]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/disk-io.c
Merge branch 'for-linus' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64
65 /*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
70 struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
76 int metadata;
77 struct list_head list;
78 struct btrfs_work work;
79 };
80
81 /*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
86 struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
92 int rw;
93 int mirror_num;
94 unsigned long bio_flags;
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
100 struct btrfs_work work;
101 int error;
102 };
103
104 /*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
114 *
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
118 *
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
122 *
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
126 */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 # error
130 # endif
131
132 static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
149 };
150
151 void __init btrfs_init_lockdep(void)
152 {
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163 }
164
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167 {
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179 }
180
181 #endif
182
183 /*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188 struct page *page, size_t pg_offset, u64 start, u64 len,
189 int create)
190 {
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
195 read_lock(&em_tree->lock);
196 em = lookup_extent_mapping(em_tree, start, len);
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200 read_unlock(&em_tree->lock);
201 goto out;
202 }
203 read_unlock(&em_tree->lock);
204
205 em = alloc_extent_map();
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
211 em->len = (u64)-1;
212 em->block_len = (u64)-1;
213 em->block_start = 0;
214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215
216 write_lock(&em_tree->lock);
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
222 free_extent_map(em);
223 em = lookup_extent_mapping(em_tree, start, len);
224 if (em) {
225 ret = 0;
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
229 ret = -EIO;
230 }
231 } else if (ret) {
232 free_extent_map(em);
233 em = NULL;
234 }
235 write_unlock(&em_tree->lock);
236
237 if (ret)
238 em = ERR_PTR(ret);
239 out:
240 return em;
241 }
242
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245 return crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 put_unaligned_le32(~crc, result);
251 }
252
253 /*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259 {
260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 char *result = NULL;
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
270 unsigned long inline_result;
271
272 len = buf->len - offset;
273 while (len > 0) {
274 err = map_private_extent_buffer(buf, offset, 32,
275 &kaddr, &map_start, &map_len);
276 if (err)
277 return 1;
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
283 }
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 u32 val;
297 u32 found = 0;
298 memcpy(&found, result, csum_size);
299
300 read_extent_buffer(buf, &val, 0, csum_size);
301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
307 if (result != (char *)&inline_result)
308 kfree(result);
309 return 1;
310 }
311 } else {
312 write_extent_buffer(buf, result, 0, csum_size);
313 }
314 if (result != (char *)&inline_result)
315 kfree(result);
316 return 0;
317 }
318
319 /*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid,
327 int atomic)
328 {
329 struct extent_state *cached_state = NULL;
330 int ret;
331
332 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
333 return 0;
334
335 if (atomic)
336 return -EAGAIN;
337
338 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
339 0, &cached_state);
340 if (extent_buffer_uptodate(eb) &&
341 btrfs_header_generation(eb) == parent_transid) {
342 ret = 0;
343 goto out;
344 }
345 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
346 "found %llu\n",
347 (unsigned long long)eb->start,
348 (unsigned long long)parent_transid,
349 (unsigned long long)btrfs_header_generation(eb));
350 ret = 1;
351 clear_extent_buffer_uptodate(eb);
352 out:
353 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
354 &cached_state, GFP_NOFS);
355 return ret;
356 }
357
358 /*
359 * helper to read a given tree block, doing retries as required when
360 * the checksums don't match and we have alternate mirrors to try.
361 */
362 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
363 struct extent_buffer *eb,
364 u64 start, u64 parent_transid)
365 {
366 struct extent_io_tree *io_tree;
367 int failed = 0;
368 int ret;
369 int num_copies = 0;
370 int mirror_num = 0;
371 int failed_mirror = 0;
372
373 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
374 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
375 while (1) {
376 ret = read_extent_buffer_pages(io_tree, eb, start,
377 WAIT_COMPLETE,
378 btree_get_extent, mirror_num);
379 if (!ret && !verify_parent_transid(io_tree, eb,
380 parent_transid, 0))
381 break;
382
383 /*
384 * This buffer's crc is fine, but its contents are corrupted, so
385 * there is no reason to read the other copies, they won't be
386 * any less wrong.
