]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/btrfs/disk-io.c
UBUNTU: Ubuntu-5.3.0-29.31
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43
44 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
45 BTRFS_HEADER_FLAG_RELOC |\
46 BTRFS_SUPER_FLAG_ERROR |\
47 BTRFS_SUPER_FLAG_SEEDING |\
48 BTRFS_SUPER_FLAG_METADUMP |\
49 BTRFS_SUPER_FLAG_METADUMP_V2)
50
51 static const struct extent_io_ops btree_extent_io_ops;
52 static void end_workqueue_fn(struct btrfs_work *work);
53 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_fs_info *fs_info);
56 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
57 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
58 struct extent_io_tree *dirty_pages,
59 int mark);
60 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
61 struct extent_io_tree *pinned_extents);
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64
65 /*
66 * btrfs_end_io_wq structs are used to do processing in task context when an IO
67 * is complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
70 struct btrfs_end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 blk_status_t status;
76 enum btrfs_wq_endio_type metadata;
77 struct btrfs_work work;
78 };
79
80 static struct kmem_cache *btrfs_end_io_wq_cache;
81
82 int __init btrfs_end_io_wq_init(void)
83 {
84 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
85 sizeof(struct btrfs_end_io_wq),
86 0,
87 SLAB_MEM_SPREAD,
88 NULL);
89 if (!btrfs_end_io_wq_cache)
90 return -ENOMEM;
91 return 0;
92 }
93
94 void __cold btrfs_end_io_wq_exit(void)
95 {
96 kmem_cache_destroy(btrfs_end_io_wq_cache);
97 }
98
99 /*
100 * async submit bios are used to offload expensive checksumming
101 * onto the worker threads. They checksum file and metadata bios
102 * just before they are sent down the IO stack.
103 */
104 struct async_submit_bio {
105 void *private_data;
106 struct bio *bio;
107 extent_submit_bio_start_t *submit_bio_start;
108 int mirror_num;
109 /*
110 * bio_offset is optional, can be used if the pages in the bio
111 * can't tell us where in the file the bio should go
112 */
113 u64 bio_offset;
114 struct btrfs_work work;
115 blk_status_t status;
116 };
117
118 /*
119 * Lockdep class keys for extent_buffer->lock's in this root. For a given
120 * eb, the lockdep key is determined by the btrfs_root it belongs to and
121 * the level the eb occupies in the tree.
122 *
123 * Different roots are used for different purposes and may nest inside each
124 * other and they require separate keysets. As lockdep keys should be
125 * static, assign keysets according to the purpose of the root as indicated
126 * by btrfs_root->root_key.objectid. This ensures that all special purpose
127 * roots have separate keysets.
128 *
129 * Lock-nesting across peer nodes is always done with the immediate parent
130 * node locked thus preventing deadlock. As lockdep doesn't know this, use
131 * subclass to avoid triggering lockdep warning in such cases.
132 *
133 * The key is set by the readpage_end_io_hook after the buffer has passed
134 * csum validation but before the pages are unlocked. It is also set by
135 * btrfs_init_new_buffer on freshly allocated blocks.
136 *
137 * We also add a check to make sure the highest level of the tree is the
138 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
139 * needs update as well.
140 */
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 # if BTRFS_MAX_LEVEL != 8
143 # error
144 # endif
145
146 static struct btrfs_lockdep_keyset {
147 u64 id; /* root objectid */
148 const char *name_stem; /* lock name stem */
149 char names[BTRFS_MAX_LEVEL + 1][20];
150 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
151 } btrfs_lockdep_keysets[] = {
152 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
153 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
154 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
155 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
156 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
157 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
158 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
159 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
160 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
161 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
162 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
163 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
164 { .id = 0, .name_stem = "tree" },
165 };
166
167 void __init btrfs_init_lockdep(void)
168 {
169 int i, j;
170
171 /* initialize lockdep class names */
172 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
173 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
174
175 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
176 snprintf(ks->names[j], sizeof(ks->names[j]),
177 "btrfs-%s-%02d", ks->name_stem, j);
178 }
179 }
180
181 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
182 int level)
183 {
184 struct btrfs_lockdep_keyset *ks;
185
186 BUG_ON(level >= ARRAY_SIZE(ks->keys));
187
188 /* find the matching keyset, id 0 is the default entry */
189 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
190 if (ks->id == objectid)
191 break;
192
193 lockdep_set_class_and_name(&eb->lock,
194 &ks->keys[level], ks->names[level]);
195 }
196
197 #endif
198
199 /*
200 * extents on the btree inode are pretty simple, there's one extent
201 * that covers the entire device
202 */
203 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
204 struct page *page, size_t pg_offset, u64 start, u64 len,
205 int create)
206 {
207 struct btrfs_fs_info *fs_info = inode->root->fs_info;
208 struct extent_map_tree *em_tree = &inode->extent_tree;
209 struct extent_map *em;
210 int ret;
211
212 read_lock(&em_tree->lock);
213 em = lookup_extent_mapping(em_tree, start, len);
214 if (em) {
215 em->bdev = fs_info->fs_devices->latest_bdev;
216 read_unlock(&em_tree->lock);
217 goto out;
218 }
219 read_unlock(&em_tree->lock);
220
221 em = alloc_extent_map();
222 if (!em) {
223 em = ERR_PTR(-ENOMEM);
224 goto out;
225 }
226 em->start = 0;
227 em->len = (u64)-1;
228 em->block_len = (u64)-1;
229 em->block_start = 0;
230 em->bdev = fs_info->fs_devices->latest_bdev;
231
232 write_lock(&em_tree->lock);
233 ret = add_extent_mapping(em_tree, em, 0);
234 if (ret == -EEXIST) {
235 free_extent_map(em);
236 em = lookup_extent_mapping(em_tree, start, len);
237 if (!em)
238 em = ERR_PTR(-EIO);
239 } else if (ret) {
240 free_extent_map(em);
241 em = ERR_PTR(ret);
242 }
243 write_unlock(&em_tree->lock);
244
245 out:
246 return em;
247 }
248
249 /*
250 * Compute the csum of a btree block and store the result to provided buffer.
251 *
252 * Returns error if the extent buffer cannot be mapped.
253 */
254 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
255 {
256 struct btrfs_fs_info *fs_info = buf->fs_info;
257 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
258 unsigned long len;
259 unsigned long cur_len;
260 unsigned long offset = BTRFS_CSUM_SIZE;
261 char *kaddr;
262 unsigned long map_start;
263 unsigned long map_len;
264 int err;
265
266 shash->tfm = fs_info->csum_shash;
267 crypto_shash_init(shash);
268
269 len = buf->len - offset;
270
271 while (len > 0) {
272 /*
273 * Note: we don't need to check for the err == 1 case here, as
274 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
275 * and 'min_len = 32' and the currently implemented mapping
276 * algorithm we cannot cross a page boundary.
277 */
278 err = map_private_extent_buffer(buf, offset, 32,
279 &kaddr, &map_start, &map_len);
280 if (WARN_ON(err))
281 return err;
282 cur_len = min(len, map_len - (offset - map_start));
283 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
284 len -= cur_len;
285 offset += cur_len;
286 }
287 memset(result, 0, BTRFS_CSUM_SIZE);
288
289 crypto_shash_final(shash, result);
290
291 return 0;
292 }
293
294 /*
295 * we can't consider a given block up to date unless the transid of the
296 * block matches the transid in the parent node's pointer. This is how we
297 * detect blocks that either didn't get written at all or got written
298 * in the wrong place.
299 */
300 static int verify_parent_transid(struct extent_io_tree *io_tree,
301 struct extent_buffer *eb, u64 parent_transid,
302 int atomic)
303 {
304 struct extent_state *cached_state = NULL;
305 int ret;
306 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
307
308 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
309 return 0;
310
311 if (atomic)
312 return -EAGAIN;
313
314 if (need_lock) {
315 btrfs_tree_read_lock(eb);
316 btrfs_set_lock_blocking_read(eb);
317 }
318
319 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
320 &cached_state);
321 if (extent_buffer_uptodate(eb) &&
322 btrfs_header_generation(eb) == parent_transid) {
323 ret = 0;
324 goto out;
325 }
326 btrfs_err_rl(eb->fs_info,
327 "parent transid verify failed on %llu wanted %llu found %llu",
328 eb->start,
329 parent_transid, btrfs_header_generation(eb));
330 ret = 1;
331
332 /*
333 * Things reading via commit roots that don't have normal protection,
334 * like send, can have a really old block in cache that may point at a
335 * block that has been freed and re-allocated. So don't clear uptodate
336 * if we find an eb that is under IO (dirty/writeback) because we could
337 * end up reading in the stale data and then writing it back out and
338 * making everybody very sad.
339 */
340 if (!extent_buffer_under_io(eb))
341 clear_extent_buffer_uptodate(eb);
342 out:
343 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
344 &cached_state);
345 if (need_lock)
346 btrfs_tree_read_unlock_blocking(eb);
347 return ret;
348 }
349
350 static bool btrfs_supported_super_csum(u16 csum_type)
351 {
352 switch (csum_type) {
353 case BTRFS_CSUM_TYPE_CRC32:
354 return true;
355 default:
356 return false;
357 }
358 }
359
360 /*
361 * Return 0 if the superblock checksum type matches the checksum value of that
362 * algorithm. Pass the raw disk superblock data.
363 */
364 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
365 char *raw_disk_sb)
366 {
367 struct btrfs_super_block *disk_sb =
368 (struct btrfs_super_block *)raw_disk_sb;
369 char result[BTRFS_CSUM_SIZE];
370 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
371
372 shash->tfm = fs_info->csum_shash;
373 crypto_shash_init(shash);
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
378 * filled with zeros and is included in the checksum.
379 */
380 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
381 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 crypto_shash_final(shash, result);
383
384 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
385 return 1;
386
387 return 0;
388 }
389
390 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
391 struct btrfs_key *first_key, u64 parent_transid)
392 {
393 struct btrfs_fs_info *fs_info = eb->fs_info;
394 int found_level;
395 struct btrfs_key found_key;
396 int ret;
397
398 found_level = btrfs_header_level(eb);
399 if (found_level != level) {
400 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
401 KERN_ERR "BTRFS: tree level check failed\n");
402 btrfs_err(fs_info,
403 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
404 eb->start, level, found_level);
405 return -EIO;
406 }
407
408 if (!first_key)
409 return 0;
410
411 /*
412 * For live tree block (new tree blocks in current transaction),
413 * we need proper lock context to avoid race, which is impossible here.
414 * So we only checks tree blocks which is read from disk, whose
415 * generation <= fs_info->last_trans_committed.
416 */
417 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
418 return 0;
419
420 /* We have @first_key, so this @eb must have at least one item */
421 if (btrfs_header_nritems(eb) == 0) {
422 btrfs_err(fs_info,
423 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
424 eb->start);
425 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
426 return -EUCLEAN;
427 }
428
429 if (found_level)
430 btrfs_node_key_to_cpu(eb, &found_key, 0);
431 else
432 btrfs_item_key_to_cpu(eb, &found_key, 0);
433 ret = btrfs_comp_cpu_keys(first_key, &found_key);
434
435 if (ret) {
436 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
437 KERN_ERR "BTRFS: tree first key check failed\n");
438 btrfs_err(fs_info,
439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
440 eb->start, parent_transid, first_key->objectid,
441 first_key->type, first_key->offset,
442 found_key.objectid, found_key.type,
443 found_key.offset);
444 }
445 return ret;
446 }
447
448 /*
449 * helper to read a given tree block, doing retries as required when
450 * the checksums don't match and we have alternate mirrors to try.
451 *
452 * @parent_transid: expected transid, skip check if 0
453 * @level: expected level, mandatory check
454 * @first_key: expected key of first slot, skip check if NULL
455 */
456 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
457 u64 parent_transid, int level,
458 struct btrfs_key *first_key)
459 {
460 struct btrfs_fs_info *fs_info = eb->fs_info;
461 struct extent_io_tree *io_tree;
462 int failed = 0;
463 int ret;
464 int num_copies = 0;
465 int mirror_num = 0;
466 int failed_mirror = 0;
467
468 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
469 while (1) {
470 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
471 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
472 if (!ret) {
473 if (verify_parent_transid(io_tree, eb,
474 parent_transid, 0))
475 ret = -EIO;
476 else if (btrfs_verify_level_key(eb, level,
477 first_key, parent_transid))
478 ret = -EUCLEAN;
479 else
480 break;
481 }
482
483 num_copies = btrfs_num_copies(fs_info,
484 eb->start, eb->len);
485 if (num_copies == 1)
486 break;
487
488 if (!failed_mirror) {
489 failed = 1;
490 failed_mirror = eb->read_mirror;
491 }
492
493 mirror_num++;
494 if (mirror_num == failed_mirror)
495 mirror_num++;
496
497 if (mirror_num > num_copies)
498 break;
499 }
500
501 if (failed && !ret && failed_mirror)
502 btrfs_repair_eb_io_failure(eb, failed_mirror);
503
504 return ret;
505 }
506
507 /*
508 * checksum a dirty tree block before IO. This has extra checks to make sure
509 * we only fill in the checksum field in the first page of a multi-page block
510 */
511
512 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
513 {
514 u64 start = page_offset(page);
515 u64 found_start;
516 u8 result[BTRFS_CSUM_SIZE];
517 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
518 struct extent_buffer *eb;
519 int ret;
520
521 eb = (struct extent_buffer *)page->private;
522 if (page != eb->pages[0])
523 return 0;
524
525 found_start = btrfs_header_bytenr(eb);
526 /*
527 * Please do not consolidate these warnings into a single if.
528 * It is useful to know what went wrong.
529 */
530 if (WARN_ON(found_start != start))
531 return -EUCLEAN;
532 if (WARN_ON(!PageUptodate(page)))
533 return -EUCLEAN;
534
535 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
536 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
537
538 if (csum_tree_block(eb, result))
539 return -EINVAL;
540
541 if (btrfs_header_level(eb))
542 ret = btrfs_check_node(eb);
543 else
544 ret = btrfs_check_leaf_full(eb);
545
546 if (ret < 0) {
547 btrfs_err(fs_info,
548 "block=%llu write time tree block corruption detected",
549 eb->start);
550 return ret;
551 }
552 write_extent_buffer(eb, result, 0, csum_size);
553
554 return 0;
555 }
556
557 static int check_tree_block_fsid(struct extent_buffer *eb)
558 {
559 struct btrfs_fs_info *fs_info = eb->fs_info;
560 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
561 u8 fsid[BTRFS_FSID_SIZE];
562 int ret = 1;
563
564 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
565 while (fs_devices) {
566 u8 *metadata_uuid;
567
568 /*
569 * Checking the incompat flag is only valid for the current
570 * fs. For seed devices it's forbidden to have their uuid
571 * changed so reading ->fsid in this case is fine
572 */
573 if (fs_devices == fs_info->fs_devices &&
574 btrfs_fs_incompat(fs_info, METADATA_UUID))
575 metadata_uuid = fs_devices->metadata_uuid;
576 else
577 metadata_uuid = fs_devices->fsid;
578
579 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
580 ret = 0;
581 break;
582 }
583 fs_devices = fs_devices->seed;
584 }
585 return ret;
586 }
587
588 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
589 u64 phy_offset, struct page *page,
590 u64 start, u64 end, int mirror)
591 {
592 u64 found_start;
593 int found_level;
594 struct extent_buffer *eb;
595 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
596 struct btrfs_fs_info *fs_info = root->fs_info;
597 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
598 int ret = 0;
599 u8 result[BTRFS_CSUM_SIZE];
600 int reads_done;
601
602 if (!page->private)
603 goto out;
604
605 eb = (struct extent_buffer *)page->private;
606
607 /* the pending IO might have been the only thing that kept this buffer
608 * in memory. Make sure we have a ref for all this other checks
609 */
610 extent_buffer_get(eb);
611
612 reads_done = atomic_dec_and_test(&eb->io_pages);
613 if (!reads_done)
614 goto err;
615
616 eb->read_mirror = mirror;
617 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
618 ret = -EIO;
619 goto err;
620 }
621
622 found_start = btrfs_header_bytenr(eb);
623 if (found_start != eb->start) {
624 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
625 eb->start, found_start);
626 ret = -EIO;
627 goto err;
628 }
629 if (check_tree_block_fsid(eb)) {
630 btrfs_err_rl(fs_info, "bad fsid on block %llu",
631 eb->start);
632 ret = -EIO;
633 goto err;
634 }
635 found_level = btrfs_header_level(eb);
636 if (found_level >= BTRFS_MAX_LEVEL) {
637 btrfs_err(fs_info, "bad tree block level %d on %llu",
638 (int)btrfs_header_level(eb), eb->start);
639 ret = -EIO;
640 goto err;
641 }
642
643 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
644 eb, found_level);
645
646 ret = csum_tree_block(eb, result);
647 if (ret)
648 goto err;
649
650 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
651 u32 val;
652 u32 found = 0;
653
654 memcpy(&found, result, csum_size);
655
656 read_extent_buffer(eb, &val, 0, csum_size);
657 btrfs_warn_rl(fs_info,
658 "%s checksum verify failed on %llu wanted %x found %x level %d",
659 fs_info->sb->s_id, eb->start,
660 val, found, btrfs_header_level(eb));
661 ret = -EUCLEAN;
662 goto err;
663 }
664
665 /*
666 * If this is a leaf block and it is corrupt, set the corrupt bit so
667 * that we don't try and read the other copies of this block, just
668 * return -EIO.
