]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/disk-io.c
Merge tag 'seccomp-v4.16-rc3' of https://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <linux/error-injection.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53 #include "compression.h"
54 #include "tree-checker.h"
55 #include "ref-verify.h"
56
57 #ifdef CONFIG_X86
58 #include <asm/cpufeature.h>
59 #endif
60
61 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
62 BTRFS_HEADER_FLAG_RELOC |\
63 BTRFS_SUPER_FLAG_ERROR |\
64 BTRFS_SUPER_FLAG_SEEDING |\
65 BTRFS_SUPER_FLAG_METADUMP |\
66 BTRFS_SUPER_FLAG_METADUMP_V2)
67
68 static const struct extent_io_ops btree_extent_io_ops;
69 static void end_workqueue_fn(struct btrfs_work *work);
70 static void free_fs_root(struct btrfs_root *root);
71 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
72 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
73 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
74 struct btrfs_fs_info *fs_info);
75 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
76 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
77 struct extent_io_tree *dirty_pages,
78 int mark);
79 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
80 struct extent_io_tree *pinned_extents);
81 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
82 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
83
84 /*
85 * btrfs_end_io_wq structs are used to do processing in task context when an IO
86 * is complete. This is used during reads to verify checksums, and it is used
87 * by writes to insert metadata for new file extents after IO is complete.
88 */
89 struct btrfs_end_io_wq {
90 struct bio *bio;
91 bio_end_io_t *end_io;
92 void *private;
93 struct btrfs_fs_info *info;
94 blk_status_t status;
95 enum btrfs_wq_endio_type metadata;
96 struct btrfs_work work;
97 };
98
99 static struct kmem_cache *btrfs_end_io_wq_cache;
100
101 int __init btrfs_end_io_wq_init(void)
102 {
103 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
104 sizeof(struct btrfs_end_io_wq),
105 0,
106 SLAB_MEM_SPREAD,
107 NULL);
108 if (!btrfs_end_io_wq_cache)
109 return -ENOMEM;
110 return 0;
111 }
112
113 void btrfs_end_io_wq_exit(void)
114 {
115 kmem_cache_destroy(btrfs_end_io_wq_cache);
116 }
117
118 /*
119 * async submit bios are used to offload expensive checksumming
120 * onto the worker threads. They checksum file and metadata bios
121 * just before they are sent down the IO stack.
122 */
123 struct async_submit_bio {
124 void *private_data;
125 struct btrfs_fs_info *fs_info;
126 struct bio *bio;
127 extent_submit_bio_hook_t *submit_bio_start;
128 extent_submit_bio_hook_t *submit_bio_done;
129 int mirror_num;
130 unsigned long bio_flags;
131 /*
132 * bio_offset is optional, can be used if the pages in the bio
133 * can't tell us where in the file the bio should go
134 */
135 u64 bio_offset;
136 struct btrfs_work work;
137 blk_status_t status;
138 };
139
140 /*
141 * Lockdep class keys for extent_buffer->lock's in this root. For a given
142 * eb, the lockdep key is determined by the btrfs_root it belongs to and
143 * the level the eb occupies in the tree.
144 *
145 * Different roots are used for different purposes and may nest inside each
146 * other and they require separate keysets. As lockdep keys should be
147 * static, assign keysets according to the purpose of the root as indicated
148 * by btrfs_root->objectid. This ensures that all special purpose roots
149 * have separate keysets.
150 *
151 * Lock-nesting across peer nodes is always done with the immediate parent
152 * node locked thus preventing deadlock. As lockdep doesn't know this, use
153 * subclass to avoid triggering lockdep warning in such cases.
154 *
155 * The key is set by the readpage_end_io_hook after the buffer has passed
156 * csum validation but before the pages are unlocked. It is also set by
157 * btrfs_init_new_buffer on freshly allocated blocks.
158 *
159 * We also add a check to make sure the highest level of the tree is the
160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
161 * needs update as well.
162 */
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
165 # error
166 # endif
167
168 static struct btrfs_lockdep_keyset {
169 u64 id; /* root objectid */
170 const char *name_stem; /* lock name stem */
171 char names[BTRFS_MAX_LEVEL + 1][20];
172 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
175 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
176 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
177 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
178 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
179 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
180 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
181 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
182 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
183 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
184 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
185 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
186 { .id = 0, .name_stem = "tree" },
187 };
188
189 void __init btrfs_init_lockdep(void)
190 {
191 int i, j;
192
193 /* initialize lockdep class names */
194 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
196
197 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198 snprintf(ks->names[j], sizeof(ks->names[j]),
199 "btrfs-%s-%02d", ks->name_stem, j);
200 }
201 }
202
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204 int level)
205 {
206 struct btrfs_lockdep_keyset *ks;
207
208 BUG_ON(level >= ARRAY_SIZE(ks->keys));
209
210 /* find the matching keyset, id 0 is the default entry */
211 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212 if (ks->id == objectid)
213 break;
214
215 lockdep_set_class_and_name(&eb->lock,
216 &ks->keys[level], ks->names[level]);
217 }
218
219 #endif
220
221 /*
222 * extents on the btree inode are pretty simple, there's one extent
223 * that covers the entire device
224 */
225 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
226 struct page *page, size_t pg_offset, u64 start, u64 len,
227 int create)
228 {
229 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
230 struct extent_map_tree *em_tree = &inode->extent_tree;
231 struct extent_map *em;
232 int ret;
233
234 read_lock(&em_tree->lock);
235 em = lookup_extent_mapping(em_tree, start, len);
236 if (em) {
237 em->bdev = fs_info->fs_devices->latest_bdev;
238 read_unlock(&em_tree->lock);
239 goto out;
240 }
241 read_unlock(&em_tree->lock);
242
243 em = alloc_extent_map();
244 if (!em) {
245 em = ERR_PTR(-ENOMEM);
246 goto out;
247 }
248 em->start = 0;
249 em->len = (u64)-1;
250 em->block_len = (u64)-1;
251 em->block_start = 0;
252 em->bdev = fs_info->fs_devices->latest_bdev;
253
254 write_lock(&em_tree->lock);
255 ret = add_extent_mapping(em_tree, em, 0);
256 if (ret == -EEXIST) {
257 free_extent_map(em);
258 em = lookup_extent_mapping(em_tree, start, len);
259 if (!em)
260 em = ERR_PTR(-EIO);
261 } else if (ret) {
262 free_extent_map(em);
263 em = ERR_PTR(ret);
264 }
265 write_unlock(&em_tree->lock);
266
267 out:
268 return em;
269 }
270
271 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
272 {
273 return btrfs_crc32c(seed, data, len);
274 }
275
276 void btrfs_csum_final(u32 crc, u8 *result)
277 {
278 put_unaligned_le32(~crc, result);
279 }
280
281 /*
282 * compute the csum for a btree block, and either verify it or write it
283 * into the csum field of the block.
284 */
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286 struct extent_buffer *buf,
287 int verify)
288 {
289 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290 char result[BTRFS_CSUM_SIZE];
291 unsigned long len;
292 unsigned long cur_len;
293 unsigned long offset = BTRFS_CSUM_SIZE;
294 char *kaddr;
295 unsigned long map_start;
296 unsigned long map_len;
297 int err;
298 u32 crc = ~(u32)0;
299
300 len = buf->len - offset;
301 while (len > 0) {
302 err = map_private_extent_buffer(buf, offset, 32,
303 &kaddr, &map_start, &map_len);
304 if (err)
305 return err;
306 cur_len = min(len, map_len - (offset - map_start));
307 crc = btrfs_csum_data(kaddr + offset - map_start,
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
311 }
312 memset(result, 0, BTRFS_CSUM_SIZE);
313
314 btrfs_csum_final(crc, result);
315
316 if (verify) {
317 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
318 u32 val;
319 u32 found = 0;
320 memcpy(&found, result, csum_size);
321
322 read_extent_buffer(buf, &val, 0, csum_size);
323 btrfs_warn_rl(fs_info,
324 "%s checksum verify failed on %llu wanted %X found %X level %d",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 return -EUCLEAN;
328 }
329 } else {
330 write_extent_buffer(buf, result, 0, csum_size);
331 }
332
333 return 0;
334 }
335
336 /*
337 * we can't consider a given block up to date unless the transid of the
338 * block matches the transid in the parent node's pointer. This is how we
339 * detect blocks that either didn't get written at all or got written
340 * in the wrong place.
341 */
342 static int verify_parent_transid(struct extent_io_tree *io_tree,
343 struct extent_buffer *eb, u64 parent_transid,
344 int atomic)
345 {
346 struct extent_state *cached_state = NULL;
347 int ret;
348 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
349
350 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
351 return 0;
352
353 if (atomic)
354 return -EAGAIN;
355
356 if (need_lock) {
357 btrfs_tree_read_lock(eb);
358 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
359 }
360
361 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
362 &cached_state);
363 if (extent_buffer_uptodate(eb) &&
364 btrfs_header_generation(eb) == parent_transid) {
365 ret = 0;
366 goto out;
367 }
368 btrfs_err_rl(eb->fs_info,
369 "parent transid verify failed on %llu wanted %llu found %llu",
370 eb->start,
371 parent_transid, btrfs_header_generation(eb));
372 ret = 1;
373
374 /*
375 * Things reading via commit roots that don't have normal protection,
376 * like send, can have a really old block in cache that may point at a
377 * block that has been freed and re-allocated. So don't clear uptodate
378 * if we find an eb that is under IO (dirty/writeback) because we could
379 * end up reading in the stale data and then writing it back out and
380 * making everybody very sad.
381 */
382 if (!extent_buffer_under_io(eb))
383 clear_extent_buffer_uptodate(eb);
384 out:
385 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
386 &cached_state);
387 if (need_lock)
388 btrfs_tree_read_unlock_blocking(eb);
389 return ret;
390 }
391
392 /*
393 * Return 0 if the superblock checksum type matches the checksum value of that
394 * algorithm. Pass the raw disk superblock data.
395 */
396 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
397 char *raw_disk_sb)
398 {
399 struct btrfs_super_block *disk_sb =
400 (struct btrfs_super_block *)raw_disk_sb;
401 u16 csum_type = btrfs_super_csum_type(disk_sb);
402 int ret = 0;
403
404 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
405 u32 crc = ~(u32)0;
406 const int csum_size = sizeof(crc);
407 char result[csum_size];
408
409 /*
410 * The super_block structure does not span the whole
411 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
412 * is filled with zeros and is included in the checksum.
413 */
414 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
415 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
416 btrfs_csum_final(crc, result);
417
418 if (memcmp(raw_disk_sb, result, csum_size))
419 ret = 1;
420 }
421
422 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
423 btrfs_err(fs_info, "unsupported checksum algorithm %u",
424 csum_type);
425 ret = 1;
426 }
427
428 return ret;
429 }
430
431 /*
432 * helper to read a given tree block, doing retries as required when
433 * the checksums don't match and we have alternate mirrors to try.
434 */
435 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
436 struct extent_buffer *eb,
437 u64 parent_transid)
438 {
439 struct extent_io_tree *io_tree;
440 int failed = 0;
441 int ret;
442 int num_copies = 0;
443 int mirror_num = 0;
444 int failed_mirror = 0;
445
446 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
447 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
448 while (1) {
449 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
450 mirror_num);
451 if (!ret) {
452 if (!verify_parent_transid(io_tree, eb,
453 parent_transid, 0))
454 break;
455 else
456 ret = -EIO;
457 }
458
459 /*
460 * This buffer's crc is fine, but its contents are corrupted, so
461 * there is no reason to read the other copies, they won't be
462 * any less wrong.
463 */
464 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
465 break;
466
467 num_copies = btrfs_num_copies(fs_info,
468 eb->start, eb->len);
469 if (num_copies == 1)
470 break;
471
472 if (!failed_mirror) {
473 failed = 1;
474 failed_mirror = eb->read_mirror;
475 }
476
477 mirror_num++;
478 if (mirror_num == failed_mirror)
479 mirror_num++;
480
481 if (mirror_num > num_copies)
482 break;
483 }
484
485 if (failed && !ret && failed_mirror)
486 repair_eb_io_failure(fs_info, eb, failed_mirror);
487
488 return ret;
489 }
490
491 /*
492 * checksum a dirty tree block before IO. This has extra checks to make sure
493 * we only fill in the checksum field in the first page of a multi-page block
494 */
495
496 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
497 {
498 u64 start = page_offset(page);
499 u64 found_start;
500 struct extent_buffer *eb;
501
502 eb = (struct extent_buffer *)page->private;
503 if (page != eb->pages[0])
504 return 0;
505
506 found_start = btrfs_header_bytenr(eb);
507 /*
508 * Please do not consolidate these warnings into a single if.
509 * It is useful to know what went wrong.
510 */
511 if (WARN_ON(found_start != start))
512 return -EUCLEAN;
513 if (WARN_ON(!PageUptodate(page)))
514 return -EUCLEAN;
515
516 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
517 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
518
519 return csum_tree_block(fs_info, eb, 0);
520 }
521
522 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
523 struct extent_buffer *eb)
524 {
525 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
526 u8 fsid[BTRFS_FSID_SIZE];
527 int ret = 1;
528
529 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
530 while (fs_devices) {
531 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
532 ret = 0;
533 break;
534 }
535 fs_devices = fs_devices->seed;
536 }
537 return ret;
538 }
539
540 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
541 u64 phy_offset, struct page *page,
542 u64 start, u64 end, int mirror)
543 {
544 u64 found_start;
545 int found_level;
546 struct extent_buffer *eb;
547 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548 struct btrfs_fs_info *fs_info = root->fs_info;
549 int ret = 0;
550 int reads_done;
551
552 if (!page->private)
553 goto out;
554
555 eb = (struct extent_buffer *)page->private;
556
557 /* the pending IO might have been the only thing that kept this buffer
558 * in memory. Make sure we have a ref for all this other checks
559 */
560 extent_buffer_get(eb);
561
562 reads_done = atomic_dec_and_test(&eb->io_pages);
563 if (!reads_done)
564 goto err;
565
566 eb->read_mirror = mirror;
567 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
568 ret = -EIO;
569 goto err;
570 }
571
572 found_start = btrfs_header_bytenr(eb);
573 if (found_start != eb->start) {
574 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
575 found_start, eb->start);
576 ret = -EIO;
577 goto err;
578 }
579 if (check_tree_block_fsid(fs_info, eb)) {
580 btrfs_err_rl(fs_info, "bad fsid on block %llu",
581 eb->start);
582 ret = -EIO;
583 goto err;
584 }
585 found_level = btrfs_header_level(eb);
586 if (found_level >= BTRFS_MAX_LEVEL) {
587 btrfs_err(fs_info, "bad tree block level %d",
588 (int)btrfs_header_level(eb));
589 ret = -EIO;
590 goto err;
591 }
592
593 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
594 eb, found_level);
595
596 ret = csum_tree_block(fs_info, eb, 1);
597 if (ret)
598 goto err;
599
600 /*
601 * If this is a leaf block and it is corrupt, set the corrupt bit so
602 * that we don't try and read the other copies of this block, just
603 * return -EIO.
