]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Merge tag '4.4-additional' of git://git.lwn.net/linux
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
280 {
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
292
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
304 }
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
320
321 read_extent_buffer(buf, &val, 0, csum_size);
322 btrfs_warn_rl(fs_info,
323 "%s checksum verify failed on %llu wanted %X found %X "
324 "level %d",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
330 }
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
333 }
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
337 }
338
339 /*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
348 {
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
356 if (atomic)
357 return -EAGAIN;
358
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
371 btrfs_err_rl(eb->fs_info,
372 "parent transid verify failed on %llu wanted %llu found %llu",
373 eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387 out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
393 }
394
395 /*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431 }
432
433 /*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
439 u64 start, u64 parent_transid)
440 {
441 struct extent_io_tree *io_tree;
442 int failed = 0;
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
446 int failed_mirror = 0;
447
448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
453 btree_get_extent, mirror_num);
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
456 parent_transid, 0))
457 break;
458 else
459 ret = -EIO;
460 }
461
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 break;
469
470 num_copies = btrfs_num_copies(root->fs_info,
471 eb->start, eb->len);
472 if (num_copies == 1)
473 break;
474
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
480 mirror_num++;
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
484 if (mirror_num > num_copies)
485 break;
486 }
487
488 if (failed && !ret && failed_mirror)
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
492 }
493
494 /*
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
497 */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 u64 start = page_offset(page);
502 u64 found_start;
503 struct extent_buffer *eb;
504
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
508 found_start = btrfs_header_bytenr(eb);
509 if (WARN_ON(found_start != start || !PageUptodate(page)))
510 return 0;
511 csum_tree_block(fs_info, eb, 0);
512 return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 struct extent_buffer *eb)
517 {
518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540 {
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
602 {
603 u64 found_start;
604 int found_level;
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 int ret = 0;
608 int reads_done;
609
610 if (!page->private)
611 goto out;
612
613 eb = (struct extent_buffer *)page->private;
614
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
621 if (!reads_done)
622 goto err;
623
624 eb->read_mirror = mirror;
625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 ret = -EIO;
627 goto err;
628 }
629
630 found_start = btrfs_header_bytenr(eb);
631 if (found_start != eb->start) {
632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633 found_start, eb->start);
634 ret = -EIO;
635 goto err;
636 }
637 if (check_tree_block_fsid(root->fs_info, eb)) {
638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639 eb->start);
640 ret = -EIO;
641 goto err;
642 }
643 found_level = btrfs_header_level(eb);
644 if (found_level >= BTRFS_MAX_LEVEL) {
645 btrfs_err(root->fs_info, "bad tree block level %d",
646 (int)btrfs_header_level(eb));
647 ret = -EIO;
648 goto err;
649 }
650
651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652 eb, found_level);
653
654 ret = csum_tree_block(root->fs_info, eb, 1);
655 if (ret) {
656 ret = -EIO;
657 goto err;
658 }
659
660 /*
661 * If this is a leaf block and it is corrupt, set the corrupt bit so
662 * that we don't try and read the other copies of this block, just
663 * return -EIO.
664 */
665 if (found_level == 0 && check_leaf(root, eb)) {
666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667 ret = -EIO;
668 }
669
670 if (!ret)
671 set_extent_buffer_uptodate(eb);
672 err:
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 btree_readahead_hook(root, eb, eb->start, ret);
676
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
684 clear_extent_buffer_uptodate(eb);
685 }
686 free_extent_buffer(eb);
687 out:
688 return ret;
689 }
690
691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
696 eb = (struct extent_buffer *)page->private;
697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698 eb->read_mirror = failed_mirror;
699 atomic_dec(&eb->io_pages);
700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701 btree_readahead_hook(root, eb, eb->start, -EIO);
702 return -EIO; /* we fixed nothing */
703 }
704
705 static void end_workqueue_bio(struct bio *bio)
706 {
707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708 struct btrfs_fs_info *fs_info;
709 struct btrfs_workqueue *wq;
710 btrfs_work_func_t func;
711
712 fs_info = end_io_wq->info;
713 end_io_wq->error = bio->bi_error;
714
715 if (bio->bi_rw & REQ_WRITE) {
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 wq = fs_info->endio_meta_write_workers;
718 func = btrfs_endio_meta_write_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 wq = fs_info->endio_freespace_worker;
721 func = btrfs_freespace_write_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else {
726 wq = fs_info->endio_write_workers;
727 func = btrfs_endio_write_helper;
728 }
729 } else {
730 if (unlikely(end_io_wq->metadata ==
731 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 wq = fs_info->endio_repair_workers;
733 func = btrfs_endio_repair_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735 wq = fs_info->endio_raid56_workers;
736 func = btrfs_endio_raid56_helper;
737 } else if (end_io_wq->metadata) {
738 wq = fs_info->endio_meta_workers;
739 func = btrfs_endio_meta_helper;
740 } else {
741 wq = fs_info->endio_workers;
742 func = btrfs_endio_helper;
743 }
744 }
745
746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 btrfs_queue_work(wq, &end_io_wq->work);
748 }
749
750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751 enum btrfs_wq_endio_type metadata)
752 {
753 struct btrfs_end_io_wq *end_io_wq;
754
755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756 if (!end_io_wq)
757 return -ENOMEM;
758
759 end_io_wq->private = bio->bi_private;
760 end_io_wq->end_io = bio->bi_end_io;
761 end_io_wq->info = info;
762 end_io_wq->error = 0;
763 end_io_wq->bio = bio;
764 end_io_wq->metadata = metadata;
765
766 bio->bi_private = end_io_wq;
767 bio->bi_end_io = end_workqueue_bio;
768 return 0;
769 }
770
771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773 unsigned long limit = min_t(unsigned long,
774 info->thread_pool_size,
775 info->fs_devices->open_devices);
776 return 256 * limit;
777 }
778
779 static void run_one_async_start(struct btrfs_work *work)
780 {
781 struct async_submit_bio *async;
782 int ret;
783
784 async = container_of(work, struct async_submit_bio, work);
785 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
788 if (ret)
789 async->error = ret;
790 }
791
792 static void run_one_async_done(struct btrfs_work *work)
793 {
794 struct btrfs_fs_info *fs_info;
795 struct async_submit_bio *async;
796 int limit;
797
798 async = container_of(work, struct async_submit_bio, work);
799 fs_info = BTRFS_I(async->inode)->root->fs_info;
800
801 limit = btrfs_async_submit_limit(fs_info);
802 limit = limit * 2 / 3;
803
804 /*
805 * atomic_dec_return implies a barrier for waitqueue_active
806 */
807 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808 waitqueue_active(&fs_info->async_submit_wait))
809 wake_up(&fs_info->async_submit_wait);
810
811 /* If an error occured we just want to clean up the bio and move on */
812 if (async->error) {
813 async->bio->bi_error = async->error;
814 bio_endio(async->bio);
815 return;
816 }
817
818 async->submit_bio_done(async->inode, async->rw, async->bio,
819 async->mirror_num, async->bio_flags,
820 async->bio_offset);
821 }
822
823 static void run_one_async_free(struct btrfs_work *work)
824 {
825 struct async_submit_bio *async;
826
827 async = container_of(work, struct async_submit_bio, work);
828 kfree(async);
829 }
830
831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832 int rw, struct bio *bio, int mirror_num,
833 unsigned long bio_flags,
834 u64 bio_offset,
835 extent_submit_bio_hook_t *submit_bio_start,
836 extent_submit_bio_hook_t *submit_bio_done)
837 {
838 struct async_submit_bio *async;
839
840 async = kmalloc(sizeof(*async), GFP_NOFS);
841 if (!async)
842 return -ENOMEM;
843
844 async->inode = inode;
845 async->rw = rw;
846 async->bio = bio;
847 async->mirror_num = mirror_num;
848 async->submit_bio_start = submit_bio_start;
849 async->submit_bio_done = submit_bio_done;
850
851 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852 run_one_async_done, run_one_async_free);
853
854 async->bio_flags = bio_flags;
855 async->bio_offset = bio_offset;
856
857 async->error = 0;
858
859 atomic_inc(&fs_info->nr_async_submits);
860
861 if (rw & REQ_SYNC)
862 btrfs_set_work_high_priority(&async->work);
863
864 btrfs_queue_work(fs_info->workers, &async->work);
865
866 while (atomic_read(&fs_info->async_submit_draining) &&
867 atomic_read(&fs_info->nr_async_submits)) {
868 wait_event(fs_info->async_submit_wait,
869 (atomic_read(&fs_info->nr_async_submits) == 0));
870 }
871
872 return 0;
873 }
874
875 static int btree_csum_one_bio(struct bio *bio)
876 {
877 struct bio_vec *bvec;
878 struct btrfs_root *root;
879 int i, ret = 0;
880
881 bio_for_each_segment_all(bvec, bio, i) {
882 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884 if (ret)
885 break;
886 }
887
888 return ret;
889 }
890
891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892 struct bio *bio, int mirror_num,
893 unsigned long bio_flags,
894 u64 bio_offset)
895 {
896 /*
897 * when we're called for a write, we're already in the async
898 * submission context. Just jump into btrfs_map_bio
899 */
900 return btree_csum_one_bio(bio);
901 }
902
903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904 int mirror_num, unsigned long bio_flags,
905 u64 bio_offset)
906 {
907 int ret;
908
909 /*
910 * when we're called for a write, we're already in the async
911 * submission context. Just jump into btrfs_map_bio
912 */
913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914 if (ret) {
915 bio->bi_error = ret;
916 bio_endio(bio);
917 }
918 return ret;
919 }
920
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925 #ifdef CONFIG_X86
926 if (cpu_has_xmm4_2)
927 return 0;
928 #endif
929 return 1;
930 }
931
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
935 {
936 int async = check_async_write(inode, bio_flags);
937 int ret;
938
939 if (!(rw & REQ_WRITE)) {
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945 bio, BTRFS_WQ_ENDIO_METADATA);
946 if (ret)
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
957 /*
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
960 */
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
966 }
967
968 if (ret)
969 goto out_w_error;
970 return 0;
971
972 out_w_error:
973 bio->bi_error = ret;
974 bio_endio(bio);
975 return ret;
976 }
977
978 #ifdef CONFIG_MIGRATION
979 static int btree_migratepage(struct address_space *mapping,
980 struct page *newpage, struct page *page,
981 enum migrate_mode mode)
982 {
983 /*
984 * we can't safely write a btree page from here,
985 * we haven't done the locking hook
986 */
987 if (PageDirty(page))
988 return -EAGAIN;
989 /*
990 * Buffers may be managed in a filesystem specific way.
991 * We must have no buffers or drop them.