387 */
388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389 break;
390
391 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
392 eb->start, eb->len);
393 if (num_copies == 1)
394 break;
395
396 if (!failed_mirror) {
397 failed = 1;
398 failed_mirror = eb->read_mirror;
399 }
400
401 mirror_num++;
402 if (mirror_num == failed_mirror)
403 mirror_num++;
404
405 if (mirror_num > num_copies)
406 break;
407 }
408
409 if (failed && !ret)
410 repair_eb_io_failure(root, eb, failed_mirror);
411
412 return ret;
413 }
414
415 /*
416 * checksum a dirty tree block before IO. This has extra checks to make sure
417 * we only fill in the checksum field in the first page of a multi-page block
418 */
419
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422 struct extent_io_tree *tree;
423 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
424 u64 found_start;
425 struct extent_buffer *eb;
426
427 tree = &BTRFS_I(page->mapping->host)->io_tree;
428
429 eb = (struct extent_buffer *)page->private;
430 if (page != eb->pages[0])
431 return 0;
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
434 WARN_ON(1);
435 return 0;
436 }
437 if (eb->pages[0] != page) {
438 WARN_ON(1);
439 return 0;
440 }
441 if (!PageUptodate(page)) {
442 WARN_ON(1);
443 return 0;
444 }
445 csum_tree_block(root, eb, 0);
446 return 0;
447 }
448
449 static int check_tree_block_fsid(struct btrfs_root *root,
450 struct extent_buffer *eb)
451 {
452 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
453 u8 fsid[BTRFS_UUID_SIZE];
454 int ret = 1;
455
456 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
457 BTRFS_FSID_SIZE);
458 while (fs_devices) {
459 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
460 ret = 0;
461 break;
462 }
463 fs_devices = fs_devices->seed;
464 }
465 return ret;
466 }
467
468 #define CORRUPT(reason, eb, root, slot) \
469 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
470 "root=%llu, slot=%d\n", reason, \
471 (unsigned long long)btrfs_header_bytenr(eb), \
472 (unsigned long long)root->objectid, slot)
473
474 static noinline int check_leaf(struct btrfs_root *root,
475 struct extent_buffer *leaf)
476 {
477 struct btrfs_key key;
478 struct btrfs_key leaf_key;
479 u32 nritems = btrfs_header_nritems(leaf);
480 int slot;
481
482 if (nritems == 0)
483 return 0;
484
485 /* Check the 0 item */
486 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
487 BTRFS_LEAF_DATA_SIZE(root)) {
488 CORRUPT("invalid item offset size pair", leaf, root, 0);
489 return -EIO;
490 }
491
492 /*
493 * Check to make sure each items keys are in the correct order and their
494 * offsets make sense. We only have to loop through nritems-1 because
495 * we check the current slot against the next slot, which verifies the
496 * next slot's offset+size makes sense and that the current's slot
497 * offset is correct.
498 */
499 for (slot = 0; slot < nritems - 1; slot++) {
500 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
501 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
502
503 /* Make sure the keys are in the right order */
504 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
505 CORRUPT("bad key order", leaf, root, slot);
506 return -EIO;
507 }
508
509 /*
510 * Make sure the offset and ends are right, remember that the
511 * item data starts at the end of the leaf and grows towards the
512 * front.
513 */
514 if (btrfs_item_offset_nr(leaf, slot) !=
515 btrfs_item_end_nr(leaf, slot + 1)) {
516 CORRUPT("slot offset bad", leaf, root, slot);
517 return -EIO;
518 }
519
520 /*
521 * Check to make sure that we don't point outside of the leaf,
522 * just incase all the items are consistent to eachother, but
523 * all point outside of the leaf.
524 */
525 if (btrfs_item_end_nr(leaf, slot) >
526 BTRFS_LEAF_DATA_SIZE(root)) {
527 CORRUPT("slot end outside of leaf", leaf, root, slot);
528 return -EIO;
529 }
530 }
531
532 return 0;
533 }
534
535 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
536 struct page *page, int max_walk)
537 {
538 struct extent_buffer *eb;
539 u64 start = page_offset(page);
540 u64 target = start;
541 u64 min_start;
542
543 if (start < max_walk)
544 min_start = 0;
545 else
546 min_start = start - max_walk;
547
548 while (start >= min_start) {
549 eb = find_extent_buffer(tree, start, 0);
550 if (eb) {
551 /*
552 * we found an extent buffer and it contains our page
553 * horray!