604 */
605 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
606 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
607 ret = -EIO;
608 }
609
610 if (found_level > 0 && btrfs_check_node(root, eb))
611 ret = -EIO;
612
613 if (!ret)
614 set_extent_buffer_uptodate(eb);
615 err:
616 if (reads_done &&
617 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
618 btree_readahead_hook(eb, ret);
619
620 if (ret) {
621 /*
622 * our io error hook is going to dec the io pages
623 * again, we have to make sure it has something
624 * to decrement
625 */
626 atomic_inc(&eb->io_pages);
627 clear_extent_buffer_uptodate(eb);
628 }
629 free_extent_buffer(eb);
630 out:
631 return ret;
632 }
633
634 static int btree_io_failed_hook(struct page *page, int failed_mirror)
635 {
636 struct extent_buffer *eb;
637
638 eb = (struct extent_buffer *)page->private;
639 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
640 eb->read_mirror = failed_mirror;
641 atomic_dec(&eb->io_pages);
642 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
643 btree_readahead_hook(eb, -EIO);
644 return -EIO; /* we fixed nothing */
645 }
646
647 static void end_workqueue_bio(struct bio *bio)
648 {
649 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
650 struct btrfs_fs_info *fs_info;
651 struct btrfs_workqueue *wq;
652 btrfs_work_func_t func;
653
654 fs_info = end_io_wq->info;
655 end_io_wq->status = bio->bi_status;
656
657 if (bio_op(bio) == REQ_OP_WRITE) {
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
659 wq = fs_info->endio_meta_write_workers;
660 func = btrfs_endio_meta_write_helper;
661 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
662 wq = fs_info->endio_freespace_worker;
663 func = btrfs_freespace_write_helper;
664 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
665 wq = fs_info->endio_raid56_workers;
666 func = btrfs_endio_raid56_helper;
667 } else {
668 wq = fs_info->endio_write_workers;
669 func = btrfs_endio_write_helper;
670 }
671 } else {
672 if (unlikely(end_io_wq->metadata ==
673 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
674 wq = fs_info->endio_repair_workers;
675 func = btrfs_endio_repair_helper;
676 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
677 wq = fs_info->endio_raid56_workers;
678 func = btrfs_endio_raid56_helper;
679 } else if (end_io_wq->metadata) {
680 wq = fs_info->endio_meta_workers;
681 func = btrfs_endio_meta_helper;
682 } else {
683 wq = fs_info->endio_workers;
684 func = btrfs_endio_helper;
685 }
686 }
687
688 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
689 btrfs_queue_work(wq, &end_io_wq->work);
690 }
691
692 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
693 enum btrfs_wq_endio_type metadata)
694 {
695 struct btrfs_end_io_wq *end_io_wq;
696
697 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
698 if (!end_io_wq)
699 return BLK_STS_RESOURCE;
700
701 end_io_wq->private = bio->bi_private;
702 end_io_wq->end_io = bio->bi_end_io;
703 end_io_wq->info = info;
704 end_io_wq->status = 0;
705 end_io_wq->bio = bio;
706 end_io_wq->metadata = metadata;
707
708 bio->bi_private = end_io_wq;
709 bio->bi_end_io = end_workqueue_bio;
710 return 0;
711 }
712
713 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
714 {
715 unsigned long limit = min_t(unsigned long,
716 info->thread_pool_size,
717 info->fs_devices->open_devices);
718 return 256 * limit;
719 }
720
721 static void run_one_async_start(struct btrfs_work *work)
722 {
723 struct async_submit_bio *async;
724 blk_status_t ret;
725
726 async = container_of(work, struct async_submit_bio, work);
727 ret = async->submit_bio_start(async->private_data, async->bio,
728 async->mirror_num, async->bio_flags,
729 async->bio_offset);
730 if (ret)
731 async->status = ret;
732 }
733
734 static void run_one_async_done(struct btrfs_work *work)
735 {
736 struct async_submit_bio *async;
737
738 async = container_of(work, struct async_submit_bio, work);
739
740 /* If an error occurred we just want to clean up the bio and move on */
741 if (async->status) {
742 async->bio->bi_status = async->status;
743 bio_endio(async->bio);
744 return;
745 }
746
747 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
748 async->bio_flags, async->bio_offset);
749 }
750
751 static void run_one_async_free(struct btrfs_work *work)
752 {
753 struct async_submit_bio *async;
754
755 async = container_of(work, struct async_submit_bio, work);
756 kfree(async);
757 }
758
759 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
760 int mirror_num, unsigned long bio_flags,
761 u64 bio_offset, void *private_data,
762 extent_submit_bio_hook_t *submit_bio_start,
763 extent_submit_bio_hook_t *submit_bio_done)
764 {
765 struct async_submit_bio *async;
766
767 async = kmalloc(sizeof(*async), GFP_NOFS);
768 if (!async)
769 return BLK_STS_RESOURCE;
770
771 async->private_data = private_data;
772 async->fs_info = fs_info;
773 async->bio = bio;
774 async->mirror_num = mirror_num;
775 async->submit_bio_start = submit_bio_start;
776 async->submit_bio_done = submit_bio_done;
777
778 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
779 run_one_async_done, run_one_async_free);
780
781 async->bio_flags = bio_flags;
782 async->bio_offset = bio_offset;
783
784 async->status = 0;
785
786 if (op_is_sync(bio->bi_opf))
787 btrfs_set_work_high_priority(&async->work);
788
789 btrfs_queue_work(fs_info->workers, &async->work);
790 return 0;
791 }
792
793 static blk_status_t btree_csum_one_bio(struct bio *bio)
794 {
795 struct bio_vec *bvec;
796 struct btrfs_root *root;
797 int i, ret = 0;
798
799 ASSERT(!bio_flagged(bio, BIO_CLONED));
800 bio_for_each_segment_all(bvec, bio, i) {
801 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
802 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
803 if (ret)
804 break;
805 }
806
807 return errno_to_blk_status(ret);
808 }
809
810 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
811 int mirror_num, unsigned long bio_flags,
812 u64 bio_offset)
813 {
814 /*
815 * when we're called for a write, we're already in the async
816 * submission context. Just jump into btrfs_map_bio
817 */
818 return btree_csum_one_bio(bio);
819 }
820
821 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
822 int mirror_num, unsigned long bio_flags,
823 u64 bio_offset)
824 {
825 struct inode *inode = private_data;
826 blk_status_t ret;
827
828 /*
829 * when we're called for a write, we're already in the async
830 * submission context. Just jump into btrfs_map_bio
831 */
832 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
833 if (ret) {
834 bio->bi_status = ret;
835 bio_endio(bio);
836 }
837 return ret;
838 }
839
840 static int check_async_write(struct btrfs_inode *bi)
841 {
842 if (atomic_read(&bi->sync_writers))
843 return 0;
844 #ifdef CONFIG_X86
845 if (static_cpu_has(X86_FEATURE_XMM4_2))
846 return 0;
847 #endif
848 return 1;
849 }
850
851 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
852 int mirror_num, unsigned long bio_flags,
853 u64 bio_offset)
854 {
855 struct inode *inode = private_data;
856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
857 int async = check_async_write(BTRFS_I(inode));
858 blk_status_t ret;
859
860 if (bio_op(bio) != REQ_OP_WRITE) {
861 /*
862 * called for a read, do the setup so that checksum validation
863 * can happen in the async kernel threads
864 */
865 ret = btrfs_bio_wq_end_io(fs_info, bio,
866 BTRFS_WQ_ENDIO_METADATA);
867 if (ret)
868 goto out_w_error;
869 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
870 } else if (!async) {
871 ret = btree_csum_one_bio(bio);
872 if (ret)
873 goto out_w_error;
874 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
875 } else {
876 /*
877 * kthread helpers are used to submit writes so that
878 * checksumming can happen in parallel across all CPUs
879 */
880 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
881 bio_offset, private_data,
882 __btree_submit_bio_start,
883 __btree_submit_bio_done);
884 }
885
886 if (ret)
887 goto out_w_error;
888 return 0;
889
890 out_w_error:
891 bio->bi_status = ret;
892 bio_endio(bio);
893 return ret;
894 }
895
896 #ifdef CONFIG_MIGRATION
897 static int btree_migratepage(struct address_space *mapping,
898 struct page *newpage, struct page *page,
899 enum migrate_mode mode)
900 {
901 /*
902 * we can't safely write a btree page from here,
903 * we haven't done the locking hook
904 */
905 if (PageDirty(page))
906 return -EAGAIN;
907 /*
908 * Buffers may be managed in a filesystem specific way.
909 * We must have no buffers or drop them.
910 */
911 if (page_has_private(page) &&
912 !try_to_release_page(page, GFP_KERNEL))
913 return -EAGAIN;
914 return migrate_page(mapping, newpage, page, mode);
915 }
916 #endif
917
918
919 static int btree_writepages(struct address_space *mapping,
920 struct writeback_control *wbc)
921 {
922 struct btrfs_fs_info *fs_info;
923 int ret;
924
925 if (wbc->sync_mode == WB_SYNC_NONE) {
926
927 if (wbc->for_kupdate)
928 return 0;
929
930 fs_info = BTRFS_I(mapping->host)->root->fs_info;
931 /* this is a bit racy, but that's ok */
932 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
933 BTRFS_DIRTY_METADATA_THRESH);
934 if (ret < 0)
935 return 0;
936 }
937 return btree_write_cache_pages(mapping, wbc);
938 }
939
940 static int btree_readpage(struct file *file, struct page *page)
941 {
942 struct extent_io_tree *tree;
943 tree = &BTRFS_I(page->mapping->host)->io_tree;
944 return extent_read_full_page(tree, page, btree_get_extent, 0);
945 }
946
947 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
948 {
949 if (PageWriteback(page) || PageDirty(page))
950 return 0;
951
952 return try_release_extent_buffer(page);
953 }
954
955 static void btree_invalidatepage(struct page *page, unsigned int offset,
956 unsigned int length)
957 {
958 struct extent_io_tree *tree;
959 tree = &BTRFS_I(page->mapping->host)->io_tree;
960 extent_invalidatepage(tree, page, offset);
961 btree_releasepage(page, GFP_NOFS);
962 if (PagePrivate(page)) {
963 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
964 "page private not zero on page %llu",
965 (unsigned long long)page_offset(page));
966 ClearPagePrivate(page);
967 set_page_private(page, 0);
968 put_page(page);
969 }
970 }
971
972 static int btree_set_page_dirty(struct page *page)
973 {
974 #ifdef DEBUG
975 struct extent_buffer *eb;
976
977 BUG_ON(!PagePrivate(page));
978 eb = (struct extent_buffer *)page->private;
979 BUG_ON(!eb);
980 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
981 BUG_ON(!atomic_read(&eb->refs));
982 btrfs_assert_tree_locked(eb);
983 #endif
984 return __set_page_dirty_nobuffers(page);
985 }
986
987 static const struct address_space_operations btree_aops = {
988 .readpage = btree_readpage,
989 .writepages = btree_writepages,
990 .releasepage = btree_releasepage,
991 .invalidatepage = btree_invalidatepage,
992 #ifdef CONFIG_MIGRATION
993 .migratepage = btree_migratepage,
994 #endif
995 .set_page_dirty = btree_set_page_dirty,
996 };
997
998 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
999 {
1000 struct extent_buffer *buf = NULL;
1001 struct inode *btree_inode = fs_info->btree_inode;
1002
1003 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1004 if (IS_ERR(buf))
1005 return;
1006 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1007 buf, WAIT_NONE, 0);
1008 free_extent_buffer(buf);
1009 }
1010
1011 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1012 int mirror_num, struct extent_buffer **eb)
1013 {
1014 struct extent_buffer *buf = NULL;
1015 struct inode *btree_inode = fs_info->btree_inode;
1016 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1017 int ret;
1018
1019 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1020 if (IS_ERR(buf))
1021 return 0;
1022
1023 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1024
1025 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1026 mirror_num);
1027 if (ret) {
1028 free_extent_buffer(buf);
1029 return ret;
1030 }
1031
1032 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1033 free_extent_buffer(buf);
1034 return -EIO;
1035 } else if (extent_buffer_uptodate(buf)) {
1036 *eb = buf;
1037 } else {
1038 free_extent_buffer(buf);
1039 }
1040 return 0;
1041 }
1042
1043 struct extent_buffer *btrfs_find_create_tree_block(
1044 struct btrfs_fs_info *fs_info,
1045 u64 bytenr)
1046 {
1047 if (btrfs_is_testing(fs_info))
1048 return alloc_test_extent_buffer(fs_info, bytenr);
1049 return alloc_extent_buffer(fs_info, bytenr);
1050 }
1051
1052
1053 int btrfs_write_tree_block(struct extent_buffer *buf)
1054 {
1055 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1056 buf->start + buf->len - 1);
1057 }
1058
1059 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1060 {
1061 filemap_fdatawait_range(buf->pages[0]->mapping,
1062 buf->start, buf->start + buf->len - 1);
1063 }
1064
1065 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1066 u64 parent_transid)
1067 {
1068 struct extent_buffer *buf = NULL;
1069 int ret;
1070
1071 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1072 if (IS_ERR(buf))
1073 return buf;
1074
1075 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1076 if (ret) {
1077 free_extent_buffer(buf);
1078 return ERR_PTR(ret);
1079 }
1080 return buf;
1081
1082 }
1083
1084 void clean_tree_block(struct btrfs_fs_info *fs_info,
1085 struct extent_buffer *buf)
1086 {
1087 if (btrfs_header_generation(buf) ==
1088 fs_info->running_transaction->transid) {
1089 btrfs_assert_tree_locked(buf);
1090
1091 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1092 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1093 -buf->len,
1094 fs_info->dirty_metadata_batch);
1095 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1096 btrfs_set_lock_blocking(buf);
1097 clear_extent_buffer_dirty(buf);
1098 }
1099 }
1100 }
1101
1102 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1103 {
1104 struct btrfs_subvolume_writers *writers;
1105 int ret;
1106
1107 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1108 if (!writers)
1109 return ERR_PTR(-ENOMEM);
1110
1111 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1112 if (ret < 0) {
1113 kfree(writers);
1114 return ERR_PTR(ret);
1115 }
1116
1117 init_waitqueue_head(&writers->wait);
1118 return writers;
1119 }
1120
1121 static void
1122 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1123 {
1124 percpu_counter_destroy(&writers->counter);
1125 kfree(writers);
1126 }
1127
1128 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1129 u64 objectid)
1130 {
1131 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1132 root->node = NULL;
1133 root->commit_root = NULL;
1134 root->state = 0;
1135 root->orphan_cleanup_state = 0;
1136
1137 root->objectid = objectid;
1138 root->last_trans = 0;
1139 root->highest_objectid = 0;
1140 root->nr_delalloc_inodes = 0;
1141 root->nr_ordered_extents = 0;
1142 root->name = NULL;
1143 root->inode_tree = RB_ROOT;
1144 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1145 root->block_rsv = NULL;
1146 root->orphan_block_rsv = NULL;
1147
1148 INIT_LIST_HEAD(&root->dirty_list);
1149 INIT_LIST_HEAD(&root->root_list);
1150 INIT_LIST_HEAD(&root->delalloc_inodes);
1151 INIT_LIST_HEAD(&root->delalloc_root);
1152 INIT_LIST_HEAD(&root->ordered_extents);
1153 INIT_LIST_HEAD(&root->ordered_root);
1154 INIT_LIST_HEAD(&root->logged_list[0]);
1155 INIT_LIST_HEAD(&root->logged_list[1]);
1156 spin_lock_init(&root->orphan_lock);
1157 spin_lock_init(&root->inode_lock);
1158 spin_lock_init(&root->delalloc_lock);
1159 spin_lock_init(&root->ordered_extent_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 spin_lock_init(&root->log_extents_lock[0]);
1162 spin_lock_init(&root->log_extents_lock[1]);
1163 mutex_init(&root->objectid_mutex);
1164 mutex_init(&root->log_mutex);
1165 mutex_init(&root->ordered_extent_mutex);
1166 mutex_init(&root->delalloc_mutex);
1167 init_waitqueue_head(&root->log_writer_wait);
1168 init_waitqueue_head(&root->log_commit_wait[0]);
1169 init_waitqueue_head(&root->log_commit_wait[1]);
1170 INIT_LIST_HEAD(&root->log_ctxs[0]);
1171 INIT_LIST_HEAD(&root->log_ctxs[1]);
1172 atomic_set(&root->log_commit[0], 0);
1173 atomic_set(&root->log_commit[1], 0);
1174 atomic_set(&root->log_writers, 0);
1175 atomic_set(&root->log_batch, 0);
1176 atomic_set(&root->orphan_inodes, 0);
1177 refcount_set(&root->refs, 1);
1178 atomic_set(&root->will_be_snapshotted, 0);
1179 atomic64_set(&root->qgroup_meta_rsv, 0);
1180 root->log_transid = 0;
1181 root->log_transid_committed = -1;
1182 root->last_log_commit = 0;
1183 if (!dummy)
1184 extent_io_tree_init(&root->dirty_log_pages, NULL);
1185
1186 memset(&root->root_key, 0, sizeof(root->root_key));
1187 memset(&root->root_item, 0, sizeof(root->root_item));
1188 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1189 if (!dummy)
1190 root->defrag_trans_start = fs_info->generation;
1191 else
1192 root->defrag_trans_start = 0;
1193 root->root_key.objectid = objectid;
1194 root->anon_dev = 0;
1195
1196 spin_lock_init(&root->root_item_lock);
1197 }
1198
1199 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1200 gfp_t flags)
1201 {
1202 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1203 if (root)
1204 root->fs_info = fs_info;
1205 return root;
1206 }
1207
1208 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1209 /* Should only be used by the testing infrastructure */
1210 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1211 {
1212 struct btrfs_root *root;
1213
1214 if (!fs_info)
1215 return ERR_PTR(-EINVAL);
1216
1217 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1218 if (!root)
1219 return ERR_PTR(-ENOMEM);
1220
1221 /* We don't use the stripesize in selftest, set it as sectorsize */
1222 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1223 root->alloc_bytenr = 0;
1224
1225 return root;
1226 }
1227 #endif
1228
1229 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1230 struct btrfs_fs_info *fs_info,
1231 u64 objectid)
1232 {
1233 struct extent_buffer *leaf;
1234 struct btrfs_root *tree_root = fs_info->tree_root;
1235 struct btrfs_root *root;
1236 struct btrfs_key key;
1237 int ret = 0;
1238 uuid_le uuid = NULL_UUID_LE;
1239
1240 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1241 if (!root)
1242 return ERR_PTR(-ENOMEM);
1243
1244 __setup_root(root, fs_info, objectid);
1245 root->root_key.objectid = objectid;
1246 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1247 root->root_key.offset = 0;
1248
1249 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1250 if (IS_ERR(leaf)) {
1251 ret = PTR_ERR(leaf);
1252 leaf = NULL;
1253 goto fail;
1254 }
1255
1256 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1257 btrfs_set_header_bytenr(leaf, leaf->start);
1258 btrfs_set_header_generation(leaf, trans->transid);
1259 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1260 btrfs_set_header_owner(leaf, objectid);
1261 root->node = leaf;
1262
1263 write_extent_buffer_fsid(leaf, fs_info->fsid);
1264 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1265 btrfs_mark_buffer_dirty(leaf);
1266
1267 root->commit_root = btrfs_root_node(root);
1268 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1269
1270 root->root_item.flags = 0;
1271 root->root_item.byte_limit = 0;
1272 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1273 btrfs_set_root_generation(&root->root_item, trans->transid);
1274 btrfs_set_root_level(&root->root_item, 0);
1275 btrfs_set_root_refs(&root->root_item, 1);
1276 btrfs_set_root_used(&root->root_item, leaf->len);
1277 btrfs_set_root_last_snapshot(&root->root_item, 0);
1278 btrfs_set_root_dirid(&root->root_item, 0);
1279 if (is_fstree(objectid))
1280 uuid_le_gen(&uuid);
1281 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1282 root->root_item.drop_level = 0;
1283
1284 key.objectid = objectid;
1285 key.type = BTRFS_ROOT_ITEM_KEY;
1286 key.offset = 0;
1287 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1288 if (ret)
1289 goto fail;
1290
1291 btrfs_tree_unlock(leaf);
1292
1293 return root;
1294
1295 fail:
1296 if (leaf) {
1297 btrfs_tree_unlock(leaf);
1298 free_extent_buffer(root->commit_root);
1299 free_extent_buffer(leaf);
1300 }
1301 kfree(root);
1302
1303 return ERR_PTR(ret);
1304 }
1305
1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307 struct btrfs_fs_info *fs_info)
1308 {
1309 struct btrfs_root *root;
1310 struct extent_buffer *leaf;
1311
1312 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1313 if (!root)
1314 return ERR_PTR(-ENOMEM);
1315
1316 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1317
1318 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1319 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1320 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1321
1322 /*
1323 * DON'T set REF_COWS for log trees
1324 *
1325 * log trees do not get reference counted because they go away
1326 * before a real commit is actually done. They do store pointers
1327 * to file data extents, and those reference counts still get
1328 * updated (along with back refs to the log tree).
