]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/disk-io.c
Btrfs: don't null pointer deref on abort
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178 {
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201 {
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
386
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 ret = 0;
390 }
391 }
392
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 csum_type);
396 ret = 1;
397 }
398
399 return ret;
400 }
401
402 /*
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
405 */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
408 u64 start, u64 parent_transid)
409 {
410 struct extent_io_tree *io_tree;
411 int failed = 0;
412 int ret;
413 int num_copies = 0;
414 int mirror_num = 0;
415 int failed_mirror = 0;
416
417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 while (1) {
420 ret = read_extent_buffer_pages(io_tree, eb, start,
421 WAIT_COMPLETE,
422 btree_get_extent, mirror_num);
423 if (!ret) {
424 if (!verify_parent_transid(io_tree, eb,
425 parent_transid, 0))
426 break;
427 else
428 ret = -EIO;
429 }
430
431 /*
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
434 * any less wrong.
435 */
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 break;
438
439 num_copies = btrfs_num_copies(root->fs_info,
440 eb->start, eb->len);
441 if (num_copies == 1)
442 break;
443
444 if (!failed_mirror) {
445 failed = 1;
446 failed_mirror = eb->read_mirror;
447 }
448
449 mirror_num++;
450 if (mirror_num == failed_mirror)
451 mirror_num++;
452
453 if (mirror_num > num_copies)
454 break;
455 }
456
457 if (failed && !ret && failed_mirror)
458 repair_eb_io_failure(root, eb, failed_mirror);
459
460 return ret;
461 }
462
463 /*
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
466 */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470 struct extent_io_tree *tree;
471 u64 start = page_offset(page);
472 u64 found_start;
473 struct extent_buffer *eb;
474
475 tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
479 return 0;
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
482 WARN_ON(1);
483 return 0;
484 }
485 if (!PageUptodate(page)) {
486 WARN_ON(1);
487 return 0;
488 }
489 csum_tree_block(root, eb, 0);
490 return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
495 {
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
498 int ret = 1;
499
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 BTRFS_FSID_SIZE);
502 while (fs_devices) {
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 ret = 0;
505 break;
506 }
507 fs_devices = fs_devices->seed;
508 }
509 return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
520 {
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
524 int slot;
525
526 if (nritems == 0)
527 return 0;
528
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 return -EIO;
534 }
535
536 /*
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
541 * offset is correct.
542 */
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
550 return -EIO;
551 }
552
553 /*
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
556 * front.
557 */
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
568 */
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
572 return -EIO;
573 }
574 }
575
576 return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580 struct extent_state *state, int mirror)
581 {
582 struct extent_io_tree *tree;
583 u64 found_start;
584 int found_level;
585 struct extent_buffer *eb;
586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587 int ret = 0;
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 tree = &BTRFS_I(page->mapping->host)->io_tree;
594 eb = (struct extent_buffer *)page->private;
595
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
598 */
599 extent_buffer_get(eb);
600
601 reads_done = atomic_dec_and_test(&eb->io_pages);
602 if (!reads_done)
603 goto err;
604
605 eb->read_mirror = mirror;
606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 ret = -EIO;
608 goto err;
609 }
610
611 found_start = btrfs_header_bytenr(eb);
612 if (found_start != eb->start) {
613 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614 "%llu %llu\n",
615 (unsigned long long)found_start,
616 (unsigned long long)eb->start);
617 ret = -EIO;
618 goto err;
619 }
620 if (check_tree_block_fsid(root, eb)) {
621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb->start);
623 ret = -EIO;
624 goto err;
625 }
626 found_level = btrfs_header_level(eb);
627 if (found_level >= BTRFS_MAX_LEVEL) {
628 btrfs_info(root->fs_info, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb));
630 ret = -EIO;
631 goto err;
632 }
633
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635 eb, found_level);
636
637 ret = csum_tree_block(root, eb, 1);
638 if (ret) {
639 ret = -EIO;
640 goto err;
641 }
642
643 /*
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
646 * return -EIO.
647 */
648 if (found_level == 0 && check_leaf(root, eb)) {
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 ret = -EIO;
651 }
652
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
655 err:
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, ret);
659
660 if (ret) {
661 /*
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
665 */
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
668 }
669 free_extent_buffer(eb);
670 out:
671 return ret;
672 }
673
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676 struct extent_buffer *eb;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
679 eb = (struct extent_buffer *)page->private;
680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681 eb->read_mirror = failed_mirror;
682 atomic_dec(&eb->io_pages);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 btree_readahead_hook(root, eb, eb->start, -EIO);
685 return -EIO; /* we fixed nothing */
686 }
687
688 static void end_workqueue_bio(struct bio *bio, int err)
689 {
690 struct end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
692
693 fs_info = end_io_wq->info;
694 end_io_wq->error = err;
695 end_io_wq->work.func = end_workqueue_fn;
696 end_io_wq->work.flags = 0;
697
698 if (bio->bi_rw & REQ_WRITE) {
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701 &end_io_wq->work);
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 btrfs_queue_worker(&fs_info->endio_freespace_worker,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 btrfs_queue_worker(&fs_info->endio_raid56_workers,
707 &end_io_wq->work);
708 else
709 btrfs_queue_worker(&fs_info->endio_write_workers,
710 &end_io_wq->work);
711 } else {
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 btrfs_queue_worker(&fs_info->endio_raid56_workers,
714 &end_io_wq->work);
715 else if (end_io_wq->metadata)
716 btrfs_queue_worker(&fs_info->endio_meta_workers,
717 &end_io_wq->work);
718 else
719 btrfs_queue_worker(&fs_info->endio_workers,
720 &end_io_wq->work);
721 }
722 }
723
724 /*
725 * For the metadata arg you want
726 *
727 * 0 - if data
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
731 */
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 int metadata)
734 {
735 struct end_io_wq *end_io_wq;
736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737 if (!end_io_wq)
738 return -ENOMEM;
739
740 end_io_wq->private = bio->bi_private;
741 end_io_wq->end_io = bio->bi_end_io;
742 end_io_wq->info = info;
743 end_io_wq->error = 0;
744 end_io_wq->bio = bio;
745 end_io_wq->metadata = metadata;
746
747 bio->bi_private = end_io_wq;
748 bio->bi_end_io = end_workqueue_bio;
749 return 0;
750 }
751
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753 {
754 unsigned long limit = min_t(unsigned long,
755 info->workers.max_workers,
756 info->fs_devices->open_devices);
757 return 256 * limit;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762 struct async_submit_bio *async;
763 int ret;
764
765 async = container_of(work, struct async_submit_bio, work);
766 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 async->mirror_num, async->bio_flags,
768 async->bio_offset);
769 if (ret)
770 async->error = ret;
771 }
772
773 static void run_one_async_done(struct btrfs_work *work)
774 {
775 struct btrfs_fs_info *fs_info;
776 struct async_submit_bio *async;
777 int limit;
778
779 async = container_of(work, struct async_submit_bio, work);
780 fs_info = BTRFS_I(async->inode)->root->fs_info;
781
782 limit = btrfs_async_submit_limit(fs_info);
783 limit = limit * 2 / 3;
784
785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786 waitqueue_active(&fs_info->async_submit_wait))
787 wake_up(&fs_info->async_submit_wait);
788
789 /* If an error occured we just want to clean up the bio and move on */
790 if (async->error) {
791 bio_endio(async->bio, async->error);
792 return;
793 }
794
795 async->submit_bio_done(async->inode, async->rw, async->bio,
796 async->mirror_num, async->bio_flags,
797 async->bio_offset);
798 }
799
800 static void run_one_async_free(struct btrfs_work *work)
801 {
802 struct async_submit_bio *async;
803
804 async = container_of(work, struct async_submit_bio, work);
805 kfree(async);
806 }
807
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 int rw, struct bio *bio, int mirror_num,
810 unsigned long bio_flags,
811 u64 bio_offset,
812 extent_submit_bio_hook_t *submit_bio_start,
813 extent_submit_bio_hook_t *submit_bio_done)
814 {
815 struct async_submit_bio *async;
816
817 async = kmalloc(sizeof(*async), GFP_NOFS);
818 if (!async)
819 return -ENOMEM;
820
821 async->inode = inode;
822 async->rw = rw;
823 async->bio = bio;
824 async->mirror_num = mirror_num;
825 async->submit_bio_start = submit_bio_start;
826 async->submit_bio_done = submit_bio_done;
827
828 async->work.func = run_one_async_start;
829 async->work.ordered_func = run_one_async_done;
830 async->work.ordered_free = run_one_async_free;
831
832 async->work.flags = 0;
833 async->bio_flags = bio_flags;
834 async->bio_offset = bio_offset;
835
836 async->error = 0;
837
838 atomic_inc(&fs_info->nr_async_submits);
839
840 if (rw & REQ_SYNC)
841 btrfs_set_work_high_prio(&async->work);
842
843 btrfs_queue_worker(&fs_info->workers, &async->work);
844
845 while (atomic_read(&fs_info->async_submit_draining) &&
846 atomic_read(&fs_info->nr_async_submits)) {
847 wait_event(fs_info->async_submit_wait,
848 (atomic_read(&fs_info->nr_async_submits) == 0));
849 }
850
851 return 0;
852 }
853
854 static int btree_csum_one_bio(struct bio *bio)
855 {
856 struct bio_vec *bvec = bio->bi_io_vec;
857 int bio_index = 0;
858 struct btrfs_root *root;
859 int ret = 0;
860
861 WARN_ON(bio->bi_vcnt <= 0);
862 while (bio_index < bio->bi_vcnt) {
863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 ret = csum_dirty_buffer(root, bvec->bv_page);
865 if (ret)
866 break;
867 bio_index++;
868 bvec++;
869 }
870 return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
875 unsigned long bio_flags,
876 u64 bio_offset)
877 {
878 /*
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
881 */
882 return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886 int mirror_num, unsigned long bio_flags,
887 u64 bio_offset)
888 {
889 int ret;
890
891 /*
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
894 */
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 if (ret)
897 bio_endio(bio, ret);
898 return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
904 return 0;
905 #ifdef CONFIG_X86
906 if (cpu_has_xmm4_2)
907 return 0;
908 #endif
909 return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913 int mirror_num, unsigned long bio_flags,
914 u64 bio_offset)
915 {
916 int async = check_async_write(inode, bio_flags);
917 int ret;
918
919 if (!(rw & REQ_WRITE)) {
920 /*
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
923 */
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 bio, 1);
926 if (ret)
927 goto out_w_error;
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 mirror_num, 0);
930 } else if (!async) {
931 ret = btree_csum_one_bio(bio);
932 if (ret)
933 goto out_w_error;
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 mirror_num, 0);
936 } else {
937 /*
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
940 */
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
943 bio_offset,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
