]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Btrfs: fix a lockdep warning when cleaning up aborted transaction
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
160 { .id = 0, .name_stem = "tree" },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179 {
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 struct page *page, size_t pg_offset, u64 start, u64 len,
201 int create)
202 {
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
207 read_lock(&em_tree->lock);
208 em = lookup_extent_mapping(em_tree, start, len);
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 read_unlock(&em_tree->lock);
213 goto out;
214 }
215 read_unlock(&em_tree->lock);
216
217 em = alloc_extent_map();
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
223 em->len = (u64)-1;
224 em->block_len = (u64)-1;
225 em->block_start = 0;
226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228 write_lock(&em_tree->lock);
229 ret = add_extent_mapping(em_tree, em, 0);
230 if (ret == -EEXIST) {
231 free_extent_map(em);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (!em)
234 em = ERR_PTR(-EIO);
235 } else if (ret) {
236 free_extent_map(em);
237 em = ERR_PTR(ret);
238 }
239 write_unlock(&em_tree->lock);
240
241 out:
242 return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247 return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252 put_unaligned_le32(~crc, result);
253 }
254
255 /*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261 {
262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 char *result = NULL;
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
272 unsigned long inline_result;
273
274 len = buf->len - offset;
275 while (len > 0) {
276 err = map_private_extent_buffer(buf, offset, 32,
277 &kaddr, &map_start, &map_len);
278 if (err)
279 return 1;
280 cur_len = min(len, map_len - (offset - map_start));
281 crc = btrfs_csum_data(kaddr + offset - map_start,
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
285 }
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 u32 val;
299 u32 found = 0;
300 memcpy(&found, result, csum_size);
301
302 read_extent_buffer(buf, &val, 0, csum_size);
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 eb->start, parent_transid, btrfs_header_generation(eb));
349 ret = 1;
350 clear_extent_buffer_uptodate(eb);
351 out:
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
354 return ret;
355 }
356
357 /*
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
360 */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
366 int ret = 0;
367
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 u32 crc = ~(u32)0;
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
372
373 /*
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
377 */
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
381
382 if (memcmp(raw_disk_sb, result, csum_size))
383 ret = 1;
384
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
386 printk(KERN_WARNING
387 "BTRFS: super block crcs don't match, older mkfs detected\n");
388 ret = 0;
389 }
390 }
391
392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394 csum_type);
395 ret = 1;
396 }
397
398 return ret;
399 }
400
401 /*
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
404 */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406 struct extent_buffer *eb,
407 u64 start, u64 parent_transid)
408 {
409 struct extent_io_tree *io_tree;
410 int failed = 0;
411 int ret;
412 int num_copies = 0;
413 int mirror_num = 0;
414 int failed_mirror = 0;
415
416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 while (1) {
419 ret = read_extent_buffer_pages(io_tree, eb, start,
420 WAIT_COMPLETE,
421 btree_get_extent, mirror_num);
422 if (!ret) {
423 if (!verify_parent_transid(io_tree, eb,
424 parent_transid, 0))
425 break;
426 else
427 ret = -EIO;
428 }
429
430 /*
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
433 * any less wrong.
434 */
435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436 break;
437
438 num_copies = btrfs_num_copies(root->fs_info,
439 eb->start, eb->len);
440 if (num_copies == 1)
441 break;
442
443 if (!failed_mirror) {
444 failed = 1;
445 failed_mirror = eb->read_mirror;
446 }
447
448 mirror_num++;
449 if (mirror_num == failed_mirror)
450 mirror_num++;
451
452 if (mirror_num > num_copies)
453 break;
454 }
455
456 if (failed && !ret && failed_mirror)
457 repair_eb_io_failure(root, eb, failed_mirror);
458
459 return ret;
460 }
461
462 /*
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
465 */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469 u64 start = page_offset(page);
470 u64 found_start;
471 struct extent_buffer *eb;
472
473 eb = (struct extent_buffer *)page->private;
474 if (page != eb->pages[0])
475 return 0;
476 found_start = btrfs_header_bytenr(eb);
477 if (WARN_ON(found_start != start || !PageUptodate(page)))
478 return 0;
479 csum_tree_block(root, eb, 0);
480 return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484 struct extent_buffer *eb)
485 {
486 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487 u8 fsid[BTRFS_UUID_SIZE];
488 int ret = 1;
489
490 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491 while (fs_devices) {
492 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493 ret = 0;
494 break;
495 }
496 fs_devices = fs_devices->seed;
497 }
498 return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot) \
502 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
503 "root=%llu, slot=%d", reason, \
504 btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507 struct extent_buffer *leaf)
508 {
509 struct btrfs_key key;
510 struct btrfs_key leaf_key;
511 u32 nritems = btrfs_header_nritems(leaf);
512 int slot;
513
514 if (nritems == 0)
515 return 0;
516
517 /* Check the 0 item */
518 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519 BTRFS_LEAF_DATA_SIZE(root)) {
520 CORRUPT("invalid item offset size pair", leaf, root, 0);
521 return -EIO;
522 }
523
524 /*
525 * Check to make sure each items keys are in the correct order and their
526 * offsets make sense. We only have to loop through nritems-1 because
527 * we check the current slot against the next slot, which verifies the
528 * next slot's offset+size makes sense and that the current's slot
529 * offset is correct.
530 */
531 for (slot = 0; slot < nritems - 1; slot++) {
532 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535 /* Make sure the keys are in the right order */
536 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537 CORRUPT("bad key order", leaf, root, slot);
538 return -EIO;
539 }
540
541 /*
542 * Make sure the offset and ends are right, remember that the
543 * item data starts at the end of the leaf and grows towards the
544 * front.
545 */
546 if (btrfs_item_offset_nr(leaf, slot) !=
547 btrfs_item_end_nr(leaf, slot + 1)) {
548 CORRUPT("slot offset bad", leaf, root, slot);
549 return -EIO;
550 }
551
552 /*
553 * Check to make sure that we don't point outside of the leaf,
554 * just incase all the items are consistent to eachother, but
555 * all point outside of the leaf.
556 */
557 if (btrfs_item_end_nr(leaf, slot) >
558 BTRFS_LEAF_DATA_SIZE(root)) {
559 CORRUPT("slot end outside of leaf", leaf, root, slot);
560 return -EIO;
561 }
562 }
563
564 return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568 u64 phy_offset, struct page *page,
569 u64 start, u64 end, int mirror)
570 {
571 u64 found_start;
572 int found_level;
573 struct extent_buffer *eb;
574 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575 int ret = 0;
576 int reads_done;
577
578 if (!page->private)
579 goto out;
580
581 eb = (struct extent_buffer *)page->private;
582
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
589 if (!reads_done)
590 goto err;
591
592 eb->read_mirror = mirror;
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
598 found_start = btrfs_header_bytenr(eb);
599 if (found_start != eb->start) {
600 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601 "%llu %llu\n",
602 found_start, eb->start);
603 ret = -EIO;
604 goto err;
605 }
606 if (check_tree_block_fsid(root, eb)) {
607 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608 eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 found_level = btrfs_header_level(eb);
613 if (found_level >= BTRFS_MAX_LEVEL) {
614 btrfs_info(root->fs_info, "bad tree block level %d",
615 (int)btrfs_header_level(eb));
616 ret = -EIO;
617 goto err;
618 }
619
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
622
623 ret = csum_tree_block(root, eb, 1);
624 if (ret) {
625 ret = -EIO;
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
641 err:
642 if (reads_done &&
643 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644 btree_readahead_hook(root, eb, eb->start, ret);
645
646 if (ret) {
647 /*
648 * our io error hook is going to dec the io pages
649 * again, we have to make sure it has something
650 * to decrement
651 */
652 atomic_inc(&eb->io_pages);
653 clear_extent_buffer_uptodate(eb);
654 }
655 free_extent_buffer(eb);
656 out:
657 return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662 struct extent_buffer *eb;
663 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665 eb = (struct extent_buffer *)page->private;
666 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667 eb->read_mirror = failed_mirror;
668 atomic_dec(&eb->io_pages);
669 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670 btree_readahead_hook(root, eb, eb->start, -EIO);
671 return -EIO; /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676 struct end_io_wq *end_io_wq = bio->bi_private;
677 struct btrfs_fs_info *fs_info;
678
679 fs_info = end_io_wq->info;
680 end_io_wq->error = err;
681 end_io_wq->work.func = end_workqueue_fn;
682 end_io_wq->work.flags = 0;
683
684 if (bio->bi_rw & REQ_WRITE) {
685 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
686 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
687 &end_io_wq->work);
688 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
689 btrfs_queue_worker(&fs_info->endio_freespace_worker,
690 &end_io_wq->work);
691 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
692 btrfs_queue_worker(&fs_info->endio_raid56_workers,
693 &end_io_wq->work);
694 else
695 btrfs_queue_worker(&fs_info->endio_write_workers,
696 &end_io_wq->work);
697 } else {
698 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
699 btrfs_queue_worker(&fs_info->endio_raid56_workers,
700 &end_io_wq->work);
701 else if (end_io_wq->metadata)
702 btrfs_queue_worker(&fs_info->endio_meta_workers,
703 &end_io_wq->work);
704 else
705 btrfs_queue_worker(&fs_info->endio_workers,
706 &end_io_wq->work);
707 }
708 }
709
710 /*
711 * For the metadata arg you want
712 *
713 * 0 - if data
714 * 1 - if normal metadta
715 * 2 - if writing to the free space cache area
716 * 3 - raid parity work
717 */
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719 int metadata)
720 {
721 struct end_io_wq *end_io_wq;
722 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
723 if (!end_io_wq)
724 return -ENOMEM;
725
726 end_io_wq->private = bio->bi_private;
727 end_io_wq->end_io = bio->bi_end_io;
728 end_io_wq->info = info;
729 end_io_wq->error = 0;
730 end_io_wq->bio = bio;
731 end_io_wq->metadata = metadata;
732
733 bio->bi_private = end_io_wq;
734 bio->bi_end_io = end_workqueue_bio;
735 return 0;
736 }
737
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
739 {
740 unsigned long limit = min_t(unsigned long,
741 info->workers.max_workers,
742 info->fs_devices->open_devices);
743 return 256 * limit;
744 }
745
746 static void run_one_async_start(struct btrfs_work *work)
747 {
748 struct async_submit_bio *async;
749 int ret;
750
751 async = container_of(work, struct async_submit_bio, work);
752 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
753 async->mirror_num, async->bio_flags,
754 async->bio_offset);
755 if (ret)
756 async->error = ret;
757 }
758
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761 struct btrfs_fs_info *fs_info;
762 struct async_submit_bio *async;
763 int limit;
764
765 async = container_of(work, struct async_submit_bio, work);
766 fs_info = BTRFS_I(async->inode)->root->fs_info;
767
768 limit = btrfs_async_submit_limit(fs_info);
769 limit = limit * 2 / 3;
770
771 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
772 waitqueue_active(&fs_info->async_submit_wait))
773 wake_up(&fs_info->async_submit_wait);
774
775 /* If an error occured we just want to clean up the bio and move on */
776 if (async->error) {
777 bio_endio(async->bio, async->error);
778 return;
779 }
780
781 async->submit_bio_done(async->inode, async->rw, async->bio,
782 async->mirror_num, async->bio_flags,
783 async->bio_offset);
784 }
785
786 static void run_one_async_free(struct btrfs_work *work)
787 {
788 struct async_submit_bio *async;
789
790 async = container_of(work, struct async_submit_bio, work);
791 kfree(async);
792 }
793
794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
795 int rw, struct bio *bio, int mirror_num,
796 unsigned long bio_flags,
797 u64 bio_offset,
798 extent_submit_bio_hook_t *submit_bio_start,
799 extent_submit_bio_hook_t *submit_bio_done)
800 {
801 struct async_submit_bio *async;
802
803 async = kmalloc(sizeof(*async), GFP_NOFS);
804 if (!async)
805 return -ENOMEM;
806
807 async->inode = inode;
808 async->rw = rw;
809 async->bio = bio;
810 async->mirror_num = mirror_num;
811 async->submit_bio_start = submit_bio_start;
812 async->submit_bio_done = submit_bio_done;
813
814 async->work.func = run_one_async_start;
815 async->work.ordered_func = run_one_async_done;
816 async->work.ordered_free = run_one_async_free;
817
818 async->work.flags = 0;
819 async->bio_flags = bio_flags;
820 async->bio_offset = bio_offset;
821
822 async->error = 0;
823
824 atomic_inc(&fs_info->nr_async_submits);
825
826 if (rw & REQ_SYNC)
827 btrfs_set_work_high_prio(&async->work);
828
829 btrfs_queue_worker(&fs_info->workers, &async->work);
830
831 while (atomic_read(&fs_info->async_submit_draining) &&
832 atomic_read(&fs_info->nr_async_submits)) {
833 wait_event(fs_info->async_submit_wait,
834 (atomic_read(&fs_info->nr_async_submits) == 0));
835 }
836
837 return 0;
838 }
839
840 static int btree_csum_one_bio(struct bio *bio)
841 {
842 struct bio_vec *bvec = bio->bi_io_vec;
843 int bio_index = 0;
844 struct btrfs_root *root;
845 int ret = 0;
846
847 WARN_ON(bio->bi_vcnt <= 0);
848 while (bio_index < bio->bi_vcnt) {
849 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
850 ret = csum_dirty_buffer(root, bvec->bv_page);
851 if (ret)
852 break;
853 bio_index++;
854 bvec++;
855 }
856 return ret;
857 }
858
859 static int __btree_submit_bio_start(struct inode *inode, int rw,
860 struct bio *bio, int mirror_num,
861 unsigned long bio_flags,
862 u64 bio_offset)
863 {
864 /*
865 * when we're called for a write, we're already in the async
866 * submission context. Just jump into btrfs_map_bio
867 */
868 return btree_csum_one_bio(bio);
869 }
870
871 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
872 int mirror_num, unsigned long bio_flags,
873 u64 bio_offset)
874 {
875 int ret;
876
877 /*
878 * when we're called for a write, we're already in the async
879 * submission context. Just jump into btrfs_map_bio
880 */
881 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
882 if (ret)
883 bio_endio(bio, ret);
884 return ret;
885 }
886
887 static int check_async_write(struct inode *inode, unsigned long bio_flags)
888 {
889 if (bio_flags & EXTENT_BIO_TREE_LOG)
890 return 0;
891 #ifdef CONFIG_X86
892 if (cpu_has_xmm4_2)
893 return 0;
894 #endif
895 return 1;
896 }
897
898 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
899 int mirror_num, unsigned long bio_flags,
900 u64 bio_offset)
901 {
902 int async = check_async_write(inode, bio_flags);
903 int ret;
904
905 if (!(rw & REQ_WRITE)) {
906 /*
907 * called for a read, do the setup so that checksum validation
908 * can happen in the async kernel threads
909 */
910 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
911 bio, 1);
912 if (ret)
913 goto out_w_error;
914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
915 mirror_num, 0);
916 } else if (!async) {
917 ret = btree_csum_one_bio(bio);
918 if (ret)
919 goto out_w_error;
920 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
921 mirror_num, 0);
922 } else {
923 /*
924 * kthread helpers are used to submit writes so that
925 * checksumming can happen in parallel across all CPUs
926 */
927 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
928 inode, rw, bio, mirror_num, 0,
929 bio_offset,
930 __btree_submit_bio_start,
931 __btree_submit_bio_done);
932 }
933
934 if (ret) {
935 out_w_error:
936 bio_endio(bio, ret);
937 }
938 return ret;
939 }
940
941 #ifdef CONFIG_MIGRATION
942 static int btree_migratepage(struct address_space *mapping,
943 struct page *newpage, struct page *page,
944 enum migrate_mode mode)
945 {
946 /*
947 * we can't safely write a btree page from here,
948 * we haven't done the locking hook
949 */
950 if (PageDirty(page))
951 return -EAGAIN;
952 /*
953 * Buffers may be managed in a filesystem specific way.
