]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/disk-io.c
Merge tag 'block-5.9-2020-09-11' of git://git.kernel.dk/linux-block
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
112 struct async_submit_bio {
113 void *private_data;
114 struct bio *bio;
115 extent_submit_bio_start_t *submit_bio_start;
116 int mirror_num;
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
122 struct btrfs_work work;
123 blk_status_t status;
124 };
125
126 /*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
136 *
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
140 *
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
144 *
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
148 */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 # error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172 { .id = 0, .name_stem = "tree" },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191 {
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
214 {
215 struct extent_map_tree *em_tree = &inode->extent_tree;
216 struct extent_map *em;
217 int ret;
218
219 read_lock(&em_tree->lock);
220 em = lookup_extent_mapping(em_tree, start, len);
221 if (em) {
222 read_unlock(&em_tree->lock);
223 goto out;
224 }
225 read_unlock(&em_tree->lock);
226
227 em = alloc_extent_map();
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
233 em->len = (u64)-1;
234 em->block_len = (u64)-1;
235 em->block_start = 0;
236
237 write_lock(&em_tree->lock);
238 ret = add_extent_mapping(em_tree, em, 0);
239 if (ret == -EEXIST) {
240 free_extent_map(em);
241 em = lookup_extent_mapping(em_tree, start, len);
242 if (!em)
243 em = ERR_PTR(-EIO);
244 } else if (ret) {
245 free_extent_map(em);
246 em = ERR_PTR(ret);
247 }
248 write_unlock(&em_tree->lock);
249
250 out:
251 return em;
252 }
253
254 /*
255 * Compute the csum of a btree block and store the result to provided buffer.
256 */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 struct btrfs_fs_info *fs_info = buf->fs_info;
260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 char *kaddr;
263 int i;
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
270
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 }
275 memset(result, 0, BTRFS_CSUM_SIZE);
276 crypto_shash_final(shash, result);
277 }
278
279 /*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
288 {
289 struct extent_state *cached_state = NULL;
290 int ret;
291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
296 if (atomic)
297 return -EAGAIN;
298
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
301 btrfs_set_lock_blocking_read(eb);
302 }
303
304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 &cached_state);
306 if (extent_buffer_uptodate(eb) &&
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
314 parent_transid, btrfs_header_generation(eb));
315 ret = 1;
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
320 * block that has been freed and re-allocated. So don't clear uptodate
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
327 out:
328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 &cached_state);
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
332 return ret;
333 }
334
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
339 case BTRFS_CSUM_TYPE_XXHASH:
340 case BTRFS_CSUM_TYPE_SHA256:
341 case BTRFS_CSUM_TYPE_BLAKE2:
342 return true;
343 default:
344 return false;
345 }
346 }
347
348 /*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
354 {
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
357 char result[BTRFS_CSUM_SIZE];
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
361
362 /*
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
366 */
367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369
370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 return 1;
372
373 return 0;
374 }
375
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377 struct btrfs_key *first_key, u64 parent_transid)
378 {
379 struct btrfs_fs_info *fs_info = eb->fs_info;
380 int found_level;
381 struct btrfs_key found_key;
382 int ret;
383
384 found_level = btrfs_header_level(eb);
385 if (found_level != level) {
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 KERN_ERR "BTRFS: tree level check failed\n");
388 btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb->start, level, found_level);
391 return -EIO;
392 }
393
394 if (!first_key)
395 return 0;
396
397 /*
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
402 */
403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 return 0;
405
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb) == 0) {
408 btrfs_err(fs_info,
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 eb->start);
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 return -EUCLEAN;
413 }
414
415 if (found_level)
416 btrfs_node_key_to_cpu(eb, &found_key, 0);
417 else
418 btrfs_item_key_to_cpu(eb, &found_key, 0);
419 ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
421 if (ret) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: tree first key check failed\n");
424 btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb->start, parent_transid, first_key->objectid,
427 first_key->type, first_key->offset,
428 found_key.objectid, found_key.type,
429 found_key.offset);
430 }
431 return ret;
432 }
433
434 /*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
437 *
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
441 */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443 u64 parent_transid, int level,
444 struct btrfs_key *first_key)
445 {
446 struct btrfs_fs_info *fs_info = eb->fs_info;
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 while (1) {
456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458 if (!ret) {
459 if (verify_parent_transid(io_tree, eb,
460 parent_transid, 0))
461 ret = -EIO;
462 else if (btrfs_verify_level_key(eb, level,
463 first_key, parent_transid))
464 ret = -EUCLEAN;
465 else
466 break;
467 }
468
469 num_copies = btrfs_num_copies(fs_info,
470 eb->start, eb->len);
471 if (num_copies == 1)
472 break;
473
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
477 }
478
479 mirror_num++;
480 if (mirror_num == failed_mirror)
481 mirror_num++;
482
483 if (mirror_num > num_copies)
484 break;
485 }
486
487 if (failed && !ret && failed_mirror)
488 btrfs_repair_eb_io_failure(eb, failed_mirror);
489
490 return ret;
491 }
492
493 /*
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
496 */
497
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500 u64 start = page_offset(page);
501 u64 found_start;
502 u8 result[BTRFS_CSUM_SIZE];
503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504 struct extent_buffer *eb;
505 int ret;
506
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
510
511 found_start = btrfs_header_bytenr(eb);
512 /*
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
515 */
516 if (WARN_ON(found_start != start))
517 return -EUCLEAN;
518 if (WARN_ON(!PageUptodate(page)))
519 return -EUCLEAN;
520
521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522 offsetof(struct btrfs_header, fsid),
523 BTRFS_FSID_SIZE) == 0);
524
525 csum_tree_block(eb, result);
526
527 if (btrfs_header_level(eb))
528 ret = btrfs_check_node(eb);
529 else
530 ret = btrfs_check_leaf_full(eb);
531
532 if (ret < 0) {
533 btrfs_print_tree(eb, 0);
534 btrfs_err(fs_info,
535 "block=%llu write time tree block corruption detected",
536 eb->start);
537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538 return ret;
539 }
540 write_extent_buffer(eb, result, 0, csum_size);
541
542 return 0;
543 }
544
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547 struct btrfs_fs_info *fs_info = eb->fs_info;
548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549 u8 fsid[BTRFS_FSID_SIZE];
550 int ret = 1;
551
552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 BTRFS_FSID_SIZE);
554 while (fs_devices) {
555 u8 *metadata_uuid;
556
557 /*
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
561 */
562 if (fs_devices == fs_info->fs_devices &&
563 btrfs_fs_incompat(fs_info, METADATA_UUID))
564 metadata_uuid = fs_devices->metadata_uuid;
565 else
566 metadata_uuid = fs_devices->fsid;
567
568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569 ret = 0;
570 break;
571 }
572 fs_devices = fs_devices->seed;
573 }
574 return ret;
575 }
576
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 u64 phy_offset, struct page *page,
579 u64 start, u64 end, int mirror)
580 {
581 u64 found_start;
582 int found_level;
583 struct extent_buffer *eb;
584 struct btrfs_fs_info *fs_info;
585 u16 csum_size;
586 int ret = 0;
587 u8 result[BTRFS_CSUM_SIZE];
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 eb = (struct extent_buffer *)page->private;
594 fs_info = eb->fs_info;
595 csum_size = btrfs_super_csum_size(fs_info->super_copy);
596
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 atomic_inc(&eb->refs);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
603 if (!reads_done)
604 goto err;
605
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 ret = -EIO;
609 goto err;
610 }
611
612 found_start = btrfs_header_bytenr(eb);
613 if (found_start != eb->start) {
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
616 ret = -EIO;
617 goto err;
618 }
619 if (check_tree_block_fsid(eb)) {
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
622 ret = -EIO;
623 goto err;
624 }
625 found_level = btrfs_header_level(eb);
626 if (found_level >= BTRFS_MAX_LEVEL) {
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
629 ret = -EIO;
630 goto err;
631 }
632
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
635
636 csum_tree_block(eb, result);
637
638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 u32 val;
640 u32 found = 0;
641
642 memcpy(&found, result, csum_size);
643
644 read_extent_buffer(eb, &val, 0, csum_size);
645 btrfs_warn_rl(fs_info,
646 "%s checksum verify failed on %llu wanted %x found %x level %d",
647 fs_info->sb->s_id, eb->start,
648 val, found, btrfs_header_level(eb));
649 ret = -EUCLEAN;
650 goto err;
651 }
652
653 /*
654 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 * that we don't try and read the other copies of this block, just
656 * return -EIO.
657 */
658 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 ret = -EIO;
661 }
662
663 if (found_level > 0 && btrfs_check_node(eb))
664 ret = -EIO;
665
666 if (!ret)
667 set_extent_buffer_uptodate(eb);
668 else
669 btrfs_err(fs_info,
670 "block=%llu read time tree block corruption detected",
671 eb->start);
672 err:
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 btree_readahead_hook(eb, ret);
676
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
684 clear_extent_buffer_uptodate(eb);
685 }
686 free_extent_buffer(eb);
687 out:
688 return ret;
689 }
690
691 static void end_workqueue_bio(struct bio *bio)
692 {
693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
695 struct btrfs_workqueue *wq;
696
697 fs_info = end_io_wq->info;
698 end_io_wq->status = bio->bi_status;
699
700 if (bio_op(bio) == REQ_OP_WRITE) {
701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
702 wq = fs_info->endio_meta_write_workers;
703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704 wq = fs_info->endio_freespace_worker;
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 wq = fs_info->endio_raid56_workers;
707 else
708 wq = fs_info->endio_write_workers;
709 } else {
710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
711 wq = fs_info->endio_raid56_workers;
712 else if (end_io_wq->metadata)
713 wq = fs_info->endio_meta_workers;
714 else
715 wq = fs_info->endio_workers;
716 }
717
718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
719 btrfs_queue_work(wq, &end_io_wq->work);
720 }
721
722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723 enum btrfs_wq_endio_type metadata)
724 {
725 struct btrfs_end_io_wq *end_io_wq;
726
727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
728 if (!end_io_wq)
729 return BLK_STS_RESOURCE;
730
731 end_io_wq->private = bio->bi_private;
732 end_io_wq->end_io = bio->bi_end_io;
733 end_io_wq->info = info;
734 end_io_wq->status = 0;
735 end_io_wq->bio = bio;
736 end_io_wq->metadata = metadata;
737
738 bio->bi_private = end_io_wq;
739 bio->bi_end_io = end_workqueue_bio;
740 return 0;
741 }
742
743 static void run_one_async_start(struct btrfs_work *work)
744 {
745 struct async_submit_bio *async;
746 blk_status_t ret;
747
748 async = container_of(work, struct async_submit_bio, work);
749 ret = async->submit_bio_start(async->private_data, async->bio,
750 async->bio_offset);
751 if (ret)
752 async->status = ret;
753 }
754
755 /*
756 * In order to insert checksums into the metadata in large chunks, we wait
757 * until bio submission time. All the pages in the bio are checksummed and
758 * sums are attached onto the ordered extent record.
759 *
760 * At IO completion time the csums attached on the ordered extent record are
761 * inserted into the tree.
762 */
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765 struct async_submit_bio *async;
766 struct inode *inode;
767 blk_status_t ret;
768
769 async = container_of(work, struct async_submit_bio, work);
770 inode = async->private_data;
771
772 /* If an error occurred we just want to clean up the bio and move on */
773 if (async->status) {
774 async->bio->bi_status = async->status;
775 bio_endio(async->bio);
776 return;
777 }
778
779 /*
780 * All of the bios that pass through here are from async helpers.
781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 * This changes nothing when cgroups aren't in use.
783 */
784 async->bio->bi_opf |= REQ_CGROUP_PUNT;
785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
786 if (ret) {
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
789 }
790 }
791
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794 struct async_submit_bio *async;
795
796 async = container_of(work, struct async_submit_bio, work);
797 kfree(async);
798 }
799
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
803 extent_submit_bio_start_t *submit_bio_start)
804 {
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
809 return BLK_STS_RESOURCE;
810
811 async->private_data = private_data;
812 async->bio = bio;
813 async->mirror_num = mirror_num;
814 async->submit_bio_start = submit_bio_start;
815
816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817 run_one_async_free);
818
819 async->bio_offset = bio_offset;
820
821 async->status = 0;
822
823 if (op_is_sync(bio->bi_opf))
824 btrfs_set_work_high_priority(&async->work);
825
826 btrfs_queue_work(fs_info->workers, &async->work);
827 return 0;
828 }
829
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832 struct bio_vec *bvec;
833 struct btrfs_root *root;
834 int ret = 0;
835 struct bvec_iter_all iter_all;
836
837 ASSERT(!bio_flagged(bio, BIO_CLONED));
838 bio_for_each_segment_all(bvec, bio, iter_all) {
839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
841 if (ret)
842 break;
843 }
844
845 return errno_to_blk_status(ret);
846 }
847
848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
849 u64 bio_offset)
850 {
851 /*
852 * when we're called for a write, we're already in the async
853 * submission context. Just jump into btrfs_map_bio
854 */
855 return btree_csum_one_bio(bio);
856 }
857
858 static int check_async_write(struct btrfs_fs_info *fs_info,
859 struct btrfs_inode *bi)
860 {
861 if (atomic_read(&bi->sync_writers))
862 return 0;
863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
864 return 0;
865 return 1;
866 }
867
868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
869 int mirror_num,
870 unsigned long bio_flags)
871 {
872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
873 int async = check_async_write(fs_info, BTRFS_I(inode));
874 blk_status_t ret;
875
876 if (bio_op(bio) != REQ_OP_WRITE) {
877 /*
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
880 */
881 ret = btrfs_bio_wq_end_io(fs_info, bio,
882 BTRFS_WQ_ENDIO_METADATA);
883 if (ret)
884 goto out_w_error;
885 ret = btrfs_map_bio(fs_info, bio, mirror_num);
886 } else if (!async) {
887 ret = btree_csum_one_bio(bio);
888 if (ret)
889 goto out_w_error;
890 ret = btrfs_map_bio(fs_info, bio, mirror_num);
891 } else {
892 /*
893 * kthread helpers are used to submit writes so that
894 * checksumming can happen in parallel across all CPUs
895 */
896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
897 0, inode, btree_submit_bio_start);
898 }
899
900 if (ret)
901 goto out_w_error;
902 return 0;
903
904 out_w_error:
905 bio->bi_status = ret;
906 bio_endio(bio);
907 return ret;
908 }
909
910 #ifdef CONFIG_MIGRATION
911 static int btree_migratepage(struct address_space *mapping,
912 struct page *newpage, struct page *page,
913 enum migrate_mode mode)
914 {
915 /*
916 * we can't safely write a btree page from here,
917 * we haven't done the locking hook
918 */
919 if (PageDirty(page))
920 return -EAGAIN;
921 /*
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
924 */
925 if (page_has_private(page) &&
926 !try_to_release_page(page, GFP_KERNEL))
927 return -EAGAIN;
928 return migrate_page(mapping, newpage, page, mode);
929 }
930 #endif
931
932
933 static int btree_writepages(struct address_space *mapping,
934 struct writeback_control *wbc)
935 {
936 struct btrfs_fs_info *fs_info;
937 int ret;
938
939 if (wbc->sync_mode == WB_SYNC_NONE) {
940
941 if (wbc->for_kupdate)
942 return 0;
943
944 fs_info = BTRFS_I(mapping->host)->root->fs_info;
945 /* this is a bit racy, but that's ok */
946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947 BTRFS_DIRTY_METADATA_THRESH,
948 fs_info->dirty_metadata_batch);
949 if (ret < 0)
950 return 0;
951 }
952 return btree_write_cache_pages(mapping, wbc);
953 }
954
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957 return extent_read_full_page(page, btree_get_extent, 0);
958 }
959
960 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
961 {
962 if (PageWriteback(page) || PageDirty(page))
963 return 0;
964
965 return try_release_extent_buffer(page);
966 }
967
968 static void btree_invalidatepage(struct page *page, unsigned int offset,
969 unsigned int length)
970 {
971 struct extent_io_tree *tree;
972 tree = &BTRFS_I(page->mapping->host)->io_tree;
973 extent_invalidatepage(tree, page, offset);
974 btree_releasepage(page, GFP_NOFS);
975 if (PagePrivate(page)) {
976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page));
979 detach_page_private(page);
980 }
981 }
982
983 static int btree_set_page_dirty(struct page *page)
984 {
985 #ifdef DEBUG
986 struct extent_buffer *eb;
987
988 BUG_ON(!PagePrivate(page));
989 eb = (struct extent_buffer *)page->private;
990 BUG_ON(!eb);
991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
992 BUG_ON(!atomic_read(&eb->refs));
993 btrfs_assert_tree_locked(eb);
994 #endif
995 return __set_page_dirty_nobuffers(page);
996 }
997
998 static const struct address_space_operations btree_aops = {
999 .readpage = btree_readpage,
1000 .writepages = btree_writepages,
1001 .releasepage = btree_releasepage,
1002 .invalidatepage = btree_invalidatepage,
1003 #ifdef CONFIG_MIGRATION
1004 .migratepage = btree_migratepage,
1005 #endif
1006 .set_page_dirty = btree_set_page_dirty,
1007 };
1008
1009 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1010 {
1011 struct extent_buffer *buf = NULL;
1012 int ret;
1013
1014 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1015 if (IS_ERR(buf))
1016 return;
1017
1018 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1019 if (ret < 0)
1020 free_extent_buffer_stale(buf);
1021 else
1022 free_extent_buffer(buf);
1023 }
1024
1025 struct extent_buffer *btrfs_find_create_tree_block(
1026 struct btrfs_fs_info *fs_info,
1027 u64 bytenr)
1028 {
1029 if (btrfs_is_testing(fs_info))
1030 return alloc_test_extent_buffer(fs_info, bytenr);
1031 return alloc_extent_buffer(fs_info, bytenr);
1032 }
1033
1034 /*
1035 * Read tree block at logical address @bytenr and do variant basic but critical
1036 * verification.
