]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Merge tag 'befs-v4.12-rc1' of git://github.com/luisbg/linux-befs
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
68 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
70 struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
73 struct extent_io_tree *dirty_pages,
74 int mark);
75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
76 struct extent_io_tree *pinned_extents);
77 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
78 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
79
80 /*
81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
82 * is complete. This is used during reads to verify checksums, and it is used
83 * by writes to insert metadata for new file extents after IO is complete.
84 */
85 struct btrfs_end_io_wq {
86 struct bio *bio;
87 bio_end_io_t *end_io;
88 void *private;
89 struct btrfs_fs_info *info;
90 int error;
91 enum btrfs_wq_endio_type metadata;
92 struct list_head list;
93 struct btrfs_work work;
94 };
95
96 static struct kmem_cache *btrfs_end_io_wq_cache;
97
98 int __init btrfs_end_io_wq_init(void)
99 {
100 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
101 sizeof(struct btrfs_end_io_wq),
102 0,
103 SLAB_MEM_SPREAD,
104 NULL);
105 if (!btrfs_end_io_wq_cache)
106 return -ENOMEM;
107 return 0;
108 }
109
110 void btrfs_end_io_wq_exit(void)
111 {
112 kmem_cache_destroy(btrfs_end_io_wq_cache);
113 }
114
115 /*
116 * async submit bios are used to offload expensive checksumming
117 * onto the worker threads. They checksum file and metadata bios
118 * just before they are sent down the IO stack.
119 */
120 struct async_submit_bio {
121 struct inode *inode;
122 struct bio *bio;
123 struct list_head list;
124 extent_submit_bio_hook_t *submit_bio_start;
125 extent_submit_bio_hook_t *submit_bio_done;
126 int mirror_num;
127 unsigned long bio_flags;
128 /*
129 * bio_offset is optional, can be used if the pages in the bio
130 * can't tell us where in the file the bio should go
131 */
132 u64 bio_offset;
133 struct btrfs_work work;
134 int error;
135 };
136
137 /*
138 * Lockdep class keys for extent_buffer->lock's in this root. For a given
139 * eb, the lockdep key is determined by the btrfs_root it belongs to and
140 * the level the eb occupies in the tree.
141 *
142 * Different roots are used for different purposes and may nest inside each
143 * other and they require separate keysets. As lockdep keys should be
144 * static, assign keysets according to the purpose of the root as indicated
145 * by btrfs_root->objectid. This ensures that all special purpose roots
146 * have separate keysets.
147 *
148 * Lock-nesting across peer nodes is always done with the immediate parent
149 * node locked thus preventing deadlock. As lockdep doesn't know this, use
150 * subclass to avoid triggering lockdep warning in such cases.
151 *
152 * The key is set by the readpage_end_io_hook after the buffer has passed
153 * csum validation but before the pages are unlocked. It is also set by
154 * btrfs_init_new_buffer on freshly allocated blocks.
155 *
156 * We also add a check to make sure the highest level of the tree is the
157 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
158 * needs update as well.
159 */
160 #ifdef CONFIG_DEBUG_LOCK_ALLOC
161 # if BTRFS_MAX_LEVEL != 8
162 # error
163 # endif
164
165 static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
167 const char *name_stem; /* lock name stem */
168 char names[BTRFS_MAX_LEVEL + 1][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
170 } btrfs_lockdep_keysets[] = {
171 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
174 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
175 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
176 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
177 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
178 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
179 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
180 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
181 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
182 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
183 { .id = 0, .name_stem = "tree" },
184 };
185
186 void __init btrfs_init_lockdep(void)
187 {
188 int i, j;
189
190 /* initialize lockdep class names */
191 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
192 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
193
194 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
195 snprintf(ks->names[j], sizeof(ks->names[j]),
196 "btrfs-%s-%02d", ks->name_stem, j);
197 }
198 }
199
200 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
201 int level)
202 {
203 struct btrfs_lockdep_keyset *ks;
204
205 BUG_ON(level >= ARRAY_SIZE(ks->keys));
206
207 /* find the matching keyset, id 0 is the default entry */
208 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
209 if (ks->id == objectid)
210 break;
211
212 lockdep_set_class_and_name(&eb->lock,
213 &ks->keys[level], ks->names[level]);
214 }
215
216 #endif
217
218 /*
219 * extents on the btree inode are pretty simple, there's one extent
220 * that covers the entire device
221 */
222 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
223 struct page *page, size_t pg_offset, u64 start, u64 len,
224 int create)
225 {
226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
227 struct extent_map_tree *em_tree = &inode->extent_tree;
228 struct extent_map *em;
229 int ret;
230
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev = fs_info->fs_devices->latest_bdev;
235 read_unlock(&em_tree->lock);
236 goto out;
237 }
238 read_unlock(&em_tree->lock);
239
240 em = alloc_extent_map();
241 if (!em) {
242 em = ERR_PTR(-ENOMEM);
243 goto out;
244 }
245 em->start = 0;
246 em->len = (u64)-1;
247 em->block_len = (u64)-1;
248 em->block_start = 0;
249 em->bdev = fs_info->fs_devices->latest_bdev;
250
251 write_lock(&em_tree->lock);
252 ret = add_extent_mapping(em_tree, em, 0);
253 if (ret == -EEXIST) {
254 free_extent_map(em);
255 em = lookup_extent_mapping(em_tree, start, len);
256 if (!em)
257 em = ERR_PTR(-EIO);
258 } else if (ret) {
259 free_extent_map(em);
260 em = ERR_PTR(ret);
261 }
262 write_unlock(&em_tree->lock);
263
264 out:
265 return em;
266 }
267
268 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
269 {
270 return btrfs_crc32c(seed, data, len);
271 }
272
273 void btrfs_csum_final(u32 crc, u8 *result)
274 {
275 put_unaligned_le32(~crc, result);
276 }
277
278 /*
279 * compute the csum for a btree block, and either verify it or write it
280 * into the csum field of the block.
281 */
282 static int csum_tree_block(struct btrfs_fs_info *fs_info,
283 struct extent_buffer *buf,
284 int verify)
285 {
286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
287 char *result = NULL;
288 unsigned long len;
289 unsigned long cur_len;
290 unsigned long offset = BTRFS_CSUM_SIZE;
291 char *kaddr;
292 unsigned long map_start;
293 unsigned long map_len;
294 int err;
295 u32 crc = ~(u32)0;
296 unsigned long inline_result;
297
298 len = buf->len - offset;
299 while (len > 0) {
300 err = map_private_extent_buffer(buf, offset, 32,
301 &kaddr, &map_start, &map_len);
302 if (err)
303 return err;
304 cur_len = min(len, map_len - (offset - map_start));
305 crc = btrfs_csum_data(kaddr + offset - map_start,
306 crc, cur_len);
307 len -= cur_len;
308 offset += cur_len;
309 }
310 if (csum_size > sizeof(inline_result)) {
311 result = kzalloc(csum_size, GFP_NOFS);
312 if (!result)
313 return -ENOMEM;
314 } else {
315 result = (char *)&inline_result;
316 }
317
318 btrfs_csum_final(crc, result);
319
320 if (verify) {
321 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
322 u32 val;
323 u32 found = 0;
324 memcpy(&found, result, csum_size);
325
326 read_extent_buffer(buf, &val, 0, csum_size);
327 btrfs_warn_rl(fs_info,
328 "%s checksum verify failed on %llu wanted %X found %X level %d",
329 fs_info->sb->s_id, buf->start,
330 val, found, btrfs_header_level(buf));
331 if (result != (char *)&inline_result)
332 kfree(result);
333 return -EUCLEAN;
334 }
335 } else {
336 write_extent_buffer(buf, result, 0, csum_size);
337 }
338 if (result != (char *)&inline_result)
339 kfree(result);
340 return 0;
341 }
342
343 /*
344 * we can't consider a given block up to date unless the transid of the
345 * block matches the transid in the parent node's pointer. This is how we
346 * detect blocks that either didn't get written at all or got written
347 * in the wrong place.
348 */
349 static int verify_parent_transid(struct extent_io_tree *io_tree,
350 struct extent_buffer *eb, u64 parent_transid,
351 int atomic)
352 {
353 struct extent_state *cached_state = NULL;
354 int ret;
355 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
356
357 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
358 return 0;
359
360 if (atomic)
361 return -EAGAIN;
362
363 if (need_lock) {
364 btrfs_tree_read_lock(eb);
365 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
366 }
367
368 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
369 &cached_state);
370 if (extent_buffer_uptodate(eb) &&
371 btrfs_header_generation(eb) == parent_transid) {
372 ret = 0;
373 goto out;
374 }
375 btrfs_err_rl(eb->fs_info,
376 "parent transid verify failed on %llu wanted %llu found %llu",
377 eb->start,
378 parent_transid, btrfs_header_generation(eb));
379 ret = 1;
380
381 /*
382 * Things reading via commit roots that don't have normal protection,
383 * like send, can have a really old block in cache that may point at a
384 * block that has been freed and re-allocated. So don't clear uptodate
385 * if we find an eb that is under IO (dirty/writeback) because we could
386 * end up reading in the stale data and then writing it back out and
387 * making everybody very sad.
388 */
389 if (!extent_buffer_under_io(eb))
390 clear_extent_buffer_uptodate(eb);
391 out:
392 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
393 &cached_state, GFP_NOFS);
394 if (need_lock)
395 btrfs_tree_read_unlock_blocking(eb);
396 return ret;
397 }
398
399 /*
400 * Return 0 if the superblock checksum type matches the checksum value of that
401 * algorithm. Pass the raw disk superblock data.
402 */
403 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
404 char *raw_disk_sb)
405 {
406 struct btrfs_super_block *disk_sb =
407 (struct btrfs_super_block *)raw_disk_sb;
408 u16 csum_type = btrfs_super_csum_type(disk_sb);
409 int ret = 0;
410
411 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
412 u32 crc = ~(u32)0;
413 const int csum_size = sizeof(crc);
414 char result[csum_size];
415
416 /*
417 * The super_block structure does not span the whole
418 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
419 * is filled with zeros and is included in the checksum.
420 */
421 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
422 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
423 btrfs_csum_final(crc, result);
424
425 if (memcmp(raw_disk_sb, result, csum_size))
426 ret = 1;
427 }
428
429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
430 btrfs_err(fs_info, "unsupported checksum algorithm %u",
431 csum_type);
432 ret = 1;
433 }
434
435 return ret;
436 }
437
438 /*
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
441 */
442 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
443 struct extent_buffer *eb,
444 u64 parent_transid)
445 {
446 struct extent_io_tree *io_tree;
447 int failed = 0;
448 int ret;
449 int num_copies = 0;
450 int mirror_num = 0;
451 int failed_mirror = 0;
452
453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 while (1) {
456 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
457 btree_get_extent, mirror_num);
458 if (!ret) {
459 if (!verify_parent_transid(io_tree, eb,
460 parent_transid, 0))
461 break;
462 else
463 ret = -EIO;
464 }
465
466 /*
467 * This buffer's crc is fine, but its contents are corrupted, so
468 * there is no reason to read the other copies, they won't be
469 * any less wrong.
470 */
471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
472 break;
473
474 num_copies = btrfs_num_copies(fs_info,
475 eb->start, eb->len);
476 if (num_copies == 1)
477 break;
478
479 if (!failed_mirror) {
480 failed = 1;
481 failed_mirror = eb->read_mirror;
482 }
483
484 mirror_num++;
485 if (mirror_num == failed_mirror)
486 mirror_num++;
487
488 if (mirror_num > num_copies)
489 break;
490 }
491
492 if (failed && !ret && failed_mirror)
493 repair_eb_io_failure(fs_info, eb, failed_mirror);
494
495 return ret;
496 }
497
498 /*
499 * checksum a dirty tree block before IO. This has extra checks to make sure
500 * we only fill in the checksum field in the first page of a multi-page block
501 */
502
503 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
504 {
505 u64 start = page_offset(page);
506 u64 found_start;
507 struct extent_buffer *eb;
508
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
512
513 found_start = btrfs_header_bytenr(eb);
514 /*
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
517 */
518 if (WARN_ON(found_start != start))
519 return -EUCLEAN;
520 if (WARN_ON(!PageUptodate(page)))
521 return -EUCLEAN;
522
523 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
524 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
525
526 return csum_tree_block(fs_info, eb, 0);
527 }
528
529 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
530 struct extent_buffer *eb)
531 {
532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
533 u8 fsid[BTRFS_UUID_SIZE];
534 int ret = 1;
535
536 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
537 while (fs_devices) {
538 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
539 ret = 0;
540 break;
541 }
542 fs_devices = fs_devices->seed;
543 }
544 return ret;
545 }
546
547 #define CORRUPT(reason, eb, root, slot) \
548 btrfs_crit(root->fs_info, \
549 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
550 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
551 reason, btrfs_header_bytenr(eb), root->objectid, slot)
552
553 static noinline int check_leaf(struct btrfs_root *root,
554 struct extent_buffer *leaf)
555 {
556 struct btrfs_fs_info *fs_info = root->fs_info;
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
562 /*
563 * Extent buffers from a relocation tree have a owner field that
564 * corresponds to the subvolume tree they are based on. So just from an
565 * extent buffer alone we can not find out what is the id of the
566 * corresponding subvolume tree, so we can not figure out if the extent
567 * buffer corresponds to the root of the relocation tree or not. So skip
568 * this check for relocation trees.
569 */
570 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
571 struct btrfs_root *check_root;
572
573 key.objectid = btrfs_header_owner(leaf);
574 key.type = BTRFS_ROOT_ITEM_KEY;
575 key.offset = (u64)-1;
576
577 check_root = btrfs_get_fs_root(fs_info, &key, false);
578 /*
579 * The only reason we also check NULL here is that during
580 * open_ctree() some roots has not yet been set up.
581 */
582 if (!IS_ERR_OR_NULL(check_root)) {
583 struct extent_buffer *eb;
584
585 eb = btrfs_root_node(check_root);
586 /* if leaf is the root, then it's fine */
587 if (leaf != eb) {
588 CORRUPT("non-root leaf's nritems is 0",
589 leaf, check_root, 0);
590 free_extent_buffer(eb);
591 return -EIO;
592 }
593 free_extent_buffer(eb);
594 }
595 return 0;
596 }
597
598 if (nritems == 0)
599 return 0;
600
601 /* Check the 0 item */
602 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
603 BTRFS_LEAF_DATA_SIZE(fs_info)) {
604 CORRUPT("invalid item offset size pair", leaf, root, 0);
605 return -EIO;
606 }
607
608 /*
609 * Check to make sure each items keys are in the correct order and their
610 * offsets make sense. We only have to loop through nritems-1 because
611 * we check the current slot against the next slot, which verifies the
612 * next slot's offset+size makes sense and that the current's slot
613 * offset is correct.
614 */
615 for (slot = 0; slot < nritems - 1; slot++) {
616 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
617 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
618
619 /* Make sure the keys are in the right order */
620 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
621 CORRUPT("bad key order", leaf, root, slot);
622 return -EIO;
623 }
624
625 /*
626 * Make sure the offset and ends are right, remember that the
627 * item data starts at the end of the leaf and grows towards the
628 * front.
629 */
630 if (btrfs_item_offset_nr(leaf, slot) !=
631 btrfs_item_end_nr(leaf, slot + 1)) {
632 CORRUPT("slot offset bad", leaf, root, slot);
633 return -EIO;
634 }
635
636 /*
637 * Check to make sure that we don't point outside of the leaf,
638 * just in case all the items are consistent to each other, but
639 * all point outside of the leaf.
640 */
641 if (btrfs_item_end_nr(leaf, slot) >
642 BTRFS_LEAF_DATA_SIZE(fs_info)) {
643 CORRUPT("slot end outside of leaf", leaf, root, slot);
644 return -EIO;
645 }
646 }
647
648 return 0;
649 }
650
651 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
652 {
653 unsigned long nr = btrfs_header_nritems(node);
654 struct btrfs_key key, next_key;
655 int slot;
656 u64 bytenr;
657 int ret = 0;
658
659 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
660 btrfs_crit(root->fs_info,
661 "corrupt node: block %llu root %llu nritems %lu",
662 node->start, root->objectid, nr);
663 return -EIO;
664 }
665
666 for (slot = 0; slot < nr - 1; slot++) {
667 bytenr = btrfs_node_blockptr(node, slot);
668 btrfs_node_key_to_cpu(node, &key, slot);
669 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
670
671 if (!bytenr) {
672 CORRUPT("invalid item slot", node, root, slot);
673 ret = -EIO;
674 goto out;
675 }
676
677 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
678 CORRUPT("bad key order", node, root, slot);
679 ret = -EIO;
680 goto out;
681 }
682 }
683 out:
684 return ret;
685 }
686
687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
688 u64 phy_offset, struct page *page,
689 u64 start, u64 end, int mirror)
690 {
691 u64 found_start;
692 int found_level;
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695 struct btrfs_fs_info *fs_info = root->fs_info;
696 int ret = 0;
697 int reads_done;
698
699 if (!page->private)
700 goto out;
701
702 eb = (struct extent_buffer *)page->private;
703
704 /* the pending IO might have been the only thing that kept this buffer
705 * in memory. Make sure we have a ref for all this other checks
706 */
707 extent_buffer_get(eb);
708
709 reads_done = atomic_dec_and_test(&eb->io_pages);
710 if (!reads_done)
711 goto err;
712
713 eb->read_mirror = mirror;
714 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
715 ret = -EIO;
716 goto err;
717 }
718
719 found_start = btrfs_header_bytenr(eb);
720 if (found_start != eb->start) {
721 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
722 found_start, eb->start);
723 ret = -EIO;
724 goto err;
725 }
726 if (check_tree_block_fsid(fs_info, eb)) {
727 btrfs_err_rl(fs_info, "bad fsid on block %llu",
728 eb->start);
729 ret = -EIO;
730 goto err;
731 }
732 found_level = btrfs_header_level(eb);
733 if (found_level >= BTRFS_MAX_LEVEL) {
734 btrfs_err(fs_info, "bad tree block level %d",
735 (int)btrfs_header_level(eb));
736 ret = -EIO;
737 goto err;
738 }
739
740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
741 eb, found_level);
742
743 ret = csum_tree_block(fs_info, eb, 1);
744 if (ret)
745 goto err;
746
747 /*
748 * If this is a leaf block and it is corrupt, set the corrupt bit so
749 * that we don't try and read the other copies of this block, just
750 * return -EIO.