946 }
947
948 if (ret) {
949 out_w_error:
950 bio_endio(bio, ret);
951 }
952 return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
959 {
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
973 return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980 {
981 struct extent_io_tree *tree;
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
985 tree = &BTRFS_I(mapping->host)->io_tree;
986 if (wbc->sync_mode == WB_SYNC_NONE) {
987
988 if (wbc->for_kupdate)
989 return 0;
990
991 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992 /* this is a bit racy, but that's ok */
993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 BTRFS_DIRTY_METADATA_THRESH);
995 if (ret < 0)
996 return 0;
997 }
998 return btree_write_cache_pages(mapping, wbc);
999 }
1000
1001 static int btree_readpage(struct file *file, struct page *page)
1002 {
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 return extent_read_full_page(tree, page, btree_get_extent, 0);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010 if (PageWriteback(page) || PageDirty(page))
1011 return 0;
1012
1013 return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidatepage(struct page *page, unsigned long offset)
1017 {
1018 struct extent_io_tree *tree;
1019 tree = &BTRFS_I(page->mapping->host)->io_tree;
1020 extent_invalidatepage(tree, page, offset);
1021 btree_releasepage(page, GFP_NOFS);
1022 if (PagePrivate(page)) {
1023 printk(KERN_WARNING "btrfs warning page private not zero "
1024 "on page %llu\n", (unsigned long long)page_offset(page));
1025 ClearPagePrivate(page);
1026 set_page_private(page, 0);
1027 page_cache_release(page);
1028 }
1029 }
1030
1031 static int btree_set_page_dirty(struct page *page)
1032 {
1033 #ifdef DEBUG
1034 struct extent_buffer *eb;
1035
1036 BUG_ON(!PagePrivate(page));
1037 eb = (struct extent_buffer *)page->private;
1038 BUG_ON(!eb);
1039 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040 BUG_ON(!atomic_read(&eb->refs));
1041 btrfs_assert_tree_locked(eb);
1042 #endif
1043 return __set_page_dirty_nobuffers(page);
1044 }
1045
1046 static const struct address_space_operations btree_aops = {
1047 .readpage = btree_readpage,
1048 .writepages = btree_writepages,
1049 .releasepage = btree_releasepage,
1050 .invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052 .migratepage = btree_migratepage,
1053 #endif
1054 .set_page_dirty = btree_set_page_dirty,
1055 };
1056
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 u64 parent_transid)
1059 {
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
1062 int ret = 0;
1063
1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 if (!buf)
1066 return 0;
1067 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068 buf, 0, WAIT_NONE, btree_get_extent, 0);
1069 free_extent_buffer(buf);
1070 return ret;
1071 }
1072
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074 int mirror_num, struct extent_buffer **eb)
1075 {
1076 struct extent_buffer *buf = NULL;
1077 struct inode *btree_inode = root->fs_info->btree_inode;
1078 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079 int ret;
1080
1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 if (!buf)
1083 return 0;
1084
1085 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088 btree_get_extent, mirror_num);
1089 if (ret) {
1090 free_extent_buffer(buf);
1091 return ret;
1092 }
1093
1094 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095 free_extent_buffer(buf);
1096 return -EIO;
1097 } else if (extent_buffer_uptodate(buf)) {
1098 *eb = buf;
1099 } else {
1100 free_extent_buffer(buf);
1101 }
1102 return 0;
1103 }
1104
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107 {
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111 bytenr, blocksize);
1112 return eb;
1113 }
1114
1115 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116 u64 bytenr, u32 blocksize)
1117 {
1118 struct inode *btree_inode = root->fs_info->btree_inode;
1119 struct extent_buffer *eb;
1120
1121 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1122 bytenr, blocksize);
1123 return eb;
1124 }
1125
1126
1127 int btrfs_write_tree_block(struct extent_buffer *buf)
1128 {
1129 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1130 buf->start + buf->len - 1);
1131 }
1132
1133 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1134 {
1135 return filemap_fdatawait_range(buf->pages[0]->mapping,
1136 buf->start, buf->start + buf->len - 1);
1137 }
1138
1139 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1140 u32 blocksize, u64 parent_transid)
1141 {
1142 struct extent_buffer *buf = NULL;
1143 int ret;
1144
1145 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1146 if (!buf)
1147 return NULL;
1148
1149 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1150 return buf;
1151
1152 }
1153
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 struct extent_buffer *buf)
1156 {
1157 struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159 if (btrfs_header_generation(buf) ==
1160 fs_info->running_transaction->transid) {
1161 btrfs_assert_tree_locked(buf);
1162
1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165 -buf->len,
1166 fs_info->dirty_metadata_batch);
1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 btrfs_set_lock_blocking(buf);
1169 clear_extent_buffer_dirty(buf);
1170 }
1171 }
1172 }
1173
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175 u32 stripesize, struct btrfs_root *root,
1176 struct btrfs_fs_info *fs_info,
1177 u64 objectid)
1178 {
1179 root->node = NULL;
1180 root->commit_root = NULL;
1181 root->sectorsize = sectorsize;
1182 root->nodesize = nodesize;
1183 root->leafsize = leafsize;
1184 root->stripesize = stripesize;
1185 root->ref_cows = 0;
1186 root->track_dirty = 0;
1187 root->in_radix = 0;
1188 root->orphan_item_inserted = 0;
1189 root->orphan_cleanup_state = 0;
1190
1191 root->objectid = objectid;
1192 root->last_trans = 0;
1193 root->highest_objectid = 0;
1194 root->name = NULL;
1195 root->inode_tree = RB_ROOT;
1196 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1197 root->block_rsv = NULL;
1198 root->orphan_block_rsv = NULL;
1199
1200 INIT_LIST_HEAD(&root->dirty_list);
1201 INIT_LIST_HEAD(&root->root_list);
1202 INIT_LIST_HEAD(&root->logged_list[0]);
1203 INIT_LIST_HEAD(&root->logged_list[1]);
1204 spin_lock_init(&root->orphan_lock);
1205 spin_lock_init(&root->inode_lock);
1206 spin_lock_init(&root->accounting_lock);
1207 spin_lock_init(&root->log_extents_lock[0]);
1208 spin_lock_init(&root->log_extents_lock[1]);
1209 mutex_init(&root->objectid_mutex);
1210 mutex_init(&root->log_mutex);
1211 init_waitqueue_head(&root->log_writer_wait);
1212 init_waitqueue_head(&root->log_commit_wait[0]);
1213 init_waitqueue_head(&root->log_commit_wait[1]);
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
1217 atomic_set(&root->log_batch, 0);
1218 atomic_set(&root->orphan_inodes, 0);
1219 root->log_transid = 0;
1220 root->last_log_commit = 0;
1221 extent_io_tree_init(&root->dirty_log_pages,
1222 fs_info->btree_inode->i_mapping);
1223
1224 memset(&root->root_key, 0, sizeof(root->root_key));
1225 memset(&root->root_item, 0, sizeof(root->root_item));
1226 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1227 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1228 root->defrag_trans_start = fs_info->generation;
1229 init_completion(&root->kobj_unregister);
1230 root->defrag_running = 0;
1231 root->root_key.objectid = objectid;
1232 root->anon_dev = 0;
1233
1234 spin_lock_init(&root->root_item_lock);
1235 }
1236
1237 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1238 struct btrfs_fs_info *fs_info,
1239 u64 objectid,
1240 struct btrfs_root *root)
1241 {
1242 int ret;
1243 u32 blocksize;
1244 u64 generation;
1245
1246 __setup_root(tree_root->nodesize, tree_root->leafsize,
1247 tree_root->sectorsize, tree_root->stripesize,
1248 root, fs_info, objectid);
1249 ret = btrfs_find_last_root(tree_root, objectid,
1250 &root->root_item, &root->root_key);
1251 if (ret > 0)
1252 return -ENOENT;
1253 else if (ret < 0)
1254 return ret;
1255
1256 generation = btrfs_root_generation(&root->root_item);
1257 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1258 root->commit_root = NULL;
1259 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1260 blocksize, generation);
1261 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1262 free_extent_buffer(root->node);
1263 root->node = NULL;
1264 return -EIO;
1265 }
1266 root->commit_root = btrfs_root_node(root);
1267 return 0;
1268 }
1269
1270 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1271 {
1272 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1273 if (root)
1274 root->fs_info = fs_info;
1275 return root;
1276 }
1277
1278 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1279 struct btrfs_fs_info *fs_info,
1280 u64 objectid)
1281 {
1282 struct extent_buffer *leaf;
1283 struct btrfs_root *tree_root = fs_info->tree_root;
1284 struct btrfs_root *root;
1285 struct btrfs_key key;
1286 int ret = 0;
1287 u64 bytenr;
1288 uuid_le uuid;
1289
1290 root = btrfs_alloc_root(fs_info);
1291 if (!root)
1292 return ERR_PTR(-ENOMEM);
1293
1294 __setup_root(tree_root->nodesize, tree_root->leafsize,
1295 tree_root->sectorsize, tree_root->stripesize,
1296 root, fs_info, objectid);
1297 root->root_key.objectid = objectid;
1298 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1299 root->root_key.offset = 0;
1300
1301 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1302 0, objectid, NULL, 0, 0, 0);
1303 if (IS_ERR(leaf)) {
1304 ret = PTR_ERR(leaf);
1305 leaf = NULL;
1306 goto fail;
1307 }
1308
1309 bytenr = leaf->start;
1310 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1311 btrfs_set_header_bytenr(leaf, leaf->start);
1312 btrfs_set_header_generation(leaf, trans->transid);
1313 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1314 btrfs_set_header_owner(leaf, objectid);
1315 root->node = leaf;
1316
1317 write_extent_buffer(leaf, fs_info->fsid,
1318 (unsigned long)btrfs_header_fsid(leaf),
1319 BTRFS_FSID_SIZE);
1320 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1321 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1322 BTRFS_UUID_SIZE);
1323 btrfs_mark_buffer_dirty(leaf);
1324
1325 root->commit_root = btrfs_root_node(root);
1326 root->track_dirty = 1;
1327
1328
1329 root->root_item.flags = 0;
1330 root->root_item.byte_limit = 0;
1331 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1332 btrfs_set_root_generation(&root->root_item, trans->transid);
1333 btrfs_set_root_level(&root->root_item, 0);
1334 btrfs_set_root_refs(&root->root_item, 1);
1335 btrfs_set_root_used(&root->root_item, leaf->len);
1336 btrfs_set_root_last_snapshot(&root->root_item, 0);
1337 btrfs_set_root_dirid(&root->root_item, 0);
1338 uuid_le_gen(&uuid);
1339 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1340 root->root_item.drop_level = 0;
1341
1342 key.objectid = objectid;
1343 key.type = BTRFS_ROOT_ITEM_KEY;
1344 key.offset = 0;
1345 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1346 if (ret)
1347 goto fail;
1348
1349 btrfs_tree_unlock(leaf);
1350
1351 return root;
1352
1353 fail:
1354 if (leaf) {
1355 btrfs_tree_unlock(leaf);
1356 free_extent_buffer(leaf);
1357 }
1358 kfree(root);
1359
1360 return ERR_PTR(ret);
1361 }
1362
1363 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1364 struct btrfs_fs_info *fs_info)
1365 {
1366 struct btrfs_root *root;
1367 struct btrfs_root *tree_root = fs_info->tree_root;
1368 struct extent_buffer *leaf;
1369
1370 root = btrfs_alloc_root(fs_info);
1371 if (!root)
1372 return ERR_PTR(-ENOMEM);
1373
1374 __setup_root(tree_root->nodesize, tree_root->leafsize,
1375 tree_root->sectorsize, tree_root->stripesize,
1376 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1377
1378 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1379 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1380 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1381 /*
1382 * log trees do not get reference counted because they go away
1383 * before a real commit is actually done. They do store pointers
1384 * to file data extents, and those reference counts still get
1385 * updated (along with back refs to the log tree).