1037 *
1038 * @parent_transid: expected transid of this tree block, skip check if 0
1039 * @level: expected level, mandatory check
1040 * @first_key: expected key in slot 0, skip check if NULL
1041 */
1042 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1043 u64 parent_transid, int level,
1044 struct btrfs_key *first_key)
1045 {
1046 struct extent_buffer *buf = NULL;
1047 int ret;
1048
1049 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1050 if (IS_ERR(buf))
1051 return buf;
1052
1053 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1054 level, first_key);
1055 if (ret) {
1056 free_extent_buffer_stale(buf);
1057 return ERR_PTR(ret);
1058 }
1059 return buf;
1060
1061 }
1062
1063 void btrfs_clean_tree_block(struct extent_buffer *buf)
1064 {
1065 struct btrfs_fs_info *fs_info = buf->fs_info;
1066 if (btrfs_header_generation(buf) ==
1067 fs_info->running_transaction->transid) {
1068 btrfs_assert_tree_locked(buf);
1069
1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1071 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1072 -buf->len,
1073 fs_info->dirty_metadata_batch);
1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1075 btrfs_set_lock_blocking_write(buf);
1076 clear_extent_buffer_dirty(buf);
1077 }
1078 }
1079 }
1080
1081 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1082 u64 objectid)
1083 {
1084 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1085 root->fs_info = fs_info;
1086 root->node = NULL;
1087 root->commit_root = NULL;
1088 root->state = 0;
1089 root->orphan_cleanup_state = 0;
1090
1091 root->last_trans = 0;
1092 root->highest_objectid = 0;
1093 root->nr_delalloc_inodes = 0;
1094 root->nr_ordered_extents = 0;
1095 root->inode_tree = RB_ROOT;
1096 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1097 root->block_rsv = NULL;
1098
1099 INIT_LIST_HEAD(&root->dirty_list);
1100 INIT_LIST_HEAD(&root->root_list);
1101 INIT_LIST_HEAD(&root->delalloc_inodes);
1102 INIT_LIST_HEAD(&root->delalloc_root);
1103 INIT_LIST_HEAD(&root->ordered_extents);
1104 INIT_LIST_HEAD(&root->ordered_root);
1105 INIT_LIST_HEAD(&root->reloc_dirty_list);
1106 INIT_LIST_HEAD(&root->logged_list[0]);
1107 INIT_LIST_HEAD(&root->logged_list[1]);
1108 spin_lock_init(&root->inode_lock);
1109 spin_lock_init(&root->delalloc_lock);
1110 spin_lock_init(&root->ordered_extent_lock);
1111 spin_lock_init(&root->accounting_lock);
1112 spin_lock_init(&root->log_extents_lock[0]);
1113 spin_lock_init(&root->log_extents_lock[1]);
1114 spin_lock_init(&root->qgroup_meta_rsv_lock);
1115 mutex_init(&root->objectid_mutex);
1116 mutex_init(&root->log_mutex);
1117 mutex_init(&root->ordered_extent_mutex);
1118 mutex_init(&root->delalloc_mutex);
1119 init_waitqueue_head(&root->qgroup_flush_wait);
1120 init_waitqueue_head(&root->log_writer_wait);
1121 init_waitqueue_head(&root->log_commit_wait[0]);
1122 init_waitqueue_head(&root->log_commit_wait[1]);
1123 INIT_LIST_HEAD(&root->log_ctxs[0]);
1124 INIT_LIST_HEAD(&root->log_ctxs[1]);
1125 atomic_set(&root->log_commit[0], 0);
1126 atomic_set(&root->log_commit[1], 0);
1127 atomic_set(&root->log_writers, 0);
1128 atomic_set(&root->log_batch, 0);
1129 refcount_set(&root->refs, 1);
1130 atomic_set(&root->snapshot_force_cow, 0);
1131 atomic_set(&root->nr_swapfiles, 0);
1132 root->log_transid = 0;
1133 root->log_transid_committed = -1;
1134 root->last_log_commit = 0;
1135 if (!dummy) {
1136 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1137 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1138 extent_io_tree_init(fs_info, &root->log_csum_range,
1139 IO_TREE_LOG_CSUM_RANGE, NULL);
1140 }
1141
1142 memset(&root->root_key, 0, sizeof(root->root_key));
1143 memset(&root->root_item, 0, sizeof(root->root_item));
1144 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1145 root->root_key.objectid = objectid;
1146 root->anon_dev = 0;
1147
1148 spin_lock_init(&root->root_item_lock);
1149 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1150 #ifdef CONFIG_BTRFS_DEBUG
1151 INIT_LIST_HEAD(&root->leak_list);
1152 spin_lock(&fs_info->fs_roots_radix_lock);
1153 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1154 spin_unlock(&fs_info->fs_roots_radix_lock);
1155 #endif
1156 }
1157
1158 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1159 u64 objectid, gfp_t flags)
1160 {
1161 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1162 if (root)
1163 __setup_root(root, fs_info, objectid);
1164 return root;
1165 }
1166
1167 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168 /* Should only be used by the testing infrastructure */
1169 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1170 {
1171 struct btrfs_root *root;
1172
1173 if (!fs_info)
1174 return ERR_PTR(-EINVAL);
1175
1176 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1177 if (!root)
1178 return ERR_PTR(-ENOMEM);
1179
1180 /* We don't use the stripesize in selftest, set it as sectorsize */
1181 root->alloc_bytenr = 0;
1182
1183 return root;
1184 }
1185 #endif
1186
1187 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1188 u64 objectid)
1189 {
1190 struct btrfs_fs_info *fs_info = trans->fs_info;
1191 struct extent_buffer *leaf;
1192 struct btrfs_root *tree_root = fs_info->tree_root;
1193 struct btrfs_root *root;
1194 struct btrfs_key key;
1195 unsigned int nofs_flag;
1196 int ret = 0;
1197
1198 /*
1199 * We're holding a transaction handle, so use a NOFS memory allocation
1200 * context to avoid deadlock if reclaim happens.
1201 */
1202 nofs_flag = memalloc_nofs_save();
1203 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1204 memalloc_nofs_restore(nofs_flag);
1205 if (!root)
1206 return ERR_PTR(-ENOMEM);
1207
1208 root->root_key.objectid = objectid;
1209 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1210 root->root_key.offset = 0;
1211
1212 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1213 if (IS_ERR(leaf)) {
1214 ret = PTR_ERR(leaf);
1215 leaf = NULL;
1216 goto fail;
1217 }
1218
1219 root->node = leaf;
1220 btrfs_mark_buffer_dirty(leaf);
1221
1222 root->commit_root = btrfs_root_node(root);
1223 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1224
1225 root->root_item.flags = 0;
1226 root->root_item.byte_limit = 0;
1227 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1228 btrfs_set_root_generation(&root->root_item, trans->transid);
1229 btrfs_set_root_level(&root->root_item, 0);
1230 btrfs_set_root_refs(&root->root_item, 1);
1231 btrfs_set_root_used(&root->root_item, leaf->len);
1232 btrfs_set_root_last_snapshot(&root->root_item, 0);
1233 btrfs_set_root_dirid(&root->root_item, 0);
1234 if (is_fstree(objectid))
1235 generate_random_guid(root->root_item.uuid);
1236 else
1237 export_guid(root->root_item.uuid, &guid_null);
1238 root->root_item.drop_level = 0;
1239
1240 key.objectid = objectid;
1241 key.type = BTRFS_ROOT_ITEM_KEY;
1242 key.offset = 0;
1243 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1244 if (ret)
1245 goto fail;
1246
1247 btrfs_tree_unlock(leaf);
1248
1249 return root;
1250
1251 fail:
1252 if (leaf)
1253 btrfs_tree_unlock(leaf);
1254 btrfs_put_root(root);
1255
1256 return ERR_PTR(ret);
1257 }
1258
1259 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1260 struct btrfs_fs_info *fs_info)
1261 {
1262 struct btrfs_root *root;
1263 struct extent_buffer *leaf;
1264
1265 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1266 if (!root)
1267 return ERR_PTR(-ENOMEM);
1268
1269 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1272
1273 /*
1274 * DON'T set SHAREABLE bit for log trees.
1275 *
1276 * Log trees are not exposed to user space thus can't be snapshotted,
1277 * and they go away before a real commit is actually done.
1278 *
1279 * They do store pointers to file data extents, and those reference
1280 * counts still get updated (along with back refs to the log tree).
1281 */
1282
1283 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1284 NULL, 0, 0, 0);
1285 if (IS_ERR(leaf)) {
1286 btrfs_put_root(root);
1287 return ERR_CAST(leaf);
1288 }
1289
1290 root->node = leaf;
1291
1292 btrfs_mark_buffer_dirty(root->node);
1293 btrfs_tree_unlock(root->node);
1294 return root;
1295 }
1296
1297 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1298 struct btrfs_fs_info *fs_info)
1299 {
1300 struct btrfs_root *log_root;
1301
1302 log_root = alloc_log_tree(trans, fs_info);
1303 if (IS_ERR(log_root))
1304 return PTR_ERR(log_root);
1305 WARN_ON(fs_info->log_root_tree);
1306 fs_info->log_root_tree = log_root;
1307 return 0;
1308 }
1309
1310 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1311 struct btrfs_root *root)
1312 {
1313 struct btrfs_fs_info *fs_info = root->fs_info;
1314 struct btrfs_root *log_root;
1315 struct btrfs_inode_item *inode_item;
1316
1317 log_root = alloc_log_tree(trans, fs_info);
1318 if (IS_ERR(log_root))
1319 return PTR_ERR(log_root);
1320
1321 log_root->last_trans = trans->transid;
1322 log_root->root_key.offset = root->root_key.objectid;
1323
1324 inode_item = &log_root->root_item.inode;
1325 btrfs_set_stack_inode_generation(inode_item, 1);
1326 btrfs_set_stack_inode_size(inode_item, 3);
1327 btrfs_set_stack_inode_nlink(inode_item, 1);
1328 btrfs_set_stack_inode_nbytes(inode_item,
1329 fs_info->nodesize);
1330 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1331
1332 btrfs_set_root_node(&log_root->root_item, log_root->node);
1333
1334 WARN_ON(root->log_root);
1335 root->log_root = log_root;
1336 root->log_transid = 0;
1337 root->log_transid_committed = -1;
1338 root->last_log_commit = 0;
1339 return 0;
1340 }
1341
1342 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1343 struct btrfs_key *key)
1344 {
1345 struct btrfs_root *root;
1346 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1347 struct btrfs_path *path;
1348 u64 generation;
1349 int ret;
1350 int level;
1351
1352 path = btrfs_alloc_path();
1353 if (!path)
1354 return ERR_PTR(-ENOMEM);
1355
1356 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1357 if (!root) {
1358 ret = -ENOMEM;
1359 goto alloc_fail;
1360 }
1361
1362 ret = btrfs_find_root(tree_root, key, path,
1363 &root->root_item, &root->root_key);
1364 if (ret) {
1365 if (ret > 0)
1366 ret = -ENOENT;
1367 goto find_fail;
1368 }
1369
1370 generation = btrfs_root_generation(&root->root_item);
1371 level = btrfs_root_level(&root->root_item);
1372 root->node = read_tree_block(fs_info,
1373 btrfs_root_bytenr(&root->root_item),
1374 generation, level, NULL);
1375 if (IS_ERR(root->node)) {
1376 ret = PTR_ERR(root->node);
1377 root->node = NULL;
1378 goto find_fail;
1379 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1380 ret = -EIO;
1381 goto find_fail;
1382 }
1383 root->commit_root = btrfs_root_node(root);
1384 out:
1385 btrfs_free_path(path);
1386 return root;
1387
1388 find_fail:
1389 btrfs_put_root(root);
1390 alloc_fail:
1391 root = ERR_PTR(ret);
1392 goto out;
1393 }
1394
1395 /*
1396 * Initialize subvolume root in-memory structure
1397 *
1398 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1399 */
1400 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1401 {
1402 int ret;
1403 unsigned int nofs_flag;
1404
1405 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407 GFP_NOFS);
1408 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409 ret = -ENOMEM;
1410 goto fail;
1411 }
1412
1413 /*
1414 * We might be called under a transaction (e.g. indirect backref
1415 * resolution) which could deadlock if it triggers memory reclaim
1416 */
1417 nofs_flag = memalloc_nofs_save();
1418 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1419 memalloc_nofs_restore(nofs_flag);
1420 if (ret)
1421 goto fail;
1422
1423 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1424 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1425 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1426 btrfs_check_and_init_root_item(&root->root_item);
1427 }
1428
1429 btrfs_init_free_ino_ctl(root);
1430 spin_lock_init(&root->ino_cache_lock);
1431 init_waitqueue_head(&root->ino_cache_wait);
1432
1433 /*
1434 * Don't assign anonymous block device to roots that are not exposed to
1435 * userspace, the id pool is limited to 1M
1436 */
1437 if (is_fstree(root->root_key.objectid) &&
1438 btrfs_root_refs(&root->root_item) > 0) {
1439 if (!anon_dev) {
1440 ret = get_anon_bdev(&root->anon_dev);
1441 if (ret)
1442 goto fail;
1443 } else {
1444 root->anon_dev = anon_dev;
1445 }
1446 }
1447
1448 mutex_lock(&root->objectid_mutex);
1449 ret = btrfs_find_highest_objectid(root,
1450 &root->highest_objectid);
1451 if (ret) {
1452 mutex_unlock(&root->objectid_mutex);
1453 goto fail;
1454 }
1455
1456 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1457
1458 mutex_unlock(&root->objectid_mutex);
1459
1460 return 0;
1461 fail:
1462 /* The caller is responsible to call btrfs_free_fs_root */
1463 return ret;
1464 }
1465
1466 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1467 u64 root_id)
1468 {
1469 struct btrfs_root *root;
1470
1471 spin_lock(&fs_info->fs_roots_radix_lock);
1472 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1473 (unsigned long)root_id);
1474 if (root)
1475 root = btrfs_grab_root(root);
1476 spin_unlock(&fs_info->fs_roots_radix_lock);
1477 return root;
1478 }
1479
1480 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1481 struct btrfs_root *root)
1482 {
1483 int ret;
1484
1485 ret = radix_tree_preload(GFP_NOFS);
1486 if (ret)
1487 return ret;
1488
1489 spin_lock(&fs_info->fs_roots_radix_lock);
1490 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1491 (unsigned long)root->root_key.objectid,
1492 root);
1493 if (ret == 0) {
1494 btrfs_grab_root(root);
1495 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1496 }
1497 spin_unlock(&fs_info->fs_roots_radix_lock);
1498 radix_tree_preload_end();
1499
1500 return ret;
1501 }
1502
1503 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1504 {
1505 #ifdef CONFIG_BTRFS_DEBUG
1506 struct btrfs_root *root;
1507
1508 while (!list_empty(&fs_info->allocated_roots)) {
1509 root = list_first_entry(&fs_info->allocated_roots,
1510 struct btrfs_root, leak_list);
1511 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1512 root->root_key.objectid, root->root_key.offset,
1513 refcount_read(&root->refs));
1514 while (refcount_read(&root->refs) > 1)
1515 btrfs_put_root(root);
1516 btrfs_put_root(root);
1517 }
1518 #endif
1519 }
1520
1521 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1522 {
1523 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1524 percpu_counter_destroy(&fs_info->delalloc_bytes);
1525 percpu_counter_destroy(&fs_info->dio_bytes);
1526 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1527 btrfs_free_csum_hash(fs_info);
1528 btrfs_free_stripe_hash_table(fs_info);
1529 btrfs_free_ref_cache(fs_info);
1530 kfree(fs_info->balance_ctl);
1531 kfree(fs_info->delayed_root);
1532 btrfs_put_root(fs_info->extent_root);
1533 btrfs_put_root(fs_info->tree_root);
1534 btrfs_put_root(fs_info->chunk_root);
1535 btrfs_put_root(fs_info->dev_root);
1536 btrfs_put_root(fs_info->csum_root);
1537 btrfs_put_root(fs_info->quota_root);
1538 btrfs_put_root(fs_info->uuid_root);
1539 btrfs_put_root(fs_info->free_space_root);
1540 btrfs_put_root(fs_info->fs_root);
1541 btrfs_put_root(fs_info->data_reloc_root);
1542 btrfs_check_leaked_roots(fs_info);
1543 btrfs_extent_buffer_leak_debug_check(fs_info);
1544 kfree(fs_info->super_copy);
1545 kfree(fs_info->super_for_commit);
1546 kvfree(fs_info);
1547 }
1548
1549
1550 /*
1551 * Get an in-memory reference of a root structure.