954 * We must have no buffers or drop them.
955 */
956 if (page_has_private(page) &&
957 !try_to_release_page(page, GFP_KERNEL))
958 return -EAGAIN;
959 return migrate_page(mapping, newpage, page, mode);
960 }
961 #endif
962
963
964 static int btree_writepages(struct address_space *mapping,
965 struct writeback_control *wbc)
966 {
967 struct btrfs_fs_info *fs_info;
968 int ret;
969
970 if (wbc->sync_mode == WB_SYNC_NONE) {
971
972 if (wbc->for_kupdate)
973 return 0;
974
975 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976 /* this is a bit racy, but that's ok */
977 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978 BTRFS_DIRTY_METADATA_THRESH);
979 if (ret < 0)
980 return 0;
981 }
982 return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987 struct extent_io_tree *tree;
988 tree = &BTRFS_I(page->mapping->host)->io_tree;
989 return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994 if (PageWriteback(page) || PageDirty(page))
995 return 0;
996
997 return try_release_extent_buffer(page);
998 }
999
1000 static void btree_invalidatepage(struct page *page, unsigned int offset,
1001 unsigned int length)
1002 {
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 extent_invalidatepage(tree, page, offset);
1006 btree_releasepage(page, GFP_NOFS);
1007 if (PagePrivate(page)) {
1008 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1009 "page private not zero on page %llu",
1010 (unsigned long long)page_offset(page));
1011 ClearPagePrivate(page);
1012 set_page_private(page, 0);
1013 page_cache_release(page);
1014 }
1015 }
1016
1017 static int btree_set_page_dirty(struct page *page)
1018 {
1019 #ifdef DEBUG
1020 struct extent_buffer *eb;
1021
1022 BUG_ON(!PagePrivate(page));
1023 eb = (struct extent_buffer *)page->private;
1024 BUG_ON(!eb);
1025 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1026 BUG_ON(!atomic_read(&eb->refs));
1027 btrfs_assert_tree_locked(eb);
1028 #endif
1029 return __set_page_dirty_nobuffers(page);
1030 }
1031
1032 static const struct address_space_operations btree_aops = {
1033 .readpage = btree_readpage,
1034 .writepages = btree_writepages,
1035 .releasepage = btree_releasepage,
1036 .invalidatepage = btree_invalidatepage,
1037 #ifdef CONFIG_MIGRATION
1038 .migratepage = btree_migratepage,
1039 #endif
1040 .set_page_dirty = btree_set_page_dirty,
1041 };
1042
1043 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1044 u64 parent_transid)
1045 {
1046 struct extent_buffer *buf = NULL;
1047 struct inode *btree_inode = root->fs_info->btree_inode;
1048 int ret = 0;
1049
1050 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1051 if (!buf)
1052 return 0;
1053 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1054 buf, 0, WAIT_NONE, btree_get_extent, 0);
1055 free_extent_buffer(buf);
1056 return ret;
1057 }
1058
1059 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060 int mirror_num, struct extent_buffer **eb)
1061 {
1062 struct extent_buffer *buf = NULL;
1063 struct inode *btree_inode = root->fs_info->btree_inode;
1064 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1065 int ret;
1066
1067 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1068 if (!buf)
1069 return 0;
1070
1071 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1072
1073 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1074 btree_get_extent, mirror_num);
1075 if (ret) {
1076 free_extent_buffer(buf);
1077 return ret;
1078 }
1079
1080 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1081 free_extent_buffer(buf);
1082 return -EIO;
1083 } else if (extent_buffer_uptodate(buf)) {
1084 *eb = buf;
1085 } else {
1086 free_extent_buffer(buf);
1087 }
1088 return 0;
1089 }
1090
1091 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1092 u64 bytenr, u32 blocksize)
1093 {
1094 return find_extent_buffer(root->fs_info, bytenr);
1095 }
1096
1097 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1098 u64 bytenr, u32 blocksize)
1099 {
1100 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1101 }
1102
1103
1104 int btrfs_write_tree_block(struct extent_buffer *buf)
1105 {
1106 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1107 buf->start + buf->len - 1);
1108 }
1109
1110 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1111 {
1112 return filemap_fdatawait_range(buf->pages[0]->mapping,
1113 buf->start, buf->start + buf->len - 1);
1114 }
1115
1116 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1117 u32 blocksize, u64 parent_transid)
1118 {
1119 struct extent_buffer *buf = NULL;
1120 int ret;
1121
1122 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1123 if (!buf)
1124 return NULL;
1125
1126 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1127 if (ret) {
1128 free_extent_buffer(buf);
1129 return NULL;
1130 }
1131 return buf;
1132
1133 }
1134
1135 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1136 struct extent_buffer *buf)
1137 {
1138 struct btrfs_fs_info *fs_info = root->fs_info;
1139
1140 if (btrfs_header_generation(buf) ==
1141 fs_info->running_transaction->transid) {
1142 btrfs_assert_tree_locked(buf);
1143
1144 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1145 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1146 -buf->len,
1147 fs_info->dirty_metadata_batch);
1148 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1149 btrfs_set_lock_blocking(buf);
1150 clear_extent_buffer_dirty(buf);
1151 }
1152 }
1153 }
1154
1155 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1156 u32 stripesize, struct btrfs_root *root,
1157 struct btrfs_fs_info *fs_info,
1158 u64 objectid)
1159 {
1160 root->node = NULL;
1161 root->commit_root = NULL;
1162 root->sectorsize = sectorsize;
1163 root->nodesize = nodesize;
1164 root->leafsize = leafsize;
1165 root->stripesize = stripesize;
1166 root->ref_cows = 0;
1167 root->track_dirty = 0;
1168 root->in_radix = 0;
1169 root->orphan_item_inserted = 0;
1170 root->orphan_cleanup_state = 0;
1171
1172 root->objectid = objectid;
1173 root->last_trans = 0;
1174 root->highest_objectid = 0;
1175 root->nr_delalloc_inodes = 0;
1176 root->nr_ordered_extents = 0;
1177 root->name = NULL;
1178 root->inode_tree = RB_ROOT;
1179 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1180 root->block_rsv = NULL;
1181 root->orphan_block_rsv = NULL;
1182
1183 INIT_LIST_HEAD(&root->dirty_list);
1184 INIT_LIST_HEAD(&root->root_list);
1185 INIT_LIST_HEAD(&root->delalloc_inodes);
1186 INIT_LIST_HEAD(&root->delalloc_root);
1187 INIT_LIST_HEAD(&root->ordered_extents);
1188 INIT_LIST_HEAD(&root->ordered_root);
1189 INIT_LIST_HEAD(&root->logged_list[0]);
1190 INIT_LIST_HEAD(&root->logged_list[1]);
1191 spin_lock_init(&root->orphan_lock);
1192 spin_lock_init(&root->inode_lock);
1193 spin_lock_init(&root->delalloc_lock);
1194 spin_lock_init(&root->ordered_extent_lock);
1195 spin_lock_init(&root->accounting_lock);
1196 spin_lock_init(&root->log_extents_lock[0]);
1197 spin_lock_init(&root->log_extents_lock[1]);
1198 mutex_init(&root->objectid_mutex);
1199 mutex_init(&root->log_mutex);
1200 init_waitqueue_head(&root->log_writer_wait);
1201 init_waitqueue_head(&root->log_commit_wait[0]);
1202 init_waitqueue_head(&root->log_commit_wait[1]);
1203 atomic_set(&root->log_commit[0], 0);
1204 atomic_set(&root->log_commit[1], 0);
1205 atomic_set(&root->log_writers, 0);
1206 atomic_set(&root->log_batch, 0);
1207 atomic_set(&root->orphan_inodes, 0);
1208 atomic_set(&root->refs, 1);
1209 root->log_transid = 0;
1210 root->last_log_commit = 0;
1211 if (fs_info)
1212 extent_io_tree_init(&root->dirty_log_pages,
1213 fs_info->btree_inode->i_mapping);
1214
1215 memset(&root->root_key, 0, sizeof(root->root_key));
1216 memset(&root->root_item, 0, sizeof(root->root_item));
1217 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1218 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1219 if (fs_info)
1220 root->defrag_trans_start = fs_info->generation;
1221 else
1222 root->defrag_trans_start = 0;
1223 init_completion(&root->kobj_unregister);
1224 root->defrag_running = 0;
1225 root->root_key.objectid = objectid;
1226 root->anon_dev = 0;
1227
1228 spin_lock_init(&root->root_item_lock);
1229 }
1230
1231 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1232 {
1233 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1234 if (root)
1235 root->fs_info = fs_info;
1236 return root;
1237 }
1238
1239 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240 /* Should only be used by the testing infrastructure */
1241 struct btrfs_root *btrfs_alloc_dummy_root(void)
1242 {
1243 struct btrfs_root *root;
1244
1245 root = btrfs_alloc_root(NULL);
1246 if (!root)
1247 return ERR_PTR(-ENOMEM);
1248 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1249 root->dummy_root = 1;
1250
1251 return root;
1252 }
1253 #endif
1254
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256 struct btrfs_fs_info *fs_info,
1257 u64 objectid)
1258 {
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
1263 int ret = 0;
1264 uuid_le uuid;
1265
1266 root = btrfs_alloc_root(fs_info);
1267 if (!root)
1268 return ERR_PTR(-ENOMEM);
1269
1270 __setup_root(tree_root->nodesize, tree_root->leafsize,
1271 tree_root->sectorsize, tree_root->stripesize,
1272 root, fs_info, objectid);
1273 root->root_key.objectid = objectid;
1274 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1275 root->root_key.offset = 0;
1276
1277 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1278 0, objectid, NULL, 0, 0, 0);
1279 if (IS_ERR(leaf)) {
1280 ret = PTR_ERR(leaf);
1281 leaf = NULL;
1282 goto fail;
1283 }
1284
1285 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1286 btrfs_set_header_bytenr(leaf, leaf->start);
1287 btrfs_set_header_generation(leaf, trans->transid);
1288 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1289 btrfs_set_header_owner(leaf, objectid);
1290 root->node = leaf;
1291
1292 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1293 BTRFS_FSID_SIZE);
1294 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1295 btrfs_header_chunk_tree_uuid(leaf),
1296 BTRFS_UUID_SIZE);
1297 btrfs_mark_buffer_dirty(leaf);
1298
1299 root->commit_root = btrfs_root_node(root);
1300 root->track_dirty = 1;
1301
1302
1303 root->root_item.flags = 0;
1304 root->root_item.byte_limit = 0;
1305 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1306 btrfs_set_root_generation(&root->root_item, trans->transid);
1307 btrfs_set_root_level(&root->root_item, 0);
1308 btrfs_set_root_refs(&root->root_item, 1);
1309 btrfs_set_root_used(&root->root_item, leaf->len);
1310 btrfs_set_root_last_snapshot(&root->root_item, 0);
1311 btrfs_set_root_dirid(&root->root_item, 0);
1312 uuid_le_gen(&uuid);
1313 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1314 root->root_item.drop_level = 0;
1315
1316 key.objectid = objectid;
1317 key.type = BTRFS_ROOT_ITEM_KEY;
1318 key.offset = 0;
1319 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1320 if (ret)
1321 goto fail;
1322
1323 btrfs_tree_unlock(leaf);
1324
1325 return root;
1326
1327 fail:
1328 if (leaf) {
1329 btrfs_tree_unlock(leaf);
1330 free_extent_buffer(leaf);
1331 }
1332 kfree(root);
1333
1334 return ERR_PTR(ret);
1335 }
1336
1337 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1338 struct btrfs_fs_info *fs_info)
1339 {
1340 struct btrfs_root *root;
1341 struct btrfs_root *tree_root = fs_info->tree_root;
1342 struct extent_buffer *leaf;
1343
1344 root = btrfs_alloc_root(fs_info);
1345 if (!root)
1346 return ERR_PTR(-ENOMEM);
1347
1348 __setup_root(tree_root->nodesize, tree_root->leafsize,
1349 tree_root->sectorsize, tree_root->stripesize,
1350 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1351
1352 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1353 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1355 /*
1356 * log trees do not get reference counted because they go away
1357 * before a real commit is actually done. They do store pointers
1358 * to file data extents, and those reference counts still get
1359 * updated (along with back refs to the log tree).