1329 */
1330
1331 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1332 NULL, 0, 0, 0);
1333 if (IS_ERR(leaf)) {
1334 kfree(root);
1335 return ERR_CAST(leaf);
1336 }
1337
1338 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1339 btrfs_set_header_bytenr(leaf, leaf->start);
1340 btrfs_set_header_generation(leaf, trans->transid);
1341 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1343 root->node = leaf;
1344
1345 write_extent_buffer_fsid(root->node, fs_info->fsid);
1346 btrfs_mark_buffer_dirty(root->node);
1347 btrfs_tree_unlock(root->node);
1348 return root;
1349 }
1350
1351 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1352 struct btrfs_fs_info *fs_info)
1353 {
1354 struct btrfs_root *log_root;
1355
1356 log_root = alloc_log_tree(trans, fs_info);
1357 if (IS_ERR(log_root))
1358 return PTR_ERR(log_root);
1359 WARN_ON(fs_info->log_root_tree);
1360 fs_info->log_root_tree = log_root;
1361 return 0;
1362 }
1363
1364 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1365 struct btrfs_root *root)
1366 {
1367 struct btrfs_fs_info *fs_info = root->fs_info;
1368 struct btrfs_root *log_root;
1369 struct btrfs_inode_item *inode_item;
1370
1371 log_root = alloc_log_tree(trans, fs_info);
1372 if (IS_ERR(log_root))
1373 return PTR_ERR(log_root);
1374
1375 log_root->last_trans = trans->transid;
1376 log_root->root_key.offset = root->root_key.objectid;
1377
1378 inode_item = &log_root->root_item.inode;
1379 btrfs_set_stack_inode_generation(inode_item, 1);
1380 btrfs_set_stack_inode_size(inode_item, 3);
1381 btrfs_set_stack_inode_nlink(inode_item, 1);
1382 btrfs_set_stack_inode_nbytes(inode_item,
1383 fs_info->nodesize);
1384 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1385
1386 btrfs_set_root_node(&log_root->root_item, log_root->node);
1387
1388 WARN_ON(root->log_root);
1389 root->log_root = log_root;
1390 root->log_transid = 0;
1391 root->log_transid_committed = -1;
1392 root->last_log_commit = 0;
1393 return 0;
1394 }
1395
1396 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1397 struct btrfs_key *key)
1398 {
1399 struct btrfs_root *root;
1400 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1401 struct btrfs_path *path;
1402 u64 generation;
1403 int ret;
1404
1405 path = btrfs_alloc_path();
1406 if (!path)
1407 return ERR_PTR(-ENOMEM);
1408
1409 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1410 if (!root) {
1411 ret = -ENOMEM;
1412 goto alloc_fail;
1413 }
1414
1415 __setup_root(root, fs_info, key->objectid);
1416
1417 ret = btrfs_find_root(tree_root, key, path,
1418 &root->root_item, &root->root_key);
1419 if (ret) {
1420 if (ret > 0)
1421 ret = -ENOENT;
1422 goto find_fail;
1423 }
1424
1425 generation = btrfs_root_generation(&root->root_item);
1426 root->node = read_tree_block(fs_info,
1427 btrfs_root_bytenr(&root->root_item),
1428 generation);
1429 if (IS_ERR(root->node)) {
1430 ret = PTR_ERR(root->node);
1431 goto find_fail;
1432 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1433 ret = -EIO;
1434 free_extent_buffer(root->node);
1435 goto find_fail;
1436 }
1437 root->commit_root = btrfs_root_node(root);
1438 out:
1439 btrfs_free_path(path);
1440 return root;
1441
1442 find_fail:
1443 kfree(root);
1444 alloc_fail:
1445 root = ERR_PTR(ret);
1446 goto out;
1447 }
1448
1449 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450 struct btrfs_key *location)
1451 {
1452 struct btrfs_root *root;
1453
1454 root = btrfs_read_tree_root(tree_root, location);
1455 if (IS_ERR(root))
1456 return root;
1457
1458 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1459 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1460 btrfs_check_and_init_root_item(&root->root_item);
1461 }
1462
1463 return root;
1464 }
1465
1466 int btrfs_init_fs_root(struct btrfs_root *root)
1467 {
1468 int ret;
1469 struct btrfs_subvolume_writers *writers;
1470
1471 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473 GFP_NOFS);
1474 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475 ret = -ENOMEM;
1476 goto fail;
1477 }
1478
1479 writers = btrfs_alloc_subvolume_writers();
1480 if (IS_ERR(writers)) {
1481 ret = PTR_ERR(writers);
1482 goto fail;
1483 }
1484 root->subv_writers = writers;
1485
1486 btrfs_init_free_ino_ctl(root);
1487 spin_lock_init(&root->ino_cache_lock);
1488 init_waitqueue_head(&root->ino_cache_wait);
1489
1490 ret = get_anon_bdev(&root->anon_dev);
1491 if (ret)
1492 goto fail;
1493
1494 mutex_lock(&root->objectid_mutex);
1495 ret = btrfs_find_highest_objectid(root,
1496 &root->highest_objectid);
1497 if (ret) {
1498 mutex_unlock(&root->objectid_mutex);
1499 goto fail;
1500 }
1501
1502 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504 mutex_unlock(&root->objectid_mutex);
1505
1506 return 0;
1507 fail:
1508 /* the caller is responsible to call free_fs_root */
1509 return ret;
1510 }
1511
1512 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513 u64 root_id)
1514 {
1515 struct btrfs_root *root;
1516
1517 spin_lock(&fs_info->fs_roots_radix_lock);
1518 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519 (unsigned long)root_id);
1520 spin_unlock(&fs_info->fs_roots_radix_lock);
1521 return root;
1522 }
1523
1524 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525 struct btrfs_root *root)
1526 {
1527 int ret;
1528
1529 ret = radix_tree_preload(GFP_NOFS);
1530 if (ret)
1531 return ret;
1532
1533 spin_lock(&fs_info->fs_roots_radix_lock);
1534 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535 (unsigned long)root->root_key.objectid,
1536 root);
1537 if (ret == 0)
1538 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1539 spin_unlock(&fs_info->fs_roots_radix_lock);
1540 radix_tree_preload_end();
1541
1542 return ret;
1543 }
1544
1545 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546 struct btrfs_key *location,
1547 bool check_ref)
1548 {
1549 struct btrfs_root *root;
1550 struct btrfs_path *path;
1551 struct btrfs_key key;
1552 int ret;
1553
1554 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555 return fs_info->tree_root;
1556 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557 return fs_info->extent_root;
1558 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559 return fs_info->chunk_root;
1560 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561 return fs_info->dev_root;
1562 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563 return fs_info->csum_root;
1564 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565 return fs_info->quota_root ? fs_info->quota_root :
1566 ERR_PTR(-ENOENT);
1567 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568 return fs_info->uuid_root ? fs_info->uuid_root :
1569 ERR_PTR(-ENOENT);
1570 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571 return fs_info->free_space_root ? fs_info->free_space_root :
1572 ERR_PTR(-ENOENT);
1573 again:
1574 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575 if (root) {
1576 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1577 return ERR_PTR(-ENOENT);
1578 return root;
1579 }
1580
1581 root = btrfs_read_fs_root(fs_info->tree_root, location);
1582 if (IS_ERR(root))
1583 return root;
1584
1585 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586 ret = -ENOENT;
1587 goto fail;
1588 }
1589
1590 ret = btrfs_init_fs_root(root);
1591 if (ret)
1592 goto fail;
1593
1594 path = btrfs_alloc_path();
1595 if (!path) {
1596 ret = -ENOMEM;
1597 goto fail;
1598 }
1599 key.objectid = BTRFS_ORPHAN_OBJECTID;
1600 key.type = BTRFS_ORPHAN_ITEM_KEY;
1601 key.offset = location->objectid;
1602
1603 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604 btrfs_free_path(path);
1605 if (ret < 0)
1606 goto fail;
1607 if (ret == 0)
1608 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610 ret = btrfs_insert_fs_root(fs_info, root);
1611 if (ret) {
1612 if (ret == -EEXIST) {
1613 free_fs_root(root);
1614 goto again;
1615 }
1616 goto fail;
1617 }
1618 return root;
1619 fail:
1620 free_fs_root(root);
1621 return ERR_PTR(ret);
1622 }
1623
1624 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625 {
1626 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627 int ret = 0;
1628 struct btrfs_device *device;
1629 struct backing_dev_info *bdi;
1630
1631 rcu_read_lock();
1632 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633 if (!device->bdev)
1634 continue;
1635 bdi = device->bdev->bd_bdi;
1636 if (bdi_congested(bdi, bdi_bits)) {
1637 ret = 1;
1638 break;
1639 }
1640 }
1641 rcu_read_unlock();
1642 return ret;
1643 }
1644
1645 /*
1646 * called by the kthread helper functions to finally call the bio end_io
1647 * functions. This is where read checksum verification actually happens
1648 */
1649 static void end_workqueue_fn(struct btrfs_work *work)
1650 {
1651 struct bio *bio;
1652 struct btrfs_end_io_wq *end_io_wq;
1653
1654 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655 bio = end_io_wq->bio;
1656
1657 bio->bi_status = end_io_wq->status;
1658 bio->bi_private = end_io_wq->private;
1659 bio->bi_end_io = end_io_wq->end_io;
1660 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1661 bio_endio(bio);
1662 }
1663
1664 static int cleaner_kthread(void *arg)
1665 {
1666 struct btrfs_root *root = arg;
1667 struct btrfs_fs_info *fs_info = root->fs_info;
1668 int again;
1669 struct btrfs_trans_handle *trans;
1670
1671 do {
1672 again = 0;
1673
1674 /* Make the cleaner go to sleep early. */
1675 if (btrfs_need_cleaner_sleep(fs_info))
1676 goto sleep;
1677
1678 /*
1679 * Do not do anything if we might cause open_ctree() to block
1680 * before we have finished mounting the filesystem.
1681 */
1682 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1683 goto sleep;
1684
1685 if (!mutex_trylock(&fs_info->cleaner_mutex))
1686 goto sleep;
1687
1688 /*
1689 * Avoid the problem that we change the status of the fs
1690 * during the above check and trylock.
1691 */
1692 if (btrfs_need_cleaner_sleep(fs_info)) {
1693 mutex_unlock(&fs_info->cleaner_mutex);
1694 goto sleep;
1695 }
1696
1697 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1698 btrfs_run_delayed_iputs(fs_info);
1699 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1700
1701 again = btrfs_clean_one_deleted_snapshot(root);
1702 mutex_unlock(&fs_info->cleaner_mutex);
1703
1704 /*
1705 * The defragger has dealt with the R/O remount and umount,
1706 * needn't do anything special here.
1707 */
1708 btrfs_run_defrag_inodes(fs_info);
1709
1710 /*
1711 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1712 * with relocation (btrfs_relocate_chunk) and relocation
1713 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1714 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1715 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1716 * unused block groups.
1717 */
1718 btrfs_delete_unused_bgs(fs_info);
1719 sleep:
1720 if (!again) {
1721 set_current_state(TASK_INTERRUPTIBLE);
1722 if (!kthread_should_stop())
1723 schedule();
1724 __set_current_state(TASK_RUNNING);
1725 }
1726 } while (!kthread_should_stop());
1727
1728 /*
1729 * Transaction kthread is stopped before us and wakes us up.
1730 * However we might have started a new transaction and COWed some
1731 * tree blocks when deleting unused block groups for example. So
1732 * make sure we commit the transaction we started to have a clean
1733 * shutdown when evicting the btree inode - if it has dirty pages
1734 * when we do the final iput() on it, eviction will trigger a
1735 * writeback for it which will fail with null pointer dereferences
1736 * since work queues and other resources were already released and
1737 * destroyed by the time the iput/eviction/writeback is made.
1738 */
1739 trans = btrfs_attach_transaction(root);
1740 if (IS_ERR(trans)) {
1741 if (PTR_ERR(trans) != -ENOENT)
1742 btrfs_err(fs_info,
1743 "cleaner transaction attach returned %ld",
1744 PTR_ERR(trans));
1745 } else {
1746 int ret;
1747
1748 ret = btrfs_commit_transaction(trans);
1749 if (ret)
1750 btrfs_err(fs_info,
1751 "cleaner open transaction commit returned %d",
1752 ret);
1753 }
1754
1755 return 0;
1756 }
1757
1758 static int transaction_kthread(void *arg)
1759 {
1760 struct btrfs_root *root = arg;
1761 struct btrfs_fs_info *fs_info = root->fs_info;
1762 struct btrfs_trans_handle *trans;
1763 struct btrfs_transaction *cur;
1764 u64 transid;
1765 unsigned long now;
1766 unsigned long delay;
1767 bool cannot_commit;
1768
1769 do {
1770 cannot_commit = false;
1771 delay = HZ * fs_info->commit_interval;
1772 mutex_lock(&fs_info->transaction_kthread_mutex);
1773
1774 spin_lock(&fs_info->trans_lock);
1775 cur = fs_info->running_transaction;
1776 if (!cur) {
1777 spin_unlock(&fs_info->trans_lock);
1778 goto sleep;
1779 }
1780
1781 now = get_seconds();
1782 if (cur->state < TRANS_STATE_BLOCKED &&
1783 (now < cur->start_time ||
1784 now - cur->start_time < fs_info->commit_interval)) {
1785 spin_unlock(&fs_info->trans_lock);
1786 delay = HZ * 5;
1787 goto sleep;
1788 }
1789 transid = cur->transid;
1790 spin_unlock(&fs_info->trans_lock);
1791
1792 /* If the file system is aborted, this will always fail. */
1793 trans = btrfs_attach_transaction(root);
1794 if (IS_ERR(trans)) {
1795 if (PTR_ERR(trans) != -ENOENT)
1796 cannot_commit = true;
1797 goto sleep;
1798 }
1799 if (transid == trans->transid) {
1800 btrfs_commit_transaction(trans);
1801 } else {
1802 btrfs_end_transaction(trans);
1803 }
1804 sleep:
1805 wake_up_process(fs_info->cleaner_kthread);
1806 mutex_unlock(&fs_info->transaction_kthread_mutex);
1807
1808 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1809 &fs_info->fs_state)))
1810 btrfs_cleanup_transaction(fs_info);
1811 set_current_state(TASK_INTERRUPTIBLE);
1812 if (!kthread_should_stop() &&
1813 (!btrfs_transaction_blocked(fs_info) ||
1814 cannot_commit))
1815 schedule_timeout(delay);
1816 __set_current_state(TASK_RUNNING);
1817 } while (!kthread_should_stop());
1818 return 0;
1819 }
1820
1821 /*
1822 * this will find the highest generation in the array of
1823 * root backups. The index of the highest array is returned,
1824 * or -1 if we can't find anything.
