .id
= 0, .name_stem
= "tree" },
186 void __init
btrfs_init_lockdep(void)
190 /* initialize lockdep class names */
191 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
192 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
194 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
195 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
196 "btrfs-%s-%02d", ks
->name_stem
, j
);
200 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
203 struct btrfs_lockdep_keyset
*ks
;
205 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
207 /* find the matching keyset, id 0 is the default entry */
208 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
209 if (ks
->id
== objectid
)
212 lockdep_set_class_and_name(&eb
->lock
,
213 &ks
->keys
[level
], ks
->names
[level
]);
219 * extents on the btree inode are pretty simple, there's one extent
220 * that covers the entire device
222 static struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
223 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
226 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
227 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
228 struct extent_map
*em
;
231 read_lock(&em_tree
->lock
);
232 em
= lookup_extent_mapping(em_tree
, start
, len
);
234 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
235 read_unlock(&em_tree
->lock
);
238 read_unlock(&em_tree
->lock
);
240 em
= alloc_extent_map();
242 em
= ERR_PTR(-ENOMEM
);
247 em
->block_len
= (u64
)-1;
249 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
251 write_lock(&em_tree
->lock
);
252 ret
= add_extent_mapping(em_tree
, em
, 0);
253 if (ret
== -EEXIST
) {
255 em
= lookup_extent_mapping(em_tree
, start
, len
);
262 write_unlock(&em_tree
->lock
);
268 u32
btrfs_csum_data(const char *data
, u32 seed
, size_t len
)
270 return btrfs_crc32c(seed
, data
, len
);
273 void btrfs_csum_final(u32 crc
, u8
*result
)
275 put_unaligned_le32(~crc
, result
);
279 * compute the csum for a btree block, and either verify it or write it
280 * into the csum field of the block.
282 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
283 struct extent_buffer
*buf
,
286 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
289 unsigned long cur_len
;
290 unsigned long offset
= BTRFS_CSUM_SIZE
;
292 unsigned long map_start
;
293 unsigned long map_len
;
296 unsigned long inline_result
;
298 len
= buf
->len
- offset
;
300 err
= map_private_extent_buffer(buf
, offset
, 32,
301 &kaddr
, &map_start
, &map_len
);
304 cur_len
= min(len
, map_len
- (offset
- map_start
));
305 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
310 if (csum_size
> sizeof(inline_result
)) {
311 result
= kzalloc(csum_size
, GFP_NOFS
);
315 result
= (char *)&inline_result
;
318 btrfs_csum_final(crc
, result
);
321 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
324 memcpy(&found
, result
, csum_size
);
326 read_extent_buffer(buf
, &val
, 0, csum_size
);
327 btrfs_warn_rl(fs_info
,
328 "%s checksum verify failed on %llu wanted %X found %X level %d",
329 fs_info
->sb
->s_id
, buf
->start
,
330 val
, found
, btrfs_header_level(buf
));
331 if (result
!= (char *)&inline_result
)
336 write_extent_buffer(buf
, result
, 0, csum_size
);
338 if (result
!= (char *)&inline_result
)
344 * we can't consider a given block up to date unless the transid of the
345 * block matches the transid in the parent node's pointer. This is how we
346 * detect blocks that either didn't get written at all or got written
347 * in the wrong place.
349 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
350 struct extent_buffer
*eb
, u64 parent_transid
,
353 struct extent_state
*cached_state
= NULL
;
355 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
357 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
364 btrfs_tree_read_lock(eb
);
365 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
368 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
370 if (extent_buffer_uptodate(eb
) &&
371 btrfs_header_generation(eb
) == parent_transid
) {
375 btrfs_err_rl(eb
->fs_info
,
376 "parent transid verify failed on %llu wanted %llu found %llu",
378 parent_transid
, btrfs_header_generation(eb
));
382 * Things reading via commit roots that don't have normal protection,
383 * like send, can have a really old block in cache that may point at a
384 * block that has been freed and re-allocated. So don't clear uptodate
385 * if we find an eb that is under IO (dirty/writeback) because we could
386 * end up reading in the stale data and then writing it back out and
387 * making everybody very sad.
389 if (!extent_buffer_under_io(eb
))
390 clear_extent_buffer_uptodate(eb
);
392 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
393 &cached_state
, GFP_NOFS
);
395 btrfs_tree_read_unlock_blocking(eb
);
400 * Return 0 if the superblock checksum type matches the checksum value of that
401 * algorithm. Pass the raw disk superblock data.
403 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
406 struct btrfs_super_block
*disk_sb
=
407 (struct btrfs_super_block
*)raw_disk_sb
;
408 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
411 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
413 const int csum_size
= sizeof(crc
);
414 char result
[csum_size
];
417 * The super_block structure does not span the whole
418 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
419 * is filled with zeros and is included in the checksum.
421 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
422 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
423 btrfs_csum_final(crc
, result
);
425 if (memcmp(raw_disk_sb
, result
, csum_size
))
429 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
430 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
442 static int btree_read_extent_buffer_pages(struct btrfs_fs_info
*fs_info
,
443 struct extent_buffer
*eb
,
446 struct extent_io_tree
*io_tree
;
451 int failed_mirror
= 0;
453 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
454 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
456 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
457 btree_get_extent
, mirror_num
);
459 if (!verify_parent_transid(io_tree
, eb
,
467 * This buffer's crc is fine, but its contents are corrupted, so
468 * there is no reason to read the other copies, they won't be
471 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
474 num_copies
= btrfs_num_copies(fs_info
,
479 if (!failed_mirror
) {
481 failed_mirror
= eb
->read_mirror
;
485 if (mirror_num
== failed_mirror
)
488 if (mirror_num
> num_copies
)
492 if (failed
&& !ret
&& failed_mirror
)
493 repair_eb_io_failure(fs_info
, eb
, failed_mirror
);
499 * checksum a dirty tree block before IO. This has extra checks to make sure
500 * we only fill in the checksum field in the first page of a multi-page block
503 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
505 u64 start
= page_offset(page
);
507 struct extent_buffer
*eb
;
509 eb
= (struct extent_buffer
*)page
->private;
510 if (page
!= eb
->pages
[0])
513 found_start
= btrfs_header_bytenr(eb
);
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
518 if (WARN_ON(found_start
!= start
))
520 if (WARN_ON(!PageUptodate(page
)))
523 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
524 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
526 return csum_tree_block(fs_info
, eb
, 0);
529 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
530 struct extent_buffer
*eb
)
532 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
533 u8 fsid
[BTRFS_UUID_SIZE
];
536 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
538 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
542 fs_devices
= fs_devices
->seed
;
547 #define CORRUPT(reason, eb, root, slot) \
548 btrfs_crit(root->fs_info, \
549 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
550 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
551 reason, btrfs_header_bytenr(eb), root->objectid, slot)
553 static noinline
int check_leaf(struct btrfs_root
*root
,
554 struct extent_buffer
*leaf
)
556 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
557 struct btrfs_key key
;
558 struct btrfs_key leaf_key
;
559 u32 nritems
= btrfs_header_nritems(leaf
);
563 * Extent buffers from a relocation tree have a owner field that
564 * corresponds to the subvolume tree they are based on. So just from an
565 * extent buffer alone we can not find out what is the id of the
566 * corresponding subvolume tree, so we can not figure out if the extent
567 * buffer corresponds to the root of the relocation tree or not. So skip
568 * this check for relocation trees.
570 if (nritems
== 0 && !btrfs_header_flag(leaf
, BTRFS_HEADER_FLAG_RELOC
)) {
571 struct btrfs_root
*check_root
;
573 key
.objectid
= btrfs_header_owner(leaf
);
574 key
.type
= BTRFS_ROOT_ITEM_KEY
;
575 key
.offset
= (u64
)-1;
577 check_root
= btrfs_get_fs_root(fs_info
, &key
, false);
579 * The only reason we also check NULL here is that during
580 * open_ctree() some roots has not yet been set up.
582 if (!IS_ERR_OR_NULL(check_root
)) {
583 struct extent_buffer
*eb
;
585 eb
= btrfs_root_node(check_root
);
586 /* if leaf is the root, then it's fine */
588 CORRUPT("non-root leaf's nritems is 0",
589 leaf
, check_root
, 0);
590 free_extent_buffer(eb
);
593 free_extent_buffer(eb
);
601 /* Check the 0 item */
602 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
603 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
604 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
609 * Check to make sure each items keys are in the correct order and their
610 * offsets make sense. We only have to loop through nritems-1 because
611 * we check the current slot against the next slot, which verifies the
612 * next slot's offset+size makes sense and that the current's slot
615 for (slot
= 0; slot
< nritems
- 1; slot
++) {
616 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
617 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
619 /* Make sure the keys are in the right order */
620 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
621 CORRUPT("bad key order", leaf
, root
, slot
);
626 * Make sure the offset and ends are right, remember that the
627 * item data starts at the end of the leaf and grows towards the
630 if (btrfs_item_offset_nr(leaf
, slot
) !=
631 btrfs_item_end_nr(leaf
, slot
+ 1)) {
632 CORRUPT("slot offset bad", leaf
, root
, slot
);
637 * Check to make sure that we don't point outside of the leaf,
638 * just in case all the items are consistent to each other, but
639 * all point outside of the leaf.