1552 *
1553 * For essential trees like root/extent tree, we grab it from fs_info directly.
1554 * For subvolume trees, we check the cached filesystem roots first. If not
1555 * found, then read it from disk and add it to cached fs roots.
1556 *
1557 * Caller should release the root by calling btrfs_put_root() after the usage.
1558 *
1559 * NOTE: Reloc and log trees can't be read by this function as they share the
1560 * same root objectid.
1561 *
1562 * @objectid: root id
1563 * @anon_dev: preallocated anonymous block device number for new roots,
1564 * pass 0 for new allocation.
1565 * @check_ref: whether to check root item references, If true, return -ENOENT
1566 * for orphan roots
1567 */
1568 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1569 u64 objectid, dev_t anon_dev,
1570 bool check_ref)
1571 {
1572 struct btrfs_root *root;
1573 struct btrfs_path *path;
1574 struct btrfs_key key;
1575 int ret;
1576
1577 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1578 return btrfs_grab_root(fs_info->tree_root);
1579 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1580 return btrfs_grab_root(fs_info->extent_root);
1581 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1582 return btrfs_grab_root(fs_info->chunk_root);
1583 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1584 return btrfs_grab_root(fs_info->dev_root);
1585 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1586 return btrfs_grab_root(fs_info->csum_root);
1587 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1588 return btrfs_grab_root(fs_info->quota_root) ?
1589 fs_info->quota_root : ERR_PTR(-ENOENT);
1590 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1591 return btrfs_grab_root(fs_info->uuid_root) ?
1592 fs_info->uuid_root : ERR_PTR(-ENOENT);
1593 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1594 return btrfs_grab_root(fs_info->free_space_root) ?
1595 fs_info->free_space_root : ERR_PTR(-ENOENT);
1596 again:
1597 root = btrfs_lookup_fs_root(fs_info, objectid);
1598 if (root) {
1599 /* Shouldn't get preallocated anon_dev for cached roots */
1600 ASSERT(!anon_dev);
1601 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1602 btrfs_put_root(root);
1603 return ERR_PTR(-ENOENT);
1604 }
1605 return root;
1606 }
1607
1608 key.objectid = objectid;
1609 key.type = BTRFS_ROOT_ITEM_KEY;
1610 key.offset = (u64)-1;
1611 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1612 if (IS_ERR(root))
1613 return root;
1614
1615 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1616 ret = -ENOENT;
1617 goto fail;
1618 }
1619
1620 ret = btrfs_init_fs_root(root, anon_dev);
1621 if (ret)
1622 goto fail;
1623
1624 path = btrfs_alloc_path();
1625 if (!path) {
1626 ret = -ENOMEM;
1627 goto fail;
1628 }
1629 key.objectid = BTRFS_ORPHAN_OBJECTID;
1630 key.type = BTRFS_ORPHAN_ITEM_KEY;
1631 key.offset = objectid;
1632
1633 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1634 btrfs_free_path(path);
1635 if (ret < 0)
1636 goto fail;
1637 if (ret == 0)
1638 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1639
1640 ret = btrfs_insert_fs_root(fs_info, root);
1641 if (ret) {
1642 btrfs_put_root(root);
1643 if (ret == -EEXIST)
1644 goto again;
1645 goto fail;
1646 }
1647 return root;
1648 fail:
1649 btrfs_put_root(root);
1650 return ERR_PTR(ret);
1651 }
1652
1653 /*
1654 * Get in-memory reference of a root structure
1655 *
1656 * @objectid: tree objectid
1657 * @check_ref: if set, verify that the tree exists and the item has at least
1658 * one reference
1659 */
1660 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1661 u64 objectid, bool check_ref)
1662 {
1663 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1664 }
1665
1666 /*
1667 * Get in-memory reference of a root structure, created as new, optionally pass
1668 * the anonymous block device id
1669 *
1670 * @objectid: tree objectid
1671 * @anon_dev: if zero, allocate a new anonymous block device or use the
1672 * parameter value
1673 */
1674 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1675 u64 objectid, dev_t anon_dev)
1676 {
1677 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1678 }
1679
1680 /*
1681 * called by the kthread helper functions to finally call the bio end_io
1682 * functions. This is where read checksum verification actually happens
1683 */
1684 static void end_workqueue_fn(struct btrfs_work *work)
1685 {
1686 struct bio *bio;
1687 struct btrfs_end_io_wq *end_io_wq;
1688
1689 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1690 bio = end_io_wq->bio;
1691
1692 bio->bi_status = end_io_wq->status;
1693 bio->bi_private = end_io_wq->private;
1694 bio->bi_end_io = end_io_wq->end_io;
1695 bio_endio(bio);
1696 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1697 }
1698
1699 static int cleaner_kthread(void *arg)
1700 {
1701 struct btrfs_root *root = arg;
1702 struct btrfs_fs_info *fs_info = root->fs_info;
1703 int again;
1704
1705 while (1) {
1706 again = 0;
1707
1708 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1709
1710 /* Make the cleaner go to sleep early. */
1711 if (btrfs_need_cleaner_sleep(fs_info))
1712 goto sleep;
1713
1714 /*
1715 * Do not do anything if we might cause open_ctree() to block
1716 * before we have finished mounting the filesystem.
1717 */
1718 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1719 goto sleep;
1720
1721 if (!mutex_trylock(&fs_info->cleaner_mutex))
1722 goto sleep;
1723
1724 /*
1725 * Avoid the problem that we change the status of the fs
1726 * during the above check and trylock.
1727 */
1728 if (btrfs_need_cleaner_sleep(fs_info)) {
1729 mutex_unlock(&fs_info->cleaner_mutex);
1730 goto sleep;
1731 }
1732
1733 btrfs_run_delayed_iputs(fs_info);
1734
1735 again = btrfs_clean_one_deleted_snapshot(root);
1736 mutex_unlock(&fs_info->cleaner_mutex);
1737
1738 /*
1739 * The defragger has dealt with the R/O remount and umount,
1740 * needn't do anything special here.
1741 */
1742 btrfs_run_defrag_inodes(fs_info);
1743
1744 /*
1745 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1746 * with relocation (btrfs_relocate_chunk) and relocation
1747 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1748 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1749 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1750 * unused block groups.
1751 */
1752 btrfs_delete_unused_bgs(fs_info);
1753 sleep:
1754 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1755 if (kthread_should_park())
1756 kthread_parkme();
1757 if (kthread_should_stop())
1758 return 0;
1759 if (!again) {
1760 set_current_state(TASK_INTERRUPTIBLE);
1761 schedule();
1762 __set_current_state(TASK_RUNNING);
1763 }
1764 }
1765 }
1766
1767 static int transaction_kthread(void *arg)
1768 {
1769 struct btrfs_root *root = arg;
1770 struct btrfs_fs_info *fs_info = root->fs_info;
1771 struct btrfs_trans_handle *trans;
1772 struct btrfs_transaction *cur;
1773 u64 transid;
1774 time64_t now;
1775 unsigned long delay;
1776 bool cannot_commit;
1777
1778 do {
1779 cannot_commit = false;
1780 delay = HZ * fs_info->commit_interval;
1781 mutex_lock(&fs_info->transaction_kthread_mutex);
1782
1783 spin_lock(&fs_info->trans_lock);
1784 cur = fs_info->running_transaction;
1785 if (!cur) {
1786 spin_unlock(&fs_info->trans_lock);
1787 goto sleep;
1788 }
1789
1790 now = ktime_get_seconds();
1791 if (cur->state < TRANS_STATE_COMMIT_START &&
1792 (now < cur->start_time ||
1793 now - cur->start_time < fs_info->commit_interval)) {
1794 spin_unlock(&fs_info->trans_lock);
1795 delay = HZ * 5;
1796 goto sleep;
1797 }
1798 transid = cur->transid;
1799 spin_unlock(&fs_info->trans_lock);
1800
1801 /* If the file system is aborted, this will always fail. */
1802 trans = btrfs_attach_transaction(root);
1803 if (IS_ERR(trans)) {
1804 if (PTR_ERR(trans) != -ENOENT)
1805 cannot_commit = true;
1806 goto sleep;
1807 }
1808 if (transid == trans->transid) {
1809 btrfs_commit_transaction(trans);
1810 } else {
1811 btrfs_end_transaction(trans);
1812 }
1813 sleep:
1814 wake_up_process(fs_info->cleaner_kthread);
1815 mutex_unlock(&fs_info->transaction_kthread_mutex);
1816
1817 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1818 &fs_info->fs_state)))
1819 btrfs_cleanup_transaction(fs_info);
1820 if (!kthread_should_stop() &&
1821 (!btrfs_transaction_blocked(fs_info) ||
1822 cannot_commit))
1823 schedule_timeout_interruptible(delay);
1824 } while (!kthread_should_stop());
1825 return 0;
1826 }
1827
1828 /*
1829 * This will find the highest generation in the array of root backups. The
1830 * index of the highest array is returned, or -EINVAL if we can't find
1831 * anything.
1832 *
1833 * We check to make sure the array is valid by comparing the
1834 * generation of the latest root in the array with the generation
1835 * in the super block. If they don't match we pitch it.
1836 */
1837 static int find_newest_super_backup(struct btrfs_fs_info *info)
1838 {
1839 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1840 u64 cur;
1841 struct btrfs_root_backup *root_backup;
1842 int i;
1843
1844 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1845 root_backup = info->super_copy->super_roots + i;
1846 cur = btrfs_backup_tree_root_gen(root_backup);
1847 if (cur == newest_gen)
1848 return i;
1849 }
1850
1851 return -EINVAL;
1852 }
1853
1854 /*
1855 * copy all the root pointers into the super backup array.
1856 * this will bump the backup pointer by one when it is
1857 * done
1858 */
1859 static void backup_super_roots(struct btrfs_fs_info *info)
1860 {
1861 const int next_backup = info->backup_root_index;
1862 struct btrfs_root_backup *root_backup;
1863
1864 root_backup = info->super_for_commit->super_roots + next_backup;
1865
1866 /*
1867 * make sure all of our padding and empty slots get zero filled
1868 * regardless of which ones we use today
1869 */
1870 memset(root_backup, 0, sizeof(*root_backup));
1871
1872 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1873
1874 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1875 btrfs_set_backup_tree_root_gen(root_backup,
1876 btrfs_header_generation(info->tree_root->node));
1877
1878 btrfs_set_backup_tree_root_level(root_backup,
1879 btrfs_header_level(info->tree_root->node));
1880
1881 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1882 btrfs_set_backup_chunk_root_gen(root_backup,
1883 btrfs_header_generation(info->chunk_root->node));
1884 btrfs_set_backup_chunk_root_level(root_backup,
1885 btrfs_header_level(info->chunk_root->node));
1886
1887 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1888 btrfs_set_backup_extent_root_gen(root_backup,
1889 btrfs_header_generation(info->extent_root->node));
1890 btrfs_set_backup_extent_root_level(root_backup,
1891 btrfs_header_level(info->extent_root->node));
1892
1893 /*
1894 * we might commit during log recovery, which happens before we set
1895 * the fs_root. Make sure it is valid before we fill it in.
1896 */
1897 if (info->fs_root && info->fs_root->node) {
1898 btrfs_set_backup_fs_root(root_backup,
1899 info->fs_root->node->start);
1900 btrfs_set_backup_fs_root_gen(root_backup,
1901 btrfs_header_generation(info->fs_root->node));
1902 btrfs_set_backup_fs_root_level(root_backup,
1903 btrfs_header_level(info->fs_root->node));
1904 }
1905
1906 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1907 btrfs_set_backup_dev_root_gen(root_backup,
1908 btrfs_header_generation(info->dev_root->node));
1909 btrfs_set_backup_dev_root_level(root_backup,
1910 btrfs_header_level(info->dev_root->node));
1911
1912 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1913 btrfs_set_backup_csum_root_gen(root_backup,
1914 btrfs_header_generation(info->csum_root->node));
1915 btrfs_set_backup_csum_root_level(root_backup,
1916 btrfs_header_level(info->csum_root->node));
1917
1918 btrfs_set_backup_total_bytes(root_backup,
1919 btrfs_super_total_bytes(info->super_copy));
1920 btrfs_set_backup_bytes_used(root_backup,
1921 btrfs_super_bytes_used(info->super_copy));
1922 btrfs_set_backup_num_devices(root_backup,
1923 btrfs_super_num_devices(info->super_copy));
1924
1925 /*
1926 * if we don't copy this out to the super_copy, it won't get remembered
1927 * for the next commit
1928 */
1929 memcpy(&info->super_copy->super_roots,
1930 &info->super_for_commit->super_roots,
1931 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1932 }
1933
1934 /*
1935 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1936 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1937 *
1938 * fs_info - filesystem whose backup roots need to be read
1939 * priority - priority of backup root required
1940 *
1941 * Returns backup root index on success and -EINVAL otherwise.
1942 */
1943 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1944 {
1945 int backup_index = find_newest_super_backup(fs_info);
1946 struct btrfs_super_block *super = fs_info->super_copy;
1947 struct btrfs_root_backup *root_backup;
1948
1949 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1950 if (priority == 0)
1951 return backup_index;
1952
1953 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1954 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1955 } else {
1956 return -EINVAL;
1957 }
1958
1959 root_backup = super->super_roots + backup_index;
1960
1961 btrfs_set_super_generation(super,
1962 btrfs_backup_tree_root_gen(root_backup));
1963 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1964 btrfs_set_super_root_level(super,
1965 btrfs_backup_tree_root_level(root_backup));
1966 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1967
1968 /*
1969 * Fixme: the total bytes and num_devices need to match or we should
1970 * need a fsck
1971 */
1972 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1973 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1974
1975 return backup_index;
1976 }
1977
1978 /* helper to cleanup workers */
1979 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1980 {
1981 btrfs_destroy_workqueue(fs_info->fixup_workers);
1982 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1983 btrfs_destroy_workqueue(fs_info->workers);
1984 btrfs_destroy_workqueue(fs_info->endio_workers);
1985 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1986 btrfs_destroy_workqueue(fs_info->rmw_workers);
1987 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1988 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1989 btrfs_destroy_workqueue(fs_info->delayed_workers);
1990 btrfs_destroy_workqueue(fs_info->caching_workers);
1991 btrfs_destroy_workqueue(fs_info->readahead_workers);
1992 btrfs_destroy_workqueue(fs_info->flush_workers);
1993 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1994 if (fs_info->discard_ctl.discard_workers)
1995 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1996 /*
1997 * Now that all other work queues are destroyed, we can safely destroy
1998 * the queues used for metadata I/O, since tasks from those other work
1999 * queues can do metadata I/O operations.