992 */
993 if (page_has_private(page) &&
994 !try_to_release_page(page, GFP_KERNEL))
995 return -EAGAIN;
996 return migrate_page(mapping, newpage, page, mode);
997 }
998 #endif
999
1000
1001 static int btree_writepages(struct address_space *mapping,
1002 struct writeback_control *wbc)
1003 {
1004 struct btrfs_fs_info *fs_info;
1005 int ret;
1006
1007 if (wbc->sync_mode == WB_SYNC_NONE) {
1008
1009 if (wbc->for_kupdate)
1010 return 0;
1011
1012 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013 /* this is a bit racy, but that's ok */
1014 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015 BTRFS_DIRTY_METADATA_THRESH);
1016 if (ret < 0)
1017 return 0;
1018 }
1019 return btree_write_cache_pages(mapping, wbc);
1020 }
1021
1022 static int btree_readpage(struct file *file, struct page *page)
1023 {
1024 struct extent_io_tree *tree;
1025 tree = &BTRFS_I(page->mapping->host)->io_tree;
1026 return extent_read_full_page(tree, page, btree_get_extent, 0);
1027 }
1028
1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1030 {
1031 if (PageWriteback(page) || PageDirty(page))
1032 return 0;
1033
1034 return try_release_extent_buffer(page);
1035 }
1036
1037 static void btree_invalidatepage(struct page *page, unsigned int offset,
1038 unsigned int length)
1039 {
1040 struct extent_io_tree *tree;
1041 tree = &BTRFS_I(page->mapping->host)->io_tree;
1042 extent_invalidatepage(tree, page, offset);
1043 btree_releasepage(page, GFP_NOFS);
1044 if (PagePrivate(page)) {
1045 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046 "page private not zero on page %llu",
1047 (unsigned long long)page_offset(page));
1048 ClearPagePrivate(page);
1049 set_page_private(page, 0);
1050 page_cache_release(page);
1051 }
1052 }
1053
1054 static int btree_set_page_dirty(struct page *page)
1055 {
1056 #ifdef DEBUG
1057 struct extent_buffer *eb;
1058
1059 BUG_ON(!PagePrivate(page));
1060 eb = (struct extent_buffer *)page->private;
1061 BUG_ON(!eb);
1062 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 BUG_ON(!atomic_read(&eb->refs));
1064 btrfs_assert_tree_locked(eb);
1065 #endif
1066 return __set_page_dirty_nobuffers(page);
1067 }
1068
1069 static const struct address_space_operations btree_aops = {
1070 .readpage = btree_readpage,
1071 .writepages = btree_writepages,
1072 .releasepage = btree_releasepage,
1073 .invalidatepage = btree_invalidatepage,
1074 #ifdef CONFIG_MIGRATION
1075 .migratepage = btree_migratepage,
1076 #endif
1077 .set_page_dirty = btree_set_page_dirty,
1078 };
1079
1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1081 {
1082 struct extent_buffer *buf = NULL;
1083 struct inode *btree_inode = root->fs_info->btree_inode;
1084
1085 buf = btrfs_find_create_tree_block(root, bytenr);
1086 if (!buf)
1087 return;
1088 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1089 buf, 0, WAIT_NONE, btree_get_extent, 0);
1090 free_extent_buffer(buf);
1091 }
1092
1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1094 int mirror_num, struct extent_buffer **eb)
1095 {
1096 struct extent_buffer *buf = NULL;
1097 struct inode *btree_inode = root->fs_info->btree_inode;
1098 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099 int ret;
1100
1101 buf = btrfs_find_create_tree_block(root, bytenr);
1102 if (!buf)
1103 return 0;
1104
1105 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108 btree_get_extent, mirror_num);
1109 if (ret) {
1110 free_extent_buffer(buf);
1111 return ret;
1112 }
1113
1114 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115 free_extent_buffer(buf);
1116 return -EIO;
1117 } else if (extent_buffer_uptodate(buf)) {
1118 *eb = buf;
1119 } else {
1120 free_extent_buffer(buf);
1121 }
1122 return 0;
1123 }
1124
1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1126 u64 bytenr)
1127 {
1128 return find_extent_buffer(fs_info, bytenr);
1129 }
1130
1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132 u64 bytenr)
1133 {
1134 if (btrfs_test_is_dummy_root(root))
1135 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136 return alloc_extent_buffer(root->fs_info, bytenr);
1137 }
1138
1139
1140 int btrfs_write_tree_block(struct extent_buffer *buf)
1141 {
1142 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1143 buf->start + buf->len - 1);
1144 }
1145
1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147 {
1148 return filemap_fdatawait_range(buf->pages[0]->mapping,
1149 buf->start, buf->start + buf->len - 1);
1150 }
1151
1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1153 u64 parent_transid)
1154 {
1155 struct extent_buffer *buf = NULL;
1156 int ret;
1157
1158 buf = btrfs_find_create_tree_block(root, bytenr);
1159 if (!buf)
1160 return ERR_PTR(-ENOMEM);
1161
1162 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1163 if (ret) {
1164 free_extent_buffer(buf);
1165 return ERR_PTR(ret);
1166 }
1167 return buf;
1168
1169 }
1170
1171 void clean_tree_block(struct btrfs_trans_handle *trans,
1172 struct btrfs_fs_info *fs_info,
1173 struct extent_buffer *buf)
1174 {
1175 if (btrfs_header_generation(buf) ==
1176 fs_info->running_transaction->transid) {
1177 btrfs_assert_tree_locked(buf);
1178
1179 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1180 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181 -buf->len,
1182 fs_info->dirty_metadata_batch);
1183 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184 btrfs_set_lock_blocking(buf);
1185 clear_extent_buffer_dirty(buf);
1186 }
1187 }
1188 }
1189
1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191 {
1192 struct btrfs_subvolume_writers *writers;
1193 int ret;
1194
1195 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196 if (!writers)
1197 return ERR_PTR(-ENOMEM);
1198
1199 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1200 if (ret < 0) {
1201 kfree(writers);
1202 return ERR_PTR(ret);
1203 }
1204
1205 init_waitqueue_head(&writers->wait);
1206 return writers;
1207 }
1208
1209 static void
1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211 {
1212 percpu_counter_destroy(&writers->counter);
1213 kfree(writers);
1214 }
1215
1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1218 u64 objectid)
1219 {
1220 root->node = NULL;
1221 root->commit_root = NULL;
1222 root->sectorsize = sectorsize;
1223 root->nodesize = nodesize;
1224 root->stripesize = stripesize;
1225 root->state = 0;
1226 root->orphan_cleanup_state = 0;
1227
1228 root->objectid = objectid;
1229 root->last_trans = 0;
1230 root->highest_objectid = 0;
1231 root->nr_delalloc_inodes = 0;
1232 root->nr_ordered_extents = 0;
1233 root->name = NULL;
1234 root->inode_tree = RB_ROOT;
1235 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1236 root->block_rsv = NULL;
1237 root->orphan_block_rsv = NULL;
1238
1239 INIT_LIST_HEAD(&root->dirty_list);
1240 INIT_LIST_HEAD(&root->root_list);
1241 INIT_LIST_HEAD(&root->delalloc_inodes);
1242 INIT_LIST_HEAD(&root->delalloc_root);
1243 INIT_LIST_HEAD(&root->ordered_extents);
1244 INIT_LIST_HEAD(&root->ordered_root);
1245 INIT_LIST_HEAD(&root->logged_list[0]);
1246 INIT_LIST_HEAD(&root->logged_list[1]);
1247 spin_lock_init(&root->orphan_lock);
1248 spin_lock_init(&root->inode_lock);
1249 spin_lock_init(&root->delalloc_lock);
1250 spin_lock_init(&root->ordered_extent_lock);
1251 spin_lock_init(&root->accounting_lock);
1252 spin_lock_init(&root->log_extents_lock[0]);
1253 spin_lock_init(&root->log_extents_lock[1]);
1254 mutex_init(&root->objectid_mutex);
1255 mutex_init(&root->log_mutex);
1256 mutex_init(&root->ordered_extent_mutex);
1257 mutex_init(&root->delalloc_mutex);
1258 init_waitqueue_head(&root->log_writer_wait);
1259 init_waitqueue_head(&root->log_commit_wait[0]);
1260 init_waitqueue_head(&root->log_commit_wait[1]);
1261 INIT_LIST_HEAD(&root->log_ctxs[0]);
1262 INIT_LIST_HEAD(&root->log_ctxs[1]);
1263 atomic_set(&root->log_commit[0], 0);
1264 atomic_set(&root->log_commit[1], 0);
1265 atomic_set(&root->log_writers, 0);
1266 atomic_set(&root->log_batch, 0);
1267 atomic_set(&root->orphan_inodes, 0);
1268 atomic_set(&root->refs, 1);
1269 atomic_set(&root->will_be_snapshoted, 0);
1270 atomic_set(&root->qgroup_meta_rsv, 0);
1271 root->log_transid = 0;
1272 root->log_transid_committed = -1;
1273 root->last_log_commit = 0;
1274 if (fs_info)
1275 extent_io_tree_init(&root->dirty_log_pages,
1276 fs_info->btree_inode->i_mapping);
1277
1278 memset(&root->root_key, 0, sizeof(root->root_key));
1279 memset(&root->root_item, 0, sizeof(root->root_item));
1280 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1281 if (fs_info)
1282 root->defrag_trans_start = fs_info->generation;
1283 else
1284 root->defrag_trans_start = 0;
1285 root->root_key.objectid = objectid;
1286 root->anon_dev = 0;
1287
1288 spin_lock_init(&root->root_item_lock);
1289 }
1290
1291 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1292 {
1293 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1294 if (root)
1295 root->fs_info = fs_info;
1296 return root;
1297 }
1298
1299 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1300 /* Should only be used by the testing infrastructure */
1301 struct btrfs_root *btrfs_alloc_dummy_root(void)
1302 {
1303 struct btrfs_root *root;
1304
1305 root = btrfs_alloc_root(NULL);
1306 if (!root)
1307 return ERR_PTR(-ENOMEM);
1308 __setup_root(4096, 4096, 4096, root, NULL, 1);
1309 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1310 root->alloc_bytenr = 0;
1311
1312 return root;
1313 }
1314 #endif
1315
1316 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1317 struct btrfs_fs_info *fs_info,
1318 u64 objectid)
1319 {
1320 struct extent_buffer *leaf;
1321 struct btrfs_root *tree_root = fs_info->tree_root;
1322 struct btrfs_root *root;
1323 struct btrfs_key key;
1324 int ret = 0;
1325 uuid_le uuid;
1326
1327 root = btrfs_alloc_root(fs_info);
1328 if (!root)
1329 return ERR_PTR(-ENOMEM);
1330
1331 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1332 tree_root->stripesize, root, fs_info, objectid);
1333 root->root_key.objectid = objectid;
1334 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1335 root->root_key.offset = 0;
1336
1337 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1338 if (IS_ERR(leaf)) {
1339 ret = PTR_ERR(leaf);
1340 leaf = NULL;
1341 goto fail;
1342 }
1343
1344 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1345 btrfs_set_header_bytenr(leaf, leaf->start);
1346 btrfs_set_header_generation(leaf, trans->transid);
1347 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1348 btrfs_set_header_owner(leaf, objectid);
1349 root->node = leaf;
1350
1351 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1352 BTRFS_FSID_SIZE);
1353 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1354 btrfs_header_chunk_tree_uuid(leaf),
1355 BTRFS_UUID_SIZE);
1356 btrfs_mark_buffer_dirty(leaf);
1357
1358 root->commit_root = btrfs_root_node(root);
1359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1360
1361 root->root_item.flags = 0;
1362 root->root_item.byte_limit = 0;
1363 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1364 btrfs_set_root_generation(&root->root_item, trans->transid);
1365 btrfs_set_root_level(&root->root_item, 0);
1366 btrfs_set_root_refs(&root->root_item, 1);
1367 btrfs_set_root_used(&root->root_item, leaf->len);
1368 btrfs_set_root_last_snapshot(&root->root_item, 0);
1369 btrfs_set_root_dirid(&root->root_item, 0);
1370 uuid_le_gen(&uuid);
1371 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1372 root->root_item.drop_level = 0;
1373
1374 key.objectid = objectid;
1375 key.type = BTRFS_ROOT_ITEM_KEY;
1376 key.offset = 0;
1377 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1378 if (ret)
1379 goto fail;
1380
1381 btrfs_tree_unlock(leaf);
1382
1383 return root;
1384
1385 fail:
1386 if (leaf) {
1387 btrfs_tree_unlock(leaf);
1388 free_extent_buffer(root->commit_root);
1389 free_extent_buffer(leaf);
1390 }
1391 kfree(root);
1392
1393 return ERR_PTR(ret);
1394 }
1395
1396 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info)
1398 {
1399 struct btrfs_root *root;
1400 struct btrfs_root *tree_root = fs_info->tree_root;
1401 struct extent_buffer *leaf;
1402
1403 root = btrfs_alloc_root(fs_info);
1404 if (!root)
1405 return ERR_PTR(-ENOMEM);
1406
1407 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1408 tree_root->stripesize, root, fs_info,
1409 BTRFS_TREE_LOG_OBJECTID);
1410
1411 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1412 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1414
1415 /*
1416 * DON'T set REF_COWS for log trees
1417 *
1418 * log trees do not get reference counted because they go away
1419 * before a real commit is actually done. They do store pointers
1420 * to file data extents, and those reference counts still get
1421 * updated (along with back refs to the log tree).
1422 */
1423
1424 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1425 NULL, 0, 0, 0);
1426 if (IS_ERR(leaf)) {
1427 kfree(root);
1428 return ERR_CAST(leaf);
1429 }
1430
1431 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1432 btrfs_set_header_bytenr(leaf, leaf->start);
1433 btrfs_set_header_generation(leaf, trans->transid);
1434 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1435 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1436 root->node = leaf;
1437
1438 write_extent_buffer(root->node, root->fs_info->fsid,
1439 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1440 btrfs_mark_buffer_dirty(root->node);
1441 btrfs_tree_unlock(root->node);
1442 return root;
1443 }
1444
1445 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1446 struct btrfs_fs_info *fs_info)
1447 {
1448 struct btrfs_root *log_root;
1449
1450 log_root = alloc_log_tree(trans, fs_info);
1451 if (IS_ERR(log_root))
1452 return PTR_ERR(log_root);
1453 WARN_ON(fs_info->log_root_tree);
1454 fs_info->log_root_tree = log_root;
1455 return 0;
1456 }
1457
1458 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1459 struct btrfs_root *root)
1460 {
1461 struct btrfs_root *log_root;
1462 struct btrfs_inode_item *inode_item;
1463
1464 log_root = alloc_log_tree(trans, root->fs_info);
1465 if (IS_ERR(log_root))
1466 return PTR_ERR(log_root);
1467
1468 log_root->last_trans = trans->transid;
1469 log_root->root_key.offset = root->root_key.objectid;
1470
1471 inode_item = &log_root->root_item.inode;
1472 btrfs_set_stack_inode_generation(inode_item, 1);
1473 btrfs_set_stack_inode_size(inode_item, 3);
1474 btrfs_set_stack_inode_nlink(inode_item, 1);
1475 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1476 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1477
1478 btrfs_set_root_node(&log_root->root_item, log_root->node);
1479
1480 WARN_ON(root->log_root);
1481 root->log_root = log_root;
1482 root->log_transid = 0;
1483 root->log_transid_committed = -1;
1484 root->last_log_commit = 0;
1485 return 0;
1486 }
1487
1488 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1489 struct btrfs_key *key)
1490 {
1491 struct btrfs_root *root;
1492 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1493 struct btrfs_path *path;
1494 u64 generation;
1495 int ret;
1496
1497 path = btrfs_alloc_path();
1498 if (!path)
1499 return ERR_PTR(-ENOMEM);
1500
1501 root = btrfs_alloc_root(fs_info);
1502 if (!root) {
1503 ret = -ENOMEM;
1504 goto alloc_fail;
1505 }
1506
1507 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1508 tree_root->stripesize, root, fs_info, key->objectid);
1509
1510 ret = btrfs_find_root(tree_root, key, path,
1511 &root->root_item, &root->root_key);
1512 if (ret) {
1513 if (ret > 0)
1514 ret = -ENOENT;
1515 goto find_fail;
1516 }
1517
1518 generation = btrfs_root_generation(&root->root_item);
1519 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1520 generation);
1521 if (IS_ERR(root->node)) {
1522 ret = PTR_ERR(root->node);
1523 goto find_fail;
1524 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1525 ret = -EIO;
1526 free_extent_buffer(root->node);
1527 goto find_fail;
1528 }
1529 root->commit_root = btrfs_root_node(root);
1530 out:
1531 btrfs_free_path(path);