1825 *
1826 * We check to make sure the array is valid by comparing the
1827 * generation of the latest root in the array with the generation
1828 * in the super block. If they don't match we pitch it.
1829 */
1830 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1831 {
1832 u64 cur;
1833 int newest_index = -1;
1834 struct btrfs_root_backup *root_backup;
1835 int i;
1836
1837 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1838 root_backup = info->super_copy->super_roots + i;
1839 cur = btrfs_backup_tree_root_gen(root_backup);
1840 if (cur == newest_gen)
1841 newest_index = i;
1842 }
1843
1844 /* check to see if we actually wrapped around */
1845 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1846 root_backup = info->super_copy->super_roots;
1847 cur = btrfs_backup_tree_root_gen(root_backup);
1848 if (cur == newest_gen)
1849 newest_index = 0;
1850 }
1851 return newest_index;
1852 }
1853
1854
1855 /*
1856 * find the oldest backup so we know where to store new entries
1857 * in the backup array. This will set the backup_root_index
1858 * field in the fs_info struct
1859 */
1860 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1861 u64 newest_gen)
1862 {
1863 int newest_index = -1;
1864
1865 newest_index = find_newest_super_backup(info, newest_gen);
1866 /* if there was garbage in there, just move along */
1867 if (newest_index == -1) {
1868 info->backup_root_index = 0;
1869 } else {
1870 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1871 }
1872 }
1873
1874 /*
1875 * copy all the root pointers into the super backup array.
1876 * this will bump the backup pointer by one when it is
1877 * done
1878 */
1879 static void backup_super_roots(struct btrfs_fs_info *info)
1880 {
1881 int next_backup;
1882 struct btrfs_root_backup *root_backup;
1883 int last_backup;
1884
1885 next_backup = info->backup_root_index;
1886 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1887 BTRFS_NUM_BACKUP_ROOTS;
1888
1889 /*
1890 * just overwrite the last backup if we're at the same generation
1891 * this happens only at umount
1892 */
1893 root_backup = info->super_for_commit->super_roots + last_backup;
1894 if (btrfs_backup_tree_root_gen(root_backup) ==
1895 btrfs_header_generation(info->tree_root->node))
1896 next_backup = last_backup;
1897
1898 root_backup = info->super_for_commit->super_roots + next_backup;
1899
1900 /*
1901 * make sure all of our padding and empty slots get zero filled
1902 * regardless of which ones we use today
1903 */
1904 memset(root_backup, 0, sizeof(*root_backup));
1905
1906 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1907
1908 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1909 btrfs_set_backup_tree_root_gen(root_backup,
1910 btrfs_header_generation(info->tree_root->node));
1911
1912 btrfs_set_backup_tree_root_level(root_backup,
1913 btrfs_header_level(info->tree_root->node));
1914
1915 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1916 btrfs_set_backup_chunk_root_gen(root_backup,
1917 btrfs_header_generation(info->chunk_root->node));
1918 btrfs_set_backup_chunk_root_level(root_backup,
1919 btrfs_header_level(info->chunk_root->node));
1920
1921 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1922 btrfs_set_backup_extent_root_gen(root_backup,
1923 btrfs_header_generation(info->extent_root->node));
1924 btrfs_set_backup_extent_root_level(root_backup,
1925 btrfs_header_level(info->extent_root->node));
1926
1927 /*
1928 * we might commit during log recovery, which happens before we set
1929 * the fs_root. Make sure it is valid before we fill it in.
1930 */
1931 if (info->fs_root && info->fs_root->node) {
1932 btrfs_set_backup_fs_root(root_backup,
1933 info->fs_root->node->start);
1934 btrfs_set_backup_fs_root_gen(root_backup,
1935 btrfs_header_generation(info->fs_root->node));
1936 btrfs_set_backup_fs_root_level(root_backup,
1937 btrfs_header_level(info->fs_root->node));
1938 }
1939
1940 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1941 btrfs_set_backup_dev_root_gen(root_backup,
1942 btrfs_header_generation(info->dev_root->node));
1943 btrfs_set_backup_dev_root_level(root_backup,
1944 btrfs_header_level(info->dev_root->node));
1945
1946 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1947 btrfs_set_backup_csum_root_gen(root_backup,
1948 btrfs_header_generation(info->csum_root->node));
1949 btrfs_set_backup_csum_root_level(root_backup,
1950 btrfs_header_level(info->csum_root->node));
1951
1952 btrfs_set_backup_total_bytes(root_backup,
1953 btrfs_super_total_bytes(info->super_copy));
1954 btrfs_set_backup_bytes_used(root_backup,
1955 btrfs_super_bytes_used(info->super_copy));
1956 btrfs_set_backup_num_devices(root_backup,
1957 btrfs_super_num_devices(info->super_copy));
1958
1959 /*
1960 * if we don't copy this out to the super_copy, it won't get remembered
1961 * for the next commit
1962 */
1963 memcpy(&info->super_copy->super_roots,
1964 &info->super_for_commit->super_roots,
1965 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1966 }
1967
1968 /*
1969 * this copies info out of the root backup array and back into
1970 * the in-memory super block. It is meant to help iterate through
1971 * the array, so you send it the number of backups you've already
1972 * tried and the last backup index you used.
1973 *
1974 * this returns -1 when it has tried all the backups
1975 */
1976 static noinline int next_root_backup(struct btrfs_fs_info *info,
1977 struct btrfs_super_block *super,
1978 int *num_backups_tried, int *backup_index)
1979 {
1980 struct btrfs_root_backup *root_backup;
1981 int newest = *backup_index;
1982
1983 if (*num_backups_tried == 0) {
1984 u64 gen = btrfs_super_generation(super);
1985
1986 newest = find_newest_super_backup(info, gen);
1987 if (newest == -1)
1988 return -1;
1989
1990 *backup_index = newest;
1991 *num_backups_tried = 1;
1992 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1993 /* we've tried all the backups, all done */
1994 return -1;
1995 } else {
1996 /* jump to the next oldest backup */
1997 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1998 BTRFS_NUM_BACKUP_ROOTS;
1999 *backup_index = newest;
2000 *num_backups_tried += 1;
2001 }
2002 root_backup = super->super_roots + newest;
2003
2004 btrfs_set_super_generation(super,
2005 btrfs_backup_tree_root_gen(root_backup));
2006 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2007 btrfs_set_super_root_level(super,
2008 btrfs_backup_tree_root_level(root_backup));
2009 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2010
2011 /*
2012 * fixme: the total bytes and num_devices need to match or we should
2013 * need a fsck
2014 */
2015 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2016 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2017 return 0;
2018 }
2019
2020 /* helper to cleanup workers */
2021 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2022 {
2023 btrfs_destroy_workqueue(fs_info->fixup_workers);
2024 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2025 btrfs_destroy_workqueue(fs_info->workers);
2026 btrfs_destroy_workqueue(fs_info->endio_workers);
2027 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2028 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2029 btrfs_destroy_workqueue(fs_info->rmw_workers);
2030 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2031 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2032 btrfs_destroy_workqueue(fs_info->submit_workers);
2033 btrfs_destroy_workqueue(fs_info->delayed_workers);
2034 btrfs_destroy_workqueue(fs_info->caching_workers);
2035 btrfs_destroy_workqueue(fs_info->readahead_workers);
2036 btrfs_destroy_workqueue(fs_info->flush_workers);
2037 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2038 btrfs_destroy_workqueue(fs_info->extent_workers);
2039 /*
2040 * Now that all other work queues are destroyed, we can safely destroy
2041 * the queues used for metadata I/O, since tasks from those other work
2042 * queues can do metadata I/O operations.
2043 */
2044 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2045 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2046 }
2047
2048 static void free_root_extent_buffers(struct btrfs_root *root)
2049 {
2050 if (root) {
2051 free_extent_buffer(root->node);
2052 free_extent_buffer(root->commit_root);
2053 root->node = NULL;
2054 root->commit_root = NULL;
2055 }
2056 }
2057
2058 /* helper to cleanup tree roots */
2059 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2060 {
2061 free_root_extent_buffers(info->tree_root);
2062
2063 free_root_extent_buffers(info->dev_root);
2064 free_root_extent_buffers(info->extent_root);
2065 free_root_extent_buffers(info->csum_root);
2066 free_root_extent_buffers(info->quota_root);
2067 free_root_extent_buffers(info->uuid_root);
2068 if (chunk_root)
2069 free_root_extent_buffers(info->chunk_root);
2070 free_root_extent_buffers(info->free_space_root);
2071 }
2072
2073 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2074 {
2075 int ret;
2076 struct btrfs_root *gang[8];
2077 int i;
2078
2079 while (!list_empty(&fs_info->dead_roots)) {
2080 gang[0] = list_entry(fs_info->dead_roots.next,
2081 struct btrfs_root, root_list);
2082 list_del(&gang[0]->root_list);
2083
2084 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2085 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2086 } else {
2087 free_extent_buffer(gang[0]->node);
2088 free_extent_buffer(gang[0]->commit_root);
2089 btrfs_put_fs_root(gang[0]);
2090 }
2091 }
2092
2093 while (1) {
2094 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2095 (void **)gang, 0,
2096 ARRAY_SIZE(gang));
2097 if (!ret)
2098 break;
2099 for (i = 0; i < ret; i++)
2100 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2101 }
2102
2103 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2104 btrfs_free_log_root_tree(NULL, fs_info);
2105 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2106 }
2107 }
2108
2109 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2110 {
2111 mutex_init(&fs_info->scrub_lock);
2112 atomic_set(&fs_info->scrubs_running, 0);
2113 atomic_set(&fs_info->scrub_pause_req, 0);
2114 atomic_set(&fs_info->scrubs_paused, 0);
2115 atomic_set(&fs_info->scrub_cancel_req, 0);
2116 init_waitqueue_head(&fs_info->scrub_pause_wait);
2117 fs_info->scrub_workers_refcnt = 0;
2118 }
2119
2120 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2121 {
2122 spin_lock_init(&fs_info->balance_lock);
2123 mutex_init(&fs_info->balance_mutex);
2124 atomic_set(&fs_info->balance_running, 0);
2125 atomic_set(&fs_info->balance_pause_req, 0);
2126 atomic_set(&fs_info->balance_cancel_req, 0);
2127 fs_info->balance_ctl = NULL;
2128 init_waitqueue_head(&fs_info->balance_wait_q);
2129 }
2130
2131 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2132 {
2133 struct inode *inode = fs_info->btree_inode;
2134
2135 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2136 set_nlink(inode, 1);
2137 /*
2138 * we set the i_size on the btree inode to the max possible int.