669 */
670 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
671 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
672 ret = -EIO;
673 }
674
675 if (found_level > 0 && btrfs_check_node(eb))
676 ret = -EIO;
677
678 if (!ret)
679 set_extent_buffer_uptodate(eb);
680 else
681 btrfs_err(fs_info,
682 "block=%llu read time tree block corruption detected",
683 eb->start);
684 err:
685 if (reads_done &&
686 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 btree_readahead_hook(eb, ret);
688
689 if (ret) {
690 /*
691 * our io error hook is going to dec the io pages
692 * again, we have to make sure it has something
693 * to decrement
694 */
695 atomic_inc(&eb->io_pages);
696 clear_extent_buffer_uptodate(eb);
697 }
698 free_extent_buffer(eb);
699 out:
700 return ret;
701 }
702
703 static void end_workqueue_bio(struct bio *bio)
704 {
705 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
706 struct btrfs_fs_info *fs_info;
707 struct btrfs_workqueue *wq;
708 btrfs_work_func_t func;
709
710 fs_info = end_io_wq->info;
711 end_io_wq->status = bio->bi_status;
712
713 if (bio_op(bio) == REQ_OP_WRITE) {
714 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
715 wq = fs_info->endio_meta_write_workers;
716 func = btrfs_endio_meta_write_helper;
717 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
718 wq = fs_info->endio_freespace_worker;
719 func = btrfs_freespace_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else {
724 wq = fs_info->endio_write_workers;
725 func = btrfs_endio_write_helper;
726 }
727 } else {
728 if (unlikely(end_io_wq->metadata ==
729 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
730 wq = fs_info->endio_repair_workers;
731 func = btrfs_endio_repair_helper;
732 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
733 wq = fs_info->endio_raid56_workers;
734 func = btrfs_endio_raid56_helper;
735 } else if (end_io_wq->metadata) {
736 wq = fs_info->endio_meta_workers;
737 func = btrfs_endio_meta_helper;
738 } else {
739 wq = fs_info->endio_workers;
740 func = btrfs_endio_helper;
741 }
742 }
743
744 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
745 btrfs_queue_work(wq, &end_io_wq->work);
746 }
747
748 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
749 enum btrfs_wq_endio_type metadata)
750 {
751 struct btrfs_end_io_wq *end_io_wq;
752
753 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
754 if (!end_io_wq)
755 return BLK_STS_RESOURCE;
756
757 end_io_wq->private = bio->bi_private;
758 end_io_wq->end_io = bio->bi_end_io;
759 end_io_wq->info = info;
760 end_io_wq->status = 0;
761 end_io_wq->bio = bio;
762 end_io_wq->metadata = metadata;
763
764 bio->bi_private = end_io_wq;
765 bio->bi_end_io = end_workqueue_bio;
766 return 0;
767 }
768
769 static void run_one_async_start(struct btrfs_work *work)
770 {
771 struct async_submit_bio *async;
772 blk_status_t ret;
773
774 async = container_of(work, struct async_submit_bio, work);
775 ret = async->submit_bio_start(async->private_data, async->bio,
776 async->bio_offset);
777 if (ret)
778 async->status = ret;
779 }
780
781 /*
782 * In order to insert checksums into the metadata in large chunks, we wait
783 * until bio submission time. All the pages in the bio are checksummed and
784 * sums are attached onto the ordered extent record.
785 *
786 * At IO completion time the csums attached on the ordered extent record are
787 * inserted into the tree.
788 */
789 static void run_one_async_done(struct btrfs_work *work)
790 {
791 struct async_submit_bio *async;
792 struct inode *inode;
793 blk_status_t ret;
794
795 async = container_of(work, struct async_submit_bio, work);
796 inode = async->private_data;
797
798 /* If an error occurred we just want to clean up the bio and move on */
799 if (async->status) {
800 async->bio->bi_status = async->status;
801 bio_endio(async->bio);
802 return;
803 }
804
805 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
806 async->mirror_num, 1);
807 if (ret) {
808 async->bio->bi_status = ret;
809 bio_endio(async->bio);
810 }
811 }
812
813 static void run_one_async_free(struct btrfs_work *work)
814 {
815 struct async_submit_bio *async;
816
817 async = container_of(work, struct async_submit_bio, work);
818 kfree(async);
819 }
820
821 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
822 int mirror_num, unsigned long bio_flags,
823 u64 bio_offset, void *private_data,
824 extent_submit_bio_start_t *submit_bio_start)
825 {
826 struct async_submit_bio *async;
827
828 async = kmalloc(sizeof(*async), GFP_NOFS);
829 if (!async)
830 return BLK_STS_RESOURCE;
831
832 async->private_data = private_data;
833 async->bio = bio;
834 async->mirror_num = mirror_num;
835 async->submit_bio_start = submit_bio_start;
836
837 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
838 run_one_async_done, run_one_async_free);
839
840 async->bio_offset = bio_offset;
841
842 async->status = 0;
843
844 if (op_is_sync(bio->bi_opf))
845 btrfs_set_work_high_priority(&async->work);
846
847 btrfs_queue_work(fs_info->workers, &async->work);
848 return 0;
849 }
850
851 static blk_status_t btree_csum_one_bio(struct bio *bio)
852 {
853 struct bio_vec *bvec;
854 struct btrfs_root *root;
855 int ret = 0;
856 struct bvec_iter_all iter_all;
857
858 ASSERT(!bio_flagged(bio, BIO_CLONED));
859 bio_for_each_segment_all(bvec, bio, iter_all) {
860 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
861 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
862 if (ret)
863 break;
864 }
865
866 return errno_to_blk_status(ret);
867 }
868
869 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
870 u64 bio_offset)
871 {
872 /*
873 * when we're called for a write, we're already in the async
874 * submission context. Just jump into btrfs_map_bio
875 */
876 return btree_csum_one_bio(bio);
877 }
878
879 static int check_async_write(struct btrfs_fs_info *fs_info,
880 struct btrfs_inode *bi)
881 {
882 if (atomic_read(&bi->sync_writers))
883 return 0;
884 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
885 return 0;
886 return 1;
887 }
888
889 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
890 int mirror_num,
891 unsigned long bio_flags)
892 {
893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
894 int async = check_async_write(fs_info, BTRFS_I(inode));
895 blk_status_t ret;
896
897 if (bio_op(bio) != REQ_OP_WRITE) {
898 /*
899 * called for a read, do the setup so that checksum validation
900 * can happen in the async kernel threads
901 */
902 ret = btrfs_bio_wq_end_io(fs_info, bio,
903 BTRFS_WQ_ENDIO_METADATA);
904 if (ret)
905 goto out_w_error;
906 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
907 } else if (!async) {
908 ret = btree_csum_one_bio(bio);
909 if (ret)
910 goto out_w_error;
911 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
912 } else {
913 /*
914 * kthread helpers are used to submit writes so that
915 * checksumming can happen in parallel across all CPUs
916 */
917 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
918 0, inode, btree_submit_bio_start);
919 }
920
921 if (ret)
922 goto out_w_error;
923 return 0;
924
925 out_w_error:
926 bio->bi_status = ret;
927 bio_endio(bio);
928 return ret;
929 }
930
931 #ifdef CONFIG_MIGRATION
932 static int btree_migratepage(struct address_space *mapping,
933 struct page *newpage, struct page *page,
934 enum migrate_mode mode)
935 {
936 /*
937 * we can't safely write a btree page from here,
938 * we haven't done the locking hook
939 */
940 if (PageDirty(page))
941 return -EAGAIN;
942 /*
943 * Buffers may be managed in a filesystem specific way.
944 * We must have no buffers or drop them.
945 */
946 if (page_has_private(page) &&
947 !try_to_release_page(page, GFP_KERNEL))
948 return -EAGAIN;
949 return migrate_page(mapping, newpage, page, mode);
950 }
951 #endif
952
953
954 static int btree_writepages(struct address_space *mapping,
955 struct writeback_control *wbc)
956 {
957 struct btrfs_fs_info *fs_info;
958 int ret;
959
960 if (wbc->sync_mode == WB_SYNC_NONE) {
961
962 if (wbc->for_kupdate)
963 return 0;
964
965 fs_info = BTRFS_I(mapping->host)->root->fs_info;
966 /* this is a bit racy, but that's ok */
967 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
968 BTRFS_DIRTY_METADATA_THRESH,
969 fs_info->dirty_metadata_batch);
970 if (ret < 0)
971 return 0;
972 }
973 return btree_write_cache_pages(mapping, wbc);
974 }
975
976 static int btree_readpage(struct file *file, struct page *page)
977 {
978 struct extent_io_tree *tree;
979 tree = &BTRFS_I(page->mapping->host)->io_tree;
980 return extent_read_full_page(tree, page, btree_get_extent, 0);
981 }
982
983 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
984 {
985 if (PageWriteback(page) || PageDirty(page))
986 return 0;
987
988 return try_release_extent_buffer(page);
989 }
990
991 static void btree_invalidatepage(struct page *page, unsigned int offset,
992 unsigned int length)
993 {
994 struct extent_io_tree *tree;
995 tree = &BTRFS_I(page->mapping->host)->io_tree;
996 extent_invalidatepage(tree, page, offset);
997 btree_releasepage(page, GFP_NOFS);
998 if (PagePrivate(page)) {
999 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1000 "page private not zero on page %llu",
1001 (unsigned long long)page_offset(page));
1002 ClearPagePrivate(page);
1003 set_page_private(page, 0);
1004 put_page(page);
1005 }
1006 }
1007
1008 static int btree_set_page_dirty(struct page *page)
1009 {
1010 #ifdef DEBUG
1011 struct extent_buffer *eb;
1012
1013 BUG_ON(!PagePrivate(page));
1014 eb = (struct extent_buffer *)page->private;
1015 BUG_ON(!eb);
1016 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1017 BUG_ON(!atomic_read(&eb->refs));
1018 btrfs_assert_tree_locked(eb);
1019 #endif
1020 return __set_page_dirty_nobuffers(page);
1021 }
1022
1023 static const struct address_space_operations btree_aops = {
1024 .readpage = btree_readpage,
1025 .writepages = btree_writepages,
1026 .releasepage = btree_releasepage,
1027 .invalidatepage = btree_invalidatepage,
1028 #ifdef CONFIG_MIGRATION
1029 .migratepage = btree_migratepage,
1030 #endif
1031 .set_page_dirty = btree_set_page_dirty,
1032 };
1033
1034 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1035 {
1036 struct extent_buffer *buf = NULL;
1037 int ret;
1038
1039 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1040 if (IS_ERR(buf))
1041 return;
1042
1043 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1044 if (ret < 0)
1045 free_extent_buffer_stale(buf);
1046 else
1047 free_extent_buffer(buf);
1048 }
1049
1050 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1051 int mirror_num, struct extent_buffer **eb)
1052 {
1053 struct extent_buffer *buf = NULL;
1054 int ret;
1055
1056 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1057 if (IS_ERR(buf))
1058 return 0;
1059
1060 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1061
1062 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
1063 if (ret) {
1064 free_extent_buffer_stale(buf);
1065 return ret;
1066 }
1067
1068 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1069 free_extent_buffer_stale(buf);
1070 return -EIO;
1071 } else if (extent_buffer_uptodate(buf)) {
1072 *eb = buf;
1073 } else {
1074 free_extent_buffer(buf);
1075 }
1076 return 0;
1077 }
1078
1079 struct extent_buffer *btrfs_find_create_tree_block(
1080 struct btrfs_fs_info *fs_info,
1081 u64 bytenr)
1082 {
1083 if (btrfs_is_testing(fs_info))
1084 return alloc_test_extent_buffer(fs_info, bytenr);
1085 return alloc_extent_buffer(fs_info, bytenr);
1086 }
1087
1088 /*
1089 * Read tree block at logical address @bytenr and do variant basic but critical
1090 * verification.
1091 *
1092 * @parent_transid: expected transid of this tree block, skip check if 0
1093 * @level: expected level, mandatory check
1094 * @first_key: expected key in slot 0, skip check if NULL
1095 */
1096 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1097 u64 parent_transid, int level,
1098 struct btrfs_key *first_key)
1099 {
1100 struct extent_buffer *buf = NULL;
1101 int ret;
1102
1103 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1104 if (IS_ERR(buf))
1105 return buf;
1106
1107 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1108 level, first_key);
1109 if (ret) {
1110 free_extent_buffer_stale(buf);
1111 return ERR_PTR(ret);
1112 }
1113 return buf;
1114
1115 }
1116
1117 void btrfs_clean_tree_block(struct extent_buffer *buf)
1118 {
1119 struct btrfs_fs_info *fs_info = buf->fs_info;
1120 if (btrfs_header_generation(buf) ==
1121 fs_info->running_transaction->transid) {
1122 btrfs_assert_tree_locked(buf);
1123
1124 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1125 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1126 -buf->len,
1127 fs_info->dirty_metadata_batch);
1128 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1129 btrfs_set_lock_blocking_write(buf);
1130 clear_extent_buffer_dirty(buf);
1131 }
1132 }
1133 }
1134
1135 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1136 {
1137 struct btrfs_subvolume_writers *writers;
1138 int ret;
1139
1140 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1141 if (!writers)
1142 return ERR_PTR(-ENOMEM);
1143
1144 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1145 if (ret < 0) {
1146 kfree(writers);
1147 return ERR_PTR(ret);
1148 }
1149
1150 init_waitqueue_head(&writers->wait);
1151 return writers;
1152 }
1153
1154 static void
1155 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1156 {
1157 percpu_counter_destroy(&writers->counter);
1158 kfree(writers);
1159 }
1160
1161 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1162 u64 objectid)
1163 {
1164 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1165 root->node = NULL;
1166 root->commit_root = NULL;
1167 root->state = 0;
1168 root->orphan_cleanup_state = 0;
1169
1170 root->last_trans = 0;
1171 root->highest_objectid = 0;
1172 root->nr_delalloc_inodes = 0;
1173 root->nr_ordered_extents = 0;
1174 root->inode_tree = RB_ROOT;
1175 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1176 root->block_rsv = NULL;
1177
1178 INIT_LIST_HEAD(&root->dirty_list);
1179 INIT_LIST_HEAD(&root->root_list);
1180 INIT_LIST_HEAD(&root->delalloc_inodes);
1181 INIT_LIST_HEAD(&root->delalloc_root);
1182 INIT_LIST_HEAD(&root->ordered_extents);
1183 INIT_LIST_HEAD(&root->ordered_root);
1184 INIT_LIST_HEAD(&root->reloc_dirty_list);
1185 INIT_LIST_HEAD(&root->logged_list[0]);
1186 INIT_LIST_HEAD(&root->logged_list[1]);
1187 spin_lock_init(&root->inode_lock);
1188 spin_lock_init(&root->delalloc_lock);
1189 spin_lock_init(&root->ordered_extent_lock);
1190 spin_lock_init(&root->accounting_lock);
1191 spin_lock_init(&root->log_extents_lock[0]);
1192 spin_lock_init(&root->log_extents_lock[1]);
1193 spin_lock_init(&root->qgroup_meta_rsv_lock);
1194 mutex_init(&root->objectid_mutex);
1195 mutex_init(&root->log_mutex);
1196 mutex_init(&root->ordered_extent_mutex);
1197 mutex_init(&root->delalloc_mutex);
1198 init_waitqueue_head(&root->log_writer_wait);
1199 init_waitqueue_head(&root->log_commit_wait[0]);
1200 init_waitqueue_head(&root->log_commit_wait[1]);
1201 INIT_LIST_HEAD(&root->log_ctxs[0]);
1202 INIT_LIST_HEAD(&root->log_ctxs[1]);
1203 atomic_set(&root->log_commit[0], 0);
1204 atomic_set(&root->log_commit[1], 0);
1205 atomic_set(&root->log_writers, 0);
1206 atomic_set(&root->log_batch, 0);
1207 refcount_set(&root->refs, 1);
1208 atomic_set(&root->will_be_snapshotted, 0);
1209 atomic_set(&root->snapshot_force_cow, 0);
1210 atomic_set(&root->nr_swapfiles, 0);
1211 root->log_transid = 0;
1212 root->log_transid_committed = -1;
1213 root->last_log_commit = 0;
1214 if (!dummy)
1215 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1216 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1217
1218 memset(&root->root_key, 0, sizeof(root->root_key));
1219 memset(&root->root_item, 0, sizeof(root->root_item));
1220 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1221 if (!dummy)
1222 root->defrag_trans_start = fs_info->generation;
1223 else
1224 root->defrag_trans_start = 0;
1225 root->root_key.objectid = objectid;
1226 root->anon_dev = 0;
1227
1228 spin_lock_init(&root->root_item_lock);
1229 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1230 }
1231
1232 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1233 gfp_t flags)
1234 {
1235 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1236 if (root)
1237 root->fs_info = fs_info;
1238 return root;
1239 }
1240
1241 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1242 /* Should only be used by the testing infrastructure */
1243 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1244 {
1245 struct btrfs_root *root;
1246
1247 if (!fs_info)
1248 return ERR_PTR(-EINVAL);
1249
1250 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1251 if (!root)
1252 return ERR_PTR(-ENOMEM);
1253
1254 /* We don't use the stripesize in selftest, set it as sectorsize */
1255 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1256 root->alloc_bytenr = 0;
1257
1258 return root;
1259 }
1260 #endif
1261
1262 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1263 u64 objectid)
1264 {
1265 struct btrfs_fs_info *fs_info = trans->fs_info;
1266 struct extent_buffer *leaf;
1267 struct btrfs_root *tree_root = fs_info->tree_root;
1268 struct btrfs_root *root;
1269 struct btrfs_key key;
1270 unsigned int nofs_flag;
1271 int ret = 0;
1272 uuid_le uuid = NULL_UUID_LE;
1273
1274 /*
1275 * We're holding a transaction handle, so use a NOFS memory allocation
1276 * context to avoid deadlock if reclaim happens.