1386 */
1387 root->ref_cows = 0;
1388
1389 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1390 BTRFS_TREE_LOG_OBJECTID, NULL,
1391 0, 0, 0);
1392 if (IS_ERR(leaf)) {
1393 kfree(root);
1394 return ERR_CAST(leaf);
1395 }
1396
1397 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1398 btrfs_set_header_bytenr(leaf, leaf->start);
1399 btrfs_set_header_generation(leaf, trans->transid);
1400 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1401 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1402 root->node = leaf;
1403
1404 write_extent_buffer(root->node, root->fs_info->fsid,
1405 (unsigned long)btrfs_header_fsid(root->node),
1406 BTRFS_FSID_SIZE);
1407 btrfs_mark_buffer_dirty(root->node);
1408 btrfs_tree_unlock(root->node);
1409 return root;
1410 }
1411
1412 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info)
1414 {
1415 struct btrfs_root *log_root;
1416
1417 log_root = alloc_log_tree(trans, fs_info);
1418 if (IS_ERR(log_root))
1419 return PTR_ERR(log_root);
1420 WARN_ON(fs_info->log_root_tree);
1421 fs_info->log_root_tree = log_root;
1422 return 0;
1423 }
1424
1425 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *root)
1427 {
1428 struct btrfs_root *log_root;
1429 struct btrfs_inode_item *inode_item;
1430
1431 log_root = alloc_log_tree(trans, root->fs_info);
1432 if (IS_ERR(log_root))
1433 return PTR_ERR(log_root);
1434
1435 log_root->last_trans = trans->transid;
1436 log_root->root_key.offset = root->root_key.objectid;
1437
1438 inode_item = &log_root->root_item.inode;
1439 inode_item->generation = cpu_to_le64(1);
1440 inode_item->size = cpu_to_le64(3);
1441 inode_item->nlink = cpu_to_le32(1);
1442 inode_item->nbytes = cpu_to_le64(root->leafsize);
1443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1444
1445 btrfs_set_root_node(&log_root->root_item, log_root->node);
1446
1447 WARN_ON(root->log_root);
1448 root->log_root = log_root;
1449 root->log_transid = 0;
1450 root->last_log_commit = 0;
1451 return 0;
1452 }
1453
1454 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1455 struct btrfs_key *location)
1456 {
1457 struct btrfs_root *root;
1458 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1459 struct btrfs_path *path;
1460 struct extent_buffer *l;
1461 u64 generation;
1462 u32 blocksize;
1463 int ret = 0;
1464 int slot;
1465
1466 root = btrfs_alloc_root(fs_info);
1467 if (!root)
1468 return ERR_PTR(-ENOMEM);
1469 if (location->offset == (u64)-1) {
1470 ret = find_and_setup_root(tree_root, fs_info,
1471 location->objectid, root);
1472 if (ret) {
1473 kfree(root);
1474 return ERR_PTR(ret);
1475 }
1476 goto out;
1477 }
1478
1479 __setup_root(tree_root->nodesize, tree_root->leafsize,
1480 tree_root->sectorsize, tree_root->stripesize,
1481 root, fs_info, location->objectid);
1482
1483 path = btrfs_alloc_path();
1484 if (!path) {
1485 kfree(root);
1486 return ERR_PTR(-ENOMEM);
1487 }
1488 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1489 if (ret == 0) {
1490 l = path->nodes[0];
1491 slot = path->slots[0];
1492 btrfs_read_root_item(l, slot, &root->root_item);
1493 memcpy(&root->root_key, location, sizeof(*location));
1494 }
1495 btrfs_free_path(path);
1496 if (ret) {
1497 kfree(root);
1498 if (ret > 0)
1499 ret = -ENOENT;
1500 return ERR_PTR(ret);
1501 }
1502
1503 generation = btrfs_root_generation(&root->root_item);
1504 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1505 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1506 blocksize, generation);
1507 if (!root->node || !extent_buffer_uptodate(root->node)) {
1508 ret = (!root->node) ? -ENOMEM : -EIO;
1509
1510 free_extent_buffer(root->node);
1511 kfree(root);
1512 return ERR_PTR(ret);
1513 }
1514
1515 root->commit_root = btrfs_root_node(root);
1516 BUG_ON(!root->node); /* -ENOMEM */
1517 out:
1518 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1519 root->ref_cows = 1;
1520 btrfs_check_and_init_root_item(&root->root_item);
1521 }
1522
1523 return root;
1524 }
1525
1526 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1527 struct btrfs_key *location)
1528 {
1529 struct btrfs_root *root;
1530 int ret;
1531
1532 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1533 return fs_info->tree_root;
1534 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1535 return fs_info->extent_root;
1536 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1537 return fs_info->chunk_root;
1538 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1539 return fs_info->dev_root;
1540 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1541 return fs_info->csum_root;
1542 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1543 return fs_info->quota_root ? fs_info->quota_root :
1544 ERR_PTR(-ENOENT);
1545 again:
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1548 (unsigned long)location->objectid);
1549 spin_unlock(&fs_info->fs_roots_radix_lock);
1550 if (root)
1551 return root;
1552
1553 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1554 if (IS_ERR(root))
1555 return root;
1556
1557 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1558 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1559 GFP_NOFS);
1560 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1561 ret = -ENOMEM;
1562 goto fail;
1563 }
1564
1565 btrfs_init_free_ino_ctl(root);
1566 mutex_init(&root->fs_commit_mutex);
1567 spin_lock_init(&root->cache_lock);
1568 init_waitqueue_head(&root->cache_wait);
1569
1570 ret = get_anon_bdev(&root->anon_dev);
1571 if (ret)
1572 goto fail;
1573
1574 if (btrfs_root_refs(&root->root_item) == 0) {
1575 ret = -ENOENT;
1576 goto fail;
1577 }
1578
1579 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1580 if (ret < 0)
1581 goto fail;
1582 if (ret == 0)
1583 root->orphan_item_inserted = 1;
1584
1585 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1586 if (ret)
1587 goto fail;
1588
1589 spin_lock(&fs_info->fs_roots_radix_lock);
1590 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1591 (unsigned long)root->root_key.objectid,
1592 root);
1593 if (ret == 0)
1594 root->in_radix = 1;
1595
1596 spin_unlock(&fs_info->fs_roots_radix_lock);
1597 radix_tree_preload_end();
1598 if (ret) {
1599 if (ret == -EEXIST) {
1600 free_fs_root(root);
1601 goto again;
1602 }
1603 goto fail;
1604 }
1605
1606 ret = btrfs_find_dead_roots(fs_info->tree_root,
1607 root->root_key.objectid);
1608 WARN_ON(ret);
1609 return root;
1610 fail:
1611 free_fs_root(root);
1612 return ERR_PTR(ret);
1613 }
1614
1615 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1616 {
1617 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1618 int ret = 0;
1619 struct btrfs_device *device;
1620 struct backing_dev_info *bdi;
1621
1622 rcu_read_lock();
1623 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1624 if (!device->bdev)
1625 continue;
1626 bdi = blk_get_backing_dev_info(device->bdev);
1627 if (bdi && bdi_congested(bdi, bdi_bits)) {
1628 ret = 1;
1629 break;
1630 }
1631 }
1632 rcu_read_unlock();
1633 return ret;
1634 }
1635
1636 /*
1637 * If this fails, caller must call bdi_destroy() to get rid of the
1638 * bdi again.
1639 */
1640 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1641 {
1642 int err;
1643
1644 bdi->capabilities = BDI_CAP_MAP_COPY;
1645 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1646 if (err)
1647 return err;
1648
1649 bdi->ra_pages = default_backing_dev_info.ra_pages;
1650 bdi->congested_fn = btrfs_congested_fn;
1651 bdi->congested_data = info;
1652 return 0;
1653 }
1654
1655 /*
1656 * called by the kthread helper functions to finally call the bio end_io
1657 * functions. This is where read checksum verification actually happens
1658 */
1659 static void end_workqueue_fn(struct btrfs_work *work)
1660 {
1661 struct bio *bio;
1662 struct end_io_wq *end_io_wq;
1663 struct btrfs_fs_info *fs_info;
1664 int error;
1665
1666 end_io_wq = container_of(work, struct end_io_wq, work);
1667 bio = end_io_wq->bio;
1668 fs_info = end_io_wq->info;
1669
1670 error = end_io_wq->error;
1671 bio->bi_private = end_io_wq->private;
1672 bio->bi_end_io = end_io_wq->end_io;
1673 kfree(end_io_wq);
1674 bio_endio(bio, error);
1675 }
1676
1677 static int cleaner_kthread(void *arg)
1678 {
1679 struct btrfs_root *root = arg;
1680
1681 do {
1682 int again = 0;
1683
1684 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1685 down_read_trylock(&root->fs_info->sb->s_umount)) {
1686 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1687 btrfs_run_delayed_iputs(root);
1688 again = btrfs_clean_one_deleted_snapshot(root);
1689 mutex_unlock(&root->fs_info->cleaner_mutex);
1690 }
1691 btrfs_run_defrag_inodes(root->fs_info);
1692 up_read(&root->fs_info->sb->s_umount);
1693 }
1694
1695 if (!try_to_freeze() && !again) {
1696 set_current_state(TASK_INTERRUPTIBLE);
1697 if (!kthread_should_stop())
1698 schedule();
1699 __set_current_state(TASK_RUNNING);
1700 }
1701 } while (!kthread_should_stop());
1702 return 0;
1703 }
1704
1705 static int transaction_kthread(void *arg)
1706 {
1707 struct btrfs_root *root = arg;
1708 struct btrfs_trans_handle *trans;
1709 struct btrfs_transaction *cur;
1710 u64 transid;
1711 unsigned long now;
1712 unsigned long delay;
1713 bool cannot_commit;
1714
1715 do {
1716 cannot_commit = false;
1717 delay = HZ * 30;
1718 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1719
1720 spin_lock(&root->fs_info->trans_lock);
1721 cur = root->fs_info->running_transaction;
1722 if (!cur) {
1723 spin_unlock(&root->fs_info->trans_lock);
1724 goto sleep;
1725 }
1726
1727 now = get_seconds();
1728 if (!cur->blocked &&
1729 (now < cur->start_time || now - cur->start_time < 30)) {
1730 spin_unlock(&root->fs_info->trans_lock);
1731 delay = HZ * 5;
1732 goto sleep;
1733 }
1734 transid = cur->transid;
1735 spin_unlock(&root->fs_info->trans_lock);
1736
1737 /* If the file system is aborted, this will always fail. */
1738 trans = btrfs_attach_transaction(root);
1739 if (IS_ERR(trans)) {
1740 if (PTR_ERR(trans) != -ENOENT)
1741 cannot_commit = true;
1742 goto sleep;
1743 }
1744 if (transid == trans->transid) {
1745 btrfs_commit_transaction(trans, root);
1746 } else {
1747 btrfs_end_transaction(trans, root);
1748 }
1749 sleep:
1750 wake_up_process(root->fs_info->cleaner_kthread);
1751 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1752
1753 if (!try_to_freeze()) {
1754 set_current_state(TASK_INTERRUPTIBLE);
1755 if (!kthread_should_stop() &&
1756 (!btrfs_transaction_blocked(root->fs_info) ||
1757 cannot_commit))
1758 schedule_timeout(delay);
1759 __set_current_state(TASK_RUNNING);
1760 }
1761 } while (!kthread_should_stop());
1762 return 0;
1763 }
1764
1765 /*
1766 * this will find the highest generation in the array of
1767 * root backups. The index of the highest array is returned,
1768 * or -1 if we can't find anything.
1769 *
1770 * We check to make sure the array is valid by comparing the
1771 * generation of the latest root in the array with the generation
1772 * in the super block. If they don't match we pitch it.
1773 */
1774 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1775 {
1776 u64 cur;
1777 int newest_index = -1;
1778 struct btrfs_root_backup *root_backup;
1779 int i;
1780
1781 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1782 root_backup = info->super_copy->super_roots + i;
1783 cur = btrfs_backup_tree_root_gen(root_backup);
1784 if (cur == newest_gen)
1785 newest_index = i;
1786 }
1787
1788 /* check to see if we actually wrapped around */
1789 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1790 root_backup = info->super_copy->super_roots;
1791 cur = btrfs_backup_tree_root_gen(root_backup);
1792 if (cur == newest_gen)
1793 newest_index = 0;
1794 }
1795 return newest_index;
1796 }
1797
1798
1799 /*
1800 * find the oldest backup so we know where to store new entries
1801 * in the backup array. This will set the backup_root_index
1802 * field in the fs_info struct
1803 */
1804 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1805 u64 newest_gen)
1806 {
1807 int newest_index = -1;
1808
1809 newest_index = find_newest_super_backup(info, newest_gen);
1810 /* if there was garbage in there, just move along */
1811 if (newest_index == -1) {
1812 info->backup_root_index = 0;
1813 } else {
1814 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1815 }
1816 }
1817
1818 /*
1819 * copy all the root pointers into the super backup array.
1820 * this will bump the backup pointer by one when it is
1821 * done
1822 */
1823 static void backup_super_roots(struct btrfs_fs_info *info)
1824 {
1825 int next_backup;
1826 struct btrfs_root_backup *root_backup;
1827 int last_backup;
1828
1829 next_backup = info->backup_root_index;
1830 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1831 BTRFS_NUM_BACKUP_ROOTS;
1832
1833 /*
1834 * just overwrite the last backup if we're at the same generation
1835 * this happens only at umount
1836 */
1837 root_backup = info->super_for_commit->super_roots + last_backup;
1838 if (btrfs_backup_tree_root_gen(root_backup) ==
1839 btrfs_header_generation(info->tree_root->node))
1840 next_backup = last_backup;
1841
1842 root_backup = info->super_for_commit->super_roots + next_backup;
1843
1844 /*
1845 * make sure all of our padding and empty slots get zero filled
1846 * regardless of which ones we use today
1847 */
1848 memset(root_backup, 0, sizeof(*root_backup));
1849
1850 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1851
1852 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1853 btrfs_set_backup_tree_root_gen(root_backup,
1854 btrfs_header_generation(info->tree_root->node));
1855
1856 btrfs_set_backup_tree_root_level(root_backup,
1857 btrfs_header_level(info->tree_root->node));
1858
1859 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1860 btrfs_set_backup_chunk_root_gen(root_backup,
1861 btrfs_header_generation(info->chunk_root->node));
1862 btrfs_set_backup_chunk_root_level(root_backup,
1863 btrfs_header_level(info->chunk_root->node));
1864
1865 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1866 btrfs_set_backup_extent_root_gen(root_backup,
1867 btrfs_header_generation(info->extent_root->node));
1868 btrfs_set_backup_extent_root_level(root_backup,
1869 btrfs_header_level(info->extent_root->node));
1870
1871 /*
1872 * we might commit during log recovery, which happens before we set
1873 * the fs_root. Make sure it is valid before we fill it in.
1874 */
1875 if (info->fs_root && info->fs_root->node) {
1876 btrfs_set_backup_fs_root(root_backup,
1877 info->fs_root->node->start);
1878 btrfs_set_backup_fs_root_gen(root_backup,
1879 btrfs_header_generation(info->fs_root->node));
1880 btrfs_set_backup_fs_root_level(root_backup,
1881 btrfs_header_level(info->fs_root->node));
1882 }
1883
1884 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1885 btrfs_set_backup_dev_root_gen(root_backup,
1886 btrfs_header_generation(info->dev_root->node));
1887 btrfs_set_backup_dev_root_level(root_backup,
1888 btrfs_header_level(info->dev_root->node));
1889
1890 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1891 btrfs_set_backup_csum_root_gen(root_backup,
1892 btrfs_header_generation(info->csum_root->node));
1893 btrfs_set_backup_csum_root_level(root_backup,
1894 btrfs_header_level(info->csum_root->node));
1895
1896 btrfs_set_backup_total_bytes(root_backup,
1897 btrfs_super_total_bytes(info->super_copy));
1898 btrfs_set_backup_bytes_used(root_backup,
1899 btrfs_super_bytes_used(info->super_copy));
1900 btrfs_set_backup_num_devices(root_backup,
1901 btrfs_super_num_devices(info->super_copy));
1902
1903 /*
1904 * if we don't copy this out to the super_copy, it won't get remembered
1905 * for the next commit
1906 */
1907 memcpy(&info->super_copy->super_roots,
1908 &info->super_for_commit->super_roots,
1909 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1910 }
1911
1912 /*
1913 * this copies info out of the root backup array and back into
1914 * the in-memory super block. It is meant to help iterate through
1915 * the array, so you send it the number of backups you've already
1916 * tried and the last backup index you used.