2000 */
2001 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2002 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2003 }
2004
2005 static void free_root_extent_buffers(struct btrfs_root *root)
2006 {
2007 if (root) {
2008 free_extent_buffer(root->node);
2009 free_extent_buffer(root->commit_root);
2010 root->node = NULL;
2011 root->commit_root = NULL;
2012 }
2013 }
2014
2015 /* helper to cleanup tree roots */
2016 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2017 {
2018 free_root_extent_buffers(info->tree_root);
2019
2020 free_root_extent_buffers(info->dev_root);
2021 free_root_extent_buffers(info->extent_root);
2022 free_root_extent_buffers(info->csum_root);
2023 free_root_extent_buffers(info->quota_root);
2024 free_root_extent_buffers(info->uuid_root);
2025 free_root_extent_buffers(info->fs_root);
2026 free_root_extent_buffers(info->data_reloc_root);
2027 if (free_chunk_root)
2028 free_root_extent_buffers(info->chunk_root);
2029 free_root_extent_buffers(info->free_space_root);
2030 }
2031
2032 void btrfs_put_root(struct btrfs_root *root)
2033 {
2034 if (!root)
2035 return;
2036
2037 if (refcount_dec_and_test(&root->refs)) {
2038 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2039 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2040 if (root->anon_dev)
2041 free_anon_bdev(root->anon_dev);
2042 btrfs_drew_lock_destroy(&root->snapshot_lock);
2043 free_root_extent_buffers(root);
2044 kfree(root->free_ino_ctl);
2045 kfree(root->free_ino_pinned);
2046 #ifdef CONFIG_BTRFS_DEBUG
2047 spin_lock(&root->fs_info->fs_roots_radix_lock);
2048 list_del_init(&root->leak_list);
2049 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2050 #endif
2051 kfree(root);
2052 }
2053 }
2054
2055 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2056 {
2057 int ret;
2058 struct btrfs_root *gang[8];
2059 int i;
2060
2061 while (!list_empty(&fs_info->dead_roots)) {
2062 gang[0] = list_entry(fs_info->dead_roots.next,
2063 struct btrfs_root, root_list);
2064 list_del(&gang[0]->root_list);
2065
2066 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2067 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2068 btrfs_put_root(gang[0]);
2069 }
2070
2071 while (1) {
2072 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2073 (void **)gang, 0,
2074 ARRAY_SIZE(gang));
2075 if (!ret)
2076 break;
2077 for (i = 0; i < ret; i++)
2078 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2079 }
2080 }
2081
2082 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2083 {
2084 mutex_init(&fs_info->scrub_lock);
2085 atomic_set(&fs_info->scrubs_running, 0);
2086 atomic_set(&fs_info->scrub_pause_req, 0);
2087 atomic_set(&fs_info->scrubs_paused, 0);
2088 atomic_set(&fs_info->scrub_cancel_req, 0);
2089 init_waitqueue_head(&fs_info->scrub_pause_wait);
2090 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2091 }
2092
2093 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2094 {
2095 spin_lock_init(&fs_info->balance_lock);
2096 mutex_init(&fs_info->balance_mutex);
2097 atomic_set(&fs_info->balance_pause_req, 0);
2098 atomic_set(&fs_info->balance_cancel_req, 0);
2099 fs_info->balance_ctl = NULL;
2100 init_waitqueue_head(&fs_info->balance_wait_q);
2101 }
2102
2103 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2104 {
2105 struct inode *inode = fs_info->btree_inode;
2106
2107 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2108 set_nlink(inode, 1);
2109 /*
2110 * we set the i_size on the btree inode to the max possible int.
2111 * the real end of the address space is determined by all of
2112 * the devices in the system
2113 */
2114 inode->i_size = OFFSET_MAX;
2115 inode->i_mapping->a_ops = &btree_aops;
2116
2117 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2118 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2119 IO_TREE_INODE_IO, inode);
2120 BTRFS_I(inode)->io_tree.track_uptodate = false;
2121 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2122
2123 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2124
2125 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2126 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2127 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2128 btrfs_insert_inode_hash(inode);
2129 }
2130
2131 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2132 {
2133 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2134 init_rwsem(&fs_info->dev_replace.rwsem);
2135 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2136 }
2137
2138 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2139 {
2140 spin_lock_init(&fs_info->qgroup_lock);
2141 mutex_init(&fs_info->qgroup_ioctl_lock);
2142 fs_info->qgroup_tree = RB_ROOT;
2143 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2144 fs_info->qgroup_seq = 1;
2145 fs_info->qgroup_ulist = NULL;
2146 fs_info->qgroup_rescan_running = false;
2147 mutex_init(&fs_info->qgroup_rescan_lock);
2148 }
2149
2150 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2151 struct btrfs_fs_devices *fs_devices)
2152 {
2153 u32 max_active = fs_info->thread_pool_size;
2154 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2155
2156 fs_info->workers =
2157 btrfs_alloc_workqueue(fs_info, "worker",
2158 flags | WQ_HIGHPRI, max_active, 16);
2159
2160 fs_info->delalloc_workers =
2161 btrfs_alloc_workqueue(fs_info, "delalloc",
2162 flags, max_active, 2);
2163
2164 fs_info->flush_workers =
2165 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2166 flags, max_active, 0);
2167
2168 fs_info->caching_workers =
2169 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2170
2171 fs_info->fixup_workers =
2172 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2173
2174 /*
2175 * endios are largely parallel and should have a very
2176 * low idle thresh
2177 */
2178 fs_info->endio_workers =
2179 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2180 fs_info->endio_meta_workers =
2181 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2182 max_active, 4);
2183 fs_info->endio_meta_write_workers =
2184 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2185 max_active, 2);
2186 fs_info->endio_raid56_workers =
2187 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2188 max_active, 4);
2189 fs_info->rmw_workers =
2190 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2191 fs_info->endio_write_workers =
2192 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2193 max_active, 2);
2194 fs_info->endio_freespace_worker =
2195 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2196 max_active, 0);
2197 fs_info->delayed_workers =
2198 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2199 max_active, 0);
2200 fs_info->readahead_workers =
2201 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2202 max_active, 2);
2203 fs_info->qgroup_rescan_workers =
2204 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2205 fs_info->discard_ctl.discard_workers =
2206 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2207
2208 if (!(fs_info->workers && fs_info->delalloc_workers &&
2209 fs_info->flush_workers &&
2210 fs_info->endio_workers && fs_info->endio_meta_workers &&
2211 fs_info->endio_meta_write_workers &&
2212 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2213 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2214 fs_info->caching_workers && fs_info->readahead_workers &&
2215 fs_info->fixup_workers && fs_info->delayed_workers &&
2216 fs_info->qgroup_rescan_workers &&
2217 fs_info->discard_ctl.discard_workers)) {
2218 return -ENOMEM;
2219 }
2220
2221 return 0;
2222 }
2223
2224 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2225 {
2226 struct crypto_shash *csum_shash;
2227 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2228
2229 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2230
2231 if (IS_ERR(csum_shash)) {
2232 btrfs_err(fs_info, "error allocating %s hash for checksum",
2233 csum_driver);
2234 return PTR_ERR(csum_shash);
2235 }
2236
2237 fs_info->csum_shash = csum_shash;
2238
2239 return 0;
2240 }
2241
2242 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2243 struct btrfs_fs_devices *fs_devices)
2244 {
2245 int ret;
2246 struct btrfs_root *log_tree_root;
2247 struct btrfs_super_block *disk_super = fs_info->super_copy;
2248 u64 bytenr = btrfs_super_log_root(disk_super);
2249 int level = btrfs_super_log_root_level(disk_super);
2250
2251 if (fs_devices->rw_devices == 0) {
2252 btrfs_warn(fs_info, "log replay required on RO media");
2253 return -EIO;
2254 }
2255
2256 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2257 GFP_KERNEL);
2258 if (!log_tree_root)
2259 return -ENOMEM;
2260
2261 log_tree_root->node = read_tree_block(fs_info, bytenr,
2262 fs_info->generation + 1,
2263 level, NULL);
2264 if (IS_ERR(log_tree_root->node)) {
2265 btrfs_warn(fs_info, "failed to read log tree");
2266 ret = PTR_ERR(log_tree_root->node);
2267 log_tree_root->node = NULL;
2268 btrfs_put_root(log_tree_root);
2269 return ret;
2270 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2271 btrfs_err(fs_info, "failed to read log tree");
2272 btrfs_put_root(log_tree_root);
2273 return -EIO;
2274 }
2275 /* returns with log_tree_root freed on success */
2276 ret = btrfs_recover_log_trees(log_tree_root);
2277 if (ret) {
2278 btrfs_handle_fs_error(fs_info, ret,
2279 "Failed to recover log tree");
2280 btrfs_put_root(log_tree_root);
2281 return ret;
2282 }
2283
2284 if (sb_rdonly(fs_info->sb)) {
2285 ret = btrfs_commit_super(fs_info);
2286 if (ret)
2287 return ret;
2288 }
2289
2290 return 0;
2291 }
2292
2293 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2294 {
2295 struct btrfs_root *tree_root = fs_info->tree_root;
2296 struct btrfs_root *root;
2297 struct btrfs_key location;
2298 int ret;
2299
2300 BUG_ON(!fs_info->tree_root);
2301
2302 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2303 location.type = BTRFS_ROOT_ITEM_KEY;
2304 location.offset = 0;
2305
2306 root = btrfs_read_tree_root(tree_root, &location);
2307 if (IS_ERR(root)) {
2308 ret = PTR_ERR(root);
2309 goto out;
2310 }
2311 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312 fs_info->extent_root = root;
2313
2314 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2315 root = btrfs_read_tree_root(tree_root, &location);
2316 if (IS_ERR(root)) {
2317 ret = PTR_ERR(root);
2318 goto out;
2319 }
2320 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2321 fs_info->dev_root = root;
2322 btrfs_init_devices_late(fs_info);
2323
2324 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2325 root = btrfs_read_tree_root(tree_root, &location);
2326 if (IS_ERR(root)) {
2327 ret = PTR_ERR(root);
2328 goto out;
2329 }
2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331 fs_info->csum_root = root;
2332
2333 /*
2334 * This tree can share blocks with some other fs tree during relocation
2335 * and we need a proper setup by btrfs_get_fs_root
2336 */
2337 root = btrfs_get_fs_root(tree_root->fs_info,
2338 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2339 if (IS_ERR(root)) {
2340 ret = PTR_ERR(root);
2341 goto out;
2342 }
2343 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2344 fs_info->data_reloc_root = root;
2345
2346 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2347 root = btrfs_read_tree_root(tree_root, &location);
2348 if (!IS_ERR(root)) {
2349 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2351 fs_info->quota_root = root;
2352 }
2353
2354 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2355 root = btrfs_read_tree_root(tree_root, &location);
2356 if (IS_ERR(root)) {
2357 ret = PTR_ERR(root);
2358 if (ret != -ENOENT)
2359 goto out;
2360 } else {
2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 fs_info->uuid_root = root;
2363 }
2364
2365 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2366 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2367 root = btrfs_read_tree_root(tree_root, &location);
2368 if (IS_ERR(root)) {
2369 ret = PTR_ERR(root);
2370 goto out;
2371 }
2372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2373 fs_info->free_space_root = root;
2374 }
2375
2376 return 0;
2377 out:
2378 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2379 location.objectid, ret);
2380 return ret;
2381 }
2382
2383 /*
2384 * Real super block validation
2385 * NOTE: super csum type and incompat features will not be checked here.
2386 *
2387 * @sb: super block to check
2388 * @mirror_num: the super block number to check its bytenr:
2389 * 0 the primary (1st) sb
2390 * 1, 2 2nd and 3rd backup copy
2391 * -1 skip bytenr check
2392 */
2393 static int validate_super(struct btrfs_fs_info *fs_info,
2394 struct btrfs_super_block *sb, int mirror_num)
2395 {
2396 u64 nodesize = btrfs_super_nodesize(sb);
2397 u64 sectorsize = btrfs_super_sectorsize(sb);
2398 int ret = 0;
2399
2400 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2401 btrfs_err(fs_info, "no valid FS found");
2402 ret = -EINVAL;
2403 }
2404 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2405 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2406 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2407 ret = -EINVAL;
2408 }
2409 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2410 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2411 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2412 ret = -EINVAL;
2413 }
2414 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2415 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2416 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2417 ret = -EINVAL;
2418 }
2419 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2420 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2421 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2422 ret = -EINVAL;
2423 }
2424
2425 /*
2426 * Check sectorsize and nodesize first, other check will need it.
2427 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2428 */
2429 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2430 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2431 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2432 ret = -EINVAL;
2433 }
2434 /* Only PAGE SIZE is supported yet */
2435 if (sectorsize != PAGE_SIZE) {
2436 btrfs_err(fs_info,
2437 "sectorsize %llu not supported yet, only support %lu",
2438 sectorsize, PAGE_SIZE);
2439 ret = -EINVAL;
2440 }
2441 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2442 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2443 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2444 ret = -EINVAL;
2445 }
2446 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2447 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2448 le32_to_cpu(sb->__unused_leafsize), nodesize);
2449 ret = -EINVAL;
2450 }
2451
2452 /* Root alignment check */
2453 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2454 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2455 btrfs_super_root(sb));
2456 ret = -EINVAL;
2457 }
2458 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2459 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2460 btrfs_super_chunk_root(sb));
2461 ret = -EINVAL;
2462 }
2463 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2464 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2465 btrfs_super_log_root(sb));
2466 ret = -EINVAL;
2467 }
2468
2469 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2470 BTRFS_FSID_SIZE) != 0) {
2471 btrfs_err(fs_info,
2472 "dev_item UUID does not match metadata fsid: %pU != %pU",
2473 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2474 ret = -EINVAL;
2475 }
2476
2477 /*
2478 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2479 * done later
2480 */
2481 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2482 btrfs_err(fs_info, "bytes_used is too small %llu",
2483 btrfs_super_bytes_used(sb));
2484 ret = -EINVAL;
2485 }
2486 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2487 btrfs_err(fs_info, "invalid stripesize %u",
2488 btrfs_super_stripesize(sb));
2489 ret = -EINVAL;
2490 }
2491 if (btrfs_super_num_devices(sb) > (1UL << 31))
2492 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2493 btrfs_super_num_devices(sb));
2494 if (btrfs_super_num_devices(sb) == 0) {
2495 btrfs_err(fs_info, "number of devices is 0");
2496 ret = -EINVAL;
2497 }
2498
2499 if (mirror_num >= 0 &&
2500 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2501 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2502 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2503 ret = -EINVAL;
2504 }
2505
2506 /*
2507 * Obvious sys_chunk_array corruptions, it must hold at least one key
2508 * and one chunk
2509 */
2510 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2511 btrfs_err(fs_info, "system chunk array too big %u > %u",
2512 btrfs_super_sys_array_size(sb),
2513 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2514 ret = -EINVAL;
2515 }
2516 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2517 + sizeof(struct btrfs_chunk)) {
2518 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2519 btrfs_super_sys_array_size(sb),
2520 sizeof(struct btrfs_disk_key)
2521 + sizeof(struct btrfs_chunk));
2522 ret = -EINVAL;
2523 }
2524
2525 /*
2526 * The generation is a global counter, we'll trust it more than the others
2527 * but it's still possible that it's the one that's wrong.
2528 */
2529 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2530 btrfs_warn(fs_info,
2531 "suspicious: generation < chunk_root_generation: %llu < %llu",
2532 btrfs_super_generation(sb),
2533 btrfs_super_chunk_root_generation(sb));
2534 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2535 && btrfs_super_cache_generation(sb) != (u64)-1)
2536 btrfs_warn(fs_info,
2537 "suspicious: generation < cache_generation: %llu < %llu",
2538 btrfs_super_generation(sb),
2539 btrfs_super_cache_generation(sb));
2540
2541 return ret;
2542 }
2543
2544 /*
2545 * Validation of super block at mount time.
2546 * Some checks already done early at mount time, like csum type and incompat
2547 * flags will be skipped.
2548 */
2549 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2550 {
2551 return validate_super(fs_info, fs_info->super_copy, 0);
2552 }
2553
2554 /*
2555 * Validation of super block at write time.