751 */
752 if (found_level == 0 && check_leaf(root, eb)) {
753 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
754 ret = -EIO;
755 }
756
757 if (found_level > 0 && check_node(root, eb))
758 ret = -EIO;
759
760 if (!ret)
761 set_extent_buffer_uptodate(eb);
762 err:
763 if (reads_done &&
764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
765 btree_readahead_hook(fs_info, eb, ret);
766
767 if (ret) {
768 /*
769 * our io error hook is going to dec the io pages
770 * again, we have to make sure it has something
771 * to decrement
772 */
773 atomic_inc(&eb->io_pages);
774 clear_extent_buffer_uptodate(eb);
775 }
776 free_extent_buffer(eb);
777 out:
778 return ret;
779 }
780
781 static int btree_io_failed_hook(struct page *page, int failed_mirror)
782 {
783 struct extent_buffer *eb;
784
785 eb = (struct extent_buffer *)page->private;
786 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
787 eb->read_mirror = failed_mirror;
788 atomic_dec(&eb->io_pages);
789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
790 btree_readahead_hook(eb->fs_info, eb, -EIO);
791 return -EIO; /* we fixed nothing */
792 }
793
794 static void end_workqueue_bio(struct bio *bio)
795 {
796 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
797 struct btrfs_fs_info *fs_info;
798 struct btrfs_workqueue *wq;
799 btrfs_work_func_t func;
800
801 fs_info = end_io_wq->info;
802 end_io_wq->error = bio->bi_error;
803
804 if (bio_op(bio) == REQ_OP_WRITE) {
805 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
806 wq = fs_info->endio_meta_write_workers;
807 func = btrfs_endio_meta_write_helper;
808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
809 wq = fs_info->endio_freespace_worker;
810 func = btrfs_freespace_write_helper;
811 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
812 wq = fs_info->endio_raid56_workers;
813 func = btrfs_endio_raid56_helper;
814 } else {
815 wq = fs_info->endio_write_workers;
816 func = btrfs_endio_write_helper;
817 }
818 } else {
819 if (unlikely(end_io_wq->metadata ==
820 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
821 wq = fs_info->endio_repair_workers;
822 func = btrfs_endio_repair_helper;
823 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
824 wq = fs_info->endio_raid56_workers;
825 func = btrfs_endio_raid56_helper;
826 } else if (end_io_wq->metadata) {
827 wq = fs_info->endio_meta_workers;
828 func = btrfs_endio_meta_helper;
829 } else {
830 wq = fs_info->endio_workers;
831 func = btrfs_endio_helper;
832 }
833 }
834
835 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
836 btrfs_queue_work(wq, &end_io_wq->work);
837 }
838
839 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
840 enum btrfs_wq_endio_type metadata)
841 {
842 struct btrfs_end_io_wq *end_io_wq;
843
844 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
845 if (!end_io_wq)
846 return -ENOMEM;
847
848 end_io_wq->private = bio->bi_private;
849 end_io_wq->end_io = bio->bi_end_io;
850 end_io_wq->info = info;
851 end_io_wq->error = 0;
852 end_io_wq->bio = bio;
853 end_io_wq->metadata = metadata;
854
855 bio->bi_private = end_io_wq;
856 bio->bi_end_io = end_workqueue_bio;
857 return 0;
858 }
859
860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
861 {
862 unsigned long limit = min_t(unsigned long,
863 info->thread_pool_size,
864 info->fs_devices->open_devices);
865 return 256 * limit;
866 }
867
868 static void run_one_async_start(struct btrfs_work *work)
869 {
870 struct async_submit_bio *async;
871 int ret;
872
873 async = container_of(work, struct async_submit_bio, work);
874 ret = async->submit_bio_start(async->inode, async->bio,
875 async->mirror_num, async->bio_flags,
876 async->bio_offset);
877 if (ret)
878 async->error = ret;
879 }
880
881 static void run_one_async_done(struct btrfs_work *work)
882 {
883 struct btrfs_fs_info *fs_info;
884 struct async_submit_bio *async;
885 int limit;
886
887 async = container_of(work, struct async_submit_bio, work);
888 fs_info = BTRFS_I(async->inode)->root->fs_info;
889
890 limit = btrfs_async_submit_limit(fs_info);
891 limit = limit * 2 / 3;
892
893 /*
894 * atomic_dec_return implies a barrier for waitqueue_active
895 */
896 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
897 waitqueue_active(&fs_info->async_submit_wait))
898 wake_up(&fs_info->async_submit_wait);
899
900 /* If an error occurred we just want to clean up the bio and move on */
901 if (async->error) {
902 async->bio->bi_error = async->error;
903 bio_endio(async->bio);
904 return;
905 }
906
907 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
908 async->bio_flags, async->bio_offset);
909 }
910
911 static void run_one_async_free(struct btrfs_work *work)
912 {
913 struct async_submit_bio *async;
914
915 async = container_of(work, struct async_submit_bio, work);
916 kfree(async);
917 }
918
919 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
920 struct bio *bio, int mirror_num,
921 unsigned long bio_flags,
922 u64 bio_offset,
923 extent_submit_bio_hook_t *submit_bio_start,
924 extent_submit_bio_hook_t *submit_bio_done)
925 {
926 struct async_submit_bio *async;
927
928 async = kmalloc(sizeof(*async), GFP_NOFS);
929 if (!async)
930 return -ENOMEM;
931
932 async->inode = inode;
933 async->bio = bio;
934 async->mirror_num = mirror_num;
935 async->submit_bio_start = submit_bio_start;
936 async->submit_bio_done = submit_bio_done;
937
938 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
939 run_one_async_done, run_one_async_free);
940
941 async->bio_flags = bio_flags;
942 async->bio_offset = bio_offset;
943
944 async->error = 0;
945
946 atomic_inc(&fs_info->nr_async_submits);
947
948 if (op_is_sync(bio->bi_opf))
949 btrfs_set_work_high_priority(&async->work);
950
951 btrfs_queue_work(fs_info->workers, &async->work);
952
953 while (atomic_read(&fs_info->async_submit_draining) &&
954 atomic_read(&fs_info->nr_async_submits)) {
955 wait_event(fs_info->async_submit_wait,
956 (atomic_read(&fs_info->nr_async_submits) == 0));
957 }
958
959 return 0;
960 }
961
962 static int btree_csum_one_bio(struct bio *bio)
963 {
964 struct bio_vec *bvec;
965 struct btrfs_root *root;
966 int i, ret = 0;
967
968 bio_for_each_segment_all(bvec, bio, i) {
969 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
970 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
971 if (ret)
972 break;
973 }
974
975 return ret;
976 }
977
978 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
979 int mirror_num, unsigned long bio_flags,
980 u64 bio_offset)
981 {
982 /*
983 * when we're called for a write, we're already in the async
984 * submission context. Just jump into btrfs_map_bio
985 */
986 return btree_csum_one_bio(bio);
987 }
988
989 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
990 int mirror_num, unsigned long bio_flags,
991 u64 bio_offset)
992 {
993 int ret;
994
995 /*
996 * when we're called for a write, we're already in the async
997 * submission context. Just jump into btrfs_map_bio
998 */
999 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1000 if (ret) {
1001 bio->bi_error = ret;
1002 bio_endio(bio);
1003 }
1004 return ret;
1005 }
1006
1007 static int check_async_write(unsigned long bio_flags)
1008 {
1009 if (bio_flags & EXTENT_BIO_TREE_LOG)
1010 return 0;
1011 #ifdef CONFIG_X86
1012 if (static_cpu_has(X86_FEATURE_XMM4_2))
1013 return 0;
1014 #endif
1015 return 1;
1016 }
1017
1018 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1019 int mirror_num, unsigned long bio_flags,
1020 u64 bio_offset)
1021 {
1022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1023 int async = check_async_write(bio_flags);
1024 int ret;
1025
1026 if (bio_op(bio) != REQ_OP_WRITE) {
1027 /*
1028 * called for a read, do the setup so that checksum validation
1029 * can happen in the async kernel threads
1030 */
1031 ret = btrfs_bio_wq_end_io(fs_info, bio,
1032 BTRFS_WQ_ENDIO_METADATA);
1033 if (ret)
1034 goto out_w_error;
1035 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1036 } else if (!async) {
1037 ret = btree_csum_one_bio(bio);
1038 if (ret)
1039 goto out_w_error;
1040 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1041 } else {
1042 /*
1043 * kthread helpers are used to submit writes so that
1044 * checksumming can happen in parallel across all CPUs
1045 */
1046 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1047 bio_offset,
1048 __btree_submit_bio_start,
1049 __btree_submit_bio_done);
1050 }
1051
1052 if (ret)
1053 goto out_w_error;
1054 return 0;
1055
1056 out_w_error:
1057 bio->bi_error = ret;
1058 bio_endio(bio);
1059 return ret;
1060 }
1061
1062 #ifdef CONFIG_MIGRATION
1063 static int btree_migratepage(struct address_space *mapping,
1064 struct page *newpage, struct page *page,
1065 enum migrate_mode mode)
1066 {
1067 /*
1068 * we can't safely write a btree page from here,
1069 * we haven't done the locking hook
1070 */
1071 if (PageDirty(page))
1072 return -EAGAIN;
1073 /*
1074 * Buffers may be managed in a filesystem specific way.
1075 * We must have no buffers or drop them.
1076 */
1077 if (page_has_private(page) &&
1078 !try_to_release_page(page, GFP_KERNEL))
1079 return -EAGAIN;
1080 return migrate_page(mapping, newpage, page, mode);
1081 }
1082 #endif
1083
1084
1085 static int btree_writepages(struct address_space *mapping,
1086 struct writeback_control *wbc)
1087 {
1088 struct btrfs_fs_info *fs_info;
1089 int ret;
1090
1091 if (wbc->sync_mode == WB_SYNC_NONE) {
1092
1093 if (wbc->for_kupdate)
1094 return 0;
1095
1096 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1097 /* this is a bit racy, but that's ok */
1098 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1099 BTRFS_DIRTY_METADATA_THRESH);
1100 if (ret < 0)
1101 return 0;
1102 }
1103 return btree_write_cache_pages(mapping, wbc);
1104 }
1105
1106 static int btree_readpage(struct file *file, struct page *page)
1107 {
1108 struct extent_io_tree *tree;
1109 tree = &BTRFS_I(page->mapping->host)->io_tree;
1110 return extent_read_full_page(tree, page, btree_get_extent, 0);
1111 }
1112
1113 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1114 {
1115 if (PageWriteback(page) || PageDirty(page))
1116 return 0;
1117
1118 return try_release_extent_buffer(page);
1119 }
1120
1121 static void btree_invalidatepage(struct page *page, unsigned int offset,
1122 unsigned int length)
1123 {
1124 struct extent_io_tree *tree;
1125 tree = &BTRFS_I(page->mapping->host)->io_tree;
1126 extent_invalidatepage(tree, page, offset);
1127 btree_releasepage(page, GFP_NOFS);
1128 if (PagePrivate(page)) {
1129 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1130 "page private not zero on page %llu",
1131 (unsigned long long)page_offset(page));
1132 ClearPagePrivate(page);
1133 set_page_private(page, 0);
1134 put_page(page);
1135 }
1136 }
1137
1138 static int btree_set_page_dirty(struct page *page)
1139 {
1140 #ifdef DEBUG
1141 struct extent_buffer *eb;
1142
1143 BUG_ON(!PagePrivate(page));
1144 eb = (struct extent_buffer *)page->private;
1145 BUG_ON(!eb);
1146 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1147 BUG_ON(!atomic_read(&eb->refs));
1148 btrfs_assert_tree_locked(eb);
1149 #endif
1150 return __set_page_dirty_nobuffers(page);
1151 }
1152
1153 static const struct address_space_operations btree_aops = {
1154 .readpage = btree_readpage,
1155 .writepages = btree_writepages,
1156 .releasepage = btree_releasepage,
1157 .invalidatepage = btree_invalidatepage,
1158 #ifdef CONFIG_MIGRATION
1159 .migratepage = btree_migratepage,
1160 #endif
1161 .set_page_dirty = btree_set_page_dirty,
1162 };
1163
1164 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1165 {
1166 struct extent_buffer *buf = NULL;
1167 struct inode *btree_inode = fs_info->btree_inode;
1168
1169 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1170 if (IS_ERR(buf))
1171 return;
1172 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1173 buf, WAIT_NONE, btree_get_extent, 0);
1174 free_extent_buffer(buf);
1175 }
1176
1177 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1178 int mirror_num, struct extent_buffer **eb)
1179 {
1180 struct extent_buffer *buf = NULL;
1181 struct inode *btree_inode = fs_info->btree_inode;
1182 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1183 int ret;
1184
1185 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1186 if (IS_ERR(buf))
1187 return 0;
1188
1189 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1190
1191 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1192 btree_get_extent, mirror_num);
1193 if (ret) {
1194 free_extent_buffer(buf);
1195 return ret;
1196 }
1197
1198 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1199 free_extent_buffer(buf);
1200 return -EIO;
1201 } else if (extent_buffer_uptodate(buf)) {
1202 *eb = buf;
1203 } else {
1204 free_extent_buffer(buf);
1205 }
1206 return 0;
1207 }
1208
1209 struct extent_buffer *btrfs_find_create_tree_block(
1210 struct btrfs_fs_info *fs_info,
1211 u64 bytenr)
1212 {
1213 if (btrfs_is_testing(fs_info))
1214 return alloc_test_extent_buffer(fs_info, bytenr);
1215 return alloc_extent_buffer(fs_info, bytenr);
1216 }
1217
1218
1219 int btrfs_write_tree_block(struct extent_buffer *buf)
1220 {
1221 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1222 buf->start + buf->len - 1);
1223 }
1224
1225 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1226 {
1227 return filemap_fdatawait_range(buf->pages[0]->mapping,
1228 buf->start, buf->start + buf->len - 1);
1229 }
1230
1231 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1232 u64 parent_transid)
1233 {
1234 struct extent_buffer *buf = NULL;
1235 int ret;
1236
1237 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1238 if (IS_ERR(buf))
1239 return buf;
1240
1241 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1242 if (ret) {
1243 free_extent_buffer(buf);
1244 return ERR_PTR(ret);
1245 }
1246 return buf;
1247
1248 }
1249
1250 void clean_tree_block(struct btrfs_fs_info *fs_info,
1251 struct extent_buffer *buf)
1252 {
1253 if (btrfs_header_generation(buf) ==
1254 fs_info->running_transaction->transid) {
1255 btrfs_assert_tree_locked(buf);
1256
1257 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1258 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1259 -buf->len,
1260 fs_info->dirty_metadata_batch);
1261 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1262 btrfs_set_lock_blocking(buf);
1263 clear_extent_buffer_dirty(buf);
1264 }
1265 }
1266 }
1267
1268 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1269 {
1270 struct btrfs_subvolume_writers *writers;
1271 int ret;
1272
1273 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1274 if (!writers)
1275 return ERR_PTR(-ENOMEM);
1276
1277 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1278 if (ret < 0) {
1279 kfree(writers);
1280 return ERR_PTR(ret);
1281 }
1282
1283 init_waitqueue_head(&writers->wait);
1284 return writers;
1285 }
1286
1287 static void
1288 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1289 {
1290 percpu_counter_destroy(&writers->counter);
1291 kfree(writers);
1292 }
1293
1294 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1295 u64 objectid)
1296 {
1297 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1298 root->node = NULL;
1299 root->commit_root = NULL;
1300 root->state = 0;
1301 root->orphan_cleanup_state = 0;
1302
1303 root->objectid = objectid;
1304 root->last_trans = 0;
1305 root->highest_objectid = 0;
1306 root->nr_delalloc_inodes = 0;
1307 root->nr_ordered_extents = 0;
1308 root->name = NULL;
1309 root->inode_tree = RB_ROOT;
1310 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1311 root->block_rsv = NULL;
1312 root->orphan_block_rsv = NULL;
1313
1314 INIT_LIST_HEAD(&root->dirty_list);
1315 INIT_LIST_HEAD(&root->root_list);
1316 INIT_LIST_HEAD(&root->delalloc_inodes);
1317 INIT_LIST_HEAD(&root->delalloc_root);
1318 INIT_LIST_HEAD(&root->ordered_extents);
1319 INIT_LIST_HEAD(&root->ordered_root);
1320 INIT_LIST_HEAD(&root->logged_list[0]);
1321 INIT_LIST_HEAD(&root->logged_list[1]);
1322 spin_lock_init(&root->orphan_lock);
1323 spin_lock_init(&root->inode_lock);
1324 spin_lock_init(&root->delalloc_lock);
1325 spin_lock_init(&root->ordered_extent_lock);
1326 spin_lock_init(&root->accounting_lock);
1327 spin_lock_init(&root->log_extents_lock[0]);
1328 spin_lock_init(&root->log_extents_lock[1]);
1329 mutex_init(&root->objectid_mutex);
1330 mutex_init(&root->log_mutex);
1331 mutex_init(&root->ordered_extent_mutex);
1332 mutex_init(&root->delalloc_mutex);
1333 init_waitqueue_head(&root->log_writer_wait);
1334 init_waitqueue_head(&root->log_commit_wait[0]);
1335 init_waitqueue_head(&root->log_commit_wait[1]);