1917 *
1918 * this returns -1 when it has tried all the backups
1919 */
1920 static noinline int next_root_backup(struct btrfs_fs_info *info,
1921 struct btrfs_super_block *super,
1922 int *num_backups_tried, int *backup_index)
1923 {
1924 struct btrfs_root_backup *root_backup;
1925 int newest = *backup_index;
1926
1927 if (*num_backups_tried == 0) {
1928 u64 gen = btrfs_super_generation(super);
1929
1930 newest = find_newest_super_backup(info, gen);
1931 if (newest == -1)
1932 return -1;
1933
1934 *backup_index = newest;
1935 *num_backups_tried = 1;
1936 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1937 /* we've tried all the backups, all done */
1938 return -1;
1939 } else {
1940 /* jump to the next oldest backup */
1941 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1942 BTRFS_NUM_BACKUP_ROOTS;
1943 *backup_index = newest;
1944 *num_backups_tried += 1;
1945 }
1946 root_backup = super->super_roots + newest;
1947
1948 btrfs_set_super_generation(super,
1949 btrfs_backup_tree_root_gen(root_backup));
1950 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1951 btrfs_set_super_root_level(super,
1952 btrfs_backup_tree_root_level(root_backup));
1953 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1954
1955 /*
1956 * fixme: the total bytes and num_devices need to match or we should
1957 * need a fsck
1958 */
1959 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1960 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1961 return 0;
1962 }
1963
1964 /* helper to cleanup workers */
1965 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1966 {
1967 btrfs_stop_workers(&fs_info->generic_worker);
1968 btrfs_stop_workers(&fs_info->fixup_workers);
1969 btrfs_stop_workers(&fs_info->delalloc_workers);
1970 btrfs_stop_workers(&fs_info->workers);
1971 btrfs_stop_workers(&fs_info->endio_workers);
1972 btrfs_stop_workers(&fs_info->endio_meta_workers);
1973 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1974 btrfs_stop_workers(&fs_info->rmw_workers);
1975 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1976 btrfs_stop_workers(&fs_info->endio_write_workers);
1977 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1978 btrfs_stop_workers(&fs_info->submit_workers);
1979 btrfs_stop_workers(&fs_info->delayed_workers);
1980 btrfs_stop_workers(&fs_info->caching_workers);
1981 btrfs_stop_workers(&fs_info->readahead_workers);
1982 btrfs_stop_workers(&fs_info->flush_workers);
1983 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1984 }
1985
1986 /* helper to cleanup tree roots */
1987 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1988 {
1989 free_extent_buffer(info->tree_root->node);
1990 free_extent_buffer(info->tree_root->commit_root);
1991 free_extent_buffer(info->dev_root->node);
1992 free_extent_buffer(info->dev_root->commit_root);
1993 free_extent_buffer(info->extent_root->node);
1994 free_extent_buffer(info->extent_root->commit_root);
1995 free_extent_buffer(info->csum_root->node);
1996 free_extent_buffer(info->csum_root->commit_root);
1997 if (info->quota_root) {
1998 free_extent_buffer(info->quota_root->node);
1999 free_extent_buffer(info->quota_root->commit_root);
2000 }
2001
2002 info->tree_root->node = NULL;
2003 info->tree_root->commit_root = NULL;
2004 info->dev_root->node = NULL;
2005 info->dev_root->commit_root = NULL;
2006 info->extent_root->node = NULL;
2007 info->extent_root->commit_root = NULL;
2008 info->csum_root->node = NULL;
2009 info->csum_root->commit_root = NULL;
2010 if (info->quota_root) {
2011 info->quota_root->node = NULL;
2012 info->quota_root->commit_root = NULL;
2013 }
2014
2015 if (chunk_root) {
2016 free_extent_buffer(info->chunk_root->node);
2017 free_extent_buffer(info->chunk_root->commit_root);
2018 info->chunk_root->node = NULL;
2019 info->chunk_root->commit_root = NULL;
2020 }
2021 }
2022
2023 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2024 {
2025 int ret;
2026 struct btrfs_root *gang[8];
2027 int i;
2028
2029 while (!list_empty(&fs_info->dead_roots)) {
2030 gang[0] = list_entry(fs_info->dead_roots.next,
2031 struct btrfs_root, root_list);
2032 list_del(&gang[0]->root_list);
2033
2034 if (gang[0]->in_radix) {
2035 btrfs_free_fs_root(fs_info, gang[0]);
2036 } else {
2037 free_extent_buffer(gang[0]->node);
2038 free_extent_buffer(gang[0]->commit_root);
2039 kfree(gang[0]);
2040 }
2041 }
2042
2043 while (1) {
2044 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2045 (void **)gang, 0,
2046 ARRAY_SIZE(gang));
2047 if (!ret)
2048 break;
2049 for (i = 0; i < ret; i++)
2050 btrfs_free_fs_root(fs_info, gang[i]);
2051 }
2052 }
2053
2054 int open_ctree(struct super_block *sb,
2055 struct btrfs_fs_devices *fs_devices,
2056 char *options)
2057 {
2058 u32 sectorsize;
2059 u32 nodesize;
2060 u32 leafsize;
2061 u32 blocksize;
2062 u32 stripesize;
2063 u64 generation;
2064 u64 features;
2065 struct btrfs_key location;
2066 struct buffer_head *bh;
2067 struct btrfs_super_block *disk_super;
2068 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2069 struct btrfs_root *tree_root;
2070 struct btrfs_root *extent_root;
2071 struct btrfs_root *csum_root;
2072 struct btrfs_root *chunk_root;
2073 struct btrfs_root *dev_root;
2074 struct btrfs_root *quota_root;
2075 struct btrfs_root *log_tree_root;
2076 int ret;
2077 int err = -EINVAL;
2078 int num_backups_tried = 0;
2079 int backup_index = 0;
2080
2081 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2082 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2083 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2084 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2085 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2086 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2087
2088 if (!tree_root || !extent_root || !csum_root ||
2089 !chunk_root || !dev_root || !quota_root) {
2090 err = -ENOMEM;
2091 goto fail;
2092 }
2093
2094 ret = init_srcu_struct(&fs_info->subvol_srcu);
2095 if (ret) {
2096 err = ret;
2097 goto fail;
2098 }
2099
2100 ret = setup_bdi(fs_info, &fs_info->bdi);
2101 if (ret) {
2102 err = ret;
2103 goto fail_srcu;
2104 }
2105
2106 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2107 if (ret) {
2108 err = ret;
2109 goto fail_bdi;
2110 }
2111 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2112 (1 + ilog2(nr_cpu_ids));
2113
2114 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2115 if (ret) {
2116 err = ret;
2117 goto fail_dirty_metadata_bytes;
2118 }
2119
2120 fs_info->btree_inode = new_inode(sb);
2121 if (!fs_info->btree_inode) {
2122 err = -ENOMEM;
2123 goto fail_delalloc_bytes;
2124 }
2125
2126 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2127
2128 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2129 INIT_LIST_HEAD(&fs_info->trans_list);
2130 INIT_LIST_HEAD(&fs_info->dead_roots);
2131 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2132 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2133 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2134 spin_lock_init(&fs_info->delalloc_lock);
2135 spin_lock_init(&fs_info->trans_lock);
2136 spin_lock_init(&fs_info->fs_roots_radix_lock);
2137 spin_lock_init(&fs_info->delayed_iput_lock);
2138 spin_lock_init(&fs_info->defrag_inodes_lock);
2139 spin_lock_init(&fs_info->free_chunk_lock);
2140 spin_lock_init(&fs_info->tree_mod_seq_lock);
2141 spin_lock_init(&fs_info->super_lock);
2142 rwlock_init(&fs_info->tree_mod_log_lock);
2143 mutex_init(&fs_info->reloc_mutex);
2144 seqlock_init(&fs_info->profiles_lock);
2145
2146 init_completion(&fs_info->kobj_unregister);
2147 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2148 INIT_LIST_HEAD(&fs_info->space_info);
2149 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2150 btrfs_mapping_init(&fs_info->mapping_tree);
2151 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2152 BTRFS_BLOCK_RSV_GLOBAL);
2153 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2154 BTRFS_BLOCK_RSV_DELALLOC);
2155 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2156 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2157 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2158 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2159 BTRFS_BLOCK_RSV_DELOPS);
2160 atomic_set(&fs_info->nr_async_submits, 0);
2161 atomic_set(&fs_info->async_delalloc_pages, 0);
2162 atomic_set(&fs_info->async_submit_draining, 0);
2163 atomic_set(&fs_info->nr_async_bios, 0);
2164 atomic_set(&fs_info->defrag_running, 0);
2165 atomic64_set(&fs_info->tree_mod_seq, 0);
2166 fs_info->sb = sb;
2167 fs_info->max_inline = 8192 * 1024;
2168 fs_info->metadata_ratio = 0;
2169 fs_info->defrag_inodes = RB_ROOT;
2170 fs_info->trans_no_join = 0;
2171 fs_info->free_chunk_space = 0;
2172 fs_info->tree_mod_log = RB_ROOT;
2173
2174 /* readahead state */
2175 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2176 spin_lock_init(&fs_info->reada_lock);
2177
2178 fs_info->thread_pool_size = min_t(unsigned long,
2179 num_online_cpus() + 2, 8);
2180
2181 INIT_LIST_HEAD(&fs_info->ordered_extents);
2182 spin_lock_init(&fs_info->ordered_extent_lock);
2183 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2184 GFP_NOFS);
2185 if (!fs_info->delayed_root) {
2186 err = -ENOMEM;
2187 goto fail_iput;
2188 }
2189 btrfs_init_delayed_root(fs_info->delayed_root);
2190
2191 mutex_init(&fs_info->scrub_lock);
2192 atomic_set(&fs_info->scrubs_running, 0);
2193 atomic_set(&fs_info->scrub_pause_req, 0);
2194 atomic_set(&fs_info->scrubs_paused, 0);
2195 atomic_set(&fs_info->scrub_cancel_req, 0);
2196 init_waitqueue_head(&fs_info->scrub_pause_wait);
2197 init_rwsem(&fs_info->scrub_super_lock);
2198 fs_info->scrub_workers_refcnt = 0;
2199 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2200 fs_info->check_integrity_print_mask = 0;
2201 #endif
2202
2203 spin_lock_init(&fs_info->balance_lock);
2204 mutex_init(&fs_info->balance_mutex);
2205 atomic_set(&fs_info->balance_running, 0);
2206 atomic_set(&fs_info->balance_pause_req, 0);
2207 atomic_set(&fs_info->balance_cancel_req, 0);
2208 fs_info->balance_ctl = NULL;
2209 init_waitqueue_head(&fs_info->balance_wait_q);
2210
2211 sb->s_blocksize = 4096;
2212 sb->s_blocksize_bits = blksize_bits(4096);
2213 sb->s_bdi = &fs_info->bdi;
2214
2215 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2216 set_nlink(fs_info->btree_inode, 1);
2217 /*
2218 * we set the i_size on the btree inode to the max possible int.
2219 * the real end of the address space is determined by all of
2220 * the devices in the system
2221 */
2222 fs_info->btree_inode->i_size = OFFSET_MAX;
2223 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2224 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2225
2226 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2227 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2228 fs_info->btree_inode->i_mapping);
2229 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2230 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2231
2232 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2233
2234 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2235 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2236 sizeof(struct btrfs_key));
2237 set_bit(BTRFS_INODE_DUMMY,
2238 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2239 insert_inode_hash(fs_info->btree_inode);
2240
2241 spin_lock_init(&fs_info->block_group_cache_lock);
2242 fs_info->block_group_cache_tree = RB_ROOT;
2243 fs_info->first_logical_byte = (u64)-1;
2244
2245 extent_io_tree_init(&fs_info->freed_extents[0],
2246 fs_info->btree_inode->i_mapping);
2247 extent_io_tree_init(&fs_info->freed_extents[1],
2248 fs_info->btree_inode->i_mapping);
2249 fs_info->pinned_extents = &fs_info->freed_extents[0];
2250 fs_info->do_barriers = 1;
2251
2252
2253 mutex_init(&fs_info->ordered_operations_mutex);
2254 mutex_init(&fs_info->tree_log_mutex);
2255 mutex_init(&fs_info->chunk_mutex);
2256 mutex_init(&fs_info->transaction_kthread_mutex);
2257 mutex_init(&fs_info->cleaner_mutex);
2258 mutex_init(&fs_info->volume_mutex);
2259 init_rwsem(&fs_info->extent_commit_sem);
2260 init_rwsem(&fs_info->cleanup_work_sem);
2261 init_rwsem(&fs_info->subvol_sem);
2262 fs_info->dev_replace.lock_owner = 0;
2263 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2264 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2265 mutex_init(&fs_info->dev_replace.lock_management_lock);
2266 mutex_init(&fs_info->dev_replace.lock);
2267
2268 spin_lock_init(&fs_info->qgroup_lock);
2269 mutex_init(&fs_info->qgroup_ioctl_lock);
2270 fs_info->qgroup_tree = RB_ROOT;
2271 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2272 fs_info->qgroup_seq = 1;
2273 fs_info->quota_enabled = 0;
2274 fs_info->pending_quota_state = 0;
2275 mutex_init(&fs_info->qgroup_rescan_lock);
2276
2277 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2278 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2279
2280 init_waitqueue_head(&fs_info->transaction_throttle);
2281 init_waitqueue_head(&fs_info->transaction_wait);
2282 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2283 init_waitqueue_head(&fs_info->async_submit_wait);
2284
2285 ret = btrfs_alloc_stripe_hash_table(fs_info);
2286 if (ret) {
2287 err = ret;
2288 goto fail_alloc;
2289 }
2290
2291 __setup_root(4096, 4096, 4096, 4096, tree_root,
2292 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2293
2294 invalidate_bdev(fs_devices->latest_bdev);
2295
2296 /*
2297 * Read super block and check the signature bytes only
2298 */
2299 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2300 if (!bh) {
2301 err = -EINVAL;
2302 goto fail_alloc;
2303 }
2304
2305 /*
2306 * We want to check superblock checksum, the type is stored inside.