641 if (btrfs_item_end_nr(leaf
, slot
) >
642 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
643 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
651 static int check_node(struct btrfs_root
*root
, struct extent_buffer
*node
)
653 unsigned long nr
= btrfs_header_nritems(node
);
654 struct btrfs_key key
, next_key
;
659 if (nr
== 0 || nr
> BTRFS_NODEPTRS_PER_BLOCK(root
->fs_info
)) {
660 btrfs_crit(root
->fs_info
,
661 "corrupt node: block %llu root %llu nritems %lu",
662 node
->start
, root
->objectid
, nr
);
666 for (slot
= 0; slot
< nr
- 1; slot
++) {
667 bytenr
= btrfs_node_blockptr(node
, slot
);
668 btrfs_node_key_to_cpu(node
, &key
, slot
);
669 btrfs_node_key_to_cpu(node
, &next_key
, slot
+ 1);
672 CORRUPT("invalid item slot", node
, root
, slot
);
677 if (btrfs_comp_cpu_keys(&key
, &next_key
) >= 0) {
678 CORRUPT("bad key order", node
, root
, slot
);
687 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
688 u64 phy_offset
, struct page
*page
,
689 u64 start
, u64 end
, int mirror
)
693 struct extent_buffer
*eb
;
694 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
695 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
702 eb
= (struct extent_buffer
*)page
->private;
704 /* the pending IO might have been the only thing that kept this buffer
705 * in memory. Make sure we have a ref for all this other checks
707 extent_buffer_get(eb
);
709 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
713 eb
->read_mirror
= mirror
;
714 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
719 found_start
= btrfs_header_bytenr(eb
);
720 if (found_start
!= eb
->start
) {
721 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
722 found_start
, eb
->start
);
726 if (check_tree_block_fsid(fs_info
, eb
)) {
727 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
732 found_level
= btrfs_header_level(eb
);
733 if (found_level
>= BTRFS_MAX_LEVEL
) {
734 btrfs_err(fs_info
, "bad tree block level %d",
735 (int)btrfs_header_level(eb
));
740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
743 ret
= csum_tree_block(fs_info
, eb
, 1);
748 * If this is a leaf block and it is corrupt, set the corrupt bit so
749 * that we don't try and read the other copies of this block, just
752 if (found_level
== 0 && check_leaf(root
, eb
)) {
753 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
757 if (found_level
> 0 && check_node(root
, eb
))
761 set_extent_buffer_uptodate(eb
);
764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
765 btree_readahead_hook(fs_info
, eb
, ret
);
769 * our io error hook is going to dec the io pages
770 * again, we have to make sure it has something
773 atomic_inc(&eb
->io_pages
);
774 clear_extent_buffer_uptodate(eb
);
776 free_extent_buffer(eb
);
781 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
783 struct extent_buffer
*eb
;
785 eb
= (struct extent_buffer
*)page
->private;
786 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
787 eb
->read_mirror
= failed_mirror
;
788 atomic_dec(&eb
->io_pages
);
789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
790 btree_readahead_hook(eb
->fs_info
, eb
, -EIO
);
791 return -EIO
; /* we fixed nothing */
794 static void end_workqueue_bio(struct bio
*bio
)
796 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
797 struct btrfs_fs_info
*fs_info
;
798 struct btrfs_workqueue
*wq
;
799 btrfs_work_func_t func
;
801 fs_info
= end_io_wq
->info
;
802 end_io_wq
->error
= bio
->bi_error
;
804 if (bio_op(bio
) == REQ_OP_WRITE
) {
805 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
806 wq
= fs_info
->endio_meta_write_workers
;
807 func
= btrfs_endio_meta_write_helper
;
808 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
809 wq
= fs_info
->endio_freespace_worker
;
810 func
= btrfs_freespace_write_helper
;
811 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
812 wq
= fs_info
->endio_raid56_workers
;
813 func
= btrfs_endio_raid56_helper
;
815 wq
= fs_info
->endio_write_workers
;
816 func
= btrfs_endio_write_helper
;
819 if (unlikely(end_io_wq
->metadata
==
820 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
821 wq
= fs_info
->endio_repair_workers
;
822 func
= btrfs_endio_repair_helper
;
823 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
824 wq
= fs_info
->endio_raid56_workers
;
825 func
= btrfs_endio_raid56_helper
;
826 } else if (end_io_wq
->metadata
) {
827 wq
= fs_info
->endio_meta_workers
;
828 func
= btrfs_endio_meta_helper
;
830 wq
= fs_info
->endio_workers
;
831 func
= btrfs_endio_helper
;
835 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
836 btrfs_queue_work(wq
, &end_io_wq
->work
);
839 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
840 enum btrfs_wq_endio_type metadata
)
842 struct btrfs_end_io_wq
*end_io_wq
;
844 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
848 end_io_wq
->private = bio
->bi_private
;
849 end_io_wq
->end_io
= bio
->bi_end_io
;
850 end_io_wq
->info
= info
;
851 end_io_wq
->error
= 0;
852 end_io_wq
->bio
= bio
;
853 end_io_wq
->metadata
= metadata
;
855 bio
->bi_private
= end_io_wq
;
856 bio
->bi_end_io
= end_workqueue_bio
;
860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
862 unsigned long limit
= min_t(unsigned long,
863 info
->thread_pool_size
,
864 info
->fs_devices
->open_devices
);
868 static void run_one_async_start(struct btrfs_work
*work
)
870 struct async_submit_bio
*async
;
873 async
= container_of(work
, struct async_submit_bio
, work
);
874 ret
= async
->submit_bio_start(async
->inode
, async
->bio
,
875 async
->mirror_num
, async
->bio_flags
,
881 static void run_one_async_done(struct btrfs_work
*work
)
883 struct btrfs_fs_info
*fs_info
;
884 struct async_submit_bio
*async
;
887 async
= container_of(work
, struct async_submit_bio
, work
);
888 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
890 limit
= btrfs_async_submit_limit(fs_info
);
891 limit
= limit
* 2 / 3;
894 * atomic_dec_return implies a barrier for waitqueue_active
896 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
897 waitqueue_active(&fs_info
->async_submit_wait
))
898 wake_up(&fs_info
->async_submit_wait
);
900 /* If an error occurred we just want to clean up the bio and move on */
902 async
->bio
->bi_error
= async
->error
;
903 bio_endio(async
->bio
);
907 async
->submit_bio_done(async
->inode
, async
->bio
, async
->mirror_num
,
908 async
->bio_flags
, async
->bio_offset
);
911 static void run_one_async_free(struct btrfs_work
*work
)
913 struct async_submit_bio
*async
;
915 async
= container_of(work
, struct async_submit_bio
, work
);
919 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
920 struct bio
*bio
, int mirror_num
,
921 unsigned long bio_flags
,
923 extent_submit_bio_hook_t
*submit_bio_start
,
924 extent_submit_bio_hook_t
*submit_bio_done
)
926 struct async_submit_bio
*async
;
928 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
932 async
->inode
= inode
;
934 async
->mirror_num
= mirror_num
;
935 async
->submit_bio_start
= submit_bio_start
;
936 async
->submit_bio_done
= submit_bio_done
;
938 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
939 run_one_async_done
, run_one_async_free
);
941 async
->bio_flags
= bio_flags
;
942 async
->bio_offset
= bio_offset
;
946 atomic_inc(&fs_info
->nr_async_submits
);
948 if (op_is_sync(bio
->bi_opf
))
949 btrfs_set_work_high_priority(&async
->work
);
951 btrfs_queue_work(fs_info
->workers
, &async
->work
);
953 while (atomic_read(&fs_info
->async_submit_draining
) &&
954 atomic_read(&fs_info
->nr_async_submits
)) {
955 wait_event(fs_info
->async_submit_wait
,
956 (atomic_read(&fs_info
->nr_async_submits
) == 0));
962 static int btree_csum_one_bio(struct bio
*bio
)
964 struct bio_vec
*bvec
;
965 struct btrfs_root
*root
;
968 bio_for_each_segment_all(bvec
, bio
, i
) {
969 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
970 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
978 static int __btree_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
979 int mirror_num
, unsigned long bio_flags
,
983 * when we're called for a write, we're already in the async
984 * submission context. Just jump into btrfs_map_bio
986 return btree_csum_one_bio(bio
);
989 static int __btree_submit_bio_done(struct inode
*inode
, struct bio
*bio
,
990 int mirror_num
, unsigned long bio_flags
,
996 * when we're called for a write, we're already in the async
997 * submission context. Just jump into btrfs_map_bio
999 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), bio
, mirror_num
, 1);
1001 bio
->bi_error
= ret
;
1007 static int check_async_write(unsigned long bio_flags
)
1009 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
1012 if (static_cpu_has(X86_FEATURE_XMM4_2
))
1018 static int btree_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
1019 int mirror_num
, unsigned long bio_flags
,
1022 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1023 int async
= check_async_write(bio_flags
);
1026 if (bio_op(bio
) != REQ_OP_WRITE
) {
1028 * called for a read, do the setup so that checksum validation
1029 * can happen in the async kernel threads
1031 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
1032 BTRFS_WQ_ENDIO_METADATA
);
1035 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
1036 } else if (!async
) {
1037 ret
= btree_csum_one_bio(bio
);
1040 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
1043 * kthread helpers are used to submit writes so that
1044 * checksumming can happen in parallel across all CPUs
1046 ret
= btrfs_wq_submit_bio(fs_info
, inode
, bio
, mirror_num
, 0,
1048 __btree_submit_bio_start
,
1049 __btree_submit_bio_done
);
1057 bio
->bi_error
= ret
;
1062 #ifdef CONFIG_MIGRATION
1063 static int btree_migratepage(struct address_space
*mapping
,
1064 struct page
*newpage
, struct page
*page
,
1065 enum migrate_mode mode
)
1068 * we can't safely write a btree page from here,
1069 * we haven't done the locking hook
1071 if (PageDirty(page
))
1074 * Buffers may be managed in a filesystem specific way.
1075 * We must have no buffers or drop them.
1077 if (page_has_private(page
) &&
1078 !try_to_release_page(page
, GFP_KERNEL
))
1080 return migrate_page(mapping
, newpage
, page
, mode
);
1085 static int btree_writepages(struct address_space
*mapping
,
1086 struct writeback_control
*wbc
)
1088 struct btrfs_fs_info
*fs_info
;
1091 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
1093 if (wbc
->for_kupdate
)
1096 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
1097 /* this is a bit racy, but that's ok */
1098 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
1099 BTRFS_DIRTY_METADATA_THRESH
);
1103 return btree_write_cache_pages(mapping
, wbc
);
1106 static int btree_readpage(struct file
*file
, struct page
*page
)
1108 struct extent_io_tree
*tree
;
1109 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1110 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1113 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1115 if (PageWriteback(page
) || PageDirty(page
))
1118 return try_release_extent_buffer(page
);
1121 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1122 unsigned int length
)
1124 struct extent_io_tree
*tree
;
1125 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1126 extent_invalidatepage(tree
, page
, offset
);
1127 btree_releasepage(page
, GFP_NOFS
);
1128 if (PagePrivate(page
)) {
1129 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
1130 "page private not zero on page %llu",
1131 (unsigned long long)page_offset(page
));
1132 ClearPagePrivate(page
);
1133 set_page_private(page
, 0);
1138 static int btree_set_page_dirty(struct page
*page
)
1141 struct extent_buffer
*eb
;
1143 BUG_ON(!PagePrivate(page
));
1144 eb
= (struct extent_buffer
*)page
->private;
1146 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1147 BUG_ON(!atomic_read(&eb
->refs
));
1148 btrfs_assert_tree_locked(eb
);
1150 return __set_page_dirty_nobuffers(page
);
1153 static const struct address_space_operations btree_aops
= {
1154 .readpage
= btree_readpage
,
1155 .writepages
= btree_writepages
,
1156 .releasepage
= btree_releasepage
,
1157 .invalidatepage
= btree_invalidatepage
,
1158 #ifdef CONFIG_MIGRATION
1159 .migratepage
= btree_migratepage
,
1161 .set_page_dirty
= btree_set_page_dirty
,
1164 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1166 struct extent_buffer
*buf
= NULL
;
1167 struct inode
*btree_inode
= fs_info
->btree_inode
;
1169 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1172 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1173 buf
, WAIT_NONE
, btree_get_extent
, 0);
1174 free_extent_buffer(buf
);
1177 int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1178 int mirror_num
, struct extent_buffer
**eb
)
1180 struct extent_buffer
*buf
= NULL
;
1181 struct inode
*btree_inode
= fs_info
->btree_inode
;
1182 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1185 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1189 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1191 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1192 btree_get_extent
, mirror_num
);
1194 free_extent_buffer(buf
);
1198 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1199 free_extent_buffer(buf
);
1201 } else if (extent_buffer_uptodate(buf
)) {
1204 free_extent_buffer(buf
);
1209 struct extent_buffer
*btrfs_find_create_tree_block(
1210 struct btrfs_fs_info
*fs_info
,
1213 if (btrfs_is_testing(fs_info
))
1214 return alloc_test_extent_buffer(fs_info
, bytenr
);
1215 return alloc_extent_buffer(fs_info
, bytenr
);
1219 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1221 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1222 buf
->start
+ buf
->len
- 1);
1225 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1227 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1228 buf
->start
, buf
->start
+ buf
->len
- 1);
1231 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1234 struct extent_buffer
*buf
= NULL
;
1237 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1241 ret
= btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
);
1243 free_extent_buffer(buf
);
1244 return ERR_PTR(ret
);
1250 void clean_tree_block(struct btrfs_fs_info
*fs_info
,
1251 struct extent_buffer
*buf
)
1253 if (btrfs_header_generation(buf
) ==
1254 fs_info
->running_transaction
->transid
) {
1255 btrfs_assert_tree_locked(buf
);
1257 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1258 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1260 fs_info
->dirty_metadata_batch
);
1261 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1262 btrfs_set_lock_blocking(buf
);
1263 clear_extent_buffer_dirty(buf
);
1268 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1270 struct btrfs_subvolume_writers
*writers
;
1273 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1275 return ERR_PTR(-ENOMEM
);
1277 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_KERNEL
);
1280 return ERR_PTR(ret
);
1283 init_waitqueue_head(&writers
->wait
);
1288 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1290 percpu_counter_destroy(&writers
->counter
);
1294 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1297 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1299 root
->commit_root
= NULL
;
1301 root
->orphan_cleanup_state
= 0;
1303 root
->objectid
= objectid
;
1304 root
->last_trans
= 0;
1305 root
->highest_objectid
= 0;
1306 root
->nr_delalloc_inodes
= 0;
1307 root
->nr_ordered_extents
= 0;
1309 root
->inode_tree
= RB_ROOT
;
1310 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1311 root
->block_rsv
= NULL
;
1312 root
->orphan_block_rsv
= NULL
;
1314 INIT_LIST_HEAD(&root
->dirty_list
);
1315 INIT_LIST_HEAD(&root
->root_list
);
1316 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1317 INIT_LIST_HEAD(&root
->delalloc_root
);
1318 INIT_LIST_HEAD(&root
->ordered_extents
);
1319 INIT_LIST_HEAD(&root
->ordered_root
);
1320 INIT_LIST_HEAD(&root
->logged_list
[0]);
1321 INIT_LIST_HEAD(&root
->logged_list
[1]);
1322 spin_lock_init(&root
->orphan_lock
);
1323 spin_lock_init(&root
->inode_lock
);
1324 spin_lock_init(&root
->delalloc_lock
);
1325 spin_lock_init(&root
->ordered_extent_lock
);
1326 spin_lock_init(&root
->accounting_lock
);
1327 spin_lock_init(&root
->log_extents_lock
[0]);
1328 spin_lock_init(&root
->log_extents_lock
[1]);
1329 mutex_init(&root
->objectid_mutex
);
1330 mutex_init(&root
->log_mutex
);
1331 mutex_init(&root
->ordered_extent_mutex
);
1332 mutex_init(&root
->delalloc_mutex
);
1333 init_waitqueue_head(&root
->log_writer_wait
);
1334 init_waitqueue_head(&root
->log_commit_wait
[0]);
1335 init_waitqueue_head(&root
->log_commit_wait
[1]);
1336 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1337 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1338 atomic_set(&root
->log_commit
[0], 0);
1339 atomic_set(&root
->log_commit
[1], 0);
1340 atomic_set(&root
->log_writers
, 0);
1341 atomic_set(&root
->log_batch
, 0);
1342 atomic_set(&root
->orphan_inodes
, 0);
1343 atomic_set(&root
->refs
, 1);
1344 atomic_set(&root
->will_be_snapshoted
, 0);
1345 atomic64_set(&root
->qgroup_meta_rsv
, 0);
1346 root
->log_transid
= 0;
1347 root
->log_transid_committed
= -1;
1348 root
->last_log_commit
= 0;
1350 extent_io_tree_init(&root
->dirty_log_pages
,
1351 fs_info
->btree_inode
->i_mapping
);
1353 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1354 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1355 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1357 root
->defrag_trans_start
= fs_info
->generation
;
1359 root
->defrag_trans_start
= 0;
1360 root
->root_key
.objectid
= objectid
;
1363 spin_lock_init(&root
->root_item_lock
);
1366 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1369 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1371 root
->fs_info
= fs_info
;
1375 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1376 /* Should only be used by the testing infrastructure */
1377 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1379 struct btrfs_root
*root
;
1382 return ERR_PTR(-EINVAL
);
1384 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1386 return ERR_PTR(-ENOMEM
);
1388 /* We don't use the stripesize in selftest, set it as sectorsize */
1389 __setup_root(root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1390 root
->alloc_bytenr
= 0;
1396 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1397 struct btrfs_fs_info
*fs_info
,
1400 struct extent_buffer
*leaf
;
1401 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1402 struct btrfs_root
*root
;
1403 struct btrfs_key key
;
1407 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1409 return ERR_PTR(-ENOMEM
);
1411 __setup_root(root
, fs_info
, objectid
);
1412 root
->root_key
.objectid
= objectid
;
1413 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1414 root
->root_key
.offset
= 0;
1416 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1418 ret
= PTR_ERR(leaf
);
1423 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1424 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1425 btrfs_set_header_generation(leaf
, trans
->transid
);
1426 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1427 btrfs_set_header_owner(leaf
, objectid
);
1430 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
1431 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1432 btrfs_mark_buffer_dirty(leaf
);
1434 root
->commit_root
= btrfs_root_node(root
);
1435 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1437 root
->root_item
.flags
= 0;
1438 root
->root_item
.byte_limit
= 0;
1439 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1440 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1441 btrfs_set_root_level(&root
->root_item
, 0);
1442 btrfs_set_root_refs(&root
->root_item
, 1);
1443 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1444 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1445 btrfs_set_root_dirid(&root
->root_item
, 0);
1447 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1448 root
->root_item
.drop_level
= 0;
1450 key
.objectid
= objectid
;
1451 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1453 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1457 btrfs_tree_unlock(leaf
);
1463 btrfs_tree_unlock(leaf
);
1464 free_extent_buffer(root
->commit_root
);
1465 free_extent_buffer(leaf
);
1469 return ERR_PTR(ret
);
1472 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1473 struct btrfs_fs_info
*fs_info
)
1475 struct btrfs_root
*root
;
1476 struct extent_buffer
*leaf
;
1478 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1480 return ERR_PTR(-ENOMEM
);
1482 __setup_root(root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1484 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1485 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1486 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1489 * DON'T set REF_COWS for log trees
1491 * log trees do not get reference counted because they go away
1492 * before a real commit is actually done. They do store pointers
1493 * to file data extents, and those reference counts still get
1494 * updated (along with back refs to the log tree).