1360 */
1361 root->ref_cows = 0;
1362
1363 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1364 BTRFS_TREE_LOG_OBJECTID, NULL,
1365 0, 0, 0);
1366 if (IS_ERR(leaf)) {
1367 kfree(root);
1368 return ERR_CAST(leaf);
1369 }
1370
1371 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1372 btrfs_set_header_bytenr(leaf, leaf->start);
1373 btrfs_set_header_generation(leaf, trans->transid);
1374 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1375 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1376 root->node = leaf;
1377
1378 write_extent_buffer(root->node, root->fs_info->fsid,
1379 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1380 btrfs_mark_buffer_dirty(root->node);
1381 btrfs_tree_unlock(root->node);
1382 return root;
1383 }
1384
1385 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1386 struct btrfs_fs_info *fs_info)
1387 {
1388 struct btrfs_root *log_root;
1389
1390 log_root = alloc_log_tree(trans, fs_info);
1391 if (IS_ERR(log_root))
1392 return PTR_ERR(log_root);
1393 WARN_ON(fs_info->log_root_tree);
1394 fs_info->log_root_tree = log_root;
1395 return 0;
1396 }
1397
1398 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1399 struct btrfs_root *root)
1400 {
1401 struct btrfs_root *log_root;
1402 struct btrfs_inode_item *inode_item;
1403
1404 log_root = alloc_log_tree(trans, root->fs_info);
1405 if (IS_ERR(log_root))
1406 return PTR_ERR(log_root);
1407
1408 log_root->last_trans = trans->transid;
1409 log_root->root_key.offset = root->root_key.objectid;
1410
1411 inode_item = &log_root->root_item.inode;
1412 btrfs_set_stack_inode_generation(inode_item, 1);
1413 btrfs_set_stack_inode_size(inode_item, 3);
1414 btrfs_set_stack_inode_nlink(inode_item, 1);
1415 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1416 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1417
1418 btrfs_set_root_node(&log_root->root_item, log_root->node);
1419
1420 WARN_ON(root->log_root);
1421 root->log_root = log_root;
1422 root->log_transid = 0;
1423 root->last_log_commit = 0;
1424 return 0;
1425 }
1426
1427 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1428 struct btrfs_key *key)
1429 {
1430 struct btrfs_root *root;
1431 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1432 struct btrfs_path *path;
1433 u64 generation;
1434 u32 blocksize;
1435 int ret;
1436
1437 path = btrfs_alloc_path();
1438 if (!path)
1439 return ERR_PTR(-ENOMEM);
1440
1441 root = btrfs_alloc_root(fs_info);
1442 if (!root) {
1443 ret = -ENOMEM;
1444 goto alloc_fail;
1445 }
1446
1447 __setup_root(tree_root->nodesize, tree_root->leafsize,
1448 tree_root->sectorsize, tree_root->stripesize,
1449 root, fs_info, key->objectid);
1450
1451 ret = btrfs_find_root(tree_root, key, path,
1452 &root->root_item, &root->root_key);
1453 if (ret) {
1454 if (ret > 0)
1455 ret = -ENOENT;
1456 goto find_fail;
1457 }
1458
1459 generation = btrfs_root_generation(&root->root_item);
1460 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1461 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1462 blocksize, generation);
1463 if (!root->node) {
1464 ret = -ENOMEM;
1465 goto find_fail;
1466 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1467 ret = -EIO;
1468 goto read_fail;
1469 }
1470 root->commit_root = btrfs_root_node(root);
1471 out:
1472 btrfs_free_path(path);
1473 return root;
1474
1475 read_fail:
1476 free_extent_buffer(root->node);
1477 find_fail:
1478 kfree(root);
1479 alloc_fail:
1480 root = ERR_PTR(ret);
1481 goto out;
1482 }
1483
1484 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1485 struct btrfs_key *location)
1486 {
1487 struct btrfs_root *root;
1488
1489 root = btrfs_read_tree_root(tree_root, location);
1490 if (IS_ERR(root))
1491 return root;
1492
1493 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1494 root->ref_cows = 1;
1495 btrfs_check_and_init_root_item(&root->root_item);
1496 }
1497
1498 return root;
1499 }
1500
1501 int btrfs_init_fs_root(struct btrfs_root *root)
1502 {
1503 int ret;
1504
1505 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1506 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1507 GFP_NOFS);
1508 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1509 ret = -ENOMEM;
1510 goto fail;
1511 }
1512
1513 btrfs_init_free_ino_ctl(root);
1514 mutex_init(&root->fs_commit_mutex);
1515 spin_lock_init(&root->cache_lock);
1516 init_waitqueue_head(&root->cache_wait);
1517
1518 ret = get_anon_bdev(&root->anon_dev);
1519 if (ret)
1520 goto fail;
1521 return 0;
1522 fail:
1523 kfree(root->free_ino_ctl);
1524 kfree(root->free_ino_pinned);
1525 return ret;
1526 }
1527
1528 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1529 u64 root_id)
1530 {
1531 struct btrfs_root *root;
1532
1533 spin_lock(&fs_info->fs_roots_radix_lock);
1534 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1535 (unsigned long)root_id);
1536 spin_unlock(&fs_info->fs_roots_radix_lock);
1537 return root;
1538 }
1539
1540 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1541 struct btrfs_root *root)
1542 {
1543 int ret;
1544
1545 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1546 if (ret)
1547 return ret;
1548
1549 spin_lock(&fs_info->fs_roots_radix_lock);
1550 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1551 (unsigned long)root->root_key.objectid,
1552 root);
1553 if (ret == 0)
1554 root->in_radix = 1;
1555 spin_unlock(&fs_info->fs_roots_radix_lock);
1556 radix_tree_preload_end();
1557
1558 return ret;
1559 }
1560
1561 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1562 struct btrfs_key *location,
1563 bool check_ref)
1564 {
1565 struct btrfs_root *root;
1566 int ret;
1567
1568 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1569 return fs_info->tree_root;
1570 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1571 return fs_info->extent_root;
1572 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1573 return fs_info->chunk_root;
1574 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1575 return fs_info->dev_root;
1576 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1577 return fs_info->csum_root;
1578 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1579 return fs_info->quota_root ? fs_info->quota_root :
1580 ERR_PTR(-ENOENT);
1581 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1582 return fs_info->uuid_root ? fs_info->uuid_root :
1583 ERR_PTR(-ENOENT);
1584 again:
1585 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1586 if (root) {
1587 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1588 return ERR_PTR(-ENOENT);
1589 return root;
1590 }
1591
1592 root = btrfs_read_fs_root(fs_info->tree_root, location);
1593 if (IS_ERR(root))
1594 return root;
1595
1596 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1597 ret = -ENOENT;
1598 goto fail;
1599 }
1600
1601 ret = btrfs_init_fs_root(root);
1602 if (ret)
1603 goto fail;
1604
1605 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1606 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1607 if (ret < 0)
1608 goto fail;
1609 if (ret == 0)
1610 root->orphan_item_inserted = 1;
1611
1612 ret = btrfs_insert_fs_root(fs_info, root);
1613 if (ret) {
1614 if (ret == -EEXIST) {
1615 free_fs_root(root);
1616 goto again;
1617 }
1618 goto fail;
1619 }
1620 return root;
1621 fail:
1622 free_fs_root(root);
1623 return ERR_PTR(ret);
1624 }
1625
1626 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1627 {
1628 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1629 int ret = 0;
1630 struct btrfs_device *device;
1631 struct backing_dev_info *bdi;
1632
1633 rcu_read_lock();
1634 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1635 if (!device->bdev)
1636 continue;
1637 bdi = blk_get_backing_dev_info(device->bdev);
1638 if (bdi && bdi_congested(bdi, bdi_bits)) {
1639 ret = 1;
1640 break;
1641 }
1642 }
1643 rcu_read_unlock();
1644 return ret;
1645 }
1646
1647 /*
1648 * If this fails, caller must call bdi_destroy() to get rid of the
1649 * bdi again.
1650 */
1651 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1652 {
1653 int err;
1654
1655 bdi->capabilities = BDI_CAP_MAP_COPY;
1656 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1657 if (err)
1658 return err;
1659
1660 bdi->ra_pages = default_backing_dev_info.ra_pages;
1661 bdi->congested_fn = btrfs_congested_fn;
1662 bdi->congested_data = info;
1663 return 0;
1664 }
1665
1666 /*
1667 * called by the kthread helper functions to finally call the bio end_io
1668 * functions. This is where read checksum verification actually happens
1669 */
1670 static void end_workqueue_fn(struct btrfs_work *work)
1671 {
1672 struct bio *bio;
1673 struct end_io_wq *end_io_wq;
1674 int error;
1675
1676 end_io_wq = container_of(work, struct end_io_wq, work);
1677 bio = end_io_wq->bio;
1678
1679 error = end_io_wq->error;
1680 bio->bi_private = end_io_wq->private;
1681 bio->bi_end_io = end_io_wq->end_io;
1682 kfree(end_io_wq);
1683 bio_endio(bio, error);
1684 }
1685
1686 static int cleaner_kthread(void *arg)
1687 {
1688 struct btrfs_root *root = arg;
1689 int again;
1690
1691 do {
1692 again = 0;
1693
1694 /* Make the cleaner go to sleep early. */
1695 if (btrfs_need_cleaner_sleep(root))
1696 goto sleep;
1697
1698 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1699 goto sleep;
1700
1701 /*
1702 * Avoid the problem that we change the status of the fs
1703 * during the above check and trylock.
1704 */
1705 if (btrfs_need_cleaner_sleep(root)) {
1706 mutex_unlock(&root->fs_info->cleaner_mutex);
1707 goto sleep;
1708 }
1709
1710 btrfs_run_delayed_iputs(root);
1711 again = btrfs_clean_one_deleted_snapshot(root);
1712 mutex_unlock(&root->fs_info->cleaner_mutex);
1713
1714 /*
1715 * The defragger has dealt with the R/O remount and umount,
1716 * needn't do anything special here.
1717 */
1718 btrfs_run_defrag_inodes(root->fs_info);
1719 sleep:
1720 if (!try_to_freeze() && !again) {
1721 set_current_state(TASK_INTERRUPTIBLE);
1722 if (!kthread_should_stop())
1723 schedule();
1724 __set_current_state(TASK_RUNNING);
1725 }
1726 } while (!kthread_should_stop());
1727 return 0;
1728 }
1729
1730 static int transaction_kthread(void *arg)
1731 {
1732 struct btrfs_root *root = arg;
1733 struct btrfs_trans_handle *trans;
1734 struct btrfs_transaction *cur;
1735 u64 transid;
1736 unsigned long now;
1737 unsigned long delay;
1738 bool cannot_commit;
1739
1740 do {
1741 cannot_commit = false;
1742 delay = HZ * root->fs_info->commit_interval;
1743 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1744
1745 spin_lock(&root->fs_info->trans_lock);
1746 cur = root->fs_info->running_transaction;
1747 if (!cur) {
1748 spin_unlock(&root->fs_info->trans_lock);
1749 goto sleep;
1750 }
1751
1752 now = get_seconds();
1753 if (cur->state < TRANS_STATE_BLOCKED &&
1754 (now < cur->start_time ||
1755 now - cur->start_time < root->fs_info->commit_interval)) {
1756 spin_unlock(&root->fs_info->trans_lock);
1757 delay = HZ * 5;
1758 goto sleep;
1759 }
1760 transid = cur->transid;
1761 spin_unlock(&root->fs_info->trans_lock);
1762
1763 /* If the file system is aborted, this will always fail. */
1764 trans = btrfs_attach_transaction(root);
1765 if (IS_ERR(trans)) {
1766 if (PTR_ERR(trans) != -ENOENT)
1767 cannot_commit = true;
1768 goto sleep;
1769 }
1770 if (transid == trans->transid) {
1771 btrfs_commit_transaction(trans, root);
1772 } else {
1773 btrfs_end_transaction(trans, root);
1774 }
1775 sleep:
1776 wake_up_process(root->fs_info->cleaner_kthread);
1777 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1778
1779 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1780 &root->fs_info->fs_state)))
1781 btrfs_cleanup_transaction(root);
1782 if (!try_to_freeze()) {
1783 set_current_state(TASK_INTERRUPTIBLE);
1784 if (!kthread_should_stop() &&
1785 (!btrfs_transaction_blocked(root->fs_info) ||
1786 cannot_commit))
1787 schedule_timeout(delay);
1788 __set_current_state(TASK_RUNNING);
1789 }
1790 } while (!kthread_should_stop());
1791 return 0;
1792 }
1793
1794 /*
1795 * this will find the highest generation in the array of
1796 * root backups. The index of the highest array is returned,
1797 * or -1 if we can't find anything.
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest root in the array with the generation
1801 * in the super block. If they don't match we pitch it.
1802 */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 {
1805 u64 cur;
1806 int newest_index = -1;
1807 struct btrfs_root_backup *root_backup;
1808 int i;
1809
1810 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811 root_backup = info->super_copy->super_roots + i;
1812 cur = btrfs_backup_tree_root_gen(root_backup);
1813 if (cur == newest_gen)
1814 newest_index = i;
1815 }
1816
1817 /* check to see if we actually wrapped around */
1818 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819 root_backup = info->super_copy->super_roots;
1820 cur = btrfs_backup_tree_root_gen(root_backup);
1821 if (cur == newest_gen)
1822 newest_index = 0;
1823 }
1824 return newest_index;
1825 }
1826
1827
1828 /*
1829 * find the oldest backup so we know where to store new entries
1830 * in the backup array. This will set the backup_root_index
1831 * field in the fs_info struct
1832 */
1833 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834 u64 newest_gen)
1835 {
1836 int newest_index = -1;
1837
1838 newest_index = find_newest_super_backup(info, newest_gen);
1839 /* if there was garbage in there, just move along */
1840 if (newest_index == -1) {
1841 info->backup_root_index = 0;
1842 } else {
1843 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844 }
1845 }
1846
1847 /*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854 int next_backup;
1855 struct btrfs_root_backup *root_backup;
1856 int last_backup;
1857
1858 next_backup = info->backup_root_index;
1859 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860 BTRFS_NUM_BACKUP_ROOTS;
1861
1862 /*
1863 * just overwrite the last backup if we're at the same generation
1864 * this happens only at umount
1865 */
1866 root_backup = info->super_for_commit->super_roots + last_backup;
1867 if (btrfs_backup_tree_root_gen(root_backup) ==
1868 btrfs_header_generation(info->tree_root->node))
1869 next_backup = last_backup;
1870
1871 root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873 /*
1874 * make sure all of our padding and empty slots get zero filled
1875 * regardless of which ones we use today
1876 */
1877 memset(root_backup, 0, sizeof(*root_backup));
1878
1879 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882 btrfs_set_backup_tree_root_gen(root_backup,
1883 btrfs_header_generation(info->tree_root->node));
1884
1885 btrfs_set_backup_tree_root_level(root_backup,
1886 btrfs_header_level(info->tree_root->node));
1887
1888 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889 btrfs_set_backup_chunk_root_gen(root_backup,
1890 btrfs_header_generation(info->chunk_root->node));
1891 btrfs_set_backup_chunk_root_level(root_backup,
1892 btrfs_header_level(info->chunk_root->node));
1893
1894 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895 btrfs_set_backup_extent_root_gen(root_backup,
1896 btrfs_header_generation(info->extent_root->node));
1897 btrfs_set_backup_extent_root_level(root_backup,
1898 btrfs_header_level(info->extent_root->node));
1899
1900 /*
1901 * we might commit during log recovery, which happens before we set
1902 * the fs_root. Make sure it is valid before we fill it in.