1277 */
1278 nofs_flag = memalloc_nofs_save();
1279 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1280 memalloc_nofs_restore(nofs_flag);
1281 if (!root)
1282 return ERR_PTR(-ENOMEM);
1283
1284 __setup_root(root, fs_info, objectid);
1285 root->root_key.objectid = objectid;
1286 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1287 root->root_key.offset = 0;
1288
1289 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1290 if (IS_ERR(leaf)) {
1291 ret = PTR_ERR(leaf);
1292 leaf = NULL;
1293 goto fail;
1294 }
1295
1296 root->node = leaf;
1297 btrfs_mark_buffer_dirty(leaf);
1298
1299 root->commit_root = btrfs_root_node(root);
1300 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1301
1302 root->root_item.flags = 0;
1303 root->root_item.byte_limit = 0;
1304 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1305 btrfs_set_root_generation(&root->root_item, trans->transid);
1306 btrfs_set_root_level(&root->root_item, 0);
1307 btrfs_set_root_refs(&root->root_item, 1);
1308 btrfs_set_root_used(&root->root_item, leaf->len);
1309 btrfs_set_root_last_snapshot(&root->root_item, 0);
1310 btrfs_set_root_dirid(&root->root_item, 0);
1311 if (is_fstree(objectid))
1312 uuid_le_gen(&uuid);
1313 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1314 root->root_item.drop_level = 0;
1315
1316 key.objectid = objectid;
1317 key.type = BTRFS_ROOT_ITEM_KEY;
1318 key.offset = 0;
1319 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1320 if (ret)
1321 goto fail;
1322
1323 btrfs_tree_unlock(leaf);
1324
1325 return root;
1326
1327 fail:
1328 if (leaf) {
1329 btrfs_tree_unlock(leaf);
1330 free_extent_buffer(root->commit_root);
1331 free_extent_buffer(leaf);
1332 }
1333 kfree(root);
1334
1335 return ERR_PTR(ret);
1336 }
1337
1338 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1339 struct btrfs_fs_info *fs_info)
1340 {
1341 struct btrfs_root *root;
1342 struct extent_buffer *leaf;
1343
1344 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1345 if (!root)
1346 return ERR_PTR(-ENOMEM);
1347
1348 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1349
1350 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1351 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1352 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1353
1354 /*
1355 * DON'T set REF_COWS for log trees
1356 *
1357 * log trees do not get reference counted because they go away
1358 * before a real commit is actually done. They do store pointers
1359 * to file data extents, and those reference counts still get
1360 * updated (along with back refs to the log tree).
1361 */
1362
1363 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1364 NULL, 0, 0, 0);
1365 if (IS_ERR(leaf)) {
1366 kfree(root);
1367 return ERR_CAST(leaf);
1368 }
1369
1370 root->node = leaf;
1371
1372 btrfs_mark_buffer_dirty(root->node);
1373 btrfs_tree_unlock(root->node);
1374 return root;
1375 }
1376
1377 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1378 struct btrfs_fs_info *fs_info)
1379 {
1380 struct btrfs_root *log_root;
1381
1382 log_root = alloc_log_tree(trans, fs_info);
1383 if (IS_ERR(log_root))
1384 return PTR_ERR(log_root);
1385 WARN_ON(fs_info->log_root_tree);
1386 fs_info->log_root_tree = log_root;
1387 return 0;
1388 }
1389
1390 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1391 struct btrfs_root *root)
1392 {
1393 struct btrfs_fs_info *fs_info = root->fs_info;
1394 struct btrfs_root *log_root;
1395 struct btrfs_inode_item *inode_item;
1396
1397 log_root = alloc_log_tree(trans, fs_info);
1398 if (IS_ERR(log_root))
1399 return PTR_ERR(log_root);
1400
1401 log_root->last_trans = trans->transid;
1402 log_root->root_key.offset = root->root_key.objectid;
1403
1404 inode_item = &log_root->root_item.inode;
1405 btrfs_set_stack_inode_generation(inode_item, 1);
1406 btrfs_set_stack_inode_size(inode_item, 3);
1407 btrfs_set_stack_inode_nlink(inode_item, 1);
1408 btrfs_set_stack_inode_nbytes(inode_item,
1409 fs_info->nodesize);
1410 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1411
1412 btrfs_set_root_node(&log_root->root_item, log_root->node);
1413
1414 WARN_ON(root->log_root);
1415 root->log_root = log_root;
1416 root->log_transid = 0;
1417 root->log_transid_committed = -1;
1418 root->last_log_commit = 0;
1419 return 0;
1420 }
1421
1422 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1423 struct btrfs_key *key)
1424 {
1425 struct btrfs_root *root;
1426 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1427 struct btrfs_path *path;
1428 u64 generation;
1429 int ret;
1430 int level;
1431
1432 path = btrfs_alloc_path();
1433 if (!path)
1434 return ERR_PTR(-ENOMEM);
1435
1436 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1437 if (!root) {
1438 ret = -ENOMEM;
1439 goto alloc_fail;
1440 }
1441
1442 __setup_root(root, fs_info, key->objectid);
1443
1444 ret = btrfs_find_root(tree_root, key, path,
1445 &root->root_item, &root->root_key);
1446 if (ret) {
1447 if (ret > 0)
1448 ret = -ENOENT;
1449 goto find_fail;
1450 }
1451
1452 generation = btrfs_root_generation(&root->root_item);
1453 level = btrfs_root_level(&root->root_item);
1454 root->node = read_tree_block(fs_info,
1455 btrfs_root_bytenr(&root->root_item),
1456 generation, level, NULL);
1457 if (IS_ERR(root->node)) {
1458 ret = PTR_ERR(root->node);
1459 goto find_fail;
1460 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1461 ret = -EIO;
1462 free_extent_buffer(root->node);
1463 goto find_fail;
1464 }
1465 root->commit_root = btrfs_root_node(root);
1466 out:
1467 btrfs_free_path(path);
1468 return root;
1469
1470 find_fail:
1471 kfree(root);
1472 alloc_fail:
1473 root = ERR_PTR(ret);
1474 goto out;
1475 }
1476
1477 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1478 struct btrfs_key *location)
1479 {
1480 struct btrfs_root *root;
1481
1482 root = btrfs_read_tree_root(tree_root, location);
1483 if (IS_ERR(root))
1484 return root;
1485
1486 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1487 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1488 btrfs_check_and_init_root_item(&root->root_item);
1489 }
1490
1491 return root;
1492 }
1493
1494 int btrfs_init_fs_root(struct btrfs_root *root)
1495 {
1496 int ret;
1497 struct btrfs_subvolume_writers *writers;
1498
1499 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1500 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1501 GFP_NOFS);
1502 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1503 ret = -ENOMEM;
1504 goto fail;
1505 }
1506
1507 writers = btrfs_alloc_subvolume_writers();
1508 if (IS_ERR(writers)) {
1509 ret = PTR_ERR(writers);
1510 goto fail;
1511 }
1512 root->subv_writers = writers;
1513
1514 btrfs_init_free_ino_ctl(root);
1515 spin_lock_init(&root->ino_cache_lock);
1516 init_waitqueue_head(&root->ino_cache_wait);
1517
1518 ret = get_anon_bdev(&root->anon_dev);
1519 if (ret)
1520 goto fail;
1521
1522 mutex_lock(&root->objectid_mutex);
1523 ret = btrfs_find_highest_objectid(root,
1524 &root->highest_objectid);
1525 if (ret) {
1526 mutex_unlock(&root->objectid_mutex);
1527 goto fail;
1528 }
1529
1530 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1531
1532 mutex_unlock(&root->objectid_mutex);
1533
1534 return 0;
1535 fail:
1536 /* The caller is responsible to call btrfs_free_fs_root */
1537 return ret;
1538 }
1539
1540 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1541 u64 root_id)
1542 {
1543 struct btrfs_root *root;
1544
1545 spin_lock(&fs_info->fs_roots_radix_lock);
1546 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 (unsigned long)root_id);
1548 spin_unlock(&fs_info->fs_roots_radix_lock);
1549 return root;
1550 }
1551
1552 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1553 struct btrfs_root *root)
1554 {
1555 int ret;
1556
1557 ret = radix_tree_preload(GFP_NOFS);
1558 if (ret)
1559 return ret;
1560
1561 spin_lock(&fs_info->fs_roots_radix_lock);
1562 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1563 (unsigned long)root->root_key.objectid,
1564 root);
1565 if (ret == 0)
1566 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1567 spin_unlock(&fs_info->fs_roots_radix_lock);
1568 radix_tree_preload_end();
1569
1570 return ret;
1571 }
1572
1573 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1574 struct btrfs_key *location,
1575 bool check_ref)
1576 {
1577 struct btrfs_root *root;
1578 struct btrfs_path *path;
1579 struct btrfs_key key;
1580 int ret;
1581
1582 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1583 return fs_info->tree_root;
1584 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1585 return fs_info->extent_root;
1586 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1587 return fs_info->chunk_root;
1588 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1589 return fs_info->dev_root;
1590 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1591 return fs_info->csum_root;
1592 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1593 return fs_info->quota_root ? fs_info->quota_root :
1594 ERR_PTR(-ENOENT);
1595 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1596 return fs_info->uuid_root ? fs_info->uuid_root :
1597 ERR_PTR(-ENOENT);
1598 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1599 return fs_info->free_space_root ? fs_info->free_space_root :
1600 ERR_PTR(-ENOENT);
1601 again:
1602 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1603 if (root) {
1604 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1605 return ERR_PTR(-ENOENT);
1606 return root;
1607 }
1608
1609 root = btrfs_read_fs_root(fs_info->tree_root, location);
1610 if (IS_ERR(root))
1611 return root;
1612
1613 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1614 ret = -ENOENT;
1615 goto fail;
1616 }
1617
1618 ret = btrfs_init_fs_root(root);
1619 if (ret)
1620 goto fail;
1621
1622 path = btrfs_alloc_path();
1623 if (!path) {
1624 ret = -ENOMEM;
1625 goto fail;
1626 }
1627 key.objectid = BTRFS_ORPHAN_OBJECTID;
1628 key.type = BTRFS_ORPHAN_ITEM_KEY;
1629 key.offset = location->objectid;
1630
1631 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1632 btrfs_free_path(path);
1633 if (ret < 0)
1634 goto fail;
1635 if (ret == 0)
1636 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1637
1638 ret = btrfs_insert_fs_root(fs_info, root);
1639 if (ret) {
1640 if (ret == -EEXIST) {
1641 btrfs_free_fs_root(root);
1642 goto again;
1643 }
1644 goto fail;
1645 }
1646 return root;
1647 fail:
1648 btrfs_free_fs_root(root);
1649 return ERR_PTR(ret);
1650 }
1651
1652 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1653 {
1654 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1655 int ret = 0;
1656 struct btrfs_device *device;
1657 struct backing_dev_info *bdi;
1658
1659 rcu_read_lock();
1660 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1661 if (!device->bdev)
1662 continue;
1663 bdi = device->bdev->bd_bdi;
1664 if (bdi_congested(bdi, bdi_bits)) {
1665 ret = 1;
1666 break;
1667 }
1668 }
1669 rcu_read_unlock();
1670 return ret;
1671 }
1672
1673 /*
1674 * called by the kthread helper functions to finally call the bio end_io
1675 * functions. This is where read checksum verification actually happens
1676 */
1677 static void end_workqueue_fn(struct btrfs_work *work)
1678 {
1679 struct bio *bio;
1680 struct btrfs_end_io_wq *end_io_wq;
1681
1682 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1683 bio = end_io_wq->bio;
1684
1685 bio->bi_status = end_io_wq->status;
1686 bio->bi_private = end_io_wq->private;
1687 bio->bi_end_io = end_io_wq->end_io;
1688 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1689 bio_endio(bio);
1690 }
1691
1692 static int cleaner_kthread(void *arg)
1693 {
1694 struct btrfs_root *root = arg;
1695 struct btrfs_fs_info *fs_info = root->fs_info;
1696 int again;
1697
1698 while (1) {
1699 again = 0;
1700
1701 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1702
1703 /* Make the cleaner go to sleep early. */
1704 if (btrfs_need_cleaner_sleep(fs_info))
1705 goto sleep;
1706
1707 /*
1708 * Do not do anything if we might cause open_ctree() to block
1709 * before we have finished mounting the filesystem.
1710 */
1711 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1712 goto sleep;
1713
1714 if (!mutex_trylock(&fs_info->cleaner_mutex))
1715 goto sleep;
1716
1717 /*
1718 * Avoid the problem that we change the status of the fs
1719 * during the above check and trylock.
1720 */
1721 if (btrfs_need_cleaner_sleep(fs_info)) {
1722 mutex_unlock(&fs_info->cleaner_mutex);
1723 goto sleep;
1724 }
1725
1726 btrfs_run_delayed_iputs(fs_info);
1727
1728 again = btrfs_clean_one_deleted_snapshot(root);
1729 mutex_unlock(&fs_info->cleaner_mutex);
1730
1731 /*
1732 * The defragger has dealt with the R/O remount and umount,
1733 * needn't do anything special here.
1734 */
1735 btrfs_run_defrag_inodes(fs_info);
1736
1737 /*
1738 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1739 * with relocation (btrfs_relocate_chunk) and relocation
1740 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1741 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1742 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1743 * unused block groups.
1744 */
1745 btrfs_delete_unused_bgs(fs_info);
1746 sleep:
1747 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1748 if (kthread_should_park())
1749 kthread_parkme();
1750 if (kthread_should_stop())
1751 return 0;
1752 if (!again) {
1753 set_current_state(TASK_INTERRUPTIBLE);
1754 schedule();
1755 __set_current_state(TASK_RUNNING);
1756 }
1757 }
1758 }
1759
1760 static int transaction_kthread(void *arg)
1761 {
1762 struct btrfs_root *root = arg;
1763 struct btrfs_fs_info *fs_info = root->fs_info;
1764 struct btrfs_trans_handle *trans;
1765 struct btrfs_transaction *cur;
1766 u64 transid;
1767 time64_t now;
1768 unsigned long delay;
1769 bool cannot_commit;
1770
1771 do {
1772 cannot_commit = false;
1773 delay = HZ * fs_info->commit_interval;
1774 mutex_lock(&fs_info->transaction_kthread_mutex);
1775
1776 spin_lock(&fs_info->trans_lock);
1777 cur = fs_info->running_transaction;
1778 if (!cur) {
1779 spin_unlock(&fs_info->trans_lock);
1780 goto sleep;
1781 }
1782
1783 now = ktime_get_seconds();
1784 if (cur->state < TRANS_STATE_BLOCKED &&
1785 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1786 (now < cur->start_time ||
1787 now - cur->start_time < fs_info->commit_interval)) {
1788 spin_unlock(&fs_info->trans_lock);
1789 delay = HZ * 5;
1790 goto sleep;
1791 }
1792 transid = cur->transid;
1793 spin_unlock(&fs_info->trans_lock);
1794
1795 /* If the file system is aborted, this will always fail. */
1796 trans = btrfs_attach_transaction(root);
1797 if (IS_ERR(trans)) {
1798 if (PTR_ERR(trans) != -ENOENT)
1799 cannot_commit = true;
1800 goto sleep;
1801 }
1802 if (transid == trans->transid) {
1803 btrfs_commit_transaction(trans);
1804 } else {
1805 btrfs_end_transaction(trans);
1806 }
1807 sleep:
1808 wake_up_process(fs_info->cleaner_kthread);
1809 mutex_unlock(&fs_info->transaction_kthread_mutex);
1810
1811 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1812 &fs_info->fs_state)))
1813 btrfs_cleanup_transaction(fs_info);
1814 if (!kthread_should_stop() &&
1815 (!btrfs_transaction_blocked(fs_info) ||
1816 cannot_commit))
1817 schedule_timeout_interruptible(delay);
1818 } while (!kthread_should_stop());
1819 return 0;
1820 }
1821
1822 /*
1823 * this will find the highest generation in the array of
1824 * root backups. The index of the highest array is returned,
1825 * or -1 if we can't find anything.