1336 INIT_LIST_HEAD(&root->log_ctxs[0]);
1337 INIT_LIST_HEAD(&root->log_ctxs[1]);
1338 atomic_set(&root->log_commit[0], 0);
1339 atomic_set(&root->log_commit[1], 0);
1340 atomic_set(&root->log_writers, 0);
1341 atomic_set(&root->log_batch, 0);
1342 atomic_set(&root->orphan_inodes, 0);
1343 atomic_set(&root->refs, 1);
1344 atomic_set(&root->will_be_snapshoted, 0);
1345 atomic64_set(&root->qgroup_meta_rsv, 0);
1346 root->log_transid = 0;
1347 root->log_transid_committed = -1;
1348 root->last_log_commit = 0;
1349 if (!dummy)
1350 extent_io_tree_init(&root->dirty_log_pages,
1351 fs_info->btree_inode->i_mapping);
1352
1353 memset(&root->root_key, 0, sizeof(root->root_key));
1354 memset(&root->root_item, 0, sizeof(root->root_item));
1355 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1356 if (!dummy)
1357 root->defrag_trans_start = fs_info->generation;
1358 else
1359 root->defrag_trans_start = 0;
1360 root->root_key.objectid = objectid;
1361 root->anon_dev = 0;
1362
1363 spin_lock_init(&root->root_item_lock);
1364 }
1365
1366 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1367 gfp_t flags)
1368 {
1369 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1370 if (root)
1371 root->fs_info = fs_info;
1372 return root;
1373 }
1374
1375 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1376 /* Should only be used by the testing infrastructure */
1377 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1378 {
1379 struct btrfs_root *root;
1380
1381 if (!fs_info)
1382 return ERR_PTR(-EINVAL);
1383
1384 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1385 if (!root)
1386 return ERR_PTR(-ENOMEM);
1387
1388 /* We don't use the stripesize in selftest, set it as sectorsize */
1389 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1390 root->alloc_bytenr = 0;
1391
1392 return root;
1393 }
1394 #endif
1395
1396 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info,
1398 u64 objectid)
1399 {
1400 struct extent_buffer *leaf;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
1402 struct btrfs_root *root;
1403 struct btrfs_key key;
1404 int ret = 0;
1405 uuid_le uuid;
1406
1407 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
1411 __setup_root(root, fs_info, objectid);
1412 root->root_key.objectid = objectid;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = 0;
1415
1416 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1417 if (IS_ERR(leaf)) {
1418 ret = PTR_ERR(leaf);
1419 leaf = NULL;
1420 goto fail;
1421 }
1422
1423 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1424 btrfs_set_header_bytenr(leaf, leaf->start);
1425 btrfs_set_header_generation(leaf, trans->transid);
1426 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1427 btrfs_set_header_owner(leaf, objectid);
1428 root->node = leaf;
1429
1430 write_extent_buffer_fsid(leaf, fs_info->fsid);
1431 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1432 btrfs_mark_buffer_dirty(leaf);
1433
1434 root->commit_root = btrfs_root_node(root);
1435 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1436
1437 root->root_item.flags = 0;
1438 root->root_item.byte_limit = 0;
1439 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1440 btrfs_set_root_generation(&root->root_item, trans->transid);
1441 btrfs_set_root_level(&root->root_item, 0);
1442 btrfs_set_root_refs(&root->root_item, 1);
1443 btrfs_set_root_used(&root->root_item, leaf->len);
1444 btrfs_set_root_last_snapshot(&root->root_item, 0);
1445 btrfs_set_root_dirid(&root->root_item, 0);
1446 uuid_le_gen(&uuid);
1447 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1448 root->root_item.drop_level = 0;
1449
1450 key.objectid = objectid;
1451 key.type = BTRFS_ROOT_ITEM_KEY;
1452 key.offset = 0;
1453 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1454 if (ret)
1455 goto fail;
1456
1457 btrfs_tree_unlock(leaf);
1458
1459 return root;
1460
1461 fail:
1462 if (leaf) {
1463 btrfs_tree_unlock(leaf);
1464 free_extent_buffer(root->commit_root);
1465 free_extent_buffer(leaf);
1466 }
1467 kfree(root);
1468
1469 return ERR_PTR(ret);
1470 }
1471
1472 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1473 struct btrfs_fs_info *fs_info)
1474 {
1475 struct btrfs_root *root;
1476 struct extent_buffer *leaf;
1477
1478 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1479 if (!root)
1480 return ERR_PTR(-ENOMEM);
1481
1482 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1483
1484 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1485 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1486 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1487
1488 /*
1489 * DON'T set REF_COWS for log trees
1490 *
1491 * log trees do not get reference counted because they go away
1492 * before a real commit is actually done. They do store pointers
1493 * to file data extents, and those reference counts still get
1494 * updated (along with back refs to the log tree).
1495 */
1496
1497 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1498 NULL, 0, 0, 0);
1499 if (IS_ERR(leaf)) {
1500 kfree(root);
1501 return ERR_CAST(leaf);
1502 }
1503
1504 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1505 btrfs_set_header_bytenr(leaf, leaf->start);
1506 btrfs_set_header_generation(leaf, trans->transid);
1507 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1508 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1509 root->node = leaf;
1510
1511 write_extent_buffer_fsid(root->node, fs_info->fsid);
1512 btrfs_mark_buffer_dirty(root->node);
1513 btrfs_tree_unlock(root->node);
1514 return root;
1515 }
1516
1517 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1518 struct btrfs_fs_info *fs_info)
1519 {
1520 struct btrfs_root *log_root;
1521
1522 log_root = alloc_log_tree(trans, fs_info);
1523 if (IS_ERR(log_root))
1524 return PTR_ERR(log_root);
1525 WARN_ON(fs_info->log_root_tree);
1526 fs_info->log_root_tree = log_root;
1527 return 0;
1528 }
1529
1530 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *root)
1532 {
1533 struct btrfs_fs_info *fs_info = root->fs_info;
1534 struct btrfs_root *log_root;
1535 struct btrfs_inode_item *inode_item;
1536
1537 log_root = alloc_log_tree(trans, fs_info);
1538 if (IS_ERR(log_root))
1539 return PTR_ERR(log_root);
1540
1541 log_root->last_trans = trans->transid;
1542 log_root->root_key.offset = root->root_key.objectid;
1543
1544 inode_item = &log_root->root_item.inode;
1545 btrfs_set_stack_inode_generation(inode_item, 1);
1546 btrfs_set_stack_inode_size(inode_item, 3);
1547 btrfs_set_stack_inode_nlink(inode_item, 1);
1548 btrfs_set_stack_inode_nbytes(inode_item,
1549 fs_info->nodesize);
1550 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1551
1552 btrfs_set_root_node(&log_root->root_item, log_root->node);
1553
1554 WARN_ON(root->log_root);
1555 root->log_root = log_root;
1556 root->log_transid = 0;
1557 root->log_transid_committed = -1;
1558 root->last_log_commit = 0;
1559 return 0;
1560 }
1561
1562 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1563 struct btrfs_key *key)
1564 {
1565 struct btrfs_root *root;
1566 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1567 struct btrfs_path *path;
1568 u64 generation;
1569 int ret;
1570
1571 path = btrfs_alloc_path();
1572 if (!path)
1573 return ERR_PTR(-ENOMEM);
1574
1575 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1576 if (!root) {
1577 ret = -ENOMEM;
1578 goto alloc_fail;
1579 }
1580
1581 __setup_root(root, fs_info, key->objectid);
1582
1583 ret = btrfs_find_root(tree_root, key, path,
1584 &root->root_item, &root->root_key);
1585 if (ret) {
1586 if (ret > 0)
1587 ret = -ENOENT;
1588 goto find_fail;
1589 }
1590
1591 generation = btrfs_root_generation(&root->root_item);
1592 root->node = read_tree_block(fs_info,
1593 btrfs_root_bytenr(&root->root_item),
1594 generation);
1595 if (IS_ERR(root->node)) {
1596 ret = PTR_ERR(root->node);
1597 goto find_fail;
1598 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1599 ret = -EIO;
1600 free_extent_buffer(root->node);
1601 goto find_fail;
1602 }
1603 root->commit_root = btrfs_root_node(root);
1604 out:
1605 btrfs_free_path(path);
1606 return root;
1607
1608 find_fail:
1609 kfree(root);
1610 alloc_fail:
1611 root = ERR_PTR(ret);
1612 goto out;
1613 }
1614
1615 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1616 struct btrfs_key *location)
1617 {
1618 struct btrfs_root *root;
1619
1620 root = btrfs_read_tree_root(tree_root, location);
1621 if (IS_ERR(root))
1622 return root;
1623
1624 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1625 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1626 btrfs_check_and_init_root_item(&root->root_item);
1627 }
1628
1629 return root;
1630 }
1631
1632 int btrfs_init_fs_root(struct btrfs_root *root)
1633 {
1634 int ret;
1635 struct btrfs_subvolume_writers *writers;
1636
1637 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1638 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1639 GFP_NOFS);
1640 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1641 ret = -ENOMEM;
1642 goto fail;
1643 }
1644
1645 writers = btrfs_alloc_subvolume_writers();
1646 if (IS_ERR(writers)) {
1647 ret = PTR_ERR(writers);
1648 goto fail;
1649 }
1650 root->subv_writers = writers;
1651
1652 btrfs_init_free_ino_ctl(root);
1653 spin_lock_init(&root->ino_cache_lock);
1654 init_waitqueue_head(&root->ino_cache_wait);
1655
1656 ret = get_anon_bdev(&root->anon_dev);
1657 if (ret)
1658 goto fail;
1659
1660 mutex_lock(&root->objectid_mutex);
1661 ret = btrfs_find_highest_objectid(root,
1662 &root->highest_objectid);
1663 if (ret) {
1664 mutex_unlock(&root->objectid_mutex);
1665 goto fail;
1666 }
1667
1668 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1669
1670 mutex_unlock(&root->objectid_mutex);
1671
1672 return 0;
1673 fail:
1674 /* the caller is responsible to call free_fs_root */
1675 return ret;
1676 }
1677
1678 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1679 u64 root_id)
1680 {
1681 struct btrfs_root *root;
1682
1683 spin_lock(&fs_info->fs_roots_radix_lock);
1684 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1685 (unsigned long)root_id);
1686 spin_unlock(&fs_info->fs_roots_radix_lock);
1687 return root;
1688 }
1689
1690 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1691 struct btrfs_root *root)
1692 {
1693 int ret;
1694
1695 ret = radix_tree_preload(GFP_NOFS);
1696 if (ret)
1697 return ret;
1698
1699 spin_lock(&fs_info->fs_roots_radix_lock);
1700 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1701 (unsigned long)root->root_key.objectid,
1702 root);
1703 if (ret == 0)
1704 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1705 spin_unlock(&fs_info->fs_roots_radix_lock);
1706 radix_tree_preload_end();
1707
1708 return ret;
1709 }
1710
1711 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1712 struct btrfs_key *location,
1713 bool check_ref)
1714 {
1715 struct btrfs_root *root;
1716 struct btrfs_path *path;
1717 struct btrfs_key key;
1718 int ret;
1719
1720 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1721 return fs_info->tree_root;
1722 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1723 return fs_info->extent_root;
1724 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1725 return fs_info->chunk_root;
1726 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1727 return fs_info->dev_root;
1728 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1729 return fs_info->csum_root;
1730 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1731 return fs_info->quota_root ? fs_info->quota_root :
1732 ERR_PTR(-ENOENT);
1733 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1734 return fs_info->uuid_root ? fs_info->uuid_root :
1735 ERR_PTR(-ENOENT);
1736 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1737 return fs_info->free_space_root ? fs_info->free_space_root :
1738 ERR_PTR(-ENOENT);
1739 again:
1740 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1741 if (root) {
1742 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1743 return ERR_PTR(-ENOENT);
1744 return root;
1745 }
1746
1747 root = btrfs_read_fs_root(fs_info->tree_root, location);
1748 if (IS_ERR(root))
1749 return root;
1750
1751 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1752 ret = -ENOENT;
1753 goto fail;
1754 }
1755
1756 ret = btrfs_init_fs_root(root);
1757 if (ret)
1758 goto fail;
1759
1760 path = btrfs_alloc_path();
1761 if (!path) {
1762 ret = -ENOMEM;
1763 goto fail;
1764 }
1765 key.objectid = BTRFS_ORPHAN_OBJECTID;
1766 key.type = BTRFS_ORPHAN_ITEM_KEY;
1767 key.offset = location->objectid;
1768
1769 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1770 btrfs_free_path(path);
1771 if (ret < 0)
1772 goto fail;
1773 if (ret == 0)
1774 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1775
1776 ret = btrfs_insert_fs_root(fs_info, root);
1777 if (ret) {
1778 if (ret == -EEXIST) {
1779 free_fs_root(root);
1780 goto again;
1781 }
1782 goto fail;
1783 }
1784 return root;
1785 fail:
1786 free_fs_root(root);
1787 return ERR_PTR(ret);
1788 }
1789
1790 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1791 {
1792 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1793 int ret = 0;
1794 struct btrfs_device *device;
1795 struct backing_dev_info *bdi;
1796
1797 rcu_read_lock();
1798 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1799 if (!device->bdev)
1800 continue;
1801 bdi = device->bdev->bd_bdi;
1802 if (bdi_congested(bdi, bdi_bits)) {
1803 ret = 1;
1804 break;
1805 }
1806 }
1807 rcu_read_unlock();
1808 return ret;
1809 }
1810
1811 /*
1812 * called by the kthread helper functions to finally call the bio end_io
1813 * functions. This is where read checksum verification actually happens
1814 */
1815 static void end_workqueue_fn(struct btrfs_work *work)
1816 {
1817 struct bio *bio;
1818 struct btrfs_end_io_wq *end_io_wq;
1819
1820 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1821 bio = end_io_wq->bio;
1822
1823 bio->bi_error = end_io_wq->error;
1824 bio->bi_private = end_io_wq->private;
1825 bio->bi_end_io = end_io_wq->end_io;
1826 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1827 bio_endio(bio);
1828 }
1829
1830 static int cleaner_kthread(void *arg)
1831 {
1832 struct btrfs_root *root = arg;
1833 struct btrfs_fs_info *fs_info = root->fs_info;
1834 int again;
1835 struct btrfs_trans_handle *trans;
1836
1837 do {
1838 again = 0;
1839
1840 /* Make the cleaner go to sleep early. */
1841 if (btrfs_need_cleaner_sleep(fs_info))
1842 goto sleep;
1843
1844 /*
1845 * Do not do anything if we might cause open_ctree() to block
1846 * before we have finished mounting the filesystem.
1847 */
1848 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1849 goto sleep;
1850
1851 if (!mutex_trylock(&fs_info->cleaner_mutex))
1852 goto sleep;
1853
1854 /*
1855 * Avoid the problem that we change the status of the fs
1856 * during the above check and trylock.
1857 */
1858 if (btrfs_need_cleaner_sleep(fs_info)) {
1859 mutex_unlock(&fs_info->cleaner_mutex);
1860 goto sleep;
1861 }
1862
1863 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1864 btrfs_run_delayed_iputs(fs_info);
1865 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1866
1867 again = btrfs_clean_one_deleted_snapshot(root);
1868 mutex_unlock(&fs_info->cleaner_mutex);
1869
1870 /*
1871 * The defragger has dealt with the R/O remount and umount,
1872 * needn't do anything special here.
1873 */
1874 btrfs_run_defrag_inodes(fs_info);
1875
1876 /*
1877 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1878 * with relocation (btrfs_relocate_chunk) and relocation
1879 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1880 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1881 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1882 * unused block groups.
1883 */
1884 btrfs_delete_unused_bgs(fs_info);
1885 sleep:
1886 if (!again) {
1887 set_current_state(TASK_INTERRUPTIBLE);
1888 if (!kthread_should_stop())
1889 schedule();
1890 __set_current_state(TASK_RUNNING);
1891 }
1892 } while (!kthread_should_stop());
1893
1894 /*
1895 * Transaction kthread is stopped before us and wakes us up.
1896 * However we might have started a new transaction and COWed some
1897 * tree blocks when deleting unused block groups for example. So
1898 * make sure we commit the transaction we started to have a clean
1899 * shutdown when evicting the btree inode - if it has dirty pages
1900 * when we do the final iput() on it, eviction will trigger a
1901 * writeback for it which will fail with null pointer dereferences
1902 * since work queues and other resources were already released and
1903 * destroyed by the time the iput/eviction/writeback is made.