2139 * the real end of the address space is determined by all of
2140 * the devices in the system
2141 */
2142 inode->i_size = OFFSET_MAX;
2143 inode->i_mapping->a_ops = &btree_aops;
2144
2145 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2146 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2147 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2148 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2149
2150 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2151
2152 BTRFS_I(inode)->root = fs_info->tree_root;
2153 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2154 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2155 btrfs_insert_inode_hash(inode);
2156 }
2157
2158 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2159 {
2160 fs_info->dev_replace.lock_owner = 0;
2161 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2162 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2163 rwlock_init(&fs_info->dev_replace.lock);
2164 atomic_set(&fs_info->dev_replace.read_locks, 0);
2165 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2166 init_waitqueue_head(&fs_info->replace_wait);
2167 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2168 }
2169
2170 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2171 {
2172 spin_lock_init(&fs_info->qgroup_lock);
2173 mutex_init(&fs_info->qgroup_ioctl_lock);
2174 fs_info->qgroup_tree = RB_ROOT;
2175 fs_info->qgroup_op_tree = RB_ROOT;
2176 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2177 fs_info->qgroup_seq = 1;
2178 fs_info->qgroup_ulist = NULL;
2179 fs_info->qgroup_rescan_running = false;
2180 mutex_init(&fs_info->qgroup_rescan_lock);
2181 }
2182
2183 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2184 struct btrfs_fs_devices *fs_devices)
2185 {
2186 int max_active = fs_info->thread_pool_size;
2187 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2188
2189 fs_info->workers =
2190 btrfs_alloc_workqueue(fs_info, "worker",
2191 flags | WQ_HIGHPRI, max_active, 16);
2192
2193 fs_info->delalloc_workers =
2194 btrfs_alloc_workqueue(fs_info, "delalloc",
2195 flags, max_active, 2);
2196
2197 fs_info->flush_workers =
2198 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2199 flags, max_active, 0);
2200
2201 fs_info->caching_workers =
2202 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2203
2204 /*
2205 * a higher idle thresh on the submit workers makes it much more
2206 * likely that bios will be send down in a sane order to the
2207 * devices
2208 */
2209 fs_info->submit_workers =
2210 btrfs_alloc_workqueue(fs_info, "submit", flags,
2211 min_t(u64, fs_devices->num_devices,
2212 max_active), 64);
2213
2214 fs_info->fixup_workers =
2215 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2216
2217 /*
2218 * endios are largely parallel and should have a very
2219 * low idle thresh
2220 */
2221 fs_info->endio_workers =
2222 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2223 fs_info->endio_meta_workers =
2224 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2225 max_active, 4);
2226 fs_info->endio_meta_write_workers =
2227 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2228 max_active, 2);
2229 fs_info->endio_raid56_workers =
2230 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2231 max_active, 4);
2232 fs_info->endio_repair_workers =
2233 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2234 fs_info->rmw_workers =
2235 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2236 fs_info->endio_write_workers =
2237 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2238 max_active, 2);
2239 fs_info->endio_freespace_worker =
2240 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2241 max_active, 0);
2242 fs_info->delayed_workers =
2243 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2244 max_active, 0);
2245 fs_info->readahead_workers =
2246 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2247 max_active, 2);
2248 fs_info->qgroup_rescan_workers =
2249 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2250 fs_info->extent_workers =
2251 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2252 min_t(u64, fs_devices->num_devices,
2253 max_active), 8);
2254
2255 if (!(fs_info->workers && fs_info->delalloc_workers &&
2256 fs_info->submit_workers && fs_info->flush_workers &&
2257 fs_info->endio_workers && fs_info->endio_meta_workers &&
2258 fs_info->endio_meta_write_workers &&
2259 fs_info->endio_repair_workers &&
2260 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2261 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2262 fs_info->caching_workers && fs_info->readahead_workers &&
2263 fs_info->fixup_workers && fs_info->delayed_workers &&
2264 fs_info->extent_workers &&
2265 fs_info->qgroup_rescan_workers)) {
2266 return -ENOMEM;
2267 }
2268
2269 return 0;
2270 }
2271
2272 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2273 struct btrfs_fs_devices *fs_devices)
2274 {
2275 int ret;
2276 struct btrfs_root *log_tree_root;
2277 struct btrfs_super_block *disk_super = fs_info->super_copy;
2278 u64 bytenr = btrfs_super_log_root(disk_super);
2279
2280 if (fs_devices->rw_devices == 0) {
2281 btrfs_warn(fs_info, "log replay required on RO media");
2282 return -EIO;
2283 }
2284
2285 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2286 if (!log_tree_root)
2287 return -ENOMEM;
2288
2289 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2290
2291 log_tree_root->node = read_tree_block(fs_info, bytenr,
2292 fs_info->generation + 1);
2293 if (IS_ERR(log_tree_root->node)) {
2294 btrfs_warn(fs_info, "failed to read log tree");
2295 ret = PTR_ERR(log_tree_root->node);
2296 kfree(log_tree_root);
2297 return ret;
2298 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2299 btrfs_err(fs_info, "failed to read log tree");
2300 free_extent_buffer(log_tree_root->node);
2301 kfree(log_tree_root);
2302 return -EIO;
2303 }
2304 /* returns with log_tree_root freed on success */
2305 ret = btrfs_recover_log_trees(log_tree_root);
2306 if (ret) {
2307 btrfs_handle_fs_error(fs_info, ret,
2308 "Failed to recover log tree");
2309 free_extent_buffer(log_tree_root->node);
2310 kfree(log_tree_root);
2311 return ret;
2312 }
2313
2314 if (sb_rdonly(fs_info->sb)) {
2315 ret = btrfs_commit_super(fs_info);
2316 if (ret)
2317 return ret;
2318 }
2319
2320 return 0;
2321 }
2322
2323 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2324 {
2325 struct btrfs_root *tree_root = fs_info->tree_root;
2326 struct btrfs_root *root;
2327 struct btrfs_key location;
2328 int ret;
2329
2330 BUG_ON(!fs_info->tree_root);
2331
2332 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2333 location.type = BTRFS_ROOT_ITEM_KEY;
2334 location.offset = 0;
2335
2336 root = btrfs_read_tree_root(tree_root, &location);
2337 if (IS_ERR(root))
2338 return PTR_ERR(root);
2339 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2340 fs_info->extent_root = root;
2341
2342 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2343 root = btrfs_read_tree_root(tree_root, &location);
2344 if (IS_ERR(root))
2345 return PTR_ERR(root);
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 fs_info->dev_root = root;
2348 btrfs_init_devices_late(fs_info);
2349
2350 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2351 root = btrfs_read_tree_root(tree_root, &location);
2352 if (IS_ERR(root))
2353 return PTR_ERR(root);
2354 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355 fs_info->csum_root = root;
2356
2357 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2358 root = btrfs_read_tree_root(tree_root, &location);
2359 if (!IS_ERR(root)) {
2360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2362 fs_info->quota_root = root;
2363 }
2364
2365 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2366 root = btrfs_read_tree_root(tree_root, &location);
2367 if (IS_ERR(root)) {
2368 ret = PTR_ERR(root);
2369 if (ret != -ENOENT)
2370 return ret;
2371 } else {
2372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2373 fs_info->uuid_root = root;
2374 }
2375
2376 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2377 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2378 root = btrfs_read_tree_root(tree_root, &location);
2379 if (IS_ERR(root))
2380 return PTR_ERR(root);
2381 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382 fs_info->free_space_root = root;
2383 }
2384
2385 return 0;
2386 }
2387
2388 int open_ctree(struct super_block *sb,
2389 struct btrfs_fs_devices *fs_devices,
2390 char *options)
2391 {
2392 u32 sectorsize;
2393 u32 nodesize;
2394 u32 stripesize;
2395 u64 generation;
2396 u64 features;
2397 struct btrfs_key location;
2398 struct buffer_head *bh;
2399 struct btrfs_super_block *disk_super;
2400 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2401 struct btrfs_root *tree_root;
2402 struct btrfs_root *chunk_root;
2403 int ret;
2404 int err = -EINVAL;
2405 int num_backups_tried = 0;
2406 int backup_index = 0;
2407 int max_active;
2408 int clear_free_space_tree = 0;
2409
2410 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2411 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2412 if (!tree_root || !chunk_root) {
2413 err = -ENOMEM;
2414 goto fail;
2415 }
2416
2417 ret = init_srcu_struct(&fs_info->subvol_srcu);
2418 if (ret) {
2419 err = ret;
2420 goto fail;
2421 }
2422
2423 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2424 if (ret) {
2425 err = ret;
2426 goto fail_srcu;
2427 }
2428 fs_info->dirty_metadata_batch = PAGE_SIZE *
2429 (1 + ilog2(nr_cpu_ids));
2430
2431 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2432 if (ret) {
2433 err = ret;
2434 goto fail_dirty_metadata_bytes;
2435 }
2436
2437 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2438 if (ret) {
2439 err = ret;
2440 goto fail_delalloc_bytes;
2441 }
2442
2443 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2444 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2445 INIT_LIST_HEAD(&fs_info->trans_list);
2446 INIT_LIST_HEAD(&fs_info->dead_roots);
2447 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2448 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2449 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2450 spin_lock_init(&fs_info->delalloc_root_lock);
2451 spin_lock_init(&fs_info->trans_lock);
2452 spin_lock_init(&fs_info->fs_roots_radix_lock);
2453 spin_lock_init(&fs_info->delayed_iput_lock);
2454 spin_lock_init(&fs_info->defrag_inodes_lock);
2455 spin_lock_init(&fs_info->tree_mod_seq_lock);
2456 spin_lock_init(&fs_info->super_lock);
2457 spin_lock_init(&fs_info->qgroup_op_lock);
2458 spin_lock_init(&fs_info->buffer_lock);
2459 spin_lock_init(&fs_info->unused_bgs_lock);
2460 rwlock_init(&fs_info->tree_mod_log_lock);
2461 mutex_init(&fs_info->unused_bg_unpin_mutex);
2462 mutex_init(&fs_info->delete_unused_bgs_mutex);
2463 mutex_init(&fs_info->reloc_mutex);
2464 mutex_init(&fs_info->delalloc_root_mutex);
2465 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2466 seqlock_init(&fs_info->profiles_lock);
2467
2468 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2469 INIT_LIST_HEAD(&fs_info->space_info);
2470 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2471 INIT_LIST_HEAD(&fs_info->unused_bgs);
2472 btrfs_mapping_init(&fs_info->mapping_tree);
2473 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2474 BTRFS_BLOCK_RSV_GLOBAL);
2475 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2476 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2477 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2478 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2479 BTRFS_BLOCK_RSV_DELOPS);
2480 atomic_set(&fs_info->async_delalloc_pages, 0);
2481 atomic_set(&fs_info->defrag_running, 0);
2482 atomic_set(&fs_info->qgroup_op_seq, 0);
2483 atomic_set(&fs_info->reada_works_cnt, 0);
2484 atomic64_set(&fs_info->tree_mod_seq, 0);
2485 fs_info->sb = sb;
2486 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2487 fs_info->metadata_ratio = 0;
2488 fs_info->defrag_inodes = RB_ROOT;
2489 atomic64_set(&fs_info->free_chunk_space, 0);
2490 fs_info->tree_mod_log = RB_ROOT;
2491 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2492 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2493 /* readahead state */
2494 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2495 spin_lock_init(&fs_info->reada_lock);
2496 btrfs_init_ref_verify(fs_info);
2497
2498 fs_info->thread_pool_size = min_t(unsigned long,
2499 num_online_cpus() + 2, 8);
2500
2501 INIT_LIST_HEAD(&fs_info->ordered_roots);
2502 spin_lock_init(&fs_info->ordered_root_lock);
2503
2504 fs_info->btree_inode = new_inode(sb);
2505 if (!fs_info->btree_inode) {
2506 err = -ENOMEM;
2507 goto fail_bio_counter;
2508 }
2509 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2510
2511 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2512 GFP_KERNEL);
2513 if (!fs_info->delayed_root) {
2514 err = -ENOMEM;
2515 goto fail_iput;
2516 }
2517 btrfs_init_delayed_root(fs_info->delayed_root);
2518
2519 btrfs_init_scrub(fs_info);
2520 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2521 fs_info->check_integrity_print_mask = 0;
2522 #endif
2523 btrfs_init_balance(fs_info);
2524 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2525
2526 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2527 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2528
2529 btrfs_init_btree_inode(fs_info);
2530
2531 spin_lock_init(&fs_info->block_group_cache_lock);
2532 fs_info->block_group_cache_tree = RB_ROOT;
2533 fs_info->first_logical_byte = (u64)-1;
2534
2535 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2536 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2537 fs_info->pinned_extents = &fs_info->freed_extents[0];
2538 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2539
2540 mutex_init(&fs_info->ordered_operations_mutex);
2541 mutex_init(&fs_info->tree_log_mutex);
2542 mutex_init(&fs_info->chunk_mutex);
2543 mutex_init(&fs_info->transaction_kthread_mutex);
2544 mutex_init(&fs_info->cleaner_mutex);
2545 mutex_init(&fs_info->volume_mutex);
2546 mutex_init(&fs_info->ro_block_group_mutex);
2547 init_rwsem(&fs_info->commit_root_sem);
2548 init_rwsem(&fs_info->cleanup_work_sem);
2549 init_rwsem(&fs_info->subvol_sem);
2550 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2551
2552 btrfs_init_dev_replace_locks(fs_info);
2553 btrfs_init_qgroup(fs_info);
2554
2555 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2556 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2557
2558 init_waitqueue_head(&fs_info->transaction_throttle);
2559 init_waitqueue_head(&fs_info->transaction_wait);
2560 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2561 init_waitqueue_head(&fs_info->async_submit_wait);
2562
2563 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2564
2565 /* Usable values until the real ones are cached from the superblock */
2566 fs_info->nodesize = 4096;
2567 fs_info->sectorsize = 4096;
2568 fs_info->stripesize = 4096;
2569
2570 ret = btrfs_alloc_stripe_hash_table(fs_info);
2571 if (ret) {
2572 err = ret;
2573 goto fail_alloc;
2574 }
2575
2576 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2577
2578 invalidate_bdev(fs_devices->latest_bdev);
2579
2580 /*
2581 * Read super block and check the signature bytes only
2582 */
2583 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2584 if (IS_ERR(bh)) {
2585 err = PTR_ERR(bh);
2586 goto fail_alloc;
2587 }
2588
2589 /*
2590 * We want to check superblock checksum, the type is stored inside.
2591 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2592 */
2593 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2594 btrfs_err(fs_info, "superblock checksum mismatch");
2595 err = -EINVAL;
2596 brelse(bh);
2597 goto fail_alloc;
2598 }
2599
2600 /*
2601 * super_copy is zeroed at allocation time and we never touch the
2602 * following bytes up to INFO_SIZE, the checksum is calculated from
2603 * the whole block of INFO_SIZE
2604 */
2605 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2606 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2607 sizeof(*fs_info->super_for_commit));
2608 brelse(bh);
2609
2610 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2611
2612 ret = btrfs_check_super_valid(fs_info);
2613 if (ret) {
2614 btrfs_err(fs_info, "superblock contains fatal errors");
2615 err = -EINVAL;
2616 goto fail_alloc;
2617 }
2618
2619 disk_super = fs_info->super_copy;
2620 if (!btrfs_super_root(disk_super))
2621 goto fail_alloc;
2622
2623 /* check FS state, whether FS is broken. */
2624 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2625 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2626
2627 /*
2628 * run through our array of backup supers and setup
2629 * our ring pointer to the oldest one
2630 */
2631 generation = btrfs_super_generation(disk_super);
2632 find_oldest_super_backup(fs_info, generation);
2633
2634 /*
2635 * In the long term, we'll store the compression type in the super
2636 * block, and it'll be used for per file compression control.
2637 */
2638 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2639
2640 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2641 if (ret) {
2642 err = ret;
2643 goto fail_alloc;
2644 }
2645
2646 features = btrfs_super_incompat_flags(disk_super) &
2647 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2648 if (features) {
2649 btrfs_err(fs_info,
2650 "cannot mount because of unsupported optional features (%llx)",
2651 features);
2652 err = -EINVAL;
2653 goto fail_alloc;
2654 }
2655
2656 features = btrfs_super_incompat_flags(disk_super);
2657 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2658 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2659 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2660 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2661 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2662
2663 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2664 btrfs_info(fs_info, "has skinny extents");
2665
2666 /*
2667 * flag our filesystem as having big metadata blocks if
2668 * they are bigger than the page size
2669 */
2670 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2671 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2672 btrfs_info(fs_info,
2673 "flagging fs with big metadata feature");
2674 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2675 }
2676
2677 nodesize = btrfs_super_nodesize(disk_super);
2678 sectorsize = btrfs_super_sectorsize(disk_super);
2679 stripesize = sectorsize;
2680 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2681 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2682
2683 /* Cache block sizes */
2684 fs_info->nodesize = nodesize;
2685 fs_info->sectorsize = sectorsize;
2686 fs_info->stripesize = stripesize;
2687
2688 /*
2689 * mixed block groups end up with duplicate but slightly offset
2690 * extent buffers for the same range. It leads to corruptions
2691 */
2692 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2693 (sectorsize != nodesize)) {
2694 btrfs_err(fs_info,
2695 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2696 nodesize, sectorsize);
2697 goto fail_alloc;
2698 }
2699
2700 /*
2701 * Needn't use the lock because there is no other task which will
2702 * update the flag.