1826 *
1827 * We check to make sure the array is valid by comparing the
1828 * generation of the latest root in the array with the generation
1829 * in the super block. If they don't match we pitch it.
1830 */
1831 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1832 {
1833 u64 cur;
1834 int newest_index = -1;
1835 struct btrfs_root_backup *root_backup;
1836 int i;
1837
1838 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1839 root_backup = info->super_copy->super_roots + i;
1840 cur = btrfs_backup_tree_root_gen(root_backup);
1841 if (cur == newest_gen)
1842 newest_index = i;
1843 }
1844
1845 /* check to see if we actually wrapped around */
1846 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1847 root_backup = info->super_copy->super_roots;
1848 cur = btrfs_backup_tree_root_gen(root_backup);
1849 if (cur == newest_gen)
1850 newest_index = 0;
1851 }
1852 return newest_index;
1853 }
1854
1855
1856 /*
1857 * find the oldest backup so we know where to store new entries
1858 * in the backup array. This will set the backup_root_index
1859 * field in the fs_info struct
1860 */
1861 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1862 u64 newest_gen)
1863 {
1864 int newest_index = -1;
1865
1866 newest_index = find_newest_super_backup(info, newest_gen);
1867 /* if there was garbage in there, just move along */
1868 if (newest_index == -1) {
1869 info->backup_root_index = 0;
1870 } else {
1871 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872 }
1873 }
1874
1875 /*
1876 * copy all the root pointers into the super backup array.
1877 * this will bump the backup pointer by one when it is
1878 * done
1879 */
1880 static void backup_super_roots(struct btrfs_fs_info *info)
1881 {
1882 int next_backup;
1883 struct btrfs_root_backup *root_backup;
1884 int last_backup;
1885
1886 next_backup = info->backup_root_index;
1887 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1888 BTRFS_NUM_BACKUP_ROOTS;
1889
1890 /*
1891 * just overwrite the last backup if we're at the same generation
1892 * this happens only at umount
1893 */
1894 root_backup = info->super_for_commit->super_roots + last_backup;
1895 if (btrfs_backup_tree_root_gen(root_backup) ==
1896 btrfs_header_generation(info->tree_root->node))
1897 next_backup = last_backup;
1898
1899 root_backup = info->super_for_commit->super_roots + next_backup;
1900
1901 /*
1902 * make sure all of our padding and empty slots get zero filled
1903 * regardless of which ones we use today
1904 */
1905 memset(root_backup, 0, sizeof(*root_backup));
1906
1907 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1908
1909 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1910 btrfs_set_backup_tree_root_gen(root_backup,
1911 btrfs_header_generation(info->tree_root->node));
1912
1913 btrfs_set_backup_tree_root_level(root_backup,
1914 btrfs_header_level(info->tree_root->node));
1915
1916 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1917 btrfs_set_backup_chunk_root_gen(root_backup,
1918 btrfs_header_generation(info->chunk_root->node));
1919 btrfs_set_backup_chunk_root_level(root_backup,
1920 btrfs_header_level(info->chunk_root->node));
1921
1922 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1923 btrfs_set_backup_extent_root_gen(root_backup,
1924 btrfs_header_generation(info->extent_root->node));
1925 btrfs_set_backup_extent_root_level(root_backup,
1926 btrfs_header_level(info->extent_root->node));
1927
1928 /*
1929 * we might commit during log recovery, which happens before we set
1930 * the fs_root. Make sure it is valid before we fill it in.
1931 */
1932 if (info->fs_root && info->fs_root->node) {
1933 btrfs_set_backup_fs_root(root_backup,
1934 info->fs_root->node->start);
1935 btrfs_set_backup_fs_root_gen(root_backup,
1936 btrfs_header_generation(info->fs_root->node));
1937 btrfs_set_backup_fs_root_level(root_backup,
1938 btrfs_header_level(info->fs_root->node));
1939 }
1940
1941 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1942 btrfs_set_backup_dev_root_gen(root_backup,
1943 btrfs_header_generation(info->dev_root->node));
1944 btrfs_set_backup_dev_root_level(root_backup,
1945 btrfs_header_level(info->dev_root->node));
1946
1947 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1948 btrfs_set_backup_csum_root_gen(root_backup,
1949 btrfs_header_generation(info->csum_root->node));
1950 btrfs_set_backup_csum_root_level(root_backup,
1951 btrfs_header_level(info->csum_root->node));
1952
1953 btrfs_set_backup_total_bytes(root_backup,
1954 btrfs_super_total_bytes(info->super_copy));
1955 btrfs_set_backup_bytes_used(root_backup,
1956 btrfs_super_bytes_used(info->super_copy));
1957 btrfs_set_backup_num_devices(root_backup,
1958 btrfs_super_num_devices(info->super_copy));
1959
1960 /*
1961 * if we don't copy this out to the super_copy, it won't get remembered
1962 * for the next commit
1963 */
1964 memcpy(&info->super_copy->super_roots,
1965 &info->super_for_commit->super_roots,
1966 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1967 }
1968
1969 /*
1970 * this copies info out of the root backup array and back into
1971 * the in-memory super block. It is meant to help iterate through
1972 * the array, so you send it the number of backups you've already
1973 * tried and the last backup index you used.
1974 *
1975 * this returns -1 when it has tried all the backups
1976 */
1977 static noinline int next_root_backup(struct btrfs_fs_info *info,
1978 struct btrfs_super_block *super,
1979 int *num_backups_tried, int *backup_index)
1980 {
1981 struct btrfs_root_backup *root_backup;
1982 int newest = *backup_index;
1983
1984 if (*num_backups_tried == 0) {
1985 u64 gen = btrfs_super_generation(super);
1986
1987 newest = find_newest_super_backup(info, gen);
1988 if (newest == -1)
1989 return -1;
1990
1991 *backup_index = newest;
1992 *num_backups_tried = 1;
1993 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1994 /* we've tried all the backups, all done */
1995 return -1;
1996 } else {
1997 /* jump to the next oldest backup */
1998 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1999 BTRFS_NUM_BACKUP_ROOTS;
2000 *backup_index = newest;
2001 *num_backups_tried += 1;
2002 }
2003 root_backup = super->super_roots + newest;
2004
2005 btrfs_set_super_generation(super,
2006 btrfs_backup_tree_root_gen(root_backup));
2007 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2008 btrfs_set_super_root_level(super,
2009 btrfs_backup_tree_root_level(root_backup));
2010 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2011
2012 /*
2013 * fixme: the total bytes and num_devices need to match or we should
2014 * need a fsck
2015 */
2016 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2017 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2018 return 0;
2019 }
2020
2021 /* helper to cleanup workers */
2022 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2023 {
2024 btrfs_destroy_workqueue(fs_info->fixup_workers);
2025 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2026 btrfs_destroy_workqueue(fs_info->workers);
2027 btrfs_destroy_workqueue(fs_info->endio_workers);
2028 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2029 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2030 btrfs_destroy_workqueue(fs_info->rmw_workers);
2031 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2032 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2033 btrfs_destroy_workqueue(fs_info->submit_workers);
2034 btrfs_destroy_workqueue(fs_info->delayed_workers);
2035 btrfs_destroy_workqueue(fs_info->caching_workers);
2036 btrfs_destroy_workqueue(fs_info->readahead_workers);
2037 btrfs_destroy_workqueue(fs_info->flush_workers);
2038 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2039 /*
2040 * Now that all other work queues are destroyed, we can safely destroy
2041 * the queues used for metadata I/O, since tasks from those other work
2042 * queues can do metadata I/O operations.
2043 */
2044 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2045 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2046 }
2047
2048 static void free_root_extent_buffers(struct btrfs_root *root)
2049 {
2050 if (root) {
2051 free_extent_buffer(root->node);
2052 free_extent_buffer(root->commit_root);
2053 root->node = NULL;
2054 root->commit_root = NULL;
2055 }
2056 }
2057
2058 /* helper to cleanup tree roots */
2059 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2060 {
2061 free_root_extent_buffers(info->tree_root);
2062
2063 free_root_extent_buffers(info->dev_root);
2064 free_root_extent_buffers(info->extent_root);
2065 free_root_extent_buffers(info->csum_root);
2066 free_root_extent_buffers(info->quota_root);
2067 free_root_extent_buffers(info->uuid_root);
2068 if (chunk_root)
2069 free_root_extent_buffers(info->chunk_root);
2070 free_root_extent_buffers(info->free_space_root);
2071 }
2072
2073 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2074 {
2075 int ret;
2076 struct btrfs_root *gang[8];
2077 int i;
2078
2079 while (!list_empty(&fs_info->dead_roots)) {
2080 gang[0] = list_entry(fs_info->dead_roots.next,
2081 struct btrfs_root, root_list);
2082 list_del(&gang[0]->root_list);
2083
2084 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2085 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2086 } else {
2087 free_extent_buffer(gang[0]->node);
2088 free_extent_buffer(gang[0]->commit_root);
2089 btrfs_put_fs_root(gang[0]);
2090 }
2091 }
2092
2093 while (1) {
2094 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2095 (void **)gang, 0,
2096 ARRAY_SIZE(gang));
2097 if (!ret)
2098 break;
2099 for (i = 0; i < ret; i++)
2100 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2101 }
2102
2103 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2104 btrfs_free_log_root_tree(NULL, fs_info);
2105 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2106 }
2107 }
2108
2109 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2110 {
2111 mutex_init(&fs_info->scrub_lock);
2112 atomic_set(&fs_info->scrubs_running, 0);
2113 atomic_set(&fs_info->scrub_pause_req, 0);
2114 atomic_set(&fs_info->scrubs_paused, 0);
2115 atomic_set(&fs_info->scrub_cancel_req, 0);
2116 init_waitqueue_head(&fs_info->scrub_pause_wait);
2117 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2118 }
2119
2120 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2121 {
2122 spin_lock_init(&fs_info->balance_lock);
2123 mutex_init(&fs_info->balance_mutex);
2124 atomic_set(&fs_info->balance_pause_req, 0);
2125 atomic_set(&fs_info->balance_cancel_req, 0);
2126 fs_info->balance_ctl = NULL;
2127 init_waitqueue_head(&fs_info->balance_wait_q);
2128 }
2129
2130 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2131 {
2132 struct inode *inode = fs_info->btree_inode;
2133
2134 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2135 set_nlink(inode, 1);
2136 /*
2137 * we set the i_size on the btree inode to the max possible int.
2138 * the real end of the address space is determined by all of
2139 * the devices in the system
2140 */
2141 inode->i_size = OFFSET_MAX;
2142 inode->i_mapping->a_ops = &btree_aops;
2143
2144 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2145 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2146 IO_TREE_INODE_IO, inode);
2147 BTRFS_I(inode)->io_tree.track_uptodate = false;
2148 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2149
2150 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2151
2152 BTRFS_I(inode)->root = fs_info->tree_root;
2153 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2154 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2155 btrfs_insert_inode_hash(inode);
2156 }
2157
2158 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2159 {
2160 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2161 init_rwsem(&fs_info->dev_replace.rwsem);
2162 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2163 }
2164
2165 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2166 {
2167 spin_lock_init(&fs_info->qgroup_lock);
2168 mutex_init(&fs_info->qgroup_ioctl_lock);
2169 fs_info->qgroup_tree = RB_ROOT;
2170 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2171 fs_info->qgroup_seq = 1;
2172 fs_info->qgroup_ulist = NULL;
2173 fs_info->qgroup_rescan_running = false;
2174 mutex_init(&fs_info->qgroup_rescan_lock);
2175 }
2176
2177 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2178 struct btrfs_fs_devices *fs_devices)
2179 {
2180 u32 max_active = fs_info->thread_pool_size;
2181 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2182
2183 fs_info->workers =
2184 btrfs_alloc_workqueue(fs_info, "worker",
2185 flags | WQ_HIGHPRI, max_active, 16);
2186
2187 fs_info->delalloc_workers =
2188 btrfs_alloc_workqueue(fs_info, "delalloc",
2189 flags, max_active, 2);
2190
2191 fs_info->flush_workers =
2192 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2193 flags, max_active, 0);
2194
2195 fs_info->caching_workers =
2196 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2197
2198 /*
2199 * a higher idle thresh on the submit workers makes it much more
2200 * likely that bios will be send down in a sane order to the
2201 * devices
2202 */
2203 fs_info->submit_workers =
2204 btrfs_alloc_workqueue(fs_info, "submit", flags,
2205 min_t(u64, fs_devices->num_devices,
2206 max_active), 64);
2207
2208 fs_info->fixup_workers =
2209 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2210
2211 /*
2212 * endios are largely parallel and should have a very
2213 * low idle thresh
2214 */
2215 fs_info->endio_workers =
2216 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2217 fs_info->endio_meta_workers =
2218 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2219 max_active, 4);
2220 fs_info->endio_meta_write_workers =
2221 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2222 max_active, 2);
2223 fs_info->endio_raid56_workers =
2224 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2225 max_active, 4);
2226 fs_info->endio_repair_workers =
2227 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2228 fs_info->rmw_workers =
2229 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2230 fs_info->endio_write_workers =
2231 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2232 max_active, 2);
2233 fs_info->endio_freespace_worker =
2234 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2235 max_active, 0);
2236 fs_info->delayed_workers =
2237 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2238 max_active, 0);
2239 fs_info->readahead_workers =
2240 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2241 max_active, 2);
2242 fs_info->qgroup_rescan_workers =
2243 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2244
2245 if (!(fs_info->workers && fs_info->delalloc_workers &&
2246 fs_info->submit_workers && fs_info->flush_workers &&
2247 fs_info->endio_workers && fs_info->endio_meta_workers &&
2248 fs_info->endio_meta_write_workers &&
2249 fs_info->endio_repair_workers &&
2250 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2251 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2252 fs_info->caching_workers && fs_info->readahead_workers &&
2253 fs_info->fixup_workers && fs_info->delayed_workers &&
2254 fs_info->qgroup_rescan_workers)) {
2255 return -ENOMEM;
2256 }
2257
2258 return 0;
2259 }
2260
2261 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2262 {
2263 struct crypto_shash *csum_shash;
2264 const char *csum_name = btrfs_super_csum_name(csum_type);
2265
2266 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2267
2268 if (IS_ERR(csum_shash)) {
2269 btrfs_err(fs_info, "error allocating %s hash for checksum",
2270 csum_name);
2271 return PTR_ERR(csum_shash);
2272 }
2273
2274 fs_info->csum_shash = csum_shash;
2275
2276 return 0;
2277 }
2278
2279 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2280 {
2281 crypto_free_shash(fs_info->csum_shash);
2282 }
2283
2284 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2285 struct btrfs_fs_devices *fs_devices)
2286 {
2287 int ret;
2288 struct btrfs_root *log_tree_root;
2289 struct btrfs_super_block *disk_super = fs_info->super_copy;
2290 u64 bytenr = btrfs_super_log_root(disk_super);
2291 int level = btrfs_super_log_root_level(disk_super);
2292
2293 if (fs_devices->rw_devices == 0) {
2294 btrfs_warn(fs_info, "log replay required on RO media");
2295 return -EIO;
2296 }
2297
2298 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2299 if (!log_tree_root)
2300 return -ENOMEM;
2301
2302 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2303
2304 log_tree_root->node = read_tree_block(fs_info, bytenr,
2305 fs_info->generation + 1,
2306 level, NULL);
2307 if (IS_ERR(log_tree_root->node)) {
2308 btrfs_warn(fs_info, "failed to read log tree");
2309 ret = PTR_ERR(log_tree_root->node);
2310 kfree(log_tree_root);
2311 return ret;
2312 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2313 btrfs_err(fs_info, "failed to read log tree");
2314 free_extent_buffer(log_tree_root->node);
2315 kfree(log_tree_root);
2316 return -EIO;
2317 }
2318 /* returns with log_tree_root freed on success */
2319 ret = btrfs_recover_log_trees(log_tree_root);
2320 if (ret) {
2321 btrfs_handle_fs_error(fs_info, ret,
2322 "Failed to recover log tree");
2323 free_extent_buffer(log_tree_root->node);
2324 kfree(log_tree_root);
2325 return ret;
2326 }
2327
2328 if (sb_rdonly(fs_info->sb)) {
2329 ret = btrfs_commit_super(fs_info);
2330 if (ret)
2331 return ret;
2332 }
2333
2334 return 0;
2335 }
2336
2337 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2338 {
2339 struct btrfs_root *tree_root = fs_info->tree_root;
2340 struct btrfs_root *root;
2341 struct btrfs_key location;
2342 int ret;
2343
2344 BUG_ON(!fs_info->tree_root);
2345
2346 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2347 location.type = BTRFS_ROOT_ITEM_KEY;
2348 location.offset = 0;
2349
2350 root = btrfs_read_tree_root(tree_root, &location);
2351 if (IS_ERR(root)) {
2352 ret = PTR_ERR(root);
2353 goto out;
2354 }
2355 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356 fs_info->extent_root = root;
2357
2358 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2359 root = btrfs_read_tree_root(tree_root, &location);
2360 if (IS_ERR(root)) {
2361 ret = PTR_ERR(root);
2362 goto out;
2363 }
2364 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2365 fs_info->dev_root = root;
2366 btrfs_init_devices_late(fs_info);
2367
2368 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2369 root = btrfs_read_tree_root(tree_root, &location);
2370 if (IS_ERR(root)) {
2371 ret = PTR_ERR(root);
2372 goto out;
2373 }
2374 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2375 fs_info->csum_root = root;
2376
2377 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2378 root = btrfs_read_tree_root(tree_root, &location);
2379 if (!IS_ERR(root)) {
2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2382 fs_info->quota_root = root;
2383 }
2384
2385 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2386 root = btrfs_read_tree_root(tree_root, &location);
2387 if (IS_ERR(root)) {
2388 ret = PTR_ERR(root);
2389 if (ret != -ENOENT)
2390 goto out;
2391 } else {
2392 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2393 fs_info->uuid_root = root;
2394 }
2395
2396 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2397 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2398 root = btrfs_read_tree_root(tree_root, &location);
2399 if (IS_ERR(root)) {
2400 ret = PTR_ERR(root);
2401 goto out;
2402 }
2403 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404 fs_info->free_space_root = root;
2405 }
2406
2407 return 0;
2408 out:
2409 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2410 location.objectid, ret);
2411 return ret;
2412 }
2413
2414 /*
2415 * Real super block validation
2416 * NOTE: super csum type and incompat features will not be checked here.