1904 */
1905 trans = btrfs_attach_transaction(root);
1906 if (IS_ERR(trans)) {
1907 if (PTR_ERR(trans) != -ENOENT)
1908 btrfs_err(fs_info,
1909 "cleaner transaction attach returned %ld",
1910 PTR_ERR(trans));
1911 } else {
1912 int ret;
1913
1914 ret = btrfs_commit_transaction(trans);
1915 if (ret)
1916 btrfs_err(fs_info,
1917 "cleaner open transaction commit returned %d",
1918 ret);
1919 }
1920
1921 return 0;
1922 }
1923
1924 static int transaction_kthread(void *arg)
1925 {
1926 struct btrfs_root *root = arg;
1927 struct btrfs_fs_info *fs_info = root->fs_info;
1928 struct btrfs_trans_handle *trans;
1929 struct btrfs_transaction *cur;
1930 u64 transid;
1931 unsigned long now;
1932 unsigned long delay;
1933 bool cannot_commit;
1934
1935 do {
1936 cannot_commit = false;
1937 delay = HZ * fs_info->commit_interval;
1938 mutex_lock(&fs_info->transaction_kthread_mutex);
1939
1940 spin_lock(&fs_info->trans_lock);
1941 cur = fs_info->running_transaction;
1942 if (!cur) {
1943 spin_unlock(&fs_info->trans_lock);
1944 goto sleep;
1945 }
1946
1947 now = get_seconds();
1948 if (cur->state < TRANS_STATE_BLOCKED &&
1949 (now < cur->start_time ||
1950 now - cur->start_time < fs_info->commit_interval)) {
1951 spin_unlock(&fs_info->trans_lock);
1952 delay = HZ * 5;
1953 goto sleep;
1954 }
1955 transid = cur->transid;
1956 spin_unlock(&fs_info->trans_lock);
1957
1958 /* If the file system is aborted, this will always fail. */
1959 trans = btrfs_attach_transaction(root);
1960 if (IS_ERR(trans)) {
1961 if (PTR_ERR(trans) != -ENOENT)
1962 cannot_commit = true;
1963 goto sleep;
1964 }
1965 if (transid == trans->transid) {
1966 btrfs_commit_transaction(trans);
1967 } else {
1968 btrfs_end_transaction(trans);
1969 }
1970 sleep:
1971 wake_up_process(fs_info->cleaner_kthread);
1972 mutex_unlock(&fs_info->transaction_kthread_mutex);
1973
1974 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1975 &fs_info->fs_state)))
1976 btrfs_cleanup_transaction(fs_info);
1977 set_current_state(TASK_INTERRUPTIBLE);
1978 if (!kthread_should_stop() &&
1979 (!btrfs_transaction_blocked(fs_info) ||
1980 cannot_commit))
1981 schedule_timeout(delay);
1982 __set_current_state(TASK_RUNNING);
1983 } while (!kthread_should_stop());
1984 return 0;
1985 }
1986
1987 /*
1988 * this will find the highest generation in the array of
1989 * root backups. The index of the highest array is returned,
1990 * or -1 if we can't find anything.
1991 *
1992 * We check to make sure the array is valid by comparing the
1993 * generation of the latest root in the array with the generation
1994 * in the super block. If they don't match we pitch it.
1995 */
1996 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1997 {
1998 u64 cur;
1999 int newest_index = -1;
2000 struct btrfs_root_backup *root_backup;
2001 int i;
2002
2003 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2004 root_backup = info->super_copy->super_roots + i;
2005 cur = btrfs_backup_tree_root_gen(root_backup);
2006 if (cur == newest_gen)
2007 newest_index = i;
2008 }
2009
2010 /* check to see if we actually wrapped around */
2011 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2012 root_backup = info->super_copy->super_roots;
2013 cur = btrfs_backup_tree_root_gen(root_backup);
2014 if (cur == newest_gen)
2015 newest_index = 0;
2016 }
2017 return newest_index;
2018 }
2019
2020
2021 /*
2022 * find the oldest backup so we know where to store new entries
2023 * in the backup array. This will set the backup_root_index
2024 * field in the fs_info struct
2025 */
2026 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2027 u64 newest_gen)
2028 {
2029 int newest_index = -1;
2030
2031 newest_index = find_newest_super_backup(info, newest_gen);
2032 /* if there was garbage in there, just move along */
2033 if (newest_index == -1) {
2034 info->backup_root_index = 0;
2035 } else {
2036 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2037 }
2038 }
2039
2040 /*
2041 * copy all the root pointers into the super backup array.
2042 * this will bump the backup pointer by one when it is
2043 * done
2044 */
2045 static void backup_super_roots(struct btrfs_fs_info *info)
2046 {
2047 int next_backup;
2048 struct btrfs_root_backup *root_backup;
2049 int last_backup;
2050
2051 next_backup = info->backup_root_index;
2052 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2053 BTRFS_NUM_BACKUP_ROOTS;
2054
2055 /*
2056 * just overwrite the last backup if we're at the same generation
2057 * this happens only at umount
2058 */
2059 root_backup = info->super_for_commit->super_roots + last_backup;
2060 if (btrfs_backup_tree_root_gen(root_backup) ==
2061 btrfs_header_generation(info->tree_root->node))
2062 next_backup = last_backup;
2063
2064 root_backup = info->super_for_commit->super_roots + next_backup;
2065
2066 /*
2067 * make sure all of our padding and empty slots get zero filled
2068 * regardless of which ones we use today
2069 */
2070 memset(root_backup, 0, sizeof(*root_backup));
2071
2072 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2073
2074 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2075 btrfs_set_backup_tree_root_gen(root_backup,
2076 btrfs_header_generation(info->tree_root->node));
2077
2078 btrfs_set_backup_tree_root_level(root_backup,
2079 btrfs_header_level(info->tree_root->node));
2080
2081 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2082 btrfs_set_backup_chunk_root_gen(root_backup,
2083 btrfs_header_generation(info->chunk_root->node));
2084 btrfs_set_backup_chunk_root_level(root_backup,
2085 btrfs_header_level(info->chunk_root->node));
2086
2087 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2088 btrfs_set_backup_extent_root_gen(root_backup,
2089 btrfs_header_generation(info->extent_root->node));
2090 btrfs_set_backup_extent_root_level(root_backup,
2091 btrfs_header_level(info->extent_root->node));
2092
2093 /*
2094 * we might commit during log recovery, which happens before we set
2095 * the fs_root. Make sure it is valid before we fill it in.
2096 */
2097 if (info->fs_root && info->fs_root->node) {
2098 btrfs_set_backup_fs_root(root_backup,
2099 info->fs_root->node->start);
2100 btrfs_set_backup_fs_root_gen(root_backup,
2101 btrfs_header_generation(info->fs_root->node));
2102 btrfs_set_backup_fs_root_level(root_backup,
2103 btrfs_header_level(info->fs_root->node));
2104 }
2105
2106 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2107 btrfs_set_backup_dev_root_gen(root_backup,
2108 btrfs_header_generation(info->dev_root->node));
2109 btrfs_set_backup_dev_root_level(root_backup,
2110 btrfs_header_level(info->dev_root->node));
2111
2112 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2113 btrfs_set_backup_csum_root_gen(root_backup,
2114 btrfs_header_generation(info->csum_root->node));
2115 btrfs_set_backup_csum_root_level(root_backup,
2116 btrfs_header_level(info->csum_root->node));
2117
2118 btrfs_set_backup_total_bytes(root_backup,
2119 btrfs_super_total_bytes(info->super_copy));
2120 btrfs_set_backup_bytes_used(root_backup,
2121 btrfs_super_bytes_used(info->super_copy));
2122 btrfs_set_backup_num_devices(root_backup,
2123 btrfs_super_num_devices(info->super_copy));
2124
2125 /*
2126 * if we don't copy this out to the super_copy, it won't get remembered
2127 * for the next commit
2128 */
2129 memcpy(&info->super_copy->super_roots,
2130 &info->super_for_commit->super_roots,
2131 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2132 }
2133
2134 /*
2135 * this copies info out of the root backup array and back into
2136 * the in-memory super block. It is meant to help iterate through
2137 * the array, so you send it the number of backups you've already
2138 * tried and the last backup index you used.
2139 *
2140 * this returns -1 when it has tried all the backups
2141 */
2142 static noinline int next_root_backup(struct btrfs_fs_info *info,
2143 struct btrfs_super_block *super,
2144 int *num_backups_tried, int *backup_index)
2145 {
2146 struct btrfs_root_backup *root_backup;
2147 int newest = *backup_index;
2148
2149 if (*num_backups_tried == 0) {
2150 u64 gen = btrfs_super_generation(super);
2151
2152 newest = find_newest_super_backup(info, gen);
2153 if (newest == -1)
2154 return -1;
2155
2156 *backup_index = newest;
2157 *num_backups_tried = 1;
2158 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2159 /* we've tried all the backups, all done */
2160 return -1;
2161 } else {
2162 /* jump to the next oldest backup */
2163 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2164 BTRFS_NUM_BACKUP_ROOTS;
2165 *backup_index = newest;
2166 *num_backups_tried += 1;
2167 }
2168 root_backup = super->super_roots + newest;
2169
2170 btrfs_set_super_generation(super,
2171 btrfs_backup_tree_root_gen(root_backup));
2172 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2173 btrfs_set_super_root_level(super,
2174 btrfs_backup_tree_root_level(root_backup));
2175 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2176
2177 /*
2178 * fixme: the total bytes and num_devices need to match or we should
2179 * need a fsck
2180 */
2181 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2182 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2183 return 0;
2184 }
2185
2186 /* helper to cleanup workers */
2187 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2188 {
2189 btrfs_destroy_workqueue(fs_info->fixup_workers);
2190 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2191 btrfs_destroy_workqueue(fs_info->workers);
2192 btrfs_destroy_workqueue(fs_info->endio_workers);
2193 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2194 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2195 btrfs_destroy_workqueue(fs_info->rmw_workers);
2196 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2197 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2198 btrfs_destroy_workqueue(fs_info->submit_workers);
2199 btrfs_destroy_workqueue(fs_info->delayed_workers);
2200 btrfs_destroy_workqueue(fs_info->caching_workers);
2201 btrfs_destroy_workqueue(fs_info->readahead_workers);
2202 btrfs_destroy_workqueue(fs_info->flush_workers);
2203 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2204 btrfs_destroy_workqueue(fs_info->extent_workers);
2205 /*
2206 * Now that all other work queues are destroyed, we can safely destroy
2207 * the queues used for metadata I/O, since tasks from those other work
2208 * queues can do metadata I/O operations.
2209 */
2210 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2212 }
2213
2214 static void free_root_extent_buffers(struct btrfs_root *root)
2215 {
2216 if (root) {
2217 free_extent_buffer(root->node);
2218 free_extent_buffer(root->commit_root);
2219 root->node = NULL;
2220 root->commit_root = NULL;
2221 }
2222 }
2223
2224 /* helper to cleanup tree roots */
2225 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2226 {
2227 free_root_extent_buffers(info->tree_root);
2228
2229 free_root_extent_buffers(info->dev_root);
2230 free_root_extent_buffers(info->extent_root);
2231 free_root_extent_buffers(info->csum_root);
2232 free_root_extent_buffers(info->quota_root);
2233 free_root_extent_buffers(info->uuid_root);
2234 if (chunk_root)
2235 free_root_extent_buffers(info->chunk_root);
2236 free_root_extent_buffers(info->free_space_root);
2237 }
2238
2239 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2240 {
2241 int ret;
2242 struct btrfs_root *gang[8];
2243 int i;
2244
2245 while (!list_empty(&fs_info->dead_roots)) {
2246 gang[0] = list_entry(fs_info->dead_roots.next,
2247 struct btrfs_root, root_list);
2248 list_del(&gang[0]->root_list);
2249
2250 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2251 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2252 } else {
2253 free_extent_buffer(gang[0]->node);
2254 free_extent_buffer(gang[0]->commit_root);
2255 btrfs_put_fs_root(gang[0]);
2256 }
2257 }
2258
2259 while (1) {
2260 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2261 (void **)gang, 0,
2262 ARRAY_SIZE(gang));
2263 if (!ret)
2264 break;
2265 for (i = 0; i < ret; i++)
2266 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2267 }
2268
2269 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2270 btrfs_free_log_root_tree(NULL, fs_info);
2271 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2272 }
2273 }
2274
2275 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2276 {
2277 mutex_init(&fs_info->scrub_lock);
2278 atomic_set(&fs_info->scrubs_running, 0);
2279 atomic_set(&fs_info->scrub_pause_req, 0);
2280 atomic_set(&fs_info->scrubs_paused, 0);
2281 atomic_set(&fs_info->scrub_cancel_req, 0);
2282 init_waitqueue_head(&fs_info->scrub_pause_wait);
2283 fs_info->scrub_workers_refcnt = 0;
2284 }
2285
2286 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2287 {
2288 spin_lock_init(&fs_info->balance_lock);
2289 mutex_init(&fs_info->balance_mutex);
2290 atomic_set(&fs_info->balance_running, 0);
2291 atomic_set(&fs_info->balance_pause_req, 0);
2292 atomic_set(&fs_info->balance_cancel_req, 0);
2293 fs_info->balance_ctl = NULL;
2294 init_waitqueue_head(&fs_info->balance_wait_q);
2295 }
2296
2297 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2298 {
2299 struct inode *inode = fs_info->btree_inode;
2300
2301 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2302 set_nlink(inode, 1);
2303 /*
2304 * we set the i_size on the btree inode to the max possible int.