1497 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1501 return ERR_CAST(leaf
);
1504 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1505 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1506 btrfs_set_header_generation(leaf
, trans
->transid
);
1507 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1508 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1511 write_extent_buffer_fsid(root
->node
, fs_info
->fsid
);
1512 btrfs_mark_buffer_dirty(root
->node
);
1513 btrfs_tree_unlock(root
->node
);
1517 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1518 struct btrfs_fs_info
*fs_info
)
1520 struct btrfs_root
*log_root
;
1522 log_root
= alloc_log_tree(trans
, fs_info
);
1523 if (IS_ERR(log_root
))
1524 return PTR_ERR(log_root
);
1525 WARN_ON(fs_info
->log_root_tree
);
1526 fs_info
->log_root_tree
= log_root
;
1530 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1531 struct btrfs_root
*root
)
1533 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1534 struct btrfs_root
*log_root
;
1535 struct btrfs_inode_item
*inode_item
;
1537 log_root
= alloc_log_tree(trans
, fs_info
);
1538 if (IS_ERR(log_root
))
1539 return PTR_ERR(log_root
);
1541 log_root
->last_trans
= trans
->transid
;
1542 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1544 inode_item
= &log_root
->root_item
.inode
;
1545 btrfs_set_stack_inode_generation(inode_item
, 1);
1546 btrfs_set_stack_inode_size(inode_item
, 3);
1547 btrfs_set_stack_inode_nlink(inode_item
, 1);
1548 btrfs_set_stack_inode_nbytes(inode_item
,
1550 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1552 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1554 WARN_ON(root
->log_root
);
1555 root
->log_root
= log_root
;
1556 root
->log_transid
= 0;
1557 root
->log_transid_committed
= -1;
1558 root
->last_log_commit
= 0;
1562 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1563 struct btrfs_key
*key
)
1565 struct btrfs_root
*root
;
1566 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1567 struct btrfs_path
*path
;
1571 path
= btrfs_alloc_path();
1573 return ERR_PTR(-ENOMEM
);
1575 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1581 __setup_root(root
, fs_info
, key
->objectid
);
1583 ret
= btrfs_find_root(tree_root
, key
, path
,
1584 &root
->root_item
, &root
->root_key
);
1591 generation
= btrfs_root_generation(&root
->root_item
);
1592 root
->node
= read_tree_block(fs_info
,
1593 btrfs_root_bytenr(&root
->root_item
),
1595 if (IS_ERR(root
->node
)) {
1596 ret
= PTR_ERR(root
->node
);
1598 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1600 free_extent_buffer(root
->node
);
1603 root
->commit_root
= btrfs_root_node(root
);
1605 btrfs_free_path(path
);
1611 root
= ERR_PTR(ret
);
1615 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1616 struct btrfs_key
*location
)
1618 struct btrfs_root
*root
;
1620 root
= btrfs_read_tree_root(tree_root
, location
);
1624 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1625 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1626 btrfs_check_and_init_root_item(&root
->root_item
);
1632 int btrfs_init_fs_root(struct btrfs_root
*root
)
1635 struct btrfs_subvolume_writers
*writers
;
1637 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1638 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1640 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1645 writers
= btrfs_alloc_subvolume_writers();
1646 if (IS_ERR(writers
)) {
1647 ret
= PTR_ERR(writers
);
1650 root
->subv_writers
= writers
;
1652 btrfs_init_free_ino_ctl(root
);
1653 spin_lock_init(&root
->ino_cache_lock
);
1654 init_waitqueue_head(&root
->ino_cache_wait
);
1656 ret
= get_anon_bdev(&root
->anon_dev
);
1660 mutex_lock(&root
->objectid_mutex
);
1661 ret
= btrfs_find_highest_objectid(root
,
1662 &root
->highest_objectid
);
1664 mutex_unlock(&root
->objectid_mutex
);
1668 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1670 mutex_unlock(&root
->objectid_mutex
);
1674 /* the caller is responsible to call free_fs_root */
1678 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1681 struct btrfs_root
*root
;
1683 spin_lock(&fs_info
->fs_roots_radix_lock
);
1684 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1685 (unsigned long)root_id
);
1686 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1690 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1691 struct btrfs_root
*root
)
1695 ret
= radix_tree_preload(GFP_NOFS
);
1699 spin_lock(&fs_info
->fs_roots_radix_lock
);
1700 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1701 (unsigned long)root
->root_key
.objectid
,
1704 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1705 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1706 radix_tree_preload_end();
1711 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1712 struct btrfs_key
*location
,
1715 struct btrfs_root
*root
;
1716 struct btrfs_path
*path
;
1717 struct btrfs_key key
;
1720 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1721 return fs_info
->tree_root
;
1722 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1723 return fs_info
->extent_root
;
1724 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1725 return fs_info
->chunk_root
;
1726 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1727 return fs_info
->dev_root
;
1728 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1729 return fs_info
->csum_root
;
1730 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1731 return fs_info
->quota_root
? fs_info
->quota_root
:
1733 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1734 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1736 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1737 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1740 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1742 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1743 return ERR_PTR(-ENOENT
);
1747 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1751 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1756 ret
= btrfs_init_fs_root(root
);
1760 path
= btrfs_alloc_path();
1765 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1766 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1767 key
.offset
= location
->objectid
;
1769 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1770 btrfs_free_path(path
);
1774 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1776 ret
= btrfs_insert_fs_root(fs_info
, root
);
1778 if (ret
== -EEXIST
) {
1787 return ERR_PTR(ret
);
1790 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1792 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1794 struct btrfs_device
*device
;
1795 struct backing_dev_info
*bdi
;
1798 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1801 bdi
= device
->bdev
->bd_bdi
;
1802 if (bdi_congested(bdi
, bdi_bits
)) {
1812 * called by the kthread helper functions to finally call the bio end_io
1813 * functions. This is where read checksum verification actually happens
1815 static void end_workqueue_fn(struct btrfs_work
*work
)
1818 struct btrfs_end_io_wq
*end_io_wq
;
1820 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1821 bio
= end_io_wq
->bio
;
1823 bio
->bi_error
= end_io_wq
->error
;
1824 bio
->bi_private
= end_io_wq
->private;
1825 bio
->bi_end_io
= end_io_wq
->end_io
;
1826 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1830 static int cleaner_kthread(void *arg
)
1832 struct btrfs_root
*root
= arg
;
1833 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1835 struct btrfs_trans_handle
*trans
;
1840 /* Make the cleaner go to sleep early. */
1841 if (btrfs_need_cleaner_sleep(fs_info
))
1845 * Do not do anything if we might cause open_ctree() to block
1846 * before we have finished mounting the filesystem.
1848 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1851 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1855 * Avoid the problem that we change the status of the fs
1856 * during the above check and trylock.
1858 if (btrfs_need_cleaner_sleep(fs_info
)) {
1859 mutex_unlock(&fs_info
->cleaner_mutex
);
1863 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
1864 btrfs_run_delayed_iputs(fs_info
);
1865 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
1867 again
= btrfs_clean_one_deleted_snapshot(root
);
1868 mutex_unlock(&fs_info
->cleaner_mutex
);
1871 * The defragger has dealt with the R/O remount and umount,
1872 * needn't do anything special here.
1874 btrfs_run_defrag_inodes(fs_info
);
1877 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1878 * with relocation (btrfs_relocate_chunk) and relocation
1879 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1880 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1881 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1882 * unused block groups.
1884 btrfs_delete_unused_bgs(fs_info
);
1887 set_current_state(TASK_INTERRUPTIBLE
);
1888 if (!kthread_should_stop())
1890 __set_current_state(TASK_RUNNING
);
1892 } while (!kthread_should_stop());
1895 * Transaction kthread is stopped before us and wakes us up.
1896 * However we might have started a new transaction and COWed some
1897 * tree blocks when deleting unused block groups for example. So
1898 * make sure we commit the transaction we started to have a clean
1899 * shutdown when evicting the btree inode - if it has dirty pages
1900 * when we do the final iput() on it, eviction will trigger a
1901 * writeback for it which will fail with null pointer dereferences
1902 * since work queues and other resources were already released and
1903 * destroyed by the time the iput/eviction/writeback is made.
1905 trans
= btrfs_attach_transaction(root
);
1906 if (IS_ERR(trans
)) {
1907 if (PTR_ERR(trans
) != -ENOENT
)
1909 "cleaner transaction attach returned %ld",
1914 ret
= btrfs_commit_transaction(trans
);
1917 "cleaner open transaction commit returned %d",
1924 static int transaction_kthread(void *arg
)
1926 struct btrfs_root
*root
= arg
;
1927 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1928 struct btrfs_trans_handle
*trans
;
1929 struct btrfs_transaction
*cur
;
1932 unsigned long delay
;
1936 cannot_commit
= false;
1937 delay
= HZ
* fs_info
->commit_interval
;
1938 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1940 spin_lock(&fs_info
->trans_lock
);
1941 cur
= fs_info
->running_transaction
;
1943 spin_unlock(&fs_info
->trans_lock
);
1947 now
= get_seconds();
1948 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1949 (now
< cur
->start_time
||
1950 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1951 spin_unlock(&fs_info
->trans_lock
);
1955 transid
= cur
->transid
;
1956 spin_unlock(&fs_info
->trans_lock
);
1958 /* If the file system is aborted, this will always fail. */
1959 trans
= btrfs_attach_transaction(root
);
1960 if (IS_ERR(trans
)) {
1961 if (PTR_ERR(trans
) != -ENOENT
)
1962 cannot_commit
= true;
1965 if (transid
== trans
->transid
) {
1966 btrfs_commit_transaction(trans
);
1968 btrfs_end_transaction(trans
);
1971 wake_up_process(fs_info
->cleaner_kthread
);
1972 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1974 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1975 &fs_info
->fs_state
)))
1976 btrfs_cleanup_transaction(fs_info
);
1977 set_current_state(TASK_INTERRUPTIBLE
);
1978 if (!kthread_should_stop() &&
1979 (!btrfs_transaction_blocked(fs_info
) ||
1981 schedule_timeout(delay
);
1982 __set_current_state(TASK_RUNNING
);
1983 } while (!kthread_should_stop());
1988 * this will find the highest generation in the array of
1989 * root backups. The index of the highest array is returned,
1990 * or -1 if we can't find anything.