2556 * Some checks like bytenr check will be skipped as their values will be
2557 * overwritten soon.
2558 * Extra checks like csum type and incompat flags will be done here.
2559 */
2560 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2561 struct btrfs_super_block *sb)
2562 {
2563 int ret;
2564
2565 ret = validate_super(fs_info, sb, -1);
2566 if (ret < 0)
2567 goto out;
2568 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2569 ret = -EUCLEAN;
2570 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2571 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2572 goto out;
2573 }
2574 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2575 ret = -EUCLEAN;
2576 btrfs_err(fs_info,
2577 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2578 btrfs_super_incompat_flags(sb),
2579 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2580 goto out;
2581 }
2582 out:
2583 if (ret < 0)
2584 btrfs_err(fs_info,
2585 "super block corruption detected before writing it to disk");
2586 return ret;
2587 }
2588
2589 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2590 {
2591 int backup_index = find_newest_super_backup(fs_info);
2592 struct btrfs_super_block *sb = fs_info->super_copy;
2593 struct btrfs_root *tree_root = fs_info->tree_root;
2594 bool handle_error = false;
2595 int ret = 0;
2596 int i;
2597
2598 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2599 u64 generation;
2600 int level;
2601
2602 if (handle_error) {
2603 if (!IS_ERR(tree_root->node))
2604 free_extent_buffer(tree_root->node);
2605 tree_root->node = NULL;
2606
2607 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2608 break;
2609
2610 free_root_pointers(fs_info, 0);
2611
2612 /*
2613 * Don't use the log in recovery mode, it won't be
2614 * valid
2615 */
2616 btrfs_set_super_log_root(sb, 0);
2617
2618 /* We can't trust the free space cache either */
2619 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2620
2621 ret = read_backup_root(fs_info, i);
2622 backup_index = ret;
2623 if (ret < 0)
2624 return ret;
2625 }
2626 generation = btrfs_super_generation(sb);
2627 level = btrfs_super_root_level(sb);
2628 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2629 generation, level, NULL);
2630 if (IS_ERR(tree_root->node) ||
2631 !extent_buffer_uptodate(tree_root->node)) {
2632 handle_error = true;
2633
2634 if (IS_ERR(tree_root->node)) {
2635 ret = PTR_ERR(tree_root->node);
2636 tree_root->node = NULL;
2637 } else if (!extent_buffer_uptodate(tree_root->node)) {
2638 ret = -EUCLEAN;
2639 }
2640
2641 btrfs_warn(fs_info, "failed to read tree root");
2642 continue;
2643 }
2644
2645 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2646 tree_root->commit_root = btrfs_root_node(tree_root);
2647 btrfs_set_root_refs(&tree_root->root_item, 1);
2648
2649 /*
2650 * No need to hold btrfs_root::objectid_mutex since the fs
2651 * hasn't been fully initialised and we are the only user
2652 */
2653 ret = btrfs_find_highest_objectid(tree_root,
2654 &tree_root->highest_objectid);
2655 if (ret < 0) {
2656 handle_error = true;
2657 continue;
2658 }
2659
2660 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2661
2662 ret = btrfs_read_roots(fs_info);
2663 if (ret < 0) {
2664 handle_error = true;
2665 continue;
2666 }
2667
2668 /* All successful */
2669 fs_info->generation = generation;
2670 fs_info->last_trans_committed = generation;
2671
2672 /* Always begin writing backup roots after the one being used */
2673 if (backup_index < 0) {
2674 fs_info->backup_root_index = 0;
2675 } else {
2676 fs_info->backup_root_index = backup_index + 1;
2677 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2678 }
2679 break;
2680 }
2681
2682 return ret;
2683 }
2684
2685 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2686 {
2687 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2688 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2689 INIT_LIST_HEAD(&fs_info->trans_list);
2690 INIT_LIST_HEAD(&fs_info->dead_roots);
2691 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2692 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2693 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2694 spin_lock_init(&fs_info->delalloc_root_lock);
2695 spin_lock_init(&fs_info->trans_lock);
2696 spin_lock_init(&fs_info->fs_roots_radix_lock);
2697 spin_lock_init(&fs_info->delayed_iput_lock);
2698 spin_lock_init(&fs_info->defrag_inodes_lock);
2699 spin_lock_init(&fs_info->super_lock);
2700 spin_lock_init(&fs_info->buffer_lock);
2701 spin_lock_init(&fs_info->unused_bgs_lock);
2702 rwlock_init(&fs_info->tree_mod_log_lock);
2703 mutex_init(&fs_info->unused_bg_unpin_mutex);
2704 mutex_init(&fs_info->delete_unused_bgs_mutex);
2705 mutex_init(&fs_info->reloc_mutex);
2706 mutex_init(&fs_info->delalloc_root_mutex);
2707 seqlock_init(&fs_info->profiles_lock);
2708
2709 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2710 INIT_LIST_HEAD(&fs_info->space_info);
2711 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2712 INIT_LIST_HEAD(&fs_info->unused_bgs);
2713 #ifdef CONFIG_BTRFS_DEBUG
2714 INIT_LIST_HEAD(&fs_info->allocated_roots);
2715 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2716 spin_lock_init(&fs_info->eb_leak_lock);
2717 #endif
2718 extent_map_tree_init(&fs_info->mapping_tree);
2719 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2720 BTRFS_BLOCK_RSV_GLOBAL);
2721 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2722 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2723 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2724 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2725 BTRFS_BLOCK_RSV_DELOPS);
2726 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2727 BTRFS_BLOCK_RSV_DELREFS);
2728
2729 atomic_set(&fs_info->async_delalloc_pages, 0);
2730 atomic_set(&fs_info->defrag_running, 0);
2731 atomic_set(&fs_info->reada_works_cnt, 0);
2732 atomic_set(&fs_info->nr_delayed_iputs, 0);
2733 atomic64_set(&fs_info->tree_mod_seq, 0);
2734 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2735 fs_info->metadata_ratio = 0;
2736 fs_info->defrag_inodes = RB_ROOT;
2737 atomic64_set(&fs_info->free_chunk_space, 0);
2738 fs_info->tree_mod_log = RB_ROOT;
2739 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2740 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2741 /* readahead state */
2742 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2743 spin_lock_init(&fs_info->reada_lock);
2744 btrfs_init_ref_verify(fs_info);
2745
2746 fs_info->thread_pool_size = min_t(unsigned long,
2747 num_online_cpus() + 2, 8);
2748
2749 INIT_LIST_HEAD(&fs_info->ordered_roots);
2750 spin_lock_init(&fs_info->ordered_root_lock);
2751
2752 btrfs_init_scrub(fs_info);
2753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2754 fs_info->check_integrity_print_mask = 0;
2755 #endif
2756 btrfs_init_balance(fs_info);
2757 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2758
2759 spin_lock_init(&fs_info->block_group_cache_lock);
2760 fs_info->block_group_cache_tree = RB_ROOT;
2761 fs_info->first_logical_byte = (u64)-1;
2762
2763 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2764 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2765 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2766
2767 mutex_init(&fs_info->ordered_operations_mutex);
2768 mutex_init(&fs_info->tree_log_mutex);
2769 mutex_init(&fs_info->chunk_mutex);
2770 mutex_init(&fs_info->transaction_kthread_mutex);
2771 mutex_init(&fs_info->cleaner_mutex);
2772 mutex_init(&fs_info->ro_block_group_mutex);
2773 init_rwsem(&fs_info->commit_root_sem);
2774 init_rwsem(&fs_info->cleanup_work_sem);
2775 init_rwsem(&fs_info->subvol_sem);
2776 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2777
2778 btrfs_init_dev_replace_locks(fs_info);
2779 btrfs_init_qgroup(fs_info);
2780 btrfs_discard_init(fs_info);
2781
2782 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2783 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2784
2785 init_waitqueue_head(&fs_info->transaction_throttle);
2786 init_waitqueue_head(&fs_info->transaction_wait);
2787 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2788 init_waitqueue_head(&fs_info->async_submit_wait);
2789 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2790
2791 /* Usable values until the real ones are cached from the superblock */
2792 fs_info->nodesize = 4096;
2793 fs_info->sectorsize = 4096;
2794 fs_info->stripesize = 4096;
2795
2796 spin_lock_init(&fs_info->swapfile_pins_lock);
2797 fs_info->swapfile_pins = RB_ROOT;
2798
2799 fs_info->send_in_progress = 0;
2800 }
2801
2802 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2803 {
2804 int ret;
2805
2806 fs_info->sb = sb;
2807 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2808 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2809
2810 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2811 if (ret)
2812 return ret;
2813
2814 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2815 if (ret)
2816 return ret;
2817
2818 fs_info->dirty_metadata_batch = PAGE_SIZE *
2819 (1 + ilog2(nr_cpu_ids));
2820
2821 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2822 if (ret)
2823 return ret;
2824
2825 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2826 GFP_KERNEL);
2827 if (ret)
2828 return ret;
2829
2830 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2831 GFP_KERNEL);
2832 if (!fs_info->delayed_root)
2833 return -ENOMEM;
2834 btrfs_init_delayed_root(fs_info->delayed_root);
2835
2836 return btrfs_alloc_stripe_hash_table(fs_info);
2837 }
2838
2839 static int btrfs_uuid_rescan_kthread(void *data)
2840 {
2841 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2842 int ret;
2843
2844 /*
2845 * 1st step is to iterate through the existing UUID tree and
2846 * to delete all entries that contain outdated data.
2847 * 2nd step is to add all missing entries to the UUID tree.
2848 */
2849 ret = btrfs_uuid_tree_iterate(fs_info);
2850 if (ret < 0) {
2851 if (ret != -EINTR)
2852 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2853 ret);
2854 up(&fs_info->uuid_tree_rescan_sem);
2855 return ret;
2856 }
2857 return btrfs_uuid_scan_kthread(data);
2858 }
2859
2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2861 {
2862 struct task_struct *task;
2863
2864 down(&fs_info->uuid_tree_rescan_sem);
2865 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2866 if (IS_ERR(task)) {
2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2869 up(&fs_info->uuid_tree_rescan_sem);
2870 return PTR_ERR(task);
2871 }
2872
2873 return 0;
2874 }
2875
2876 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2877 char *options)
2878 {
2879 u32 sectorsize;
2880 u32 nodesize;
2881 u32 stripesize;
2882 u64 generation;
2883 u64 features;
2884 u16 csum_type;
2885 struct btrfs_super_block *disk_super;
2886 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2887 struct btrfs_root *tree_root;
2888 struct btrfs_root *chunk_root;
2889 int ret;
2890 int err = -EINVAL;
2891 int clear_free_space_tree = 0;
2892 int level;
2893
2894 ret = init_mount_fs_info(fs_info, sb);
2895 if (ret) {
2896 err = ret;
2897 goto fail;
2898 }
2899
2900 /* These need to be init'ed before we start creating inodes and such. */
2901 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2902 GFP_KERNEL);
2903 fs_info->tree_root = tree_root;
2904 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2905 GFP_KERNEL);
2906 fs_info->chunk_root = chunk_root;
2907 if (!tree_root || !chunk_root) {
2908 err = -ENOMEM;
2909 goto fail;
2910 }
2911
2912 fs_info->btree_inode = new_inode(sb);
2913 if (!fs_info->btree_inode) {
2914 err = -ENOMEM;
2915 goto fail;
2916 }
2917 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2918 btrfs_init_btree_inode(fs_info);
2919
2920 invalidate_bdev(fs_devices->latest_bdev);
2921
2922 /*
2923 * Read super block and check the signature bytes only
2924 */
2925 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2926 if (IS_ERR(disk_super)) {
2927 err = PTR_ERR(disk_super);
2928 goto fail_alloc;
2929 }
2930
2931 /*
2932 * Verify the type first, if that or the the checksum value are
2933 * corrupted, we'll find out
2934 */
2935 csum_type = btrfs_super_csum_type(disk_super);
2936 if (!btrfs_supported_super_csum(csum_type)) {
2937 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2938 csum_type);
2939 err = -EINVAL;
2940 btrfs_release_disk_super(disk_super);
2941 goto fail_alloc;
2942 }
2943
2944 ret = btrfs_init_csum_hash(fs_info, csum_type);
2945 if (ret) {
2946 err = ret;
2947 btrfs_release_disk_super(disk_super);
2948 goto fail_alloc;
2949 }
2950
2951 /*
2952 * We want to check superblock checksum, the type is stored inside.
2953 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2954 */
2955 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2956 btrfs_err(fs_info, "superblock checksum mismatch");
2957 err = -EINVAL;
2958 btrfs_release_disk_super(disk_super);
2959 goto fail_alloc;
2960 }
2961
2962 /*
2963 * super_copy is zeroed at allocation time and we never touch the
2964 * following bytes up to INFO_SIZE, the checksum is calculated from
2965 * the whole block of INFO_SIZE
2966 */
2967 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2968 btrfs_release_disk_super(disk_super);
2969
2970 disk_super = fs_info->super_copy;
2971
2972 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2973 BTRFS_FSID_SIZE));
2974
2975 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2976 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2977 fs_info->super_copy->metadata_uuid,
2978 BTRFS_FSID_SIZE));
2979 }
2980
2981 features = btrfs_super_flags(disk_super);
2982 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2983 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2984 btrfs_set_super_flags(disk_super, features);
2985 btrfs_info(fs_info,
2986 "found metadata UUID change in progress flag, clearing");
2987 }
2988
2989 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2990 sizeof(*fs_info->super_for_commit));
2991
2992 ret = btrfs_validate_mount_super(fs_info);
2993 if (ret) {
2994 btrfs_err(fs_info, "superblock contains fatal errors");
2995 err = -EINVAL;
2996 goto fail_alloc;
2997 }
2998
2999 if (!btrfs_super_root(disk_super))
3000 goto fail_alloc;
3001
3002 /* check FS state, whether FS is broken. */
3003 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3004 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3005
3006 /*
3007 * In the long term, we'll store the compression type in the super
3008 * block, and it'll be used for per file compression control.
3009 */
3010 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3011
3012 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3013 if (ret) {
3014 err = ret;
3015 goto fail_alloc;
3016 }
3017
3018 features = btrfs_super_incompat_flags(disk_super) &
3019 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3020 if (features) {
3021 btrfs_err(fs_info,
3022 "cannot mount because of unsupported optional features (%llx)",
3023 features);
3024 err = -EINVAL;
3025 goto fail_alloc;
3026 }
3027
3028 features = btrfs_super_incompat_flags(disk_super);
3029 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3030 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3031 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3032 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3033 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3034
3035 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3036 btrfs_info(fs_info, "has skinny extents");
3037
3038 /*
3039 * flag our filesystem as having big metadata blocks if
3040 * they are bigger than the page size
3041 */
3042 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3043 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3044 btrfs_info(fs_info,
3045 "flagging fs with big metadata feature");
3046 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3047 }
3048
3049 nodesize = btrfs_super_nodesize(disk_super);
3050 sectorsize = btrfs_super_sectorsize(disk_super);
3051 stripesize = sectorsize;
3052 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3053 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3054
3055 /* Cache block sizes */
3056 fs_info->nodesize = nodesize;
3057 fs_info->sectorsize = sectorsize;
3058 fs_info->stripesize = stripesize;
3059
3060 /*
3061 * mixed block groups end up with duplicate but slightly offset
3062 * extent buffers for the same range. It leads to corruptions
3063 */
3064 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3065 (sectorsize != nodesize)) {
3066 btrfs_err(fs_info,
3067 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3068 nodesize, sectorsize);
3069 goto fail_alloc;
3070 }
3071
3072 /*
3073 * Needn't use the lock because there is no other task which will
3074 * update the flag.