2305 * the real end of the address space is determined by all of
2306 * the devices in the system
2307 */
2308 inode->i_size = OFFSET_MAX;
2309 inode->i_mapping->a_ops = &btree_aops;
2310
2311 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2312 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2313 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2314 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2315
2316 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2317
2318 BTRFS_I(inode)->root = fs_info->tree_root;
2319 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2320 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2321 btrfs_insert_inode_hash(inode);
2322 }
2323
2324 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2325 {
2326 fs_info->dev_replace.lock_owner = 0;
2327 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2328 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2329 rwlock_init(&fs_info->dev_replace.lock);
2330 atomic_set(&fs_info->dev_replace.read_locks, 0);
2331 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2332 init_waitqueue_head(&fs_info->replace_wait);
2333 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2334 }
2335
2336 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2337 {
2338 spin_lock_init(&fs_info->qgroup_lock);
2339 mutex_init(&fs_info->qgroup_ioctl_lock);
2340 fs_info->qgroup_tree = RB_ROOT;
2341 fs_info->qgroup_op_tree = RB_ROOT;
2342 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2343 fs_info->qgroup_seq = 1;
2344 fs_info->qgroup_ulist = NULL;
2345 fs_info->qgroup_rescan_running = false;
2346 mutex_init(&fs_info->qgroup_rescan_lock);
2347 }
2348
2349 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2350 struct btrfs_fs_devices *fs_devices)
2351 {
2352 int max_active = fs_info->thread_pool_size;
2353 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2354
2355 fs_info->workers =
2356 btrfs_alloc_workqueue(fs_info, "worker",
2357 flags | WQ_HIGHPRI, max_active, 16);
2358
2359 fs_info->delalloc_workers =
2360 btrfs_alloc_workqueue(fs_info, "delalloc",
2361 flags, max_active, 2);
2362
2363 fs_info->flush_workers =
2364 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2365 flags, max_active, 0);
2366
2367 fs_info->caching_workers =
2368 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2369
2370 /*
2371 * a higher idle thresh on the submit workers makes it much more
2372 * likely that bios will be send down in a sane order to the
2373 * devices
2374 */
2375 fs_info->submit_workers =
2376 btrfs_alloc_workqueue(fs_info, "submit", flags,
2377 min_t(u64, fs_devices->num_devices,
2378 max_active), 64);
2379
2380 fs_info->fixup_workers =
2381 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2382
2383 /*
2384 * endios are largely parallel and should have a very
2385 * low idle thresh
2386 */
2387 fs_info->endio_workers =
2388 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2389 fs_info->endio_meta_workers =
2390 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2391 max_active, 4);
2392 fs_info->endio_meta_write_workers =
2393 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2394 max_active, 2);
2395 fs_info->endio_raid56_workers =
2396 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2397 max_active, 4);
2398 fs_info->endio_repair_workers =
2399 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2400 fs_info->rmw_workers =
2401 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2402 fs_info->endio_write_workers =
2403 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2404 max_active, 2);
2405 fs_info->endio_freespace_worker =
2406 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2407 max_active, 0);
2408 fs_info->delayed_workers =
2409 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2410 max_active, 0);
2411 fs_info->readahead_workers =
2412 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2413 max_active, 2);
2414 fs_info->qgroup_rescan_workers =
2415 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2416 fs_info->extent_workers =
2417 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2418 min_t(u64, fs_devices->num_devices,
2419 max_active), 8);
2420
2421 if (!(fs_info->workers && fs_info->delalloc_workers &&
2422 fs_info->submit_workers && fs_info->flush_workers &&
2423 fs_info->endio_workers && fs_info->endio_meta_workers &&
2424 fs_info->endio_meta_write_workers &&
2425 fs_info->endio_repair_workers &&
2426 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2427 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2428 fs_info->caching_workers && fs_info->readahead_workers &&
2429 fs_info->fixup_workers && fs_info->delayed_workers &&
2430 fs_info->extent_workers &&
2431 fs_info->qgroup_rescan_workers)) {
2432 return -ENOMEM;
2433 }
2434
2435 return 0;
2436 }
2437
2438 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2439 struct btrfs_fs_devices *fs_devices)
2440 {
2441 int ret;
2442 struct btrfs_root *log_tree_root;
2443 struct btrfs_super_block *disk_super = fs_info->super_copy;
2444 u64 bytenr = btrfs_super_log_root(disk_super);
2445
2446 if (fs_devices->rw_devices == 0) {
2447 btrfs_warn(fs_info, "log replay required on RO media");
2448 return -EIO;
2449 }
2450
2451 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2452 if (!log_tree_root)
2453 return -ENOMEM;
2454
2455 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2456
2457 log_tree_root->node = read_tree_block(fs_info, bytenr,
2458 fs_info->generation + 1);
2459 if (IS_ERR(log_tree_root->node)) {
2460 btrfs_warn(fs_info, "failed to read log tree");
2461 ret = PTR_ERR(log_tree_root->node);
2462 kfree(log_tree_root);
2463 return ret;
2464 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2465 btrfs_err(fs_info, "failed to read log tree");
2466 free_extent_buffer(log_tree_root->node);
2467 kfree(log_tree_root);
2468 return -EIO;
2469 }
2470 /* returns with log_tree_root freed on success */
2471 ret = btrfs_recover_log_trees(log_tree_root);
2472 if (ret) {
2473 btrfs_handle_fs_error(fs_info, ret,
2474 "Failed to recover log tree");
2475 free_extent_buffer(log_tree_root->node);
2476 kfree(log_tree_root);
2477 return ret;
2478 }
2479
2480 if (fs_info->sb->s_flags & MS_RDONLY) {
2481 ret = btrfs_commit_super(fs_info);
2482 if (ret)
2483 return ret;
2484 }
2485
2486 return 0;
2487 }
2488
2489 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2490 {
2491 struct btrfs_root *tree_root = fs_info->tree_root;
2492 struct btrfs_root *root;
2493 struct btrfs_key location;
2494 int ret;
2495
2496 BUG_ON(!fs_info->tree_root);
2497
2498 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2499 location.type = BTRFS_ROOT_ITEM_KEY;
2500 location.offset = 0;
2501
2502 root = btrfs_read_tree_root(tree_root, &location);
2503 if (IS_ERR(root))
2504 return PTR_ERR(root);
2505 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2506 fs_info->extent_root = root;
2507
2508 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2509 root = btrfs_read_tree_root(tree_root, &location);
2510 if (IS_ERR(root))
2511 return PTR_ERR(root);
2512 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2513 fs_info->dev_root = root;
2514 btrfs_init_devices_late(fs_info);
2515
2516 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2517 root = btrfs_read_tree_root(tree_root, &location);
2518 if (IS_ERR(root))
2519 return PTR_ERR(root);
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 fs_info->csum_root = root;
2522
2523 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2524 root = btrfs_read_tree_root(tree_root, &location);
2525 if (!IS_ERR(root)) {
2526 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2527 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2528 fs_info->quota_root = root;
2529 }
2530
2531 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2532 root = btrfs_read_tree_root(tree_root, &location);
2533 if (IS_ERR(root)) {
2534 ret = PTR_ERR(root);
2535 if (ret != -ENOENT)
2536 return ret;
2537 } else {
2538 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539 fs_info->uuid_root = root;
2540 }
2541
2542 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2543 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2544 root = btrfs_read_tree_root(tree_root, &location);
2545 if (IS_ERR(root))
2546 return PTR_ERR(root);
2547 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2548 fs_info->free_space_root = root;
2549 }
2550
2551 return 0;
2552 }
2553
2554 int open_ctree(struct super_block *sb,
2555 struct btrfs_fs_devices *fs_devices,
2556 char *options)
2557 {
2558 u32 sectorsize;
2559 u32 nodesize;
2560 u32 stripesize;
2561 u64 generation;
2562 u64 features;
2563 struct btrfs_key location;
2564 struct buffer_head *bh;
2565 struct btrfs_super_block *disk_super;
2566 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2567 struct btrfs_root *tree_root;
2568 struct btrfs_root *chunk_root;
2569 int ret;
2570 int err = -EINVAL;
2571 int num_backups_tried = 0;
2572 int backup_index = 0;
2573 int max_active;
2574 int clear_free_space_tree = 0;
2575
2576 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2577 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2578 if (!tree_root || !chunk_root) {
2579 err = -ENOMEM;
2580 goto fail;
2581 }
2582
2583 ret = init_srcu_struct(&fs_info->subvol_srcu);
2584 if (ret) {
2585 err = ret;
2586 goto fail;
2587 }
2588
2589 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2590 if (ret) {
2591 err = ret;
2592 goto fail_srcu;
2593 }
2594 fs_info->dirty_metadata_batch = PAGE_SIZE *
2595 (1 + ilog2(nr_cpu_ids));
2596
2597 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2598 if (ret) {
2599 err = ret;
2600 goto fail_dirty_metadata_bytes;
2601 }
2602
2603 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2604 if (ret) {
2605 err = ret;
2606 goto fail_delalloc_bytes;
2607 }
2608
2609 fs_info->btree_inode = new_inode(sb);
2610 if (!fs_info->btree_inode) {
2611 err = -ENOMEM;
2612 goto fail_bio_counter;
2613 }
2614
2615 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2616
2617 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2618 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2619 INIT_LIST_HEAD(&fs_info->trans_list);
2620 INIT_LIST_HEAD(&fs_info->dead_roots);
2621 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2622 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2623 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2624 spin_lock_init(&fs_info->delalloc_root_lock);
2625 spin_lock_init(&fs_info->trans_lock);
2626 spin_lock_init(&fs_info->fs_roots_radix_lock);
2627 spin_lock_init(&fs_info->delayed_iput_lock);
2628 spin_lock_init(&fs_info->defrag_inodes_lock);
2629 spin_lock_init(&fs_info->free_chunk_lock);
2630 spin_lock_init(&fs_info->tree_mod_seq_lock);
2631 spin_lock_init(&fs_info->super_lock);
2632 spin_lock_init(&fs_info->qgroup_op_lock);
2633 spin_lock_init(&fs_info->buffer_lock);
2634 spin_lock_init(&fs_info->unused_bgs_lock);
2635 rwlock_init(&fs_info->tree_mod_log_lock);
2636 mutex_init(&fs_info->unused_bg_unpin_mutex);
2637 mutex_init(&fs_info->delete_unused_bgs_mutex);
2638 mutex_init(&fs_info->reloc_mutex);
2639 mutex_init(&fs_info->delalloc_root_mutex);
2640 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2641 seqlock_init(&fs_info->profiles_lock);
2642
2643 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2644 INIT_LIST_HEAD(&fs_info->space_info);
2645 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2646 INIT_LIST_HEAD(&fs_info->unused_bgs);
2647 btrfs_mapping_init(&fs_info->mapping_tree);
2648 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2649 BTRFS_BLOCK_RSV_GLOBAL);
2650 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2651 BTRFS_BLOCK_RSV_DELALLOC);
2652 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2653 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2654 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2655 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2656 BTRFS_BLOCK_RSV_DELOPS);
2657 atomic_set(&fs_info->nr_async_submits, 0);
2658 atomic_set(&fs_info->async_delalloc_pages, 0);
2659 atomic_set(&fs_info->async_submit_draining, 0);
2660 atomic_set(&fs_info->nr_async_bios, 0);
2661 atomic_set(&fs_info->defrag_running, 0);
2662 atomic_set(&fs_info->qgroup_op_seq, 0);
2663 atomic_set(&fs_info->reada_works_cnt, 0);
2664 atomic64_set(&fs_info->tree_mod_seq, 0);
2665 fs_info->fs_frozen = 0;
2666 fs_info->sb = sb;
2667 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2668 fs_info->metadata_ratio = 0;
2669 fs_info->defrag_inodes = RB_ROOT;
2670 fs_info->free_chunk_space = 0;
2671 fs_info->tree_mod_log = RB_ROOT;
2672 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2673 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2674 /* readahead state */
2675 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2676 spin_lock_init(&fs_info->reada_lock);
2677
2678 fs_info->thread_pool_size = min_t(unsigned long,
2679 num_online_cpus() + 2, 8);
2680
2681 INIT_LIST_HEAD(&fs_info->ordered_roots);
2682 spin_lock_init(&fs_info->ordered_root_lock);
2683 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2684 GFP_KERNEL);
2685 if (!fs_info->delayed_root) {
2686 err = -ENOMEM;
2687 goto fail_iput;
2688 }
2689 btrfs_init_delayed_root(fs_info->delayed_root);
2690
2691 btrfs_init_scrub(fs_info);
2692 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2693 fs_info->check_integrity_print_mask = 0;
2694 #endif
2695 btrfs_init_balance(fs_info);
2696 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2697
2698 sb->s_blocksize = 4096;
2699 sb->s_blocksize_bits = blksize_bits(4096);
2700
2701 btrfs_init_btree_inode(fs_info);
2702
2703 spin_lock_init(&fs_info->block_group_cache_lock);
2704 fs_info->block_group_cache_tree = RB_ROOT;
2705 fs_info->first_logical_byte = (u64)-1;
2706
2707 extent_io_tree_init(&fs_info->freed_extents[0],
2708 fs_info->btree_inode->i_mapping);
2709 extent_io_tree_init(&fs_info->freed_extents[1],
2710 fs_info->btree_inode->i_mapping);
2711 fs_info->pinned_extents = &fs_info->freed_extents[0];
2712 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2713
2714 mutex_init(&fs_info->ordered_operations_mutex);
2715 mutex_init(&fs_info->tree_log_mutex);
2716 mutex_init(&fs_info->chunk_mutex);
2717 mutex_init(&fs_info->transaction_kthread_mutex);
2718 mutex_init(&fs_info->cleaner_mutex);
2719 mutex_init(&fs_info->volume_mutex);
2720 mutex_init(&fs_info->ro_block_group_mutex);
2721 init_rwsem(&fs_info->commit_root_sem);
2722 init_rwsem(&fs_info->cleanup_work_sem);
2723 init_rwsem(&fs_info->subvol_sem);
2724 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2725
2726 btrfs_init_dev_replace_locks(fs_info);
2727 btrfs_init_qgroup(fs_info);
2728
2729 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2730 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2731
2732 init_waitqueue_head(&fs_info->transaction_throttle);
2733 init_waitqueue_head(&fs_info->transaction_wait);
2734 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2735 init_waitqueue_head(&fs_info->async_submit_wait);
2736
2737 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2738
2739 /* Usable values until the real ones are cached from the superblock */
2740 fs_info->nodesize = 4096;
2741 fs_info->sectorsize = 4096;
2742 fs_info->stripesize = 4096;
2743
2744 ret = btrfs_alloc_stripe_hash_table(fs_info);
2745 if (ret) {
2746 err = ret;
2747 goto fail_alloc;
2748 }
2749
2750 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2751
2752 invalidate_bdev(fs_devices->latest_bdev);
2753
2754 /*
2755 * Read super block and check the signature bytes only
2756 */
2757 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2758 if (IS_ERR(bh)) {
2759 err = PTR_ERR(bh);
2760 goto fail_alloc;
2761 }
2762
2763 /*
2764 * We want to check superblock checksum, the type is stored inside.
2765 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2766 */
2767 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2768 btrfs_err(fs_info, "superblock checksum mismatch");
2769 err = -EINVAL;
2770 brelse(bh);
2771 goto fail_alloc;
2772 }
2773
2774 /*
2775 * super_copy is zeroed at allocation time and we never touch the
2776 * following bytes up to INFO_SIZE, the checksum is calculated from
2777 * the whole block of INFO_SIZE
2778 */
2779 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2780 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2781 sizeof(*fs_info->super_for_commit));
2782 brelse(bh);
2783
2784 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2785
2786 ret = btrfs_check_super_valid(fs_info);
2787 if (ret) {
2788 btrfs_err(fs_info, "superblock contains fatal errors");
2789 err = -EINVAL;
2790 goto fail_alloc;
2791 }
2792
2793 disk_super = fs_info->super_copy;
2794 if (!btrfs_super_root(disk_super))
2795 goto fail_alloc;
2796
2797 /* check FS state, whether FS is broken. */
2798 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2799 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2800
2801 /*
2802 * run through our array of backup supers and setup
2803 * our ring pointer to the oldest one
2804 */
2805 generation = btrfs_super_generation(disk_super);
2806 find_oldest_super_backup(fs_info, generation);
2807
2808 /*
2809 * In the long term, we'll store the compression type in the super
2810 * block, and it'll be used for per file compression control.
2811 */
2812 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2813
2814 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2815 if (ret) {
2816 err = ret;
2817 goto fail_alloc;
2818 }
2819
2820 features = btrfs_super_incompat_flags(disk_super) &
2821 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2822 if (features) {
2823 btrfs_err(fs_info,
2824 "cannot mount because of unsupported optional features (%llx)",
2825 features);
2826 err = -EINVAL;
2827 goto fail_alloc;
2828 }
2829
2830 features = btrfs_super_incompat_flags(disk_super);
2831 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2832 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2833 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2834
2835 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2836 btrfs_info(fs_info, "has skinny extents");
2837
2838 /*
2839 * flag our filesystem as having big metadata blocks if
2840 * they are bigger than the page size
2841 */
2842 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2843 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2844 btrfs_info(fs_info,
2845 "flagging fs with big metadata feature");
2846 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2847 }
2848
2849 nodesize = btrfs_super_nodesize(disk_super);
2850 sectorsize = btrfs_super_sectorsize(disk_super);
2851 stripesize = sectorsize;
2852 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2853 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2854
2855 /* Cache block sizes */
2856 fs_info->nodesize = nodesize;
2857 fs_info->sectorsize = sectorsize;
2858 fs_info->stripesize = stripesize;
2859
2860 /*
2861 * mixed block groups end up with duplicate but slightly offset
2862 * extent buffers for the same range. It leads to corruptions
2863 */
2864 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2865 (sectorsize != nodesize)) {
2866 btrfs_err(fs_info,
2867 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2868 nodesize, sectorsize);
2869 goto fail_alloc;
2870 }
2871
2872 /*
2873 * Needn't use the lock because there is no other task which will
2874 * update the flag.