2417 *
2418 * @sb: super block to check
2419 * @mirror_num: the super block number to check its bytenr:
2420 * 0 the primary (1st) sb
2421 * 1, 2 2nd and 3rd backup copy
2422 * -1 skip bytenr check
2423 */
2424 static int validate_super(struct btrfs_fs_info *fs_info,
2425 struct btrfs_super_block *sb, int mirror_num)
2426 {
2427 u64 nodesize = btrfs_super_nodesize(sb);
2428 u64 sectorsize = btrfs_super_sectorsize(sb);
2429 int ret = 0;
2430
2431 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2432 btrfs_err(fs_info, "no valid FS found");
2433 ret = -EINVAL;
2434 }
2435 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2436 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2437 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2438 ret = -EINVAL;
2439 }
2440 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2441 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2442 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2443 ret = -EINVAL;
2444 }
2445 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2446 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2447 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2448 ret = -EINVAL;
2449 }
2450 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2451 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2452 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2453 ret = -EINVAL;
2454 }
2455
2456 /*
2457 * Check sectorsize and nodesize first, other check will need it.
2458 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2459 */
2460 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2461 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2462 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2463 ret = -EINVAL;
2464 }
2465 /* Only PAGE SIZE is supported yet */
2466 if (sectorsize != PAGE_SIZE) {
2467 btrfs_err(fs_info,
2468 "sectorsize %llu not supported yet, only support %lu",
2469 sectorsize, PAGE_SIZE);
2470 ret = -EINVAL;
2471 }
2472 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2473 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2474 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2475 ret = -EINVAL;
2476 }
2477 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2478 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2479 le32_to_cpu(sb->__unused_leafsize), nodesize);
2480 ret = -EINVAL;
2481 }
2482
2483 /* Root alignment check */
2484 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2485 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2486 btrfs_super_root(sb));
2487 ret = -EINVAL;
2488 }
2489 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2490 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2491 btrfs_super_chunk_root(sb));
2492 ret = -EINVAL;
2493 }
2494 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2495 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2496 btrfs_super_log_root(sb));
2497 ret = -EINVAL;
2498 }
2499
2500 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2501 BTRFS_FSID_SIZE) != 0) {
2502 btrfs_err(fs_info,
2503 "dev_item UUID does not match metadata fsid: %pU != %pU",
2504 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2505 ret = -EINVAL;
2506 }
2507
2508 /*
2509 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2510 * done later
2511 */
2512 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2513 btrfs_err(fs_info, "bytes_used is too small %llu",
2514 btrfs_super_bytes_used(sb));
2515 ret = -EINVAL;
2516 }
2517 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2518 btrfs_err(fs_info, "invalid stripesize %u",
2519 btrfs_super_stripesize(sb));
2520 ret = -EINVAL;
2521 }
2522 if (btrfs_super_num_devices(sb) > (1UL << 31))
2523 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2524 btrfs_super_num_devices(sb));
2525 if (btrfs_super_num_devices(sb) == 0) {
2526 btrfs_err(fs_info, "number of devices is 0");
2527 ret = -EINVAL;
2528 }
2529
2530 if (mirror_num >= 0 &&
2531 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2532 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2533 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2534 ret = -EINVAL;
2535 }
2536
2537 /*
2538 * Obvious sys_chunk_array corruptions, it must hold at least one key
2539 * and one chunk
2540 */
2541 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2542 btrfs_err(fs_info, "system chunk array too big %u > %u",
2543 btrfs_super_sys_array_size(sb),
2544 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2545 ret = -EINVAL;
2546 }
2547 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2548 + sizeof(struct btrfs_chunk)) {
2549 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2550 btrfs_super_sys_array_size(sb),
2551 sizeof(struct btrfs_disk_key)
2552 + sizeof(struct btrfs_chunk));
2553 ret = -EINVAL;
2554 }
2555
2556 /*
2557 * The generation is a global counter, we'll trust it more than the others
2558 * but it's still possible that it's the one that's wrong.
2559 */
2560 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2561 btrfs_warn(fs_info,
2562 "suspicious: generation < chunk_root_generation: %llu < %llu",
2563 btrfs_super_generation(sb),
2564 btrfs_super_chunk_root_generation(sb));
2565 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2566 && btrfs_super_cache_generation(sb) != (u64)-1)
2567 btrfs_warn(fs_info,
2568 "suspicious: generation < cache_generation: %llu < %llu",
2569 btrfs_super_generation(sb),
2570 btrfs_super_cache_generation(sb));
2571
2572 return ret;
2573 }
2574
2575 /*
2576 * Validation of super block at mount time.
2577 * Some checks already done early at mount time, like csum type and incompat
2578 * flags will be skipped.
2579 */
2580 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2581 {
2582 return validate_super(fs_info, fs_info->super_copy, 0);
2583 }
2584
2585 /*
2586 * Validation of super block at write time.
2587 * Some checks like bytenr check will be skipped as their values will be
2588 * overwritten soon.
2589 * Extra checks like csum type and incompat flags will be done here.
2590 */
2591 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2592 struct btrfs_super_block *sb)
2593 {
2594 int ret;
2595
2596 ret = validate_super(fs_info, sb, -1);
2597 if (ret < 0)
2598 goto out;
2599 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2600 ret = -EUCLEAN;
2601 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2602 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2603 goto out;
2604 }
2605 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2606 ret = -EUCLEAN;
2607 btrfs_err(fs_info,
2608 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2609 btrfs_super_incompat_flags(sb),
2610 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2611 goto out;
2612 }
2613 out:
2614 if (ret < 0)
2615 btrfs_err(fs_info,
2616 "super block corruption detected before writing it to disk");
2617 return ret;
2618 }
2619
2620 int open_ctree(struct super_block *sb,
2621 struct btrfs_fs_devices *fs_devices,
2622 char *options)
2623 {
2624 u32 sectorsize;
2625 u32 nodesize;
2626 u32 stripesize;
2627 u64 generation;
2628 u64 features;
2629 u16 csum_type;
2630 struct btrfs_key location;
2631 struct buffer_head *bh;
2632 struct btrfs_super_block *disk_super;
2633 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2634 struct btrfs_root *tree_root;
2635 struct btrfs_root *chunk_root;
2636 int ret;
2637 int err = -EINVAL;
2638 int num_backups_tried = 0;
2639 int backup_index = 0;
2640 int clear_free_space_tree = 0;
2641 int level;
2642
2643 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2644 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2645 if (!tree_root || !chunk_root) {
2646 err = -ENOMEM;
2647 goto fail;
2648 }
2649
2650 ret = init_srcu_struct(&fs_info->subvol_srcu);
2651 if (ret) {
2652 err = ret;
2653 goto fail;
2654 }
2655
2656 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2657 if (ret) {
2658 err = ret;
2659 goto fail_srcu;
2660 }
2661
2662 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2663 if (ret) {
2664 err = ret;
2665 goto fail_dio_bytes;
2666 }
2667 fs_info->dirty_metadata_batch = PAGE_SIZE *
2668 (1 + ilog2(nr_cpu_ids));
2669
2670 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2671 if (ret) {
2672 err = ret;
2673 goto fail_dirty_metadata_bytes;
2674 }
2675
2676 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2677 GFP_KERNEL);
2678 if (ret) {
2679 err = ret;
2680 goto fail_delalloc_bytes;
2681 }
2682
2683 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2684 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2685 INIT_LIST_HEAD(&fs_info->trans_list);
2686 INIT_LIST_HEAD(&fs_info->dead_roots);
2687 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2688 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2689 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2690 spin_lock_init(&fs_info->delalloc_root_lock);
2691 spin_lock_init(&fs_info->trans_lock);
2692 spin_lock_init(&fs_info->fs_roots_radix_lock);
2693 spin_lock_init(&fs_info->delayed_iput_lock);
2694 spin_lock_init(&fs_info->defrag_inodes_lock);
2695 spin_lock_init(&fs_info->tree_mod_seq_lock);
2696 spin_lock_init(&fs_info->super_lock);
2697 spin_lock_init(&fs_info->buffer_lock);
2698 spin_lock_init(&fs_info->unused_bgs_lock);
2699 rwlock_init(&fs_info->tree_mod_log_lock);
2700 mutex_init(&fs_info->unused_bg_unpin_mutex);
2701 mutex_init(&fs_info->delete_unused_bgs_mutex);
2702 mutex_init(&fs_info->reloc_mutex);
2703 mutex_init(&fs_info->delalloc_root_mutex);
2704 seqlock_init(&fs_info->profiles_lock);
2705
2706 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2707 INIT_LIST_HEAD(&fs_info->space_info);
2708 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2709 INIT_LIST_HEAD(&fs_info->unused_bgs);
2710 extent_map_tree_init(&fs_info->mapping_tree);
2711 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2712 BTRFS_BLOCK_RSV_GLOBAL);
2713 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2714 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2715 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2716 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2717 BTRFS_BLOCK_RSV_DELOPS);
2718 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2719 BTRFS_BLOCK_RSV_DELREFS);
2720
2721 atomic_set(&fs_info->async_delalloc_pages, 0);
2722 atomic_set(&fs_info->defrag_running, 0);
2723 atomic_set(&fs_info->reada_works_cnt, 0);
2724 atomic_set(&fs_info->nr_delayed_iputs, 0);
2725 atomic64_set(&fs_info->tree_mod_seq, 0);
2726 fs_info->sb = sb;
2727 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2728 fs_info->metadata_ratio = 0;
2729 fs_info->defrag_inodes = RB_ROOT;
2730 atomic64_set(&fs_info->free_chunk_space, 0);
2731 fs_info->tree_mod_log = RB_ROOT;
2732 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2733 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2734 /* readahead state */
2735 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2736 spin_lock_init(&fs_info->reada_lock);
2737 btrfs_init_ref_verify(fs_info);
2738
2739 fs_info->thread_pool_size = min_t(unsigned long,
2740 num_online_cpus() + 2, 8);
2741
2742 INIT_LIST_HEAD(&fs_info->ordered_roots);
2743 spin_lock_init(&fs_info->ordered_root_lock);
2744
2745 fs_info->btree_inode = new_inode(sb);
2746 if (!fs_info->btree_inode) {
2747 err = -ENOMEM;
2748 goto fail_bio_counter;
2749 }
2750 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2751
2752 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2753 GFP_KERNEL);
2754 if (!fs_info->delayed_root) {
2755 err = -ENOMEM;
2756 goto fail_iput;
2757 }
2758 btrfs_init_delayed_root(fs_info->delayed_root);
2759
2760 btrfs_init_scrub(fs_info);
2761 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2762 fs_info->check_integrity_print_mask = 0;
2763 #endif
2764 btrfs_init_balance(fs_info);
2765 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2766
2767 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2768 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2769
2770 btrfs_init_btree_inode(fs_info);
2771
2772 spin_lock_init(&fs_info->block_group_cache_lock);
2773 fs_info->block_group_cache_tree = RB_ROOT;
2774 fs_info->first_logical_byte = (u64)-1;
2775
2776 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2777 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2778 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2779 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2780 fs_info->pinned_extents = &fs_info->freed_extents[0];
2781 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2782
2783 mutex_init(&fs_info->ordered_operations_mutex);
2784 mutex_init(&fs_info->tree_log_mutex);
2785 mutex_init(&fs_info->chunk_mutex);
2786 mutex_init(&fs_info->transaction_kthread_mutex);
2787 mutex_init(&fs_info->cleaner_mutex);
2788 mutex_init(&fs_info->ro_block_group_mutex);
2789 init_rwsem(&fs_info->commit_root_sem);
2790 init_rwsem(&fs_info->cleanup_work_sem);
2791 init_rwsem(&fs_info->subvol_sem);
2792 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2793
2794 btrfs_init_dev_replace_locks(fs_info);
2795 btrfs_init_qgroup(fs_info);
2796
2797 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2798 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2799
2800 init_waitqueue_head(&fs_info->transaction_throttle);
2801 init_waitqueue_head(&fs_info->transaction_wait);
2802 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2803 init_waitqueue_head(&fs_info->async_submit_wait);
2804 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2805
2806 /* Usable values until the real ones are cached from the superblock */
2807 fs_info->nodesize = 4096;
2808 fs_info->sectorsize = 4096;
2809 fs_info->stripesize = 4096;
2810
2811 spin_lock_init(&fs_info->swapfile_pins_lock);
2812 fs_info->swapfile_pins = RB_ROOT;
2813
2814 fs_info->send_in_progress = 0;
2815
2816 ret = btrfs_alloc_stripe_hash_table(fs_info);
2817 if (ret) {
2818 err = ret;
2819 goto fail_alloc;
2820 }
2821
2822 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2823
2824 invalidate_bdev(fs_devices->latest_bdev);
2825
2826 /*
2827 * Read super block and check the signature bytes only
2828 */
2829 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2830 if (IS_ERR(bh)) {
2831 err = PTR_ERR(bh);
2832 goto fail_alloc;
2833 }
2834
2835 /*
2836 * Verify the type first, if that or the the checksum value are
2837 * corrupted, we'll find out
2838 */
2839 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2840 if (!btrfs_supported_super_csum(csum_type)) {
2841 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2842 csum_type);
2843 err = -EINVAL;
2844 brelse(bh);
2845 goto fail_alloc;
2846 }
2847
2848 ret = btrfs_init_csum_hash(fs_info, csum_type);
2849 if (ret) {
2850 err = ret;
2851 goto fail_alloc;
2852 }
2853
2854 /*
2855 * We want to check superblock checksum, the type is stored inside.
2856 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2857 */
2858 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2859 btrfs_err(fs_info, "superblock checksum mismatch");
2860 err = -EINVAL;
2861 brelse(bh);
2862 goto fail_csum;
2863 }
2864
2865 /*
2866 * super_copy is zeroed at allocation time and we never touch the
2867 * following bytes up to INFO_SIZE, the checksum is calculated from
2868 * the whole block of INFO_SIZE
2869 */
2870 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2871 brelse(bh);
2872
2873 disk_super = fs_info->super_copy;
2874
2875 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2876 BTRFS_FSID_SIZE));
2877
2878 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2879 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2880 fs_info->super_copy->metadata_uuid,
2881 BTRFS_FSID_SIZE));
2882 }
2883
2884 features = btrfs_super_flags(disk_super);
2885 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2886 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2887 btrfs_set_super_flags(disk_super, features);
2888 btrfs_info(fs_info,
2889 "found metadata UUID change in progress flag, clearing");
2890 }
2891
2892 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2893 sizeof(*fs_info->super_for_commit));
2894
2895 ret = btrfs_validate_mount_super(fs_info);
2896 if (ret) {
2897 btrfs_err(fs_info, "superblock contains fatal errors");
2898 err = -EINVAL;
2899 goto fail_csum;
2900 }
2901
2902 if (!btrfs_super_root(disk_super))
2903 goto fail_csum;
2904
2905 /* check FS state, whether FS is broken. */
2906 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2907 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2908
2909 /*
2910 * run through our array of backup supers and setup
2911 * our ring pointer to the oldest one
2912 */
2913 generation = btrfs_super_generation(disk_super);
2914 find_oldest_super_backup(fs_info, generation);
2915
2916 /*
2917 * In the long term, we'll store the compression type in the super
2918 * block, and it'll be used for per file compression control.