3075 */
3076 btrfs_set_super_incompat_flags(disk_super, features);
3077
3078 features = btrfs_super_compat_ro_flags(disk_super) &
3079 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3080 if (!sb_rdonly(sb) && features) {
3081 btrfs_err(fs_info,
3082 "cannot mount read-write because of unsupported optional features (%llx)",
3083 features);
3084 err = -EINVAL;
3085 goto fail_alloc;
3086 }
3087
3088 ret = btrfs_init_workqueues(fs_info, fs_devices);
3089 if (ret) {
3090 err = ret;
3091 goto fail_sb_buffer;
3092 }
3093
3094 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3095 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3096 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3097 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3098
3099 sb->s_blocksize = sectorsize;
3100 sb->s_blocksize_bits = blksize_bits(sectorsize);
3101 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3102
3103 mutex_lock(&fs_info->chunk_mutex);
3104 ret = btrfs_read_sys_array(fs_info);
3105 mutex_unlock(&fs_info->chunk_mutex);
3106 if (ret) {
3107 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3108 goto fail_sb_buffer;
3109 }
3110
3111 generation = btrfs_super_chunk_root_generation(disk_super);
3112 level = btrfs_super_chunk_root_level(disk_super);
3113
3114 chunk_root->node = read_tree_block(fs_info,
3115 btrfs_super_chunk_root(disk_super),
3116 generation, level, NULL);
3117 if (IS_ERR(chunk_root->node) ||
3118 !extent_buffer_uptodate(chunk_root->node)) {
3119 btrfs_err(fs_info, "failed to read chunk root");
3120 if (!IS_ERR(chunk_root->node))
3121 free_extent_buffer(chunk_root->node);
3122 chunk_root->node = NULL;
3123 goto fail_tree_roots;
3124 }
3125 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3126 chunk_root->commit_root = btrfs_root_node(chunk_root);
3127
3128 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3129 offsetof(struct btrfs_header, chunk_tree_uuid),
3130 BTRFS_UUID_SIZE);
3131
3132 ret = btrfs_read_chunk_tree(fs_info);
3133 if (ret) {
3134 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3135 goto fail_tree_roots;
3136 }
3137
3138 /*
3139 * Keep the devid that is marked to be the target device for the
3140 * device replace procedure
3141 */
3142 btrfs_free_extra_devids(fs_devices, 0);
3143
3144 if (!fs_devices->latest_bdev) {
3145 btrfs_err(fs_info, "failed to read devices");
3146 goto fail_tree_roots;
3147 }
3148
3149 ret = init_tree_roots(fs_info);
3150 if (ret)
3151 goto fail_tree_roots;
3152
3153 /*
3154 * If we have a uuid root and we're not being told to rescan we need to
3155 * check the generation here so we can set the
3156 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3157 * transaction during a balance or the log replay without updating the
3158 * uuid generation, and then if we crash we would rescan the uuid tree,
3159 * even though it was perfectly fine.
3160 */
3161 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3162 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3163 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3164
3165 ret = btrfs_verify_dev_extents(fs_info);
3166 if (ret) {
3167 btrfs_err(fs_info,
3168 "failed to verify dev extents against chunks: %d",
3169 ret);
3170 goto fail_block_groups;
3171 }
3172 ret = btrfs_recover_balance(fs_info);
3173 if (ret) {
3174 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3175 goto fail_block_groups;
3176 }
3177
3178 ret = btrfs_init_dev_stats(fs_info);
3179 if (ret) {
3180 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3181 goto fail_block_groups;
3182 }
3183
3184 ret = btrfs_init_dev_replace(fs_info);
3185 if (ret) {
3186 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3187 goto fail_block_groups;
3188 }
3189
3190 btrfs_free_extra_devids(fs_devices, 1);
3191
3192 ret = btrfs_sysfs_add_fsid(fs_devices);
3193 if (ret) {
3194 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3195 ret);
3196 goto fail_block_groups;
3197 }
3198
3199 ret = btrfs_sysfs_add_mounted(fs_info);
3200 if (ret) {
3201 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3202 goto fail_fsdev_sysfs;
3203 }
3204
3205 ret = btrfs_init_space_info(fs_info);
3206 if (ret) {
3207 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3208 goto fail_sysfs;
3209 }
3210
3211 ret = btrfs_read_block_groups(fs_info);
3212 if (ret) {
3213 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3214 goto fail_sysfs;
3215 }
3216
3217 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3218 btrfs_warn(fs_info,
3219 "writable mount is not allowed due to too many missing devices");
3220 goto fail_sysfs;
3221 }
3222
3223 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3224 "btrfs-cleaner");
3225 if (IS_ERR(fs_info->cleaner_kthread))
3226 goto fail_sysfs;
3227
3228 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3229 tree_root,
3230 "btrfs-transaction");
3231 if (IS_ERR(fs_info->transaction_kthread))
3232 goto fail_cleaner;
3233
3234 if (!btrfs_test_opt(fs_info, NOSSD) &&
3235 !fs_info->fs_devices->rotating) {
3236 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3237 }
3238
3239 /*
3240 * Mount does not set all options immediately, we can do it now and do
3241 * not have to wait for transaction commit
3242 */
3243 btrfs_apply_pending_changes(fs_info);
3244
3245 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3246 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3247 ret = btrfsic_mount(fs_info, fs_devices,
3248 btrfs_test_opt(fs_info,
3249 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3250 1 : 0,
3251 fs_info->check_integrity_print_mask);
3252 if (ret)
3253 btrfs_warn(fs_info,
3254 "failed to initialize integrity check module: %d",
3255 ret);
3256 }
3257 #endif
3258 ret = btrfs_read_qgroup_config(fs_info);
3259 if (ret)
3260 goto fail_trans_kthread;
3261
3262 if (btrfs_build_ref_tree(fs_info))
3263 btrfs_err(fs_info, "couldn't build ref tree");
3264
3265 /* do not make disk changes in broken FS or nologreplay is given */
3266 if (btrfs_super_log_root(disk_super) != 0 &&
3267 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3268 btrfs_info(fs_info, "start tree-log replay");
3269 ret = btrfs_replay_log(fs_info, fs_devices);
3270 if (ret) {
3271 err = ret;
3272 goto fail_qgroup;
3273 }
3274 }
3275
3276 ret = btrfs_find_orphan_roots(fs_info);
3277 if (ret)
3278 goto fail_qgroup;
3279
3280 if (!sb_rdonly(sb)) {
3281 ret = btrfs_cleanup_fs_roots(fs_info);
3282 if (ret)
3283 goto fail_qgroup;
3284
3285 mutex_lock(&fs_info->cleaner_mutex);
3286 ret = btrfs_recover_relocation(tree_root);
3287 mutex_unlock(&fs_info->cleaner_mutex);
3288 if (ret < 0) {
3289 btrfs_warn(fs_info, "failed to recover relocation: %d",
3290 ret);
3291 err = -EINVAL;
3292 goto fail_qgroup;
3293 }
3294 }
3295
3296 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3297 if (IS_ERR(fs_info->fs_root)) {
3298 err = PTR_ERR(fs_info->fs_root);
3299 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3300 fs_info->fs_root = NULL;
3301 goto fail_qgroup;
3302 }
3303
3304 if (sb_rdonly(sb))
3305 return 0;
3306
3307 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3308 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3309 clear_free_space_tree = 1;
3310 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3311 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3312 btrfs_warn(fs_info, "free space tree is invalid");
3313 clear_free_space_tree = 1;
3314 }
3315
3316 if (clear_free_space_tree) {
3317 btrfs_info(fs_info, "clearing free space tree");
3318 ret = btrfs_clear_free_space_tree(fs_info);
3319 if (ret) {
3320 btrfs_warn(fs_info,
3321 "failed to clear free space tree: %d", ret);
3322 close_ctree(fs_info);
3323 return ret;
3324 }
3325 }
3326
3327 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3328 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3329 btrfs_info(fs_info, "creating free space tree");
3330 ret = btrfs_create_free_space_tree(fs_info);
3331 if (ret) {
3332 btrfs_warn(fs_info,
3333 "failed to create free space tree: %d", ret);
3334 close_ctree(fs_info);
3335 return ret;
3336 }
3337 }
3338
3339 down_read(&fs_info->cleanup_work_sem);
3340 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3341 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3342 up_read(&fs_info->cleanup_work_sem);
3343 close_ctree(fs_info);
3344 return ret;
3345 }
3346 up_read(&fs_info->cleanup_work_sem);
3347
3348 ret = btrfs_resume_balance_async(fs_info);
3349 if (ret) {
3350 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3351 close_ctree(fs_info);
3352 return ret;
3353 }
3354
3355 ret = btrfs_resume_dev_replace_async(fs_info);
3356 if (ret) {
3357 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3358 close_ctree(fs_info);
3359 return ret;
3360 }
3361
3362 btrfs_qgroup_rescan_resume(fs_info);
3363 btrfs_discard_resume(fs_info);
3364
3365 if (!fs_info->uuid_root) {
3366 btrfs_info(fs_info, "creating UUID tree");
3367 ret = btrfs_create_uuid_tree(fs_info);
3368 if (ret) {
3369 btrfs_warn(fs_info,
3370 "failed to create the UUID tree: %d", ret);
3371 close_ctree(fs_info);
3372 return ret;
3373 }
3374 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3375 fs_info->generation !=
3376 btrfs_super_uuid_tree_generation(disk_super)) {
3377 btrfs_info(fs_info, "checking UUID tree");
3378 ret = btrfs_check_uuid_tree(fs_info);
3379 if (ret) {
3380 btrfs_warn(fs_info,
3381 "failed to check the UUID tree: %d", ret);
3382 close_ctree(fs_info);
3383 return ret;
3384 }
3385 }
3386 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3387
3388 /*
3389 * backuproot only affect mount behavior, and if open_ctree succeeded,
3390 * no need to keep the flag
3391 */
3392 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3393
3394 return 0;
3395
3396 fail_qgroup:
3397 btrfs_free_qgroup_config(fs_info);
3398 fail_trans_kthread:
3399 kthread_stop(fs_info->transaction_kthread);
3400 btrfs_cleanup_transaction(fs_info);
3401 btrfs_free_fs_roots(fs_info);
3402 fail_cleaner:
3403 kthread_stop(fs_info->cleaner_kthread);
3404
3405 /*
3406 * make sure we're done with the btree inode before we stop our
3407 * kthreads
3408 */
3409 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3410
3411 fail_sysfs:
3412 btrfs_sysfs_remove_mounted(fs_info);
3413
3414 fail_fsdev_sysfs:
3415 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3416
3417 fail_block_groups:
3418 btrfs_put_block_group_cache(fs_info);
3419
3420 fail_tree_roots:
3421 free_root_pointers(fs_info, true);
3422 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3423
3424 fail_sb_buffer:
3425 btrfs_stop_all_workers(fs_info);
3426 btrfs_free_block_groups(fs_info);
3427 fail_alloc:
3428 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3429
3430 iput(fs_info->btree_inode);
3431 fail:
3432 btrfs_close_devices(fs_info->fs_devices);
3433 return err;
3434 }
3435 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3436
3437 static void btrfs_end_super_write(struct bio *bio)
3438 {
3439 struct btrfs_device *device = bio->bi_private;
3440 struct bio_vec *bvec;
3441 struct bvec_iter_all iter_all;
3442 struct page *page;
3443
3444 bio_for_each_segment_all(bvec, bio, iter_all) {
3445 page = bvec->bv_page;
3446
3447 if (bio->bi_status) {
3448 btrfs_warn_rl_in_rcu(device->fs_info,
3449 "lost page write due to IO error on %s (%d)",
3450 rcu_str_deref(device->name),
3451 blk_status_to_errno(bio->bi_status));
3452 ClearPageUptodate(page);
3453 SetPageError(page);
3454 btrfs_dev_stat_inc_and_print(device,
3455 BTRFS_DEV_STAT_WRITE_ERRS);
3456 } else {
3457 SetPageUptodate(page);
3458 }
3459
3460 put_page(page);
3461 unlock_page(page);
3462 }
3463
3464 bio_put(bio);
3465 }
3466
3467 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3468 int copy_num)
3469 {
3470 struct btrfs_super_block *super;
3471 struct page *page;
3472 u64 bytenr;
3473 struct address_space *mapping = bdev->bd_inode->i_mapping;
3474
3475 bytenr = btrfs_sb_offset(copy_num);
3476 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3477 return ERR_PTR(-EINVAL);
3478
3479 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3480 if (IS_ERR(page))
3481 return ERR_CAST(page);
3482
3483 super = page_address(page);
3484 if (btrfs_super_bytenr(super) != bytenr ||
3485 btrfs_super_magic(super) != BTRFS_MAGIC) {
3486 btrfs_release_disk_super(super);
3487 return ERR_PTR(-EINVAL);
3488 }
3489
3490 return super;
3491 }
3492
3493
3494 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3495 {
3496 struct btrfs_super_block *super, *latest = NULL;
3497 int i;
3498 u64 transid = 0;
3499
3500 /* we would like to check all the supers, but that would make
3501 * a btrfs mount succeed after a mkfs from a different FS.
3502 * So, we need to add a special mount option to scan for
3503 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3504 */
3505 for (i = 0; i < 1; i++) {
3506 super = btrfs_read_dev_one_super(bdev, i);
3507 if (IS_ERR(super))
3508 continue;
3509
3510 if (!latest || btrfs_super_generation(super) > transid) {
3511 if (latest)
3512 btrfs_release_disk_super(super);
3513
3514 latest = super;
3515 transid = btrfs_super_generation(super);
3516 }
3517 }
3518
3519 return super;
3520 }
3521
3522 /*
3523 * Write superblock @sb to the @device. Do not wait for completion, all the
3524 * pages we use for writing are locked.
3525 *
3526 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3527 * the expected device size at commit time. Note that max_mirrors must be
3528 * same for write and wait phases.
3529 *
3530 * Return number of errors when page is not found or submission fails.
3531 */
3532 static int write_dev_supers(struct btrfs_device *device,
3533 struct btrfs_super_block *sb, int max_mirrors)
3534 {
3535 struct btrfs_fs_info *fs_info = device->fs_info;
3536 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3537 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3538 int i;
3539 int errors = 0;
3540 u64 bytenr;
3541
3542 if (max_mirrors == 0)
3543 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3544
3545 shash->tfm = fs_info->csum_shash;
3546
3547 for (i = 0; i < max_mirrors; i++) {
3548 struct page *page;
3549 struct bio *bio;
3550 struct btrfs_super_block *disk_super;
3551
3552 bytenr = btrfs_sb_offset(i);
3553 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3554 device->commit_total_bytes)
3555 break;
3556
3557 btrfs_set_super_bytenr(sb, bytenr);
3558
3559 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3560 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3561 sb->csum);
3562
3563 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3564 GFP_NOFS);
3565 if (!page) {
3566 btrfs_err(device->fs_info,
3567 "couldn't get super block page for bytenr %llu",
3568 bytenr);
3569 errors++;
3570 continue;
3571 }
3572
3573 /* Bump the refcount for wait_dev_supers() */
3574 get_page(page);
3575
3576 disk_super = page_address(page);
3577 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3578
3579 /*
3580 * Directly use bios here instead of relying on the page cache
3581 * to do I/O, so we don't lose the ability to do integrity
3582 * checking.
3583 */
3584 bio = bio_alloc(GFP_NOFS, 1);
3585 bio_set_dev(bio, device->bdev);
3586 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3587 bio->bi_private = device;
3588 bio->bi_end_io = btrfs_end_super_write;
3589 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3590 offset_in_page(bytenr));
3591
3592 /*
3593 * We FUA only the first super block. The others we allow to
3594 * go down lazy and there's a short window where the on-disk
3595 * copies might still contain the older version.
3596 */
3597 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3598 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3599 bio->bi_opf |= REQ_FUA;
3600
3601 btrfsic_submit_bio(bio);
3602 }
3603 return errors < i ? 0 : -1;
3604 }
3605
3606 /*
3607 * Wait for write completion of superblocks done by write_dev_supers,
3608 * @max_mirrors same for write and wait phases.
3609 *
3610 * Return number of errors when page is not found or not marked up to
3611 * date.
3612 */
3613 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3614 {
3615 int i;
3616 int errors = 0;
3617 bool primary_failed = false;
3618 u64 bytenr;
3619
3620 if (max_mirrors == 0)
3621 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3622
3623 for (i = 0; i < max_mirrors; i++) {
3624 struct page *page;
3625
3626 bytenr = btrfs_sb_offset(i);
3627 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3628 device->commit_total_bytes)
3629 break;
3630
3631 page = find_get_page(device->bdev->bd_inode->i_mapping,
3632 bytenr >> PAGE_SHIFT);
3633 if (!page) {
3634 errors++;
3635 if (i == 0)
3636 primary_failed = true;
3637 continue;
3638 }
3639 /* Page is submitted locked and unlocked once the IO completes */
3640 wait_on_page_locked(page);
3641 if (PageError(page)) {
3642 errors++;
3643 if (i == 0)
3644 primary_failed = true;
3645 }
3646
3647 /* Drop our reference */
3648 put_page(page);
3649
3650 /* Drop the reference from the writing run */
3651 put_page(page);
3652 }
3653
3654 /* log error, force error return */
3655 if (primary_failed) {
3656 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3657 device->devid);
3658 return -1;
3659 }
3660
3661 return errors < i ? 0 : -1;
3662 }
3663
3664 /*
3665 * endio for the write_dev_flush, this will wake anyone waiting
3666 * for the barrier when it is done
3667 */
3668 static void btrfs_end_empty_barrier(struct bio *bio)
3669 {
3670 complete(bio->bi_private);
3671 }
3672
3673 /*
3674 * Submit a flush request to the device if it supports it. Error handling is
3675 * done in the waiting counterpart.