1532 return root;
1533
1534 find_fail:
1535 kfree(root);
1536 alloc_fail:
1537 root = ERR_PTR(ret);
1538 goto out;
1539 }
1540
1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542 struct btrfs_key *location)
1543 {
1544 struct btrfs_root *root;
1545
1546 root = btrfs_read_tree_root(tree_root, location);
1547 if (IS_ERR(root))
1548 return root;
1549
1550 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1551 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1552 btrfs_check_and_init_root_item(&root->root_item);
1553 }
1554
1555 return root;
1556 }
1557
1558 int btrfs_init_fs_root(struct btrfs_root *root)
1559 {
1560 int ret;
1561 struct btrfs_subvolume_writers *writers;
1562
1563 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565 GFP_NOFS);
1566 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567 ret = -ENOMEM;
1568 goto fail;
1569 }
1570
1571 writers = btrfs_alloc_subvolume_writers();
1572 if (IS_ERR(writers)) {
1573 ret = PTR_ERR(writers);
1574 goto fail;
1575 }
1576 root->subv_writers = writers;
1577
1578 btrfs_init_free_ino_ctl(root);
1579 spin_lock_init(&root->ino_cache_lock);
1580 init_waitqueue_head(&root->ino_cache_wait);
1581
1582 ret = get_anon_bdev(&root->anon_dev);
1583 if (ret)
1584 goto free_writers;
1585 return 0;
1586
1587 free_writers:
1588 btrfs_free_subvolume_writers(root->subv_writers);
1589 fail:
1590 kfree(root->free_ino_ctl);
1591 kfree(root->free_ino_pinned);
1592 return ret;
1593 }
1594
1595 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1596 u64 root_id)
1597 {
1598 struct btrfs_root *root;
1599
1600 spin_lock(&fs_info->fs_roots_radix_lock);
1601 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1602 (unsigned long)root_id);
1603 spin_unlock(&fs_info->fs_roots_radix_lock);
1604 return root;
1605 }
1606
1607 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1608 struct btrfs_root *root)
1609 {
1610 int ret;
1611
1612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1613 if (ret)
1614 return ret;
1615
1616 spin_lock(&fs_info->fs_roots_radix_lock);
1617 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1618 (unsigned long)root->root_key.objectid,
1619 root);
1620 if (ret == 0)
1621 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1622 spin_unlock(&fs_info->fs_roots_radix_lock);
1623 radix_tree_preload_end();
1624
1625 return ret;
1626 }
1627
1628 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1629 struct btrfs_key *location,
1630 bool check_ref)
1631 {
1632 struct btrfs_root *root;
1633 struct btrfs_path *path;
1634 struct btrfs_key key;
1635 int ret;
1636
1637 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1638 return fs_info->tree_root;
1639 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1640 return fs_info->extent_root;
1641 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1642 return fs_info->chunk_root;
1643 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1644 return fs_info->dev_root;
1645 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1646 return fs_info->csum_root;
1647 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1648 return fs_info->quota_root ? fs_info->quota_root :
1649 ERR_PTR(-ENOENT);
1650 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1651 return fs_info->uuid_root ? fs_info->uuid_root :
1652 ERR_PTR(-ENOENT);
1653 again:
1654 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1655 if (root) {
1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1657 return ERR_PTR(-ENOENT);
1658 return root;
1659 }
1660
1661 root = btrfs_read_fs_root(fs_info->tree_root, location);
1662 if (IS_ERR(root))
1663 return root;
1664
1665 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1666 ret = -ENOENT;
1667 goto fail;
1668 }
1669
1670 ret = btrfs_init_fs_root(root);
1671 if (ret)
1672 goto fail;
1673
1674 path = btrfs_alloc_path();
1675 if (!path) {
1676 ret = -ENOMEM;
1677 goto fail;
1678 }
1679 key.objectid = BTRFS_ORPHAN_OBJECTID;
1680 key.type = BTRFS_ORPHAN_ITEM_KEY;
1681 key.offset = location->objectid;
1682
1683 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1684 btrfs_free_path(path);
1685 if (ret < 0)
1686 goto fail;
1687 if (ret == 0)
1688 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1689
1690 ret = btrfs_insert_fs_root(fs_info, root);
1691 if (ret) {
1692 if (ret == -EEXIST) {
1693 free_fs_root(root);
1694 goto again;
1695 }
1696 goto fail;
1697 }
1698 return root;
1699 fail:
1700 free_fs_root(root);
1701 return ERR_PTR(ret);
1702 }
1703
1704 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1705 {
1706 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1707 int ret = 0;
1708 struct btrfs_device *device;
1709 struct backing_dev_info *bdi;
1710
1711 rcu_read_lock();
1712 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1713 if (!device->bdev)
1714 continue;
1715 bdi = blk_get_backing_dev_info(device->bdev);
1716 if (bdi_congested(bdi, bdi_bits)) {
1717 ret = 1;
1718 break;
1719 }
1720 }
1721 rcu_read_unlock();
1722 return ret;
1723 }
1724
1725 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1726 {
1727 int err;
1728
1729 err = bdi_setup_and_register(bdi, "btrfs");
1730 if (err)
1731 return err;
1732
1733 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1734 bdi->congested_fn = btrfs_congested_fn;
1735 bdi->congested_data = info;
1736 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1737 return 0;
1738 }
1739
1740 /*
1741 * called by the kthread helper functions to finally call the bio end_io
1742 * functions. This is where read checksum verification actually happens
1743 */
1744 static void end_workqueue_fn(struct btrfs_work *work)
1745 {
1746 struct bio *bio;
1747 struct btrfs_end_io_wq *end_io_wq;
1748
1749 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1750 bio = end_io_wq->bio;
1751
1752 bio->bi_error = end_io_wq->error;
1753 bio->bi_private = end_io_wq->private;
1754 bio->bi_end_io = end_io_wq->end_io;
1755 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1756 bio_endio(bio);
1757 }
1758
1759 static int cleaner_kthread(void *arg)
1760 {
1761 struct btrfs_root *root = arg;
1762 int again;
1763 struct btrfs_trans_handle *trans;
1764
1765 set_freezable();
1766 do {
1767 again = 0;
1768
1769 /* Make the cleaner go to sleep early. */
1770 if (btrfs_need_cleaner_sleep(root))
1771 goto sleep;
1772
1773 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1774 goto sleep;
1775
1776 /*
1777 * Avoid the problem that we change the status of the fs
1778 * during the above check and trylock.
1779 */
1780 if (btrfs_need_cleaner_sleep(root)) {
1781 mutex_unlock(&root->fs_info->cleaner_mutex);
1782 goto sleep;
1783 }
1784
1785 btrfs_run_delayed_iputs(root);
1786 again = btrfs_clean_one_deleted_snapshot(root);
1787 mutex_unlock(&root->fs_info->cleaner_mutex);
1788
1789 /*
1790 * The defragger has dealt with the R/O remount and umount,
1791 * needn't do anything special here.
1792 */
1793 btrfs_run_defrag_inodes(root->fs_info);
1794
1795 /*
1796 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1797 * with relocation (btrfs_relocate_chunk) and relocation
1798 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1799 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1800 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1801 * unused block groups.
1802 */
1803 btrfs_delete_unused_bgs(root->fs_info);
1804 sleep:
1805 if (!try_to_freeze() && !again) {
1806 set_current_state(TASK_INTERRUPTIBLE);
1807 if (!kthread_should_stop())
1808 schedule();
1809 __set_current_state(TASK_RUNNING);
1810 }
1811 } while (!kthread_should_stop());
1812
1813 /*
1814 * Transaction kthread is stopped before us and wakes us up.
1815 * However we might have started a new transaction and COWed some
1816 * tree blocks when deleting unused block groups for example. So
1817 * make sure we commit the transaction we started to have a clean
1818 * shutdown when evicting the btree inode - if it has dirty pages
1819 * when we do the final iput() on it, eviction will trigger a
1820 * writeback for it which will fail with null pointer dereferences
1821 * since work queues and other resources were already released and
1822 * destroyed by the time the iput/eviction/writeback is made.
1823 */
1824 trans = btrfs_attach_transaction(root);
1825 if (IS_ERR(trans)) {
1826 if (PTR_ERR(trans) != -ENOENT)
1827 btrfs_err(root->fs_info,
1828 "cleaner transaction attach returned %ld",
1829 PTR_ERR(trans));
1830 } else {
1831 int ret;
1832
1833 ret = btrfs_commit_transaction(trans, root);
1834 if (ret)
1835 btrfs_err(root->fs_info,
1836 "cleaner open transaction commit returned %d",
1837 ret);
1838 }
1839
1840 return 0;
1841 }
1842
1843 static int transaction_kthread(void *arg)
1844 {
1845 struct btrfs_root *root = arg;
1846 struct btrfs_trans_handle *trans;
1847 struct btrfs_transaction *cur;
1848 u64 transid;
1849 unsigned long now;
1850 unsigned long delay;
1851 bool cannot_commit;
1852
1853 do {
1854 cannot_commit = false;
1855 delay = HZ * root->fs_info->commit_interval;
1856 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1857
1858 spin_lock(&root->fs_info->trans_lock);
1859 cur = root->fs_info->running_transaction;
1860 if (!cur) {
1861 spin_unlock(&root->fs_info->trans_lock);
1862 goto sleep;
1863 }
1864
1865 now = get_seconds();
1866 if (cur->state < TRANS_STATE_BLOCKED &&
1867 (now < cur->start_time ||
1868 now - cur->start_time < root->fs_info->commit_interval)) {
1869 spin_unlock(&root->fs_info->trans_lock);
1870 delay = HZ * 5;
1871 goto sleep;
1872 }
1873 transid = cur->transid;
1874 spin_unlock(&root->fs_info->trans_lock);
1875
1876 /* If the file system is aborted, this will always fail. */
1877 trans = btrfs_attach_transaction(root);
1878 if (IS_ERR(trans)) {
1879 if (PTR_ERR(trans) != -ENOENT)
1880 cannot_commit = true;
1881 goto sleep;
1882 }
1883 if (transid == trans->transid) {
1884 btrfs_commit_transaction(trans, root);
1885 } else {
1886 btrfs_end_transaction(trans, root);
1887 }
1888 sleep:
1889 wake_up_process(root->fs_info->cleaner_kthread);
1890 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1891
1892 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1893 &root->fs_info->fs_state)))
1894 btrfs_cleanup_transaction(root);
1895 if (!try_to_freeze()) {
1896 set_current_state(TASK_INTERRUPTIBLE);
1897 if (!kthread_should_stop() &&
1898 (!btrfs_transaction_blocked(root->fs_info) ||
1899 cannot_commit))
1900 schedule_timeout(delay);
1901 __set_current_state(TASK_RUNNING);
1902 }
1903 } while (!kthread_should_stop());
1904 return 0;
1905 }
1906
1907 /*
1908 * this will find the highest generation in the array of
1909 * root backups. The index of the highest array is returned,
1910 * or -1 if we can't find anything.
1911 *
1912 * We check to make sure the array is valid by comparing the
1913 * generation of the latest root in the array with the generation
1914 * in the super block. If they don't match we pitch it.
1915 */
1916 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1917 {
1918 u64 cur;
1919 int newest_index = -1;
1920 struct btrfs_root_backup *root_backup;
1921 int i;
1922
1923 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1924 root_backup = info->super_copy->super_roots + i;
1925 cur = btrfs_backup_tree_root_gen(root_backup);
1926 if (cur == newest_gen)
1927 newest_index = i;
1928 }
1929
1930 /* check to see if we actually wrapped around */
1931 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1932 root_backup = info->super_copy->super_roots;
1933 cur = btrfs_backup_tree_root_gen(root_backup);
1934 if (cur == newest_gen)
1935 newest_index = 0;
1936 }
1937 return newest_index;
1938 }
1939
1940
1941 /*
1942 * find the oldest backup so we know where to store new entries
1943 * in the backup array. This will set the backup_root_index
1944 * field in the fs_info struct
1945 */
1946 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1947 u64 newest_gen)
1948 {
1949 int newest_index = -1;
1950
1951 newest_index = find_newest_super_backup(info, newest_gen);
1952 /* if there was garbage in there, just move along */
1953 if (newest_index == -1) {
1954 info->backup_root_index = 0;
1955 } else {
1956 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1957 }
1958 }
1959
1960 /*
1961 * copy all the root pointers into the super backup array.
1962 * this will bump the backup pointer by one when it is
1963 * done
1964 */
1965 static void backup_super_roots(struct btrfs_fs_info *info)
1966 {
1967 int next_backup;
1968 struct btrfs_root_backup *root_backup;
1969 int last_backup;
1970
1971 next_backup = info->backup_root_index;
1972 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1973 BTRFS_NUM_BACKUP_ROOTS;
1974
1975 /*
1976 * just overwrite the last backup if we're at the same generation
1977 * this happens only at umount
1978 */
1979 root_backup = info->super_for_commit->super_roots + last_backup;
1980 if (btrfs_backup_tree_root_gen(root_backup) ==
1981 btrfs_header_generation(info->tree_root->node))
1982 next_backup = last_backup;
1983
1984 root_backup = info->super_for_commit->super_roots + next_backup;
1985
1986 /*
1987 * make sure all of our padding and empty slots get zero filled
1988 * regardless of which ones we use today
1989 */
1990 memset(root_backup, 0, sizeof(*root_backup));
1991
1992 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1993
1994 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1995 btrfs_set_backup_tree_root_gen(root_backup,
1996 btrfs_header_generation(info->tree_root->node));
1997
1998 btrfs_set_backup_tree_root_level(root_backup,
1999 btrfs_header_level(info->tree_root->node));
2000
2001 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2002 btrfs_set_backup_chunk_root_gen(root_backup,
2003 btrfs_header_generation(info->chunk_root->node));
2004 btrfs_set_backup_chunk_root_level(root_backup,
2005 btrfs_header_level(info->chunk_root->node));
2006
2007 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2008 btrfs_set_backup_extent_root_gen(root_backup,
2009 btrfs_header_generation(info->extent_root->node));
2010 btrfs_set_backup_extent_root_level(root_backup,
2011 btrfs_header_level(info->extent_root->node));
2012
2013 /*
2014 * we might commit during log recovery, which happens before we set
2015 * the fs_root. Make sure it is valid before we fill it in.
2016 */
2017 if (info->fs_root && info->fs_root->node) {
2018 btrfs_set_backup_fs_root(root_backup,
2019 info->fs_root->node->start);
2020 btrfs_set_backup_fs_root_gen(root_backup,
2021 btrfs_header_generation(info->fs_root->node));
2022 btrfs_set_backup_fs_root_level(root_backup,
2023 btrfs_header_level(info->fs_root->node));
2024 }
2025
2026 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2027 btrfs_set_backup_dev_root_gen(root_backup,
2028 btrfs_header_generation(info->dev_root->node));
2029 btrfs_set_backup_dev_root_level(root_backup,
2030 btrfs_header_level(info->dev_root->node));
2031
2032 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2033 btrfs_set_backup_csum_root_gen(root_backup,
2034 btrfs_header_generation(info->csum_root->node));
2035 btrfs_set_backup_csum_root_level(root_backup,
2036 btrfs_header_level(info->csum_root->node));
2037
2038 btrfs_set_backup_total_bytes(root_backup,
2039 btrfs_super_total_bytes(info->super_copy));
2040 btrfs_set_backup_bytes_used(root_backup,
2041 btrfs_super_bytes_used(info->super_copy));
2042 btrfs_set_backup_num_devices(root_backup,
2043 btrfs_super_num_devices(info->super_copy));
2044
2045 /*
2046 * if we don't copy this out to the super_copy, it won't get remembered
2047 * for the next commit
2048 */
2049 memcpy(&info->super_copy->super_roots,
2050 &info->super_for_commit->super_roots,
2051 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2052 }
2053
2054 /*
2055 * this copies info out of the root backup array and back into
2056 * the in-memory super block. It is meant to help iterate through
2057 * the array, so you send it the number of backups you've already
2058 * tried and the last backup index you used.