2919 */
2920 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2921
2922 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2923 if (ret) {
2924 err = ret;
2925 goto fail_csum;
2926 }
2927
2928 features = btrfs_super_incompat_flags(disk_super) &
2929 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2930 if (features) {
2931 btrfs_err(fs_info,
2932 "cannot mount because of unsupported optional features (%llx)",
2933 features);
2934 err = -EINVAL;
2935 goto fail_csum;
2936 }
2937
2938 features = btrfs_super_incompat_flags(disk_super);
2939 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2940 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2941 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2942 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2943 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2944
2945 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2946 btrfs_info(fs_info, "has skinny extents");
2947
2948 /*
2949 * flag our filesystem as having big metadata blocks if
2950 * they are bigger than the page size
2951 */
2952 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2953 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2954 btrfs_info(fs_info,
2955 "flagging fs with big metadata feature");
2956 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2957 }
2958
2959 nodesize = btrfs_super_nodesize(disk_super);
2960 sectorsize = btrfs_super_sectorsize(disk_super);
2961 stripesize = sectorsize;
2962 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2963 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2964
2965 /* Cache block sizes */
2966 fs_info->nodesize = nodesize;
2967 fs_info->sectorsize = sectorsize;
2968 fs_info->stripesize = stripesize;
2969
2970 /*
2971 * mixed block groups end up with duplicate but slightly offset
2972 * extent buffers for the same range. It leads to corruptions
2973 */
2974 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2975 (sectorsize != nodesize)) {
2976 btrfs_err(fs_info,
2977 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2978 nodesize, sectorsize);
2979 goto fail_csum;
2980 }
2981
2982 /*
2983 * Needn't use the lock because there is no other task which will
2984 * update the flag.
2985 */
2986 btrfs_set_super_incompat_flags(disk_super, features);
2987
2988 features = btrfs_super_compat_ro_flags(disk_super) &
2989 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2990 if (!sb_rdonly(sb) && features) {
2991 btrfs_err(fs_info,
2992 "cannot mount read-write because of unsupported optional features (%llx)",
2993 features);
2994 err = -EINVAL;
2995 goto fail_csum;
2996 }
2997
2998 ret = btrfs_init_workqueues(fs_info, fs_devices);
2999 if (ret) {
3000 err = ret;
3001 goto fail_sb_buffer;
3002 }
3003
3004 sb->s_bdi->congested_fn = btrfs_congested_fn;
3005 sb->s_bdi->congested_data = fs_info;
3006 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3007 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3008 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3009 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3010
3011 sb->s_blocksize = sectorsize;
3012 sb->s_blocksize_bits = blksize_bits(sectorsize);
3013 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3014
3015 mutex_lock(&fs_info->chunk_mutex);
3016 ret = btrfs_read_sys_array(fs_info);
3017 mutex_unlock(&fs_info->chunk_mutex);
3018 if (ret) {
3019 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3020 goto fail_sb_buffer;
3021 }
3022
3023 generation = btrfs_super_chunk_root_generation(disk_super);
3024 level = btrfs_super_chunk_root_level(disk_super);
3025
3026 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3027
3028 chunk_root->node = read_tree_block(fs_info,
3029 btrfs_super_chunk_root(disk_super),
3030 generation, level, NULL);
3031 if (IS_ERR(chunk_root->node) ||
3032 !extent_buffer_uptodate(chunk_root->node)) {
3033 btrfs_err(fs_info, "failed to read chunk root");
3034 if (!IS_ERR(chunk_root->node))
3035 free_extent_buffer(chunk_root->node);
3036 chunk_root->node = NULL;
3037 goto fail_tree_roots;
3038 }
3039 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3040 chunk_root->commit_root = btrfs_root_node(chunk_root);
3041
3042 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3043 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3044
3045 ret = btrfs_read_chunk_tree(fs_info);
3046 if (ret) {
3047 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3048 goto fail_tree_roots;
3049 }
3050
3051 /*
3052 * Keep the devid that is marked to be the target device for the
3053 * device replace procedure
3054 */
3055 btrfs_free_extra_devids(fs_devices, 0);
3056
3057 if (!fs_devices->latest_bdev) {
3058 btrfs_err(fs_info, "failed to read devices");
3059 goto fail_tree_roots;
3060 }
3061
3062 retry_root_backup:
3063 generation = btrfs_super_generation(disk_super);
3064 level = btrfs_super_root_level(disk_super);
3065
3066 tree_root->node = read_tree_block(fs_info,
3067 btrfs_super_root(disk_super),
3068 generation, level, NULL);
3069 if (IS_ERR(tree_root->node) ||
3070 !extent_buffer_uptodate(tree_root->node)) {
3071 btrfs_warn(fs_info, "failed to read tree root");
3072 if (!IS_ERR(tree_root->node))
3073 free_extent_buffer(tree_root->node);
3074 tree_root->node = NULL;
3075 goto recovery_tree_root;
3076 }
3077
3078 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3079 tree_root->commit_root = btrfs_root_node(tree_root);
3080 btrfs_set_root_refs(&tree_root->root_item, 1);
3081
3082 mutex_lock(&tree_root->objectid_mutex);
3083 ret = btrfs_find_highest_objectid(tree_root,
3084 &tree_root->highest_objectid);
3085 if (ret) {
3086 mutex_unlock(&tree_root->objectid_mutex);
3087 goto recovery_tree_root;
3088 }
3089
3090 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3091
3092 mutex_unlock(&tree_root->objectid_mutex);
3093
3094 ret = btrfs_read_roots(fs_info);
3095 if (ret)
3096 goto recovery_tree_root;
3097
3098 fs_info->generation = generation;
3099 fs_info->last_trans_committed = generation;
3100
3101 ret = btrfs_verify_dev_extents(fs_info);
3102 if (ret) {
3103 btrfs_err(fs_info,
3104 "failed to verify dev extents against chunks: %d",
3105 ret);
3106 goto fail_block_groups;
3107 }
3108 ret = btrfs_recover_balance(fs_info);
3109 if (ret) {
3110 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3111 goto fail_block_groups;
3112 }
3113
3114 ret = btrfs_init_dev_stats(fs_info);
3115 if (ret) {
3116 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3117 goto fail_block_groups;
3118 }
3119
3120 ret = btrfs_init_dev_replace(fs_info);
3121 if (ret) {
3122 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3123 goto fail_block_groups;
3124 }
3125
3126 btrfs_free_extra_devids(fs_devices, 1);
3127
3128 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3129 if (ret) {
3130 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3131 ret);
3132 goto fail_block_groups;
3133 }
3134
3135 ret = btrfs_sysfs_add_device(fs_devices);
3136 if (ret) {
3137 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3138 ret);
3139 goto fail_fsdev_sysfs;
3140 }
3141
3142 ret = btrfs_sysfs_add_mounted(fs_info);
3143 if (ret) {
3144 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3145 goto fail_fsdev_sysfs;
3146 }
3147
3148 ret = btrfs_init_space_info(fs_info);
3149 if (ret) {
3150 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3151 goto fail_sysfs;
3152 }
3153
3154 ret = btrfs_read_block_groups(fs_info);
3155 if (ret) {
3156 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3157 goto fail_sysfs;
3158 }
3159
3160 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3161 btrfs_warn(fs_info,
3162 "writable mount is not allowed due to too many missing devices");
3163 goto fail_sysfs;
3164 }
3165
3166 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3167 "btrfs-cleaner");
3168 if (IS_ERR(fs_info->cleaner_kthread))
3169 goto fail_sysfs;
3170
3171 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3172 tree_root,
3173 "btrfs-transaction");
3174 if (IS_ERR(fs_info->transaction_kthread))
3175 goto fail_cleaner;
3176
3177 if (!btrfs_test_opt(fs_info, NOSSD) &&
3178 !fs_info->fs_devices->rotating) {
3179 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3180 }
3181
3182 /*
3183 * Mount does not set all options immediately, we can do it now and do
3184 * not have to wait for transaction commit
3185 */
3186 btrfs_apply_pending_changes(fs_info);
3187
3188 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3189 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3190 ret = btrfsic_mount(fs_info, fs_devices,
3191 btrfs_test_opt(fs_info,
3192 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3193 1 : 0,
3194 fs_info->check_integrity_print_mask);
3195 if (ret)
3196 btrfs_warn(fs_info,
3197 "failed to initialize integrity check module: %d",
3198 ret);
3199 }
3200 #endif
3201 ret = btrfs_read_qgroup_config(fs_info);
3202 if (ret)
3203 goto fail_trans_kthread;
3204
3205 if (btrfs_build_ref_tree(fs_info))
3206 btrfs_err(fs_info, "couldn't build ref tree");
3207
3208 /* do not make disk changes in broken FS or nologreplay is given */
3209 if (btrfs_super_log_root(disk_super) != 0 &&
3210 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3211 ret = btrfs_replay_log(fs_info, fs_devices);
3212 if (ret) {
3213 err = ret;
3214 goto fail_qgroup;
3215 }
3216 }
3217
3218 ret = btrfs_find_orphan_roots(fs_info);
3219 if (ret)
3220 goto fail_qgroup;
3221
3222 if (!sb_rdonly(sb)) {
3223 ret = btrfs_cleanup_fs_roots(fs_info);
3224 if (ret)
3225 goto fail_qgroup;
3226
3227 mutex_lock(&fs_info->cleaner_mutex);
3228 ret = btrfs_recover_relocation(tree_root);
3229 mutex_unlock(&fs_info->cleaner_mutex);
3230 if (ret < 0) {
3231 btrfs_warn(fs_info, "failed to recover relocation: %d",
3232 ret);
3233 err = -EINVAL;
3234 goto fail_qgroup;
3235 }
3236 }
3237
3238 location.objectid = BTRFS_FS_TREE_OBJECTID;
3239 location.type = BTRFS_ROOT_ITEM_KEY;
3240 location.offset = 0;
3241
3242 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3243 if (IS_ERR(fs_info->fs_root)) {
3244 err = PTR_ERR(fs_info->fs_root);
3245 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3246 goto fail_qgroup;
3247 }
3248
3249 if (sb_rdonly(sb))
3250 return 0;
3251
3252 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3253 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3254 clear_free_space_tree = 1;
3255 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3256 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3257 btrfs_warn(fs_info, "free space tree is invalid");
3258 clear_free_space_tree = 1;
3259 }
3260
3261 if (clear_free_space_tree) {
3262 btrfs_info(fs_info, "clearing free space tree");
3263 ret = btrfs_clear_free_space_tree(fs_info);
3264 if (ret) {
3265 btrfs_warn(fs_info,
3266 "failed to clear free space tree: %d", ret);
3267 close_ctree(fs_info);
3268 return ret;
3269 }
3270 }
3271
3272 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3273 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3274 btrfs_info(fs_info, "creating free space tree");
3275 ret = btrfs_create_free_space_tree(fs_info);
3276 if (ret) {
3277 btrfs_warn(fs_info,
3278 "failed to create free space tree: %d", ret);
3279 close_ctree(fs_info);
3280 return ret;
3281 }
3282 }
3283
3284 down_read(&fs_info->cleanup_work_sem);
3285 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3286 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3287 up_read(&fs_info->cleanup_work_sem);
3288 close_ctree(fs_info);
3289 return ret;
3290 }
3291 up_read(&fs_info->cleanup_work_sem);
3292
3293 ret = btrfs_resume_balance_async(fs_info);
3294 if (ret) {
3295 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3296 close_ctree(fs_info);
3297 return ret;
3298 }
3299
3300 ret = btrfs_resume_dev_replace_async(fs_info);
3301 if (ret) {
3302 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3303 close_ctree(fs_info);
3304 return ret;
3305 }
3306
3307 btrfs_qgroup_rescan_resume(fs_info);
3308
3309 if (!fs_info->uuid_root) {
3310 btrfs_info(fs_info, "creating UUID tree");
3311 ret = btrfs_create_uuid_tree(fs_info);
3312 if (ret) {
3313 btrfs_warn(fs_info,
3314 "failed to create the UUID tree: %d", ret);
3315 close_ctree(fs_info);
3316 return ret;
3317 }
3318 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3319 fs_info->generation !=
3320 btrfs_super_uuid_tree_generation(disk_super)) {
3321 btrfs_info(fs_info, "checking UUID tree");
3322 ret = btrfs_check_uuid_tree(fs_info);
3323 if (ret) {
3324 btrfs_warn(fs_info,
3325 "failed to check the UUID tree: %d", ret);
3326 close_ctree(fs_info);
3327 return ret;
3328 }
3329 } else {
3330 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3331 }
3332 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3333
3334 /*
3335 * backuproot only affect mount behavior, and if open_ctree succeeded,
3336 * no need to keep the flag
3337 */
3338 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3339
3340 return 0;
3341
3342 fail_qgroup:
3343 btrfs_free_qgroup_config(fs_info);
3344 fail_trans_kthread:
3345 kthread_stop(fs_info->transaction_kthread);
3346 btrfs_cleanup_transaction(fs_info);
3347 btrfs_free_fs_roots(fs_info);
3348 fail_cleaner:
3349 kthread_stop(fs_info->cleaner_kthread);
3350
3351 /*
3352 * make sure we're done with the btree inode before we stop our
3353 * kthreads
3354 */
3355 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3356
3357 fail_sysfs:
3358 btrfs_sysfs_remove_mounted(fs_info);
3359
3360 fail_fsdev_sysfs:
3361 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3362
3363 fail_block_groups:
3364 btrfs_put_block_group_cache(fs_info);
3365
3366 fail_tree_roots:
3367 free_root_pointers(fs_info, 1);
3368 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3369
3370 fail_sb_buffer:
3371 btrfs_stop_all_workers(fs_info);
3372 btrfs_free_block_groups(fs_info);
3373 fail_csum:
3374 btrfs_free_csum_hash(fs_info);
3375 fail_alloc:
3376 fail_iput:
3377 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3378
3379 iput(fs_info->btree_inode);
3380 fail_bio_counter:
3381 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3382 fail_delalloc_bytes:
3383 percpu_counter_destroy(&fs_info->delalloc_bytes);
3384 fail_dirty_metadata_bytes:
3385 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3386 fail_dio_bytes:
3387 percpu_counter_destroy(&fs_info->dio_bytes);
3388 fail_srcu:
3389 cleanup_srcu_struct(&fs_info->subvol_srcu);
3390 fail:
3391 btrfs_free_stripe_hash_table(fs_info);
3392 btrfs_close_devices(fs_info->fs_devices);
3393 return err;
3394
3395 recovery_tree_root:
3396 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3397 goto fail_tree_roots;
3398
3399 free_root_pointers(fs_info, 0);
3400
3401 /* don't use the log in recovery mode, it won't be valid */
3402 btrfs_set_super_log_root(disk_super, 0);
3403
3404 /* we can't trust the free space cache either */
3405 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3406
3407 ret = next_root_backup(fs_info, fs_info->super_copy,
3408 &num_backups_tried, &backup_index);
3409 if (ret == -1)
3410 goto fail_block_groups;
3411 goto retry_root_backup;
3412 }
3413 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3414
3415 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3416 {
3417 if (uptodate) {
3418 set_buffer_uptodate(bh);
3419 } else {
3420 struct btrfs_device *device = (struct btrfs_device *)
3421 bh->b_private;
3422
3423 btrfs_warn_rl_in_rcu(device->fs_info,
3424 "lost page write due to IO error on %s",
3425 rcu_str_deref(device->name));
3426 /* note, we don't set_buffer_write_io_error because we have
3427 * our own ways of dealing with the IO errors
3428 */
3429 clear_buffer_uptodate(bh);
3430 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3431 }
3432 unlock_buffer(bh);
3433 put_bh(bh);
3434 }
3435
3436 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3437 struct buffer_head **bh_ret)
3438 {
3439 struct buffer_head *bh;
3440 struct btrfs_super_block *super;
3441 u64 bytenr;
3442
3443 bytenr = btrfs_sb_offset(copy_num);
3444 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3445 return -EINVAL;
3446
3447 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3448 /*
3449 * If we fail to read from the underlying devices, as of now
3450 * the best option we have is to mark it EIO.
3451 */
3452 if (!bh)
3453 return -EIO;
3454
3455 super = (struct btrfs_super_block *)bh->b_data;
3456 if (btrfs_super_bytenr(super) != bytenr ||
3457 btrfs_super_magic(super) != BTRFS_MAGIC) {
3458 brelse(bh);
3459 return -EINVAL;
3460 }
3461
3462 *bh_ret = bh;
3463 return 0;
3464 }
3465
3466
3467 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3468 {
3469 struct buffer_head *bh;
3470 struct buffer_head *latest = NULL;
3471 struct btrfs_super_block *super;
3472 int i;
3473 u64 transid = 0;
3474 int ret = -EINVAL;
3475
3476 /* we would like to check all the supers, but that would make
3477 * a btrfs mount succeed after a mkfs from a different FS.
3478 * So, we need to add a special mount option to scan for
3479 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3480 */
3481 for (i = 0; i < 1; i++) {
3482 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3483 if (ret)
3484 continue;
3485
3486 super = (struct btrfs_super_block *)bh->b_data;
3487
3488 if (!latest || btrfs_super_generation(super) > transid) {
3489 brelse(latest);
3490 latest = bh;
3491 transid = btrfs_super_generation(super);
3492 } else {
3493 brelse(bh);
3494 }
3495 }
3496
3497 if (!latest)
3498 return ERR_PTR(ret);
3499
3500 return latest;
3501 }
3502
3503 /*
3504 * Write superblock @sb to the @device. Do not wait for completion, all the
3505 * buffer heads we write are pinned.
3506 *
3507 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3508 * the expected device size at commit time. Note that max_mirrors must be
3509 * same for write and wait phases.