2875 */
2876 btrfs_set_super_incompat_flags(disk_super, features);
2877
2878 features = btrfs_super_compat_ro_flags(disk_super) &
2879 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2880 if (!(sb->s_flags & MS_RDONLY) && features) {
2881 btrfs_err(fs_info,
2882 "cannot mount read-write because of unsupported optional features (%llx)",
2883 features);
2884 err = -EINVAL;
2885 goto fail_alloc;
2886 }
2887
2888 max_active = fs_info->thread_pool_size;
2889
2890 ret = btrfs_init_workqueues(fs_info, fs_devices);
2891 if (ret) {
2892 err = ret;
2893 goto fail_sb_buffer;
2894 }
2895
2896 sb->s_bdi->congested_fn = btrfs_congested_fn;
2897 sb->s_bdi->congested_data = fs_info;
2898 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2899 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2900 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2901 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2902
2903 sb->s_blocksize = sectorsize;
2904 sb->s_blocksize_bits = blksize_bits(sectorsize);
2905
2906 mutex_lock(&fs_info->chunk_mutex);
2907 ret = btrfs_read_sys_array(fs_info);
2908 mutex_unlock(&fs_info->chunk_mutex);
2909 if (ret) {
2910 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2911 goto fail_sb_buffer;
2912 }
2913
2914 generation = btrfs_super_chunk_root_generation(disk_super);
2915
2916 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2917
2918 chunk_root->node = read_tree_block(fs_info,
2919 btrfs_super_chunk_root(disk_super),
2920 generation);
2921 if (IS_ERR(chunk_root->node) ||
2922 !extent_buffer_uptodate(chunk_root->node)) {
2923 btrfs_err(fs_info, "failed to read chunk root");
2924 if (!IS_ERR(chunk_root->node))
2925 free_extent_buffer(chunk_root->node);
2926 chunk_root->node = NULL;
2927 goto fail_tree_roots;
2928 }
2929 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2930 chunk_root->commit_root = btrfs_root_node(chunk_root);
2931
2932 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2933 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2934
2935 ret = btrfs_read_chunk_tree(fs_info);
2936 if (ret) {
2937 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2938 goto fail_tree_roots;
2939 }
2940
2941 /*
2942 * keep the device that is marked to be the target device for the
2943 * dev_replace procedure
2944 */
2945 btrfs_close_extra_devices(fs_devices, 0);
2946
2947 if (!fs_devices->latest_bdev) {
2948 btrfs_err(fs_info, "failed to read devices");
2949 goto fail_tree_roots;
2950 }
2951
2952 retry_root_backup:
2953 generation = btrfs_super_generation(disk_super);
2954
2955 tree_root->node = read_tree_block(fs_info,
2956 btrfs_super_root(disk_super),
2957 generation);
2958 if (IS_ERR(tree_root->node) ||
2959 !extent_buffer_uptodate(tree_root->node)) {
2960 btrfs_warn(fs_info, "failed to read tree root");
2961 if (!IS_ERR(tree_root->node))
2962 free_extent_buffer(tree_root->node);
2963 tree_root->node = NULL;
2964 goto recovery_tree_root;
2965 }
2966
2967 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2968 tree_root->commit_root = btrfs_root_node(tree_root);
2969 btrfs_set_root_refs(&tree_root->root_item, 1);
2970
2971 mutex_lock(&tree_root->objectid_mutex);
2972 ret = btrfs_find_highest_objectid(tree_root,
2973 &tree_root->highest_objectid);
2974 if (ret) {
2975 mutex_unlock(&tree_root->objectid_mutex);
2976 goto recovery_tree_root;
2977 }
2978
2979 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2980
2981 mutex_unlock(&tree_root->objectid_mutex);
2982
2983 ret = btrfs_read_roots(fs_info);
2984 if (ret)
2985 goto recovery_tree_root;
2986
2987 fs_info->generation = generation;
2988 fs_info->last_trans_committed = generation;
2989
2990 ret = btrfs_recover_balance(fs_info);
2991 if (ret) {
2992 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2993 goto fail_block_groups;
2994 }
2995
2996 ret = btrfs_init_dev_stats(fs_info);
2997 if (ret) {
2998 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2999 goto fail_block_groups;
3000 }
3001
3002 ret = btrfs_init_dev_replace(fs_info);
3003 if (ret) {
3004 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3005 goto fail_block_groups;
3006 }
3007
3008 btrfs_close_extra_devices(fs_devices, 1);
3009
3010 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3011 if (ret) {
3012 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3013 ret);
3014 goto fail_block_groups;
3015 }
3016
3017 ret = btrfs_sysfs_add_device(fs_devices);
3018 if (ret) {
3019 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3020 ret);
3021 goto fail_fsdev_sysfs;
3022 }
3023
3024 ret = btrfs_sysfs_add_mounted(fs_info);
3025 if (ret) {
3026 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3027 goto fail_fsdev_sysfs;
3028 }
3029
3030 ret = btrfs_init_space_info(fs_info);
3031 if (ret) {
3032 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3033 goto fail_sysfs;
3034 }
3035
3036 ret = btrfs_read_block_groups(fs_info);
3037 if (ret) {
3038 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3039 goto fail_sysfs;
3040 }
3041 fs_info->num_tolerated_disk_barrier_failures =
3042 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3043 if (fs_info->fs_devices->missing_devices >
3044 fs_info->num_tolerated_disk_barrier_failures &&
3045 !(sb->s_flags & MS_RDONLY)) {
3046 btrfs_warn(fs_info,
3047 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3048 fs_info->fs_devices->missing_devices,
3049 fs_info->num_tolerated_disk_barrier_failures);
3050 goto fail_sysfs;
3051 }
3052
3053 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3054 "btrfs-cleaner");
3055 if (IS_ERR(fs_info->cleaner_kthread))
3056 goto fail_sysfs;
3057
3058 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3059 tree_root,
3060 "btrfs-transaction");
3061 if (IS_ERR(fs_info->transaction_kthread))
3062 goto fail_cleaner;
3063
3064 if (!btrfs_test_opt(fs_info, SSD) &&
3065 !btrfs_test_opt(fs_info, NOSSD) &&
3066 !fs_info->fs_devices->rotating) {
3067 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3068 btrfs_set_opt(fs_info->mount_opt, SSD);
3069 }
3070
3071 /*
3072 * Mount does not set all options immediately, we can do it now and do
3073 * not have to wait for transaction commit
3074 */
3075 btrfs_apply_pending_changes(fs_info);
3076
3077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3078 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3079 ret = btrfsic_mount(fs_info, fs_devices,
3080 btrfs_test_opt(fs_info,
3081 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3082 1 : 0,
3083 fs_info->check_integrity_print_mask);
3084 if (ret)
3085 btrfs_warn(fs_info,
3086 "failed to initialize integrity check module: %d",
3087 ret);
3088 }
3089 #endif
3090 ret = btrfs_read_qgroup_config(fs_info);
3091 if (ret)
3092 goto fail_trans_kthread;
3093
3094 /* do not make disk changes in broken FS or nologreplay is given */
3095 if (btrfs_super_log_root(disk_super) != 0 &&
3096 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3097 ret = btrfs_replay_log(fs_info, fs_devices);
3098 if (ret) {
3099 err = ret;
3100 goto fail_qgroup;
3101 }
3102 }
3103
3104 ret = btrfs_find_orphan_roots(fs_info);
3105 if (ret)
3106 goto fail_qgroup;
3107
3108 if (!(sb->s_flags & MS_RDONLY)) {
3109 ret = btrfs_cleanup_fs_roots(fs_info);
3110 if (ret)
3111 goto fail_qgroup;
3112
3113 mutex_lock(&fs_info->cleaner_mutex);
3114 ret = btrfs_recover_relocation(tree_root);
3115 mutex_unlock(&fs_info->cleaner_mutex);
3116 if (ret < 0) {
3117 btrfs_warn(fs_info, "failed to recover relocation: %d",
3118 ret);
3119 err = -EINVAL;
3120 goto fail_qgroup;
3121 }
3122 }
3123
3124 location.objectid = BTRFS_FS_TREE_OBJECTID;
3125 location.type = BTRFS_ROOT_ITEM_KEY;
3126 location.offset = 0;
3127
3128 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3129 if (IS_ERR(fs_info->fs_root)) {
3130 err = PTR_ERR(fs_info->fs_root);
3131 goto fail_qgroup;
3132 }
3133
3134 if (sb->s_flags & MS_RDONLY)
3135 return 0;
3136
3137 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3138 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3139 clear_free_space_tree = 1;
3140 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3141 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3142 btrfs_warn(fs_info, "free space tree is invalid");
3143 clear_free_space_tree = 1;
3144 }
3145
3146 if (clear_free_space_tree) {
3147 btrfs_info(fs_info, "clearing free space tree");
3148 ret = btrfs_clear_free_space_tree(fs_info);
3149 if (ret) {
3150 btrfs_warn(fs_info,
3151 "failed to clear free space tree: %d", ret);
3152 close_ctree(fs_info);
3153 return ret;
3154 }
3155 }
3156
3157 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3158 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3159 btrfs_info(fs_info, "creating free space tree");
3160 ret = btrfs_create_free_space_tree(fs_info);
3161 if (ret) {
3162 btrfs_warn(fs_info,
3163 "failed to create free space tree: %d", ret);
3164 close_ctree(fs_info);
3165 return ret;
3166 }
3167 }
3168
3169 down_read(&fs_info->cleanup_work_sem);
3170 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3171 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3172 up_read(&fs_info->cleanup_work_sem);
3173 close_ctree(fs_info);
3174 return ret;
3175 }
3176 up_read(&fs_info->cleanup_work_sem);
3177
3178 ret = btrfs_resume_balance_async(fs_info);
3179 if (ret) {
3180 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3181 close_ctree(fs_info);
3182 return ret;
3183 }
3184
3185 ret = btrfs_resume_dev_replace_async(fs_info);
3186 if (ret) {
3187 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3188 close_ctree(fs_info);
3189 return ret;
3190 }
3191
3192 btrfs_qgroup_rescan_resume(fs_info);
3193
3194 if (!fs_info->uuid_root) {
3195 btrfs_info(fs_info, "creating UUID tree");
3196 ret = btrfs_create_uuid_tree(fs_info);
3197 if (ret) {
3198 btrfs_warn(fs_info,
3199 "failed to create the UUID tree: %d", ret);
3200 close_ctree(fs_info);
3201 return ret;
3202 }
3203 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3204 fs_info->generation !=
3205 btrfs_super_uuid_tree_generation(disk_super)) {
3206 btrfs_info(fs_info, "checking UUID tree");
3207 ret = btrfs_check_uuid_tree(fs_info);
3208 if (ret) {
3209 btrfs_warn(fs_info,
3210 "failed to check the UUID tree: %d", ret);
3211 close_ctree(fs_info);
3212 return ret;
3213 }
3214 } else {
3215 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3216 }
3217 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3218
3219 /*
3220 * backuproot only affect mount behavior, and if open_ctree succeeded,
3221 * no need to keep the flag
3222 */
3223 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3224
3225 return 0;
3226
3227 fail_qgroup:
3228 btrfs_free_qgroup_config(fs_info);
3229 fail_trans_kthread:
3230 kthread_stop(fs_info->transaction_kthread);
3231 btrfs_cleanup_transaction(fs_info);
3232 btrfs_free_fs_roots(fs_info);
3233 fail_cleaner:
3234 kthread_stop(fs_info->cleaner_kthread);
3235
3236 /*
3237 * make sure we're done with the btree inode before we stop our
3238 * kthreads
3239 */
3240 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3241
3242 fail_sysfs:
3243 btrfs_sysfs_remove_mounted(fs_info);
3244
3245 fail_fsdev_sysfs:
3246 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3247
3248 fail_block_groups:
3249 btrfs_put_block_group_cache(fs_info);
3250
3251 fail_tree_roots:
3252 free_root_pointers(fs_info, 1);
3253 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3254
3255 fail_sb_buffer:
3256 btrfs_stop_all_workers(fs_info);
3257 btrfs_free_block_groups(fs_info);
3258 fail_alloc:
3259 fail_iput:
3260 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3261
3262 iput(fs_info->btree_inode);
3263 fail_bio_counter:
3264 percpu_counter_destroy(&fs_info->bio_counter);
3265 fail_delalloc_bytes:
3266 percpu_counter_destroy(&fs_info->delalloc_bytes);
3267 fail_dirty_metadata_bytes:
3268 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3269 fail_srcu:
3270 cleanup_srcu_struct(&fs_info->subvol_srcu);
3271 fail:
3272 btrfs_free_stripe_hash_table(fs_info);
3273 btrfs_close_devices(fs_info->fs_devices);
3274 return err;
3275
3276 recovery_tree_root:
3277 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3278 goto fail_tree_roots;
3279
3280 free_root_pointers(fs_info, 0);
3281
3282 /* don't use the log in recovery mode, it won't be valid */
3283 btrfs_set_super_log_root(disk_super, 0);
3284
3285 /* we can't trust the free space cache either */
3286 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3287
3288 ret = next_root_backup(fs_info, fs_info->super_copy,
3289 &num_backups_tried, &backup_index);
3290 if (ret == -1)
3291 goto fail_block_groups;
3292 goto retry_root_backup;
3293 }
3294
3295 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3296 {
3297 if (uptodate) {
3298 set_buffer_uptodate(bh);
3299 } else {
3300 struct btrfs_device *device = (struct btrfs_device *)
3301 bh->b_private;
3302
3303 btrfs_warn_rl_in_rcu(device->fs_info,
3304 "lost page write due to IO error on %s",
3305 rcu_str_deref(device->name));
3306 /* note, we don't set_buffer_write_io_error because we have
3307 * our own ways of dealing with the IO errors
3308 */
3309 clear_buffer_uptodate(bh);
3310 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3311 }
3312 unlock_buffer(bh);
3313 put_bh(bh);
3314 }
3315
3316 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3317 struct buffer_head **bh_ret)
3318 {
3319 struct buffer_head *bh;
3320 struct btrfs_super_block *super;
3321 u64 bytenr;
3322
3323 bytenr = btrfs_sb_offset(copy_num);
3324 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3325 return -EINVAL;
3326
3327 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3328 /*
3329 * If we fail to read from the underlying devices, as of now
3330 * the best option we have is to mark it EIO.
3331 */
3332 if (!bh)
3333 return -EIO;
3334
3335 super = (struct btrfs_super_block *)bh->b_data;
3336 if (btrfs_super_bytenr(super) != bytenr ||
3337 btrfs_super_magic(super) != BTRFS_MAGIC) {
3338 brelse(bh);
3339 return -EINVAL;
3340 }
3341
3342 *bh_ret = bh;
3343 return 0;
3344 }
3345
3346
3347 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3348 {
3349 struct buffer_head *bh;
3350 struct buffer_head *latest = NULL;
3351 struct btrfs_super_block *super;
3352 int i;
3353 u64 transid = 0;
3354 int ret = -EINVAL;
3355
3356 /* we would like to check all the supers, but that would make
3357 * a btrfs mount succeed after a mkfs from a different FS.
3358 * So, we need to add a special mount option to scan for
3359 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3360 */
3361 for (i = 0; i < 1; i++) {
3362 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3363 if (ret)
3364 continue;
3365
3366 super = (struct btrfs_super_block *)bh->b_data;
3367
3368 if (!latest || btrfs_super_generation(super) > transid) {
3369 brelse(latest);
3370 latest = bh;
3371 transid = btrfs_super_generation(super);
3372 } else {
3373 brelse(bh);
3374 }
3375 }
3376
3377 if (!latest)
3378 return ERR_PTR(ret);
3379
3380 return latest;
3381 }
3382
3383 /*
3384 * this should be called twice, once with wait == 0 and
3385 * once with wait == 1. When wait == 0 is done, all the buffer heads
3386 * we write are pinned.
3387 *
3388 * They are released when wait == 1 is done.
3389 * max_mirrors must be the same for both runs, and it indicates how
3390 * many supers on this one device should be written.
3391 *
3392 * max_mirrors == 0 means to write them all.
3393 */
3394 static int write_dev_supers(struct btrfs_device *device,
3395 struct btrfs_super_block *sb,
3396 int wait, int max_mirrors)
3397 {
3398 struct buffer_head *bh;
3399 int i;
3400 int ret;
3401 int errors = 0;
3402 u32 crc;
3403 u64 bytenr;
3404
3405 if (max_mirrors == 0)
3406 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3407
3408 for (i = 0; i < max_mirrors; i++) {
3409 bytenr = btrfs_sb_offset(i);
3410 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3411 device->commit_total_bytes)
3412 break;
3413
3414 if (wait) {
3415 bh = __find_get_block(device->bdev, bytenr / 4096,
3416 BTRFS_SUPER_INFO_SIZE);
3417 if (!bh) {
3418 errors++;
3419 continue;
3420 }
3421 wait_on_buffer(bh);
3422 if (!buffer_uptodate(bh))
3423 errors++;
3424
3425 /* drop our reference */
3426 brelse(bh);
3427
3428 /* drop the reference from the wait == 0 run */
3429 brelse(bh);
3430 continue;
3431 } else {
3432 btrfs_set_super_bytenr(sb, bytenr);
3433
3434 crc = ~(u32)0;
3435 crc = btrfs_csum_data((const char *)sb +
3436 BTRFS_CSUM_SIZE, crc,
3437 BTRFS_SUPER_INFO_SIZE -
3438 BTRFS_CSUM_SIZE);
3439 btrfs_csum_final(crc, sb->csum);
3440
3441 /*
3442 * one reference for us, and we leave it for the
3443 * caller
3444 */
3445 bh = __getblk(device->bdev, bytenr / 4096,
3446 BTRFS_SUPER_INFO_SIZE);
3447 if (!bh) {
3448 btrfs_err(device->fs_info,
3449 "couldn't get super buffer head for bytenr %llu",
3450 bytenr);
3451 errors++;
3452 continue;
3453 }
3454
3455 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3456
3457 /* one reference for submit_bh */
3458 get_bh(bh);
3459
3460 set_buffer_uptodate(bh);
3461 lock_buffer(bh);
3462 bh->b_end_io = btrfs_end_buffer_write_sync;
3463 bh->b_private = device;
3464 }
3465
3466 /*
3467 * we fua the first super. The others we allow
3468 * to go down lazy.
3469 */
3470 if (i == 0)
3471 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
3472 else
3473 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3474 if (ret)
3475 errors++;
3476 }
3477 return errors < i ? 0 : -1;
3478 }
3479
3480 /*
3481 * endio for the write_dev_flush, this will wake anyone waiting
3482 * for the barrier when it is done
3483 */
3484 static void btrfs_end_empty_barrier(struct bio *bio)
3485 {
3486 if (bio->bi_private)
3487 complete(bio->bi_private);
3488 bio_put(bio);
3489 }
3490
3491 /*
3492 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3493 * sent down. With wait == 1, it waits for the previous flush.