1903 */
1904 if (info->fs_root && info->fs_root->node) {
1905 btrfs_set_backup_fs_root(root_backup,
1906 info->fs_root->node->start);
1907 btrfs_set_backup_fs_root_gen(root_backup,
1908 btrfs_header_generation(info->fs_root->node));
1909 btrfs_set_backup_fs_root_level(root_backup,
1910 btrfs_header_level(info->fs_root->node));
1911 }
1912
1913 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914 btrfs_set_backup_dev_root_gen(root_backup,
1915 btrfs_header_generation(info->dev_root->node));
1916 btrfs_set_backup_dev_root_level(root_backup,
1917 btrfs_header_level(info->dev_root->node));
1918
1919 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920 btrfs_set_backup_csum_root_gen(root_backup,
1921 btrfs_header_generation(info->csum_root->node));
1922 btrfs_set_backup_csum_root_level(root_backup,
1923 btrfs_header_level(info->csum_root->node));
1924
1925 btrfs_set_backup_total_bytes(root_backup,
1926 btrfs_super_total_bytes(info->super_copy));
1927 btrfs_set_backup_bytes_used(root_backup,
1928 btrfs_super_bytes_used(info->super_copy));
1929 btrfs_set_backup_num_devices(root_backup,
1930 btrfs_super_num_devices(info->super_copy));
1931
1932 /*
1933 * if we don't copy this out to the super_copy, it won't get remembered
1934 * for the next commit
1935 */
1936 memcpy(&info->super_copy->super_roots,
1937 &info->super_for_commit->super_roots,
1938 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939 }
1940
1941 /*
1942 * this copies info out of the root backup array and back into
1943 * the in-memory super block. It is meant to help iterate through
1944 * the array, so you send it the number of backups you've already
1945 * tried and the last backup index you used.
1946 *
1947 * this returns -1 when it has tried all the backups
1948 */
1949 static noinline int next_root_backup(struct btrfs_fs_info *info,
1950 struct btrfs_super_block *super,
1951 int *num_backups_tried, int *backup_index)
1952 {
1953 struct btrfs_root_backup *root_backup;
1954 int newest = *backup_index;
1955
1956 if (*num_backups_tried == 0) {
1957 u64 gen = btrfs_super_generation(super);
1958
1959 newest = find_newest_super_backup(info, gen);
1960 if (newest == -1)
1961 return -1;
1962
1963 *backup_index = newest;
1964 *num_backups_tried = 1;
1965 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966 /* we've tried all the backups, all done */
1967 return -1;
1968 } else {
1969 /* jump to the next oldest backup */
1970 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971 BTRFS_NUM_BACKUP_ROOTS;
1972 *backup_index = newest;
1973 *num_backups_tried += 1;
1974 }
1975 root_backup = super->super_roots + newest;
1976
1977 btrfs_set_super_generation(super,
1978 btrfs_backup_tree_root_gen(root_backup));
1979 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980 btrfs_set_super_root_level(super,
1981 btrfs_backup_tree_root_level(root_backup));
1982 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984 /*
1985 * fixme: the total bytes and num_devices need to match or we should
1986 * need a fsck
1987 */
1988 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990 return 0;
1991 }
1992
1993 /* helper to cleanup workers */
1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 {
1996 btrfs_stop_workers(&fs_info->generic_worker);
1997 btrfs_stop_workers(&fs_info->fixup_workers);
1998 btrfs_stop_workers(&fs_info->delalloc_workers);
1999 btrfs_stop_workers(&fs_info->workers);
2000 btrfs_stop_workers(&fs_info->endio_workers);
2001 btrfs_stop_workers(&fs_info->endio_meta_workers);
2002 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2003 btrfs_stop_workers(&fs_info->rmw_workers);
2004 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2005 btrfs_stop_workers(&fs_info->endio_write_workers);
2006 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2007 btrfs_stop_workers(&fs_info->submit_workers);
2008 btrfs_stop_workers(&fs_info->delayed_workers);
2009 btrfs_stop_workers(&fs_info->caching_workers);
2010 btrfs_stop_workers(&fs_info->readahead_workers);
2011 btrfs_stop_workers(&fs_info->flush_workers);
2012 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2013 }
2014
2015 static void free_root_extent_buffers(struct btrfs_root *root)
2016 {
2017 if (root) {
2018 free_extent_buffer(root->node);
2019 free_extent_buffer(root->commit_root);
2020 root->node = NULL;
2021 root->commit_root = NULL;
2022 }
2023 }
2024
2025 /* helper to cleanup tree roots */
2026 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2027 {
2028 free_root_extent_buffers(info->tree_root);
2029
2030 free_root_extent_buffers(info->dev_root);
2031 free_root_extent_buffers(info->extent_root);
2032 free_root_extent_buffers(info->csum_root);
2033 free_root_extent_buffers(info->quota_root);
2034 free_root_extent_buffers(info->uuid_root);
2035 if (chunk_root)
2036 free_root_extent_buffers(info->chunk_root);
2037 }
2038
2039 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2040 {
2041 int ret;
2042 struct btrfs_root *gang[8];
2043 int i;
2044
2045 while (!list_empty(&fs_info->dead_roots)) {
2046 gang[0] = list_entry(fs_info->dead_roots.next,
2047 struct btrfs_root, root_list);
2048 list_del(&gang[0]->root_list);
2049
2050 if (gang[0]->in_radix) {
2051 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2052 } else {
2053 free_extent_buffer(gang[0]->node);
2054 free_extent_buffer(gang[0]->commit_root);
2055 btrfs_put_fs_root(gang[0]);
2056 }
2057 }
2058
2059 while (1) {
2060 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2061 (void **)gang, 0,
2062 ARRAY_SIZE(gang));
2063 if (!ret)
2064 break;
2065 for (i = 0; i < ret; i++)
2066 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2067 }
2068
2069 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2070 btrfs_free_log_root_tree(NULL, fs_info);
2071 btrfs_destroy_pinned_extent(fs_info->tree_root,
2072 fs_info->pinned_extents);
2073 }
2074 }
2075
2076 int open_ctree(struct super_block *sb,
2077 struct btrfs_fs_devices *fs_devices,
2078 char *options)
2079 {
2080 u32 sectorsize;
2081 u32 nodesize;
2082 u32 leafsize;
2083 u32 blocksize;
2084 u32 stripesize;
2085 u64 generation;
2086 u64 features;
2087 struct btrfs_key location;
2088 struct buffer_head *bh;
2089 struct btrfs_super_block *disk_super;
2090 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2091 struct btrfs_root *tree_root;
2092 struct btrfs_root *extent_root;
2093 struct btrfs_root *csum_root;
2094 struct btrfs_root *chunk_root;
2095 struct btrfs_root *dev_root;
2096 struct btrfs_root *quota_root;
2097 struct btrfs_root *uuid_root;
2098 struct btrfs_root *log_tree_root;
2099 int ret;
2100 int err = -EINVAL;
2101 int num_backups_tried = 0;
2102 int backup_index = 0;
2103 bool create_uuid_tree;
2104 bool check_uuid_tree;
2105
2106 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2107 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2108 if (!tree_root || !chunk_root) {
2109 err = -ENOMEM;
2110 goto fail;
2111 }
2112
2113 ret = init_srcu_struct(&fs_info->subvol_srcu);
2114 if (ret) {
2115 err = ret;
2116 goto fail;
2117 }
2118
2119 ret = setup_bdi(fs_info, &fs_info->bdi);
2120 if (ret) {
2121 err = ret;
2122 goto fail_srcu;
2123 }
2124
2125 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2126 if (ret) {
2127 err = ret;
2128 goto fail_bdi;
2129 }
2130 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2131 (1 + ilog2(nr_cpu_ids));
2132
2133 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2134 if (ret) {
2135 err = ret;
2136 goto fail_dirty_metadata_bytes;
2137 }
2138
2139 fs_info->btree_inode = new_inode(sb);
2140 if (!fs_info->btree_inode) {
2141 err = -ENOMEM;
2142 goto fail_delalloc_bytes;
2143 }
2144
2145 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2146
2147 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2148 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2149 INIT_LIST_HEAD(&fs_info->trans_list);
2150 INIT_LIST_HEAD(&fs_info->dead_roots);
2151 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2152 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2153 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2154 spin_lock_init(&fs_info->delalloc_root_lock);
2155 spin_lock_init(&fs_info->trans_lock);
2156 spin_lock_init(&fs_info->fs_roots_radix_lock);
2157 spin_lock_init(&fs_info->delayed_iput_lock);
2158 spin_lock_init(&fs_info->defrag_inodes_lock);
2159 spin_lock_init(&fs_info->free_chunk_lock);
2160 spin_lock_init(&fs_info->tree_mod_seq_lock);
2161 spin_lock_init(&fs_info->super_lock);
2162 spin_lock_init(&fs_info->buffer_lock);
2163 rwlock_init(&fs_info->tree_mod_log_lock);
2164 mutex_init(&fs_info->reloc_mutex);
2165 seqlock_init(&fs_info->profiles_lock);
2166
2167 init_completion(&fs_info->kobj_unregister);
2168 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2169 INIT_LIST_HEAD(&fs_info->space_info);
2170 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2171 btrfs_mapping_init(&fs_info->mapping_tree);
2172 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2173 BTRFS_BLOCK_RSV_GLOBAL);
2174 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2175 BTRFS_BLOCK_RSV_DELALLOC);
2176 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2177 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2178 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2179 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2180 BTRFS_BLOCK_RSV_DELOPS);
2181 atomic_set(&fs_info->nr_async_submits, 0);
2182 atomic_set(&fs_info->async_delalloc_pages, 0);
2183 atomic_set(&fs_info->async_submit_draining, 0);
2184 atomic_set(&fs_info->nr_async_bios, 0);
2185 atomic_set(&fs_info->defrag_running, 0);
2186 atomic64_set(&fs_info->tree_mod_seq, 0);
2187 fs_info->sb = sb;
2188 fs_info->max_inline = 8192 * 1024;
2189 fs_info->metadata_ratio = 0;
2190 fs_info->defrag_inodes = RB_ROOT;
2191 fs_info->free_chunk_space = 0;
2192 fs_info->tree_mod_log = RB_ROOT;
2193 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2194 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2195 /* readahead state */
2196 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2197 spin_lock_init(&fs_info->reada_lock);
2198
2199 fs_info->thread_pool_size = min_t(unsigned long,
2200 num_online_cpus() + 2, 8);
2201
2202 INIT_LIST_HEAD(&fs_info->ordered_roots);
2203 spin_lock_init(&fs_info->ordered_root_lock);
2204 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2205 GFP_NOFS);
2206 if (!fs_info->delayed_root) {
2207 err = -ENOMEM;
2208 goto fail_iput;
2209 }
2210 btrfs_init_delayed_root(fs_info->delayed_root);
2211
2212 mutex_init(&fs_info->scrub_lock);
2213 atomic_set(&fs_info->scrubs_running, 0);
2214 atomic_set(&fs_info->scrub_pause_req, 0);
2215 atomic_set(&fs_info->scrubs_paused, 0);
2216 atomic_set(&fs_info->scrub_cancel_req, 0);
2217 init_waitqueue_head(&fs_info->scrub_pause_wait);
2218 fs_info->scrub_workers_refcnt = 0;
2219 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2220 fs_info->check_integrity_print_mask = 0;
2221 #endif
2222
2223 spin_lock_init(&fs_info->balance_lock);
2224 mutex_init(&fs_info->balance_mutex);
2225 atomic_set(&fs_info->balance_running, 0);
2226 atomic_set(&fs_info->balance_pause_req, 0);
2227 atomic_set(&fs_info->balance_cancel_req, 0);
2228 fs_info->balance_ctl = NULL;
2229 init_waitqueue_head(&fs_info->balance_wait_q);
2230
2231 sb->s_blocksize = 4096;
2232 sb->s_blocksize_bits = blksize_bits(4096);
2233 sb->s_bdi = &fs_info->bdi;
2234
2235 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2236 set_nlink(fs_info->btree_inode, 1);
2237 /*
2238 * we set the i_size on the btree inode to the max possible int.