2307 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2308 */
2309 if (btrfs_check_super_csum(bh->b_data)) {
2310 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2311 err = -EINVAL;
2312 goto fail_alloc;
2313 }
2314
2315 /*
2316 * super_copy is zeroed at allocation time and we never touch the
2317 * following bytes up to INFO_SIZE, the checksum is calculated from
2318 * the whole block of INFO_SIZE
2319 */
2320 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2321 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2322 sizeof(*fs_info->super_for_commit));
2323 brelse(bh);
2324
2325 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2326
2327 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2328 if (ret) {
2329 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2330 err = -EINVAL;
2331 goto fail_alloc;
2332 }
2333
2334 disk_super = fs_info->super_copy;
2335 if (!btrfs_super_root(disk_super))
2336 goto fail_alloc;
2337
2338 /* check FS state, whether FS is broken. */
2339 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2340 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2341
2342 /*
2343 * run through our array of backup supers and setup
2344 * our ring pointer to the oldest one
2345 */
2346 generation = btrfs_super_generation(disk_super);
2347 find_oldest_super_backup(fs_info, generation);
2348
2349 /*
2350 * In the long term, we'll store the compression type in the super
2351 * block, and it'll be used for per file compression control.
2352 */
2353 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2354
2355 ret = btrfs_parse_options(tree_root, options);
2356 if (ret) {
2357 err = ret;
2358 goto fail_alloc;
2359 }
2360
2361 features = btrfs_super_incompat_flags(disk_super) &
2362 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2363 if (features) {
2364 printk(KERN_ERR "BTRFS: couldn't mount because of "
2365 "unsupported optional features (%Lx).\n",
2366 (unsigned long long)features);
2367 err = -EINVAL;
2368 goto fail_alloc;
2369 }
2370
2371 if (btrfs_super_leafsize(disk_super) !=
2372 btrfs_super_nodesize(disk_super)) {
2373 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2374 "blocksizes don't match. node %d leaf %d\n",
2375 btrfs_super_nodesize(disk_super),
2376 btrfs_super_leafsize(disk_super));
2377 err = -EINVAL;
2378 goto fail_alloc;
2379 }
2380 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2381 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2382 "blocksize (%d) was too large\n",
2383 btrfs_super_leafsize(disk_super));
2384 err = -EINVAL;
2385 goto fail_alloc;
2386 }
2387
2388 features = btrfs_super_incompat_flags(disk_super);
2389 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2390 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2391 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2392
2393 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2394 printk(KERN_ERR "btrfs: has skinny extents\n");
2395
2396 /*
2397 * flag our filesystem as having big metadata blocks if
2398 * they are bigger than the page size
2399 */
2400 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2401 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2402 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2403 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2404 }
2405
2406 nodesize = btrfs_super_nodesize(disk_super);
2407 leafsize = btrfs_super_leafsize(disk_super);
2408 sectorsize = btrfs_super_sectorsize(disk_super);
2409 stripesize = btrfs_super_stripesize(disk_super);
2410 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2411 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2412
2413 /*
2414 * mixed block groups end up with duplicate but slightly offset
2415 * extent buffers for the same range. It leads to corruptions
2416 */
2417 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2418 (sectorsize != leafsize)) {
2419 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2420 "are not allowed for mixed block groups on %s\n",
2421 sb->s_id);
2422 goto fail_alloc;
2423 }
2424
2425 /*
2426 * Needn't use the lock because there is no other task which will
2427 * update the flag.
2428 */
2429 btrfs_set_super_incompat_flags(disk_super, features);
2430
2431 features = btrfs_super_compat_ro_flags(disk_super) &
2432 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2433 if (!(sb->s_flags & MS_RDONLY) && features) {
2434 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2435 "unsupported option features (%Lx).\n",
2436 (unsigned long long)features);
2437 err = -EINVAL;
2438 goto fail_alloc;
2439 }
2440
2441 btrfs_init_workers(&fs_info->generic_worker,
2442 "genwork", 1, NULL);
2443
2444 btrfs_init_workers(&fs_info->workers, "worker",
2445 fs_info->thread_pool_size,
2446 &fs_info->generic_worker);
2447
2448 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2449 fs_info->thread_pool_size,
2450 &fs_info->generic_worker);
2451
2452 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2453 fs_info->thread_pool_size,
2454 &fs_info->generic_worker);
2455
2456 btrfs_init_workers(&fs_info->submit_workers, "submit",
2457 min_t(u64, fs_devices->num_devices,
2458 fs_info->thread_pool_size),
2459 &fs_info->generic_worker);
2460
2461 btrfs_init_workers(&fs_info->caching_workers, "cache",
2462 2, &fs_info->generic_worker);
2463
2464 /* a higher idle thresh on the submit workers makes it much more
2465 * likely that bios will be send down in a sane order to the
2466 * devices
2467 */
2468 fs_info->submit_workers.idle_thresh = 64;
2469
2470 fs_info->workers.idle_thresh = 16;
2471 fs_info->workers.ordered = 1;
2472
2473 fs_info->delalloc_workers.idle_thresh = 2;
2474 fs_info->delalloc_workers.ordered = 1;
2475
2476 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2477 &fs_info->generic_worker);
2478 btrfs_init_workers(&fs_info->endio_workers, "endio",
2479 fs_info->thread_pool_size,
2480 &fs_info->generic_worker);
2481 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2482 fs_info->thread_pool_size,
2483 &fs_info->generic_worker);
2484 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2485 "endio-meta-write", fs_info->thread_pool_size,
2486 &fs_info->generic_worker);
2487 btrfs_init_workers(&fs_info->endio_raid56_workers,
2488 "endio-raid56", fs_info->thread_pool_size,
2489 &fs_info->generic_worker);
2490 btrfs_init_workers(&fs_info->rmw_workers,
2491 "rmw", fs_info->thread_pool_size,
2492 &fs_info->generic_worker);
2493 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2494 fs_info->thread_pool_size,
2495 &fs_info->generic_worker);
2496 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2497 1, &fs_info->generic_worker);
2498 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2499 fs_info->thread_pool_size,
2500 &fs_info->generic_worker);
2501 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2502 fs_info->thread_pool_size,
2503 &fs_info->generic_worker);
2504 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2505 &fs_info->generic_worker);
2506
2507 /*
2508 * endios are largely parallel and should have a very
2509 * low idle thresh
2510 */
2511 fs_info->endio_workers.idle_thresh = 4;
2512 fs_info->endio_meta_workers.idle_thresh = 4;
2513 fs_info->endio_raid56_workers.idle_thresh = 4;
2514 fs_info->rmw_workers.idle_thresh = 2;
2515
2516 fs_info->endio_write_workers.idle_thresh = 2;
2517 fs_info->endio_meta_write_workers.idle_thresh = 2;
2518 fs_info->readahead_workers.idle_thresh = 2;
2519
2520 /*
2521 * btrfs_start_workers can really only fail because of ENOMEM so just
2522 * return -ENOMEM if any of these fail.
2523 */
2524 ret = btrfs_start_workers(&fs_info->workers);
2525 ret |= btrfs_start_workers(&fs_info->generic_worker);
2526 ret |= btrfs_start_workers(&fs_info->submit_workers);
2527 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2528 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2529 ret |= btrfs_start_workers(&fs_info->endio_workers);
2530 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2531 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2532 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2533 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2534 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2535 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2536 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2537 ret |= btrfs_start_workers(&fs_info->caching_workers);
2538 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2539 ret |= btrfs_start_workers(&fs_info->flush_workers);
2540 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2541 if (ret) {
2542 err = -ENOMEM;
2543 goto fail_sb_buffer;
2544 }
2545
2546 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2547 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2548 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2549
2550 tree_root->nodesize = nodesize;
2551 tree_root->leafsize = leafsize;
2552 tree_root->sectorsize = sectorsize;
2553 tree_root->stripesize = stripesize;
2554
2555 sb->s_blocksize = sectorsize;
2556 sb->s_blocksize_bits = blksize_bits(sectorsize);
2557
2558 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2559 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2560 goto fail_sb_buffer;
2561 }
2562
2563 if (sectorsize != PAGE_SIZE) {
2564 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2565 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2566 goto fail_sb_buffer;
2567 }
2568
2569 mutex_lock(&fs_info->chunk_mutex);
2570 ret = btrfs_read_sys_array(tree_root);
2571 mutex_unlock(&fs_info->chunk_mutex);
2572 if (ret) {
2573 printk(KERN_WARNING "btrfs: failed to read the system "
2574 "array on %s\n", sb->s_id);
2575 goto fail_sb_buffer;
2576 }
2577
2578 blocksize = btrfs_level_size(tree_root,
2579 btrfs_super_chunk_root_level(disk_super));
2580 generation = btrfs_super_chunk_root_generation(disk_super);
2581
2582 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2583 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2584
2585 chunk_root->node = read_tree_block(chunk_root,
2586 btrfs_super_chunk_root(disk_super),
2587 blocksize, generation);
2588 if (!chunk_root->node ||
2589 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2590 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2591 sb->s_id);
2592 goto fail_tree_roots;
2593 }
2594 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2595 chunk_root->commit_root = btrfs_root_node(chunk_root);
2596
2597 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2598 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2599 BTRFS_UUID_SIZE);
2600
2601 ret = btrfs_read_chunk_tree(chunk_root);
2602 if (ret) {
2603 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2604 sb->s_id);
2605 goto fail_tree_roots;
2606 }
2607
2608 /*
2609 * keep the device that is marked to be the target device for the
2610 * dev_replace procedure
2611 */
2612 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2613
2614 if (!fs_devices->latest_bdev) {
2615 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2616 sb->s_id);
2617 goto fail_tree_roots;
2618 }
2619
2620 retry_root_backup:
2621 blocksize = btrfs_level_size(tree_root,
2622 btrfs_super_root_level(disk_super));
2623 generation = btrfs_super_generation(disk_super);
2624
2625 tree_root->node = read_tree_block(tree_root,
2626 btrfs_super_root(disk_super),
2627 blocksize, generation);
2628 if (!tree_root->node ||
2629 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2630 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2631 sb->s_id);
2632
2633 goto recovery_tree_root;
2634 }
2635
2636 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2637 tree_root->commit_root = btrfs_root_node(tree_root);
2638
2639 ret = find_and_setup_root(tree_root, fs_info,
2640 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2641 if (ret)
2642 goto recovery_tree_root;
2643 extent_root->track_dirty = 1;
2644
2645 ret = find_and_setup_root(tree_root, fs_info,
2646 BTRFS_DEV_TREE_OBJECTID, dev_root);
2647 if (ret)
2648 goto recovery_tree_root;
2649 dev_root->track_dirty = 1;
2650
2651 ret = find_and_setup_root(tree_root, fs_info,
2652 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2653 if (ret)
2654 goto recovery_tree_root;
2655 csum_root->track_dirty = 1;
2656
2657 ret = find_and_setup_root(tree_root, fs_info,