3494 *
3495 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3496 * capable
3497 */
3498 static int write_dev_flush(struct btrfs_device *device, int wait)
3499 {
3500 struct bio *bio;
3501 int ret = 0;
3502
3503 if (device->nobarriers)
3504 return 0;
3505
3506 if (wait) {
3507 bio = device->flush_bio;
3508 if (!bio)
3509 return 0;
3510
3511 wait_for_completion(&device->flush_wait);
3512
3513 if (bio->bi_error) {
3514 ret = bio->bi_error;
3515 btrfs_dev_stat_inc_and_print(device,
3516 BTRFS_DEV_STAT_FLUSH_ERRS);
3517 }
3518
3519 /* drop the reference from the wait == 0 run */
3520 bio_put(bio);
3521 device->flush_bio = NULL;
3522
3523 return ret;
3524 }
3525
3526 /*
3527 * one reference for us, and we leave it for the
3528 * caller
3529 */
3530 device->flush_bio = NULL;
3531 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3532 if (!bio)
3533 return -ENOMEM;
3534
3535 bio->bi_end_io = btrfs_end_empty_barrier;
3536 bio->bi_bdev = device->bdev;
3537 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3538 init_completion(&device->flush_wait);
3539 bio->bi_private = &device->flush_wait;
3540 device->flush_bio = bio;
3541
3542 bio_get(bio);
3543 btrfsic_submit_bio(bio);
3544
3545 return 0;
3546 }
3547
3548 /*
3549 * send an empty flush down to each device in parallel,
3550 * then wait for them
3551 */
3552 static int barrier_all_devices(struct btrfs_fs_info *info)
3553 {
3554 struct list_head *head;
3555 struct btrfs_device *dev;
3556 int errors_send = 0;
3557 int errors_wait = 0;
3558 int ret;
3559
3560 /* send down all the barriers */
3561 head = &info->fs_devices->devices;
3562 list_for_each_entry_rcu(dev, head, dev_list) {
3563 if (dev->missing)
3564 continue;
3565 if (!dev->bdev) {
3566 errors_send++;
3567 continue;
3568 }
3569 if (!dev->in_fs_metadata || !dev->writeable)
3570 continue;
3571
3572 ret = write_dev_flush(dev, 0);
3573 if (ret)
3574 errors_send++;
3575 }
3576
3577 /* wait for all the barriers */
3578 list_for_each_entry_rcu(dev, head, dev_list) {
3579 if (dev->missing)
3580 continue;
3581 if (!dev->bdev) {
3582 errors_wait++;
3583 continue;
3584 }
3585 if (!dev->in_fs_metadata || !dev->writeable)
3586 continue;
3587
3588 ret = write_dev_flush(dev, 1);
3589 if (ret)
3590 errors_wait++;
3591 }
3592 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3593 errors_wait > info->num_tolerated_disk_barrier_failures)
3594 return -EIO;
3595 return 0;
3596 }
3597
3598 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3599 {
3600 int raid_type;
3601 int min_tolerated = INT_MAX;
3602
3603 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3604 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3605 min_tolerated = min(min_tolerated,
3606 btrfs_raid_array[BTRFS_RAID_SINGLE].
3607 tolerated_failures);
3608
3609 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3610 if (raid_type == BTRFS_RAID_SINGLE)
3611 continue;
3612 if (!(flags & btrfs_raid_group[raid_type]))
3613 continue;
3614 min_tolerated = min(min_tolerated,
3615 btrfs_raid_array[raid_type].
3616 tolerated_failures);
3617 }
3618
3619 if (min_tolerated == INT_MAX) {
3620 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3621 min_tolerated = 0;
3622 }
3623
3624 return min_tolerated;
3625 }
3626
3627 int btrfs_calc_num_tolerated_disk_barrier_failures(
3628 struct btrfs_fs_info *fs_info)
3629 {
3630 struct btrfs_ioctl_space_info space;
3631 struct btrfs_space_info *sinfo;
3632 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3633 BTRFS_BLOCK_GROUP_SYSTEM,
3634 BTRFS_BLOCK_GROUP_METADATA,
3635 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3636 int i;
3637 int c;
3638 int num_tolerated_disk_barrier_failures =
3639 (int)fs_info->fs_devices->num_devices;
3640
3641 for (i = 0; i < ARRAY_SIZE(types); i++) {
3642 struct btrfs_space_info *tmp;
3643
3644 sinfo = NULL;
3645 rcu_read_lock();
3646 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3647 if (tmp->flags == types[i]) {
3648 sinfo = tmp;
3649 break;
3650 }
3651 }
3652 rcu_read_unlock();
3653
3654 if (!sinfo)
3655 continue;
3656
3657 down_read(&sinfo->groups_sem);
3658 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3659 u64 flags;
3660
3661 if (list_empty(&sinfo->block_groups[c]))
3662 continue;
3663
3664 btrfs_get_block_group_info(&sinfo->block_groups[c],
3665 &space);
3666 if (space.total_bytes == 0 || space.used_bytes == 0)
3667 continue;
3668 flags = space.flags;
3669
3670 num_tolerated_disk_barrier_failures = min(
3671 num_tolerated_disk_barrier_failures,
3672 btrfs_get_num_tolerated_disk_barrier_failures(
3673 flags));
3674 }
3675 up_read(&sinfo->groups_sem);
3676 }
3677
3678 return num_tolerated_disk_barrier_failures;
3679 }
3680
3681 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3682 {
3683 struct list_head *head;
3684 struct btrfs_device *dev;
3685 struct btrfs_super_block *sb;
3686 struct btrfs_dev_item *dev_item;
3687 int ret;
3688 int do_barriers;
3689 int max_errors;
3690 int total_errors = 0;
3691 u64 flags;
3692
3693 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3694 backup_super_roots(fs_info);
3695
3696 sb = fs_info->super_for_commit;
3697 dev_item = &sb->dev_item;
3698
3699 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3700 head = &fs_info->fs_devices->devices;
3701 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3702
3703 if (do_barriers) {
3704 ret = barrier_all_devices(fs_info);
3705 if (ret) {
3706 mutex_unlock(
3707 &fs_info->fs_devices->device_list_mutex);
3708 btrfs_handle_fs_error(fs_info, ret,
3709 "errors while submitting device barriers.");
3710 return ret;
3711 }
3712 }
3713
3714 list_for_each_entry_rcu(dev, head, dev_list) {
3715 if (!dev->bdev) {
3716 total_errors++;
3717 continue;
3718 }
3719 if (!dev->in_fs_metadata || !dev->writeable)
3720 continue;
3721
3722 btrfs_set_stack_device_generation(dev_item, 0);
3723 btrfs_set_stack_device_type(dev_item, dev->type);
3724 btrfs_set_stack_device_id(dev_item, dev->devid);
3725 btrfs_set_stack_device_total_bytes(dev_item,
3726 dev->commit_total_bytes);
3727 btrfs_set_stack_device_bytes_used(dev_item,
3728 dev->commit_bytes_used);
3729 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3730 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3731 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3732 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3733 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3734
3735 flags = btrfs_super_flags(sb);
3736 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3737
3738 ret = write_dev_supers(dev, sb, 0, max_mirrors);
3739 if (ret)
3740 total_errors++;
3741 }
3742 if (total_errors > max_errors) {
3743 btrfs_err(fs_info, "%d errors while writing supers",
3744 total_errors);
3745 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3746
3747 /* FUA is masked off if unsupported and can't be the reason */
3748 btrfs_handle_fs_error(fs_info, -EIO,
3749 "%d errors while writing supers",
3750 total_errors);
3751 return -EIO;
3752 }
3753
3754 total_errors = 0;
3755 list_for_each_entry_rcu(dev, head, dev_list) {
3756 if (!dev->bdev)
3757 continue;
3758 if (!dev->in_fs_metadata || !dev->writeable)
3759 continue;
3760
3761 ret = write_dev_supers(dev, sb, 1, max_mirrors);
3762 if (ret)
3763 total_errors++;
3764 }
3765 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3766 if (total_errors > max_errors) {
3767 btrfs_handle_fs_error(fs_info, -EIO,
3768 "%d errors while writing supers",
3769 total_errors);
3770 return -EIO;
3771 }
3772 return 0;
3773 }
3774
3775 /* Drop a fs root from the radix tree and free it. */
3776 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3777 struct btrfs_root *root)
3778 {
3779 spin_lock(&fs_info->fs_roots_radix_lock);
3780 radix_tree_delete(&fs_info->fs_roots_radix,
3781 (unsigned long)root->root_key.objectid);
3782 spin_unlock(&fs_info->fs_roots_radix_lock);
3783
3784 if (btrfs_root_refs(&root->root_item) == 0)
3785 synchronize_srcu(&fs_info->subvol_srcu);
3786
3787 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3788 btrfs_free_log(NULL, root);
3789 if (root->reloc_root) {
3790 free_extent_buffer(root->reloc_root->node);
3791 free_extent_buffer(root->reloc_root->commit_root);
3792 btrfs_put_fs_root(root->reloc_root);
3793 root->reloc_root = NULL;
3794 }
3795 }
3796
3797 if (root->free_ino_pinned)
3798 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3799 if (root->free_ino_ctl)
3800 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3801 free_fs_root(root);
3802 }
3803
3804 static void free_fs_root(struct btrfs_root *root)
3805 {
3806 iput(root->ino_cache_inode);
3807 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3808 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3809 root->orphan_block_rsv = NULL;
3810 if (root->anon_dev)
3811 free_anon_bdev(root->anon_dev);
3812 if (root->subv_writers)
3813 btrfs_free_subvolume_writers(root->subv_writers);
3814 free_extent_buffer(root->node);
3815 free_extent_buffer(root->commit_root);
3816 kfree(root->free_ino_ctl);
3817 kfree(root->free_ino_pinned);
3818 kfree(root->name);
3819 btrfs_put_fs_root(root);
3820 }
3821
3822 void btrfs_free_fs_root(struct btrfs_root *root)
3823 {
3824 free_fs_root(root);
3825 }
3826
3827 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3828 {
3829 u64 root_objectid = 0;
3830 struct btrfs_root *gang[8];
3831 int i = 0;
3832 int err = 0;
3833 unsigned int ret = 0;
3834 int index;
3835
3836 while (1) {
3837 index = srcu_read_lock(&fs_info->subvol_srcu);
3838 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3839 (void **)gang, root_objectid,
3840 ARRAY_SIZE(gang));
3841 if (!ret) {
3842 srcu_read_unlock(&fs_info->subvol_srcu, index);
3843 break;
3844 }
3845 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3846
3847 for (i = 0; i < ret; i++) {
3848 /* Avoid to grab roots in dead_roots */
3849 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3850 gang[i] = NULL;
3851 continue;
3852 }
3853 /* grab all the search result for later use */
3854 gang[i] = btrfs_grab_fs_root(gang[i]);
3855 }
3856 srcu_read_unlock(&fs_info->subvol_srcu, index);
3857
3858 for (i = 0; i < ret; i++) {
3859 if (!gang[i])
3860 continue;
3861 root_objectid = gang[i]->root_key.objectid;
3862 err = btrfs_orphan_cleanup(gang[i]);
3863 if (err)
3864 break;
3865 btrfs_put_fs_root(gang[i]);
3866 }
3867 root_objectid++;
3868 }
3869
3870 /* release the uncleaned roots due to error */
3871 for (; i < ret; i++) {
3872 if (gang[i])
3873 btrfs_put_fs_root(gang[i]);
3874 }
3875 return err;
3876 }
3877
3878 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3879 {
3880 struct btrfs_root *root = fs_info->tree_root;
3881 struct btrfs_trans_handle *trans;
3882
3883 mutex_lock(&fs_info->cleaner_mutex);
3884 btrfs_run_delayed_iputs(fs_info);
3885 mutex_unlock(&fs_info->cleaner_mutex);
3886 wake_up_process(fs_info->cleaner_kthread);
3887
3888 /* wait until ongoing cleanup work done */
3889 down_write(&fs_info->cleanup_work_sem);
3890 up_write(&fs_info->cleanup_work_sem);
3891
3892 trans = btrfs_join_transaction(root);
3893 if (IS_ERR(trans))
3894 return PTR_ERR(trans);
3895 return btrfs_commit_transaction(trans);
3896 }
3897
3898 void close_ctree(struct btrfs_fs_info *fs_info)
3899 {
3900 struct btrfs_root *root = fs_info->tree_root;
3901 int ret;
3902
3903 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3904
3905 /* wait for the qgroup rescan worker to stop */
3906 btrfs_qgroup_wait_for_completion(fs_info, false);
3907
3908 /* wait for the uuid_scan task to finish */
3909 down(&fs_info->uuid_tree_rescan_sem);
3910 /* avoid complains from lockdep et al., set sem back to initial state */
3911 up(&fs_info->uuid_tree_rescan_sem);
3912
3913 /* pause restriper - we want to resume on mount */
3914 btrfs_pause_balance(fs_info);
3915
3916 btrfs_dev_replace_suspend_for_unmount(fs_info);
3917
3918 btrfs_scrub_cancel(fs_info);
3919
3920 /* wait for any defraggers to finish */
3921 wait_event(fs_info->transaction_wait,
3922 (atomic_read(&fs_info->defrag_running) == 0));
3923
3924 /* clear out the rbtree of defraggable inodes */
3925 btrfs_cleanup_defrag_inodes(fs_info);
3926
3927 cancel_work_sync(&fs_info->async_reclaim_work);
3928
3929 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3930 /*
3931 * If the cleaner thread is stopped and there are
3932 * block groups queued for removal, the deletion will be
3933 * skipped when we quit the cleaner thread.
3934 */
3935 btrfs_delete_unused_bgs(fs_info);
3936
3937 ret = btrfs_commit_super(fs_info);
3938 if (ret)
3939 btrfs_err(fs_info, "commit super ret %d", ret);
3940 }
3941
3942 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3943 btrfs_error_commit_super(fs_info);
3944
3945 kthread_stop(fs_info->transaction_kthread);
3946 kthread_stop(fs_info->cleaner_kthread);
3947
3948 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3949
3950 btrfs_free_qgroup_config(fs_info);
3951
3952 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3953 btrfs_info(fs_info, "at unmount delalloc count %lld",
3954 percpu_counter_sum(&fs_info->delalloc_bytes));
3955 }
3956
3957 btrfs_sysfs_remove_mounted(fs_info);
3958 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3959
3960 btrfs_free_fs_roots(fs_info);
3961
3962 btrfs_put_block_group_cache(fs_info);
3963
3964 /*
3965 * we must make sure there is not any read request to
3966 * submit after we stopping all workers.
3967 */
3968 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3969 btrfs_stop_all_workers(fs_info);
3970
3971 btrfs_free_block_groups(fs_info);
3972
3973 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3974 free_root_pointers(fs_info, 1);
3975
3976 iput(fs_info->btree_inode);
3977
3978 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3979 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3980 btrfsic_unmount(fs_info->fs_devices);
3981 #endif
3982
3983 btrfs_close_devices(fs_info->fs_devices);
3984 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3985
3986 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3987 percpu_counter_destroy(&fs_info->delalloc_bytes);
3988 percpu_counter_destroy(&fs_info->bio_counter);
3989 cleanup_srcu_struct(&fs_info->subvol_srcu);
3990
3991 btrfs_free_stripe_hash_table(fs_info);
3992
3993 __btrfs_free_block_rsv(root->orphan_block_rsv);
3994 root->orphan_block_rsv = NULL;
3995
3996 mutex_lock(&fs_info->chunk_mutex);
3997 while (!list_empty(&fs_info->pinned_chunks)) {
3998 struct extent_map *em;
3999
4000 em = list_first_entry(&fs_info->pinned_chunks,
4001 struct extent_map, list);
4002 list_del_init(&em->list);
4003 free_extent_map(em);
4004 }
4005 mutex_unlock(&fs_info->chunk_mutex);
4006 }
4007
4008 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4009 int atomic)
4010 {
4011 int ret;
4012 struct inode *btree_inode = buf->pages[0]->mapping->host;
4013
4014 ret = extent_buffer_uptodate(buf);
4015 if (!ret)
4016 return ret;
4017
4018 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4019 parent_transid, atomic);
4020 if (ret == -EAGAIN)
4021 return ret;
4022 return !ret;
4023 }
4024
4025 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4026 {
4027 struct btrfs_fs_info *fs_info;
4028 struct btrfs_root *root;
4029 u64 transid = btrfs_header_generation(buf);
4030 int was_dirty;
4031
4032 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4033 /*
4034 * This is a fast path so only do this check if we have sanity tests
4035 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4036 * outside of the sanity tests.
4037 */
4038 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4039 return;
4040 #endif
4041 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4042 fs_info = root->fs_info;
4043 btrfs_assert_tree_locked(buf);
4044 if (transid != fs_info->generation)
4045 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4046 buf->start, transid, fs_info->generation);
4047 was_dirty = set_extent_buffer_dirty(buf);
4048 if (!was_dirty)
4049 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
4050 buf->len,
4051 fs_info->dirty_metadata_batch);
4052 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4053 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4054 btrfs_print_leaf(fs_info, buf);
4055 ASSERT(0);
4056 }
4057 #endif
4058 }
4059
4060 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4061 int flush_delayed)
4062 {
4063 /*
4064 * looks as though older kernels can get into trouble with
4065 * this code, they end up stuck in balance_dirty_pages forever
4066 */
4067 int ret;
4068
4069 if (current->flags & PF_MEMALLOC)
4070 return;
4071
4072 if (flush_delayed)
4073 btrfs_balance_delayed_items(fs_info);
4074
4075 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4076 BTRFS_DIRTY_METADATA_THRESH);
4077 if (ret > 0) {
4078 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4079 }
4080 }
4081
4082 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4083 {
4084 __btrfs_btree_balance_dirty(fs_info, 1);
4085 }
4086
4087 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4088 {
4089 __btrfs_btree_balance_dirty(fs_info, 0);
4090 }
4091
4092 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4093 {
4094 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4095 struct btrfs_fs_info *fs_info = root->fs_info;
4096
4097 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4098 }
4099
4100 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
4101 {
4102 struct btrfs_super_block *sb = fs_info->super_copy;
4103 u64 nodesize = btrfs_super_nodesize(sb);
4104 u64 sectorsize = btrfs_super_sectorsize(sb);
4105 int ret = 0;
4106
4107 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4108 btrfs_err(fs_info, "no valid FS found");
4109 ret = -EINVAL;
4110 }
4111 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4112 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4113 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4114 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4115 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4116 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4117 ret = -EINVAL;
4118 }
4119 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4120 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4121 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4122 ret = -EINVAL;
4123 }
4124 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4125 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4126 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4127 ret = -EINVAL;
4128 }
4129
4130 /*
4131 * Check sectorsize and nodesize first, other check will need it.