2059 *
2060 * this returns -1 when it has tried all the backups
2061 */
2062 static noinline int next_root_backup(struct btrfs_fs_info *info,
2063 struct btrfs_super_block *super,
2064 int *num_backups_tried, int *backup_index)
2065 {
2066 struct btrfs_root_backup *root_backup;
2067 int newest = *backup_index;
2068
2069 if (*num_backups_tried == 0) {
2070 u64 gen = btrfs_super_generation(super);
2071
2072 newest = find_newest_super_backup(info, gen);
2073 if (newest == -1)
2074 return -1;
2075
2076 *backup_index = newest;
2077 *num_backups_tried = 1;
2078 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2079 /* we've tried all the backups, all done */
2080 return -1;
2081 } else {
2082 /* jump to the next oldest backup */
2083 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2084 BTRFS_NUM_BACKUP_ROOTS;
2085 *backup_index = newest;
2086 *num_backups_tried += 1;
2087 }
2088 root_backup = super->super_roots + newest;
2089
2090 btrfs_set_super_generation(super,
2091 btrfs_backup_tree_root_gen(root_backup));
2092 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2093 btrfs_set_super_root_level(super,
2094 btrfs_backup_tree_root_level(root_backup));
2095 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2096
2097 /*
2098 * fixme: the total bytes and num_devices need to match or we should
2099 * need a fsck
2100 */
2101 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2102 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2103 return 0;
2104 }
2105
2106 /* helper to cleanup workers */
2107 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2108 {
2109 btrfs_destroy_workqueue(fs_info->fixup_workers);
2110 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2111 btrfs_destroy_workqueue(fs_info->workers);
2112 btrfs_destroy_workqueue(fs_info->endio_workers);
2113 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2114 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2115 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2116 btrfs_destroy_workqueue(fs_info->rmw_workers);
2117 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2118 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2119 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2120 btrfs_destroy_workqueue(fs_info->submit_workers);
2121 btrfs_destroy_workqueue(fs_info->delayed_workers);
2122 btrfs_destroy_workqueue(fs_info->caching_workers);
2123 btrfs_destroy_workqueue(fs_info->readahead_workers);
2124 btrfs_destroy_workqueue(fs_info->flush_workers);
2125 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2126 btrfs_destroy_workqueue(fs_info->extent_workers);
2127 }
2128
2129 static void free_root_extent_buffers(struct btrfs_root *root)
2130 {
2131 if (root) {
2132 free_extent_buffer(root->node);
2133 free_extent_buffer(root->commit_root);
2134 root->node = NULL;
2135 root->commit_root = NULL;
2136 }
2137 }
2138
2139 /* helper to cleanup tree roots */
2140 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2141 {
2142 free_root_extent_buffers(info->tree_root);
2143
2144 free_root_extent_buffers(info->dev_root);
2145 free_root_extent_buffers(info->extent_root);
2146 free_root_extent_buffers(info->csum_root);
2147 free_root_extent_buffers(info->quota_root);
2148 free_root_extent_buffers(info->uuid_root);
2149 if (chunk_root)
2150 free_root_extent_buffers(info->chunk_root);
2151 }
2152
2153 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2154 {
2155 int ret;
2156 struct btrfs_root *gang[8];
2157 int i;
2158
2159 while (!list_empty(&fs_info->dead_roots)) {
2160 gang[0] = list_entry(fs_info->dead_roots.next,
2161 struct btrfs_root, root_list);
2162 list_del(&gang[0]->root_list);
2163
2164 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2165 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2166 } else {
2167 free_extent_buffer(gang[0]->node);
2168 free_extent_buffer(gang[0]->commit_root);
2169 btrfs_put_fs_root(gang[0]);
2170 }
2171 }
2172
2173 while (1) {
2174 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2175 (void **)gang, 0,
2176 ARRAY_SIZE(gang));
2177 if (!ret)
2178 break;
2179 for (i = 0; i < ret; i++)
2180 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2181 }
2182
2183 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2184 btrfs_free_log_root_tree(NULL, fs_info);
2185 btrfs_destroy_pinned_extent(fs_info->tree_root,
2186 fs_info->pinned_extents);
2187 }
2188 }
2189
2190 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2191 {
2192 mutex_init(&fs_info->scrub_lock);
2193 atomic_set(&fs_info->scrubs_running, 0);
2194 atomic_set(&fs_info->scrub_pause_req, 0);
2195 atomic_set(&fs_info->scrubs_paused, 0);
2196 atomic_set(&fs_info->scrub_cancel_req, 0);
2197 init_waitqueue_head(&fs_info->scrub_pause_wait);
2198 fs_info->scrub_workers_refcnt = 0;
2199 }
2200
2201 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2202 {
2203 spin_lock_init(&fs_info->balance_lock);
2204 mutex_init(&fs_info->balance_mutex);
2205 atomic_set(&fs_info->balance_running, 0);
2206 atomic_set(&fs_info->balance_pause_req, 0);
2207 atomic_set(&fs_info->balance_cancel_req, 0);
2208 fs_info->balance_ctl = NULL;
2209 init_waitqueue_head(&fs_info->balance_wait_q);
2210 }
2211
2212 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2213 struct btrfs_root *tree_root)
2214 {
2215 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2216 set_nlink(fs_info->btree_inode, 1);
2217 /*
2218 * we set the i_size on the btree inode to the max possible int.
2219 * the real end of the address space is determined by all of
2220 * the devices in the system
2221 */
2222 fs_info->btree_inode->i_size = OFFSET_MAX;
2223 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2224
2225 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2226 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2227 fs_info->btree_inode->i_mapping);
2228 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2229 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2230
2231 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2232
2233 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2234 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2235 sizeof(struct btrfs_key));
2236 set_bit(BTRFS_INODE_DUMMY,
2237 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2238 btrfs_insert_inode_hash(fs_info->btree_inode);
2239 }
2240
2241 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2242 {
2243 fs_info->dev_replace.lock_owner = 0;
2244 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2245 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2246 mutex_init(&fs_info->dev_replace.lock_management_lock);
2247 mutex_init(&fs_info->dev_replace.lock);
2248 init_waitqueue_head(&fs_info->replace_wait);
2249 }
2250
2251 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2252 {
2253 spin_lock_init(&fs_info->qgroup_lock);
2254 mutex_init(&fs_info->qgroup_ioctl_lock);
2255 fs_info->qgroup_tree = RB_ROOT;
2256 fs_info->qgroup_op_tree = RB_ROOT;
2257 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2258 fs_info->qgroup_seq = 1;
2259 fs_info->quota_enabled = 0;
2260 fs_info->pending_quota_state = 0;
2261 fs_info->qgroup_ulist = NULL;
2262 mutex_init(&fs_info->qgroup_rescan_lock);
2263 }
2264
2265 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2266 struct btrfs_fs_devices *fs_devices)
2267 {
2268 int max_active = fs_info->thread_pool_size;
2269 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2270
2271 fs_info->workers =
2272 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2273 max_active, 16);
2274
2275 fs_info->delalloc_workers =
2276 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2277
2278 fs_info->flush_workers =
2279 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2280
2281 fs_info->caching_workers =
2282 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2283
2284 /*
2285 * a higher idle thresh on the submit workers makes it much more
2286 * likely that bios will be send down in a sane order to the
2287 * devices
2288 */
2289 fs_info->submit_workers =
2290 btrfs_alloc_workqueue("submit", flags,
2291 min_t(u64, fs_devices->num_devices,
2292 max_active), 64);
2293
2294 fs_info->fixup_workers =
2295 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2296
2297 /*
2298 * endios are largely parallel and should have a very
2299 * low idle thresh
2300 */
2301 fs_info->endio_workers =
2302 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2303 fs_info->endio_meta_workers =
2304 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2305 fs_info->endio_meta_write_workers =
2306 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2307 fs_info->endio_raid56_workers =
2308 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2309 fs_info->endio_repair_workers =
2310 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2311 fs_info->rmw_workers =
2312 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2313 fs_info->endio_write_workers =
2314 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2315 fs_info->endio_freespace_worker =
2316 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2317 fs_info->delayed_workers =
2318 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2319 fs_info->readahead_workers =
2320 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2321 fs_info->qgroup_rescan_workers =
2322 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2323 fs_info->extent_workers =
2324 btrfs_alloc_workqueue("extent-refs", flags,
2325 min_t(u64, fs_devices->num_devices,
2326 max_active), 8);
2327
2328 if (!(fs_info->workers && fs_info->delalloc_workers &&
2329 fs_info->submit_workers && fs_info->flush_workers &&
2330 fs_info->endio_workers && fs_info->endio_meta_workers &&
2331 fs_info->endio_meta_write_workers &&
2332 fs_info->endio_repair_workers &&
2333 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2334 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2335 fs_info->caching_workers && fs_info->readahead_workers &&
2336 fs_info->fixup_workers && fs_info->delayed_workers &&
2337 fs_info->extent_workers &&
2338 fs_info->qgroup_rescan_workers)) {
2339 return -ENOMEM;
2340 }
2341
2342 return 0;
2343 }
2344
2345 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2346 struct btrfs_fs_devices *fs_devices)
2347 {
2348 int ret;
2349 struct btrfs_root *tree_root = fs_info->tree_root;
2350 struct btrfs_root *log_tree_root;
2351 struct btrfs_super_block *disk_super = fs_info->super_copy;
2352 u64 bytenr = btrfs_super_log_root(disk_super);
2353
2354 if (fs_devices->rw_devices == 0) {
2355 btrfs_warn(fs_info, "log replay required on RO media");
2356 return -EIO;
2357 }
2358
2359 log_tree_root = btrfs_alloc_root(fs_info);
2360 if (!log_tree_root)
2361 return -ENOMEM;
2362
2363 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2364 tree_root->stripesize, log_tree_root, fs_info,
2365 BTRFS_TREE_LOG_OBJECTID);
2366
2367 log_tree_root->node = read_tree_block(tree_root, bytenr,
2368 fs_info->generation + 1);
2369 if (IS_ERR(log_tree_root->node)) {
2370 btrfs_warn(fs_info, "failed to read log tree");
2371 ret = PTR_ERR(log_tree_root->node);
2372 kfree(log_tree_root);
2373 return ret;
2374 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2375 btrfs_err(fs_info, "failed to read log tree");
2376 free_extent_buffer(log_tree_root->node);
2377 kfree(log_tree_root);
2378 return -EIO;
2379 }
2380 /* returns with log_tree_root freed on success */
2381 ret = btrfs_recover_log_trees(log_tree_root);
2382 if (ret) {
2383 btrfs_std_error(tree_root->fs_info, ret,
2384 "Failed to recover log tree");
2385 free_extent_buffer(log_tree_root->node);
2386 kfree(log_tree_root);
2387 return ret;
2388 }
2389
2390 if (fs_info->sb->s_flags & MS_RDONLY) {
2391 ret = btrfs_commit_super(tree_root);
2392 if (ret)
2393 return ret;
2394 }
2395
2396 return 0;
2397 }
2398
2399 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2400 struct btrfs_root *tree_root)
2401 {
2402 struct btrfs_root *root;
2403 struct btrfs_key location;
2404 int ret;
2405
2406 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2407 location.type = BTRFS_ROOT_ITEM_KEY;
2408 location.offset = 0;
2409
2410 root = btrfs_read_tree_root(tree_root, &location);
2411 if (IS_ERR(root))
2412 return PTR_ERR(root);
2413 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2414 fs_info->extent_root = root;
2415
2416 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2417 root = btrfs_read_tree_root(tree_root, &location);
2418 if (IS_ERR(root))
2419 return PTR_ERR(root);
2420 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2421 fs_info->dev_root = root;
2422 btrfs_init_devices_late(fs_info);
2423
2424 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2425 root = btrfs_read_tree_root(tree_root, &location);
2426 if (IS_ERR(root))
2427 return PTR_ERR(root);
2428 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2429 fs_info->csum_root = root;
2430
2431 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2432 root = btrfs_read_tree_root(tree_root, &location);
2433 if (!IS_ERR(root)) {
2434 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2435 fs_info->quota_enabled = 1;
2436 fs_info->pending_quota_state = 1;
2437 fs_info->quota_root = root;
2438 }
2439
2440 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2441 root = btrfs_read_tree_root(tree_root, &location);
2442 if (IS_ERR(root)) {
2443 ret = PTR_ERR(root);
2444 if (ret != -ENOENT)
2445 return ret;
2446 } else {
2447 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2448 fs_info->uuid_root = root;
2449 }
2450
2451 return 0;
2452 }
2453
2454 int open_ctree(struct super_block *sb,
2455 struct btrfs_fs_devices *fs_devices,
2456 char *options)
2457 {
2458 u32 sectorsize;
2459 u32 nodesize;
2460 u32 stripesize;
2461 u64 generation;
2462 u64 features;
2463 struct btrfs_key location;
2464 struct buffer_head *bh;
2465 struct btrfs_super_block *disk_super;
2466 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2467 struct btrfs_root *tree_root;
2468 struct btrfs_root *chunk_root;
2469 int ret;
2470 int err = -EINVAL;
2471 int num_backups_tried = 0;
2472 int backup_index = 0;
2473 int max_active;
2474
2475 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2476 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2477 if (!tree_root || !chunk_root) {
2478 err = -ENOMEM;
2479 goto fail;
2480 }
2481
2482 ret = init_srcu_struct(&fs_info->subvol_srcu);
2483 if (ret) {
2484 err = ret;
2485 goto fail;
2486 }
2487
2488 ret = setup_bdi(fs_info, &fs_info->bdi);
2489 if (ret) {
2490 err = ret;
2491 goto fail_srcu;
2492 }
2493
2494 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2495 if (ret) {
2496 err = ret;
2497 goto fail_bdi;
2498 }
2499 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2500 (1 + ilog2(nr_cpu_ids));
2501
2502 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2503 if (ret) {
2504 err = ret;