2658 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2659 if (ret) {
2660 kfree(quota_root);
2661 quota_root = fs_info->quota_root = NULL;
2662 } else {
2663 quota_root->track_dirty = 1;
2664 fs_info->quota_enabled = 1;
2665 fs_info->pending_quota_state = 1;
2666 }
2667
2668 fs_info->generation = generation;
2669 fs_info->last_trans_committed = generation;
2670
2671 ret = btrfs_recover_balance(fs_info);
2672 if (ret) {
2673 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2674 goto fail_block_groups;
2675 }
2676
2677 ret = btrfs_init_dev_stats(fs_info);
2678 if (ret) {
2679 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2680 ret);
2681 goto fail_block_groups;
2682 }
2683
2684 ret = btrfs_init_dev_replace(fs_info);
2685 if (ret) {
2686 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2687 goto fail_block_groups;
2688 }
2689
2690 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2691
2692 ret = btrfs_init_space_info(fs_info);
2693 if (ret) {
2694 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2695 goto fail_block_groups;
2696 }
2697
2698 ret = btrfs_read_block_groups(extent_root);
2699 if (ret) {
2700 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2701 goto fail_block_groups;
2702 }
2703 fs_info->num_tolerated_disk_barrier_failures =
2704 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2705 if (fs_info->fs_devices->missing_devices >
2706 fs_info->num_tolerated_disk_barrier_failures &&
2707 !(sb->s_flags & MS_RDONLY)) {
2708 printk(KERN_WARNING
2709 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2710 goto fail_block_groups;
2711 }
2712
2713 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2714 "btrfs-cleaner");
2715 if (IS_ERR(fs_info->cleaner_kthread))
2716 goto fail_block_groups;
2717
2718 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2719 tree_root,
2720 "btrfs-transaction");
2721 if (IS_ERR(fs_info->transaction_kthread))
2722 goto fail_cleaner;
2723
2724 if (!btrfs_test_opt(tree_root, SSD) &&
2725 !btrfs_test_opt(tree_root, NOSSD) &&
2726 !fs_info->fs_devices->rotating) {
2727 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2728 "mode\n");
2729 btrfs_set_opt(fs_info->mount_opt, SSD);
2730 }
2731
2732 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2733 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2734 ret = btrfsic_mount(tree_root, fs_devices,
2735 btrfs_test_opt(tree_root,
2736 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2737 1 : 0,
2738 fs_info->check_integrity_print_mask);
2739 if (ret)
2740 printk(KERN_WARNING "btrfs: failed to initialize"
2741 " integrity check module %s\n", sb->s_id);
2742 }
2743 #endif
2744 ret = btrfs_read_qgroup_config(fs_info);
2745 if (ret)
2746 goto fail_trans_kthread;
2747
2748 /* do not make disk changes in broken FS */
2749 if (btrfs_super_log_root(disk_super) != 0) {
2750 u64 bytenr = btrfs_super_log_root(disk_super);
2751
2752 if (fs_devices->rw_devices == 0) {
2753 printk(KERN_WARNING "Btrfs log replay required "
2754 "on RO media\n");
2755 err = -EIO;
2756 goto fail_qgroup;
2757 }
2758 blocksize =
2759 btrfs_level_size(tree_root,
2760 btrfs_super_log_root_level(disk_super));
2761
2762 log_tree_root = btrfs_alloc_root(fs_info);
2763 if (!log_tree_root) {
2764 err = -ENOMEM;
2765 goto fail_qgroup;
2766 }
2767
2768 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2769 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2770
2771 log_tree_root->node = read_tree_block(tree_root, bytenr,
2772 blocksize,
2773 generation + 1);
2774 if (!log_tree_root->node ||
2775 !extent_buffer_uptodate(log_tree_root->node)) {
2776 printk(KERN_ERR "btrfs: failed to read log tree\n");
2777 free_extent_buffer(log_tree_root->node);
2778 kfree(log_tree_root);
2779 goto fail_trans_kthread;
2780 }
2781 /* returns with log_tree_root freed on success */
2782 ret = btrfs_recover_log_trees(log_tree_root);
2783 if (ret) {
2784 btrfs_error(tree_root->fs_info, ret,
2785 "Failed to recover log tree");
2786 free_extent_buffer(log_tree_root->node);
2787 kfree(log_tree_root);
2788 goto fail_trans_kthread;
2789 }
2790
2791 if (sb->s_flags & MS_RDONLY) {
2792 ret = btrfs_commit_super(tree_root);
2793 if (ret)
2794 goto fail_trans_kthread;
2795 }
2796 }
2797
2798 ret = btrfs_find_orphan_roots(tree_root);
2799 if (ret)
2800 goto fail_trans_kthread;
2801
2802 if (!(sb->s_flags & MS_RDONLY)) {
2803 ret = btrfs_cleanup_fs_roots(fs_info);
2804 if (ret)
2805 goto fail_trans_kthread;
2806
2807 ret = btrfs_recover_relocation(tree_root);
2808 if (ret < 0) {
2809 printk(KERN_WARNING
2810 "btrfs: failed to recover relocation\n");
2811 err = -EINVAL;
2812 goto fail_qgroup;
2813 }
2814 }
2815
2816 location.objectid = BTRFS_FS_TREE_OBJECTID;
2817 location.type = BTRFS_ROOT_ITEM_KEY;
2818 location.offset = (u64)-1;
2819
2820 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2821 if (!fs_info->fs_root)
2822 goto fail_qgroup;
2823 if (IS_ERR(fs_info->fs_root)) {
2824 err = PTR_ERR(fs_info->fs_root);
2825 goto fail_qgroup;
2826 }
2827
2828 if (sb->s_flags & MS_RDONLY)
2829 return 0;
2830
2831 down_read(&fs_info->cleanup_work_sem);
2832 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2833 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2834 up_read(&fs_info->cleanup_work_sem);
2835 close_ctree(tree_root);
2836 return ret;
2837 }
2838 up_read(&fs_info->cleanup_work_sem);
2839
2840 ret = btrfs_resume_balance_async(fs_info);
2841 if (ret) {
2842 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2843 close_ctree(tree_root);
2844 return ret;
2845 }
2846
2847 ret = btrfs_resume_dev_replace_async(fs_info);
2848 if (ret) {
2849 pr_warn("btrfs: failed to resume dev_replace\n");
2850 close_ctree(tree_root);
2851 return ret;
2852 }
2853
2854 return 0;
2855
2856 fail_qgroup:
2857 btrfs_free_qgroup_config(fs_info);
2858 fail_trans_kthread:
2859 kthread_stop(fs_info->transaction_kthread);
2860 del_fs_roots(fs_info);
2861 btrfs_cleanup_transaction(fs_info->tree_root);
2862 fail_cleaner:
2863 kthread_stop(fs_info->cleaner_kthread);
2864
2865 /*
2866 * make sure we're done with the btree inode before we stop our
2867 * kthreads
2868 */
2869 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2870
2871 fail_block_groups:
2872 btrfs_put_block_group_cache(fs_info);
2873 btrfs_free_block_groups(fs_info);
2874
2875 fail_tree_roots:
2876 free_root_pointers(fs_info, 1);
2877 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2878
2879 fail_sb_buffer:
2880 btrfs_stop_all_workers(fs_info);
2881 fail_alloc:
2882 fail_iput:
2883 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2884
2885 iput(fs_info->btree_inode);
2886 fail_delalloc_bytes:
2887 percpu_counter_destroy(&fs_info->delalloc_bytes);
2888 fail_dirty_metadata_bytes:
2889 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2890 fail_bdi:
2891 bdi_destroy(&fs_info->bdi);
2892 fail_srcu:
2893 cleanup_srcu_struct(&fs_info->subvol_srcu);
2894 fail:
2895 btrfs_free_stripe_hash_table(fs_info);
2896 btrfs_close_devices(fs_info->fs_devices);
2897 return err;
2898
2899 recovery_tree_root:
2900 if (!btrfs_test_opt(tree_root, RECOVERY))
2901 goto fail_tree_roots;
2902
2903 free_root_pointers(fs_info, 0);
2904
2905 /* don't use the log in recovery mode, it won't be valid */
2906 btrfs_set_super_log_root(disk_super, 0);
2907
2908 /* we can't trust the free space cache either */
2909 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2910
2911 ret = next_root_backup(fs_info, fs_info->super_copy,
2912 &num_backups_tried, &backup_index);
2913 if (ret == -1)
2914 goto fail_block_groups;
2915 goto retry_root_backup;
2916 }
2917
2918 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2919 {
2920 if (uptodate) {
2921 set_buffer_uptodate(bh);
2922 } else {
2923 struct btrfs_device *device = (struct btrfs_device *)
2924 bh->b_private;
2925
2926 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2927 "I/O error on %s\n",
2928 rcu_str_deref(device->name));
2929 /* note, we dont' set_buffer_write_io_error because we have
2930 * our own ways of dealing with the IO errors
2931 */
2932 clear_buffer_uptodate(bh);
2933 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2934 }
2935 unlock_buffer(bh);
2936 put_bh(bh);
2937 }
2938
2939 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2940 {
2941 struct buffer_head *bh;
2942 struct buffer_head *latest = NULL;
2943 struct btrfs_super_block *super;
2944 int i;
2945 u64 transid = 0;
2946 u64 bytenr;
2947
2948 /* we would like to check all the supers, but that would make
2949 * a btrfs mount succeed after a mkfs from a different FS.
2950 * So, we need to add a special mount option to scan for
2951 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2952 */
2953 for (i = 0; i < 1; i++) {
2954 bytenr = btrfs_sb_offset(i);
2955 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2956 break;
2957 bh = __bread(bdev, bytenr / 4096, 4096);
2958 if (!bh)
2959 continue;
2960
2961 super = (struct btrfs_super_block *)bh->b_data;
2962 if (btrfs_super_bytenr(super) != bytenr ||
2963 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2964 brelse(bh);
2965 continue;
2966 }
2967
2968 if (!latest || btrfs_super_generation(super) > transid) {
2969 brelse(latest);
2970 latest = bh;
2971 transid = btrfs_super_generation(super);
2972 } else {
2973 brelse(bh);
2974 }
2975 }
2976 return latest;
2977 }
2978
2979 /*
2980 * this should be called twice, once with wait == 0 and
2981 * once with wait == 1. When wait == 0 is done, all the buffer heads
2982 * we write are pinned.
2983 *
2984 * They are released when wait == 1 is done.
2985 * max_mirrors must be the same for both runs, and it indicates how
2986 * many supers on this one device should be written.
2987 *
2988 * max_mirrors == 0 means to write them all.
2989 */
2990 static int write_dev_supers(struct btrfs_device *device,
2991 struct btrfs_super_block *sb,
2992 int do_barriers, int wait, int max_mirrors)
2993 {
2994 struct buffer_head *bh;
2995 int i;
2996 int ret;
2997 int errors = 0;
2998 u32 crc;
2999 u64 bytenr;
3000
3001 if (max_mirrors == 0)
3002 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3003
3004 for (i = 0; i < max_mirrors; i++) {
3005 bytenr = btrfs_sb_offset(i);
3006 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3007 break;
3008
3009 if (wait) {
3010 bh = __find_get_block(device->bdev, bytenr / 4096,
3011 BTRFS_SUPER_INFO_SIZE);
3012 if (!bh) {
3013 errors++;
3014 continue;
3015 }
3016 wait_on_buffer(bh);
3017 if (!buffer_uptodate(bh))
3018 errors++;
3019
3020 /* drop our reference */
3021 brelse(bh);
3022
3023 /* drop the reference from the wait == 0 run */
3024 brelse(bh);
3025 continue;
3026 } else {
3027 btrfs_set_super_bytenr(sb, bytenr);
3028
3029 crc = ~(u32)0;
3030 crc = btrfs_csum_data((char *)sb +
3031 BTRFS_CSUM_SIZE, crc,
3032 BTRFS_SUPER_INFO_SIZE -
3033 BTRFS_CSUM_SIZE);
3034 btrfs_csum_final(crc, sb->csum);
3035
3036 /*
3037 * one reference for us, and we leave it for the
3038 * caller
3039 */
3040 bh = __getblk(device->bdev, bytenr / 4096,
3041 BTRFS_SUPER_INFO_SIZE);
3042 if (!bh) {
3043 printk(KERN_ERR "btrfs: couldn't get super "
3044 "buffer head for bytenr %Lu\n", bytenr);
3045 errors++;
3046 continue;
3047 }
3048
3049 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3050
3051 /* one reference for submit_bh */
3052 get_bh(bh);
3053
3054 set_buffer_uptodate(bh);
3055 lock_buffer(bh);
3056 bh->b_end_io = btrfs_end_buffer_write_sync;
3057 bh->b_private = device;
3058 }
3059
3060 /*
3061 * we fua the first super. The others we allow
3062 * to go down lazy.
3063 */
3064 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3065 if (ret)
3066 errors++;
3067 }
3068 return errors < i ? 0 : -1;
3069 }
3070
3071 /*
3072 * endio for the write_dev_flush, this will wake anyone waiting
3073 * for the barrier when it is done
3074 */
3075 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3076 {
3077 if (err) {
3078 if (err == -EOPNOTSUPP)
3079 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3080 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3081 }
3082 if (bio->bi_private)
3083 complete(bio->bi_private);
3084 bio_put(bio);
3085 }
3086
3087 /*
3088 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3089 * sent down. With wait == 1, it waits for the previous flush.