2239 * the real end of the address space is determined by all of
2240 * the devices in the system
2241 */
2242 fs_info->btree_inode->i_size = OFFSET_MAX;
2243 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2244 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2245
2246 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2247 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2248 fs_info->btree_inode->i_mapping);
2249 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2250 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2251
2252 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2253
2254 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2255 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2256 sizeof(struct btrfs_key));
2257 set_bit(BTRFS_INODE_DUMMY,
2258 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2259 btrfs_insert_inode_hash(fs_info->btree_inode);
2260
2261 spin_lock_init(&fs_info->block_group_cache_lock);
2262 fs_info->block_group_cache_tree = RB_ROOT;
2263 fs_info->first_logical_byte = (u64)-1;
2264
2265 extent_io_tree_init(&fs_info->freed_extents[0],
2266 fs_info->btree_inode->i_mapping);
2267 extent_io_tree_init(&fs_info->freed_extents[1],
2268 fs_info->btree_inode->i_mapping);
2269 fs_info->pinned_extents = &fs_info->freed_extents[0];
2270 fs_info->do_barriers = 1;
2271
2272
2273 mutex_init(&fs_info->ordered_operations_mutex);
2274 mutex_init(&fs_info->ordered_extent_flush_mutex);
2275 mutex_init(&fs_info->tree_log_mutex);
2276 mutex_init(&fs_info->chunk_mutex);
2277 mutex_init(&fs_info->transaction_kthread_mutex);
2278 mutex_init(&fs_info->cleaner_mutex);
2279 mutex_init(&fs_info->volume_mutex);
2280 init_rwsem(&fs_info->extent_commit_sem);
2281 init_rwsem(&fs_info->cleanup_work_sem);
2282 init_rwsem(&fs_info->subvol_sem);
2283 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2284 fs_info->dev_replace.lock_owner = 0;
2285 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2286 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2287 mutex_init(&fs_info->dev_replace.lock_management_lock);
2288 mutex_init(&fs_info->dev_replace.lock);
2289
2290 spin_lock_init(&fs_info->qgroup_lock);
2291 mutex_init(&fs_info->qgroup_ioctl_lock);
2292 fs_info->qgroup_tree = RB_ROOT;
2293 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2294 fs_info->qgroup_seq = 1;
2295 fs_info->quota_enabled = 0;
2296 fs_info->pending_quota_state = 0;
2297 fs_info->qgroup_ulist = NULL;
2298 mutex_init(&fs_info->qgroup_rescan_lock);
2299
2300 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2301 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2302
2303 init_waitqueue_head(&fs_info->transaction_throttle);
2304 init_waitqueue_head(&fs_info->transaction_wait);
2305 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2306 init_waitqueue_head(&fs_info->async_submit_wait);
2307
2308 ret = btrfs_alloc_stripe_hash_table(fs_info);
2309 if (ret) {
2310 err = ret;
2311 goto fail_alloc;
2312 }
2313
2314 __setup_root(4096, 4096, 4096, 4096, tree_root,
2315 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2316
2317 invalidate_bdev(fs_devices->latest_bdev);
2318
2319 /*
2320 * Read super block and check the signature bytes only
2321 */
2322 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2323 if (!bh) {
2324 err = -EINVAL;
2325 goto fail_alloc;
2326 }
2327
2328 /*
2329 * We want to check superblock checksum, the type is stored inside.
2330 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2331 */
2332 if (btrfs_check_super_csum(bh->b_data)) {
2333 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2334 err = -EINVAL;
2335 goto fail_alloc;
2336 }
2337
2338 /*
2339 * super_copy is zeroed at allocation time and we never touch the
2340 * following bytes up to INFO_SIZE, the checksum is calculated from
2341 * the whole block of INFO_SIZE
2342 */
2343 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2344 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2345 sizeof(*fs_info->super_for_commit));
2346 brelse(bh);
2347
2348 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2349
2350 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2351 if (ret) {
2352 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2353 err = -EINVAL;
2354 goto fail_alloc;
2355 }
2356
2357 disk_super = fs_info->super_copy;
2358 if (!btrfs_super_root(disk_super))
2359 goto fail_alloc;
2360
2361 /* check FS state, whether FS is broken. */
2362 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2363 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2364
2365 /*
2366 * run through our array of backup supers and setup
2367 * our ring pointer to the oldest one
2368 */
2369 generation = btrfs_super_generation(disk_super);
2370 find_oldest_super_backup(fs_info, generation);
2371
2372 /*
2373 * In the long term, we'll store the compression type in the super
2374 * block, and it'll be used for per file compression control.
2375 */
2376 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2377
2378 ret = btrfs_parse_options(tree_root, options);
2379 if (ret) {
2380 err = ret;
2381 goto fail_alloc;
2382 }
2383
2384 features = btrfs_super_incompat_flags(disk_super) &
2385 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2386 if (features) {
2387 printk(KERN_ERR "BTRFS: couldn't mount because of "
2388 "unsupported optional features (%Lx).\n",
2389 features);
2390 err = -EINVAL;
2391 goto fail_alloc;
2392 }
2393
2394 if (btrfs_super_leafsize(disk_super) !=
2395 btrfs_super_nodesize(disk_super)) {
2396 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2397 "blocksizes don't match. node %d leaf %d\n",
2398 btrfs_super_nodesize(disk_super),
2399 btrfs_super_leafsize(disk_super));
2400 err = -EINVAL;
2401 goto fail_alloc;
2402 }
2403 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2404 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2405 "blocksize (%d) was too large\n",
2406 btrfs_super_leafsize(disk_super));
2407 err = -EINVAL;
2408 goto fail_alloc;
2409 }
2410
2411 features = btrfs_super_incompat_flags(disk_super);
2412 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2413 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2414 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2415
2416 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2417 printk(KERN_ERR "BTRFS: has skinny extents\n");
2418
2419 /*
2420 * flag our filesystem as having big metadata blocks if
2421 * they are bigger than the page size
2422 */
2423 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2424 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2425 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2426 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2427 }
2428
2429 nodesize = btrfs_super_nodesize(disk_super);
2430 leafsize = btrfs_super_leafsize(disk_super);
2431 sectorsize = btrfs_super_sectorsize(disk_super);
2432 stripesize = btrfs_super_stripesize(disk_super);
2433 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2434 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2435
2436 /*
2437 * mixed block groups end up with duplicate but slightly offset
2438 * extent buffers for the same range. It leads to corruptions
2439 */
2440 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2441 (sectorsize != leafsize)) {
2442 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2443 "are not allowed for mixed block groups on %s\n",
2444 sb->s_id);
2445 goto fail_alloc;
2446 }
2447
2448 /*
2449 * Needn't use the lock because there is no other task which will
2450 * update the flag.
2451 */
2452 btrfs_set_super_incompat_flags(disk_super, features);
2453
2454 features = btrfs_super_compat_ro_flags(disk_super) &
2455 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2456 if (!(sb->s_flags & MS_RDONLY) && features) {
2457 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2458 "unsupported option features (%Lx).\n",
2459 features);
2460 err = -EINVAL;
2461 goto fail_alloc;
2462 }
2463
2464 btrfs_init_workers(&fs_info->generic_worker,
2465 "genwork", 1, NULL);
2466
2467 btrfs_init_workers(&fs_info->workers, "worker",
2468 fs_info->thread_pool_size,
2469 &fs_info->generic_worker);
2470
2471 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2472 fs_info->thread_pool_size, NULL);
2473
2474 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2475 fs_info->thread_pool_size, NULL);
2476
2477 btrfs_init_workers(&fs_info->submit_workers, "submit",
2478 min_t(u64, fs_devices->num_devices,
2479 fs_info->thread_pool_size), NULL);
2480
2481 btrfs_init_workers(&fs_info->caching_workers, "cache",
2482 fs_info->thread_pool_size, NULL);
2483
2484 /* a higher idle thresh on the submit workers makes it much more
2485 * likely that bios will be send down in a sane order to the
2486 * devices
2487 */
2488 fs_info->submit_workers.idle_thresh = 64;
2489
2490 fs_info->workers.idle_thresh = 16;
2491 fs_info->workers.ordered = 1;
2492
2493 fs_info->delalloc_workers.idle_thresh = 2;
2494 fs_info->delalloc_workers.ordered = 1;
2495
2496 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2497 &fs_info->generic_worker);
2498 btrfs_init_workers(&fs_info->endio_workers, "endio",
2499 fs_info->thread_pool_size,
2500 &fs_info->generic_worker);
2501 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2502 fs_info->thread_pool_size,
2503 &fs_info->generic_worker);
2504 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2505 "endio-meta-write", fs_info->thread_pool_size,
2506 &fs_info->generic_worker);
2507 btrfs_init_workers(&fs_info->endio_raid56_workers,
2508 "endio-raid56", fs_info->thread_pool_size,
2509 &fs_info->generic_worker);
2510 btrfs_init_workers(&fs_info->rmw_workers,
2511 "rmw", fs_info->thread_pool_size,
2512 &fs_info->generic_worker);
2513 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2514 fs_info->thread_pool_size,
2515 &fs_info->generic_worker);
2516 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2517 1, &fs_info->generic_worker);
2518 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2519 fs_info->thread_pool_size,
2520 &fs_info->generic_worker);
2521 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2522 fs_info->thread_pool_size,
2523 &fs_info->generic_worker);
2524 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2525 &fs_info->generic_worker);
2526
2527 /*
2528 * endios are largely parallel and should have a very
2529 * low idle thresh
2530 */
2531 fs_info->endio_workers.idle_thresh = 4;
2532 fs_info->endio_meta_workers.idle_thresh = 4;
2533 fs_info->endio_raid56_workers.idle_thresh = 4;
2534 fs_info->rmw_workers.idle_thresh = 2;
2535
2536 fs_info->endio_write_workers.idle_thresh = 2;
2537 fs_info->endio_meta_write_workers.idle_thresh = 2;
2538 fs_info->readahead_workers.idle_thresh = 2;
2539
2540 /*
2541 * btrfs_start_workers can really only fail because of ENOMEM so just
2542 * return -ENOMEM if any of these fail.
2543 */
2544 ret = btrfs_start_workers(&fs_info->workers);
2545 ret |= btrfs_start_workers(&fs_info->generic_worker);
2546 ret |= btrfs_start_workers(&fs_info->submit_workers);
2547 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2548 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2549 ret |= btrfs_start_workers(&fs_info->endio_workers);
2550 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2551 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2552 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2553 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2554 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2555 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2556 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2557 ret |= btrfs_start_workers(&fs_info->caching_workers);
2558 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2559 ret |= btrfs_start_workers(&fs_info->flush_workers);
2560 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2561 if (ret) {
2562 err = -ENOMEM;
2563 goto fail_sb_buffer;
2564 }
2565
2566 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2567 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2568 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2569
2570 tree_root->nodesize = nodesize;
2571 tree_root->leafsize = leafsize;
2572 tree_root->sectorsize = sectorsize;
2573 tree_root->stripesize = stripesize;
2574
2575 sb->s_blocksize = sectorsize;
2576 sb->s_blocksize_bits = blksize_bits(sectorsize);
2577
2578 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2579 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2580 goto fail_sb_buffer;
2581 }
2582
2583 if (sectorsize != PAGE_SIZE) {
2584 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2585 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2586 goto fail_sb_buffer;
2587 }
2588
2589 mutex_lock(&fs_info->chunk_mutex);
2590 ret = btrfs_read_sys_array(tree_root);
2591 mutex_unlock(&fs_info->chunk_mutex);
2592 if (ret) {
2593 printk(KERN_WARNING "BTRFS: failed to read the system "
2594 "array on %s\n", sb->s_id);
2595 goto fail_sb_buffer;
2596 }
2597
2598 blocksize = btrfs_level_size(tree_root,
2599 btrfs_super_chunk_root_level(disk_super));
2600 generation = btrfs_super_chunk_root_generation(disk_super);
2601
2602 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2603 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2604
2605 chunk_root->node = read_tree_block(chunk_root,
2606 btrfs_super_chunk_root(disk_super),
2607 blocksize, generation);
2608 if (!chunk_root->node ||
2609 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2610 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2611 sb->s_id);
2612 goto fail_tree_roots;
2613 }
2614 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2615 chunk_root->commit_root = btrfs_root_node(chunk_root);
2616
2617 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2618 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2619
2620 ret = btrfs_read_chunk_tree(chunk_root);
2621 if (ret) {
2622 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2623 sb->s_id);
2624 goto fail_tree_roots;
2625 }
2626
2627 /*
2628 * keep the device that is marked to be the target device for the
2629 * dev_replace procedure
2630 */
2631 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2632
2633 if (!fs_devices->latest_bdev) {
2634 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2635 sb->s_id);
2636 goto fail_tree_roots;
2637 }
2638
2639 retry_root_backup:
2640 blocksize = btrfs_level_size(tree_root,
2641 btrfs_super_root_level(disk_super));
2642 generation = btrfs_super_generation(disk_super);
2643
2644 tree_root->node = read_tree_block(tree_root,