1992 * We check to make sure the array is valid by comparing the
1993 * generation of the latest root in the array with the generation
1994 * in the super block. If they don't match we pitch it.
1996 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1999 int newest_index
= -1;
2000 struct btrfs_root_backup
*root_backup
;
2003 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
2004 root_backup
= info
->super_copy
->super_roots
+ i
;
2005 cur
= btrfs_backup_tree_root_gen(root_backup
);
2006 if (cur
== newest_gen
)
2010 /* check to see if we actually wrapped around */
2011 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
2012 root_backup
= info
->super_copy
->super_roots
;
2013 cur
= btrfs_backup_tree_root_gen(root_backup
);
2014 if (cur
== newest_gen
)
2017 return newest_index
;
2022 * find the oldest backup so we know where to store new entries
2023 * in the backup array. This will set the backup_root_index
2024 * field in the fs_info struct
2026 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
2029 int newest_index
= -1;
2031 newest_index
= find_newest_super_backup(info
, newest_gen
);
2032 /* if there was garbage in there, just move along */
2033 if (newest_index
== -1) {
2034 info
->backup_root_index
= 0;
2036 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
2041 * copy all the root pointers into the super backup array.
2042 * this will bump the backup pointer by one when it is
2045 static void backup_super_roots(struct btrfs_fs_info
*info
)
2048 struct btrfs_root_backup
*root_backup
;
2051 next_backup
= info
->backup_root_index
;
2052 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2053 BTRFS_NUM_BACKUP_ROOTS
;
2056 * just overwrite the last backup if we're at the same generation
2057 * this happens only at umount
2059 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
2060 if (btrfs_backup_tree_root_gen(root_backup
) ==
2061 btrfs_header_generation(info
->tree_root
->node
))
2062 next_backup
= last_backup
;
2064 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
2067 * make sure all of our padding and empty slots get zero filled
2068 * regardless of which ones we use today
2070 memset(root_backup
, 0, sizeof(*root_backup
));
2072 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
2074 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
2075 btrfs_set_backup_tree_root_gen(root_backup
,
2076 btrfs_header_generation(info
->tree_root
->node
));
2078 btrfs_set_backup_tree_root_level(root_backup
,
2079 btrfs_header_level(info
->tree_root
->node
));
2081 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
2082 btrfs_set_backup_chunk_root_gen(root_backup
,
2083 btrfs_header_generation(info
->chunk_root
->node
));
2084 btrfs_set_backup_chunk_root_level(root_backup
,
2085 btrfs_header_level(info
->chunk_root
->node
));
2087 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
2088 btrfs_set_backup_extent_root_gen(root_backup
,
2089 btrfs_header_generation(info
->extent_root
->node
));
2090 btrfs_set_backup_extent_root_level(root_backup
,
2091 btrfs_header_level(info
->extent_root
->node
));
2094 * we might commit during log recovery, which happens before we set
2095 * the fs_root. Make sure it is valid before we fill it in.
2097 if (info
->fs_root
&& info
->fs_root
->node
) {
2098 btrfs_set_backup_fs_root(root_backup
,
2099 info
->fs_root
->node
->start
);
2100 btrfs_set_backup_fs_root_gen(root_backup
,
2101 btrfs_header_generation(info
->fs_root
->node
));
2102 btrfs_set_backup_fs_root_level(root_backup
,
2103 btrfs_header_level(info
->fs_root
->node
));
2106 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
2107 btrfs_set_backup_dev_root_gen(root_backup
,
2108 btrfs_header_generation(info
->dev_root
->node
));
2109 btrfs_set_backup_dev_root_level(root_backup
,
2110 btrfs_header_level(info
->dev_root
->node
));
2112 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
2113 btrfs_set_backup_csum_root_gen(root_backup
,
2114 btrfs_header_generation(info
->csum_root
->node
));
2115 btrfs_set_backup_csum_root_level(root_backup
,
2116 btrfs_header_level(info
->csum_root
->node
));
2118 btrfs_set_backup_total_bytes(root_backup
,
2119 btrfs_super_total_bytes(info
->super_copy
));
2120 btrfs_set_backup_bytes_used(root_backup
,
2121 btrfs_super_bytes_used(info
->super_copy
));
2122 btrfs_set_backup_num_devices(root_backup
,
2123 btrfs_super_num_devices(info
->super_copy
));
2126 * if we don't copy this out to the super_copy, it won't get remembered
2127 * for the next commit
2129 memcpy(&info
->super_copy
->super_roots
,
2130 &info
->super_for_commit
->super_roots
,
2131 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2135 * this copies info out of the root backup array and back into
2136 * the in-memory super block. It is meant to help iterate through
2137 * the array, so you send it the number of backups you've already
2138 * tried and the last backup index you used.
2140 * this returns -1 when it has tried all the backups
2142 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2143 struct btrfs_super_block
*super
,
2144 int *num_backups_tried
, int *backup_index
)
2146 struct btrfs_root_backup
*root_backup
;
2147 int newest
= *backup_index
;
2149 if (*num_backups_tried
== 0) {
2150 u64 gen
= btrfs_super_generation(super
);
2152 newest
= find_newest_super_backup(info
, gen
);
2156 *backup_index
= newest
;
2157 *num_backups_tried
= 1;
2158 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2159 /* we've tried all the backups, all done */
2162 /* jump to the next oldest backup */
2163 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2164 BTRFS_NUM_BACKUP_ROOTS
;
2165 *backup_index
= newest
;
2166 *num_backups_tried
+= 1;
2168 root_backup
= super
->super_roots
+ newest
;
2170 btrfs_set_super_generation(super
,
2171 btrfs_backup_tree_root_gen(root_backup
));
2172 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2173 btrfs_set_super_root_level(super
,
2174 btrfs_backup_tree_root_level(root_backup
));
2175 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2178 * fixme: the total bytes and num_devices need to match or we should
2181 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2182 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2186 /* helper to cleanup workers */
2187 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2189 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2190 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2191 btrfs_destroy_workqueue(fs_info
->workers
);
2192 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2193 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2194 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2195 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2196 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2197 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2198 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2199 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2200 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2201 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2202 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2203 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2204 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2206 * Now that all other work queues are destroyed, we can safely destroy
2207 * the queues used for metadata I/O, since tasks from those other work
2208 * queues can do metadata I/O operations.
2210 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2211 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2214 static void free_root_extent_buffers(struct btrfs_root
*root
)
2217 free_extent_buffer(root
->node
);
2218 free_extent_buffer(root
->commit_root
);
2220 root
->commit_root
= NULL
;
2224 /* helper to cleanup tree roots */
2225 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2227 free_root_extent_buffers(info
->tree_root
);
2229 free_root_extent_buffers(info
->dev_root
);
2230 free_root_extent_buffers(info
->extent_root
);
2231 free_root_extent_buffers(info
->csum_root
);
2232 free_root_extent_buffers(info
->quota_root
);
2233 free_root_extent_buffers(info
->uuid_root
);
2235 free_root_extent_buffers(info
->chunk_root
);
2236 free_root_extent_buffers(info
->free_space_root
);
2239 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2242 struct btrfs_root
*gang
[8];
2245 while (!list_empty(&fs_info
->dead_roots
)) {
2246 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2247 struct btrfs_root
, root_list
);
2248 list_del(&gang
[0]->root_list
);
2250 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2251 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2253 free_extent_buffer(gang
[0]->node
);
2254 free_extent_buffer(gang
[0]->commit_root
);
2255 btrfs_put_fs_root(gang
[0]);
2260 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2265 for (i
= 0; i
< ret
; i
++)
2266 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2269 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2270 btrfs_free_log_root_tree(NULL
, fs_info
);
2271 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
2275 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2277 mutex_init(&fs_info
->scrub_lock
);
2278 atomic_set(&fs_info
->scrubs_running
, 0);
2279 atomic_set(&fs_info
->scrub_pause_req
, 0);
2280 atomic_set(&fs_info
->scrubs_paused
, 0);
2281 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2282 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2283 fs_info
->scrub_workers_refcnt
= 0;
2286 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2288 spin_lock_init(&fs_info
->balance_lock
);
2289 mutex_init(&fs_info
->balance_mutex
);
2290 atomic_set(&fs_info
->balance_running
, 0);
2291 atomic_set(&fs_info
->balance_pause_req
, 0);
2292 atomic_set(&fs_info
->balance_cancel_req
, 0);
2293 fs_info
->balance_ctl
= NULL
;
2294 init_waitqueue_head(&fs_info
->balance_wait_q
);
2297 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2299 struct inode
*inode
= fs_info
->btree_inode
;
2301 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2302 set_nlink(inode
, 1);
2304 * we set the i_size on the btree inode to the max possible int.