4132 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4133 */
4134 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4135 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4136 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4137 ret = -EINVAL;
4138 }
4139 /* Only PAGE SIZE is supported yet */
4140 if (sectorsize != PAGE_SIZE) {
4141 btrfs_err(fs_info,
4142 "sectorsize %llu not supported yet, only support %lu",
4143 sectorsize, PAGE_SIZE);
4144 ret = -EINVAL;
4145 }
4146 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4147 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4148 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4149 ret = -EINVAL;
4150 }
4151 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4152 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4153 le32_to_cpu(sb->__unused_leafsize), nodesize);
4154 ret = -EINVAL;
4155 }
4156
4157 /* Root alignment check */
4158 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4159 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4160 btrfs_super_root(sb));
4161 ret = -EINVAL;
4162 }
4163 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4164 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4165 btrfs_super_chunk_root(sb));
4166 ret = -EINVAL;
4167 }
4168 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4169 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4170 btrfs_super_log_root(sb));
4171 ret = -EINVAL;
4172 }
4173
4174 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4175 btrfs_err(fs_info,
4176 "dev_item UUID does not match fsid: %pU != %pU",
4177 fs_info->fsid, sb->dev_item.fsid);
4178 ret = -EINVAL;
4179 }
4180
4181 /*
4182 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4183 * done later
4184 */
4185 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4186 btrfs_err(fs_info, "bytes_used is too small %llu",
4187 btrfs_super_bytes_used(sb));
4188 ret = -EINVAL;
4189 }
4190 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4191 btrfs_err(fs_info, "invalid stripesize %u",
4192 btrfs_super_stripesize(sb));
4193 ret = -EINVAL;
4194 }
4195 if (btrfs_super_num_devices(sb) > (1UL << 31))
4196 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4197 btrfs_super_num_devices(sb));
4198 if (btrfs_super_num_devices(sb) == 0) {
4199 btrfs_err(fs_info, "number of devices is 0");
4200 ret = -EINVAL;
4201 }
4202
4203 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4204 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4205 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4206 ret = -EINVAL;
4207 }
4208
4209 /*
4210 * Obvious sys_chunk_array corruptions, it must hold at least one key
4211 * and one chunk
4212 */
4213 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4214 btrfs_err(fs_info, "system chunk array too big %u > %u",
4215 btrfs_super_sys_array_size(sb),
4216 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4217 ret = -EINVAL;
4218 }
4219 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4220 + sizeof(struct btrfs_chunk)) {
4221 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4222 btrfs_super_sys_array_size(sb),
4223 sizeof(struct btrfs_disk_key)
4224 + sizeof(struct btrfs_chunk));
4225 ret = -EINVAL;
4226 }
4227
4228 /*
4229 * The generation is a global counter, we'll trust it more than the others
4230 * but it's still possible that it's the one that's wrong.
4231 */
4232 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4233 btrfs_warn(fs_info,
4234 "suspicious: generation < chunk_root_generation: %llu < %llu",
4235 btrfs_super_generation(sb),
4236 btrfs_super_chunk_root_generation(sb));
4237 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4238 && btrfs_super_cache_generation(sb) != (u64)-1)
4239 btrfs_warn(fs_info,
4240 "suspicious: generation < cache_generation: %llu < %llu",
4241 btrfs_super_generation(sb),
4242 btrfs_super_cache_generation(sb));
4243
4244 return ret;
4245 }
4246
4247 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4248 {
4249 mutex_lock(&fs_info->cleaner_mutex);
4250 btrfs_run_delayed_iputs(fs_info);
4251 mutex_unlock(&fs_info->cleaner_mutex);
4252
4253 down_write(&fs_info->cleanup_work_sem);
4254 up_write(&fs_info->cleanup_work_sem);
4255
4256 /* cleanup FS via transaction */
4257 btrfs_cleanup_transaction(fs_info);
4258 }
4259
4260 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4261 {
4262 struct btrfs_ordered_extent *ordered;
4263
4264 spin_lock(&root->ordered_extent_lock);
4265 /*
4266 * This will just short circuit the ordered completion stuff which will
4267 * make sure the ordered extent gets properly cleaned up.
4268 */
4269 list_for_each_entry(ordered, &root->ordered_extents,
4270 root_extent_list)
4271 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4272 spin_unlock(&root->ordered_extent_lock);
4273 }
4274
4275 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4276 {
4277 struct btrfs_root *root;
4278 struct list_head splice;
4279
4280 INIT_LIST_HEAD(&splice);
4281
4282 spin_lock(&fs_info->ordered_root_lock);
4283 list_splice_init(&fs_info->ordered_roots, &splice);
4284 while (!list_empty(&splice)) {
4285 root = list_first_entry(&splice, struct btrfs_root,
4286 ordered_root);
4287 list_move_tail(&root->ordered_root,
4288 &fs_info->ordered_roots);
4289
4290 spin_unlock(&fs_info->ordered_root_lock);
4291 btrfs_destroy_ordered_extents(root);
4292
4293 cond_resched();
4294 spin_lock(&fs_info->ordered_root_lock);
4295 }
4296 spin_unlock(&fs_info->ordered_root_lock);
4297 }
4298
4299 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4300 struct btrfs_fs_info *fs_info)
4301 {
4302 struct rb_node *node;
4303 struct btrfs_delayed_ref_root *delayed_refs;
4304 struct btrfs_delayed_ref_node *ref;
4305 int ret = 0;
4306
4307 delayed_refs = &trans->delayed_refs;
4308
4309 spin_lock(&delayed_refs->lock);
4310 if (atomic_read(&delayed_refs->num_entries) == 0) {
4311 spin_unlock(&delayed_refs->lock);
4312 btrfs_info(fs_info, "delayed_refs has NO entry");
4313 return ret;
4314 }
4315
4316 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4317 struct btrfs_delayed_ref_head *head;
4318 struct btrfs_delayed_ref_node *tmp;
4319 bool pin_bytes = false;
4320
4321 head = rb_entry(node, struct btrfs_delayed_ref_head,
4322 href_node);
4323 if (!mutex_trylock(&head->mutex)) {
4324 atomic_inc(&head->node.refs);
4325 spin_unlock(&delayed_refs->lock);
4326
4327 mutex_lock(&head->mutex);
4328 mutex_unlock(&head->mutex);
4329 btrfs_put_delayed_ref(&head->node);
4330 spin_lock(&delayed_refs->lock);
4331 continue;
4332 }
4333 spin_lock(&head->lock);
4334 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4335 list) {
4336 ref->in_tree = 0;
4337 list_del(&ref->list);
4338 if (!list_empty(&ref->add_list))
4339 list_del(&ref->add_list);
4340 atomic_dec(&delayed_refs->num_entries);
4341 btrfs_put_delayed_ref(ref);
4342 }
4343 if (head->must_insert_reserved)
4344 pin_bytes = true;
4345 btrfs_free_delayed_extent_op(head->extent_op);
4346 delayed_refs->num_heads--;
4347 if (head->processing == 0)
4348 delayed_refs->num_heads_ready--;
4349 atomic_dec(&delayed_refs->num_entries);
4350 head->node.in_tree = 0;
4351 rb_erase(&head->href_node, &delayed_refs->href_root);
4352 spin_unlock(&head->lock);
4353 spin_unlock(&delayed_refs->lock);
4354 mutex_unlock(&head->mutex);
4355
4356 if (pin_bytes)
4357 btrfs_pin_extent(fs_info, head->node.bytenr,
4358 head->node.num_bytes, 1);
4359 btrfs_put_delayed_ref(&head->node);
4360 cond_resched();
4361 spin_lock(&delayed_refs->lock);
4362 }
4363
4364 spin_unlock(&delayed_refs->lock);
4365
4366 return ret;
4367 }
4368
4369 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4370 {
4371 struct btrfs_inode *btrfs_inode;
4372 struct list_head splice;
4373
4374 INIT_LIST_HEAD(&splice);
4375
4376 spin_lock(&root->delalloc_lock);
4377 list_splice_init(&root->delalloc_inodes, &splice);
4378
4379 while (!list_empty(&splice)) {
4380 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4381 delalloc_inodes);
4382
4383 list_del_init(&btrfs_inode->delalloc_inodes);
4384 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4385 &btrfs_inode->runtime_flags);
4386 spin_unlock(&root->delalloc_lock);
4387
4388 btrfs_invalidate_inodes(btrfs_inode->root);
4389
4390 spin_lock(&root->delalloc_lock);
4391 }
4392
4393 spin_unlock(&root->delalloc_lock);
4394 }
4395
4396 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4397 {
4398 struct btrfs_root *root;
4399 struct list_head splice;
4400
4401 INIT_LIST_HEAD(&splice);
4402
4403 spin_lock(&fs_info->delalloc_root_lock);
4404 list_splice_init(&fs_info->delalloc_roots, &splice);
4405 while (!list_empty(&splice)) {
4406 root = list_first_entry(&splice, struct btrfs_root,
4407 delalloc_root);
4408 list_del_init(&root->delalloc_root);
4409 root = btrfs_grab_fs_root(root);
4410 BUG_ON(!root);
4411 spin_unlock(&fs_info->delalloc_root_lock);
4412
4413 btrfs_destroy_delalloc_inodes(root);
4414 btrfs_put_fs_root(root);
4415
4416 spin_lock(&fs_info->delalloc_root_lock);
4417 }
4418 spin_unlock(&fs_info->delalloc_root_lock);
4419 }
4420
4421 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4422 struct extent_io_tree *dirty_pages,
4423 int mark)
4424 {
4425 int ret;
4426 struct extent_buffer *eb;
4427 u64 start = 0;
4428 u64 end;
4429
4430 while (1) {
4431 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4432 mark, NULL);
4433 if (ret)
4434 break;
4435
4436 clear_extent_bits(dirty_pages, start, end, mark);
4437 while (start <= end) {
4438 eb = find_extent_buffer(fs_info, start);
4439 start += fs_info->nodesize;
4440 if (!eb)
4441 continue;
4442 wait_on_extent_buffer_writeback(eb);
4443
4444 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4445 &eb->bflags))
4446 clear_extent_buffer_dirty(eb);
4447 free_extent_buffer_stale(eb);
4448 }
4449 }
4450
4451 return ret;
4452 }
4453
4454 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4455 struct extent_io_tree *pinned_extents)
4456 {
4457 struct extent_io_tree *unpin;
4458 u64 start;
4459 u64 end;
4460 int ret;
4461 bool loop = true;
4462
4463 unpin = pinned_extents;
4464 again:
4465 while (1) {
4466 ret = find_first_extent_bit(unpin, 0, &start, &end,
4467 EXTENT_DIRTY, NULL);
4468 if (ret)
4469 break;
4470
4471 clear_extent_dirty(unpin, start, end);
4472 btrfs_error_unpin_extent_range(fs_info, start, end);
4473 cond_resched();
4474 }
4475
4476 if (loop) {
4477 if (unpin == &fs_info->freed_extents[0])
4478 unpin = &fs_info->freed_extents[1];
4479 else
4480 unpin = &fs_info->freed_extents[0];
4481 loop = false;
4482 goto again;
4483 }
4484
4485 return 0;
4486 }
4487
4488 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4489 {
4490 struct inode *inode;
4491
4492 inode = cache->io_ctl.inode;
4493 if (inode) {
4494 invalidate_inode_pages2(inode->i_mapping);
4495 BTRFS_I(inode)->generation = 0;
4496 cache->io_ctl.inode = NULL;
4497 iput(inode);
4498 }
4499 btrfs_put_block_group(cache);
4500 }
4501
4502 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4503 struct btrfs_fs_info *fs_info)
4504 {
4505 struct btrfs_block_group_cache *cache;
4506
4507 spin_lock(&cur_trans->dirty_bgs_lock);
4508 while (!list_empty(&cur_trans->dirty_bgs)) {
4509 cache = list_first_entry(&cur_trans->dirty_bgs,
4510 struct btrfs_block_group_cache,
4511 dirty_list);
4512 if (!cache) {
4513 btrfs_err(fs_info, "orphan block group dirty_bgs list");
4514 spin_unlock(&cur_trans->dirty_bgs_lock);
4515 return;
4516 }
4517
4518 if (!list_empty(&cache->io_list)) {
4519 spin_unlock(&cur_trans->dirty_bgs_lock);
4520 list_del_init(&cache->io_list);
4521 btrfs_cleanup_bg_io(cache);
4522 spin_lock(&cur_trans->dirty_bgs_lock);
4523 }
4524
4525 list_del_init(&cache->dirty_list);
4526 spin_lock(&cache->lock);
4527 cache->disk_cache_state = BTRFS_DC_ERROR;
4528 spin_unlock(&cache->lock);
4529
4530 spin_unlock(&cur_trans->dirty_bgs_lock);
4531 btrfs_put_block_group(cache);
4532 spin_lock(&cur_trans->dirty_bgs_lock);
4533 }
4534 spin_unlock(&cur_trans->dirty_bgs_lock);
4535
4536 while (!list_empty(&cur_trans->io_bgs)) {
4537 cache = list_first_entry(&cur_trans->io_bgs,
4538 struct btrfs_block_group_cache,
4539 io_list);
4540 if (!cache) {
4541 btrfs_err(fs_info, "orphan block group on io_bgs list");
4542 return;
4543 }
4544
4545 list_del_init(&cache->io_list);
4546 spin_lock(&cache->lock);
4547 cache->disk_cache_state = BTRFS_DC_ERROR;
4548 spin_unlock(&cache->lock);
4549 btrfs_cleanup_bg_io(cache);
4550 }
4551 }
4552
4553 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4554 struct btrfs_fs_info *fs_info)
4555 {
4556 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4557 ASSERT(list_empty(&cur_trans->dirty_bgs));
4558 ASSERT(list_empty(&cur_trans->io_bgs));
4559
4560 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4561
4562 cur_trans->state = TRANS_STATE_COMMIT_START;
4563 wake_up(&fs_info->transaction_blocked_wait);
4564
4565 cur_trans->state = TRANS_STATE_UNBLOCKED;
4566 wake_up(&fs_info->transaction_wait);
4567
4568 btrfs_destroy_delayed_inodes(fs_info);
4569 btrfs_assert_delayed_root_empty(fs_info);
4570
4571 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4572 EXTENT_DIRTY);
4573 btrfs_destroy_pinned_extent(fs_info,
4574 fs_info->pinned_extents);
4575
4576 cur_trans->state =TRANS_STATE_COMPLETED;
4577 wake_up(&cur_trans->commit_wait);
4578
4579 /*
4580 memset(cur_trans, 0, sizeof(*cur_trans));
4581 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4582 */
4583 }
4584
4585 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4586 {
4587 struct btrfs_transaction *t;
4588
4589 mutex_lock(&fs_info->transaction_kthread_mutex);
4590
4591 spin_lock(&fs_info->trans_lock);
4592 while (!list_empty(&fs_info->trans_list)) {
4593 t = list_first_entry(&fs_info->trans_list,
4594 struct btrfs_transaction, list);
4595 if (t->state >= TRANS_STATE_COMMIT_START) {
4596 atomic_inc(&t->use_count);
4597 spin_unlock(&fs_info->trans_lock);
4598 btrfs_wait_for_commit(fs_info, t->transid);
4599 btrfs_put_transaction(t);
4600 spin_lock(&fs_info->trans_lock);
4601 continue;
4602 }
4603 if (t == fs_info->running_transaction) {
4604 t->state = TRANS_STATE_COMMIT_DOING;
4605 spin_unlock(&fs_info->trans_lock);
4606 /*
4607 * We wait for 0 num_writers since we don't hold a trans
4608 * handle open currently for this transaction.
4609 */
4610 wait_event(t->writer_wait,
4611 atomic_read(&t->num_writers) == 0);
4612 } else {
4613 spin_unlock(&fs_info->trans_lock);
4614 }
4615 btrfs_cleanup_one_transaction(t, fs_info);
4616
4617 spin_lock(&fs_info->trans_lock);
4618 if (t == fs_info->running_transaction)
4619 fs_info->running_transaction = NULL;
4620 list_del_init(&t->list);
4621 spin_unlock(&fs_info->trans_lock);
4622
4623 btrfs_put_transaction(t);
4624 trace_btrfs_transaction_commit(fs_info->tree_root);
4625 spin_lock(&fs_info->trans_lock);
4626 }
4627 spin_unlock(&fs_info->trans_lock);
4628 btrfs_destroy_all_ordered_extents(fs_info);
4629 btrfs_destroy_delayed_inodes(fs_info);
4630 btrfs_assert_delayed_root_empty(fs_info);
4631 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4632 btrfs_destroy_all_delalloc_inodes(fs_info);
4633 mutex_unlock(&fs_info->transaction_kthread_mutex);
4634
4635 return 0;
4636 }
4637
4638 static const struct extent_io_ops btree_extent_io_ops = {
4639 /* mandatory callbacks */
4640 .submit_bio_hook = btree_submit_bio_hook,
4641 .readpage_end_io_hook = btree_readpage_end_io_hook,
4642 /* note we're sharing with inode.c for the merge bio hook */
4643 .merge_bio_hook = btrfs_merge_bio_hook,
4644 .readpage_io_failed_hook = btree_io_failed_hook,
4645
4646 /* optional callbacks */
4647 };