2645 btrfs_super_root(disk_super),
2646 blocksize, generation);
2647 if (!tree_root->node ||
2648 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2649 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2650 sb->s_id);
2651
2652 goto recovery_tree_root;
2653 }
2654
2655 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2656 tree_root->commit_root = btrfs_root_node(tree_root);
2657 btrfs_set_root_refs(&tree_root->root_item, 1);
2658
2659 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2660 location.type = BTRFS_ROOT_ITEM_KEY;
2661 location.offset = 0;
2662
2663 extent_root = btrfs_read_tree_root(tree_root, &location);
2664 if (IS_ERR(extent_root)) {
2665 ret = PTR_ERR(extent_root);
2666 goto recovery_tree_root;
2667 }
2668 extent_root->track_dirty = 1;
2669 fs_info->extent_root = extent_root;
2670
2671 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2672 dev_root = btrfs_read_tree_root(tree_root, &location);
2673 if (IS_ERR(dev_root)) {
2674 ret = PTR_ERR(dev_root);
2675 goto recovery_tree_root;
2676 }
2677 dev_root->track_dirty = 1;
2678 fs_info->dev_root = dev_root;
2679 btrfs_init_devices_late(fs_info);
2680
2681 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2682 csum_root = btrfs_read_tree_root(tree_root, &location);
2683 if (IS_ERR(csum_root)) {
2684 ret = PTR_ERR(csum_root);
2685 goto recovery_tree_root;
2686 }
2687 csum_root->track_dirty = 1;
2688 fs_info->csum_root = csum_root;
2689
2690 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2691 quota_root = btrfs_read_tree_root(tree_root, &location);
2692 if (!IS_ERR(quota_root)) {
2693 quota_root->track_dirty = 1;
2694 fs_info->quota_enabled = 1;
2695 fs_info->pending_quota_state = 1;
2696 fs_info->quota_root = quota_root;
2697 }
2698
2699 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2700 uuid_root = btrfs_read_tree_root(tree_root, &location);
2701 if (IS_ERR(uuid_root)) {
2702 ret = PTR_ERR(uuid_root);
2703 if (ret != -ENOENT)
2704 goto recovery_tree_root;
2705 create_uuid_tree = true;
2706 check_uuid_tree = false;
2707 } else {
2708 uuid_root->track_dirty = 1;
2709 fs_info->uuid_root = uuid_root;
2710 create_uuid_tree = false;
2711 check_uuid_tree =
2712 generation != btrfs_super_uuid_tree_generation(disk_super);
2713 }
2714
2715 fs_info->generation = generation;
2716 fs_info->last_trans_committed = generation;
2717
2718 ret = btrfs_recover_balance(fs_info);
2719 if (ret) {
2720 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2721 goto fail_block_groups;
2722 }
2723
2724 ret = btrfs_init_dev_stats(fs_info);
2725 if (ret) {
2726 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2727 ret);
2728 goto fail_block_groups;
2729 }
2730
2731 ret = btrfs_init_dev_replace(fs_info);
2732 if (ret) {
2733 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2734 goto fail_block_groups;
2735 }
2736
2737 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2738
2739 ret = btrfs_sysfs_add_one(fs_info);
2740 if (ret) {
2741 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2742 goto fail_block_groups;
2743 }
2744
2745 ret = btrfs_init_space_info(fs_info);
2746 if (ret) {
2747 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2748 goto fail_sysfs;
2749 }
2750
2751 ret = btrfs_read_block_groups(extent_root);
2752 if (ret) {
2753 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2754 goto fail_sysfs;
2755 }
2756 fs_info->num_tolerated_disk_barrier_failures =
2757 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2758 if (fs_info->fs_devices->missing_devices >
2759 fs_info->num_tolerated_disk_barrier_failures &&
2760 !(sb->s_flags & MS_RDONLY)) {
2761 printk(KERN_WARNING "BTRFS: "
2762 "too many missing devices, writeable mount is not allowed\n");
2763 goto fail_sysfs;
2764 }
2765
2766 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2767 "btrfs-cleaner");
2768 if (IS_ERR(fs_info->cleaner_kthread))
2769 goto fail_sysfs;
2770
2771 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2772 tree_root,
2773 "btrfs-transaction");
2774 if (IS_ERR(fs_info->transaction_kthread))
2775 goto fail_cleaner;
2776
2777 if (!btrfs_test_opt(tree_root, SSD) &&
2778 !btrfs_test_opt(tree_root, NOSSD) &&
2779 !fs_info->fs_devices->rotating) {
2780 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2781 "mode\n");
2782 btrfs_set_opt(fs_info->mount_opt, SSD);
2783 }
2784
2785 /* Set the real inode map cache flag */
2786 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2787 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2788
2789 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2790 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2791 ret = btrfsic_mount(tree_root, fs_devices,
2792 btrfs_test_opt(tree_root,
2793 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2794 1 : 0,
2795 fs_info->check_integrity_print_mask);
2796 if (ret)
2797 printk(KERN_WARNING "BTRFS: failed to initialize"
2798 " integrity check module %s\n", sb->s_id);
2799 }
2800 #endif
2801 ret = btrfs_read_qgroup_config(fs_info);
2802 if (ret)
2803 goto fail_trans_kthread;
2804
2805 /* do not make disk changes in broken FS */
2806 if (btrfs_super_log_root(disk_super) != 0) {
2807 u64 bytenr = btrfs_super_log_root(disk_super);
2808
2809 if (fs_devices->rw_devices == 0) {
2810 printk(KERN_WARNING "BTRFS: log replay required "
2811 "on RO media\n");
2812 err = -EIO;
2813 goto fail_qgroup;
2814 }
2815 blocksize =
2816 btrfs_level_size(tree_root,
2817 btrfs_super_log_root_level(disk_super));
2818
2819 log_tree_root = btrfs_alloc_root(fs_info);
2820 if (!log_tree_root) {
2821 err = -ENOMEM;
2822 goto fail_qgroup;
2823 }
2824
2825 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2826 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2827
2828 log_tree_root->node = read_tree_block(tree_root, bytenr,
2829 blocksize,
2830 generation + 1);
2831 if (!log_tree_root->node ||
2832 !extent_buffer_uptodate(log_tree_root->node)) {
2833 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2834 free_extent_buffer(log_tree_root->node);
2835 kfree(log_tree_root);
2836 goto fail_trans_kthread;
2837 }
2838 /* returns with log_tree_root freed on success */
2839 ret = btrfs_recover_log_trees(log_tree_root);
2840 if (ret) {
2841 btrfs_error(tree_root->fs_info, ret,
2842 "Failed to recover log tree");
2843 free_extent_buffer(log_tree_root->node);
2844 kfree(log_tree_root);
2845 goto fail_trans_kthread;
2846 }
2847
2848 if (sb->s_flags & MS_RDONLY) {
2849 ret = btrfs_commit_super(tree_root);
2850 if (ret)
2851 goto fail_trans_kthread;
2852 }
2853 }
2854
2855 ret = btrfs_find_orphan_roots(tree_root);
2856 if (ret)
2857 goto fail_trans_kthread;
2858
2859 if (!(sb->s_flags & MS_RDONLY)) {
2860 ret = btrfs_cleanup_fs_roots(fs_info);
2861 if (ret)
2862 goto fail_trans_kthread;
2863
2864 ret = btrfs_recover_relocation(tree_root);
2865 if (ret < 0) {
2866 printk(KERN_WARNING
2867 "BTRFS: failed to recover relocation\n");
2868 err = -EINVAL;
2869 goto fail_qgroup;
2870 }
2871 }
2872
2873 location.objectid = BTRFS_FS_TREE_OBJECTID;
2874 location.type = BTRFS_ROOT_ITEM_KEY;
2875 location.offset = 0;
2876
2877 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2878 if (IS_ERR(fs_info->fs_root)) {
2879 err = PTR_ERR(fs_info->fs_root);
2880 goto fail_qgroup;
2881 }
2882
2883 if (sb->s_flags & MS_RDONLY)
2884 return 0;
2885
2886 down_read(&fs_info->cleanup_work_sem);
2887 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2888 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2889 up_read(&fs_info->cleanup_work_sem);
2890 close_ctree(tree_root);
2891 return ret;
2892 }
2893 up_read(&fs_info->cleanup_work_sem);
2894
2895 ret = btrfs_resume_balance_async(fs_info);
2896 if (ret) {
2897 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2898 close_ctree(tree_root);
2899 return ret;
2900 }
2901
2902 ret = btrfs_resume_dev_replace_async(fs_info);
2903 if (ret) {
2904 pr_warn("BTRFS: failed to resume dev_replace\n");
2905 close_ctree(tree_root);
2906 return ret;
2907 }
2908
2909 btrfs_qgroup_rescan_resume(fs_info);
2910
2911 if (create_uuid_tree) {
2912 pr_info("BTRFS: creating UUID tree\n");
2913 ret = btrfs_create_uuid_tree(fs_info);
2914 if (ret) {
2915 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2916 ret);
2917 close_ctree(tree_root);
2918 return ret;
2919 }
2920 } else if (check_uuid_tree ||
2921 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2922 pr_info("BTRFS: checking UUID tree\n");
2923 ret = btrfs_check_uuid_tree(fs_info);
2924 if (ret) {
2925 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2926 ret);
2927 close_ctree(tree_root);
2928 return ret;
2929 }
2930 } else {
2931 fs_info->update_uuid_tree_gen = 1;
2932 }
2933
2934 return 0;
2935
2936 fail_qgroup:
2937 btrfs_free_qgroup_config(fs_info);
2938 fail_trans_kthread:
2939 kthread_stop(fs_info->transaction_kthread);
2940 btrfs_cleanup_transaction(fs_info->tree_root);
2941 del_fs_roots(fs_info);
2942 fail_cleaner:
2943 kthread_stop(fs_info->cleaner_kthread);
2944
2945 /*
2946 * make sure we're done with the btree inode before we stop our
2947 * kthreads
2948 */
2949 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2950
2951 fail_sysfs:
2952 btrfs_sysfs_remove_one(fs_info);
2953
2954 fail_block_groups:
2955 btrfs_put_block_group_cache(fs_info);
2956 btrfs_free_block_groups(fs_info);
2957
2958 fail_tree_roots:
2959 free_root_pointers(fs_info, 1);
2960 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2961
2962 fail_sb_buffer:
2963 btrfs_stop_all_workers(fs_info);
2964 fail_alloc:
2965 fail_iput:
2966 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2967
2968 iput(fs_info->btree_inode);
2969 fail_delalloc_bytes:
2970 percpu_counter_destroy(&fs_info->delalloc_bytes);
2971 fail_dirty_metadata_bytes:
2972 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2973 fail_bdi:
2974 bdi_destroy(&fs_info->bdi);
2975 fail_srcu:
2976 cleanup_srcu_struct(&fs_info->subvol_srcu);
2977 fail:
2978 btrfs_free_stripe_hash_table(fs_info);
2979 btrfs_close_devices(fs_info->fs_devices);
2980 return err;
2981
2982 recovery_tree_root:
2983 if (!btrfs_test_opt(tree_root, RECOVERY))
2984 goto fail_tree_roots;
2985
2986 free_root_pointers(fs_info, 0);
2987
2988 /* don't use the log in recovery mode, it won't be valid */
2989 btrfs_set_super_log_root(disk_super, 0);
2990
2991 /* we can't trust the free space cache either */
2992 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2993
2994 ret = next_root_backup(fs_info, fs_info->super_copy,
2995 &num_backups_tried, &backup_index);
2996 if (ret == -1)
2997 goto fail_block_groups;
2998 goto retry_root_backup;
2999 }
3000
3001 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3002 {
3003 if (uptodate) {
3004 set_buffer_uptodate(bh);
3005 } else {
3006 struct btrfs_device *device = (struct btrfs_device *)
3007 bh->b_private;
3008
3009 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3010 "I/O error on %s\n",
3011 rcu_str_deref(device->name));
3012 /* note, we dont' set_buffer_write_io_error because we have
3013 * our own ways of dealing with the IO errors
3014 */
3015 clear_buffer_uptodate(bh);
3016 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3017 }
3018 unlock_buffer(bh);
3019 put_bh(bh);
3020 }
3021
3022 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3023 {
3024 struct buffer_head *bh;
3025 struct buffer_head *latest = NULL;
3026 struct btrfs_super_block *super;
3027 int i;
3028 u64 transid = 0;
3029 u64 bytenr;
3030
3031 /* we would like to check all the supers, but that would make
3032 * a btrfs mount succeed after a mkfs from a different FS.
3033 * So, we need to add a special mount option to scan for
3034 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3035 */
3036 for (i = 0; i < 1; i++) {
3037 bytenr = btrfs_sb_offset(i);
3038 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3039 i_size_read(bdev->bd_inode))
3040 break;
3041 bh = __bread(bdev, bytenr / 4096,
3042 BTRFS_SUPER_INFO_SIZE);
3043 if (!bh)
3044 continue;
3045
3046 super = (struct btrfs_super_block *)bh->b_data;
3047 if (btrfs_super_bytenr(super) != bytenr ||
3048 btrfs_super_magic(super) != BTRFS_MAGIC) {
3049 brelse(bh);
3050 continue;
3051 }
3052
3053 if (!latest || btrfs_super_generation(super) > transid) {
3054 brelse(latest);
3055 latest = bh;
3056 transid = btrfs_super_generation(super);
3057 } else {
3058 brelse(bh);
3059 }
3060 }
3061 return latest;
3062 }
3063
3064 /*
3065 * this should be called twice, once with wait == 0 and
3066 * once with wait == 1. When wait == 0 is done, all the buffer heads
3067 * we write are pinned.
3068 *
3069 * They are released when wait == 1 is done.
3070 * max_mirrors must be the same for both runs, and it indicates how
3071 * many supers on this one device should be written.
3072 *
3073 * max_mirrors == 0 means to write them all.
3074 */
3075 static int write_dev_supers(struct btrfs_device *device,
3076 struct btrfs_super_block *sb,
3077 int do_barriers, int wait, int max_mirrors)
3078 {
3079 struct buffer_head *bh;
3080 int i;
3081 int ret;
3082 int errors = 0;
3083 u32 crc;
3084 u64 bytenr;
3085
3086 if (max_mirrors == 0)
3087 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3088
3089 for (i = 0; i < max_mirrors; i++) {
3090 bytenr = btrfs_sb_offset(i);
3091 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3092 break;
3093
3094 if (wait) {
3095 bh = __find_get_block(device->bdev, bytenr / 4096,
3096 BTRFS_SUPER_INFO_SIZE);
3097 if (!bh) {
3098 errors++;
3099 continue;
3100 }
3101 wait_on_buffer(bh);
3102 if (!buffer_uptodate(bh))
3103 errors++;
3104
3105 /* drop our reference */
3106 brelse(bh);
3107
3108 /* drop the reference from the wait == 0 run */
3109 brelse(bh);
3110 continue;
3111 } else {
3112 btrfs_set_super_bytenr(sb, bytenr);
3113
3114 crc = ~(u32)0;
3115 crc = btrfs_csum_data((char *)sb +
3116 BTRFS_CSUM_SIZE, crc,
3117 BTRFS_SUPER_INFO_SIZE -
3118 BTRFS_CSUM_SIZE);
3119 btrfs_csum_final(crc, sb->csum);
3120
3121 /*
3122 * one reference for us, and we leave it for the
3123 * caller
3124 */
3125 bh = __getblk(device->bdev, bytenr / 4096,
3126 BTRFS_SUPER_INFO_SIZE);
3127 if (!bh) {
3128 printk(KERN_ERR "BTRFS: couldn't get super "
3129 "buffer head for bytenr %Lu\n", bytenr);
3130 errors++;
3131 continue;
3132 }
3133
3134 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3135
3136 /* one reference for submit_bh */
3137 get_bh(bh);
3138
3139 set_buffer_uptodate(bh);
3140 lock_buffer(bh);
3141 bh->b_end_io = btrfs_end_buffer_write_sync;
3142 bh->b_private = device;
3143 }
3144
3145 /*
3146 * we fua the first super. The others we allow
3147 * to go down lazy.