2305 * the real end of the address space is determined by all of
2306 * the devices in the system
2308 inode
->i_size
= OFFSET_MAX
;
2309 inode
->i_mapping
->a_ops
= &btree_aops
;
2311 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2312 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
, inode
->i_mapping
);
2313 BTRFS_I(inode
)->io_tree
.track_uptodate
= 0;
2314 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2316 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2318 BTRFS_I(inode
)->root
= fs_info
->tree_root
;
2319 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2320 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2321 btrfs_insert_inode_hash(inode
);
2324 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2326 fs_info
->dev_replace
.lock_owner
= 0;
2327 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2328 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2329 rwlock_init(&fs_info
->dev_replace
.lock
);
2330 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2331 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2332 init_waitqueue_head(&fs_info
->replace_wait
);
2333 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2336 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2338 spin_lock_init(&fs_info
->qgroup_lock
);
2339 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2340 fs_info
->qgroup_tree
= RB_ROOT
;
2341 fs_info
->qgroup_op_tree
= RB_ROOT
;
2342 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2343 fs_info
->qgroup_seq
= 1;
2344 fs_info
->qgroup_ulist
= NULL
;
2345 fs_info
->qgroup_rescan_running
= false;
2346 mutex_init(&fs_info
->qgroup_rescan_lock
);
2349 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2350 struct btrfs_fs_devices
*fs_devices
)
2352 int max_active
= fs_info
->thread_pool_size
;
2353 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2356 btrfs_alloc_workqueue(fs_info
, "worker",
2357 flags
| WQ_HIGHPRI
, max_active
, 16);
2359 fs_info
->delalloc_workers
=
2360 btrfs_alloc_workqueue(fs_info
, "delalloc",
2361 flags
, max_active
, 2);
2363 fs_info
->flush_workers
=
2364 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2365 flags
, max_active
, 0);
2367 fs_info
->caching_workers
=
2368 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2371 * a higher idle thresh on the submit workers makes it much more
2372 * likely that bios will be send down in a sane order to the
2375 fs_info
->submit_workers
=
2376 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2377 min_t(u64
, fs_devices
->num_devices
,
2380 fs_info
->fixup_workers
=
2381 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2384 * endios are largely parallel and should have a very
2387 fs_info
->endio_workers
=
2388 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2389 fs_info
->endio_meta_workers
=
2390 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2392 fs_info
->endio_meta_write_workers
=
2393 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2395 fs_info
->endio_raid56_workers
=
2396 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2398 fs_info
->endio_repair_workers
=
2399 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2400 fs_info
->rmw_workers
=
2401 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2402 fs_info
->endio_write_workers
=
2403 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2405 fs_info
->endio_freespace_worker
=
2406 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2408 fs_info
->delayed_workers
=
2409 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2411 fs_info
->readahead_workers
=
2412 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2414 fs_info
->qgroup_rescan_workers
=
2415 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2416 fs_info
->extent_workers
=
2417 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2418 min_t(u64
, fs_devices
->num_devices
,
2421 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2422 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2423 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2424 fs_info
->endio_meta_write_workers
&&
2425 fs_info
->endio_repair_workers
&&
2426 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2427 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2428 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2429 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2430 fs_info
->extent_workers
&&
2431 fs_info
->qgroup_rescan_workers
)) {
2438 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2439 struct btrfs_fs_devices
*fs_devices
)
2442 struct btrfs_root
*log_tree_root
;
2443 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2444 u64 bytenr
= btrfs_super_log_root(disk_super
);
2446 if (fs_devices
->rw_devices
== 0) {
2447 btrfs_warn(fs_info
, "log replay required on RO media");
2451 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2455 __setup_root(log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2457 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2458 fs_info
->generation
+ 1);
2459 if (IS_ERR(log_tree_root
->node
)) {
2460 btrfs_warn(fs_info
, "failed to read log tree");
2461 ret
= PTR_ERR(log_tree_root
->node
);
2462 kfree(log_tree_root
);
2464 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2465 btrfs_err(fs_info
, "failed to read log tree");
2466 free_extent_buffer(log_tree_root
->node
);
2467 kfree(log_tree_root
);
2470 /* returns with log_tree_root freed on success */
2471 ret
= btrfs_recover_log_trees(log_tree_root
);
2473 btrfs_handle_fs_error(fs_info
, ret
,
2474 "Failed to recover log tree");
2475 free_extent_buffer(log_tree_root
->node
);
2476 kfree(log_tree_root
);
2480 if (fs_info
->sb
->s_flags
& MS_RDONLY
) {
2481 ret
= btrfs_commit_super(fs_info
);
2489 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2491 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2492 struct btrfs_root
*root
;
2493 struct btrfs_key location
;
2496 BUG_ON(!fs_info
->tree_root
);
2498 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2499 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2500 location
.offset
= 0;
2502 root
= btrfs_read_tree_root(tree_root
, &location
);
2504 return PTR_ERR(root
);
2505 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2506 fs_info
->extent_root
= root
;
2508 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2509 root
= btrfs_read_tree_root(tree_root
, &location
);
2511 return PTR_ERR(root
);
2512 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2513 fs_info
->dev_root
= root
;
2514 btrfs_init_devices_late(fs_info
);
2516 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2517 root
= btrfs_read_tree_root(tree_root
, &location
);
2519 return PTR_ERR(root
);
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2521 fs_info
->csum_root
= root
;
2523 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2524 root
= btrfs_read_tree_root(tree_root
, &location
);
2525 if (!IS_ERR(root
)) {
2526 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2527 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2528 fs_info
->quota_root
= root
;
2531 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2532 root
= btrfs_read_tree_root(tree_root
, &location
);
2534 ret
= PTR_ERR(root
);
2538 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2539 fs_info
->uuid_root
= root
;
2542 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2543 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2544 root
= btrfs_read_tree_root(tree_root
, &location
);
2546 return PTR_ERR(root
);
2547 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2548 fs_info
->free_space_root
= root
;
2554 int open_ctree(struct super_block
*sb
,
2555 struct btrfs_fs_devices
*fs_devices
,
2563 struct btrfs_key location
;
2564 struct buffer_head
*bh
;
2565 struct btrfs_super_block
*disk_super
;
2566 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2567 struct btrfs_root
*tree_root
;
2568 struct btrfs_root
*chunk_root
;
2571 int num_backups_tried
= 0;
2572 int backup_index
= 0;
2574 int clear_free_space_tree
= 0;
2576 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2577 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2578 if (!tree_root
|| !chunk_root
) {
2583 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2589 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2594 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2595 (1 + ilog2(nr_cpu_ids
));
2597 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2600 goto fail_dirty_metadata_bytes
;
2603 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2606 goto fail_delalloc_bytes
;
2609 fs_info
->btree_inode
= new_inode(sb
);
2610 if (!fs_info
->btree_inode
) {
2612 goto fail_bio_counter
;
2615 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2617 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2618 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2619 INIT_LIST_HEAD(&fs_info
->trans_list
);
2620 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2621 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2622 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2623 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2624 spin_lock_init(&fs_info
->delalloc_root_lock
);
2625 spin_lock_init(&fs_info
->trans_lock
);
2626 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2627 spin_lock_init(&fs_info
->delayed_iput_lock
);
2628 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2629 spin_lock_init(&fs_info
->free_chunk_lock
);
2630 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2631 spin_lock_init(&fs_info
->super_lock
);
2632 spin_lock_init(&fs_info
->qgroup_op_lock
);
2633 spin_lock_init(&fs_info
->buffer_lock
);
2634 spin_lock_init(&fs_info
->unused_bgs_lock
);
2635 rwlock_init(&fs_info
->tree_mod_log_lock
);
2636 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2637 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2638 mutex_init(&fs_info
->reloc_mutex
);
2639 mutex_init(&fs_info
->delalloc_root_mutex
);
2640 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2641 seqlock_init(&fs_info
->profiles_lock
);
2643 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2644 INIT_LIST_HEAD(&fs_info
->space_info
);
2645 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2646 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2647 btrfs_mapping_init(&fs_info
->mapping_tree
);
2648 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2649 BTRFS_BLOCK_RSV_GLOBAL
);
2650 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2651 BTRFS_BLOCK_RSV_DELALLOC
);
2652 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2653 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2654 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2655 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2656 BTRFS_BLOCK_RSV_DELOPS
);
2657 atomic_set(&fs_info
->nr_async_submits
, 0);
2658 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2659 atomic_set(&fs_info
->async_submit_draining
, 0);
2660 atomic_set(&fs_info
->nr_async_bios
, 0);
2661 atomic_set(&fs_info
->defrag_running
, 0);
2662 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2663 atomic_set(&fs_info
->reada_works_cnt
, 0);
2664 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2665 fs_info
->fs_frozen
= 0;
2667 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2668 fs_info
->metadata_ratio
= 0;
2669 fs_info
->defrag_inodes
= RB_ROOT
;
2670 fs_info
->free_chunk_space
= 0;
2671 fs_info
->tree_mod_log
= RB_ROOT
;
2672 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2673 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2674 /* readahead state */
2675 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2676 spin_lock_init(&fs_info
->reada_lock
);
2678 fs_info
->thread_pool_size
= min_t(unsigned long,
2679 num_online_cpus() + 2, 8);
2681 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2682 spin_lock_init(&fs_info
->ordered_root_lock
);
2683 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2685 if (!fs_info
->delayed_root
) {
2689 btrfs_init_delayed_root(fs_info
->delayed_root
);
2691 btrfs_init_scrub(fs_info
);
2692 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2693 fs_info
->check_integrity_print_mask
= 0;
2695 btrfs_init_balance(fs_info
);
2696 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2698 sb
->s_blocksize
= 4096;
2699 sb
->s_blocksize_bits
= blksize_bits(4096);
2701 btrfs_init_btree_inode(fs_info
);
2703 spin_lock_init(&fs_info
->block_group_cache_lock
);
2704 fs_info
->block_group_cache_tree
= RB_ROOT
;
2705 fs_info
->first_logical_byte
= (u64
)-1;
2707 extent_io_tree_init(&fs_info
->freed_extents
[0],
2708 fs_info
->btree_inode
->i_mapping
);
2709 extent_io_tree_init(&fs_info
->freed_extents
[1],
2710 fs_info
->btree_inode
->i_mapping
);
2711 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2712 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2714 mutex_init(&fs_info
->ordered_operations_mutex
);
2715 mutex_init(&fs_info
->tree_log_mutex
);
2716 mutex_init(&fs_info
->chunk_mutex
);
2717 mutex_init(&fs_info
->transaction_kthread_mutex
);
2718 mutex_init(&fs_info
->cleaner_mutex
);
2719 mutex_init(&fs_info
->volume_mutex
);
2720 mutex_init(&fs_info
->ro_block_group_mutex
);
2721 init_rwsem(&fs_info
->commit_root_sem
);
2722 init_rwsem(&fs_info
->cleanup_work_sem
);
2723 init_rwsem(&fs_info
->subvol_sem
);
2724 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2726 btrfs_init_dev_replace_locks(fs_info
);
2727 btrfs_init_qgroup(fs_info
);
2729 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2730 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2732 init_waitqueue_head(&fs_info
->transaction_throttle
);
2733 init_waitqueue_head(&fs_info
->transaction_wait
);
2734 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2735 init_waitqueue_head(&fs_info
->async_submit_wait
);
2737 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2739 /* Usable values until the real ones are cached from the superblock */
2740 fs_info
->nodesize
= 4096;
2741 fs_info
->sectorsize
= 4096;
2742 fs_info
->stripesize
= 4096;
2744 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2750 __setup_root(tree_root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2752 invalidate_bdev(fs_devices
->latest_bdev
);
2755 * Read super block and check the signature bytes only
2757 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2764 * We want to check superblock checksum, the type is stored inside.
2765 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2767 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2768 btrfs_err(fs_info
, "superblock checksum mismatch");
2775 * super_copy is zeroed at allocation time and we never touch the
2776 * following bytes up to INFO_SIZE, the checksum is calculated from
2777 * the whole block of INFO_SIZE
2779 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2780 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2781 sizeof(*fs_info
->super_for_commit
));
2784 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2786 ret
= btrfs_check_super_valid(fs_info
);
2788 btrfs_err(fs_info
, "superblock contains fatal errors");
2793 disk_super
= fs_info
->super_copy
;
2794 if (!btrfs_super_root(disk_super
))
2797 /* check FS state, whether FS is broken. */
2798 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2799 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2802 * run through our array of backup supers and setup
2803 * our ring pointer to the oldest one
2805 generation
= btrfs_super_generation(disk_super
);
2806 find_oldest_super_backup(fs_info
, generation
);
2809 * In the long term, we'll store the compression type in the super
2810 * block, and it'll be used for per file compression control.