2703 */
2704 btrfs_set_super_incompat_flags(disk_super, features);
2705
2706 features = btrfs_super_compat_ro_flags(disk_super) &
2707 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2708 if (!sb_rdonly(sb) && features) {
2709 btrfs_err(fs_info,
2710 "cannot mount read-write because of unsupported optional features (%llx)",
2711 features);
2712 err = -EINVAL;
2713 goto fail_alloc;
2714 }
2715
2716 max_active = fs_info->thread_pool_size;
2717
2718 ret = btrfs_init_workqueues(fs_info, fs_devices);
2719 if (ret) {
2720 err = ret;
2721 goto fail_sb_buffer;
2722 }
2723
2724 sb->s_bdi->congested_fn = btrfs_congested_fn;
2725 sb->s_bdi->congested_data = fs_info;
2726 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2727 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2728 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2729 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2730
2731 sb->s_blocksize = sectorsize;
2732 sb->s_blocksize_bits = blksize_bits(sectorsize);
2733 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2734
2735 mutex_lock(&fs_info->chunk_mutex);
2736 ret = btrfs_read_sys_array(fs_info);
2737 mutex_unlock(&fs_info->chunk_mutex);
2738 if (ret) {
2739 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2740 goto fail_sb_buffer;
2741 }
2742
2743 generation = btrfs_super_chunk_root_generation(disk_super);
2744
2745 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2746
2747 chunk_root->node = read_tree_block(fs_info,
2748 btrfs_super_chunk_root(disk_super),
2749 generation);
2750 if (IS_ERR(chunk_root->node) ||
2751 !extent_buffer_uptodate(chunk_root->node)) {
2752 btrfs_err(fs_info, "failed to read chunk root");
2753 if (!IS_ERR(chunk_root->node))
2754 free_extent_buffer(chunk_root->node);
2755 chunk_root->node = NULL;
2756 goto fail_tree_roots;
2757 }
2758 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2759 chunk_root->commit_root = btrfs_root_node(chunk_root);
2760
2761 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2762 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2763
2764 ret = btrfs_read_chunk_tree(fs_info);
2765 if (ret) {
2766 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2767 goto fail_tree_roots;
2768 }
2769
2770 /*
2771 * keep the device that is marked to be the target device for the
2772 * dev_replace procedure
2773 */
2774 btrfs_close_extra_devices(fs_devices, 0);
2775
2776 if (!fs_devices->latest_bdev) {
2777 btrfs_err(fs_info, "failed to read devices");
2778 goto fail_tree_roots;
2779 }
2780
2781 retry_root_backup:
2782 generation = btrfs_super_generation(disk_super);
2783
2784 tree_root->node = read_tree_block(fs_info,
2785 btrfs_super_root(disk_super),
2786 generation);
2787 if (IS_ERR(tree_root->node) ||
2788 !extent_buffer_uptodate(tree_root->node)) {
2789 btrfs_warn(fs_info, "failed to read tree root");
2790 if (!IS_ERR(tree_root->node))
2791 free_extent_buffer(tree_root->node);
2792 tree_root->node = NULL;
2793 goto recovery_tree_root;
2794 }
2795
2796 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2797 tree_root->commit_root = btrfs_root_node(tree_root);
2798 btrfs_set_root_refs(&tree_root->root_item, 1);
2799
2800 mutex_lock(&tree_root->objectid_mutex);
2801 ret = btrfs_find_highest_objectid(tree_root,
2802 &tree_root->highest_objectid);
2803 if (ret) {
2804 mutex_unlock(&tree_root->objectid_mutex);
2805 goto recovery_tree_root;
2806 }
2807
2808 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2809
2810 mutex_unlock(&tree_root->objectid_mutex);
2811
2812 ret = btrfs_read_roots(fs_info);
2813 if (ret)
2814 goto recovery_tree_root;
2815
2816 fs_info->generation = generation;
2817 fs_info->last_trans_committed = generation;
2818
2819 ret = btrfs_recover_balance(fs_info);
2820 if (ret) {
2821 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2822 goto fail_block_groups;
2823 }
2824
2825 ret = btrfs_init_dev_stats(fs_info);
2826 if (ret) {
2827 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2828 goto fail_block_groups;
2829 }
2830
2831 ret = btrfs_init_dev_replace(fs_info);
2832 if (ret) {
2833 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2834 goto fail_block_groups;
2835 }
2836
2837 btrfs_close_extra_devices(fs_devices, 1);
2838
2839 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2840 if (ret) {
2841 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2842 ret);
2843 goto fail_block_groups;
2844 }
2845
2846 ret = btrfs_sysfs_add_device(fs_devices);
2847 if (ret) {
2848 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2849 ret);
2850 goto fail_fsdev_sysfs;
2851 }
2852
2853 ret = btrfs_sysfs_add_mounted(fs_info);
2854 if (ret) {
2855 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2856 goto fail_fsdev_sysfs;
2857 }
2858
2859 ret = btrfs_init_space_info(fs_info);
2860 if (ret) {
2861 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2862 goto fail_sysfs;
2863 }
2864
2865 ret = btrfs_read_block_groups(fs_info);
2866 if (ret) {
2867 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2868 goto fail_sysfs;
2869 }
2870
2871 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
2872 btrfs_warn(fs_info,
2873 "writeable mount is not allowed due to too many missing devices");
2874 goto fail_sysfs;
2875 }
2876
2877 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2878 "btrfs-cleaner");
2879 if (IS_ERR(fs_info->cleaner_kthread))
2880 goto fail_sysfs;
2881
2882 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2883 tree_root,
2884 "btrfs-transaction");
2885 if (IS_ERR(fs_info->transaction_kthread))
2886 goto fail_cleaner;
2887
2888 if (!btrfs_test_opt(fs_info, NOSSD) &&
2889 !fs_info->fs_devices->rotating) {
2890 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2891 }
2892
2893 /*
2894 * Mount does not set all options immediately, we can do it now and do
2895 * not have to wait for transaction commit
2896 */
2897 btrfs_apply_pending_changes(fs_info);
2898
2899 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2900 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2901 ret = btrfsic_mount(fs_info, fs_devices,
2902 btrfs_test_opt(fs_info,
2903 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2904 1 : 0,
2905 fs_info->check_integrity_print_mask);
2906 if (ret)
2907 btrfs_warn(fs_info,
2908 "failed to initialize integrity check module: %d",
2909 ret);
2910 }
2911 #endif
2912 ret = btrfs_read_qgroup_config(fs_info);
2913 if (ret)
2914 goto fail_trans_kthread;
2915
2916 if (btrfs_build_ref_tree(fs_info))
2917 btrfs_err(fs_info, "couldn't build ref tree");
2918
2919 /* do not make disk changes in broken FS or nologreplay is given */
2920 if (btrfs_super_log_root(disk_super) != 0 &&
2921 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2922 ret = btrfs_replay_log(fs_info, fs_devices);
2923 if (ret) {
2924 err = ret;
2925 goto fail_qgroup;
2926 }
2927 }
2928
2929 ret = btrfs_find_orphan_roots(fs_info);
2930 if (ret)
2931 goto fail_qgroup;
2932
2933 if (!sb_rdonly(sb)) {
2934 ret = btrfs_cleanup_fs_roots(fs_info);
2935 if (ret)
2936 goto fail_qgroup;
2937
2938 mutex_lock(&fs_info->cleaner_mutex);
2939 ret = btrfs_recover_relocation(tree_root);
2940 mutex_unlock(&fs_info->cleaner_mutex);
2941 if (ret < 0) {
2942 btrfs_warn(fs_info, "failed to recover relocation: %d",
2943 ret);
2944 err = -EINVAL;
2945 goto fail_qgroup;
2946 }
2947 }
2948
2949 location.objectid = BTRFS_FS_TREE_OBJECTID;
2950 location.type = BTRFS_ROOT_ITEM_KEY;
2951 location.offset = 0;
2952
2953 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2954 if (IS_ERR(fs_info->fs_root)) {
2955 err = PTR_ERR(fs_info->fs_root);
2956 goto fail_qgroup;
2957 }
2958
2959 if (sb_rdonly(sb))
2960 return 0;
2961
2962 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2963 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2964 clear_free_space_tree = 1;
2965 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2966 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2967 btrfs_warn(fs_info, "free space tree is invalid");
2968 clear_free_space_tree = 1;
2969 }
2970
2971 if (clear_free_space_tree) {
2972 btrfs_info(fs_info, "clearing free space tree");
2973 ret = btrfs_clear_free_space_tree(fs_info);
2974 if (ret) {
2975 btrfs_warn(fs_info,
2976 "failed to clear free space tree: %d", ret);
2977 close_ctree(fs_info);
2978 return ret;
2979 }
2980 }
2981
2982 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2983 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2984 btrfs_info(fs_info, "creating free space tree");
2985 ret = btrfs_create_free_space_tree(fs_info);
2986 if (ret) {
2987 btrfs_warn(fs_info,
2988 "failed to create free space tree: %d", ret);
2989 close_ctree(fs_info);
2990 return ret;
2991 }
2992 }
2993
2994 down_read(&fs_info->cleanup_work_sem);
2995 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2996 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2997 up_read(&fs_info->cleanup_work_sem);
2998 close_ctree(fs_info);
2999 return ret;
3000 }
3001 up_read(&fs_info->cleanup_work_sem);
3002
3003 ret = btrfs_resume_balance_async(fs_info);
3004 if (ret) {
3005 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3006 close_ctree(fs_info);
3007 return ret;
3008 }
3009
3010 ret = btrfs_resume_dev_replace_async(fs_info);
3011 if (ret) {
3012 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3013 close_ctree(fs_info);
3014 return ret;
3015 }
3016
3017 btrfs_qgroup_rescan_resume(fs_info);
3018
3019 if (!fs_info->uuid_root) {
3020 btrfs_info(fs_info, "creating UUID tree");
3021 ret = btrfs_create_uuid_tree(fs_info);
3022 if (ret) {
3023 btrfs_warn(fs_info,
3024 "failed to create the UUID tree: %d", ret);
3025 close_ctree(fs_info);
3026 return ret;
3027 }
3028 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3029 fs_info->generation !=
3030 btrfs_super_uuid_tree_generation(disk_super)) {
3031 btrfs_info(fs_info, "checking UUID tree");
3032 ret = btrfs_check_uuid_tree(fs_info);
3033 if (ret) {
3034 btrfs_warn(fs_info,
3035 "failed to check the UUID tree: %d", ret);
3036 close_ctree(fs_info);
3037 return ret;
3038 }
3039 } else {
3040 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3041 }
3042 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3043
3044 /*
3045 * backuproot only affect mount behavior, and if open_ctree succeeded,
3046 * no need to keep the flag
3047 */
3048 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3049
3050 return 0;
3051
3052 fail_qgroup:
3053 btrfs_free_qgroup_config(fs_info);
3054 fail_trans_kthread:
3055 kthread_stop(fs_info->transaction_kthread);
3056 btrfs_cleanup_transaction(fs_info);
3057 btrfs_free_fs_roots(fs_info);
3058 fail_cleaner:
3059 kthread_stop(fs_info->cleaner_kthread);
3060
3061 /*
3062 * make sure we're done with the btree inode before we stop our
3063 * kthreads
3064 */
3065 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3066
3067 fail_sysfs:
3068 btrfs_sysfs_remove_mounted(fs_info);
3069
3070 fail_fsdev_sysfs:
3071 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3072
3073 fail_block_groups:
3074 btrfs_put_block_group_cache(fs_info);
3075
3076 fail_tree_roots:
3077 free_root_pointers(fs_info, 1);
3078 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3079
3080 fail_sb_buffer:
3081 btrfs_stop_all_workers(fs_info);
3082 btrfs_free_block_groups(fs_info);
3083 fail_alloc:
3084 fail_iput:
3085 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3086
3087 iput(fs_info->btree_inode);
3088 fail_bio_counter:
3089 percpu_counter_destroy(&fs_info->bio_counter);
3090 fail_delalloc_bytes:
3091 percpu_counter_destroy(&fs_info->delalloc_bytes);
3092 fail_dirty_metadata_bytes:
3093 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3094 fail_srcu:
3095 cleanup_srcu_struct(&fs_info->subvol_srcu);
3096 fail:
3097 btrfs_free_stripe_hash_table(fs_info);
3098 btrfs_close_devices(fs_info->fs_devices);
3099 return err;
3100
3101 recovery_tree_root:
3102 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3103 goto fail_tree_roots;
3104
3105 free_root_pointers(fs_info, 0);
3106
3107 /* don't use the log in recovery mode, it won't be valid */
3108 btrfs_set_super_log_root(disk_super, 0);
3109
3110 /* we can't trust the free space cache either */
3111 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3112
3113 ret = next_root_backup(fs_info, fs_info->super_copy,
3114 &num_backups_tried, &backup_index);
3115 if (ret == -1)
3116 goto fail_block_groups;
3117 goto retry_root_backup;
3118 }
3119 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3120
3121 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3122 {
3123 if (uptodate) {
3124 set_buffer_uptodate(bh);
3125 } else {
3126 struct btrfs_device *device = (struct btrfs_device *)
3127 bh->b_private;
3128
3129 btrfs_warn_rl_in_rcu(device->fs_info,
3130 "lost page write due to IO error on %s",
3131 rcu_str_deref(device->name));
3132 /* note, we don't set_buffer_write_io_error because we have
3133 * our own ways of dealing with the IO errors
3134 */
3135 clear_buffer_uptodate(bh);
3136 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3137 }
3138 unlock_buffer(bh);
3139 put_bh(bh);
3140 }
3141
3142 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3143 struct buffer_head **bh_ret)
3144 {
3145 struct buffer_head *bh;
3146 struct btrfs_super_block *super;
3147 u64 bytenr;
3148
3149 bytenr = btrfs_sb_offset(copy_num);
3150 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3151 return -EINVAL;
3152
3153 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3154 /*
3155 * If we fail to read from the underlying devices, as of now
3156 * the best option we have is to mark it EIO.
3157 */
3158 if (!bh)
3159 return -EIO;
3160
3161 super = (struct btrfs_super_block *)bh->b_data;
3162 if (btrfs_super_bytenr(super) != bytenr ||
3163 btrfs_super_magic(super) != BTRFS_MAGIC) {
3164 brelse(bh);
3165 return -EINVAL;
3166 }
3167
3168 *bh_ret = bh;
3169 return 0;
3170 }
3171
3172
3173 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3174 {
3175 struct buffer_head *bh;
3176 struct buffer_head *latest = NULL;
3177 struct btrfs_super_block *super;
3178 int i;
3179 u64 transid = 0;
3180 int ret = -EINVAL;
3181
3182 /* we would like to check all the supers, but that would make
3183 * a btrfs mount succeed after a mkfs from a different FS.
3184 * So, we need to add a special mount option to scan for
3185 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3186 */
3187 for (i = 0; i < 1; i++) {
3188 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3189 if (ret)
3190 continue;
3191
3192 super = (struct btrfs_super_block *)bh->b_data;
3193
3194 if (!latest || btrfs_super_generation(super) > transid) {
3195 brelse(latest);
3196 latest = bh;
3197 transid = btrfs_super_generation(super);
3198 } else {
3199 brelse(bh);
3200 }
3201 }
3202
3203 if (!latest)
3204 return ERR_PTR(ret);
3205
3206 return latest;
3207 }
3208
3209 /*
3210 * Write superblock @sb to the @device. Do not wait for completion, all the
3211 * buffer heads we write are pinned.
3212 *
3213 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3214 * the expected device size at commit time. Note that max_mirrors must be
3215 * same for write and wait phases.
3216 *
3217 * Return number of errors when buffer head is not found or submission fails.
3218 */
3219 static int write_dev_supers(struct btrfs_device *device,
3220 struct btrfs_super_block *sb, int max_mirrors)
3221 {
3222 struct buffer_head *bh;
3223 int i;
3224 int ret;
3225 int errors = 0;
3226 u32 crc;
3227 u64 bytenr;
3228 int op_flags;
3229
3230 if (max_mirrors == 0)
3231 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3232
3233 for (i = 0; i < max_mirrors; i++) {
3234 bytenr = btrfs_sb_offset(i);
3235 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3236 device->commit_total_bytes)
3237 break;
3238
3239 btrfs_set_super_bytenr(sb, bytenr);
3240
3241 crc = ~(u32)0;
3242 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3243 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3244 btrfs_csum_final(crc, sb->csum);
3245
3246 /* One reference for us, and we leave it for the caller */
3247 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3248 BTRFS_SUPER_INFO_SIZE);
3249 if (!bh) {
3250 btrfs_err(device->fs_info,
3251 "couldn't get super buffer head for bytenr %llu",
3252 bytenr);
3253 errors++;
3254 continue;
3255 }
3256
3257 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3258
3259 /* one reference for submit_bh */
3260 get_bh(bh);
3261
3262 set_buffer_uptodate(bh);
3263 lock_buffer(bh);
3264 bh->b_end_io = btrfs_end_buffer_write_sync;
3265 bh->b_private = device;
3266
3267 /*
3268 * we fua the first super. The others we allow
3269 * to go down lazy.
3270 */
3271 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3272 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3273 op_flags |= REQ_FUA;
3274 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3275 if (ret)
3276 errors++;
3277 }
3278 return errors < i ? 0 : -1;
3279 }
3280
3281 /*
3282 * Wait for write completion of superblocks done by write_dev_supers,
3283 * @max_mirrors same for write and wait phases.
3284 *
3285 * Return number of errors when buffer head is not found or not marked up to
3286 * date.
3287 */
3288 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3289 {
3290 struct buffer_head *bh;
3291 int i;
3292 int errors = 0;
3293 u64 bytenr;
3294
3295 if (max_mirrors == 0)
3296 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3297
3298 for (i = 0; i < max_mirrors; i++) {
3299 bytenr = btrfs_sb_offset(i);
3300 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3301 device->commit_total_bytes)
3302 break;
3303
3304 bh = __find_get_block(device->bdev,
3305 bytenr / BTRFS_BDEV_BLOCKSIZE,
3306 BTRFS_SUPER_INFO_SIZE);
3307 if (!bh) {
3308 errors++;
3309 continue;
3310 }
3311 wait_on_buffer(bh);
3312 if (!buffer_uptodate(bh))
3313 errors++;
3314
3315 /* drop our reference */
3316 brelse(bh);
3317
3318 /* drop the reference from the writing run */
3319 brelse(bh);
3320 }
3321
3322 return errors < i ? 0 : -1;
3323 }
3324
3325 /*
3326 * endio for the write_dev_flush, this will wake anyone waiting
3327 * for the barrier when it is done
3328 */
3329 static void btrfs_end_empty_barrier(struct bio *bio)
3330 {
3331 complete(bio->bi_private);
3332 }
3333
3334 /*
3335 * Submit a flush request to the device if it supports it. Error handling is
3336 * done in the waiting counterpart.
3337 */
3338 static void write_dev_flush(struct btrfs_device *device)
3339 {
3340 struct request_queue *q = bdev_get_queue(device->bdev);
3341 struct bio *bio = device->flush_bio;
3342
3343 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3344 return;
3345
3346 bio_reset(bio);
3347 bio->bi_end_io = btrfs_end_empty_barrier;
3348 bio_set_dev(bio, device->bdev);
3349 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3350 init_completion(&device->flush_wait);
3351 bio->bi_private = &device->flush_wait;
3352
3353 btrfsic_submit_bio(bio);
3354 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3355 }
3356
3357 /*
3358 * If the flush bio has been submitted by write_dev_flush, wait for it.