3148 */
3149 if (i == 0)
3150 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3151 else
3152 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3153 if (ret)
3154 errors++;
3155 }
3156 return errors < i ? 0 : -1;
3157 }
3158
3159 /*
3160 * endio for the write_dev_flush, this will wake anyone waiting
3161 * for the barrier when it is done
3162 */
3163 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3164 {
3165 if (err) {
3166 if (err == -EOPNOTSUPP)
3167 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3168 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3169 }
3170 if (bio->bi_private)
3171 complete(bio->bi_private);
3172 bio_put(bio);
3173 }
3174
3175 /*
3176 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3177 * sent down. With wait == 1, it waits for the previous flush.
3178 *
3179 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3180 * capable
3181 */
3182 static int write_dev_flush(struct btrfs_device *device, int wait)
3183 {
3184 struct bio *bio;
3185 int ret = 0;
3186
3187 if (device->nobarriers)
3188 return 0;
3189
3190 if (wait) {
3191 bio = device->flush_bio;
3192 if (!bio)
3193 return 0;
3194
3195 wait_for_completion(&device->flush_wait);
3196
3197 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3198 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3199 rcu_str_deref(device->name));
3200 device->nobarriers = 1;
3201 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3202 ret = -EIO;
3203 btrfs_dev_stat_inc_and_print(device,
3204 BTRFS_DEV_STAT_FLUSH_ERRS);
3205 }
3206
3207 /* drop the reference from the wait == 0 run */
3208 bio_put(bio);
3209 device->flush_bio = NULL;
3210
3211 return ret;
3212 }
3213
3214 /*
3215 * one reference for us, and we leave it for the
3216 * caller
3217 */
3218 device->flush_bio = NULL;
3219 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3220 if (!bio)
3221 return -ENOMEM;
3222
3223 bio->bi_end_io = btrfs_end_empty_barrier;
3224 bio->bi_bdev = device->bdev;
3225 init_completion(&device->flush_wait);
3226 bio->bi_private = &device->flush_wait;
3227 device->flush_bio = bio;
3228
3229 bio_get(bio);
3230 btrfsic_submit_bio(WRITE_FLUSH, bio);
3231
3232 return 0;
3233 }
3234
3235 /*
3236 * send an empty flush down to each device in parallel,
3237 * then wait for them
3238 */
3239 static int barrier_all_devices(struct btrfs_fs_info *info)
3240 {
3241 struct list_head *head;
3242 struct btrfs_device *dev;
3243 int errors_send = 0;
3244 int errors_wait = 0;
3245 int ret;
3246
3247 /* send down all the barriers */
3248 head = &info->fs_devices->devices;
3249 list_for_each_entry_rcu(dev, head, dev_list) {
3250 if (!dev->bdev) {
3251 errors_send++;
3252 continue;
3253 }
3254 if (!dev->in_fs_metadata || !dev->writeable)
3255 continue;
3256
3257 ret = write_dev_flush(dev, 0);
3258 if (ret)
3259 errors_send++;
3260 }
3261
3262 /* wait for all the barriers */
3263 list_for_each_entry_rcu(dev, head, dev_list) {
3264 if (!dev->bdev) {
3265 errors_wait++;
3266 continue;
3267 }
3268 if (!dev->in_fs_metadata || !dev->writeable)
3269 continue;
3270
3271 ret = write_dev_flush(dev, 1);
3272 if (ret)
3273 errors_wait++;
3274 }
3275 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3276 errors_wait > info->num_tolerated_disk_barrier_failures)
3277 return -EIO;
3278 return 0;
3279 }
3280
3281 int btrfs_calc_num_tolerated_disk_barrier_failures(
3282 struct btrfs_fs_info *fs_info)
3283 {
3284 struct btrfs_ioctl_space_info space;
3285 struct btrfs_space_info *sinfo;
3286 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3287 BTRFS_BLOCK_GROUP_SYSTEM,
3288 BTRFS_BLOCK_GROUP_METADATA,
3289 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3290 int num_types = 4;
3291 int i;
3292 int c;
3293 int num_tolerated_disk_barrier_failures =
3294 (int)fs_info->fs_devices->num_devices;
3295
3296 for (i = 0; i < num_types; i++) {
3297 struct btrfs_space_info *tmp;
3298
3299 sinfo = NULL;
3300 rcu_read_lock();
3301 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3302 if (tmp->flags == types[i]) {
3303 sinfo = tmp;
3304 break;
3305 }
3306 }
3307 rcu_read_unlock();
3308
3309 if (!sinfo)
3310 continue;
3311
3312 down_read(&sinfo->groups_sem);
3313 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3314 if (!list_empty(&sinfo->block_groups[c])) {
3315 u64 flags;
3316
3317 btrfs_get_block_group_info(
3318 &sinfo->block_groups[c], &space);
3319 if (space.total_bytes == 0 ||
3320 space.used_bytes == 0)
3321 continue;
3322 flags = space.flags;
3323 /*
3324 * return
3325 * 0: if dup, single or RAID0 is configured for
3326 * any of metadata, system or data, else
3327 * 1: if RAID5 is configured, or if RAID1 or
3328 * RAID10 is configured and only two mirrors
3329 * are used, else
3330 * 2: if RAID6 is configured, else
3331 * num_mirrors - 1: if RAID1 or RAID10 is
3332 * configured and more than
3333 * 2 mirrors are used.
3334 */
3335 if (num_tolerated_disk_barrier_failures > 0 &&
3336 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3337 BTRFS_BLOCK_GROUP_RAID0)) ||
3338 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3339 == 0)))
3340 num_tolerated_disk_barrier_failures = 0;
3341 else if (num_tolerated_disk_barrier_failures > 1) {
3342 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3343 BTRFS_BLOCK_GROUP_RAID5 |
3344 BTRFS_BLOCK_GROUP_RAID10)) {
3345 num_tolerated_disk_barrier_failures = 1;
3346 } else if (flags &
3347 BTRFS_BLOCK_GROUP_RAID6) {
3348 num_tolerated_disk_barrier_failures = 2;
3349 }
3350 }
3351 }
3352 }
3353 up_read(&sinfo->groups_sem);
3354 }
3355
3356 return num_tolerated_disk_barrier_failures;
3357 }
3358
3359 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3360 {
3361 struct list_head *head;
3362 struct btrfs_device *dev;
3363 struct btrfs_super_block *sb;
3364 struct btrfs_dev_item *dev_item;
3365 int ret;
3366 int do_barriers;
3367 int max_errors;
3368 int total_errors = 0;
3369 u64 flags;
3370
3371 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3372 backup_super_roots(root->fs_info);
3373
3374 sb = root->fs_info->super_for_commit;
3375 dev_item = &sb->dev_item;
3376
3377 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3378 head = &root->fs_info->fs_devices->devices;
3379 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3380
3381 if (do_barriers) {
3382 ret = barrier_all_devices(root->fs_info);
3383 if (ret) {
3384 mutex_unlock(
3385 &root->fs_info->fs_devices->device_list_mutex);
3386 btrfs_error(root->fs_info, ret,
3387 "errors while submitting device barriers.");
3388 return ret;
3389 }
3390 }
3391
3392 list_for_each_entry_rcu(dev, head, dev_list) {
3393 if (!dev->bdev) {
3394 total_errors++;
3395 continue;
3396 }
3397 if (!dev->in_fs_metadata || !dev->writeable)
3398 continue;
3399
3400 btrfs_set_stack_device_generation(dev_item, 0);
3401 btrfs_set_stack_device_type(dev_item, dev->type);
3402 btrfs_set_stack_device_id(dev_item, dev->devid);
3403 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3404 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3405 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3406 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3407 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3408 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3409 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3410
3411 flags = btrfs_super_flags(sb);
3412 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3413
3414 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3415 if (ret)
3416 total_errors++;
3417 }
3418 if (total_errors > max_errors) {
3419 btrfs_err(root->fs_info, "%d errors while writing supers",
3420 total_errors);
3421 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3422
3423 /* FUA is masked off if unsupported and can't be the reason */
3424 btrfs_error(root->fs_info, -EIO,
3425 "%d errors while writing supers", total_errors);
3426 return -EIO;
3427 }
3428
3429 total_errors = 0;
3430 list_for_each_entry_rcu(dev, head, dev_list) {
3431 if (!dev->bdev)
3432 continue;
3433 if (!dev->in_fs_metadata || !dev->writeable)
3434 continue;
3435
3436 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3437 if (ret)
3438 total_errors++;
3439 }
3440 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3441 if (total_errors > max_errors) {
3442 btrfs_error(root->fs_info, -EIO,
3443 "%d errors while writing supers", total_errors);
3444 return -EIO;
3445 }
3446 return 0;
3447 }
3448
3449 int write_ctree_super(struct btrfs_trans_handle *trans,
3450 struct btrfs_root *root, int max_mirrors)
3451 {
3452 return write_all_supers(root, max_mirrors);
3453 }
3454
3455 /* Drop a fs root from the radix tree and free it. */
3456 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3457 struct btrfs_root *root)
3458 {
3459 spin_lock(&fs_info->fs_roots_radix_lock);
3460 radix_tree_delete(&fs_info->fs_roots_radix,
3461 (unsigned long)root->root_key.objectid);
3462 spin_unlock(&fs_info->fs_roots_radix_lock);
3463
3464 if (btrfs_root_refs(&root->root_item) == 0)
3465 synchronize_srcu(&fs_info->subvol_srcu);
3466
3467 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3468 btrfs_free_log(NULL, root);
3469
3470 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3471 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3472 free_fs_root(root);
3473 }
3474
3475 static void free_fs_root(struct btrfs_root *root)
3476 {
3477 iput(root->cache_inode);
3478 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3479 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3480 root->orphan_block_rsv = NULL;
3481 if (root->anon_dev)
3482 free_anon_bdev(root->anon_dev);
3483 free_extent_buffer(root->node);
3484 free_extent_buffer(root->commit_root);
3485 kfree(root->free_ino_ctl);
3486 kfree(root->free_ino_pinned);
3487 kfree(root->name);
3488 btrfs_put_fs_root(root);
3489 }
3490
3491 void btrfs_free_fs_root(struct btrfs_root *root)
3492 {
3493 free_fs_root(root);
3494 }
3495
3496 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3497 {
3498 u64 root_objectid = 0;
3499 struct btrfs_root *gang[8];
3500 int i;
3501 int ret;
3502
3503 while (1) {
3504 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3505 (void **)gang, root_objectid,
3506 ARRAY_SIZE(gang));
3507 if (!ret)
3508 break;
3509
3510 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3511 for (i = 0; i < ret; i++) {
3512 int err;
3513
3514 root_objectid = gang[i]->root_key.objectid;
3515 err = btrfs_orphan_cleanup(gang[i]);
3516 if (err)
3517 return err;
3518 }
3519 root_objectid++;
3520 }
3521 return 0;
3522 }
3523
3524 int btrfs_commit_super(struct btrfs_root *root)
3525 {
3526 struct btrfs_trans_handle *trans;
3527
3528 mutex_lock(&root->fs_info->cleaner_mutex);
3529 btrfs_run_delayed_iputs(root);
3530 mutex_unlock(&root->fs_info->cleaner_mutex);
3531 wake_up_process(root->fs_info->cleaner_kthread);
3532
3533 /* wait until ongoing cleanup work done */
3534 down_write(&root->fs_info->cleanup_work_sem);
3535 up_write(&root->fs_info->cleanup_work_sem);
3536
3537 trans = btrfs_join_transaction(root);
3538 if (IS_ERR(trans))
3539 return PTR_ERR(trans);
3540 return btrfs_commit_transaction(trans, root);
3541 }
3542
3543 int close_ctree(struct btrfs_root *root)
3544 {
3545 struct btrfs_fs_info *fs_info = root->fs_info;
3546 int ret;
3547
3548 fs_info->closing = 1;
3549 smp_mb();
3550
3551 /* wait for the uuid_scan task to finish */
3552 down(&fs_info->uuid_tree_rescan_sem);
3553 /* avoid complains from lockdep et al., set sem back to initial state */
3554 up(&fs_info->uuid_tree_rescan_sem);
3555
3556 /* pause restriper - we want to resume on mount */
3557 btrfs_pause_balance(fs_info);
3558
3559 btrfs_dev_replace_suspend_for_unmount(fs_info);
3560
3561 btrfs_scrub_cancel(fs_info);
3562
3563 /* wait for any defraggers to finish */
3564 wait_event(fs_info->transaction_wait,
3565 (atomic_read(&fs_info->defrag_running) == 0));
3566
3567 /* clear out the rbtree of defraggable inodes */
3568 btrfs_cleanup_defrag_inodes(fs_info);
3569
3570 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3571 ret = btrfs_commit_super(root);
3572 if (ret)
3573 btrfs_err(root->fs_info, "commit super ret %d", ret);
3574 }
3575
3576 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3577 btrfs_error_commit_super(root);
3578
3579 kthread_stop(fs_info->transaction_kthread);
3580 kthread_stop(fs_info->cleaner_kthread);
3581
3582 fs_info->closing = 2;
3583 smp_mb();
3584
3585 btrfs_free_qgroup_config(root->fs_info);
3586
3587 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3588 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3589 percpu_counter_sum(&fs_info->delalloc_bytes));
3590 }
3591
3592 btrfs_sysfs_remove_one(fs_info);
3593
3594 del_fs_roots(fs_info);
3595
3596 btrfs_put_block_group_cache(fs_info);
3597
3598 btrfs_free_block_groups(fs_info);
3599
3600 btrfs_stop_all_workers(fs_info);
3601
3602 free_root_pointers(fs_info, 1);
3603
3604 iput(fs_info->btree_inode);
3605
3606 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3607 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3608 btrfsic_unmount(root, fs_info->fs_devices);
3609 #endif
3610
3611 btrfs_close_devices(fs_info->fs_devices);
3612 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3613
3614 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3615 percpu_counter_destroy(&fs_info->delalloc_bytes);
3616 bdi_destroy(&fs_info->bdi);
3617 cleanup_srcu_struct(&fs_info->subvol_srcu);
3618
3619 btrfs_free_stripe_hash_table(fs_info);
3620
3621 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3622 root->orphan_block_rsv = NULL;
3623
3624 return 0;
3625 }
3626
3627 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3628 int atomic)
3629 {
3630 int ret;
3631 struct inode *btree_inode = buf->pages[0]->mapping->host;
3632
3633 ret = extent_buffer_uptodate(buf);
3634 if (!ret)
3635 return ret;
3636
3637 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3638 parent_transid, atomic);
3639 if (ret == -EAGAIN)
3640 return ret;
3641 return !ret;
3642 }
3643
3644 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3645 {
3646 return set_extent_buffer_uptodate(buf);
3647 }
3648
3649 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3650 {
3651 struct btrfs_root *root;
3652 u64 transid = btrfs_header_generation(buf);
3653 int was_dirty;
3654
3655 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3656 /*
3657 * This is a fast path so only do this check if we have sanity tests
3658 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3659 * outside of the sanity tests.