2812 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2814 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2820 features
= btrfs_super_incompat_flags(disk_super
) &
2821 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2824 "cannot mount because of unsupported optional features (%llx)",
2830 features
= btrfs_super_incompat_flags(disk_super
);
2831 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2832 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2833 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2835 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2836 btrfs_info(fs_info
, "has skinny extents");
2839 * flag our filesystem as having big metadata blocks if
2840 * they are bigger than the page size
2842 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2843 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2845 "flagging fs with big metadata feature");
2846 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2849 nodesize
= btrfs_super_nodesize(disk_super
);
2850 sectorsize
= btrfs_super_sectorsize(disk_super
);
2851 stripesize
= sectorsize
;
2852 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2853 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2855 /* Cache block sizes */
2856 fs_info
->nodesize
= nodesize
;
2857 fs_info
->sectorsize
= sectorsize
;
2858 fs_info
->stripesize
= stripesize
;
2861 * mixed block groups end up with duplicate but slightly offset
2862 * extent buffers for the same range. It leads to corruptions
2864 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2865 (sectorsize
!= nodesize
)) {
2867 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2868 nodesize
, sectorsize
);
2873 * Needn't use the lock because there is no other task which will
2876 btrfs_set_super_incompat_flags(disk_super
, features
);
2878 features
= btrfs_super_compat_ro_flags(disk_super
) &
2879 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2880 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2882 "cannot mount read-write because of unsupported optional features (%llx)",
2888 max_active
= fs_info
->thread_pool_size
;
2890 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2893 goto fail_sb_buffer
;
2896 sb
->s_bdi
->congested_fn
= btrfs_congested_fn
;
2897 sb
->s_bdi
->congested_data
= fs_info
;
2898 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
2899 sb
->s_bdi
->ra_pages
= VM_MAX_READAHEAD
* 1024 / PAGE_SIZE
;
2900 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
2901 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
2903 sb
->s_blocksize
= sectorsize
;
2904 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2906 mutex_lock(&fs_info
->chunk_mutex
);
2907 ret
= btrfs_read_sys_array(fs_info
);
2908 mutex_unlock(&fs_info
->chunk_mutex
);
2910 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2911 goto fail_sb_buffer
;
2914 generation
= btrfs_super_chunk_root_generation(disk_super
);
2916 __setup_root(chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2918 chunk_root
->node
= read_tree_block(fs_info
,
2919 btrfs_super_chunk_root(disk_super
),
2921 if (IS_ERR(chunk_root
->node
) ||
2922 !extent_buffer_uptodate(chunk_root
->node
)) {
2923 btrfs_err(fs_info
, "failed to read chunk root");
2924 if (!IS_ERR(chunk_root
->node
))
2925 free_extent_buffer(chunk_root
->node
);
2926 chunk_root
->node
= NULL
;
2927 goto fail_tree_roots
;
2929 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2930 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2932 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2933 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2935 ret
= btrfs_read_chunk_tree(fs_info
);
2937 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
2938 goto fail_tree_roots
;
2942 * keep the device that is marked to be the target device for the
2943 * dev_replace procedure
2945 btrfs_close_extra_devices(fs_devices
, 0);
2947 if (!fs_devices
->latest_bdev
) {
2948 btrfs_err(fs_info
, "failed to read devices");
2949 goto fail_tree_roots
;
2953 generation
= btrfs_super_generation(disk_super
);
2955 tree_root
->node
= read_tree_block(fs_info
,
2956 btrfs_super_root(disk_super
),
2958 if (IS_ERR(tree_root
->node
) ||
2959 !extent_buffer_uptodate(tree_root
->node
)) {
2960 btrfs_warn(fs_info
, "failed to read tree root");
2961 if (!IS_ERR(tree_root
->node
))
2962 free_extent_buffer(tree_root
->node
);
2963 tree_root
->node
= NULL
;
2964 goto recovery_tree_root
;
2967 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2968 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2969 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2971 mutex_lock(&tree_root
->objectid_mutex
);
2972 ret
= btrfs_find_highest_objectid(tree_root
,
2973 &tree_root
->highest_objectid
);
2975 mutex_unlock(&tree_root
->objectid_mutex
);
2976 goto recovery_tree_root
;
2979 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2981 mutex_unlock(&tree_root
->objectid_mutex
);
2983 ret
= btrfs_read_roots(fs_info
);
2985 goto recovery_tree_root
;
2987 fs_info
->generation
= generation
;
2988 fs_info
->last_trans_committed
= generation
;
2990 ret
= btrfs_recover_balance(fs_info
);
2992 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
2993 goto fail_block_groups
;
2996 ret
= btrfs_init_dev_stats(fs_info
);
2998 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
2999 goto fail_block_groups
;
3002 ret
= btrfs_init_dev_replace(fs_info
);
3004 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3005 goto fail_block_groups
;
3008 btrfs_close_extra_devices(fs_devices
, 1);
3010 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
3012 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3014 goto fail_block_groups
;
3017 ret
= btrfs_sysfs_add_device(fs_devices
);
3019 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
3021 goto fail_fsdev_sysfs
;
3024 ret
= btrfs_sysfs_add_mounted(fs_info
);
3026 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3027 goto fail_fsdev_sysfs
;
3030 ret
= btrfs_init_space_info(fs_info
);
3032 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3036 ret
= btrfs_read_block_groups(fs_info
);
3038 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3041 fs_info
->num_tolerated_disk_barrier_failures
=
3042 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3043 if (fs_info
->fs_devices
->missing_devices
>
3044 fs_info
->num_tolerated_disk_barrier_failures
&&
3045 !(sb
->s_flags
& MS_RDONLY
)) {
3047 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3048 fs_info
->fs_devices
->missing_devices
,
3049 fs_info
->num_tolerated_disk_barrier_failures
);
3053 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3055 if (IS_ERR(fs_info
->cleaner_kthread
))
3058 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3060 "btrfs-transaction");
3061 if (IS_ERR(fs_info
->transaction_kthread
))
3064 if (!btrfs_test_opt(fs_info
, SSD
) &&
3065 !btrfs_test_opt(fs_info
, NOSSD
) &&
3066 !fs_info
->fs_devices
->rotating
) {
3067 btrfs_info(fs_info
, "detected SSD devices, enabling SSD mode");
3068 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
3072 * Mount does not set all options immediately, we can do it now and do
3073 * not have to wait for transaction commit
3075 btrfs_apply_pending_changes(fs_info
);
3077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3078 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3079 ret
= btrfsic_mount(fs_info
, fs_devices
,
3080 btrfs_test_opt(fs_info
,
3081 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3083 fs_info
->check_integrity_print_mask
);
3086 "failed to initialize integrity check module: %d",
3090 ret
= btrfs_read_qgroup_config(fs_info
);
3092 goto fail_trans_kthread
;
3094 /* do not make disk changes in broken FS or nologreplay is given */
3095 if (btrfs_super_log_root(disk_super
) != 0 &&
3096 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3097 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3104 ret
= btrfs_find_orphan_roots(fs_info
);
3108 if (!(sb
->s_flags
& MS_RDONLY
)) {
3109 ret
= btrfs_cleanup_fs_roots(fs_info
);
3113 mutex_lock(&fs_info
->cleaner_mutex
);
3114 ret
= btrfs_recover_relocation(tree_root
);
3115 mutex_unlock(&fs_info
->cleaner_mutex
);
3117 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3124 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3125 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3126 location
.offset
= 0;
3128 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3129 if (IS_ERR(fs_info
->fs_root
)) {
3130 err
= PTR_ERR(fs_info
->fs_root
);
3134 if (sb
->s_flags
& MS_RDONLY
)
3137 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3138 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3139 clear_free_space_tree
= 1;
3140 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3141 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3142 btrfs_warn(fs_info
, "free space tree is invalid");
3143 clear_free_space_tree
= 1;
3146 if (clear_free_space_tree
) {
3147 btrfs_info(fs_info
, "clearing free space tree");
3148 ret
= btrfs_clear_free_space_tree(fs_info
);
3151 "failed to clear free space tree: %d", ret
);
3152 close_ctree(fs_info
);
3157 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3158 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3159 btrfs_info(fs_info
, "creating free space tree");
3160 ret
= btrfs_create_free_space_tree(fs_info
);
3163 "failed to create free space tree: %d", ret
);
3164 close_ctree(fs_info
);
3169 down_read(&fs_info
->cleanup_work_sem
);
3170 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3171 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3172 up_read(&fs_info
->cleanup_work_sem
);
3173 close_ctree(fs_info
);
3176 up_read(&fs_info
->cleanup_work_sem
);
3178 ret
= btrfs_resume_balance_async(fs_info
);
3180 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3181 close_ctree(fs_info
);
3185 ret
= btrfs_resume_dev_replace_async(fs_info
);
3187 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3188 close_ctree(fs_info
);
3192 btrfs_qgroup_rescan_resume(fs_info
);
3194 if (!fs_info
->uuid_root
) {
3195 btrfs_info(fs_info
, "creating UUID tree");
3196 ret
= btrfs_create_uuid_tree(fs_info
);
3199 "failed to create the UUID tree: %d", ret
);
3200 close_ctree(fs_info
);
3203 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3204 fs_info
->generation
!=
3205 btrfs_super_uuid_tree_generation(disk_super
)) {
3206 btrfs_info(fs_info
, "checking UUID tree");
3207 ret
= btrfs_check_uuid_tree(fs_info
);
3210 "failed to check the UUID tree: %d", ret
);
3211 close_ctree(fs_info
);
3215 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3217 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3220 * backuproot only affect mount behavior, and if open_ctree succeeded,
3221 * no need to keep the flag
3223 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3228 btrfs_free_qgroup_config(fs_info
);
3230 kthread_stop(fs_info
->transaction_kthread
);
3231 btrfs_cleanup_transaction(fs_info
);
3232 btrfs_free_fs_roots(fs_info
);
3234 kthread_stop(fs_info
->cleaner_kthread
);
3237 * make sure we're done with the btree inode before we stop our
3240 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3243 btrfs_sysfs_remove_mounted(fs_info
);
3246 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3249 btrfs_put_block_group_cache(fs_info
);
3252 free_root_pointers(fs_info
, 1);
3253 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3256 btrfs_stop_all_workers(fs_info
);
3257 btrfs_free_block_groups(fs_info
);
3260 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3262 iput(fs_info
->btree_inode
);
3264 percpu_counter_destroy(&fs_info
->bio_counter
);
3265 fail_delalloc_bytes
:
3266 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3267 fail_dirty_metadata_bytes
:
3268 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3270 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3272 btrfs_free_stripe_hash_table(fs_info
);
3273 btrfs_close_devices(fs_info
->fs_devices
);
3277 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
3278 goto fail_tree_roots
;
3280 free_root_pointers(fs_info
, 0);
3282 /* don't use the log in recovery mode, it won't be valid */
3283 btrfs_set_super_log_root(disk_super
, 0);
3285 /* we can't trust the free space cache either */
3286 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3288 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3289 &num_backups_tried
, &backup_index
);
3291 goto fail_block_groups
;
3292 goto retry_root_backup
;
3295 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3298 set_buffer_uptodate(bh
);
3300 struct btrfs_device
*device
= (struct btrfs_device
*)
3303 btrfs_warn_rl_in_rcu(device
->fs_info
,
3304 "lost page write due to IO error on %s",
3305 rcu_str_deref(device
->name
));
3306 /* note, we don't set_buffer_write_io_error because we have
3307 * our own ways of dealing with the IO errors
3309 clear_buffer_uptodate(bh
);
3310 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3316 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3317 struct buffer_head
**bh_ret
)
3319 struct buffer_head
*bh
;
3320 struct btrfs_super_block
*super
;
3323 bytenr
= btrfs_sb_offset(copy_num
);
3324 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3327 bh
= __bread(bdev
, bytenr
/ 4096, BTRFS_SUPER_INFO_SIZE
);
3329 * If we fail to read from the underlying devices, as of now
3330 * the best option we have is to mark it EIO.
3335 super
= (struct btrfs_super_block
*)bh
->b_data
;
3336 if (btrfs_super_bytenr(super
) != bytenr
||
3337 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3347 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3349 struct buffer_head
*bh
;
3350 struct buffer_head
*latest
= NULL
;
3351 struct btrfs_super_block
*super
;
3356 /* we would like to check all the supers, but that would make
3357 * a btrfs mount succeed after a mkfs from a different FS.
3358 * So, we need to add a special mount option to scan for
3359 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3361 for (i
= 0; i
< 1; i
++) {
3362 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3366 super
= (struct btrfs_super_block
*)bh
->b_data
;
3368 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3371 transid
= btrfs_super_generation(super
);
3378 return ERR_PTR(ret
);
3384 * this should be called twice, once with wait == 0 and
3385 * once with wait == 1. When wait == 0 is done, all the buffer heads
3386 * we write are pinned.
3388 * They are released when wait == 1 is done.
3389 * max_mirrors must be the same for both runs, and it indicates how
3390 * many supers on this one device should be written.
3392 * max_mirrors == 0 means to write them all.
3394 static int write_dev_supers(struct btrfs_device
*device
,
3395 struct btrfs_super_block
*sb
,
3396 int wait
, int max_mirrors
)
3398 struct buffer_head
*bh
;
3405 if (max_mirrors
== 0)
3406 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3408 for (i
= 0; i
< max_mirrors
; i
++) {
3409 bytenr
= btrfs_sb_offset(i
);
3410 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3411 device
->commit_total_bytes
)
3415 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3416 BTRFS_SUPER_INFO_SIZE
);
3422 if (!buffer_uptodate(bh
))
3425 /* drop our reference */
3428 /* drop the reference from the wait == 0 run */
3432 btrfs_set_super_bytenr(sb
, bytenr
);
3435 crc
= btrfs_csum_data((const char *)sb
+
3436 BTRFS_CSUM_SIZE
, crc
,
3437 BTRFS_SUPER_INFO_SIZE
-
3439 btrfs_csum_final(crc
, sb
->csum
);
3442 * one reference for us, and we leave it for the
3445 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3446 BTRFS_SUPER_INFO_SIZE
);
3448 btrfs_err(device
->fs_info
,
3449 "couldn't get super buffer head for bytenr %llu",
3455 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3457 /* one reference for submit_bh */
3460 set_buffer_uptodate(bh
);
3462 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3463 bh
->b_private
= device
;
3467 * we fua the first super. The others we allow
3471 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, REQ_FUA
, bh
);
3473 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, REQ_SYNC
, bh
);
3477 return errors
< i
? 0 : -1;
3481 * endio for the write_dev_flush, this will wake anyone waiting
3482 * for the barrier when it is done
3484 static void btrfs_end_empty_barrier(struct bio
*bio
)
3486 if (bio
->bi_private
)
3487 complete(bio
->bi_private
);
3492 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3493 * sent down. With wait == 1, it waits for the previous flush.
3495 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3498 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3503 if (device
->nobarriers
)
3507 bio
= device
->flush_bio
;
3511 wait_for_completion(&device
->flush_wait
);
3513 if (bio
->bi_error
) {
3514 ret
= bio
->bi_error
;
3515 btrfs_dev_stat_inc_and_print(device
,
3516 BTRFS_DEV_STAT_FLUSH_ERRS
);
3519 /* drop the reference from the wait == 0 run */
3521 device
->flush_bio
= NULL
;
3527 * one reference for us, and we leave it for the
3530 device
->flush_bio
= NULL
;
3531 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3535 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3536 bio
->bi_bdev
= device
->bdev
;
3537 bio
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
3538 init_completion(&device
->flush_wait
);
3539 bio
->bi_private
= &device
->flush_wait
;
3540 device
->flush_bio
= bio
;
3543 btrfsic_submit_bio(bio
);
3549 * send an empty flush down to each device in parallel,
3550 * then wait for them
3552 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3554 struct list_head
*head
;
3555 struct btrfs_device
*dev
;
3556 int errors_send
= 0;
3557 int errors_wait
= 0;
3560 /* send down all the barriers */
3561 head
= &info
->fs_devices
->devices
;
3562 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3569 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3572 ret
= write_dev_flush(dev
, 0);
3577 /* wait for all the barriers */
3578 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3585 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3588 ret
= write_dev_flush(dev
, 1);
3592 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3593 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3598 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3601 int min_tolerated
= INT_MAX
;
3603 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3604 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3605 min_tolerated
= min(min_tolerated
,
3606 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3607 tolerated_failures
);
3609 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3610 if (raid_type
== BTRFS_RAID_SINGLE
)
3612 if (!(flags
& btrfs_raid_group
[raid_type
]))
3614 min_tolerated
= min(min_tolerated
,
3615 btrfs_raid_array
[raid_type
].