3090 *
3091 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3092 * capable
3093 */
3094 static int write_dev_flush(struct btrfs_device *device, int wait)
3095 {
3096 struct bio *bio;
3097 int ret = 0;
3098
3099 if (device->nobarriers)
3100 return 0;
3101
3102 if (wait) {
3103 bio = device->flush_bio;
3104 if (!bio)
3105 return 0;
3106
3107 wait_for_completion(&device->flush_wait);
3108
3109 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3110 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3111 rcu_str_deref(device->name));
3112 device->nobarriers = 1;
3113 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3114 ret = -EIO;
3115 btrfs_dev_stat_inc_and_print(device,
3116 BTRFS_DEV_STAT_FLUSH_ERRS);
3117 }
3118
3119 /* drop the reference from the wait == 0 run */
3120 bio_put(bio);
3121 device->flush_bio = NULL;
3122
3123 return ret;
3124 }
3125
3126 /*
3127 * one reference for us, and we leave it for the
3128 * caller
3129 */
3130 device->flush_bio = NULL;
3131 bio = bio_alloc(GFP_NOFS, 0);
3132 if (!bio)
3133 return -ENOMEM;
3134
3135 bio->bi_end_io = btrfs_end_empty_barrier;
3136 bio->bi_bdev = device->bdev;
3137 init_completion(&device->flush_wait);
3138 bio->bi_private = &device->flush_wait;
3139 device->flush_bio = bio;
3140
3141 bio_get(bio);
3142 btrfsic_submit_bio(WRITE_FLUSH, bio);
3143
3144 return 0;
3145 }
3146
3147 /*
3148 * send an empty flush down to each device in parallel,
3149 * then wait for them
3150 */
3151 static int barrier_all_devices(struct btrfs_fs_info *info)
3152 {
3153 struct list_head *head;
3154 struct btrfs_device *dev;
3155 int errors_send = 0;
3156 int errors_wait = 0;
3157 int ret;
3158
3159 /* send down all the barriers */
3160 head = &info->fs_devices->devices;
3161 list_for_each_entry_rcu(dev, head, dev_list) {
3162 if (!dev->bdev) {
3163 errors_send++;
3164 continue;
3165 }
3166 if (!dev->in_fs_metadata || !dev->writeable)
3167 continue;
3168
3169 ret = write_dev_flush(dev, 0);
3170 if (ret)
3171 errors_send++;
3172 }
3173
3174 /* wait for all the barriers */
3175 list_for_each_entry_rcu(dev, head, dev_list) {
3176 if (!dev->bdev) {
3177 errors_wait++;
3178 continue;
3179 }
3180 if (!dev->in_fs_metadata || !dev->writeable)
3181 continue;
3182
3183 ret = write_dev_flush(dev, 1);
3184 if (ret)
3185 errors_wait++;
3186 }
3187 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3188 errors_wait > info->num_tolerated_disk_barrier_failures)
3189 return -EIO;
3190 return 0;
3191 }
3192
3193 int btrfs_calc_num_tolerated_disk_barrier_failures(
3194 struct btrfs_fs_info *fs_info)
3195 {
3196 struct btrfs_ioctl_space_info space;
3197 struct btrfs_space_info *sinfo;
3198 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3199 BTRFS_BLOCK_GROUP_SYSTEM,
3200 BTRFS_BLOCK_GROUP_METADATA,
3201 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3202 int num_types = 4;
3203 int i;
3204 int c;
3205 int num_tolerated_disk_barrier_failures =
3206 (int)fs_info->fs_devices->num_devices;
3207
3208 for (i = 0; i < num_types; i++) {
3209 struct btrfs_space_info *tmp;
3210
3211 sinfo = NULL;
3212 rcu_read_lock();
3213 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3214 if (tmp->flags == types[i]) {
3215 sinfo = tmp;
3216 break;
3217 }
3218 }
3219 rcu_read_unlock();
3220
3221 if (!sinfo)
3222 continue;
3223
3224 down_read(&sinfo->groups_sem);
3225 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3226 if (!list_empty(&sinfo->block_groups[c])) {
3227 u64 flags;
3228
3229 btrfs_get_block_group_info(
3230 &sinfo->block_groups[c], &space);
3231 if (space.total_bytes == 0 ||
3232 space.used_bytes == 0)
3233 continue;
3234 flags = space.flags;
3235 /*
3236 * return
3237 * 0: if dup, single or RAID0 is configured for
3238 * any of metadata, system or data, else
3239 * 1: if RAID5 is configured, or if RAID1 or
3240 * RAID10 is configured and only two mirrors
3241 * are used, else
3242 * 2: if RAID6 is configured, else
3243 * num_mirrors - 1: if RAID1 or RAID10 is
3244 * configured and more than
3245 * 2 mirrors are used.
3246 */
3247 if (num_tolerated_disk_barrier_failures > 0 &&
3248 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3249 BTRFS_BLOCK_GROUP_RAID0)) ||
3250 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3251 == 0)))
3252 num_tolerated_disk_barrier_failures = 0;
3253 else if (num_tolerated_disk_barrier_failures > 1) {
3254 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3255 BTRFS_BLOCK_GROUP_RAID5 |
3256 BTRFS_BLOCK_GROUP_RAID10)) {
3257 num_tolerated_disk_barrier_failures = 1;
3258 } else if (flags &
3259 BTRFS_BLOCK_GROUP_RAID5) {
3260 num_tolerated_disk_barrier_failures = 2;
3261 }
3262 }
3263 }
3264 }
3265 up_read(&sinfo->groups_sem);
3266 }
3267
3268 return num_tolerated_disk_barrier_failures;
3269 }
3270
3271 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3272 {
3273 struct list_head *head;
3274 struct btrfs_device *dev;
3275 struct btrfs_super_block *sb;
3276 struct btrfs_dev_item *dev_item;
3277 int ret;
3278 int do_barriers;
3279 int max_errors;
3280 int total_errors = 0;
3281 u64 flags;
3282
3283 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3284 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3285 backup_super_roots(root->fs_info);
3286
3287 sb = root->fs_info->super_for_commit;
3288 dev_item = &sb->dev_item;
3289
3290 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3291 head = &root->fs_info->fs_devices->devices;
3292
3293 if (do_barriers) {
3294 ret = barrier_all_devices(root->fs_info);
3295 if (ret) {
3296 mutex_unlock(
3297 &root->fs_info->fs_devices->device_list_mutex);
3298 btrfs_error(root->fs_info, ret,
3299 "errors while submitting device barriers.");
3300 return ret;
3301 }
3302 }
3303
3304 list_for_each_entry_rcu(dev, head, dev_list) {
3305 if (!dev->bdev) {
3306 total_errors++;
3307 continue;
3308 }
3309 if (!dev->in_fs_metadata || !dev->writeable)
3310 continue;
3311
3312 btrfs_set_stack_device_generation(dev_item, 0);
3313 btrfs_set_stack_device_type(dev_item, dev->type);
3314 btrfs_set_stack_device_id(dev_item, dev->devid);
3315 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3316 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3317 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3318 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3319 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3320 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3321 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3322
3323 flags = btrfs_super_flags(sb);
3324 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3325
3326 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3327 if (ret)
3328 total_errors++;
3329 }
3330 if (total_errors > max_errors) {
3331 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3332 total_errors);
3333
3334 /* This shouldn't happen. FUA is masked off if unsupported */
3335 BUG();
3336 }
3337
3338 total_errors = 0;
3339 list_for_each_entry_rcu(dev, head, dev_list) {
3340 if (!dev->bdev)
3341 continue;
3342 if (!dev->in_fs_metadata || !dev->writeable)
3343 continue;
3344
3345 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3346 if (ret)
3347 total_errors++;
3348 }
3349 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3350 if (total_errors > max_errors) {
3351 btrfs_error(root->fs_info, -EIO,
3352 "%d errors while writing supers", total_errors);
3353 return -EIO;
3354 }
3355 return 0;
3356 }
3357
3358 int write_ctree_super(struct btrfs_trans_handle *trans,
3359 struct btrfs_root *root, int max_mirrors)
3360 {
3361 int ret;
3362
3363 ret = write_all_supers(root, max_mirrors);
3364 return ret;
3365 }
3366
3367 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3368 {
3369 spin_lock(&fs_info->fs_roots_radix_lock);
3370 radix_tree_delete(&fs_info->fs_roots_radix,
3371 (unsigned long)root->root_key.objectid);
3372 spin_unlock(&fs_info->fs_roots_radix_lock);
3373
3374 if (btrfs_root_refs(&root->root_item) == 0)
3375 synchronize_srcu(&fs_info->subvol_srcu);
3376
3377 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3378 btrfs_free_log(NULL, root);
3379 btrfs_free_log_root_tree(NULL, fs_info);
3380 }
3381
3382 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3383 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3384 free_fs_root(root);
3385 }
3386
3387 static void free_fs_root(struct btrfs_root *root)
3388 {
3389 iput(root->cache_inode);
3390 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3391 if (root->anon_dev)
3392 free_anon_bdev(root->anon_dev);
3393 free_extent_buffer(root->node);
3394 free_extent_buffer(root->commit_root);
3395 kfree(root->free_ino_ctl);
3396 kfree(root->free_ino_pinned);
3397 kfree(root->name);
3398 kfree(root);
3399 }
3400
3401 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3402 {
3403 u64 root_objectid = 0;
3404 struct btrfs_root *gang[8];
3405 int i;
3406 int ret;
3407
3408 while (1) {
3409 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3410 (void **)gang, root_objectid,
3411 ARRAY_SIZE(gang));
3412 if (!ret)
3413 break;
3414
3415 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3416 for (i = 0; i < ret; i++) {
3417 int err;
3418
3419 root_objectid = gang[i]->root_key.objectid;
3420 err = btrfs_orphan_cleanup(gang[i]);
3421 if (err)
3422 return err;
3423 }
3424 root_objectid++;
3425 }
3426 return 0;
3427 }
3428
3429 int btrfs_commit_super(struct btrfs_root *root)
3430 {
3431 struct btrfs_trans_handle *trans;
3432 int ret;
3433
3434 mutex_lock(&root->fs_info->cleaner_mutex);
3435 btrfs_run_delayed_iputs(root);
3436 mutex_unlock(&root->fs_info->cleaner_mutex);
3437 wake_up_process(root->fs_info->cleaner_kthread);
3438
3439 /* wait until ongoing cleanup work done */
3440 down_write(&root->fs_info->cleanup_work_sem);
3441 up_write(&root->fs_info->cleanup_work_sem);
3442
3443 trans = btrfs_join_transaction(root);
3444 if (IS_ERR(trans))
3445 return PTR_ERR(trans);
3446 ret = btrfs_commit_transaction(trans, root);
3447 if (ret)
3448 return ret;
3449 /* run commit again to drop the original snapshot */
3450 trans = btrfs_join_transaction(root);
3451 if (IS_ERR(trans))
3452 return PTR_ERR(trans);
3453 ret = btrfs_commit_transaction(trans, root);
3454 if (ret)
3455 return ret;
3456 ret = btrfs_write_and_wait_transaction(NULL, root);
3457 if (ret) {
3458 btrfs_error(root->fs_info, ret,
3459 "Failed to sync btree inode to disk.");
3460 return ret;
3461 }
3462
3463 ret = write_ctree_super(NULL, root, 0);
3464 return ret;
3465 }
3466
3467 int close_ctree(struct btrfs_root *root)
3468 {
3469 struct btrfs_fs_info *fs_info = root->fs_info;
3470 int ret;
3471
3472 fs_info->closing = 1;
3473 smp_mb();
3474
3475 /* pause restriper - we want to resume on mount */
3476 btrfs_pause_balance(fs_info);
3477
3478 btrfs_dev_replace_suspend_for_unmount(fs_info);
3479
3480 btrfs_scrub_cancel(fs_info);
3481
3482 /* wait for any defraggers to finish */
3483 wait_event(fs_info->transaction_wait,
3484 (atomic_read(&fs_info->defrag_running) == 0));
3485
3486 /* clear out the rbtree of defraggable inodes */
3487 btrfs_cleanup_defrag_inodes(fs_info);
3488
3489 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3490 ret = btrfs_commit_super(root);
3491 if (ret)
3492 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3493 }
3494
3495 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3496 btrfs_error_commit_super(root);
3497
3498 btrfs_put_block_group_cache(fs_info);
3499
3500 kthread_stop(fs_info->transaction_kthread);
3501 kthread_stop(fs_info->cleaner_kthread);
3502
3503 fs_info->closing = 2;
3504 smp_mb();
3505
3506 btrfs_free_qgroup_config(root->fs_info);
3507
3508 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3509 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3510 percpu_counter_sum(&fs_info->delalloc_bytes));
3511 }
3512
3513 free_root_pointers(fs_info, 1);
3514
3515 btrfs_free_block_groups(fs_info);
3516
3517 del_fs_roots(fs_info);
3518
3519 iput(fs_info->btree_inode);
3520
3521 btrfs_stop_all_workers(fs_info);
3522
3523 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3524 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3525 btrfsic_unmount(root, fs_info->fs_devices);
3526 #endif
3527
3528 btrfs_close_devices(fs_info->fs_devices);
3529 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3530
3531 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3532 percpu_counter_destroy(&fs_info->delalloc_bytes);
3533 bdi_destroy(&fs_info->bdi);
3534 cleanup_srcu_struct(&fs_info->subvol_srcu);
3535
3536 btrfs_free_stripe_hash_table(fs_info);
3537
3538 return 0;
3539 }
3540
3541 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3542 int atomic)
3543 {
3544 int ret;
3545 struct inode *btree_inode = buf->pages[0]->mapping->host;
3546
3547 ret = extent_buffer_uptodate(buf);
3548 if (!ret)
3549 return ret;
3550
3551 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3552 parent_transid, atomic);
3553 if (ret == -EAGAIN)
3554 return ret;
3555 return !ret;
3556 }
3557
3558 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3559 {
3560 return set_extent_buffer_uptodate(buf);
3561 }
3562
3563 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3564 {
3565 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3566 u64 transid = btrfs_header_generation(buf);
3567 int was_dirty;
3568
3569 btrfs_assert_tree_locked(buf);
3570 if (transid != root->fs_info->generation)
3571 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3572 "found %llu running %llu\n",
3573 (unsigned long long)buf->start,
3574 (unsigned long long)transid,
3575 (unsigned long long)root->fs_info->generation);
3576 was_dirty = set_extent_buffer_dirty(buf);
3577 if (!was_dirty)
3578 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3579 buf->len,
3580 root->fs_info->dirty_metadata_batch);
3581 }
3582
3583 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3584 int flush_delayed)
3585 {
3586 /*
3587 * looks as though older kernels can get into trouble with
3588 * this code, they end up stuck in balance_dirty_pages forever
3589 */
3590 int ret;
3591
3592 if (current->flags & PF_MEMALLOC)
3593 return;
3594
3595 if (flush_delayed)
3596 btrfs_balance_delayed_items(root);
3597
3598 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3599 BTRFS_DIRTY_METADATA_THRESH);
3600 if (ret > 0) {
3601 balance_dirty_pages_ratelimited(
3602 root->fs_info->btree_inode->i_mapping);
3603 }
3604 return;
3605 }
3606
3607 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3608 {
3609 __btrfs_btree_balance_dirty(root, 1);
3610 }
3611
3612 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3613 {
3614 __btrfs_btree_balance_dirty(root, 0);
3615 }
3616
3617 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3618 {
3619 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3620 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3621 }
3622
3623 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3624 int read_only)
3625 {
3626 /*
3627 * Placeholder for checks
3628 */
3629 return 0;
3630 }
3631
3632 static void btrfs_error_commit_super(struct btrfs_root *root)
3633 {
3634 mutex_lock(&root->fs_info->cleaner_mutex);
3635 btrfs_run_delayed_iputs(root);
3636 mutex_unlock(&root->fs_info->cleaner_mutex);
3637
3638 down_write(&root->fs_info->cleanup_work_sem);
3639 up_write(&root->fs_info->cleanup_work_sem);
3640
3641 /* cleanup FS via transaction */
3642 btrfs_cleanup_transaction(root);
3643 }
3644
3645 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3646 struct btrfs_root *root)
3647 {
3648 struct btrfs_inode *btrfs_inode;
3649 struct list_head splice;
3650
3651 INIT_LIST_HEAD(&splice);
3652
3653 mutex_lock(&root->fs_info->ordered_operations_mutex);
3654 spin_lock(&root->fs_info->ordered_extent_lock);
3655
3656 list_splice_init(&t->ordered_operations, &splice);
3657 while (!list_empty(&splice)) {
3658 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3659 ordered_operations);
3660
3661 list_del_init(&btrfs_inode->ordered_operations);
3662
3663 btrfs_invalidate_inodes(btrfs_inode->root);
3664 }
3665
3666 spin_unlock(&root->fs_info->ordered_extent_lock);
3667 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3668 }
3669
3670 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3671 {
3672 struct btrfs_ordered_extent *ordered;
3673
3674 spin_lock(&root->fs_info->ordered_extent_lock);
3675 /*
3676 * This will just short circuit the ordered completion stuff which will
3677 * make sure the ordered extent gets properly cleaned up.