3510 *
3511 * Return number of errors when buffer head is not found or submission fails.
3512 */
3513 static int write_dev_supers(struct btrfs_device *device,
3514 struct btrfs_super_block *sb, int max_mirrors)
3515 {
3516 struct btrfs_fs_info *fs_info = device->fs_info;
3517 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3518 struct buffer_head *bh;
3519 int i;
3520 int ret;
3521 int errors = 0;
3522 u64 bytenr;
3523 int op_flags;
3524
3525 if (max_mirrors == 0)
3526 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3527
3528 shash->tfm = fs_info->csum_shash;
3529
3530 for (i = 0; i < max_mirrors; i++) {
3531 bytenr = btrfs_sb_offset(i);
3532 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3533 device->commit_total_bytes)
3534 break;
3535
3536 btrfs_set_super_bytenr(sb, bytenr);
3537
3538 crypto_shash_init(shash);
3539 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3540 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3541 crypto_shash_final(shash, sb->csum);
3542
3543 /* One reference for us, and we leave it for the caller */
3544 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3545 BTRFS_SUPER_INFO_SIZE);
3546 if (!bh) {
3547 btrfs_err(device->fs_info,
3548 "couldn't get super buffer head for bytenr %llu",
3549 bytenr);
3550 errors++;
3551 continue;
3552 }
3553
3554 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3555
3556 /* one reference for submit_bh */
3557 get_bh(bh);
3558
3559 set_buffer_uptodate(bh);
3560 lock_buffer(bh);
3561 bh->b_end_io = btrfs_end_buffer_write_sync;
3562 bh->b_private = device;
3563
3564 /*
3565 * we fua the first super. The others we allow
3566 * to go down lazy.
3567 */
3568 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3569 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3570 op_flags |= REQ_FUA;
3571 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3572 if (ret)
3573 errors++;
3574 }
3575 return errors < i ? 0 : -1;
3576 }
3577
3578 /*
3579 * Wait for write completion of superblocks done by write_dev_supers,
3580 * @max_mirrors same for write and wait phases.
3581 *
3582 * Return number of errors when buffer head is not found or not marked up to
3583 * date.
3584 */
3585 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3586 {
3587 struct buffer_head *bh;
3588 int i;
3589 int errors = 0;
3590 bool primary_failed = false;
3591 u64 bytenr;
3592
3593 if (max_mirrors == 0)
3594 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3595
3596 for (i = 0; i < max_mirrors; i++) {
3597 bytenr = btrfs_sb_offset(i);
3598 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3599 device->commit_total_bytes)
3600 break;
3601
3602 bh = __find_get_block(device->bdev,
3603 bytenr / BTRFS_BDEV_BLOCKSIZE,
3604 BTRFS_SUPER_INFO_SIZE);
3605 if (!bh) {
3606 errors++;
3607 if (i == 0)
3608 primary_failed = true;
3609 continue;
3610 }
3611 wait_on_buffer(bh);
3612 if (!buffer_uptodate(bh)) {
3613 errors++;
3614 if (i == 0)
3615 primary_failed = true;
3616 }
3617
3618 /* drop our reference */
3619 brelse(bh);
3620
3621 /* drop the reference from the writing run */
3622 brelse(bh);
3623 }
3624
3625 /* log error, force error return */
3626 if (primary_failed) {
3627 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3628 device->devid);
3629 return -1;
3630 }
3631
3632 return errors < i ? 0 : -1;
3633 }
3634
3635 /*
3636 * endio for the write_dev_flush, this will wake anyone waiting
3637 * for the barrier when it is done
3638 */
3639 static void btrfs_end_empty_barrier(struct bio *bio)
3640 {
3641 complete(bio->bi_private);
3642 }
3643
3644 /*
3645 * Submit a flush request to the device if it supports it. Error handling is
3646 * done in the waiting counterpart.
3647 */
3648 static void write_dev_flush(struct btrfs_device *device)
3649 {
3650 struct request_queue *q = bdev_get_queue(device->bdev);
3651 struct bio *bio = device->flush_bio;
3652
3653 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3654 return;
3655
3656 bio_reset(bio);
3657 bio->bi_end_io = btrfs_end_empty_barrier;
3658 bio_set_dev(bio, device->bdev);
3659 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3660 init_completion(&device->flush_wait);
3661 bio->bi_private = &device->flush_wait;
3662
3663 btrfsic_submit_bio(bio);
3664 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3665 }
3666
3667 /*
3668 * If the flush bio has been submitted by write_dev_flush, wait for it.
3669 */
3670 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3671 {
3672 struct bio *bio = device->flush_bio;
3673
3674 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3675 return BLK_STS_OK;
3676
3677 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3678 wait_for_completion_io(&device->flush_wait);
3679
3680 return bio->bi_status;
3681 }
3682
3683 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3684 {
3685 if (!btrfs_check_rw_degradable(fs_info, NULL))
3686 return -EIO;
3687 return 0;
3688 }
3689
3690 /*
3691 * send an empty flush down to each device in parallel,
3692 * then wait for them
3693 */
3694 static int barrier_all_devices(struct btrfs_fs_info *info)
3695 {
3696 struct list_head *head;
3697 struct btrfs_device *dev;
3698 int errors_wait = 0;
3699 blk_status_t ret;
3700
3701 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3702 /* send down all the barriers */
3703 head = &info->fs_devices->devices;
3704 list_for_each_entry(dev, head, dev_list) {
3705 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3706 continue;
3707 if (!dev->bdev)
3708 continue;
3709 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3710 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3711 continue;
3712
3713 write_dev_flush(dev);
3714 dev->last_flush_error = BLK_STS_OK;
3715 }
3716
3717 /* wait for all the barriers */
3718 list_for_each_entry(dev, head, dev_list) {
3719 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3720 continue;
3721 if (!dev->bdev) {
3722 errors_wait++;
3723 continue;
3724 }
3725 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3726 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3727 continue;
3728
3729 ret = wait_dev_flush(dev);
3730 if (ret) {
3731 dev->last_flush_error = ret;
3732 btrfs_dev_stat_inc_and_print(dev,
3733 BTRFS_DEV_STAT_FLUSH_ERRS);
3734 errors_wait++;
3735 }
3736 }
3737
3738 if (errors_wait) {
3739 /*
3740 * At some point we need the status of all disks
3741 * to arrive at the volume status. So error checking
3742 * is being pushed to a separate loop.
3743 */
3744 return check_barrier_error(info);
3745 }
3746 return 0;
3747 }
3748
3749 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3750 {
3751 int raid_type;
3752 int min_tolerated = INT_MAX;
3753
3754 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3755 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3756 min_tolerated = min_t(int, min_tolerated,
3757 btrfs_raid_array[BTRFS_RAID_SINGLE].
3758 tolerated_failures);
3759
3760 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3761 if (raid_type == BTRFS_RAID_SINGLE)
3762 continue;
3763 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3764 continue;
3765 min_tolerated = min_t(int, min_tolerated,
3766 btrfs_raid_array[raid_type].
3767 tolerated_failures);
3768 }
3769
3770 if (min_tolerated == INT_MAX) {
3771 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3772 min_tolerated = 0;
3773 }
3774
3775 return min_tolerated;
3776 }
3777
3778 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3779 {
3780 struct list_head *head;
3781 struct btrfs_device *dev;
3782 struct btrfs_super_block *sb;
3783 struct btrfs_dev_item *dev_item;
3784 int ret;
3785 int do_barriers;
3786 int max_errors;
3787 int total_errors = 0;
3788 u64 flags;
3789
3790 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3791
3792 /*
3793 * max_mirrors == 0 indicates we're from commit_transaction,
3794 * not from fsync where the tree roots in fs_info have not
3795 * been consistent on disk.
3796 */
3797 if (max_mirrors == 0)
3798 backup_super_roots(fs_info);
3799
3800 sb = fs_info->super_for_commit;
3801 dev_item = &sb->dev_item;
3802
3803 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3804 head = &fs_info->fs_devices->devices;
3805 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3806
3807 if (do_barriers) {
3808 ret = barrier_all_devices(fs_info);
3809 if (ret) {
3810 mutex_unlock(
3811 &fs_info->fs_devices->device_list_mutex);
3812 btrfs_handle_fs_error(fs_info, ret,
3813 "errors while submitting device barriers.");
3814 return ret;
3815 }
3816 }
3817
3818 list_for_each_entry(dev, head, dev_list) {
3819 if (!dev->bdev) {
3820 total_errors++;
3821 continue;
3822 }
3823 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3824 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3825 continue;
3826
3827 btrfs_set_stack_device_generation(dev_item, 0);
3828 btrfs_set_stack_device_type(dev_item, dev->type);
3829 btrfs_set_stack_device_id(dev_item, dev->devid);
3830 btrfs_set_stack_device_total_bytes(dev_item,
3831 dev->commit_total_bytes);
3832 btrfs_set_stack_device_bytes_used(dev_item,
3833 dev->commit_bytes_used);
3834 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3835 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3836 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3837 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3838 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3839 BTRFS_FSID_SIZE);
3840
3841 flags = btrfs_super_flags(sb);
3842 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3843
3844 ret = btrfs_validate_write_super(fs_info, sb);
3845 if (ret < 0) {
3846 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3847 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3848 "unexpected superblock corruption detected");
3849 return -EUCLEAN;
3850 }
3851
3852 ret = write_dev_supers(dev, sb, max_mirrors);
3853 if (ret)
3854 total_errors++;
3855 }
3856 if (total_errors > max_errors) {
3857 btrfs_err(fs_info, "%d errors while writing supers",
3858 total_errors);
3859 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3860
3861 /* FUA is masked off if unsupported and can't be the reason */
3862 btrfs_handle_fs_error(fs_info, -EIO,
3863 "%d errors while writing supers",
3864 total_errors);
3865 return -EIO;
3866 }
3867
3868 total_errors = 0;
3869 list_for_each_entry(dev, head, dev_list) {
3870 if (!dev->bdev)
3871 continue;
3872 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3873 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3874 continue;
3875
3876 ret = wait_dev_supers(dev, max_mirrors);
3877 if (ret)
3878 total_errors++;
3879 }
3880 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3881 if (total_errors > max_errors) {
3882 btrfs_handle_fs_error(fs_info, -EIO,
3883 "%d errors while writing supers",
3884 total_errors);
3885 return -EIO;
3886 }
3887 return 0;
3888 }
3889
3890 /* Drop a fs root from the radix tree and free it. */
3891 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3892 struct btrfs_root *root)
3893 {
3894 spin_lock(&fs_info->fs_roots_radix_lock);
3895 radix_tree_delete(&fs_info->fs_roots_radix,
3896 (unsigned long)root->root_key.objectid);
3897 spin_unlock(&fs_info->fs_roots_radix_lock);
3898
3899 if (btrfs_root_refs(&root->root_item) == 0)
3900 synchronize_srcu(&fs_info->subvol_srcu);
3901
3902 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3903 btrfs_free_log(NULL, root);
3904 if (root->reloc_root) {
3905 free_extent_buffer(root->reloc_root->node);
3906 free_extent_buffer(root->reloc_root->commit_root);
3907 btrfs_put_fs_root(root->reloc_root);
3908 root->reloc_root = NULL;
3909 }
3910 }
3911
3912 if (root->free_ino_pinned)
3913 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3914 if (root->free_ino_ctl)
3915 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3916 btrfs_free_fs_root(root);
3917 }
3918
3919 void btrfs_free_fs_root(struct btrfs_root *root)
3920 {
3921 iput(root->ino_cache_inode);
3922 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3923 if (root->anon_dev)
3924 free_anon_bdev(root->anon_dev);
3925 if (root->subv_writers)
3926 btrfs_free_subvolume_writers(root->subv_writers);
3927 free_extent_buffer(root->node);
3928 free_extent_buffer(root->commit_root);
3929 kfree(root->free_ino_ctl);
3930 kfree(root->free_ino_pinned);
3931 btrfs_put_fs_root(root);
3932 }
3933
3934 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3935 {
3936 u64 root_objectid = 0;
3937 struct btrfs_root *gang[8];
3938 int i = 0;
3939 int err = 0;
3940 unsigned int ret = 0;
3941 int index;
3942
3943 while (1) {
3944 index = srcu_read_lock(&fs_info->subvol_srcu);
3945 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3946 (void **)gang, root_objectid,
3947 ARRAY_SIZE(gang));
3948 if (!ret) {
3949 srcu_read_unlock(&fs_info->subvol_srcu, index);
3950 break;
3951 }
3952 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3953
3954 for (i = 0; i < ret; i++) {
3955 /* Avoid to grab roots in dead_roots */
3956 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3957 gang[i] = NULL;
3958 continue;
3959 }
3960 /* grab all the search result for later use */
3961 gang[i] = btrfs_grab_fs_root(gang[i]);
3962 }
3963 srcu_read_unlock(&fs_info->subvol_srcu, index);
3964
3965 for (i = 0; i < ret; i++) {
3966 if (!gang[i])
3967 continue;
3968 root_objectid = gang[i]->root_key.objectid;
3969 err = btrfs_orphan_cleanup(gang[i]);
3970 if (err)
3971 break;
3972 btrfs_put_fs_root(gang[i]);
3973 }
3974 root_objectid++;
3975 }
3976
3977 /* release the uncleaned roots due to error */
3978 for (; i < ret; i++) {
3979 if (gang[i])
3980 btrfs_put_fs_root(gang[i]);
3981 }
3982 return err;
3983 }
3984
3985 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3986 {
3987 struct btrfs_root *root = fs_info->tree_root;
3988 struct btrfs_trans_handle *trans;
3989
3990 mutex_lock(&fs_info->cleaner_mutex);
3991 btrfs_run_delayed_iputs(fs_info);
3992 mutex_unlock(&fs_info->cleaner_mutex);
3993 wake_up_process(fs_info->cleaner_kthread);
3994
3995 /* wait until ongoing cleanup work done */
3996 down_write(&fs_info->cleanup_work_sem);
3997 up_write(&fs_info->cleanup_work_sem);
3998
3999 trans = btrfs_join_transaction(root);
4000 if (IS_ERR(trans))
4001 return PTR_ERR(trans);
4002 return btrfs_commit_transaction(trans);
4003 }
4004
4005 void close_ctree(struct btrfs_fs_info *fs_info)
4006 {
4007 int ret;
4008
4009 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4010 /*
4011 * We don't want the cleaner to start new transactions, add more delayed
4012 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4013 * because that frees the task_struct, and the transaction kthread might
4014 * still try to wake up the cleaner.
4015 */
4016 kthread_park(fs_info->cleaner_kthread);
4017
4018 /* wait for the qgroup rescan worker to stop */
4019 btrfs_qgroup_wait_for_completion(fs_info, false);
4020
4021 /* wait for the uuid_scan task to finish */
4022 down(&fs_info->uuid_tree_rescan_sem);
4023 /* avoid complains from lockdep et al., set sem back to initial state */
4024 up(&fs_info->uuid_tree_rescan_sem);
4025
4026 /* pause restriper - we want to resume on mount */
4027 btrfs_pause_balance(fs_info);
4028
4029 btrfs_dev_replace_suspend_for_unmount(fs_info);
4030
4031 btrfs_scrub_cancel(fs_info);
4032
4033 /* wait for any defraggers to finish */
4034 wait_event(fs_info->transaction_wait,
4035 (atomic_read(&fs_info->defrag_running) == 0));
4036
4037 /* clear out the rbtree of defraggable inodes */
4038 btrfs_cleanup_defrag_inodes(fs_info);
4039
4040 cancel_work_sync(&fs_info->async_reclaim_work);
4041
4042 if (!sb_rdonly(fs_info->sb)) {
4043 /*
4044 * The cleaner kthread is stopped, so do one final pass over
4045 * unused block groups.
4046 */
4047 btrfs_delete_unused_bgs(fs_info);
4048
4049 ret = btrfs_commit_super(fs_info);
4050 if (ret)
4051 btrfs_err(fs_info, "commit super ret %d", ret);
4052 }
4053
4054 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4055 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4056 btrfs_error_commit_super(fs_info);
4057
4058 kthread_stop(fs_info->transaction_kthread);
4059 kthread_stop(fs_info->cleaner_kthread);
4060
4061 ASSERT(list_empty(&fs_info->delayed_iputs));
4062 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4063
4064 btrfs_free_qgroup_config(fs_info);
4065 ASSERT(list_empty(&fs_info->delalloc_roots));
4066
4067 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4068 btrfs_info(fs_info, "at unmount delalloc count %lld",
4069 percpu_counter_sum(&fs_info->delalloc_bytes));
4070 }
4071
4072 if (percpu_counter_sum(&fs_info->dio_bytes))
4073 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4074 percpu_counter_sum(&fs_info->dio_bytes));
4075
4076 btrfs_sysfs_remove_mounted(fs_info);
4077 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4078
4079 btrfs_free_fs_roots(fs_info);
4080
4081 btrfs_put_block_group_cache(fs_info);
4082
4083 /*
4084 * we must make sure there is not any read request to
4085 * submit after we stopping all workers.