3616 tolerated_failures
);
3619 if (min_tolerated
== INT_MAX
) {
3620 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3624 return min_tolerated
;
3627 int btrfs_calc_num_tolerated_disk_barrier_failures(
3628 struct btrfs_fs_info
*fs_info
)
3630 struct btrfs_ioctl_space_info space
;
3631 struct btrfs_space_info
*sinfo
;
3632 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3633 BTRFS_BLOCK_GROUP_SYSTEM
,
3634 BTRFS_BLOCK_GROUP_METADATA
,
3635 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3638 int num_tolerated_disk_barrier_failures
=
3639 (int)fs_info
->fs_devices
->num_devices
;
3641 for (i
= 0; i
< ARRAY_SIZE(types
); i
++) {
3642 struct btrfs_space_info
*tmp
;
3646 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3647 if (tmp
->flags
== types
[i
]) {
3657 down_read(&sinfo
->groups_sem
);
3658 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3661 if (list_empty(&sinfo
->block_groups
[c
]))
3664 btrfs_get_block_group_info(&sinfo
->block_groups
[c
],
3666 if (space
.total_bytes
== 0 || space
.used_bytes
== 0)
3668 flags
= space
.flags
;
3670 num_tolerated_disk_barrier_failures
= min(
3671 num_tolerated_disk_barrier_failures
,
3672 btrfs_get_num_tolerated_disk_barrier_failures(
3675 up_read(&sinfo
->groups_sem
);
3678 return num_tolerated_disk_barrier_failures
;
3681 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3683 struct list_head
*head
;
3684 struct btrfs_device
*dev
;
3685 struct btrfs_super_block
*sb
;
3686 struct btrfs_dev_item
*dev_item
;
3690 int total_errors
= 0;
3693 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3694 backup_super_roots(fs_info
);
3696 sb
= fs_info
->super_for_commit
;
3697 dev_item
= &sb
->dev_item
;
3699 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3700 head
= &fs_info
->fs_devices
->devices
;
3701 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3704 ret
= barrier_all_devices(fs_info
);
3707 &fs_info
->fs_devices
->device_list_mutex
);
3708 btrfs_handle_fs_error(fs_info
, ret
,
3709 "errors while submitting device barriers.");
3714 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3719 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3722 btrfs_set_stack_device_generation(dev_item
, 0);
3723 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3724 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3725 btrfs_set_stack_device_total_bytes(dev_item
,
3726 dev
->commit_total_bytes
);
3727 btrfs_set_stack_device_bytes_used(dev_item
,
3728 dev
->commit_bytes_used
);
3729 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3730 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3731 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3732 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3733 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3735 flags
= btrfs_super_flags(sb
);
3736 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3738 ret
= write_dev_supers(dev
, sb
, 0, max_mirrors
);
3742 if (total_errors
> max_errors
) {
3743 btrfs_err(fs_info
, "%d errors while writing supers",
3745 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3747 /* FUA is masked off if unsupported and can't be the reason */
3748 btrfs_handle_fs_error(fs_info
, -EIO
,
3749 "%d errors while writing supers",
3755 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3758 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3761 ret
= write_dev_supers(dev
, sb
, 1, max_mirrors
);
3765 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3766 if (total_errors
> max_errors
) {
3767 btrfs_handle_fs_error(fs_info
, -EIO
,
3768 "%d errors while writing supers",
3775 /* Drop a fs root from the radix tree and free it. */
3776 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3777 struct btrfs_root
*root
)
3779 spin_lock(&fs_info
->fs_roots_radix_lock
);
3780 radix_tree_delete(&fs_info
->fs_roots_radix
,
3781 (unsigned long)root
->root_key
.objectid
);
3782 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3784 if (btrfs_root_refs(&root
->root_item
) == 0)
3785 synchronize_srcu(&fs_info
->subvol_srcu
);
3787 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3788 btrfs_free_log(NULL
, root
);
3789 if (root
->reloc_root
) {
3790 free_extent_buffer(root
->reloc_root
->node
);
3791 free_extent_buffer(root
->reloc_root
->commit_root
);
3792 btrfs_put_fs_root(root
->reloc_root
);
3793 root
->reloc_root
= NULL
;
3797 if (root
->free_ino_pinned
)
3798 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3799 if (root
->free_ino_ctl
)
3800 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3804 static void free_fs_root(struct btrfs_root
*root
)
3806 iput(root
->ino_cache_inode
);
3807 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3808 btrfs_free_block_rsv(root
->fs_info
, root
->orphan_block_rsv
);
3809 root
->orphan_block_rsv
= NULL
;
3811 free_anon_bdev(root
->anon_dev
);
3812 if (root
->subv_writers
)
3813 btrfs_free_subvolume_writers(root
->subv_writers
);
3814 free_extent_buffer(root
->node
);
3815 free_extent_buffer(root
->commit_root
);
3816 kfree(root
->free_ino_ctl
);
3817 kfree(root
->free_ino_pinned
);
3819 btrfs_put_fs_root(root
);
3822 void btrfs_free_fs_root(struct btrfs_root
*root
)
3827 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3829 u64 root_objectid
= 0;
3830 struct btrfs_root
*gang
[8];
3833 unsigned int ret
= 0;
3837 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3838 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3839 (void **)gang
, root_objectid
,
3842 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3845 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3847 for (i
= 0; i
< ret
; i
++) {
3848 /* Avoid to grab roots in dead_roots */
3849 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3853 /* grab all the search result for later use */
3854 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3856 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3858 for (i
= 0; i
< ret
; i
++) {
3861 root_objectid
= gang
[i
]->root_key
.objectid
;
3862 err
= btrfs_orphan_cleanup(gang
[i
]);
3865 btrfs_put_fs_root(gang
[i
]);
3870 /* release the uncleaned roots due to error */
3871 for (; i
< ret
; i
++) {
3873 btrfs_put_fs_root(gang
[i
]);
3878 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3880 struct btrfs_root
*root
= fs_info
->tree_root
;
3881 struct btrfs_trans_handle
*trans
;
3883 mutex_lock(&fs_info
->cleaner_mutex
);
3884 btrfs_run_delayed_iputs(fs_info
);
3885 mutex_unlock(&fs_info
->cleaner_mutex
);
3886 wake_up_process(fs_info
->cleaner_kthread
);
3888 /* wait until ongoing cleanup work done */
3889 down_write(&fs_info
->cleanup_work_sem
);
3890 up_write(&fs_info
->cleanup_work_sem
);
3892 trans
= btrfs_join_transaction(root
);
3894 return PTR_ERR(trans
);
3895 return btrfs_commit_transaction(trans
);
3898 void close_ctree(struct btrfs_fs_info
*fs_info
)
3900 struct btrfs_root
*root
= fs_info
->tree_root
;
3903 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3905 /* wait for the qgroup rescan worker to stop */
3906 btrfs_qgroup_wait_for_completion(fs_info
, false);
3908 /* wait for the uuid_scan task to finish */
3909 down(&fs_info
->uuid_tree_rescan_sem
);
3910 /* avoid complains from lockdep et al., set sem back to initial state */
3911 up(&fs_info
->uuid_tree_rescan_sem
);
3913 /* pause restriper - we want to resume on mount */
3914 btrfs_pause_balance(fs_info
);
3916 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3918 btrfs_scrub_cancel(fs_info
);
3920 /* wait for any defraggers to finish */
3921 wait_event(fs_info
->transaction_wait
,
3922 (atomic_read(&fs_info
->defrag_running
) == 0));
3924 /* clear out the rbtree of defraggable inodes */
3925 btrfs_cleanup_defrag_inodes(fs_info
);
3927 cancel_work_sync(&fs_info
->async_reclaim_work
);
3929 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3931 * If the cleaner thread is stopped and there are
3932 * block groups queued for removal, the deletion will be
3933 * skipped when we quit the cleaner thread.
3935 btrfs_delete_unused_bgs(fs_info
);
3937 ret
= btrfs_commit_super(fs_info
);
3939 btrfs_err(fs_info
, "commit super ret %d", ret
);
3942 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3943 btrfs_error_commit_super(fs_info
);
3945 kthread_stop(fs_info
->transaction_kthread
);
3946 kthread_stop(fs_info
->cleaner_kthread
);
3948 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
3950 btrfs_free_qgroup_config(fs_info
);
3952 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3953 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3954 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3957 btrfs_sysfs_remove_mounted(fs_info
);
3958 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3960 btrfs_free_fs_roots(fs_info
);
3962 btrfs_put_block_group_cache(fs_info
);
3965 * we must make sure there is not any read request to
3966 * submit after we stopping all workers.
3968 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3969 btrfs_stop_all_workers(fs_info
);
3971 btrfs_free_block_groups(fs_info
);
3973 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3974 free_root_pointers(fs_info
, 1);
3976 iput(fs_info
->btree_inode
);
3978 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3979 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
3980 btrfsic_unmount(fs_info
->fs_devices
);
3983 btrfs_close_devices(fs_info
->fs_devices
);
3984 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3986 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3987 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3988 percpu_counter_destroy(&fs_info
->bio_counter
);
3989 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3991 btrfs_free_stripe_hash_table(fs_info
);
3993 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
3994 root
->orphan_block_rsv
= NULL
;
3996 mutex_lock(&fs_info
->chunk_mutex
);
3997 while (!list_empty(&fs_info
->pinned_chunks
)) {
3998 struct extent_map
*em
;
4000 em
= list_first_entry(&fs_info
->pinned_chunks
,
4001 struct extent_map
, list
);
4002 list_del_init(&em
->list
);
4003 free_extent_map(em
);
4005 mutex_unlock(&fs_info
->chunk_mutex
);
4008 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4012 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4014 ret
= extent_buffer_uptodate(buf
);
4018 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4019 parent_transid
, atomic
);
4025 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4027 struct btrfs_fs_info
*fs_info
;
4028 struct btrfs_root
*root
;
4029 u64 transid
= btrfs_header_generation(buf
);
4032 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4034 * This is a fast path so only do this check if we have sanity tests
4035 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4036 * outside of the sanity tests.
4038 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
4041 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4042 fs_info
= root
->fs_info
;
4043 btrfs_assert_tree_locked(buf
);
4044 if (transid
!= fs_info
->generation
)
4045 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4046 buf
->start
, transid
, fs_info
->generation
);
4047 was_dirty
= set_extent_buffer_dirty(buf
);
4049 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
4051 fs_info
->dirty_metadata_batch
);
4052 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4053 if (btrfs_header_level(buf
) == 0 && check_leaf(root
, buf
)) {
4054 btrfs_print_leaf(fs_info
, buf
);
4060 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4064 * looks as though older kernels can get into trouble with
4065 * this code, they end up stuck in balance_dirty_pages forever
4069 if (current
->flags
& PF_MEMALLOC
)
4073 btrfs_balance_delayed_items(fs_info
);
4075 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4076 BTRFS_DIRTY_METADATA_THRESH
);
4078 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4082 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4084 __btrfs_btree_balance_dirty(fs_info
, 1);
4087 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4089 __btrfs_btree_balance_dirty(fs_info
, 0);
4092 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
4094 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4095 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4097 return btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
);
4100 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
)
4102 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
4103 u64 nodesize
= btrfs_super_nodesize(sb
);
4104 u64 sectorsize
= btrfs_super_sectorsize(sb
);
4107 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
4108 btrfs_err(fs_info
, "no valid FS found");
4111 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
)
4112 btrfs_warn(fs_info
, "unrecognized super flag: %llu",
4113 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
4114 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4115 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
4116 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
4119 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4120 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
4121 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
4124 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4125 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
4126 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
4131 * Check sectorsize and nodesize first, other check will need it.