2505 goto fail_dirty_metadata_bytes;
2506 }
2507
2508 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2509 if (ret) {
2510 err = ret;
2511 goto fail_delalloc_bytes;
2512 }
2513
2514 fs_info->btree_inode = new_inode(sb);
2515 if (!fs_info->btree_inode) {
2516 err = -ENOMEM;
2517 goto fail_bio_counter;
2518 }
2519
2520 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2521
2522 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2523 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2524 INIT_LIST_HEAD(&fs_info->trans_list);
2525 INIT_LIST_HEAD(&fs_info->dead_roots);
2526 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2527 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2528 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2529 spin_lock_init(&fs_info->delalloc_root_lock);
2530 spin_lock_init(&fs_info->trans_lock);
2531 spin_lock_init(&fs_info->fs_roots_radix_lock);
2532 spin_lock_init(&fs_info->delayed_iput_lock);
2533 spin_lock_init(&fs_info->defrag_inodes_lock);
2534 spin_lock_init(&fs_info->free_chunk_lock);
2535 spin_lock_init(&fs_info->tree_mod_seq_lock);
2536 spin_lock_init(&fs_info->super_lock);
2537 spin_lock_init(&fs_info->qgroup_op_lock);
2538 spin_lock_init(&fs_info->buffer_lock);
2539 spin_lock_init(&fs_info->unused_bgs_lock);
2540 rwlock_init(&fs_info->tree_mod_log_lock);
2541 mutex_init(&fs_info->unused_bg_unpin_mutex);
2542 mutex_init(&fs_info->delete_unused_bgs_mutex);
2543 mutex_init(&fs_info->reloc_mutex);
2544 mutex_init(&fs_info->delalloc_root_mutex);
2545 seqlock_init(&fs_info->profiles_lock);
2546 init_rwsem(&fs_info->delayed_iput_sem);
2547
2548 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2549 INIT_LIST_HEAD(&fs_info->space_info);
2550 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2551 INIT_LIST_HEAD(&fs_info->unused_bgs);
2552 btrfs_mapping_init(&fs_info->mapping_tree);
2553 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2554 BTRFS_BLOCK_RSV_GLOBAL);
2555 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2556 BTRFS_BLOCK_RSV_DELALLOC);
2557 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2558 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2559 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2560 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2561 BTRFS_BLOCK_RSV_DELOPS);
2562 atomic_set(&fs_info->nr_async_submits, 0);
2563 atomic_set(&fs_info->async_delalloc_pages, 0);
2564 atomic_set(&fs_info->async_submit_draining, 0);
2565 atomic_set(&fs_info->nr_async_bios, 0);
2566 atomic_set(&fs_info->defrag_running, 0);
2567 atomic_set(&fs_info->qgroup_op_seq, 0);
2568 atomic64_set(&fs_info->tree_mod_seq, 0);
2569 fs_info->sb = sb;
2570 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2571 fs_info->metadata_ratio = 0;
2572 fs_info->defrag_inodes = RB_ROOT;
2573 fs_info->free_chunk_space = 0;
2574 fs_info->tree_mod_log = RB_ROOT;
2575 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2576 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2577 /* readahead state */
2578 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2579 spin_lock_init(&fs_info->reada_lock);
2580
2581 fs_info->thread_pool_size = min_t(unsigned long,
2582 num_online_cpus() + 2, 8);
2583
2584 INIT_LIST_HEAD(&fs_info->ordered_roots);
2585 spin_lock_init(&fs_info->ordered_root_lock);
2586 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2587 GFP_NOFS);
2588 if (!fs_info->delayed_root) {
2589 err = -ENOMEM;
2590 goto fail_iput;
2591 }
2592 btrfs_init_delayed_root(fs_info->delayed_root);
2593
2594 btrfs_init_scrub(fs_info);
2595 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2596 fs_info->check_integrity_print_mask = 0;
2597 #endif
2598 btrfs_init_balance(fs_info);
2599 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2600
2601 sb->s_blocksize = 4096;
2602 sb->s_blocksize_bits = blksize_bits(4096);
2603 sb->s_bdi = &fs_info->bdi;
2604
2605 btrfs_init_btree_inode(fs_info, tree_root);
2606
2607 spin_lock_init(&fs_info->block_group_cache_lock);
2608 fs_info->block_group_cache_tree = RB_ROOT;
2609 fs_info->first_logical_byte = (u64)-1;
2610
2611 extent_io_tree_init(&fs_info->freed_extents[0],
2612 fs_info->btree_inode->i_mapping);
2613 extent_io_tree_init(&fs_info->freed_extents[1],
2614 fs_info->btree_inode->i_mapping);
2615 fs_info->pinned_extents = &fs_info->freed_extents[0];
2616 fs_info->do_barriers = 1;
2617
2618
2619 mutex_init(&fs_info->ordered_operations_mutex);
2620 mutex_init(&fs_info->tree_log_mutex);
2621 mutex_init(&fs_info->chunk_mutex);
2622 mutex_init(&fs_info->transaction_kthread_mutex);
2623 mutex_init(&fs_info->cleaner_mutex);
2624 mutex_init(&fs_info->volume_mutex);
2625 mutex_init(&fs_info->ro_block_group_mutex);
2626 init_rwsem(&fs_info->commit_root_sem);
2627 init_rwsem(&fs_info->cleanup_work_sem);
2628 init_rwsem(&fs_info->subvol_sem);
2629 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2630
2631 btrfs_init_dev_replace_locks(fs_info);
2632 btrfs_init_qgroup(fs_info);
2633
2634 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2635 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2636
2637 init_waitqueue_head(&fs_info->transaction_throttle);
2638 init_waitqueue_head(&fs_info->transaction_wait);
2639 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2640 init_waitqueue_head(&fs_info->async_submit_wait);
2641
2642 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2643
2644 ret = btrfs_alloc_stripe_hash_table(fs_info);
2645 if (ret) {
2646 err = ret;
2647 goto fail_alloc;
2648 }
2649
2650 __setup_root(4096, 4096, 4096, tree_root,
2651 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2652
2653 invalidate_bdev(fs_devices->latest_bdev);
2654
2655 /*
2656 * Read super block and check the signature bytes only
2657 */
2658 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2659 if (IS_ERR(bh)) {
2660 err = PTR_ERR(bh);
2661 goto fail_alloc;
2662 }
2663
2664 /*
2665 * We want to check superblock checksum, the type is stored inside.
2666 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2667 */
2668 if (btrfs_check_super_csum(bh->b_data)) {
2669 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2670 err = -EINVAL;
2671 goto fail_alloc;
2672 }
2673
2674 /*
2675 * super_copy is zeroed at allocation time and we never touch the
2676 * following bytes up to INFO_SIZE, the checksum is calculated from
2677 * the whole block of INFO_SIZE
2678 */
2679 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2680 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2681 sizeof(*fs_info->super_for_commit));
2682 brelse(bh);
2683
2684 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2685
2686 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2687 if (ret) {
2688 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2689 err = -EINVAL;
2690 goto fail_alloc;
2691 }
2692
2693 disk_super = fs_info->super_copy;
2694 if (!btrfs_super_root(disk_super))
2695 goto fail_alloc;
2696
2697 /* check FS state, whether FS is broken. */
2698 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2699 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2700
2701 /*
2702 * run through our array of backup supers and setup
2703 * our ring pointer to the oldest one
2704 */
2705 generation = btrfs_super_generation(disk_super);
2706 find_oldest_super_backup(fs_info, generation);
2707
2708 /*
2709 * In the long term, we'll store the compression type in the super
2710 * block, and it'll be used for per file compression control.
2711 */
2712 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2713
2714 ret = btrfs_parse_options(tree_root, options);
2715 if (ret) {
2716 err = ret;
2717 goto fail_alloc;
2718 }
2719
2720 features = btrfs_super_incompat_flags(disk_super) &
2721 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2722 if (features) {
2723 printk(KERN_ERR "BTRFS: couldn't mount because of "
2724 "unsupported optional features (%Lx).\n",
2725 features);
2726 err = -EINVAL;
2727 goto fail_alloc;
2728 }
2729
2730 /*
2731 * Leafsize and nodesize were always equal, this is only a sanity check.
2732 */
2733 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2734 btrfs_super_nodesize(disk_super)) {
2735 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2736 "blocksizes don't match. node %d leaf %d\n",
2737 btrfs_super_nodesize(disk_super),
2738 le32_to_cpu(disk_super->__unused_leafsize));
2739 err = -EINVAL;
2740 goto fail_alloc;
2741 }
2742 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2743 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2744 "blocksize (%d) was too large\n",
2745 btrfs_super_nodesize(disk_super));
2746 err = -EINVAL;
2747 goto fail_alloc;
2748 }
2749
2750 features = btrfs_super_incompat_flags(disk_super);
2751 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2752 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2753 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2754
2755 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2756 printk(KERN_INFO "BTRFS: has skinny extents\n");
2757
2758 /*
2759 * flag our filesystem as having big metadata blocks if
2760 * they are bigger than the page size
2761 */
2762 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2763 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2764 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2765 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2766 }
2767
2768 nodesize = btrfs_super_nodesize(disk_super);
2769 sectorsize = btrfs_super_sectorsize(disk_super);
2770 stripesize = btrfs_super_stripesize(disk_super);
2771 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2772 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2773
2774 /*
2775 * mixed block groups end up with duplicate but slightly offset
2776 * extent buffers for the same range. It leads to corruptions
2777 */
2778 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2779 (sectorsize != nodesize)) {
2780 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2781 "are not allowed for mixed block groups on %s\n",
2782 sb->s_id);
2783 goto fail_alloc;
2784 }
2785
2786 /*
2787 * Needn't use the lock because there is no other task which will
2788 * update the flag.
2789 */
2790 btrfs_set_super_incompat_flags(disk_super, features);
2791
2792 features = btrfs_super_compat_ro_flags(disk_super) &
2793 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2794 if (!(sb->s_flags & MS_RDONLY) && features) {
2795 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2796 "unsupported option features (%Lx).\n",
2797 features);
2798 err = -EINVAL;
2799 goto fail_alloc;
2800 }
2801
2802 max_active = fs_info->thread_pool_size;
2803
2804 ret = btrfs_init_workqueues(fs_info, fs_devices);
2805 if (ret) {
2806 err = ret;
2807 goto fail_sb_buffer;
2808 }
2809
2810 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2811 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2812 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2813
2814 tree_root->nodesize = nodesize;
2815 tree_root->sectorsize = sectorsize;
2816 tree_root->stripesize = stripesize;
2817
2818 sb->s_blocksize = sectorsize;
2819 sb->s_blocksize_bits = blksize_bits(sectorsize);
2820
2821 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2822 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2823 goto fail_sb_buffer;
2824 }
2825
2826 if (sectorsize != PAGE_SIZE) {
2827 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2828 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2829 goto fail_sb_buffer;
2830 }
2831
2832 mutex_lock(&fs_info->chunk_mutex);
2833 ret = btrfs_read_sys_array(tree_root);
2834 mutex_unlock(&fs_info->chunk_mutex);
2835 if (ret) {
2836 printk(KERN_ERR "BTRFS: failed to read the system "
2837 "array on %s\n", sb->s_id);
2838 goto fail_sb_buffer;
2839 }
2840
2841 generation = btrfs_super_chunk_root_generation(disk_super);
2842
2843 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2844 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2845
2846 chunk_root->node = read_tree_block(chunk_root,
2847 btrfs_super_chunk_root(disk_super),
2848 generation);
2849 if (IS_ERR(chunk_root->node) ||
2850 !extent_buffer_uptodate(chunk_root->node)) {
2851 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2852 sb->s_id);
2853 if (!IS_ERR(chunk_root->node))
2854 free_extent_buffer(chunk_root->node);
2855 chunk_root->node = NULL;
2856 goto fail_tree_roots;
2857 }
2858 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2859 chunk_root->commit_root = btrfs_root_node(chunk_root);
2860
2861 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2862 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2863
2864 ret = btrfs_read_chunk_tree(chunk_root);
2865 if (ret) {
2866 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2867 sb->s_id);
2868 goto fail_tree_roots;
2869 }
2870
2871 /*
2872 * keep the device that is marked to be the target device for the
2873 * dev_replace procedure
2874 */
2875 btrfs_close_extra_devices(fs_devices, 0);
2876
2877 if (!fs_devices->latest_bdev) {
2878 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2879 sb->s_id);
2880 goto fail_tree_roots;
2881 }
2882
2883 retry_root_backup:
2884 generation = btrfs_super_generation(disk_super);
2885
2886 tree_root->node = read_tree_block(tree_root,
2887 btrfs_super_root(disk_super),
2888 generation);
2889 if (IS_ERR(tree_root->node) ||
2890 !extent_buffer_uptodate(tree_root->node)) {
2891 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2892 sb->s_id);
2893 if (!IS_ERR(tree_root->node))
2894 free_extent_buffer(tree_root->node);
2895 tree_root->node = NULL;
2896 goto recovery_tree_root;
2897 }
2898
2899 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2900 tree_root->commit_root = btrfs_root_node(tree_root);
2901 btrfs_set_root_refs(&tree_root->root_item, 1);
2902
2903 ret = btrfs_read_roots(fs_info, tree_root);
2904 if (ret)
2905 goto recovery_tree_root;
2906
2907 fs_info->generation = generation;
2908 fs_info->last_trans_committed = generation;
2909
2910 ret = btrfs_recover_balance(fs_info);
2911 if (ret) {
2912 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2913 goto fail_block_groups;
2914 }
2915
2916 ret = btrfs_init_dev_stats(fs_info);
2917 if (ret) {
2918 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2919 ret);
2920 goto fail_block_groups;
2921 }
2922
2923 ret = btrfs_init_dev_replace(fs_info);
2924 if (ret) {
2925 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2926 goto fail_block_groups;
2927 }
2928
2929 btrfs_close_extra_devices(fs_devices, 1);
2930
2931 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2932 if (ret) {
2933 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2934 goto fail_block_groups;
2935 }
2936
2937 ret = btrfs_sysfs_add_device(fs_devices);
2938 if (ret) {
2939 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2940 goto fail_fsdev_sysfs;