4086 */
4087 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4088 btrfs_stop_all_workers(fs_info);
4089
4090 btrfs_free_block_groups(fs_info);
4091
4092 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4093 free_root_pointers(fs_info, 1);
4094
4095 iput(fs_info->btree_inode);
4096
4097 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4098 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4099 btrfsic_unmount(fs_info->fs_devices);
4100 #endif
4101
4102 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4103 btrfs_close_devices(fs_info->fs_devices);
4104
4105 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4106 percpu_counter_destroy(&fs_info->delalloc_bytes);
4107 percpu_counter_destroy(&fs_info->dio_bytes);
4108 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4109 cleanup_srcu_struct(&fs_info->subvol_srcu);
4110
4111 btrfs_free_csum_hash(fs_info);
4112 btrfs_free_stripe_hash_table(fs_info);
4113 btrfs_free_ref_cache(fs_info);
4114 }
4115
4116 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4117 int atomic)
4118 {
4119 int ret;
4120 struct inode *btree_inode = buf->pages[0]->mapping->host;
4121
4122 ret = extent_buffer_uptodate(buf);
4123 if (!ret)
4124 return ret;
4125
4126 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4127 parent_transid, atomic);
4128 if (ret == -EAGAIN)
4129 return ret;
4130 return !ret;
4131 }
4132
4133 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4134 {
4135 struct btrfs_fs_info *fs_info;
4136 struct btrfs_root *root;
4137 u64 transid = btrfs_header_generation(buf);
4138 int was_dirty;
4139
4140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4141 /*
4142 * This is a fast path so only do this check if we have sanity tests
4143 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4144 * outside of the sanity tests.
4145 */
4146 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4147 return;
4148 #endif
4149 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4150 fs_info = root->fs_info;
4151 btrfs_assert_tree_locked(buf);
4152 if (transid != fs_info->generation)
4153 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4154 buf->start, transid, fs_info->generation);
4155 was_dirty = set_extent_buffer_dirty(buf);
4156 if (!was_dirty)
4157 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4158 buf->len,
4159 fs_info->dirty_metadata_batch);
4160 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4161 /*
4162 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4163 * but item data not updated.
4164 * So here we should only check item pointers, not item data.
4165 */
4166 if (btrfs_header_level(buf) == 0 &&
4167 btrfs_check_leaf_relaxed(buf)) {
4168 btrfs_print_leaf(buf);
4169 ASSERT(0);
4170 }
4171 #endif
4172 }
4173
4174 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4175 int flush_delayed)
4176 {
4177 /*
4178 * looks as though older kernels can get into trouble with
4179 * this code, they end up stuck in balance_dirty_pages forever
4180 */
4181 int ret;
4182
4183 if (current->flags & PF_MEMALLOC)
4184 return;
4185
4186 if (flush_delayed)
4187 btrfs_balance_delayed_items(fs_info);
4188
4189 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4190 BTRFS_DIRTY_METADATA_THRESH,
4191 fs_info->dirty_metadata_batch);
4192 if (ret > 0) {
4193 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4194 }
4195 }
4196
4197 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4198 {
4199 __btrfs_btree_balance_dirty(fs_info, 1);
4200 }
4201
4202 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4203 {
4204 __btrfs_btree_balance_dirty(fs_info, 0);
4205 }
4206
4207 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4208 struct btrfs_key *first_key)
4209 {
4210 return btree_read_extent_buffer_pages(buf, parent_transid,
4211 level, first_key);
4212 }
4213
4214 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4215 {
4216 /* cleanup FS via transaction */
4217 btrfs_cleanup_transaction(fs_info);
4218
4219 mutex_lock(&fs_info->cleaner_mutex);
4220 btrfs_run_delayed_iputs(fs_info);
4221 mutex_unlock(&fs_info->cleaner_mutex);
4222
4223 down_write(&fs_info->cleanup_work_sem);
4224 up_write(&fs_info->cleanup_work_sem);
4225 }
4226
4227 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4228 {
4229 struct btrfs_ordered_extent *ordered;
4230
4231 spin_lock(&root->ordered_extent_lock);
4232 /*
4233 * This will just short circuit the ordered completion stuff which will
4234 * make sure the ordered extent gets properly cleaned up.
4235 */
4236 list_for_each_entry(ordered, &root->ordered_extents,
4237 root_extent_list)
4238 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4239 spin_unlock(&root->ordered_extent_lock);
4240 }
4241
4242 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4243 {
4244 struct btrfs_root *root;
4245 struct list_head splice;
4246
4247 INIT_LIST_HEAD(&splice);
4248
4249 spin_lock(&fs_info->ordered_root_lock);
4250 list_splice_init(&fs_info->ordered_roots, &splice);
4251 while (!list_empty(&splice)) {
4252 root = list_first_entry(&splice, struct btrfs_root,
4253 ordered_root);
4254 list_move_tail(&root->ordered_root,
4255 &fs_info->ordered_roots);
4256
4257 spin_unlock(&fs_info->ordered_root_lock);
4258 btrfs_destroy_ordered_extents(root);
4259
4260 cond_resched();
4261 spin_lock(&fs_info->ordered_root_lock);
4262 }
4263 spin_unlock(&fs_info->ordered_root_lock);
4264
4265 /*
4266 * We need this here because if we've been flipped read-only we won't
4267 * get sync() from the umount, so we need to make sure any ordered
4268 * extents that haven't had their dirty pages IO start writeout yet
4269 * actually get run and error out properly.
4270 */
4271 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4272 }
4273
4274 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4275 struct btrfs_fs_info *fs_info)
4276 {
4277 struct rb_node *node;
4278 struct btrfs_delayed_ref_root *delayed_refs;
4279 struct btrfs_delayed_ref_node *ref;
4280 int ret = 0;
4281
4282 delayed_refs = &trans->delayed_refs;
4283
4284 spin_lock(&delayed_refs->lock);
4285 if (atomic_read(&delayed_refs->num_entries) == 0) {
4286 spin_unlock(&delayed_refs->lock);
4287 btrfs_info(fs_info, "delayed_refs has NO entry");
4288 return ret;
4289 }
4290
4291 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4292 struct btrfs_delayed_ref_head *head;
4293 struct rb_node *n;
4294 bool pin_bytes = false;
4295
4296 head = rb_entry(node, struct btrfs_delayed_ref_head,
4297 href_node);
4298 if (btrfs_delayed_ref_lock(delayed_refs, head))
4299 continue;
4300
4301 spin_lock(&head->lock);
4302 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4303 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4304 ref_node);
4305 ref->in_tree = 0;
4306 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4307 RB_CLEAR_NODE(&ref->ref_node);
4308 if (!list_empty(&ref->add_list))
4309 list_del(&ref->add_list);
4310 atomic_dec(&delayed_refs->num_entries);
4311 btrfs_put_delayed_ref(ref);
4312 }
4313 if (head->must_insert_reserved)
4314 pin_bytes = true;
4315 btrfs_free_delayed_extent_op(head->extent_op);
4316 btrfs_delete_ref_head(delayed_refs, head);
4317 spin_unlock(&head->lock);
4318 spin_unlock(&delayed_refs->lock);
4319 mutex_unlock(&head->mutex);
4320
4321 if (pin_bytes)
4322 btrfs_pin_extent(fs_info, head->bytenr,
4323 head->num_bytes, 1);
4324 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4325 btrfs_put_delayed_ref_head(head);
4326 cond_resched();
4327 spin_lock(&delayed_refs->lock);
4328 }
4329
4330 spin_unlock(&delayed_refs->lock);
4331
4332 return ret;
4333 }
4334
4335 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4336 {
4337 struct btrfs_inode *btrfs_inode;
4338 struct list_head splice;
4339
4340 INIT_LIST_HEAD(&splice);
4341
4342 spin_lock(&root->delalloc_lock);
4343 list_splice_init(&root->delalloc_inodes, &splice);
4344
4345 while (!list_empty(&splice)) {
4346 struct inode *inode = NULL;
4347 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4348 delalloc_inodes);
4349 __btrfs_del_delalloc_inode(root, btrfs_inode);
4350 spin_unlock(&root->delalloc_lock);
4351
4352 /*
4353 * Make sure we get a live inode and that it'll not disappear
4354 * meanwhile.
4355 */
4356 inode = igrab(&btrfs_inode->vfs_inode);
4357 if (inode) {
4358 invalidate_inode_pages2(inode->i_mapping);
4359 iput(inode);
4360 }
4361 spin_lock(&root->delalloc_lock);
4362 }
4363 spin_unlock(&root->delalloc_lock);
4364 }
4365
4366 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4367 {
4368 struct btrfs_root *root;
4369 struct list_head splice;
4370
4371 INIT_LIST_HEAD(&splice);
4372
4373 spin_lock(&fs_info->delalloc_root_lock);
4374 list_splice_init(&fs_info->delalloc_roots, &splice);
4375 while (!list_empty(&splice)) {
4376 root = list_first_entry(&splice, struct btrfs_root,
4377 delalloc_root);
4378 root = btrfs_grab_fs_root(root);
4379 BUG_ON(!root);
4380 spin_unlock(&fs_info->delalloc_root_lock);
4381
4382 btrfs_destroy_delalloc_inodes(root);
4383 btrfs_put_fs_root(root);
4384
4385 spin_lock(&fs_info->delalloc_root_lock);
4386 }
4387 spin_unlock(&fs_info->delalloc_root_lock);
4388 }
4389
4390 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4391 struct extent_io_tree *dirty_pages,
4392 int mark)
4393 {
4394 int ret;
4395 struct extent_buffer *eb;
4396 u64 start = 0;
4397 u64 end;
4398
4399 while (1) {
4400 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4401 mark, NULL);
4402 if (ret)
4403 break;
4404
4405 clear_extent_bits(dirty_pages, start, end, mark);
4406 while (start <= end) {
4407 eb = find_extent_buffer(fs_info, start);
4408 start += fs_info->nodesize;
4409 if (!eb)
4410 continue;
4411 wait_on_extent_buffer_writeback(eb);
4412
4413 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4414 &eb->bflags))
4415 clear_extent_buffer_dirty(eb);
4416 free_extent_buffer_stale(eb);
4417 }
4418 }
4419
4420 return ret;
4421 }
4422
4423 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4424 struct extent_io_tree *pinned_extents)
4425 {
4426 struct extent_io_tree *unpin;
4427 u64 start;
4428 u64 end;
4429 int ret;
4430 bool loop = true;
4431
4432 unpin = pinned_extents;
4433 again:
4434 while (1) {
4435 struct extent_state *cached_state = NULL;
4436
4437 /*
4438 * The btrfs_finish_extent_commit() may get the same range as
4439 * ours between find_first_extent_bit and clear_extent_dirty.
4440 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4441 * the same extent range.
4442 */
4443 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4444 ret = find_first_extent_bit(unpin, 0, &start, &end,
4445 EXTENT_DIRTY, &cached_state);
4446 if (ret) {
4447 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4448 break;
4449 }
4450
4451 clear_extent_dirty(unpin, start, end, &cached_state);
4452 free_extent_state(cached_state);
4453 btrfs_error_unpin_extent_range(fs_info, start, end);
4454 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4455 cond_resched();
4456 }
4457
4458 if (loop) {
4459 if (unpin == &fs_info->freed_extents[0])
4460 unpin = &fs_info->freed_extents[1];
4461 else
4462 unpin = &fs_info->freed_extents[0];
4463 loop = false;
4464 goto again;
4465 }
4466
4467 return 0;
4468 }
4469
4470 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4471 {
4472 struct inode *inode;
4473
4474 inode = cache->io_ctl.inode;
4475 if (inode) {
4476 invalidate_inode_pages2(inode->i_mapping);
4477 BTRFS_I(inode)->generation = 0;
4478 cache->io_ctl.inode = NULL;
4479 iput(inode);
4480 }
4481 btrfs_put_block_group(cache);
4482 }
4483
4484 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4485 struct btrfs_fs_info *fs_info)
4486 {
4487 struct btrfs_block_group_cache *cache;
4488
4489 spin_lock(&cur_trans->dirty_bgs_lock);
4490 while (!list_empty(&cur_trans->dirty_bgs)) {
4491 cache = list_first_entry(&cur_trans->dirty_bgs,
4492 struct btrfs_block_group_cache,
4493 dirty_list);
4494
4495 if (!list_empty(&cache->io_list)) {
4496 spin_unlock(&cur_trans->dirty_bgs_lock);
4497 list_del_init(&cache->io_list);
4498 btrfs_cleanup_bg_io(cache);
4499 spin_lock(&cur_trans->dirty_bgs_lock);
4500 }
4501
4502 list_del_init(&cache->dirty_list);
4503 spin_lock(&cache->lock);
4504 cache->disk_cache_state = BTRFS_DC_ERROR;
4505 spin_unlock(&cache->lock);
4506
4507 spin_unlock(&cur_trans->dirty_bgs_lock);
4508 btrfs_put_block_group(cache);
4509 btrfs_delayed_refs_rsv_release(fs_info, 1);
4510 spin_lock(&cur_trans->dirty_bgs_lock);
4511 }
4512 spin_unlock(&cur_trans->dirty_bgs_lock);
4513
4514 /*
4515 * Refer to the definition of io_bgs member for details why it's safe
4516 * to use it without any locking
4517 */
4518 while (!list_empty(&cur_trans->io_bgs)) {
4519 cache = list_first_entry(&cur_trans->io_bgs,
4520 struct btrfs_block_group_cache,
4521 io_list);
4522
4523 list_del_init(&cache->io_list);
4524 spin_lock(&cache->lock);
4525 cache->disk_cache_state = BTRFS_DC_ERROR;
4526 spin_unlock(&cache->lock);
4527 btrfs_cleanup_bg_io(cache);
4528 }
4529 }
4530
4531 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4532 struct btrfs_fs_info *fs_info)
4533 {
4534 struct btrfs_device *dev, *tmp;
4535
4536 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4537 ASSERT(list_empty(&cur_trans->dirty_bgs));
4538 ASSERT(list_empty(&cur_trans->io_bgs));
4539
4540 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4541 post_commit_list) {
4542 list_del_init(&dev->post_commit_list);
4543 }
4544
4545 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4546
4547 cur_trans->state = TRANS_STATE_COMMIT_START;
4548 wake_up(&fs_info->transaction_blocked_wait);
4549
4550 cur_trans->state = TRANS_STATE_UNBLOCKED;
4551 wake_up(&fs_info->transaction_wait);
4552
4553 btrfs_destroy_delayed_inodes(fs_info);
4554 btrfs_assert_delayed_root_empty(fs_info);
4555
4556 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4557 EXTENT_DIRTY);
4558 btrfs_destroy_pinned_extent(fs_info,
4559 fs_info->pinned_extents);
4560
4561 cur_trans->state =TRANS_STATE_COMPLETED;
4562 wake_up(&cur_trans->commit_wait);
4563 }
4564
4565 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4566 {
4567 struct btrfs_transaction *t;
4568
4569 mutex_lock(&fs_info->transaction_kthread_mutex);
4570
4571 spin_lock(&fs_info->trans_lock);
4572 while (!list_empty(&fs_info->trans_list)) {
4573 t = list_first_entry(&fs_info->trans_list,
4574 struct btrfs_transaction, list);
4575 if (t->state >= TRANS_STATE_COMMIT_START) {
4576 refcount_inc(&t->use_count);
4577 spin_unlock(&fs_info->trans_lock);
4578 btrfs_wait_for_commit(fs_info, t->transid);
4579 btrfs_put_transaction(t);
4580 spin_lock(&fs_info->trans_lock);
4581 continue;
4582 }
4583 if (t == fs_info->running_transaction) {
4584 t->state = TRANS_STATE_COMMIT_DOING;
4585 spin_unlock(&fs_info->trans_lock);
4586 /*
4587 * We wait for 0 num_writers since we don't hold a trans
4588 * handle open currently for this transaction.
4589 */
4590 wait_event(t->writer_wait,
4591 atomic_read(&t->num_writers) == 0);
4592 } else {
4593 spin_unlock(&fs_info->trans_lock);
4594 }
4595 btrfs_cleanup_one_transaction(t, fs_info);
4596
4597 spin_lock(&fs_info->trans_lock);
4598 if (t == fs_info->running_transaction)
4599 fs_info->running_transaction = NULL;
4600 list_del_init(&t->list);
4601 spin_unlock(&fs_info->trans_lock);
4602
4603 btrfs_put_transaction(t);
4604 trace_btrfs_transaction_commit(fs_info->tree_root);
4605 spin_lock(&fs_info->trans_lock);
4606 }
4607 spin_unlock(&fs_info->trans_lock);
4608 btrfs_destroy_all_ordered_extents(fs_info);
4609 btrfs_destroy_delayed_inodes(fs_info);
4610 btrfs_assert_delayed_root_empty(fs_info);
4611 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4612 btrfs_destroy_all_delalloc_inodes(fs_info);
4613 mutex_unlock(&fs_info->transaction_kthread_mutex);
4614
4615 return 0;
4616 }
4617
4618 static const struct extent_io_ops btree_extent_io_ops = {
4619 /* mandatory callbacks */
4620 .submit_bio_hook = btree_submit_bio_hook,
4621 .readpage_end_io_hook = btree_readpage_end_io_hook,
4622 };