4132 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4134 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
4135 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4136 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
4139 /* Only PAGE SIZE is supported yet */
4140 if (sectorsize
!= PAGE_SIZE
) {
4142 "sectorsize %llu not supported yet, only support %lu",
4143 sectorsize
, PAGE_SIZE
);
4146 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
4147 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4148 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
4151 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
4152 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
4153 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
4157 /* Root alignment check */
4158 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
4159 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
4160 btrfs_super_root(sb
));
4163 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
4164 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
4165 btrfs_super_chunk_root(sb
));
4168 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
4169 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
4170 btrfs_super_log_root(sb
));
4174 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_UUID_SIZE
) != 0) {
4176 "dev_item UUID does not match fsid: %pU != %pU",
4177 fs_info
->fsid
, sb
->dev_item
.fsid
);
4182 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4185 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
4186 btrfs_err(fs_info
, "bytes_used is too small %llu",
4187 btrfs_super_bytes_used(sb
));
4190 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
4191 btrfs_err(fs_info
, "invalid stripesize %u",
4192 btrfs_super_stripesize(sb
));
4195 if (btrfs_super_num_devices(sb
) > (1UL << 31))
4196 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
4197 btrfs_super_num_devices(sb
));
4198 if (btrfs_super_num_devices(sb
) == 0) {
4199 btrfs_err(fs_info
, "number of devices is 0");
4203 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
4204 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
4205 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
4210 * Obvious sys_chunk_array corruptions, it must hold at least one key
4213 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4214 btrfs_err(fs_info
, "system chunk array too big %u > %u",
4215 btrfs_super_sys_array_size(sb
),
4216 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
4219 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
4220 + sizeof(struct btrfs_chunk
)) {
4221 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
4222 btrfs_super_sys_array_size(sb
),
4223 sizeof(struct btrfs_disk_key
)
4224 + sizeof(struct btrfs_chunk
));
4229 * The generation is a global counter, we'll trust it more than the others
4230 * but it's still possible that it's the one that's wrong.
4232 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4234 "suspicious: generation < chunk_root_generation: %llu < %llu",
4235 btrfs_super_generation(sb
),
4236 btrfs_super_chunk_root_generation(sb
));
4237 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4238 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4240 "suspicious: generation < cache_generation: %llu < %llu",
4241 btrfs_super_generation(sb
),
4242 btrfs_super_cache_generation(sb
));
4247 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4249 mutex_lock(&fs_info
->cleaner_mutex
);
4250 btrfs_run_delayed_iputs(fs_info
);
4251 mutex_unlock(&fs_info
->cleaner_mutex
);
4253 down_write(&fs_info
->cleanup_work_sem
);
4254 up_write(&fs_info
->cleanup_work_sem
);
4256 /* cleanup FS via transaction */
4257 btrfs_cleanup_transaction(fs_info
);
4260 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4262 struct btrfs_ordered_extent
*ordered
;
4264 spin_lock(&root
->ordered_extent_lock
);
4266 * This will just short circuit the ordered completion stuff which will
4267 * make sure the ordered extent gets properly cleaned up.
4269 list_for_each_entry(ordered
, &root
->ordered_extents
,
4271 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4272 spin_unlock(&root
->ordered_extent_lock
);
4275 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4277 struct btrfs_root
*root
;
4278 struct list_head splice
;
4280 INIT_LIST_HEAD(&splice
);
4282 spin_lock(&fs_info
->ordered_root_lock
);
4283 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4284 while (!list_empty(&splice
)) {
4285 root
= list_first_entry(&splice
, struct btrfs_root
,
4287 list_move_tail(&root
->ordered_root
,
4288 &fs_info
->ordered_roots
);
4290 spin_unlock(&fs_info
->ordered_root_lock
);
4291 btrfs_destroy_ordered_extents(root
);
4294 spin_lock(&fs_info
->ordered_root_lock
);
4296 spin_unlock(&fs_info
->ordered_root_lock
);
4299 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4300 struct btrfs_fs_info
*fs_info
)
4302 struct rb_node
*node
;
4303 struct btrfs_delayed_ref_root
*delayed_refs
;
4304 struct btrfs_delayed_ref_node
*ref
;
4307 delayed_refs
= &trans
->delayed_refs
;
4309 spin_lock(&delayed_refs
->lock
);
4310 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4311 spin_unlock(&delayed_refs
->lock
);
4312 btrfs_info(fs_info
, "delayed_refs has NO entry");
4316 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4317 struct btrfs_delayed_ref_head
*head
;
4318 struct btrfs_delayed_ref_node
*tmp
;
4319 bool pin_bytes
= false;
4321 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4323 if (!mutex_trylock(&head
->mutex
)) {
4324 atomic_inc(&head
->node
.refs
);
4325 spin_unlock(&delayed_refs
->lock
);
4327 mutex_lock(&head
->mutex
);
4328 mutex_unlock(&head
->mutex
);
4329 btrfs_put_delayed_ref(&head
->node
);
4330 spin_lock(&delayed_refs
->lock
);
4333 spin_lock(&head
->lock
);
4334 list_for_each_entry_safe_reverse(ref
, tmp
, &head
->ref_list
,
4337 list_del(&ref
->list
);
4338 if (!list_empty(&ref
->add_list
))
4339 list_del(&ref
->add_list
);
4340 atomic_dec(&delayed_refs
->num_entries
);
4341 btrfs_put_delayed_ref(ref
);
4343 if (head
->must_insert_reserved
)
4345 btrfs_free_delayed_extent_op(head
->extent_op
);
4346 delayed_refs
->num_heads
--;
4347 if (head
->processing
== 0)
4348 delayed_refs
->num_heads_ready
--;
4349 atomic_dec(&delayed_refs
->num_entries
);
4350 head
->node
.in_tree
= 0;
4351 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4352 spin_unlock(&head
->lock
);
4353 spin_unlock(&delayed_refs
->lock
);
4354 mutex_unlock(&head
->mutex
);
4357 btrfs_pin_extent(fs_info
, head
->node
.bytenr
,
4358 head
->node
.num_bytes
, 1);
4359 btrfs_put_delayed_ref(&head
->node
);
4361 spin_lock(&delayed_refs
->lock
);
4364 spin_unlock(&delayed_refs
->lock
);
4369 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4371 struct btrfs_inode
*btrfs_inode
;
4372 struct list_head splice
;
4374 INIT_LIST_HEAD(&splice
);
4376 spin_lock(&root
->delalloc_lock
);
4377 list_splice_init(&root
->delalloc_inodes
, &splice
);
4379 while (!list_empty(&splice
)) {
4380 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4383 list_del_init(&btrfs_inode
->delalloc_inodes
);
4384 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4385 &btrfs_inode
->runtime_flags
);
4386 spin_unlock(&root
->delalloc_lock
);
4388 btrfs_invalidate_inodes(btrfs_inode
->root
);
4390 spin_lock(&root
->delalloc_lock
);
4393 spin_unlock(&root
->delalloc_lock
);
4396 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4398 struct btrfs_root
*root
;
4399 struct list_head splice
;
4401 INIT_LIST_HEAD(&splice
);
4403 spin_lock(&fs_info
->delalloc_root_lock
);
4404 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4405 while (!list_empty(&splice
)) {
4406 root
= list_first_entry(&splice
, struct btrfs_root
,
4408 list_del_init(&root
->delalloc_root
);
4409 root
= btrfs_grab_fs_root(root
);
4411 spin_unlock(&fs_info
->delalloc_root_lock
);
4413 btrfs_destroy_delalloc_inodes(root
);
4414 btrfs_put_fs_root(root
);
4416 spin_lock(&fs_info
->delalloc_root_lock
);
4418 spin_unlock(&fs_info
->delalloc_root_lock
);
4421 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4422 struct extent_io_tree
*dirty_pages
,
4426 struct extent_buffer
*eb
;
4431 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4436 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4437 while (start
<= end
) {
4438 eb
= find_extent_buffer(fs_info
, start
);
4439 start
+= fs_info
->nodesize
;
4442 wait_on_extent_buffer_writeback(eb
);
4444 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4446 clear_extent_buffer_dirty(eb
);
4447 free_extent_buffer_stale(eb
);
4454 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4455 struct extent_io_tree
*pinned_extents
)
4457 struct extent_io_tree
*unpin
;
4463 unpin
= pinned_extents
;
4466 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4467 EXTENT_DIRTY
, NULL
);
4471 clear_extent_dirty(unpin
, start
, end
);
4472 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4477 if (unpin
== &fs_info
->freed_extents
[0])
4478 unpin
= &fs_info
->freed_extents
[1];
4480 unpin
= &fs_info
->freed_extents
[0];
4488 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4490 struct inode
*inode
;
4492 inode
= cache
->io_ctl
.inode
;
4494 invalidate_inode_pages2(inode
->i_mapping
);
4495 BTRFS_I(inode
)->generation
= 0;
4496 cache
->io_ctl
.inode
= NULL
;
4499 btrfs_put_block_group(cache
);
4502 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4503 struct btrfs_fs_info
*fs_info
)
4505 struct btrfs_block_group_cache
*cache
;
4507 spin_lock(&cur_trans
->dirty_bgs_lock
);
4508 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4509 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4510 struct btrfs_block_group_cache
,
4513 btrfs_err(fs_info
, "orphan block group dirty_bgs list");
4514 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4518 if (!list_empty(&cache
->io_list
)) {
4519 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4520 list_del_init(&cache
->io_list
);
4521 btrfs_cleanup_bg_io(cache
);
4522 spin_lock(&cur_trans
->dirty_bgs_lock
);
4525 list_del_init(&cache
->dirty_list
);
4526 spin_lock(&cache
->lock
);
4527 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4528 spin_unlock(&cache
->lock
);
4530 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4531 btrfs_put_block_group(cache
);
4532 spin_lock(&cur_trans
->dirty_bgs_lock
);
4534 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4536 while (!list_empty(&cur_trans
->io_bgs
)) {
4537 cache
= list_first_entry(&cur_trans
->io_bgs
,
4538 struct btrfs_block_group_cache
,
4541 btrfs_err(fs_info
, "orphan block group on io_bgs list");
4545 list_del_init(&cache
->io_list
);
4546 spin_lock(&cache
->lock
);
4547 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4548 spin_unlock(&cache
->lock
);
4549 btrfs_cleanup_bg_io(cache
);
4553 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4554 struct btrfs_fs_info
*fs_info
)
4556 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4557 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4558 ASSERT(list_empty(&cur_trans
->io_bgs
));
4560 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4562 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4563 wake_up(&fs_info
->transaction_blocked_wait
);
4565 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4566 wake_up(&fs_info
->transaction_wait
);
4568 btrfs_destroy_delayed_inodes(fs_info
);
4569 btrfs_assert_delayed_root_empty(fs_info
);
4571 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4573 btrfs_destroy_pinned_extent(fs_info
,
4574 fs_info
->pinned_extents
);
4576 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4577 wake_up(&cur_trans
->commit_wait
);
4580 memset(cur_trans, 0, sizeof(*cur_trans));
4581 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4585 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4587 struct btrfs_transaction
*t
;
4589 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4591 spin_lock(&fs_info
->trans_lock
);
4592 while (!list_empty(&fs_info
->trans_list
)) {
4593 t
= list_first_entry(&fs_info
->trans_list
,
4594 struct btrfs_transaction
, list
);
4595 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4596 atomic_inc(&t
->use_count
);
4597 spin_unlock(&fs_info
->trans_lock
);
4598 btrfs_wait_for_commit(fs_info
, t
->transid
);
4599 btrfs_put_transaction(t
);
4600 spin_lock(&fs_info
->trans_lock
);
4603 if (t
== fs_info
->running_transaction
) {
4604 t
->state
= TRANS_STATE_COMMIT_DOING
;
4605 spin_unlock(&fs_info
->trans_lock
);
4607 * We wait for 0 num_writers since we don't hold a trans
4608 * handle open currently for this transaction.
4610 wait_event(t
->writer_wait
,
4611 atomic_read(&t
->num_writers
) == 0);
4613 spin_unlock(&fs_info
->trans_lock
);
4615 btrfs_cleanup_one_transaction(t
, fs_info
);
4617 spin_lock(&fs_info
->trans_lock
);
4618 if (t
== fs_info
->running_transaction
)
4619 fs_info
->running_transaction
= NULL
;
4620 list_del_init(&t
->list
);
4621 spin_unlock(&fs_info
->trans_lock
);
4623 btrfs_put_transaction(t
);
4624 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4625 spin_lock(&fs_info
->trans_lock
);
4627 spin_unlock(&fs_info
->trans_lock
);
4628 btrfs_destroy_all_ordered_extents(fs_info
);
4629 btrfs_destroy_delayed_inodes(fs_info
);
4630 btrfs_assert_delayed_root_empty(fs_info
);
4631 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
4632 btrfs_destroy_all_delalloc_inodes(fs_info
);
4633 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4638 static const struct extent_io_ops btree_extent_io_ops
= {
4639 /* mandatory callbacks */
4640 .submit_bio_hook
= btree_submit_bio_hook
,
4641 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4642 /* note we're sharing with inode.c for the merge bio hook */
4643 .merge_bio_hook
= btrfs_merge_bio_hook
,
4644 .readpage_io_failed_hook
= btree_io_failed_hook
,
4646 /* optional callbacks */