2941 }
2942
2943 ret = btrfs_sysfs_add_mounted(fs_info);
2944 if (ret) {
2945 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2946 goto fail_fsdev_sysfs;
2947 }
2948
2949 ret = btrfs_init_space_info(fs_info);
2950 if (ret) {
2951 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2952 goto fail_sysfs;
2953 }
2954
2955 ret = btrfs_read_block_groups(fs_info->extent_root);
2956 if (ret) {
2957 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2958 goto fail_sysfs;
2959 }
2960 fs_info->num_tolerated_disk_barrier_failures =
2961 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2962 if (fs_info->fs_devices->missing_devices >
2963 fs_info->num_tolerated_disk_barrier_failures &&
2964 !(sb->s_flags & MS_RDONLY)) {
2965 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2966 fs_info->fs_devices->missing_devices,
2967 fs_info->num_tolerated_disk_barrier_failures);
2968 goto fail_sysfs;
2969 }
2970
2971 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2972 "btrfs-cleaner");
2973 if (IS_ERR(fs_info->cleaner_kthread))
2974 goto fail_sysfs;
2975
2976 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2977 tree_root,
2978 "btrfs-transaction");
2979 if (IS_ERR(fs_info->transaction_kthread))
2980 goto fail_cleaner;
2981
2982 if (!btrfs_test_opt(tree_root, SSD) &&
2983 !btrfs_test_opt(tree_root, NOSSD) &&
2984 !fs_info->fs_devices->rotating) {
2985 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2986 "mode\n");
2987 btrfs_set_opt(fs_info->mount_opt, SSD);
2988 }
2989
2990 /*
2991 * Mount does not set all options immediatelly, we can do it now and do
2992 * not have to wait for transaction commit
2993 */
2994 btrfs_apply_pending_changes(fs_info);
2995
2996 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2997 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2998 ret = btrfsic_mount(tree_root, fs_devices,
2999 btrfs_test_opt(tree_root,
3000 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3001 1 : 0,
3002 fs_info->check_integrity_print_mask);
3003 if (ret)
3004 printk(KERN_WARNING "BTRFS: failed to initialize"
3005 " integrity check module %s\n", sb->s_id);
3006 }
3007 #endif
3008 ret = btrfs_read_qgroup_config(fs_info);
3009 if (ret)
3010 goto fail_trans_kthread;
3011
3012 /* do not make disk changes in broken FS */
3013 if (btrfs_super_log_root(disk_super) != 0) {
3014 ret = btrfs_replay_log(fs_info, fs_devices);
3015 if (ret) {
3016 err = ret;
3017 goto fail_qgroup;
3018 }
3019 }
3020
3021 ret = btrfs_find_orphan_roots(tree_root);
3022 if (ret)
3023 goto fail_qgroup;
3024
3025 if (!(sb->s_flags & MS_RDONLY)) {
3026 ret = btrfs_cleanup_fs_roots(fs_info);
3027 if (ret)
3028 goto fail_qgroup;
3029
3030 mutex_lock(&fs_info->cleaner_mutex);
3031 ret = btrfs_recover_relocation(tree_root);
3032 mutex_unlock(&fs_info->cleaner_mutex);
3033 if (ret < 0) {
3034 printk(KERN_WARNING
3035 "BTRFS: failed to recover relocation\n");
3036 err = -EINVAL;
3037 goto fail_qgroup;
3038 }
3039 }
3040
3041 location.objectid = BTRFS_FS_TREE_OBJECTID;
3042 location.type = BTRFS_ROOT_ITEM_KEY;
3043 location.offset = 0;
3044
3045 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3046 if (IS_ERR(fs_info->fs_root)) {
3047 err = PTR_ERR(fs_info->fs_root);
3048 goto fail_qgroup;
3049 }
3050
3051 if (sb->s_flags & MS_RDONLY)
3052 return 0;
3053
3054 down_read(&fs_info->cleanup_work_sem);
3055 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3056 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3057 up_read(&fs_info->cleanup_work_sem);
3058 close_ctree(tree_root);
3059 return ret;
3060 }
3061 up_read(&fs_info->cleanup_work_sem);
3062
3063 ret = btrfs_resume_balance_async(fs_info);
3064 if (ret) {
3065 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3066 close_ctree(tree_root);
3067 return ret;
3068 }
3069
3070 ret = btrfs_resume_dev_replace_async(fs_info);
3071 if (ret) {
3072 pr_warn("BTRFS: failed to resume dev_replace\n");
3073 close_ctree(tree_root);
3074 return ret;
3075 }
3076
3077 btrfs_qgroup_rescan_resume(fs_info);
3078
3079 if (!fs_info->uuid_root) {
3080 pr_info("BTRFS: creating UUID tree\n");
3081 ret = btrfs_create_uuid_tree(fs_info);
3082 if (ret) {
3083 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3084 ret);
3085 close_ctree(tree_root);
3086 return ret;
3087 }
3088 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3089 fs_info->generation !=
3090 btrfs_super_uuid_tree_generation(disk_super)) {
3091 pr_info("BTRFS: checking UUID tree\n");
3092 ret = btrfs_check_uuid_tree(fs_info);
3093 if (ret) {
3094 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3095 ret);
3096 close_ctree(tree_root);
3097 return ret;
3098 }
3099 } else {
3100 fs_info->update_uuid_tree_gen = 1;
3101 }
3102
3103 fs_info->open = 1;
3104
3105 return 0;
3106
3107 fail_qgroup:
3108 btrfs_free_qgroup_config(fs_info);
3109 fail_trans_kthread:
3110 kthread_stop(fs_info->transaction_kthread);
3111 btrfs_cleanup_transaction(fs_info->tree_root);
3112 btrfs_free_fs_roots(fs_info);
3113 fail_cleaner:
3114 kthread_stop(fs_info->cleaner_kthread);
3115
3116 /*
3117 * make sure we're done with the btree inode before we stop our
3118 * kthreads
3119 */
3120 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3121
3122 fail_sysfs:
3123 btrfs_sysfs_remove_mounted(fs_info);
3124
3125 fail_fsdev_sysfs:
3126 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3127
3128 fail_block_groups:
3129 btrfs_put_block_group_cache(fs_info);
3130 btrfs_free_block_groups(fs_info);
3131
3132 fail_tree_roots:
3133 free_root_pointers(fs_info, 1);
3134 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3135
3136 fail_sb_buffer:
3137 btrfs_stop_all_workers(fs_info);
3138 fail_alloc:
3139 fail_iput:
3140 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3141
3142 iput(fs_info->btree_inode);
3143 fail_bio_counter:
3144 percpu_counter_destroy(&fs_info->bio_counter);
3145 fail_delalloc_bytes:
3146 percpu_counter_destroy(&fs_info->delalloc_bytes);
3147 fail_dirty_metadata_bytes:
3148 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3149 fail_bdi:
3150 bdi_destroy(&fs_info->bdi);
3151 fail_srcu:
3152 cleanup_srcu_struct(&fs_info->subvol_srcu);
3153 fail:
3154 btrfs_free_stripe_hash_table(fs_info);
3155 btrfs_close_devices(fs_info->fs_devices);
3156 return err;
3157
3158 recovery_tree_root:
3159 if (!btrfs_test_opt(tree_root, RECOVERY))
3160 goto fail_tree_roots;
3161
3162 free_root_pointers(fs_info, 0);
3163
3164 /* don't use the log in recovery mode, it won't be valid */
3165 btrfs_set_super_log_root(disk_super, 0);
3166
3167 /* we can't trust the free space cache either */
3168 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3169
3170 ret = next_root_backup(fs_info, fs_info->super_copy,
3171 &num_backups_tried, &backup_index);
3172 if (ret == -1)
3173 goto fail_block_groups;
3174 goto retry_root_backup;
3175 }
3176
3177 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3178 {
3179 if (uptodate) {
3180 set_buffer_uptodate(bh);
3181 } else {
3182 struct btrfs_device *device = (struct btrfs_device *)
3183 bh->b_private;
3184
3185 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3186 "lost page write due to IO error on %s",
3187 rcu_str_deref(device->name));
3188 /* note, we dont' set_buffer_write_io_error because we have
3189 * our own ways of dealing with the IO errors
3190 */
3191 clear_buffer_uptodate(bh);
3192 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3193 }
3194 unlock_buffer(bh);
3195 put_bh(bh);
3196 }
3197
3198 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3199 struct buffer_head **bh_ret)
3200 {
3201 struct buffer_head *bh;
3202 struct btrfs_super_block *super;
3203 u64 bytenr;
3204
3205 bytenr = btrfs_sb_offset(copy_num);
3206 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3207 return -EINVAL;
3208
3209 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3210 /*
3211 * If we fail to read from the underlying devices, as of now
3212 * the best option we have is to mark it EIO.
3213 */
3214 if (!bh)
3215 return -EIO;
3216
3217 super = (struct btrfs_super_block *)bh->b_data;
3218 if (btrfs_super_bytenr(super) != bytenr ||
3219 btrfs_super_magic(super) != BTRFS_MAGIC) {
3220 brelse(bh);
3221 return -EINVAL;
3222 }
3223
3224 *bh_ret = bh;
3225 return 0;
3226 }
3227
3228
3229 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3230 {
3231 struct buffer_head *bh;
3232 struct buffer_head *latest = NULL;
3233 struct btrfs_super_block *super;
3234 int i;
3235 u64 transid = 0;
3236 int ret = -EINVAL;
3237
3238 /* we would like to check all the supers, but that would make
3239 * a btrfs mount succeed after a mkfs from a different FS.
3240 * So, we need to add a special mount option to scan for
3241 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3242 */
3243 for (i = 0; i < 1; i++) {
3244 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3245 if (ret)
3246 continue;
3247
3248 super = (struct btrfs_super_block *)bh->b_data;
3249
3250 if (!latest || btrfs_super_generation(super) > transid) {
3251 brelse(latest);
3252 latest = bh;
3253 transid = btrfs_super_generation(super);
3254 } else {
3255 brelse(bh);
3256 }
3257 }
3258
3259 if (!latest)
3260 return ERR_PTR(ret);
3261
3262 return latest;
3263 }
3264
3265 /*
3266 * this should be called twice, once with wait == 0 and
3267 * once with wait == 1. When wait == 0 is done, all the buffer heads
3268 * we write are pinned.
3269 *
3270 * They are released when wait == 1 is done.
3271 * max_mirrors must be the same for both runs, and it indicates how
3272 * many supers on this one device should be written.
3273 *
3274 * max_mirrors == 0 means to write them all.
3275 */
3276 static int write_dev_supers(struct btrfs_device *device,
3277 struct btrfs_super_block *sb,
3278 int do_barriers, int wait, int max_mirrors)
3279 {
3280 struct buffer_head *bh;
3281 int i;
3282 int ret;
3283 int errors = 0;
3284 u32 crc;
3285 u64 bytenr;
3286
3287 if (max_mirrors == 0)
3288 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3289
3290 for (i = 0; i < max_mirrors; i++) {
3291 bytenr = btrfs_sb_offset(i);
3292 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3293 device->commit_total_bytes)
3294 break;
3295
3296 if (wait) {
3297 bh = __find_get_block(device->bdev, bytenr / 4096,
3298 BTRFS_SUPER_INFO_SIZE);
3299 if (!bh) {
3300 errors++;
3301 continue;
3302 }
3303 wait_on_buffer(bh);
3304 if (!buffer_uptodate(bh))
3305 errors++;
3306
3307 /* drop our reference */
3308 brelse(bh);
3309
3310 /* drop the reference from the wait == 0 run */
3311 brelse(bh);
3312 continue;
3313 } else {
3314 btrfs_set_super_bytenr(sb, bytenr);
3315
3316 crc = ~(u32)0;
3317 crc = btrfs_csum_data((char *)sb +
3318 BTRFS_CSUM_SIZE, crc,
3319 BTRFS_SUPER_INFO_SIZE -
3320 BTRFS_CSUM_SIZE);
3321 btrfs_csum_final(crc, sb->csum);
3322
3323 /*
3324 * one reference for us, and we leave it for the
3325 * caller
3326 */
3327 bh = __getblk(device->bdev, bytenr / 4096,
3328 BTRFS_SUPER_INFO_SIZE);
3329 if (!bh) {
3330 btrfs_err(device->dev_root->fs_info,
3331 "couldn't get super buffer head for bytenr %llu",
3332 bytenr);
3333 errors++;
3334 continue;
3335 }
3336
3337 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3338
3339 /* one reference for submit_bh */
3340 get_bh(bh);
3341
3342 set_buffer_uptodate(bh);
3343 lock_buffer(bh);
3344 bh->b_end_io = btrfs_end_buffer_write_sync;
3345 bh->b_private = device;
3346 }
3347
3348 /*
3349 * we fua the first super. The others we allow
3350 * to go down lazy.
3351 */
3352 if (i == 0)
3353 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3354 else
3355 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3356 if (ret)
3357 errors++;
3358 }
3359 return errors < i ? 0 : -1;
3360 }
3361
3362 /*
3363 * endio for the write_dev_flush, this will wake anyone waiting
3364 * for the barrier when it is done
3365 */
3366 static void btrfs_end_empty_barrier(struct bio *bio)
3367 {
3368 if (bio->bi_private)
3369 complete(bio->bi_private);
3370 bio_put(bio);
3371 }
3372
3373 /*
3374 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3375 * sent down. With wait == 1, it waits for the previous flush.
3376 *
3377 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3378 * capable
3379 */
3380 static int write_dev_flush(struct btrfs_device *device, int wait)
3381 {
3382 struct bio *bio;
3383 int ret = 0;
3384
3385 if (device->nobarriers)
3386 return 0;
3387
3388 if (wait) {
3389 bio = device->flush_bio;
3390 if (!bio)
3391 return 0;
3392
3393 wait_for_completion(&device->flush_wait);
3394
3395 if (bio->bi_error) {
3396 ret = bio->bi_error;
3397 btrfs_dev_stat_inc_and_print(device,
3398 BTRFS_DEV_STAT_FLUSH_ERRS);
3399 }
3400
3401 /* drop the reference from the wait == 0 run */
3402 bio_put(bio);
3403 device->flush_bio = NULL;
3404
3405 return ret;
3406 }
3407
3408 /*
3409 * one reference for us, and we leave it for the
3410 * caller
3411 */
3412 device->flush_bio = NULL;
3413 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3414 if (!bio)
3415 return -ENOMEM;
3416
3417 bio->bi_end_io = btrfs_end_empty_barrier;
3418 bio->bi_bdev = device->bdev;
3419 init_completion(&device->flush_wait);
3420 bio->bi_private = &device->flush_wait;
3421 device->flush_bio = bio;
3422
3423 bio_get(bio);
3424 btrfsic_submit_bio(WRITE_FLUSH, bio);
3425
3426 return 0;
3427 }
3428
3429 /*
3430 * send an empty flush down to each device in parallel,
3431 * then wait for them
3432 */
3433 static int barrier_all_devices(struct btrfs_fs_info *info)
3434 {
3435 struct list_head *head;
3436 struct btrfs_device *dev;
3437 int errors_send = 0;
3438 int errors_wait = 0;
3439 int ret;
3440
3441 /* send down all the barriers */
3442 head = &info->fs_devices->devices;
3443 list_for_each_entry_rcu(dev, head, dev_list) {
3444 if (dev->missing)
3445 continue;
3446 if (!dev->bdev) {
3447 errors_send++;
3448 continue;
3449 }
3450 if (!dev->in_fs_metadata || !dev->writeable)
3451 continue;
3452
3453 ret = write_dev_flush(dev, 0);
3454 if (ret)
3455 errors_send++;
3456 }
3457
3458 /* wait for all the barriers */
3459 list_for_each_entry_rcu(dev, head, dev_list) {
3460 if (dev->missing)
3461 continue;
3462 if (!dev->bdev) {
3463 errors_wait++;
3464 continue;
3465 }
3466 if (!dev->in_fs_metadata || !dev->writeable)
3467 continue;
3468
3469 ret = write_dev_flush(dev, 1);
3470 if (ret)
3471 errors_wait++;
3472 }
3473 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3474 errors_wait > info->num_tolerated_disk_barrier_failures)
3475 return -EIO;
3476 return 0;
3477 }
3478
3479 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3480 {
3481 int raid_type;
3482 int min_tolerated = INT_MAX;
3483
3484 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3485 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3486 min_tolerated = min(min_tolerated,
3487 btrfs_raid_array[BTRFS_RAID_SINGLE].