3359 */
3360 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3361 {
3362 struct bio *bio = device->flush_bio;
3363
3364 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3365 return BLK_STS_OK;
3366
3367 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3368 wait_for_completion_io(&device->flush_wait);
3369
3370 return bio->bi_status;
3371 }
3372
3373 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3374 {
3375 if (!btrfs_check_rw_degradable(fs_info, NULL))
3376 return -EIO;
3377 return 0;
3378 }
3379
3380 /*
3381 * send an empty flush down to each device in parallel,
3382 * then wait for them
3383 */
3384 static int barrier_all_devices(struct btrfs_fs_info *info)
3385 {
3386 struct list_head *head;
3387 struct btrfs_device *dev;
3388 int errors_wait = 0;
3389 blk_status_t ret;
3390
3391 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3392 /* send down all the barriers */
3393 head = &info->fs_devices->devices;
3394 list_for_each_entry(dev, head, dev_list) {
3395 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3396 continue;
3397 if (!dev->bdev)
3398 continue;
3399 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3400 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3401 continue;
3402
3403 write_dev_flush(dev);
3404 dev->last_flush_error = BLK_STS_OK;
3405 }
3406
3407 /* wait for all the barriers */
3408 list_for_each_entry(dev, head, dev_list) {
3409 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3410 continue;
3411 if (!dev->bdev) {
3412 errors_wait++;
3413 continue;
3414 }
3415 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3416 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3417 continue;
3418
3419 ret = wait_dev_flush(dev);
3420 if (ret) {
3421 dev->last_flush_error = ret;
3422 btrfs_dev_stat_inc_and_print(dev,
3423 BTRFS_DEV_STAT_FLUSH_ERRS);
3424 errors_wait++;
3425 }
3426 }
3427
3428 if (errors_wait) {
3429 /*
3430 * At some point we need the status of all disks
3431 * to arrive at the volume status. So error checking
3432 * is being pushed to a separate loop.
3433 */
3434 return check_barrier_error(info);
3435 }
3436 return 0;
3437 }
3438
3439 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3440 {
3441 int raid_type;
3442 int min_tolerated = INT_MAX;
3443
3444 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3445 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3446 min_tolerated = min(min_tolerated,
3447 btrfs_raid_array[BTRFS_RAID_SINGLE].
3448 tolerated_failures);
3449
3450 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3451 if (raid_type == BTRFS_RAID_SINGLE)
3452 continue;
3453 if (!(flags & btrfs_raid_group[raid_type]))
3454 continue;
3455 min_tolerated = min(min_tolerated,
3456 btrfs_raid_array[raid_type].
3457 tolerated_failures);
3458 }
3459
3460 if (min_tolerated == INT_MAX) {
3461 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3462 min_tolerated = 0;
3463 }
3464
3465 return min_tolerated;
3466 }
3467
3468 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3469 {
3470 struct list_head *head;
3471 struct btrfs_device *dev;
3472 struct btrfs_super_block *sb;
3473 struct btrfs_dev_item *dev_item;
3474 int ret;
3475 int do_barriers;
3476 int max_errors;
3477 int total_errors = 0;
3478 u64 flags;
3479
3480 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3481
3482 /*
3483 * max_mirrors == 0 indicates we're from commit_transaction,
3484 * not from fsync where the tree roots in fs_info have not
3485 * been consistent on disk.
3486 */
3487 if (max_mirrors == 0)
3488 backup_super_roots(fs_info);
3489
3490 sb = fs_info->super_for_commit;
3491 dev_item = &sb->dev_item;
3492
3493 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3494 head = &fs_info->fs_devices->devices;
3495 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3496
3497 if (do_barriers) {
3498 ret = barrier_all_devices(fs_info);
3499 if (ret) {
3500 mutex_unlock(
3501 &fs_info->fs_devices->device_list_mutex);
3502 btrfs_handle_fs_error(fs_info, ret,
3503 "errors while submitting device barriers.");
3504 return ret;
3505 }
3506 }
3507
3508 list_for_each_entry(dev, head, dev_list) {
3509 if (!dev->bdev) {
3510 total_errors++;
3511 continue;
3512 }
3513 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3514 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3515 continue;
3516
3517 btrfs_set_stack_device_generation(dev_item, 0);
3518 btrfs_set_stack_device_type(dev_item, dev->type);
3519 btrfs_set_stack_device_id(dev_item, dev->devid);
3520 btrfs_set_stack_device_total_bytes(dev_item,
3521 dev->commit_total_bytes);
3522 btrfs_set_stack_device_bytes_used(dev_item,
3523 dev->commit_bytes_used);
3524 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3525 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3526 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3527 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3528 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3529
3530 flags = btrfs_super_flags(sb);
3531 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3532
3533 ret = write_dev_supers(dev, sb, max_mirrors);
3534 if (ret)
3535 total_errors++;
3536 }
3537 if (total_errors > max_errors) {
3538 btrfs_err(fs_info, "%d errors while writing supers",
3539 total_errors);
3540 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3541
3542 /* FUA is masked off if unsupported and can't be the reason */
3543 btrfs_handle_fs_error(fs_info, -EIO,
3544 "%d errors while writing supers",
3545 total_errors);
3546 return -EIO;
3547 }
3548
3549 total_errors = 0;
3550 list_for_each_entry(dev, head, dev_list) {
3551 if (!dev->bdev)
3552 continue;
3553 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3554 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3555 continue;
3556
3557 ret = wait_dev_supers(dev, max_mirrors);
3558 if (ret)
3559 total_errors++;
3560 }
3561 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3562 if (total_errors > max_errors) {
3563 btrfs_handle_fs_error(fs_info, -EIO,
3564 "%d errors while writing supers",
3565 total_errors);
3566 return -EIO;
3567 }
3568 return 0;
3569 }
3570
3571 /* Drop a fs root from the radix tree and free it. */
3572 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3573 struct btrfs_root *root)
3574 {
3575 spin_lock(&fs_info->fs_roots_radix_lock);
3576 radix_tree_delete(&fs_info->fs_roots_radix,
3577 (unsigned long)root->root_key.objectid);
3578 spin_unlock(&fs_info->fs_roots_radix_lock);
3579
3580 if (btrfs_root_refs(&root->root_item) == 0)
3581 synchronize_srcu(&fs_info->subvol_srcu);
3582
3583 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3584 btrfs_free_log(NULL, root);
3585 if (root->reloc_root) {
3586 free_extent_buffer(root->reloc_root->node);
3587 free_extent_buffer(root->reloc_root->commit_root);
3588 btrfs_put_fs_root(root->reloc_root);
3589 root->reloc_root = NULL;
3590 }
3591 }
3592
3593 if (root->free_ino_pinned)
3594 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3595 if (root->free_ino_ctl)
3596 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3597 free_fs_root(root);
3598 }
3599
3600 static void free_fs_root(struct btrfs_root *root)
3601 {
3602 iput(root->ino_cache_inode);
3603 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3604 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3605 root->orphan_block_rsv = NULL;
3606 if (root->anon_dev)
3607 free_anon_bdev(root->anon_dev);
3608 if (root->subv_writers)
3609 btrfs_free_subvolume_writers(root->subv_writers);
3610 free_extent_buffer(root->node);
3611 free_extent_buffer(root->commit_root);
3612 kfree(root->free_ino_ctl);
3613 kfree(root->free_ino_pinned);
3614 kfree(root->name);
3615 btrfs_put_fs_root(root);
3616 }
3617
3618 void btrfs_free_fs_root(struct btrfs_root *root)
3619 {
3620 free_fs_root(root);
3621 }
3622
3623 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3624 {
3625 u64 root_objectid = 0;
3626 struct btrfs_root *gang[8];
3627 int i = 0;
3628 int err = 0;
3629 unsigned int ret = 0;
3630 int index;
3631
3632 while (1) {
3633 index = srcu_read_lock(&fs_info->subvol_srcu);
3634 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3635 (void **)gang, root_objectid,
3636 ARRAY_SIZE(gang));
3637 if (!ret) {
3638 srcu_read_unlock(&fs_info->subvol_srcu, index);
3639 break;
3640 }
3641 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3642
3643 for (i = 0; i < ret; i++) {
3644 /* Avoid to grab roots in dead_roots */
3645 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3646 gang[i] = NULL;
3647 continue;
3648 }
3649 /* grab all the search result for later use */
3650 gang[i] = btrfs_grab_fs_root(gang[i]);
3651 }
3652 srcu_read_unlock(&fs_info->subvol_srcu, index);
3653
3654 for (i = 0; i < ret; i++) {
3655 if (!gang[i])
3656 continue;
3657 root_objectid = gang[i]->root_key.objectid;
3658 err = btrfs_orphan_cleanup(gang[i]);
3659 if (err)
3660 break;
3661 btrfs_put_fs_root(gang[i]);
3662 }
3663 root_objectid++;
3664 }
3665
3666 /* release the uncleaned roots due to error */
3667 for (; i < ret; i++) {
3668 if (gang[i])
3669 btrfs_put_fs_root(gang[i]);
3670 }
3671 return err;
3672 }
3673
3674 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3675 {
3676 struct btrfs_root *root = fs_info->tree_root;
3677 struct btrfs_trans_handle *trans;
3678
3679 mutex_lock(&fs_info->cleaner_mutex);
3680 btrfs_run_delayed_iputs(fs_info);
3681 mutex_unlock(&fs_info->cleaner_mutex);
3682 wake_up_process(fs_info->cleaner_kthread);
3683
3684 /* wait until ongoing cleanup work done */
3685 down_write(&fs_info->cleanup_work_sem);
3686 up_write(&fs_info->cleanup_work_sem);
3687
3688 trans = btrfs_join_transaction(root);
3689 if (IS_ERR(trans))
3690 return PTR_ERR(trans);
3691 return btrfs_commit_transaction(trans);
3692 }
3693
3694 void close_ctree(struct btrfs_fs_info *fs_info)
3695 {
3696 struct btrfs_root *root = fs_info->tree_root;
3697 int ret;
3698
3699 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3700
3701 /* wait for the qgroup rescan worker to stop */
3702 btrfs_qgroup_wait_for_completion(fs_info, false);
3703
3704 /* wait for the uuid_scan task to finish */
3705 down(&fs_info->uuid_tree_rescan_sem);
3706 /* avoid complains from lockdep et al., set sem back to initial state */
3707 up(&fs_info->uuid_tree_rescan_sem);
3708
3709 /* pause restriper - we want to resume on mount */
3710 btrfs_pause_balance(fs_info);
3711
3712 btrfs_dev_replace_suspend_for_unmount(fs_info);
3713
3714 btrfs_scrub_cancel(fs_info);
3715
3716 /* wait for any defraggers to finish */
3717 wait_event(fs_info->transaction_wait,
3718 (atomic_read(&fs_info->defrag_running) == 0));
3719
3720 /* clear out the rbtree of defraggable inodes */
3721 btrfs_cleanup_defrag_inodes(fs_info);
3722
3723 cancel_work_sync(&fs_info->async_reclaim_work);
3724
3725 if (!sb_rdonly(fs_info->sb)) {
3726 /*
3727 * If the cleaner thread is stopped and there are
3728 * block groups queued for removal, the deletion will be
3729 * skipped when we quit the cleaner thread.
3730 */
3731 btrfs_delete_unused_bgs(fs_info);
3732
3733 ret = btrfs_commit_super(fs_info);
3734 if (ret)
3735 btrfs_err(fs_info, "commit super ret %d", ret);
3736 }
3737
3738 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3739 btrfs_error_commit_super(fs_info);
3740
3741 kthread_stop(fs_info->transaction_kthread);
3742 kthread_stop(fs_info->cleaner_kthread);
3743
3744 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3745
3746 btrfs_free_qgroup_config(fs_info);
3747
3748 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3749 btrfs_info(fs_info, "at unmount delalloc count %lld",
3750 percpu_counter_sum(&fs_info->delalloc_bytes));
3751 }
3752
3753 btrfs_sysfs_remove_mounted(fs_info);
3754 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3755
3756 btrfs_free_fs_roots(fs_info);
3757
3758 btrfs_put_block_group_cache(fs_info);
3759
3760 /*
3761 * we must make sure there is not any read request to
3762 * submit after we stopping all workers.
3763 */
3764 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3765 btrfs_stop_all_workers(fs_info);
3766
3767 btrfs_free_block_groups(fs_info);
3768
3769 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3770 free_root_pointers(fs_info, 1);
3771
3772 iput(fs_info->btree_inode);
3773
3774 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3775 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3776 btrfsic_unmount(fs_info->fs_devices);
3777 #endif
3778
3779 btrfs_close_devices(fs_info->fs_devices);
3780 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3781
3782 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3783 percpu_counter_destroy(&fs_info->delalloc_bytes);
3784 percpu_counter_destroy(&fs_info->bio_counter);
3785 cleanup_srcu_struct(&fs_info->subvol_srcu);
3786
3787 btrfs_free_stripe_hash_table(fs_info);
3788 btrfs_free_ref_cache(fs_info);
3789
3790 __btrfs_free_block_rsv(root->orphan_block_rsv);
3791 root->orphan_block_rsv = NULL;
3792
3793 while (!list_empty(&fs_info->pinned_chunks)) {
3794 struct extent_map *em;
3795
3796 em = list_first_entry(&fs_info->pinned_chunks,
3797 struct extent_map, list);
3798 list_del_init(&em->list);
3799 free_extent_map(em);
3800 }
3801 }
3802
3803 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3804 int atomic)
3805 {
3806 int ret;
3807 struct inode *btree_inode = buf->pages[0]->mapping->host;
3808
3809 ret = extent_buffer_uptodate(buf);
3810 if (!ret)
3811 return ret;
3812
3813 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3814 parent_transid, atomic);
3815 if (ret == -EAGAIN)
3816 return ret;
3817 return !ret;
3818 }
3819
3820 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3821 {
3822 struct btrfs_fs_info *fs_info;
3823 struct btrfs_root *root;
3824 u64 transid = btrfs_header_generation(buf);
3825 int was_dirty;
3826
3827 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3828 /*
3829 * This is a fast path so only do this check if we have sanity tests
3830 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3831 * outside of the sanity tests.
3832 */
3833 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3834 return;
3835 #endif
3836 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3837 fs_info = root->fs_info;
3838 btrfs_assert_tree_locked(buf);
3839 if (transid != fs_info->generation)
3840 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3841 buf->start, transid, fs_info->generation);
3842 was_dirty = set_extent_buffer_dirty(buf);
3843 if (!was_dirty)
3844 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3845 buf->len,
3846 fs_info->dirty_metadata_batch);
3847 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3848 /*
3849 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3850 * but item data not updated.
3851 * So here we should only check item pointers, not item data.
3852 */
3853 if (btrfs_header_level(buf) == 0 &&
3854 btrfs_check_leaf_relaxed(root, buf)) {
3855 btrfs_print_leaf(buf);
3856 ASSERT(0);
3857 }
3858 #endif
3859 }
3860
3861 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3862 int flush_delayed)
3863 {
3864 /*
3865 * looks as though older kernels can get into trouble with
3866 * this code, they end up stuck in balance_dirty_pages forever
3867 */
3868 int ret;
3869
3870 if (current->flags & PF_MEMALLOC)
3871 return;
3872
3873 if (flush_delayed)
3874 btrfs_balance_delayed_items(fs_info);
3875
3876 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3877 BTRFS_DIRTY_METADATA_THRESH);
3878 if (ret > 0) {
3879 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3880 }
3881 }
3882
3883 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3884 {
3885 __btrfs_btree_balance_dirty(fs_info, 1);
3886 }
3887
3888 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3889 {
3890 __btrfs_btree_balance_dirty(fs_info, 0);
3891 }
3892
3893 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3894 {
3895 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3896 struct btrfs_fs_info *fs_info = root->fs_info;
3897
3898 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3899 }
3900
3901 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3902 {
3903 struct btrfs_super_block *sb = fs_info->super_copy;
3904 u64 nodesize = btrfs_super_nodesize(sb);
3905 u64 sectorsize = btrfs_super_sectorsize(sb);
3906 int ret = 0;
3907
3908 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3909 btrfs_err(fs_info, "no valid FS found");
3910 ret = -EINVAL;
3911 }
3912 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3913 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3914 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3915 ret = -EINVAL;
3916 }
3917 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3918 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3919 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3920 ret = -EINVAL;
3921 }
3922 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3923 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3924 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3925 ret = -EINVAL;
3926 }
3927 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3928 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3929 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3930 ret = -EINVAL;
3931 }
3932
3933 /*
3934 * Check sectorsize and nodesize first, other check will need it.