3676 */
3677 static void write_dev_flush(struct btrfs_device *device)
3678 {
3679 struct request_queue *q = bdev_get_queue(device->bdev);
3680 struct bio *bio = device->flush_bio;
3681
3682 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3683 return;
3684
3685 bio_reset(bio);
3686 bio->bi_end_io = btrfs_end_empty_barrier;
3687 bio_set_dev(bio, device->bdev);
3688 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3689 init_completion(&device->flush_wait);
3690 bio->bi_private = &device->flush_wait;
3691
3692 btrfsic_submit_bio(bio);
3693 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3694 }
3695
3696 /*
3697 * If the flush bio has been submitted by write_dev_flush, wait for it.
3698 */
3699 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3700 {
3701 struct bio *bio = device->flush_bio;
3702
3703 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3704 return BLK_STS_OK;
3705
3706 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3707 wait_for_completion_io(&device->flush_wait);
3708
3709 return bio->bi_status;
3710 }
3711
3712 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3713 {
3714 if (!btrfs_check_rw_degradable(fs_info, NULL))
3715 return -EIO;
3716 return 0;
3717 }
3718
3719 /*
3720 * send an empty flush down to each device in parallel,
3721 * then wait for them
3722 */
3723 static int barrier_all_devices(struct btrfs_fs_info *info)
3724 {
3725 struct list_head *head;
3726 struct btrfs_device *dev;
3727 int errors_wait = 0;
3728 blk_status_t ret;
3729
3730 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3731 /* send down all the barriers */
3732 head = &info->fs_devices->devices;
3733 list_for_each_entry(dev, head, dev_list) {
3734 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3735 continue;
3736 if (!dev->bdev)
3737 continue;
3738 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3739 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3740 continue;
3741
3742 write_dev_flush(dev);
3743 dev->last_flush_error = BLK_STS_OK;
3744 }
3745
3746 /* wait for all the barriers */
3747 list_for_each_entry(dev, head, dev_list) {
3748 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3749 continue;
3750 if (!dev->bdev) {
3751 errors_wait++;
3752 continue;
3753 }
3754 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3755 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3756 continue;
3757
3758 ret = wait_dev_flush(dev);
3759 if (ret) {
3760 dev->last_flush_error = ret;
3761 btrfs_dev_stat_inc_and_print(dev,
3762 BTRFS_DEV_STAT_FLUSH_ERRS);
3763 errors_wait++;
3764 }
3765 }
3766
3767 if (errors_wait) {
3768 /*
3769 * At some point we need the status of all disks
3770 * to arrive at the volume status. So error checking
3771 * is being pushed to a separate loop.
3772 */
3773 return check_barrier_error(info);
3774 }
3775 return 0;
3776 }
3777
3778 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3779 {
3780 int raid_type;
3781 int min_tolerated = INT_MAX;
3782
3783 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3784 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3785 min_tolerated = min_t(int, min_tolerated,
3786 btrfs_raid_array[BTRFS_RAID_SINGLE].
3787 tolerated_failures);
3788
3789 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3790 if (raid_type == BTRFS_RAID_SINGLE)
3791 continue;
3792 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3793 continue;
3794 min_tolerated = min_t(int, min_tolerated,
3795 btrfs_raid_array[raid_type].
3796 tolerated_failures);
3797 }
3798
3799 if (min_tolerated == INT_MAX) {
3800 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3801 min_tolerated = 0;
3802 }
3803
3804 return min_tolerated;
3805 }
3806
3807 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3808 {
3809 struct list_head *head;
3810 struct btrfs_device *dev;
3811 struct btrfs_super_block *sb;
3812 struct btrfs_dev_item *dev_item;
3813 int ret;
3814 int do_barriers;
3815 int max_errors;
3816 int total_errors = 0;
3817 u64 flags;
3818
3819 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3820
3821 /*
3822 * max_mirrors == 0 indicates we're from commit_transaction,
3823 * not from fsync where the tree roots in fs_info have not
3824 * been consistent on disk.
3825 */
3826 if (max_mirrors == 0)
3827 backup_super_roots(fs_info);
3828
3829 sb = fs_info->super_for_commit;
3830 dev_item = &sb->dev_item;
3831
3832 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3833 head = &fs_info->fs_devices->devices;
3834 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3835
3836 if (do_barriers) {
3837 ret = barrier_all_devices(fs_info);
3838 if (ret) {
3839 mutex_unlock(
3840 &fs_info->fs_devices->device_list_mutex);
3841 btrfs_handle_fs_error(fs_info, ret,
3842 "errors while submitting device barriers.");
3843 return ret;
3844 }
3845 }
3846
3847 list_for_each_entry(dev, head, dev_list) {
3848 if (!dev->bdev) {
3849 total_errors++;
3850 continue;
3851 }
3852 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3853 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3854 continue;
3855
3856 btrfs_set_stack_device_generation(dev_item, 0);
3857 btrfs_set_stack_device_type(dev_item, dev->type);
3858 btrfs_set_stack_device_id(dev_item, dev->devid);
3859 btrfs_set_stack_device_total_bytes(dev_item,
3860 dev->commit_total_bytes);
3861 btrfs_set_stack_device_bytes_used(dev_item,
3862 dev->commit_bytes_used);
3863 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3864 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3865 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3866 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3867 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3868 BTRFS_FSID_SIZE);
3869
3870 flags = btrfs_super_flags(sb);
3871 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3872
3873 ret = btrfs_validate_write_super(fs_info, sb);
3874 if (ret < 0) {
3875 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3876 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3877 "unexpected superblock corruption detected");
3878 return -EUCLEAN;
3879 }
3880
3881 ret = write_dev_supers(dev, sb, max_mirrors);
3882 if (ret)
3883 total_errors++;
3884 }
3885 if (total_errors > max_errors) {
3886 btrfs_err(fs_info, "%d errors while writing supers",
3887 total_errors);
3888 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889
3890 /* FUA is masked off if unsupported and can't be the reason */
3891 btrfs_handle_fs_error(fs_info, -EIO,
3892 "%d errors while writing supers",
3893 total_errors);
3894 return -EIO;
3895 }
3896
3897 total_errors = 0;
3898 list_for_each_entry(dev, head, dev_list) {
3899 if (!dev->bdev)
3900 continue;
3901 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3902 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3903 continue;
3904
3905 ret = wait_dev_supers(dev, max_mirrors);
3906 if (ret)
3907 total_errors++;
3908 }
3909 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3910 if (total_errors > max_errors) {
3911 btrfs_handle_fs_error(fs_info, -EIO,
3912 "%d errors while writing supers",
3913 total_errors);
3914 return -EIO;
3915 }
3916 return 0;
3917 }
3918
3919 /* Drop a fs root from the radix tree and free it. */
3920 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3921 struct btrfs_root *root)
3922 {
3923 bool drop_ref = false;
3924
3925 spin_lock(&fs_info->fs_roots_radix_lock);
3926 radix_tree_delete(&fs_info->fs_roots_radix,
3927 (unsigned long)root->root_key.objectid);
3928 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3929 drop_ref = true;
3930 spin_unlock(&fs_info->fs_roots_radix_lock);
3931
3932 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3933 ASSERT(root->log_root == NULL);
3934 if (root->reloc_root) {
3935 btrfs_put_root(root->reloc_root);
3936 root->reloc_root = NULL;
3937 }
3938 }
3939
3940 if (root->free_ino_pinned)
3941 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3942 if (root->free_ino_ctl)
3943 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3944 if (root->ino_cache_inode) {
3945 iput(root->ino_cache_inode);
3946 root->ino_cache_inode = NULL;
3947 }
3948 if (drop_ref)
3949 btrfs_put_root(root);
3950 }
3951
3952 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3953 {
3954 u64 root_objectid = 0;
3955 struct btrfs_root *gang[8];
3956 int i = 0;
3957 int err = 0;
3958 unsigned int ret = 0;
3959
3960 while (1) {
3961 spin_lock(&fs_info->fs_roots_radix_lock);
3962 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3963 (void **)gang, root_objectid,
3964 ARRAY_SIZE(gang));
3965 if (!ret) {
3966 spin_unlock(&fs_info->fs_roots_radix_lock);
3967 break;
3968 }
3969 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3970
3971 for (i = 0; i < ret; i++) {
3972 /* Avoid to grab roots in dead_roots */
3973 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3974 gang[i] = NULL;
3975 continue;
3976 }
3977 /* grab all the search result for later use */
3978 gang[i] = btrfs_grab_root(gang[i]);
3979 }
3980 spin_unlock(&fs_info->fs_roots_radix_lock);
3981
3982 for (i = 0; i < ret; i++) {
3983 if (!gang[i])
3984 continue;
3985 root_objectid = gang[i]->root_key.objectid;
3986 err = btrfs_orphan_cleanup(gang[i]);
3987 if (err)
3988 break;
3989 btrfs_put_root(gang[i]);
3990 }
3991 root_objectid++;
3992 }
3993
3994 /* release the uncleaned roots due to error */
3995 for (; i < ret; i++) {
3996 if (gang[i])
3997 btrfs_put_root(gang[i]);
3998 }
3999 return err;
4000 }
4001
4002 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4003 {
4004 struct btrfs_root *root = fs_info->tree_root;
4005 struct btrfs_trans_handle *trans;
4006
4007 mutex_lock(&fs_info->cleaner_mutex);
4008 btrfs_run_delayed_iputs(fs_info);
4009 mutex_unlock(&fs_info->cleaner_mutex);
4010 wake_up_process(fs_info->cleaner_kthread);
4011
4012 /* wait until ongoing cleanup work done */
4013 down_write(&fs_info->cleanup_work_sem);
4014 up_write(&fs_info->cleanup_work_sem);
4015
4016 trans = btrfs_join_transaction(root);
4017 if (IS_ERR(trans))
4018 return PTR_ERR(trans);
4019 return btrfs_commit_transaction(trans);
4020 }
4021
4022 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4023 {
4024 int ret;
4025
4026 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4027 /*
4028 * We don't want the cleaner to start new transactions, add more delayed
4029 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4030 * because that frees the task_struct, and the transaction kthread might
4031 * still try to wake up the cleaner.
4032 */
4033 kthread_park(fs_info->cleaner_kthread);
4034
4035 /* wait for the qgroup rescan worker to stop */
4036 btrfs_qgroup_wait_for_completion(fs_info, false);
4037
4038 /* wait for the uuid_scan task to finish */
4039 down(&fs_info->uuid_tree_rescan_sem);
4040 /* avoid complains from lockdep et al., set sem back to initial state */
4041 up(&fs_info->uuid_tree_rescan_sem);
4042
4043 /* pause restriper - we want to resume on mount */
4044 btrfs_pause_balance(fs_info);
4045
4046 btrfs_dev_replace_suspend_for_unmount(fs_info);
4047
4048 btrfs_scrub_cancel(fs_info);
4049
4050 /* wait for any defraggers to finish */
4051 wait_event(fs_info->transaction_wait,
4052 (atomic_read(&fs_info->defrag_running) == 0));
4053
4054 /* clear out the rbtree of defraggable inodes */
4055 btrfs_cleanup_defrag_inodes(fs_info);
4056
4057 cancel_work_sync(&fs_info->async_reclaim_work);
4058
4059 /* Cancel or finish ongoing discard work */
4060 btrfs_discard_cleanup(fs_info);
4061
4062 if (!sb_rdonly(fs_info->sb)) {
4063 /*
4064 * The cleaner kthread is stopped, so do one final pass over
4065 * unused block groups.
4066 */
4067 btrfs_delete_unused_bgs(fs_info);
4068
4069 /*
4070 * There might be existing delayed inode workers still running
4071 * and holding an empty delayed inode item. We must wait for
4072 * them to complete first because they can create a transaction.
4073 * This happens when someone calls btrfs_balance_delayed_items()
4074 * and then a transaction commit runs the same delayed nodes
4075 * before any delayed worker has done something with the nodes.
4076 * We must wait for any worker here and not at transaction
4077 * commit time since that could cause a deadlock.
4078 * This is a very rare case.
4079 */
4080 btrfs_flush_workqueue(fs_info->delayed_workers);
4081
4082 ret = btrfs_commit_super(fs_info);
4083 if (ret)
4084 btrfs_err(fs_info, "commit super ret %d", ret);
4085 }
4086
4087 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4088 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4089 btrfs_error_commit_super(fs_info);
4090
4091 kthread_stop(fs_info->transaction_kthread);
4092 kthread_stop(fs_info->cleaner_kthread);
4093
4094 ASSERT(list_empty(&fs_info->delayed_iputs));
4095 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4096
4097 if (btrfs_check_quota_leak(fs_info)) {
4098 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4099 btrfs_err(fs_info, "qgroup reserved space leaked");
4100 }
4101
4102 btrfs_free_qgroup_config(fs_info);
4103 ASSERT(list_empty(&fs_info->delalloc_roots));
4104
4105 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4106 btrfs_info(fs_info, "at unmount delalloc count %lld",
4107 percpu_counter_sum(&fs_info->delalloc_bytes));
4108 }
4109
4110 if (percpu_counter_sum(&fs_info->dio_bytes))
4111 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4112 percpu_counter_sum(&fs_info->dio_bytes));
4113
4114 btrfs_sysfs_remove_mounted(fs_info);
4115 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4116
4117 btrfs_put_block_group_cache(fs_info);
4118
4119 /*
4120 * we must make sure there is not any read request to
4121 * submit after we stopping all workers.
4122 */
4123 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4124 btrfs_stop_all_workers(fs_info);
4125
4126 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4127 free_root_pointers(fs_info, true);
4128 btrfs_free_fs_roots(fs_info);
4129
4130 /*
4131 * We must free the block groups after dropping the fs_roots as we could
4132 * have had an IO error and have left over tree log blocks that aren't
4133 * cleaned up until the fs roots are freed. This makes the block group
4134 * accounting appear to be wrong because there's pending reserved bytes,
4135 * so make sure we do the block group cleanup afterwards.
4136 */
4137 btrfs_free_block_groups(fs_info);
4138
4139 iput(fs_info->btree_inode);
4140
4141 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4142 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4143 btrfsic_unmount(fs_info->fs_devices);
4144 #endif
4145
4146 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4147 btrfs_close_devices(fs_info->fs_devices);
4148 }
4149
4150 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4151 int atomic)
4152 {
4153 int ret;
4154 struct inode *btree_inode = buf->pages[0]->mapping->host;
4155
4156 ret = extent_buffer_uptodate(buf);
4157 if (!ret)
4158 return ret;
4159
4160 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4161 parent_transid, atomic);
4162 if (ret == -EAGAIN)
4163 return ret;
4164 return !ret;
4165 }
4166
4167 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4168 {
4169 struct btrfs_fs_info *fs_info;
4170 struct btrfs_root *root;
4171 u64 transid = btrfs_header_generation(buf);
4172 int was_dirty;
4173
4174 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4175 /*
4176 * This is a fast path so only do this check if we have sanity tests
4177 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4178 * outside of the sanity tests.
4179 */
4180 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4181 return;
4182 #endif
4183 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4184 fs_info = root->fs_info;
4185 btrfs_assert_tree_locked(buf);
4186 if (transid != fs_info->generation)
4187 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4188 buf->start, transid, fs_info->generation);
4189 was_dirty = set_extent_buffer_dirty(buf);
4190 if (!was_dirty)
4191 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4192 buf->len,
4193 fs_info->dirty_metadata_batch);
4194 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4195 /*
4196 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4197 * but item data not updated.
4198 * So here we should only check item pointers, not item data.