3678 */
3679 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3680 root_extent_list)
3681 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3682 spin_unlock(&root->fs_info->ordered_extent_lock);
3683 }
3684
3685 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3686 struct btrfs_root *root)
3687 {
3688 struct rb_node *node;
3689 struct btrfs_delayed_ref_root *delayed_refs;
3690 struct btrfs_delayed_ref_node *ref;
3691 int ret = 0;
3692
3693 delayed_refs = &trans->delayed_refs;
3694
3695 spin_lock(&delayed_refs->lock);
3696 if (delayed_refs->num_entries == 0) {
3697 spin_unlock(&delayed_refs->lock);
3698 printk(KERN_INFO "delayed_refs has NO entry\n");
3699 return ret;
3700 }
3701
3702 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3703 struct btrfs_delayed_ref_head *head = NULL;
3704
3705 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3706 atomic_set(&ref->refs, 1);
3707 if (btrfs_delayed_ref_is_head(ref)) {
3708
3709 head = btrfs_delayed_node_to_head(ref);
3710 if (!mutex_trylock(&head->mutex)) {
3711 atomic_inc(&ref->refs);
3712 spin_unlock(&delayed_refs->lock);
3713
3714 /* Need to wait for the delayed ref to run */
3715 mutex_lock(&head->mutex);
3716 mutex_unlock(&head->mutex);
3717 btrfs_put_delayed_ref(ref);
3718
3719 spin_lock(&delayed_refs->lock);
3720 continue;
3721 }
3722
3723 if (head->must_insert_reserved)
3724 btrfs_pin_extent(root, ref->bytenr,
3725 ref->num_bytes, 1);
3726 btrfs_free_delayed_extent_op(head->extent_op);
3727 delayed_refs->num_heads--;
3728 if (list_empty(&head->cluster))
3729 delayed_refs->num_heads_ready--;
3730 list_del_init(&head->cluster);
3731 }
3732
3733 ref->in_tree = 0;
3734 rb_erase(&ref->rb_node, &delayed_refs->root);
3735 delayed_refs->num_entries--;
3736 if (head)
3737 mutex_unlock(&head->mutex);
3738 spin_unlock(&delayed_refs->lock);
3739 btrfs_put_delayed_ref(ref);
3740
3741 cond_resched();
3742 spin_lock(&delayed_refs->lock);
3743 }
3744
3745 spin_unlock(&delayed_refs->lock);
3746
3747 return ret;
3748 }
3749
3750 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3751 {
3752 struct btrfs_pending_snapshot *snapshot;
3753 struct list_head splice;
3754
3755 INIT_LIST_HEAD(&splice);
3756
3757 list_splice_init(&t->pending_snapshots, &splice);
3758
3759 while (!list_empty(&splice)) {
3760 snapshot = list_entry(splice.next,
3761 struct btrfs_pending_snapshot,
3762 list);
3763 snapshot->error = -ECANCELED;
3764 list_del_init(&snapshot->list);
3765 }
3766 }
3767
3768 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3769 {
3770 struct btrfs_inode *btrfs_inode;
3771 struct list_head splice;
3772
3773 INIT_LIST_HEAD(&splice);
3774
3775 spin_lock(&root->fs_info->delalloc_lock);
3776 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3777
3778 while (!list_empty(&splice)) {
3779 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3780 delalloc_inodes);
3781
3782 list_del_init(&btrfs_inode->delalloc_inodes);
3783 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3784 &btrfs_inode->runtime_flags);
3785
3786 btrfs_invalidate_inodes(btrfs_inode->root);
3787 }
3788
3789 spin_unlock(&root->fs_info->delalloc_lock);
3790 }
3791
3792 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3793 struct extent_io_tree *dirty_pages,
3794 int mark)
3795 {
3796 int ret;
3797 struct extent_buffer *eb;
3798 u64 start = 0;
3799 u64 end;
3800
3801 while (1) {
3802 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3803 mark, NULL);
3804 if (ret)
3805 break;
3806
3807 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3808 while (start <= end) {
3809 eb = btrfs_find_tree_block(root, start,
3810 root->leafsize);
3811 start += root->leafsize;
3812 if (!eb)
3813 continue;
3814 wait_on_extent_buffer_writeback(eb);
3815
3816 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3817 &eb->bflags))
3818 clear_extent_buffer_dirty(eb);
3819 free_extent_buffer_stale(eb);
3820 }
3821 }
3822
3823 return ret;
3824 }
3825
3826 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3827 struct extent_io_tree *pinned_extents)
3828 {
3829 struct extent_io_tree *unpin;
3830 u64 start;
3831 u64 end;
3832 int ret;
3833 bool loop = true;
3834
3835 unpin = pinned_extents;
3836 again:
3837 while (1) {
3838 ret = find_first_extent_bit(unpin, 0, &start, &end,
3839 EXTENT_DIRTY, NULL);
3840 if (ret)
3841 break;
3842
3843 /* opt_discard */
3844 if (btrfs_test_opt(root, DISCARD))
3845 ret = btrfs_error_discard_extent(root, start,
3846 end + 1 - start,
3847 NULL);
3848
3849 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3850 btrfs_error_unpin_extent_range(root, start, end);
3851 cond_resched();
3852 }
3853
3854 if (loop) {
3855 if (unpin == &root->fs_info->freed_extents[0])
3856 unpin = &root->fs_info->freed_extents[1];
3857 else
3858 unpin = &root->fs_info->freed_extents[0];
3859 loop = false;
3860 goto again;
3861 }
3862
3863 return 0;
3864 }
3865
3866 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3867 struct btrfs_root *root)
3868 {
3869 btrfs_destroy_delayed_refs(cur_trans, root);
3870 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3871 cur_trans->dirty_pages.dirty_bytes);
3872
3873 /* FIXME: cleanup wait for commit */
3874 cur_trans->in_commit = 1;
3875 cur_trans->blocked = 1;
3876 wake_up(&root->fs_info->transaction_blocked_wait);
3877
3878 btrfs_evict_pending_snapshots(cur_trans);
3879
3880 cur_trans->blocked = 0;
3881 wake_up(&root->fs_info->transaction_wait);
3882
3883 cur_trans->commit_done = 1;
3884 wake_up(&cur_trans->commit_wait);
3885
3886 btrfs_destroy_delayed_inodes(root);
3887 btrfs_assert_delayed_root_empty(root);
3888
3889 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3890 EXTENT_DIRTY);
3891 btrfs_destroy_pinned_extent(root,
3892 root->fs_info->pinned_extents);
3893
3894 /*
3895 memset(cur_trans, 0, sizeof(*cur_trans));
3896 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3897 */
3898 }
3899
3900 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3901 {
3902 struct btrfs_transaction *t;
3903 LIST_HEAD(list);
3904
3905 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3906
3907 spin_lock(&root->fs_info->trans_lock);
3908 list_splice_init(&root->fs_info->trans_list, &list);
3909 root->fs_info->trans_no_join = 1;
3910 spin_unlock(&root->fs_info->trans_lock);
3911
3912 while (!list_empty(&list)) {
3913 t = list_entry(list.next, struct btrfs_transaction, list);
3914
3915 btrfs_destroy_ordered_operations(t, root);
3916
3917 btrfs_destroy_ordered_extents(root);
3918
3919 btrfs_destroy_delayed_refs(t, root);
3920
3921 /* FIXME: cleanup wait for commit */
3922 t->in_commit = 1;
3923 t->blocked = 1;
3924 smp_mb();
3925 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3926 wake_up(&root->fs_info->transaction_blocked_wait);
3927
3928 btrfs_evict_pending_snapshots(t);
3929
3930 t->blocked = 0;
3931 smp_mb();
3932 if (waitqueue_active(&root->fs_info->transaction_wait))
3933 wake_up(&root->fs_info->transaction_wait);
3934
3935 t->commit_done = 1;
3936 smp_mb();
3937 if (waitqueue_active(&t->commit_wait))
3938 wake_up(&t->commit_wait);
3939
3940 btrfs_destroy_delayed_inodes(root);
3941 btrfs_assert_delayed_root_empty(root);
3942
3943 btrfs_destroy_delalloc_inodes(root);
3944
3945 spin_lock(&root->fs_info->trans_lock);
3946 root->fs_info->running_transaction = NULL;
3947 spin_unlock(&root->fs_info->trans_lock);
3948
3949 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3950 EXTENT_DIRTY);
3951
3952 btrfs_destroy_pinned_extent(root,
3953 root->fs_info->pinned_extents);
3954
3955 atomic_set(&t->use_count, 0);
3956 list_del_init(&t->list);
3957 memset(t, 0, sizeof(*t));
3958 kmem_cache_free(btrfs_transaction_cachep, t);
3959 }
3960
3961 spin_lock(&root->fs_info->trans_lock);
3962 root->fs_info->trans_no_join = 0;
3963 spin_unlock(&root->fs_info->trans_lock);
3964 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3965
3966 return 0;
3967 }
3968
3969 static struct extent_io_ops btree_extent_io_ops = {
3970 .readpage_end_io_hook = btree_readpage_end_io_hook,
3971 .readpage_io_failed_hook = btree_io_failed_hook,
3972 .submit_bio_hook = btree_submit_bio_hook,
3973 /* note we're sharing with inode.c for the merge bio hook */
3974 .merge_bio_hook = btrfs_merge_bio_hook,
3975 };