3488 tolerated_failures);
3489
3490 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3491 if (raid_type == BTRFS_RAID_SINGLE)
3492 continue;
3493 if (!(flags & btrfs_raid_group[raid_type]))
3494 continue;
3495 min_tolerated = min(min_tolerated,
3496 btrfs_raid_array[raid_type].
3497 tolerated_failures);
3498 }
3499
3500 if (min_tolerated == INT_MAX) {
3501 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3502 min_tolerated = 0;
3503 }
3504
3505 return min_tolerated;
3506 }
3507
3508 int btrfs_calc_num_tolerated_disk_barrier_failures(
3509 struct btrfs_fs_info *fs_info)
3510 {
3511 struct btrfs_ioctl_space_info space;
3512 struct btrfs_space_info *sinfo;
3513 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3514 BTRFS_BLOCK_GROUP_SYSTEM,
3515 BTRFS_BLOCK_GROUP_METADATA,
3516 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3517 int i;
3518 int c;
3519 int num_tolerated_disk_barrier_failures =
3520 (int)fs_info->fs_devices->num_devices;
3521
3522 for (i = 0; i < ARRAY_SIZE(types); i++) {
3523 struct btrfs_space_info *tmp;
3524
3525 sinfo = NULL;
3526 rcu_read_lock();
3527 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3528 if (tmp->flags == types[i]) {
3529 sinfo = tmp;
3530 break;
3531 }
3532 }
3533 rcu_read_unlock();
3534
3535 if (!sinfo)
3536 continue;
3537
3538 down_read(&sinfo->groups_sem);
3539 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3540 u64 flags;
3541
3542 if (list_empty(&sinfo->block_groups[c]))
3543 continue;
3544
3545 btrfs_get_block_group_info(&sinfo->block_groups[c],
3546 &space);
3547 if (space.total_bytes == 0 || space.used_bytes == 0)
3548 continue;
3549 flags = space.flags;
3550
3551 num_tolerated_disk_barrier_failures = min(
3552 num_tolerated_disk_barrier_failures,
3553 btrfs_get_num_tolerated_disk_barrier_failures(
3554 flags));
3555 }
3556 up_read(&sinfo->groups_sem);
3557 }
3558
3559 return num_tolerated_disk_barrier_failures;
3560 }
3561
3562 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3563 {
3564 struct list_head *head;
3565 struct btrfs_device *dev;
3566 struct btrfs_super_block *sb;
3567 struct btrfs_dev_item *dev_item;
3568 int ret;
3569 int do_barriers;
3570 int max_errors;
3571 int total_errors = 0;
3572 u64 flags;
3573
3574 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3575 backup_super_roots(root->fs_info);
3576
3577 sb = root->fs_info->super_for_commit;
3578 dev_item = &sb->dev_item;
3579
3580 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3581 head = &root->fs_info->fs_devices->devices;
3582 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3583
3584 if (do_barriers) {
3585 ret = barrier_all_devices(root->fs_info);
3586 if (ret) {
3587 mutex_unlock(
3588 &root->fs_info->fs_devices->device_list_mutex);
3589 btrfs_std_error(root->fs_info, ret,
3590 "errors while submitting device barriers.");
3591 return ret;
3592 }
3593 }
3594
3595 list_for_each_entry_rcu(dev, head, dev_list) {
3596 if (!dev->bdev) {
3597 total_errors++;
3598 continue;
3599 }
3600 if (!dev->in_fs_metadata || !dev->writeable)
3601 continue;
3602
3603 btrfs_set_stack_device_generation(dev_item, 0);
3604 btrfs_set_stack_device_type(dev_item, dev->type);
3605 btrfs_set_stack_device_id(dev_item, dev->devid);
3606 btrfs_set_stack_device_total_bytes(dev_item,
3607 dev->commit_total_bytes);
3608 btrfs_set_stack_device_bytes_used(dev_item,
3609 dev->commit_bytes_used);
3610 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3611 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3612 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3613 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3614 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3615
3616 flags = btrfs_super_flags(sb);
3617 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3618
3619 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3620 if (ret)
3621 total_errors++;
3622 }
3623 if (total_errors > max_errors) {
3624 btrfs_err(root->fs_info, "%d errors while writing supers",
3625 total_errors);
3626 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3627
3628 /* FUA is masked off if unsupported and can't be the reason */
3629 btrfs_std_error(root->fs_info, -EIO,
3630 "%d errors while writing supers", total_errors);
3631 return -EIO;
3632 }
3633
3634 total_errors = 0;
3635 list_for_each_entry_rcu(dev, head, dev_list) {
3636 if (!dev->bdev)
3637 continue;
3638 if (!dev->in_fs_metadata || !dev->writeable)
3639 continue;
3640
3641 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3642 if (ret)
3643 total_errors++;
3644 }
3645 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3646 if (total_errors > max_errors) {
3647 btrfs_std_error(root->fs_info, -EIO,
3648 "%d errors while writing supers", total_errors);
3649 return -EIO;
3650 }
3651 return 0;
3652 }
3653
3654 int write_ctree_super(struct btrfs_trans_handle *trans,
3655 struct btrfs_root *root, int max_mirrors)
3656 {
3657 return write_all_supers(root, max_mirrors);
3658 }
3659
3660 /* Drop a fs root from the radix tree and free it. */
3661 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3662 struct btrfs_root *root)
3663 {
3664 spin_lock(&fs_info->fs_roots_radix_lock);
3665 radix_tree_delete(&fs_info->fs_roots_radix,
3666 (unsigned long)root->root_key.objectid);
3667 spin_unlock(&fs_info->fs_roots_radix_lock);
3668
3669 if (btrfs_root_refs(&root->root_item) == 0)
3670 synchronize_srcu(&fs_info->subvol_srcu);
3671
3672 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3673 btrfs_free_log(NULL, root);
3674
3675 if (root->free_ino_pinned)
3676 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3677 if (root->free_ino_ctl)
3678 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3679 free_fs_root(root);
3680 }
3681
3682 static void free_fs_root(struct btrfs_root *root)
3683 {
3684 iput(root->ino_cache_inode);
3685 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3686 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3687 root->orphan_block_rsv = NULL;
3688 if (root->anon_dev)
3689 free_anon_bdev(root->anon_dev);
3690 if (root->subv_writers)
3691 btrfs_free_subvolume_writers(root->subv_writers);
3692 free_extent_buffer(root->node);
3693 free_extent_buffer(root->commit_root);
3694 kfree(root->free_ino_ctl);
3695 kfree(root->free_ino_pinned);
3696 kfree(root->name);
3697 btrfs_put_fs_root(root);
3698 }
3699
3700 void btrfs_free_fs_root(struct btrfs_root *root)
3701 {
3702 free_fs_root(root);
3703 }
3704
3705 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3706 {
3707 u64 root_objectid = 0;
3708 struct btrfs_root *gang[8];
3709 int i = 0;
3710 int err = 0;
3711 unsigned int ret = 0;
3712 int index;
3713
3714 while (1) {
3715 index = srcu_read_lock(&fs_info->subvol_srcu);
3716 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3717 (void **)gang, root_objectid,
3718 ARRAY_SIZE(gang));
3719 if (!ret) {
3720 srcu_read_unlock(&fs_info->subvol_srcu, index);
3721 break;
3722 }
3723 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3724
3725 for (i = 0; i < ret; i++) {
3726 /* Avoid to grab roots in dead_roots */
3727 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3728 gang[i] = NULL;
3729 continue;
3730 }
3731 /* grab all the search result for later use */
3732 gang[i] = btrfs_grab_fs_root(gang[i]);
3733 }
3734 srcu_read_unlock(&fs_info->subvol_srcu, index);
3735
3736 for (i = 0; i < ret; i++) {
3737 if (!gang[i])
3738 continue;
3739 root_objectid = gang[i]->root_key.objectid;
3740 err = btrfs_orphan_cleanup(gang[i]);
3741 if (err)
3742 break;
3743 btrfs_put_fs_root(gang[i]);
3744 }
3745 root_objectid++;
3746 }
3747
3748 /* release the uncleaned roots due to error */
3749 for (; i < ret; i++) {
3750 if (gang[i])
3751 btrfs_put_fs_root(gang[i]);
3752 }
3753 return err;
3754 }
3755
3756 int btrfs_commit_super(struct btrfs_root *root)
3757 {
3758 struct btrfs_trans_handle *trans;
3759
3760 mutex_lock(&root->fs_info->cleaner_mutex);
3761 btrfs_run_delayed_iputs(root);
3762 mutex_unlock(&root->fs_info->cleaner_mutex);
3763 wake_up_process(root->fs_info->cleaner_kthread);
3764
3765 /* wait until ongoing cleanup work done */
3766 down_write(&root->fs_info->cleanup_work_sem);
3767 up_write(&root->fs_info->cleanup_work_sem);
3768
3769 trans = btrfs_join_transaction(root);
3770 if (IS_ERR(trans))
3771 return PTR_ERR(trans);
3772 return btrfs_commit_transaction(trans, root);
3773 }
3774
3775 void close_ctree(struct btrfs_root *root)
3776 {
3777 struct btrfs_fs_info *fs_info = root->fs_info;
3778 int ret;
3779
3780 fs_info->closing = 1;
3781 smp_mb();
3782
3783 /* wait for the uuid_scan task to finish */
3784 down(&fs_info->uuid_tree_rescan_sem);
3785 /* avoid complains from lockdep et al., set sem back to initial state */
3786 up(&fs_info->uuid_tree_rescan_sem);
3787
3788 /* pause restriper - we want to resume on mount */
3789 btrfs_pause_balance(fs_info);
3790
3791 btrfs_dev_replace_suspend_for_unmount(fs_info);
3792
3793 btrfs_scrub_cancel(fs_info);
3794
3795 /* wait for any defraggers to finish */
3796 wait_event(fs_info->transaction_wait,
3797 (atomic_read(&fs_info->defrag_running) == 0));
3798
3799 /* clear out the rbtree of defraggable inodes */
3800 btrfs_cleanup_defrag_inodes(fs_info);
3801
3802 cancel_work_sync(&fs_info->async_reclaim_work);
3803
3804 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3805 /*
3806 * If the cleaner thread is stopped and there are
3807 * block groups queued for removal, the deletion will be
3808 * skipped when we quit the cleaner thread.
3809 */
3810 btrfs_delete_unused_bgs(root->fs_info);
3811
3812 ret = btrfs_commit_super(root);
3813 if (ret)
3814 btrfs_err(fs_info, "commit super ret %d", ret);
3815 }
3816
3817 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3818 btrfs_error_commit_super(root);
3819
3820 kthread_stop(fs_info->transaction_kthread);
3821 kthread_stop(fs_info->cleaner_kthread);
3822
3823 fs_info->closing = 2;
3824 smp_mb();
3825
3826 btrfs_free_qgroup_config(fs_info);
3827
3828 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3829 btrfs_info(fs_info, "at unmount delalloc count %lld",
3830 percpu_counter_sum(&fs_info->delalloc_bytes));
3831 }
3832
3833 btrfs_sysfs_remove_mounted(fs_info);
3834 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3835
3836 btrfs_free_fs_roots(fs_info);
3837
3838 btrfs_put_block_group_cache(fs_info);
3839
3840 btrfs_free_block_groups(fs_info);
3841
3842 /*
3843 * we must make sure there is not any read request to
3844 * submit after we stopping all workers.
3845 */
3846 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3847 btrfs_stop_all_workers(fs_info);
3848
3849 fs_info->open = 0;
3850 free_root_pointers(fs_info, 1);
3851
3852 iput(fs_info->btree_inode);
3853
3854 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3855 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3856 btrfsic_unmount(root, fs_info->fs_devices);
3857 #endif
3858
3859 btrfs_close_devices(fs_info->fs_devices);
3860 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3861
3862 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3863 percpu_counter_destroy(&fs_info->delalloc_bytes);
3864 percpu_counter_destroy(&fs_info->bio_counter);
3865 bdi_destroy(&fs_info->bdi);
3866 cleanup_srcu_struct(&fs_info->subvol_srcu);
3867
3868 btrfs_free_stripe_hash_table(fs_info);
3869
3870 __btrfs_free_block_rsv(root->orphan_block_rsv);
3871 root->orphan_block_rsv = NULL;
3872
3873 lock_chunks(root);
3874 while (!list_empty(&fs_info->pinned_chunks)) {
3875 struct extent_map *em;
3876
3877 em = list_first_entry(&fs_info->pinned_chunks,
3878 struct extent_map, list);
3879 list_del_init(&em->list);
3880 free_extent_map(em);
3881 }
3882 unlock_chunks(root);
3883 }
3884
3885 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3886 int atomic)
3887 {
3888 int ret;
3889 struct inode *btree_inode = buf->pages[0]->mapping->host;
3890
3891 ret = extent_buffer_uptodate(buf);
3892 if (!ret)
3893 return ret;
3894
3895 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3896 parent_transid, atomic);
3897 if (ret == -EAGAIN)
3898 return ret;
3899 return !ret;
3900 }
3901
3902 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3903 {
3904 return set_extent_buffer_uptodate(buf);
3905 }
3906
3907 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3908 {
3909 struct btrfs_root *root;
3910 u64 transid = btrfs_header_generation(buf);
3911 int was_dirty;
3912
3913 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3914 /*
3915 * This is a fast path so only do this check if we have sanity tests
3916 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3917 * outside of the sanity tests.