4199 */
4200 if (btrfs_header_level(buf) == 0 &&
4201 btrfs_check_leaf_relaxed(buf)) {
4202 btrfs_print_leaf(buf);
4203 ASSERT(0);
4204 }
4205 #endif
4206 }
4207
4208 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4209 int flush_delayed)
4210 {
4211 /*
4212 * looks as though older kernels can get into trouble with
4213 * this code, they end up stuck in balance_dirty_pages forever
4214 */
4215 int ret;
4216
4217 if (current->flags & PF_MEMALLOC)
4218 return;
4219
4220 if (flush_delayed)
4221 btrfs_balance_delayed_items(fs_info);
4222
4223 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4224 BTRFS_DIRTY_METADATA_THRESH,
4225 fs_info->dirty_metadata_batch);
4226 if (ret > 0) {
4227 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4228 }
4229 }
4230
4231 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4232 {
4233 __btrfs_btree_balance_dirty(fs_info, 1);
4234 }
4235
4236 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4237 {
4238 __btrfs_btree_balance_dirty(fs_info, 0);
4239 }
4240
4241 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4242 struct btrfs_key *first_key)
4243 {
4244 return btree_read_extent_buffer_pages(buf, parent_transid,
4245 level, first_key);
4246 }
4247
4248 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4249 {
4250 /* cleanup FS via transaction */
4251 btrfs_cleanup_transaction(fs_info);
4252
4253 mutex_lock(&fs_info->cleaner_mutex);
4254 btrfs_run_delayed_iputs(fs_info);
4255 mutex_unlock(&fs_info->cleaner_mutex);
4256
4257 down_write(&fs_info->cleanup_work_sem);
4258 up_write(&fs_info->cleanup_work_sem);
4259 }
4260
4261 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4262 {
4263 struct btrfs_root *gang[8];
4264 u64 root_objectid = 0;
4265 int ret;
4266
4267 spin_lock(&fs_info->fs_roots_radix_lock);
4268 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4269 (void **)gang, root_objectid,
4270 ARRAY_SIZE(gang))) != 0) {
4271 int i;
4272
4273 for (i = 0; i < ret; i++)
4274 gang[i] = btrfs_grab_root(gang[i]);
4275 spin_unlock(&fs_info->fs_roots_radix_lock);
4276
4277 for (i = 0; i < ret; i++) {
4278 if (!gang[i])
4279 continue;
4280 root_objectid = gang[i]->root_key.objectid;
4281 btrfs_free_log(NULL, gang[i]);
4282 btrfs_put_root(gang[i]);
4283 }
4284 root_objectid++;
4285 spin_lock(&fs_info->fs_roots_radix_lock);
4286 }
4287 spin_unlock(&fs_info->fs_roots_radix_lock);
4288 btrfs_free_log_root_tree(NULL, fs_info);
4289 }
4290
4291 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4292 {
4293 struct btrfs_ordered_extent *ordered;
4294
4295 spin_lock(&root->ordered_extent_lock);
4296 /*
4297 * This will just short circuit the ordered completion stuff which will
4298 * make sure the ordered extent gets properly cleaned up.
4299 */
4300 list_for_each_entry(ordered, &root->ordered_extents,
4301 root_extent_list)
4302 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4303 spin_unlock(&root->ordered_extent_lock);
4304 }
4305
4306 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4307 {
4308 struct btrfs_root *root;
4309 struct list_head splice;
4310
4311 INIT_LIST_HEAD(&splice);
4312
4313 spin_lock(&fs_info->ordered_root_lock);
4314 list_splice_init(&fs_info->ordered_roots, &splice);
4315 while (!list_empty(&splice)) {
4316 root = list_first_entry(&splice, struct btrfs_root,
4317 ordered_root);
4318 list_move_tail(&root->ordered_root,
4319 &fs_info->ordered_roots);
4320
4321 spin_unlock(&fs_info->ordered_root_lock);
4322 btrfs_destroy_ordered_extents(root);
4323
4324 cond_resched();
4325 spin_lock(&fs_info->ordered_root_lock);
4326 }
4327 spin_unlock(&fs_info->ordered_root_lock);
4328
4329 /*
4330 * We need this here because if we've been flipped read-only we won't
4331 * get sync() from the umount, so we need to make sure any ordered
4332 * extents that haven't had their dirty pages IO start writeout yet
4333 * actually get run and error out properly.
4334 */
4335 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4336 }
4337
4338 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4339 struct btrfs_fs_info *fs_info)
4340 {
4341 struct rb_node *node;
4342 struct btrfs_delayed_ref_root *delayed_refs;
4343 struct btrfs_delayed_ref_node *ref;
4344 int ret = 0;
4345
4346 delayed_refs = &trans->delayed_refs;
4347
4348 spin_lock(&delayed_refs->lock);
4349 if (atomic_read(&delayed_refs->num_entries) == 0) {
4350 spin_unlock(&delayed_refs->lock);
4351 btrfs_debug(fs_info, "delayed_refs has NO entry");
4352 return ret;
4353 }
4354
4355 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4356 struct btrfs_delayed_ref_head *head;
4357 struct rb_node *n;
4358 bool pin_bytes = false;
4359
4360 head = rb_entry(node, struct btrfs_delayed_ref_head,
4361 href_node);
4362 if (btrfs_delayed_ref_lock(delayed_refs, head))
4363 continue;
4364
4365 spin_lock(&head->lock);
4366 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4367 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4368 ref_node);
4369 ref->in_tree = 0;
4370 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4371 RB_CLEAR_NODE(&ref->ref_node);
4372 if (!list_empty(&ref->add_list))
4373 list_del(&ref->add_list);
4374 atomic_dec(&delayed_refs->num_entries);
4375 btrfs_put_delayed_ref(ref);
4376 }
4377 if (head->must_insert_reserved)
4378 pin_bytes = true;
4379 btrfs_free_delayed_extent_op(head->extent_op);
4380 btrfs_delete_ref_head(delayed_refs, head);
4381 spin_unlock(&head->lock);
4382 spin_unlock(&delayed_refs->lock);
4383 mutex_unlock(&head->mutex);
4384
4385 if (pin_bytes) {
4386 struct btrfs_block_group *cache;
4387
4388 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4389 BUG_ON(!cache);
4390
4391 spin_lock(&cache->space_info->lock);
4392 spin_lock(&cache->lock);
4393 cache->pinned += head->num_bytes;
4394 btrfs_space_info_update_bytes_pinned(fs_info,
4395 cache->space_info, head->num_bytes);
4396 cache->reserved -= head->num_bytes;
4397 cache->space_info->bytes_reserved -= head->num_bytes;
4398 spin_unlock(&cache->lock);
4399 spin_unlock(&cache->space_info->lock);
4400 percpu_counter_add_batch(
4401 &cache->space_info->total_bytes_pinned,
4402 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4403
4404 btrfs_put_block_group(cache);
4405
4406 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4407 head->bytenr + head->num_bytes - 1);
4408 }
4409 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4410 btrfs_put_delayed_ref_head(head);
4411 cond_resched();
4412 spin_lock(&delayed_refs->lock);
4413 }
4414 btrfs_qgroup_destroy_extent_records(trans);
4415
4416 spin_unlock(&delayed_refs->lock);
4417
4418 return ret;
4419 }
4420
4421 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4422 {
4423 struct btrfs_inode *btrfs_inode;
4424 struct list_head splice;
4425
4426 INIT_LIST_HEAD(&splice);
4427
4428 spin_lock(&root->delalloc_lock);
4429 list_splice_init(&root->delalloc_inodes, &splice);
4430
4431 while (!list_empty(&splice)) {
4432 struct inode *inode = NULL;
4433 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4434 delalloc_inodes);
4435 __btrfs_del_delalloc_inode(root, btrfs_inode);
4436 spin_unlock(&root->delalloc_lock);
4437
4438 /*
4439 * Make sure we get a live inode and that it'll not disappear
4440 * meanwhile.
4441 */
4442 inode = igrab(&btrfs_inode->vfs_inode);
4443 if (inode) {
4444 invalidate_inode_pages2(inode->i_mapping);
4445 iput(inode);
4446 }
4447 spin_lock(&root->delalloc_lock);
4448 }
4449 spin_unlock(&root->delalloc_lock);
4450 }
4451
4452 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4453 {
4454 struct btrfs_root *root;
4455 struct list_head splice;
4456
4457 INIT_LIST_HEAD(&splice);
4458
4459 spin_lock(&fs_info->delalloc_root_lock);
4460 list_splice_init(&fs_info->delalloc_roots, &splice);
4461 while (!list_empty(&splice)) {
4462 root = list_first_entry(&splice, struct btrfs_root,
4463 delalloc_root);
4464 root = btrfs_grab_root(root);
4465 BUG_ON(!root);
4466 spin_unlock(&fs_info->delalloc_root_lock);
4467
4468 btrfs_destroy_delalloc_inodes(root);
4469 btrfs_put_root(root);
4470
4471 spin_lock(&fs_info->delalloc_root_lock);
4472 }
4473 spin_unlock(&fs_info->delalloc_root_lock);
4474 }
4475
4476 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4477 struct extent_io_tree *dirty_pages,
4478 int mark)
4479 {
4480 int ret;
4481 struct extent_buffer *eb;
4482 u64 start = 0;
4483 u64 end;
4484
4485 while (1) {
4486 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4487 mark, NULL);
4488 if (ret)
4489 break;
4490
4491 clear_extent_bits(dirty_pages, start, end, mark);
4492 while (start <= end) {
4493 eb = find_extent_buffer(fs_info, start);
4494 start += fs_info->nodesize;
4495 if (!eb)
4496 continue;
4497 wait_on_extent_buffer_writeback(eb);
4498
4499 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4500 &eb->bflags))
4501 clear_extent_buffer_dirty(eb);
4502 free_extent_buffer_stale(eb);
4503 }
4504 }
4505
4506 return ret;
4507 }
4508
4509 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4510 struct extent_io_tree *unpin)
4511 {
4512 u64 start;
4513 u64 end;
4514 int ret;
4515
4516 while (1) {
4517 struct extent_state *cached_state = NULL;
4518
4519 /*
4520 * The btrfs_finish_extent_commit() may get the same range as
4521 * ours between find_first_extent_bit and clear_extent_dirty.
4522 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4523 * the same extent range.
4524 */
4525 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4526 ret = find_first_extent_bit(unpin, 0, &start, &end,
4527 EXTENT_DIRTY, &cached_state);
4528 if (ret) {
4529 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4530 break;
4531 }
4532
4533 clear_extent_dirty(unpin, start, end, &cached_state);
4534 free_extent_state(cached_state);
4535 btrfs_error_unpin_extent_range(fs_info, start, end);
4536 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4537 cond_resched();
4538 }
4539
4540 return 0;
4541 }
4542
4543 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4544 {
4545 struct inode *inode;
4546
4547 inode = cache->io_ctl.inode;
4548 if (inode) {
4549 invalidate_inode_pages2(inode->i_mapping);
4550 BTRFS_I(inode)->generation = 0;
4551 cache->io_ctl.inode = NULL;
4552 iput(inode);
4553 }
4554 ASSERT(cache->io_ctl.pages == NULL);
4555 btrfs_put_block_group(cache);
4556 }
4557
4558 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4559 struct btrfs_fs_info *fs_info)
4560 {
4561 struct btrfs_block_group *cache;
4562
4563 spin_lock(&cur_trans->dirty_bgs_lock);
4564 while (!list_empty(&cur_trans->dirty_bgs)) {
4565 cache = list_first_entry(&cur_trans->dirty_bgs,
4566 struct btrfs_block_group,
4567 dirty_list);
4568
4569 if (!list_empty(&cache->io_list)) {
4570 spin_unlock(&cur_trans->dirty_bgs_lock);
4571 list_del_init(&cache->io_list);
4572 btrfs_cleanup_bg_io(cache);
4573 spin_lock(&cur_trans->dirty_bgs_lock);
4574 }
4575
4576 list_del_init(&cache->dirty_list);
4577 spin_lock(&cache->lock);
4578 cache->disk_cache_state = BTRFS_DC_ERROR;
4579 spin_unlock(&cache->lock);
4580
4581 spin_unlock(&cur_trans->dirty_bgs_lock);
4582 btrfs_put_block_group(cache);
4583 btrfs_delayed_refs_rsv_release(fs_info, 1);
4584 spin_lock(&cur_trans->dirty_bgs_lock);
4585 }
4586 spin_unlock(&cur_trans->dirty_bgs_lock);
4587
4588 /*
4589 * Refer to the definition of io_bgs member for details why it's safe
4590 * to use it without any locking
4591 */
4592 while (!list_empty(&cur_trans->io_bgs)) {
4593 cache = list_first_entry(&cur_trans->io_bgs,
4594 struct btrfs_block_group,
4595 io_list);
4596
4597 list_del_init(&cache->io_list);
4598 spin_lock(&cache->lock);
4599 cache->disk_cache_state = BTRFS_DC_ERROR;
4600 spin_unlock(&cache->lock);
4601 btrfs_cleanup_bg_io(cache);
4602 }
4603 }
4604
4605 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4606 struct btrfs_fs_info *fs_info)
4607 {
4608 struct btrfs_device *dev, *tmp;
4609
4610 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4611 ASSERT(list_empty(&cur_trans->dirty_bgs));
4612 ASSERT(list_empty(&cur_trans->io_bgs));
4613
4614 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4615 post_commit_list) {
4616 list_del_init(&dev->post_commit_list);
4617 }
4618
4619 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4620
4621 cur_trans->state = TRANS_STATE_COMMIT_START;
4622 wake_up(&fs_info->transaction_blocked_wait);
4623
4624 cur_trans->state = TRANS_STATE_UNBLOCKED;
4625 wake_up(&fs_info->transaction_wait);
4626
4627 btrfs_destroy_delayed_inodes(fs_info);
4628
4629 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4630 EXTENT_DIRTY);
4631 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4632
4633 cur_trans->state =TRANS_STATE_COMPLETED;
4634 wake_up(&cur_trans->commit_wait);
4635 }
4636
4637 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4638 {
4639 struct btrfs_transaction *t;
4640
4641 mutex_lock(&fs_info->transaction_kthread_mutex);
4642
4643 spin_lock(&fs_info->trans_lock);
4644 while (!list_empty(&fs_info->trans_list)) {
4645 t = list_first_entry(&fs_info->trans_list,
4646 struct btrfs_transaction, list);
4647 if (t->state >= TRANS_STATE_COMMIT_START) {
4648 refcount_inc(&t->use_count);
4649 spin_unlock(&fs_info->trans_lock);
4650 btrfs_wait_for_commit(fs_info, t->transid);
4651 btrfs_put_transaction(t);
4652 spin_lock(&fs_info->trans_lock);
4653 continue;
4654 }
4655 if (t == fs_info->running_transaction) {
4656 t->state = TRANS_STATE_COMMIT_DOING;
4657 spin_unlock(&fs_info->trans_lock);
4658 /*
4659 * We wait for 0 num_writers since we don't hold a trans
4660 * handle open currently for this transaction.
4661 */
4662 wait_event(t->writer_wait,
4663 atomic_read(&t->num_writers) == 0);
4664 } else {
4665 spin_unlock(&fs_info->trans_lock);
4666 }
4667 btrfs_cleanup_one_transaction(t, fs_info);
4668
4669 spin_lock(&fs_info->trans_lock);
4670 if (t == fs_info->running_transaction)
4671 fs_info->running_transaction = NULL;
4672 list_del_init(&t->list);
4673 spin_unlock(&fs_info->trans_lock);
4674
4675 btrfs_put_transaction(t);
4676 trace_btrfs_transaction_commit(fs_info->tree_root);
4677 spin_lock(&fs_info->trans_lock);
4678 }
4679 spin_unlock(&fs_info->trans_lock);
4680 btrfs_destroy_all_ordered_extents(fs_info);
4681 btrfs_destroy_delayed_inodes(fs_info);
4682 btrfs_assert_delayed_root_empty(fs_info);
4683 btrfs_destroy_all_delalloc_inodes(fs_info);
4684 btrfs_drop_all_logs(fs_info);
4685 mutex_unlock(&fs_info->transaction_kthread_mutex);
4686
4687 return 0;
4688 }
4689
4690 static const struct extent_io_ops btree_extent_io_ops = {
4691 /* mandatory callbacks */
4692 .submit_bio_hook = btree_submit_bio_hook,
4693 .readpage_end_io_hook = btree_readpage_end_io_hook,
4694 };