3660 */
3661 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3662 return;
3663 #endif
3664 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3665 btrfs_assert_tree_locked(buf);
3666 if (transid != root->fs_info->generation)
3667 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3668 "found %llu running %llu\n",
3669 buf->start, transid, root->fs_info->generation);
3670 was_dirty = set_extent_buffer_dirty(buf);
3671 if (!was_dirty)
3672 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3673 buf->len,
3674 root->fs_info->dirty_metadata_batch);
3675 }
3676
3677 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3678 int flush_delayed)
3679 {
3680 /*
3681 * looks as though older kernels can get into trouble with
3682 * this code, they end up stuck in balance_dirty_pages forever
3683 */
3684 int ret;
3685
3686 if (current->flags & PF_MEMALLOC)
3687 return;
3688
3689 if (flush_delayed)
3690 btrfs_balance_delayed_items(root);
3691
3692 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3693 BTRFS_DIRTY_METADATA_THRESH);
3694 if (ret > 0) {
3695 balance_dirty_pages_ratelimited(
3696 root->fs_info->btree_inode->i_mapping);
3697 }
3698 return;
3699 }
3700
3701 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3702 {
3703 __btrfs_btree_balance_dirty(root, 1);
3704 }
3705
3706 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3707 {
3708 __btrfs_btree_balance_dirty(root, 0);
3709 }
3710
3711 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3712 {
3713 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3714 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3715 }
3716
3717 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3718 int read_only)
3719 {
3720 /*
3721 * Placeholder for checks
3722 */
3723 return 0;
3724 }
3725
3726 static void btrfs_error_commit_super(struct btrfs_root *root)
3727 {
3728 mutex_lock(&root->fs_info->cleaner_mutex);
3729 btrfs_run_delayed_iputs(root);
3730 mutex_unlock(&root->fs_info->cleaner_mutex);
3731
3732 down_write(&root->fs_info->cleanup_work_sem);
3733 up_write(&root->fs_info->cleanup_work_sem);
3734
3735 /* cleanup FS via transaction */
3736 btrfs_cleanup_transaction(root);
3737 }
3738
3739 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3740 struct btrfs_root *root)
3741 {
3742 struct btrfs_inode *btrfs_inode;
3743 struct list_head splice;
3744
3745 INIT_LIST_HEAD(&splice);
3746
3747 mutex_lock(&root->fs_info->ordered_operations_mutex);
3748 spin_lock(&root->fs_info->ordered_root_lock);
3749
3750 list_splice_init(&t->ordered_operations, &splice);
3751 while (!list_empty(&splice)) {
3752 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3753 ordered_operations);
3754
3755 list_del_init(&btrfs_inode->ordered_operations);
3756 spin_unlock(&root->fs_info->ordered_root_lock);
3757
3758 btrfs_invalidate_inodes(btrfs_inode->root);
3759
3760 spin_lock(&root->fs_info->ordered_root_lock);
3761 }
3762
3763 spin_unlock(&root->fs_info->ordered_root_lock);
3764 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3765 }
3766
3767 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3768 {
3769 struct btrfs_ordered_extent *ordered;
3770
3771 spin_lock(&root->ordered_extent_lock);
3772 /*
3773 * This will just short circuit the ordered completion stuff which will
3774 * make sure the ordered extent gets properly cleaned up.
3775 */
3776 list_for_each_entry(ordered, &root->ordered_extents,
3777 root_extent_list)
3778 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3779 spin_unlock(&root->ordered_extent_lock);
3780 }
3781
3782 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3783 {
3784 struct btrfs_root *root;
3785 struct list_head splice;
3786
3787 INIT_LIST_HEAD(&splice);
3788
3789 spin_lock(&fs_info->ordered_root_lock);
3790 list_splice_init(&fs_info->ordered_roots, &splice);
3791 while (!list_empty(&splice)) {
3792 root = list_first_entry(&splice, struct btrfs_root,
3793 ordered_root);
3794 list_move_tail(&root->ordered_root,
3795 &fs_info->ordered_roots);
3796
3797 btrfs_destroy_ordered_extents(root);
3798
3799 cond_resched_lock(&fs_info->ordered_root_lock);
3800 }
3801 spin_unlock(&fs_info->ordered_root_lock);
3802 }
3803
3804 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3805 struct btrfs_root *root)
3806 {
3807 struct rb_node *node;
3808 struct btrfs_delayed_ref_root *delayed_refs;
3809 struct btrfs_delayed_ref_node *ref;
3810 int ret = 0;
3811
3812 delayed_refs = &trans->delayed_refs;
3813
3814 spin_lock(&delayed_refs->lock);
3815 if (atomic_read(&delayed_refs->num_entries) == 0) {
3816 spin_unlock(&delayed_refs->lock);
3817 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3818 return ret;
3819 }
3820
3821 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3822 struct btrfs_delayed_ref_head *head;
3823 bool pin_bytes = false;
3824
3825 head = rb_entry(node, struct btrfs_delayed_ref_head,
3826 href_node);
3827 if (!mutex_trylock(&head->mutex)) {
3828 atomic_inc(&head->node.refs);
3829 spin_unlock(&delayed_refs->lock);
3830
3831 mutex_lock(&head->mutex);
3832 mutex_unlock(&head->mutex);
3833 btrfs_put_delayed_ref(&head->node);
3834 spin_lock(&delayed_refs->lock);
3835 continue;
3836 }
3837 spin_lock(&head->lock);
3838 while ((node = rb_first(&head->ref_root)) != NULL) {
3839 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3840 rb_node);
3841 ref->in_tree = 0;
3842 rb_erase(&ref->rb_node, &head->ref_root);
3843 atomic_dec(&delayed_refs->num_entries);
3844 btrfs_put_delayed_ref(ref);
3845 }
3846 if (head->must_insert_reserved)
3847 pin_bytes = true;
3848 btrfs_free_delayed_extent_op(head->extent_op);
3849 delayed_refs->num_heads--;
3850 if (head->processing == 0)
3851 delayed_refs->num_heads_ready--;
3852 atomic_dec(&delayed_refs->num_entries);
3853 head->node.in_tree = 0;
3854 rb_erase(&head->href_node, &delayed_refs->href_root);
3855 spin_unlock(&head->lock);
3856 spin_unlock(&delayed_refs->lock);
3857 mutex_unlock(&head->mutex);
3858
3859 if (pin_bytes)
3860 btrfs_pin_extent(root, head->node.bytenr,
3861 head->node.num_bytes, 1);
3862 btrfs_put_delayed_ref(&head->node);
3863 cond_resched();
3864 spin_lock(&delayed_refs->lock);
3865 }
3866
3867 spin_unlock(&delayed_refs->lock);
3868
3869 return ret;
3870 }
3871
3872 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3873 {
3874 struct btrfs_inode *btrfs_inode;
3875 struct list_head splice;
3876
3877 INIT_LIST_HEAD(&splice);
3878
3879 spin_lock(&root->delalloc_lock);
3880 list_splice_init(&root->delalloc_inodes, &splice);
3881
3882 while (!list_empty(&splice)) {
3883 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3884 delalloc_inodes);
3885
3886 list_del_init(&btrfs_inode->delalloc_inodes);
3887 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3888 &btrfs_inode->runtime_flags);
3889 spin_unlock(&root->delalloc_lock);
3890
3891 btrfs_invalidate_inodes(btrfs_inode->root);
3892
3893 spin_lock(&root->delalloc_lock);
3894 }
3895
3896 spin_unlock(&root->delalloc_lock);
3897 }
3898
3899 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3900 {
3901 struct btrfs_root *root;
3902 struct list_head splice;
3903
3904 INIT_LIST_HEAD(&splice);
3905
3906 spin_lock(&fs_info->delalloc_root_lock);
3907 list_splice_init(&fs_info->delalloc_roots, &splice);
3908 while (!list_empty(&splice)) {
3909 root = list_first_entry(&splice, struct btrfs_root,
3910 delalloc_root);
3911 list_del_init(&root->delalloc_root);
3912 root = btrfs_grab_fs_root(root);
3913 BUG_ON(!root);
3914 spin_unlock(&fs_info->delalloc_root_lock);
3915
3916 btrfs_destroy_delalloc_inodes(root);
3917 btrfs_put_fs_root(root);
3918
3919 spin_lock(&fs_info->delalloc_root_lock);
3920 }
3921 spin_unlock(&fs_info->delalloc_root_lock);
3922 }
3923
3924 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3925 struct extent_io_tree *dirty_pages,
3926 int mark)
3927 {
3928 int ret;
3929 struct extent_buffer *eb;
3930 u64 start = 0;
3931 u64 end;
3932
3933 while (1) {
3934 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3935 mark, NULL);
3936 if (ret)
3937 break;
3938
3939 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3940 while (start <= end) {
3941 eb = btrfs_find_tree_block(root, start,
3942 root->leafsize);
3943 start += root->leafsize;
3944 if (!eb)
3945 continue;
3946 wait_on_extent_buffer_writeback(eb);
3947
3948 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3949 &eb->bflags))
3950 clear_extent_buffer_dirty(eb);
3951 free_extent_buffer_stale(eb);
3952 }
3953 }
3954
3955 return ret;
3956 }
3957
3958 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3959 struct extent_io_tree *pinned_extents)
3960 {
3961 struct extent_io_tree *unpin;
3962 u64 start;
3963 u64 end;
3964 int ret;
3965 bool loop = true;
3966
3967 unpin = pinned_extents;
3968 again:
3969 while (1) {
3970 ret = find_first_extent_bit(unpin, 0, &start, &end,
3971 EXTENT_DIRTY, NULL);
3972 if (ret)
3973 break;
3974
3975 /* opt_discard */
3976 if (btrfs_test_opt(root, DISCARD))
3977 ret = btrfs_error_discard_extent(root, start,
3978 end + 1 - start,
3979 NULL);
3980
3981 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3982 btrfs_error_unpin_extent_range(root, start, end);
3983 cond_resched();
3984 }
3985
3986 if (loop) {
3987 if (unpin == &root->fs_info->freed_extents[0])
3988 unpin = &root->fs_info->freed_extents[1];
3989 else
3990 unpin = &root->fs_info->freed_extents[0];
3991 loop = false;
3992 goto again;
3993 }
3994
3995 return 0;
3996 }
3997
3998 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3999 struct btrfs_root *root)
4000 {
4001 btrfs_destroy_ordered_operations(cur_trans, root);
4002
4003 btrfs_destroy_delayed_refs(cur_trans, root);
4004
4005 cur_trans->state = TRANS_STATE_COMMIT_START;
4006 wake_up(&root->fs_info->transaction_blocked_wait);
4007
4008 cur_trans->state = TRANS_STATE_UNBLOCKED;
4009 wake_up(&root->fs_info->transaction_wait);
4010
4011 btrfs_destroy_delayed_inodes(root);
4012 btrfs_assert_delayed_root_empty(root);
4013
4014 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4015 EXTENT_DIRTY);
4016 btrfs_destroy_pinned_extent(root,
4017 root->fs_info->pinned_extents);
4018
4019 cur_trans->state =TRANS_STATE_COMPLETED;
4020 wake_up(&cur_trans->commit_wait);
4021
4022 /*
4023 memset(cur_trans, 0, sizeof(*cur_trans));
4024 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4025 */
4026 }
4027
4028 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4029 {
4030 struct btrfs_transaction *t;
4031
4032 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4033
4034 spin_lock(&root->fs_info->trans_lock);
4035 while (!list_empty(&root->fs_info->trans_list)) {
4036 t = list_first_entry(&root->fs_info->trans_list,
4037 struct btrfs_transaction, list);
4038 if (t->state >= TRANS_STATE_COMMIT_START) {
4039 atomic_inc(&t->use_count);
4040 spin_unlock(&root->fs_info->trans_lock);
4041 btrfs_wait_for_commit(root, t->transid);
4042 btrfs_put_transaction(t);
4043 spin_lock(&root->fs_info->trans_lock);
4044 continue;
4045 }
4046 if (t == root->fs_info->running_transaction) {
4047 t->state = TRANS_STATE_COMMIT_DOING;
4048 spin_unlock(&root->fs_info->trans_lock);
4049 /*
4050 * We wait for 0 num_writers since we don't hold a trans
4051 * handle open currently for this transaction.
4052 */
4053 wait_event(t->writer_wait,
4054 atomic_read(&t->num_writers) == 0);
4055 } else {
4056 spin_unlock(&root->fs_info->trans_lock);
4057 }
4058 btrfs_cleanup_one_transaction(t, root);
4059
4060 spin_lock(&root->fs_info->trans_lock);
4061 if (t == root->fs_info->running_transaction)
4062 root->fs_info->running_transaction = NULL;
4063 list_del_init(&t->list);
4064 spin_unlock(&root->fs_info->trans_lock);
4065
4066 btrfs_put_transaction(t);
4067 trace_btrfs_transaction_commit(root);
4068 spin_lock(&root->fs_info->trans_lock);
4069 }
4070 spin_unlock(&root->fs_info->trans_lock);
4071 btrfs_destroy_all_ordered_extents(root->fs_info);
4072 btrfs_destroy_delayed_inodes(root);
4073 btrfs_assert_delayed_root_empty(root);
4074 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4075 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4076 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4077
4078 return 0;
4079 }
4080
4081 static struct extent_io_ops btree_extent_io_ops = {
4082 .readpage_end_io_hook = btree_readpage_end_io_hook,
4083 .readpage_io_failed_hook = btree_io_failed_hook,
4084 .submit_bio_hook = btree_submit_bio_hook,
4085 /* note we're sharing with inode.c for the merge bio hook */
4086 .merge_bio_hook = btrfs_merge_bio_hook,
4087 };