3935 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3936 */
3937 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3938 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3939 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3940 ret = -EINVAL;
3941 }
3942 /* Only PAGE SIZE is supported yet */
3943 if (sectorsize != PAGE_SIZE) {
3944 btrfs_err(fs_info,
3945 "sectorsize %llu not supported yet, only support %lu",
3946 sectorsize, PAGE_SIZE);
3947 ret = -EINVAL;
3948 }
3949 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3950 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3951 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3952 ret = -EINVAL;
3953 }
3954 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3955 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3956 le32_to_cpu(sb->__unused_leafsize), nodesize);
3957 ret = -EINVAL;
3958 }
3959
3960 /* Root alignment check */
3961 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3962 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3963 btrfs_super_root(sb));
3964 ret = -EINVAL;
3965 }
3966 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3967 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3968 btrfs_super_chunk_root(sb));
3969 ret = -EINVAL;
3970 }
3971 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3972 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3973 btrfs_super_log_root(sb));
3974 ret = -EINVAL;
3975 }
3976
3977 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3978 btrfs_err(fs_info,
3979 "dev_item UUID does not match fsid: %pU != %pU",
3980 fs_info->fsid, sb->dev_item.fsid);
3981 ret = -EINVAL;
3982 }
3983
3984 /*
3985 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3986 * done later
3987 */
3988 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3989 btrfs_err(fs_info, "bytes_used is too small %llu",
3990 btrfs_super_bytes_used(sb));
3991 ret = -EINVAL;
3992 }
3993 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3994 btrfs_err(fs_info, "invalid stripesize %u",
3995 btrfs_super_stripesize(sb));
3996 ret = -EINVAL;
3997 }
3998 if (btrfs_super_num_devices(sb) > (1UL << 31))
3999 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4000 btrfs_super_num_devices(sb));
4001 if (btrfs_super_num_devices(sb) == 0) {
4002 btrfs_err(fs_info, "number of devices is 0");
4003 ret = -EINVAL;
4004 }
4005
4006 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4007 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4008 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4009 ret = -EINVAL;
4010 }
4011
4012 /*
4013 * Obvious sys_chunk_array corruptions, it must hold at least one key
4014 * and one chunk
4015 */
4016 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4017 btrfs_err(fs_info, "system chunk array too big %u > %u",
4018 btrfs_super_sys_array_size(sb),
4019 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4020 ret = -EINVAL;
4021 }
4022 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4023 + sizeof(struct btrfs_chunk)) {
4024 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4025 btrfs_super_sys_array_size(sb),
4026 sizeof(struct btrfs_disk_key)
4027 + sizeof(struct btrfs_chunk));
4028 ret = -EINVAL;
4029 }
4030
4031 /*
4032 * The generation is a global counter, we'll trust it more than the others
4033 * but it's still possible that it's the one that's wrong.
4034 */
4035 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4036 btrfs_warn(fs_info,
4037 "suspicious: generation < chunk_root_generation: %llu < %llu",
4038 btrfs_super_generation(sb),
4039 btrfs_super_chunk_root_generation(sb));
4040 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4041 && btrfs_super_cache_generation(sb) != (u64)-1)
4042 btrfs_warn(fs_info,
4043 "suspicious: generation < cache_generation: %llu < %llu",
4044 btrfs_super_generation(sb),
4045 btrfs_super_cache_generation(sb));
4046
4047 return ret;
4048 }
4049
4050 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4051 {
4052 mutex_lock(&fs_info->cleaner_mutex);
4053 btrfs_run_delayed_iputs(fs_info);
4054 mutex_unlock(&fs_info->cleaner_mutex);
4055
4056 down_write(&fs_info->cleanup_work_sem);
4057 up_write(&fs_info->cleanup_work_sem);
4058
4059 /* cleanup FS via transaction */
4060 btrfs_cleanup_transaction(fs_info);
4061 }
4062
4063 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4064 {
4065 struct btrfs_ordered_extent *ordered;
4066
4067 spin_lock(&root->ordered_extent_lock);
4068 /*
4069 * This will just short circuit the ordered completion stuff which will
4070 * make sure the ordered extent gets properly cleaned up.
4071 */
4072 list_for_each_entry(ordered, &root->ordered_extents,
4073 root_extent_list)
4074 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4075 spin_unlock(&root->ordered_extent_lock);
4076 }
4077
4078 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4079 {
4080 struct btrfs_root *root;
4081 struct list_head splice;
4082
4083 INIT_LIST_HEAD(&splice);
4084
4085 spin_lock(&fs_info->ordered_root_lock);
4086 list_splice_init(&fs_info->ordered_roots, &splice);
4087 while (!list_empty(&splice)) {
4088 root = list_first_entry(&splice, struct btrfs_root,
4089 ordered_root);
4090 list_move_tail(&root->ordered_root,
4091 &fs_info->ordered_roots);
4092
4093 spin_unlock(&fs_info->ordered_root_lock);
4094 btrfs_destroy_ordered_extents(root);
4095
4096 cond_resched();
4097 spin_lock(&fs_info->ordered_root_lock);
4098 }
4099 spin_unlock(&fs_info->ordered_root_lock);
4100 }
4101
4102 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4103 struct btrfs_fs_info *fs_info)
4104 {
4105 struct rb_node *node;
4106 struct btrfs_delayed_ref_root *delayed_refs;
4107 struct btrfs_delayed_ref_node *ref;
4108 int ret = 0;
4109
4110 delayed_refs = &trans->delayed_refs;
4111
4112 spin_lock(&delayed_refs->lock);
4113 if (atomic_read(&delayed_refs->num_entries) == 0) {
4114 spin_unlock(&delayed_refs->lock);
4115 btrfs_info(fs_info, "delayed_refs has NO entry");
4116 return ret;
4117 }
4118
4119 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4120 struct btrfs_delayed_ref_head *head;
4121 struct rb_node *n;
4122 bool pin_bytes = false;
4123
4124 head = rb_entry(node, struct btrfs_delayed_ref_head,
4125 href_node);
4126 if (!mutex_trylock(&head->mutex)) {
4127 refcount_inc(&head->refs);
4128 spin_unlock(&delayed_refs->lock);
4129
4130 mutex_lock(&head->mutex);
4131 mutex_unlock(&head->mutex);
4132 btrfs_put_delayed_ref_head(head);
4133 spin_lock(&delayed_refs->lock);
4134 continue;
4135 }
4136 spin_lock(&head->lock);
4137 while ((n = rb_first(&head->ref_tree)) != NULL) {
4138 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4139 ref_node);
4140 ref->in_tree = 0;
4141 rb_erase(&ref->ref_node, &head->ref_tree);
4142 RB_CLEAR_NODE(&ref->ref_node);
4143 if (!list_empty(&ref->add_list))
4144 list_del(&ref->add_list);
4145 atomic_dec(&delayed_refs->num_entries);
4146 btrfs_put_delayed_ref(ref);
4147 }
4148 if (head->must_insert_reserved)
4149 pin_bytes = true;
4150 btrfs_free_delayed_extent_op(head->extent_op);
4151 delayed_refs->num_heads--;
4152 if (head->processing == 0)
4153 delayed_refs->num_heads_ready--;
4154 atomic_dec(&delayed_refs->num_entries);
4155 rb_erase(&head->href_node, &delayed_refs->href_root);
4156 RB_CLEAR_NODE(&head->href_node);
4157 spin_unlock(&head->lock);
4158 spin_unlock(&delayed_refs->lock);
4159 mutex_unlock(&head->mutex);
4160
4161 if (pin_bytes)
4162 btrfs_pin_extent(fs_info, head->bytenr,
4163 head->num_bytes, 1);
4164 btrfs_put_delayed_ref_head(head);
4165 cond_resched();
4166 spin_lock(&delayed_refs->lock);
4167 }
4168
4169 spin_unlock(&delayed_refs->lock);
4170
4171 return ret;
4172 }
4173
4174 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4175 {
4176 struct btrfs_inode *btrfs_inode;
4177 struct list_head splice;
4178
4179 INIT_LIST_HEAD(&splice);
4180
4181 spin_lock(&root->delalloc_lock);
4182 list_splice_init(&root->delalloc_inodes, &splice);
4183
4184 while (!list_empty(&splice)) {
4185 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4186 delalloc_inodes);
4187
4188 list_del_init(&btrfs_inode->delalloc_inodes);
4189 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4190 &btrfs_inode->runtime_flags);
4191 spin_unlock(&root->delalloc_lock);
4192
4193 btrfs_invalidate_inodes(btrfs_inode->root);
4194
4195 spin_lock(&root->delalloc_lock);
4196 }
4197
4198 spin_unlock(&root->delalloc_lock);
4199 }
4200
4201 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4202 {
4203 struct btrfs_root *root;
4204 struct list_head splice;
4205
4206 INIT_LIST_HEAD(&splice);
4207
4208 spin_lock(&fs_info->delalloc_root_lock);
4209 list_splice_init(&fs_info->delalloc_roots, &splice);
4210 while (!list_empty(&splice)) {
4211 root = list_first_entry(&splice, struct btrfs_root,
4212 delalloc_root);
4213 list_del_init(&root->delalloc_root);
4214 root = btrfs_grab_fs_root(root);
4215 BUG_ON(!root);
4216 spin_unlock(&fs_info->delalloc_root_lock);
4217
4218 btrfs_destroy_delalloc_inodes(root);
4219 btrfs_put_fs_root(root);
4220
4221 spin_lock(&fs_info->delalloc_root_lock);
4222 }
4223 spin_unlock(&fs_info->delalloc_root_lock);
4224 }
4225
4226 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4227 struct extent_io_tree *dirty_pages,
4228 int mark)
4229 {
4230 int ret;
4231 struct extent_buffer *eb;
4232 u64 start = 0;
4233 u64 end;
4234
4235 while (1) {
4236 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4237 mark, NULL);
4238 if (ret)
4239 break;
4240
4241 clear_extent_bits(dirty_pages, start, end, mark);
4242 while (start <= end) {
4243 eb = find_extent_buffer(fs_info, start);
4244 start += fs_info->nodesize;
4245 if (!eb)
4246 continue;
4247 wait_on_extent_buffer_writeback(eb);
4248
4249 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4250 &eb->bflags))
4251 clear_extent_buffer_dirty(eb);
4252 free_extent_buffer_stale(eb);
4253 }
4254 }
4255
4256 return ret;
4257 }
4258
4259 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4260 struct extent_io_tree *pinned_extents)
4261 {
4262 struct extent_io_tree *unpin;
4263 u64 start;
4264 u64 end;
4265 int ret;
4266 bool loop = true;
4267
4268 unpin = pinned_extents;
4269 again:
4270 while (1) {
4271 ret = find_first_extent_bit(unpin, 0, &start, &end,
4272 EXTENT_DIRTY, NULL);
4273 if (ret)
4274 break;
4275
4276 clear_extent_dirty(unpin, start, end);
4277 btrfs_error_unpin_extent_range(fs_info, start, end);
4278 cond_resched();
4279 }
4280
4281 if (loop) {
4282 if (unpin == &fs_info->freed_extents[0])
4283 unpin = &fs_info->freed_extents[1];
4284 else
4285 unpin = &fs_info->freed_extents[0];
4286 loop = false;
4287 goto again;
4288 }
4289
4290 return 0;
4291 }
4292
4293 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4294 {
4295 struct inode *inode;
4296
4297 inode = cache->io_ctl.inode;
4298 if (inode) {
4299 invalidate_inode_pages2(inode->i_mapping);
4300 BTRFS_I(inode)->generation = 0;
4301 cache->io_ctl.inode = NULL;
4302 iput(inode);
4303 }
4304 btrfs_put_block_group(cache);
4305 }
4306
4307 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4308 struct btrfs_fs_info *fs_info)
4309 {
4310 struct btrfs_block_group_cache *cache;
4311
4312 spin_lock(&cur_trans->dirty_bgs_lock);
4313 while (!list_empty(&cur_trans->dirty_bgs)) {
4314 cache = list_first_entry(&cur_trans->dirty_bgs,
4315 struct btrfs_block_group_cache,
4316 dirty_list);
4317 if (!cache) {
4318 btrfs_err(fs_info, "orphan block group dirty_bgs list");
4319 spin_unlock(&cur_trans->dirty_bgs_lock);
4320 return;
4321 }
4322
4323 if (!list_empty(&cache->io_list)) {
4324 spin_unlock(&cur_trans->dirty_bgs_lock);
4325 list_del_init(&cache->io_list);
4326 btrfs_cleanup_bg_io(cache);
4327 spin_lock(&cur_trans->dirty_bgs_lock);
4328 }
4329
4330 list_del_init(&cache->dirty_list);
4331 spin_lock(&cache->lock);
4332 cache->disk_cache_state = BTRFS_DC_ERROR;
4333 spin_unlock(&cache->lock);
4334
4335 spin_unlock(&cur_trans->dirty_bgs_lock);
4336 btrfs_put_block_group(cache);
4337 spin_lock(&cur_trans->dirty_bgs_lock);
4338 }
4339 spin_unlock(&cur_trans->dirty_bgs_lock);
4340
4341 while (!list_empty(&cur_trans->io_bgs)) {
4342 cache = list_first_entry(&cur_trans->io_bgs,
4343 struct btrfs_block_group_cache,
4344 io_list);
4345 if (!cache) {
4346 btrfs_err(fs_info, "orphan block group on io_bgs list");
4347 return;
4348 }
4349
4350 list_del_init(&cache->io_list);
4351 spin_lock(&cache->lock);
4352 cache->disk_cache_state = BTRFS_DC_ERROR;
4353 spin_unlock(&cache->lock);
4354 btrfs_cleanup_bg_io(cache);
4355 }
4356 }
4357
4358 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4359 struct btrfs_fs_info *fs_info)
4360 {
4361 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4362 ASSERT(list_empty(&cur_trans->dirty_bgs));
4363 ASSERT(list_empty(&cur_trans->io_bgs));
4364
4365 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4366
4367 cur_trans->state = TRANS_STATE_COMMIT_START;
4368 wake_up(&fs_info->transaction_blocked_wait);
4369
4370 cur_trans->state = TRANS_STATE_UNBLOCKED;
4371 wake_up(&fs_info->transaction_wait);
4372
4373 btrfs_destroy_delayed_inodes(fs_info);
4374 btrfs_assert_delayed_root_empty(fs_info);
4375
4376 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4377 EXTENT_DIRTY);
4378 btrfs_destroy_pinned_extent(fs_info,
4379 fs_info->pinned_extents);
4380
4381 cur_trans->state =TRANS_STATE_COMPLETED;
4382 wake_up(&cur_trans->commit_wait);
4383 }
4384
4385 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4386 {
4387 struct btrfs_transaction *t;
4388
4389 mutex_lock(&fs_info->transaction_kthread_mutex);
4390
4391 spin_lock(&fs_info->trans_lock);
4392 while (!list_empty(&fs_info->trans_list)) {
4393 t = list_first_entry(&fs_info->trans_list,
4394 struct btrfs_transaction, list);
4395 if (t->state >= TRANS_STATE_COMMIT_START) {
4396 refcount_inc(&t->use_count);
4397 spin_unlock(&fs_info->trans_lock);
4398 btrfs_wait_for_commit(fs_info, t->transid);
4399 btrfs_put_transaction(t);
4400 spin_lock(&fs_info->trans_lock);
4401 continue;
4402 }
4403 if (t == fs_info->running_transaction) {
4404 t->state = TRANS_STATE_COMMIT_DOING;
4405 spin_unlock(&fs_info->trans_lock);
4406 /*
4407 * We wait for 0 num_writers since we don't hold a trans
4408 * handle open currently for this transaction.
4409 */
4410 wait_event(t->writer_wait,
4411 atomic_read(&t->num_writers) == 0);
4412 } else {
4413 spin_unlock(&fs_info->trans_lock);
4414 }
4415 btrfs_cleanup_one_transaction(t, fs_info);
4416
4417 spin_lock(&fs_info->trans_lock);
4418 if (t == fs_info->running_transaction)
4419 fs_info->running_transaction = NULL;
4420 list_del_init(&t->list);
4421 spin_unlock(&fs_info->trans_lock);
4422
4423 btrfs_put_transaction(t);
4424 trace_btrfs_transaction_commit(fs_info->tree_root);
4425 spin_lock(&fs_info->trans_lock);
4426 }
4427 spin_unlock(&fs_info->trans_lock);
4428 btrfs_destroy_all_ordered_extents(fs_info);
4429 btrfs_destroy_delayed_inodes(fs_info);
4430 btrfs_assert_delayed_root_empty(fs_info);
4431 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4432 btrfs_destroy_all_delalloc_inodes(fs_info);
4433 mutex_unlock(&fs_info->transaction_kthread_mutex);
4434
4435 return 0;
4436 }
4437
4438 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4439 {
4440 struct inode *inode = private_data;
4441 return btrfs_sb(inode->i_sb);
4442 }
4443
4444 static const struct extent_io_ops btree_extent_io_ops = {
4445 /* mandatory callbacks */
4446 .submit_bio_hook = btree_submit_bio_hook,
4447 .readpage_end_io_hook = btree_readpage_end_io_hook,
4448 /* note we're sharing with inode.c for the merge bio hook */
4449 .merge_bio_hook = btrfs_merge_bio_hook,
4450 .readpage_io_failed_hook = btree_io_failed_hook,
4451 .set_range_writeback = btrfs_set_range_writeback,
4452 .tree_fs_info = btree_fs_info,
4453
4454 /* optional callbacks */
4455 };