3918 */
3919 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3920 return;
3921 #endif
3922 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3923 btrfs_assert_tree_locked(buf);
3924 if (transid != root->fs_info->generation)
3925 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3926 "found %llu running %llu\n",
3927 buf->start, transid, root->fs_info->generation);
3928 was_dirty = set_extent_buffer_dirty(buf);
3929 if (!was_dirty)
3930 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3931 buf->len,
3932 root->fs_info->dirty_metadata_batch);
3933 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3934 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3935 btrfs_print_leaf(root, buf);
3936 ASSERT(0);
3937 }
3938 #endif
3939 }
3940
3941 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3942 int flush_delayed)
3943 {
3944 /*
3945 * looks as though older kernels can get into trouble with
3946 * this code, they end up stuck in balance_dirty_pages forever
3947 */
3948 int ret;
3949
3950 if (current->flags & PF_MEMALLOC)
3951 return;
3952
3953 if (flush_delayed)
3954 btrfs_balance_delayed_items(root);
3955
3956 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3957 BTRFS_DIRTY_METADATA_THRESH);
3958 if (ret > 0) {
3959 balance_dirty_pages_ratelimited(
3960 root->fs_info->btree_inode->i_mapping);
3961 }
3962 return;
3963 }
3964
3965 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3966 {
3967 __btrfs_btree_balance_dirty(root, 1);
3968 }
3969
3970 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3971 {
3972 __btrfs_btree_balance_dirty(root, 0);
3973 }
3974
3975 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3976 {
3977 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3978 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3979 }
3980
3981 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3982 int read_only)
3983 {
3984 struct btrfs_super_block *sb = fs_info->super_copy;
3985 int ret = 0;
3986
3987 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3988 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3989 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3990 ret = -EINVAL;
3991 }
3992 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3993 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3994 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3995 ret = -EINVAL;
3996 }
3997 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3998 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3999 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4000 ret = -EINVAL;
4001 }
4002
4003 /*
4004 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4005 * items yet, they'll be verified later. Issue just a warning.
4006 */
4007 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4008 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4009 btrfs_super_root(sb));
4010 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4011 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4012 btrfs_super_chunk_root(sb));
4013 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4014 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4015 btrfs_super_log_root(sb));
4016
4017 /*
4018 * Check the lower bound, the alignment and other constraints are
4019 * checked later.
4020 */
4021 if (btrfs_super_nodesize(sb) < 4096) {
4022 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4023 btrfs_super_nodesize(sb));
4024 ret = -EINVAL;
4025 }
4026 if (btrfs_super_sectorsize(sb) < 4096) {
4027 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4028 btrfs_super_sectorsize(sb));
4029 ret = -EINVAL;
4030 }
4031
4032 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4033 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4034 fs_info->fsid, sb->dev_item.fsid);
4035 ret = -EINVAL;
4036 }
4037
4038 /*
4039 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4040 * done later
4041 */
4042 if (btrfs_super_num_devices(sb) > (1UL << 31))
4043 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4044 btrfs_super_num_devices(sb));
4045 if (btrfs_super_num_devices(sb) == 0) {
4046 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4047 ret = -EINVAL;
4048 }
4049
4050 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4051 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4052 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4053 ret = -EINVAL;
4054 }
4055
4056 /*
4057 * Obvious sys_chunk_array corruptions, it must hold at least one key
4058 * and one chunk
4059 */
4060 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4061 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4062 btrfs_super_sys_array_size(sb),
4063 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4064 ret = -EINVAL;
4065 }
4066 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4067 + sizeof(struct btrfs_chunk)) {
4068 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4069 btrfs_super_sys_array_size(sb),
4070 sizeof(struct btrfs_disk_key)
4071 + sizeof(struct btrfs_chunk));
4072 ret = -EINVAL;
4073 }
4074
4075 /*
4076 * The generation is a global counter, we'll trust it more than the others
4077 * but it's still possible that it's the one that's wrong.
4078 */
4079 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4080 printk(KERN_WARNING
4081 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4082 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4083 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4084 && btrfs_super_cache_generation(sb) != (u64)-1)
4085 printk(KERN_WARNING
4086 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4087 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4088
4089 return ret;
4090 }
4091
4092 static void btrfs_error_commit_super(struct btrfs_root *root)
4093 {
4094 mutex_lock(&root->fs_info->cleaner_mutex);
4095 btrfs_run_delayed_iputs(root);
4096 mutex_unlock(&root->fs_info->cleaner_mutex);
4097
4098 down_write(&root->fs_info->cleanup_work_sem);
4099 up_write(&root->fs_info->cleanup_work_sem);
4100
4101 /* cleanup FS via transaction */
4102 btrfs_cleanup_transaction(root);
4103 }
4104
4105 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4106 {
4107 struct btrfs_ordered_extent *ordered;
4108
4109 spin_lock(&root->ordered_extent_lock);
4110 /*
4111 * This will just short circuit the ordered completion stuff which will
4112 * make sure the ordered extent gets properly cleaned up.
4113 */
4114 list_for_each_entry(ordered, &root->ordered_extents,
4115 root_extent_list)
4116 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4117 spin_unlock(&root->ordered_extent_lock);
4118 }
4119
4120 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4121 {
4122 struct btrfs_root *root;
4123 struct list_head splice;
4124
4125 INIT_LIST_HEAD(&splice);
4126
4127 spin_lock(&fs_info->ordered_root_lock);
4128 list_splice_init(&fs_info->ordered_roots, &splice);
4129 while (!list_empty(&splice)) {
4130 root = list_first_entry(&splice, struct btrfs_root,
4131 ordered_root);
4132 list_move_tail(&root->ordered_root,
4133 &fs_info->ordered_roots);
4134
4135 spin_unlock(&fs_info->ordered_root_lock);
4136 btrfs_destroy_ordered_extents(root);
4137
4138 cond_resched();
4139 spin_lock(&fs_info->ordered_root_lock);
4140 }
4141 spin_unlock(&fs_info->ordered_root_lock);
4142 }
4143
4144 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4145 struct btrfs_root *root)
4146 {
4147 struct rb_node *node;
4148 struct btrfs_delayed_ref_root *delayed_refs;
4149 struct btrfs_delayed_ref_node *ref;
4150 int ret = 0;
4151
4152 delayed_refs = &trans->delayed_refs;
4153
4154 spin_lock(&delayed_refs->lock);
4155 if (atomic_read(&delayed_refs->num_entries) == 0) {
4156 spin_unlock(&delayed_refs->lock);
4157 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4158 return ret;
4159 }
4160
4161 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4162 struct btrfs_delayed_ref_head *head;
4163 struct btrfs_delayed_ref_node *tmp;
4164 bool pin_bytes = false;
4165
4166 head = rb_entry(node, struct btrfs_delayed_ref_head,
4167 href_node);
4168 if (!mutex_trylock(&head->mutex)) {
4169 atomic_inc(&head->node.refs);
4170 spin_unlock(&delayed_refs->lock);
4171
4172 mutex_lock(&head->mutex);
4173 mutex_unlock(&head->mutex);
4174 btrfs_put_delayed_ref(&head->node);
4175 spin_lock(&delayed_refs->lock);
4176 continue;
4177 }
4178 spin_lock(&head->lock);
4179 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4180 list) {
4181 ref->in_tree = 0;
4182 list_del(&ref->list);
4183 atomic_dec(&delayed_refs->num_entries);
4184 btrfs_put_delayed_ref(ref);
4185 }
4186 if (head->must_insert_reserved)
4187 pin_bytes = true;
4188 btrfs_free_delayed_extent_op(head->extent_op);
4189 delayed_refs->num_heads--;
4190 if (head->processing == 0)
4191 delayed_refs->num_heads_ready--;
4192 atomic_dec(&delayed_refs->num_entries);
4193 head->node.in_tree = 0;
4194 rb_erase(&head->href_node, &delayed_refs->href_root);
4195 spin_unlock(&head->lock);
4196 spin_unlock(&delayed_refs->lock);
4197 mutex_unlock(&head->mutex);
4198
4199 if (pin_bytes)
4200 btrfs_pin_extent(root, head->node.bytenr,
4201 head->node.num_bytes, 1);
4202 btrfs_put_delayed_ref(&head->node);
4203 cond_resched();
4204 spin_lock(&delayed_refs->lock);
4205 }
4206
4207 spin_unlock(&delayed_refs->lock);
4208
4209 return ret;
4210 }
4211
4212 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4213 {
4214 struct btrfs_inode *btrfs_inode;
4215 struct list_head splice;
4216
4217 INIT_LIST_HEAD(&splice);
4218
4219 spin_lock(&root->delalloc_lock);
4220 list_splice_init(&root->delalloc_inodes, &splice);
4221
4222 while (!list_empty(&splice)) {
4223 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4224 delalloc_inodes);
4225
4226 list_del_init(&btrfs_inode->delalloc_inodes);
4227 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4228 &btrfs_inode->runtime_flags);
4229 spin_unlock(&root->delalloc_lock);
4230
4231 btrfs_invalidate_inodes(btrfs_inode->root);
4232
4233 spin_lock(&root->delalloc_lock);
4234 }
4235
4236 spin_unlock(&root->delalloc_lock);
4237 }
4238
4239 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4240 {
4241 struct btrfs_root *root;
4242 struct list_head splice;
4243
4244 INIT_LIST_HEAD(&splice);
4245
4246 spin_lock(&fs_info->delalloc_root_lock);
4247 list_splice_init(&fs_info->delalloc_roots, &splice);
4248 while (!list_empty(&splice)) {
4249 root = list_first_entry(&splice, struct btrfs_root,
4250 delalloc_root);
4251 list_del_init(&root->delalloc_root);
4252 root = btrfs_grab_fs_root(root);
4253 BUG_ON(!root);
4254 spin_unlock(&fs_info->delalloc_root_lock);
4255
4256 btrfs_destroy_delalloc_inodes(root);
4257 btrfs_put_fs_root(root);
4258
4259 spin_lock(&fs_info->delalloc_root_lock);
4260 }
4261 spin_unlock(&fs_info->delalloc_root_lock);
4262 }
4263
4264 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4265 struct extent_io_tree *dirty_pages,
4266 int mark)
4267 {
4268 int ret;
4269 struct extent_buffer *eb;
4270 u64 start = 0;
4271 u64 end;
4272
4273 while (1) {
4274 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4275 mark, NULL);
4276 if (ret)
4277 break;
4278
4279 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4280 while (start <= end) {
4281 eb = btrfs_find_tree_block(root->fs_info, start);
4282 start += root->nodesize;
4283 if (!eb)
4284 continue;
4285 wait_on_extent_buffer_writeback(eb);
4286
4287 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4288 &eb->bflags))
4289 clear_extent_buffer_dirty(eb);
4290 free_extent_buffer_stale(eb);
4291 }
4292 }
4293
4294 return ret;
4295 }
4296
4297 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4298 struct extent_io_tree *pinned_extents)
4299 {
4300 struct extent_io_tree *unpin;
4301 u64 start;
4302 u64 end;
4303 int ret;
4304 bool loop = true;
4305
4306 unpin = pinned_extents;
4307 again:
4308 while (1) {
4309 ret = find_first_extent_bit(unpin, 0, &start, &end,
4310 EXTENT_DIRTY, NULL);
4311 if (ret)
4312 break;
4313
4314 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4315 btrfs_error_unpin_extent_range(root, start, end);
4316 cond_resched();
4317 }
4318
4319 if (loop) {
4320 if (unpin == &root->fs_info->freed_extents[0])
4321 unpin = &root->fs_info->freed_extents[1];
4322 else
4323 unpin = &root->fs_info->freed_extents[0];
4324 loop = false;
4325 goto again;
4326 }
4327
4328 return 0;
4329 }
4330
4331 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4332 struct btrfs_root *root)
4333 {
4334 btrfs_destroy_delayed_refs(cur_trans, root);
4335
4336 cur_trans->state = TRANS_STATE_COMMIT_START;
4337 wake_up(&root->fs_info->transaction_blocked_wait);
4338
4339 cur_trans->state = TRANS_STATE_UNBLOCKED;
4340 wake_up(&root->fs_info->transaction_wait);
4341
4342 btrfs_destroy_delayed_inodes(root);
4343 btrfs_assert_delayed_root_empty(root);
4344
4345 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4346 EXTENT_DIRTY);
4347 btrfs_destroy_pinned_extent(root,
4348 root->fs_info->pinned_extents);
4349
4350 cur_trans->state =TRANS_STATE_COMPLETED;
4351 wake_up(&cur_trans->commit_wait);
4352
4353 /*
4354 memset(cur_trans, 0, sizeof(*cur_trans));
4355 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4356 */
4357 }
4358
4359 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4360 {
4361 struct btrfs_transaction *t;
4362
4363 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4364
4365 spin_lock(&root->fs_info->trans_lock);
4366 while (!list_empty(&root->fs_info->trans_list)) {
4367 t = list_first_entry(&root->fs_info->trans_list,
4368 struct btrfs_transaction, list);
4369 if (t->state >= TRANS_STATE_COMMIT_START) {
4370 atomic_inc(&t->use_count);
4371 spin_unlock(&root->fs_info->trans_lock);
4372 btrfs_wait_for_commit(root, t->transid);
4373 btrfs_put_transaction(t);
4374 spin_lock(&root->fs_info->trans_lock);
4375 continue;
4376 }
4377 if (t == root->fs_info->running_transaction) {
4378 t->state = TRANS_STATE_COMMIT_DOING;
4379 spin_unlock(&root->fs_info->trans_lock);
4380 /*
4381 * We wait for 0 num_writers since we don't hold a trans
4382 * handle open currently for this transaction.
4383 */
4384 wait_event(t->writer_wait,
4385 atomic_read(&t->num_writers) == 0);
4386 } else {
4387 spin_unlock(&root->fs_info->trans_lock);
4388 }
4389 btrfs_cleanup_one_transaction(t, root);
4390
4391 spin_lock(&root->fs_info->trans_lock);
4392 if (t == root->fs_info->running_transaction)
4393 root->fs_info->running_transaction = NULL;
4394 list_del_init(&t->list);
4395 spin_unlock(&root->fs_info->trans_lock);
4396
4397 btrfs_put_transaction(t);
4398 trace_btrfs_transaction_commit(root);
4399 spin_lock(&root->fs_info->trans_lock);
4400 }
4401 spin_unlock(&root->fs_info->trans_lock);
4402 btrfs_destroy_all_ordered_extents(root->fs_info);
4403 btrfs_destroy_delayed_inodes(root);
4404 btrfs_assert_delayed_root_empty(root);
4405 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4406 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4407 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4408
4409 return 0;
4410 }
4411
4412 static const struct extent_io_ops btree_extent_io_ops = {
4413 .readpage_end_io_hook = btree_readpage_end_io_hook,
4414 .readpage_io_failed_hook = btree_io_failed_hook,
4415 .submit_bio_hook = btree_submit_bio_hook,
4416 /* note we're sharing with inode.c for the merge bio hook */
4417 .merge_bio_hook = btrfs_merge_bio_hook,
4418 };