554 */
555 if (eb->start <= target &&
556 eb->start + eb->len > target)
557 return eb;
558
559 /* we found an extent buffer that wasn't for us */
560 free_extent_buffer(eb);
561 return NULL;
562 }
563 if (start == 0)
564 break;
565 start -= PAGE_CACHE_SIZE;
566 }
567 return NULL;
568 }
569
570 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
571 struct extent_state *state, int mirror)
572 {
573 struct extent_io_tree *tree;
574 u64 found_start;
575 int found_level;
576 struct extent_buffer *eb;
577 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
578 int ret = 0;
579 int reads_done;
580
581 if (!page->private)
582 goto out;
583
584 tree = &BTRFS_I(page->mapping->host)->io_tree;
585 eb = (struct extent_buffer *)page->private;
586
587 /* the pending IO might have been the only thing that kept this buffer
588 * in memory. Make sure we have a ref for all this other checks
589 */
590 extent_buffer_get(eb);
591
592 reads_done = atomic_dec_and_test(&eb->io_pages);
593 if (!reads_done)
594 goto err;
595
596 eb->read_mirror = mirror;
597 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
598 ret = -EIO;
599 goto err;
600 }
601
602 found_start = btrfs_header_bytenr(eb);
603 if (found_start != eb->start) {
604 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
605 "%llu %llu\n",
606 (unsigned long long)found_start,
607 (unsigned long long)eb->start);
608 ret = -EIO;
609 goto err;
610 }
611 if (check_tree_block_fsid(root, eb)) {
612 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
613 (unsigned long long)eb->start);
614 ret = -EIO;
615 goto err;
616 }
617 found_level = btrfs_header_level(eb);
618
619 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
620 eb, found_level);
621
622 ret = csum_tree_block(root, eb, 1);
623 if (ret) {
624 ret = -EIO;
625 goto err;
626 }
627
628 /*
629 * If this is a leaf block and it is corrupt, set the corrupt bit so
630 * that we don't try and read the other copies of this block, just
631 * return -EIO.
632 */
633 if (found_level == 0 && check_leaf(root, eb)) {
634 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
635 ret = -EIO;
636 }
637
638 if (!ret)
639 set_extent_buffer_uptodate(eb);
640 err:
641 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
642 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
643 btree_readahead_hook(root, eb, eb->start, ret);
644 }
645
646 if (ret)
647 clear_extent_buffer_uptodate(eb);
648 free_extent_buffer(eb);
649 out:
650 return ret;
651 }
652
653 static int btree_io_failed_hook(struct page *page, int failed_mirror)
654 {
655 struct extent_buffer *eb;
656 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
657
658 eb = (struct extent_buffer *)page->private;
659 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
660 eb->read_mirror = failed_mirror;
661 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 btree_readahead_hook(root, eb, eb->start, -EIO);
663 return -EIO; /* we fixed nothing */
664 }
665
666 static void end_workqueue_bio(struct bio *bio, int err)
667 {
668 struct end_io_wq *end_io_wq = bio->bi_private;
669 struct btrfs_fs_info *fs_info;
670
671 fs_info = end_io_wq->info;
672 end_io_wq->error = err;
673 end_io_wq->work.func = end_workqueue_fn;
674 end_io_wq->work.flags = 0;
675
676 if (bio->bi_rw & REQ_WRITE) {
677 if (end_io_wq->metadata == 1)
678 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
679 &end_io_wq->work);
680 else if (end_io_wq->metadata == 2)
681 btrfs_queue_worker(&fs_info->endio_freespace_worker,
682 &end_io_wq->work);
683 else
684 btrfs_queue_worker(&fs_info->endio_write_workers,
685 &end_io_wq->work);
686 } else {
687 if (end_io_wq->metadata)
688 btrfs_queue_worker(&fs_info->endio_meta_workers,
689 &end_io_wq->work);
690 else
691 btrfs_queue_worker(&fs_info->endio_workers,
692 &end_io_wq->work);
693 }
694 }
695
696 /*
697 * For the metadata arg you want
698 *
699 * 0 - if data
700 * 1 - if normal metadta
701 * 2 - if writing to the free space cache area
702 */
703 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
704 int metadata)
705 {
706 struct end_io_wq *end_io_wq;
707 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
708 if (!end_io_wq)
709 return -ENOMEM;
710
711 end_io_wq->private = bio->bi_private;
712 end_io_wq->end_io = bio->bi_end_io;
713 end_io_wq->info = info;
714 end_io_wq->error = 0;
715 end_io_wq->bio = bio;
716 end_io_wq->metadata = metadata;
717
718 bio->bi_private = end_io_wq;
719 bio->bi_end_io = end_workqueue_bio;
720 return 0;
721 }
722
723 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
724 {
725 unsigned long limit = min_t(unsigned long,
726 info->workers.max_workers,
727 info->fs_devices->open_devices);
728 return 256 * limit;
729 }
730
731 static void run_one_async_start(struct btrfs_work *work)
732 {
733 struct async_submit_bio *async;
734 int ret;
735
736 async = container_of(work, struct async_submit_bio, work);
737 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
738 async->mirror_num, async->bio_flags,
739 async->bio_offset);
740 if (ret)
741 async->error = ret;
742 }
743
744 static void run_one_async_done(struct btrfs_work *work)
745 {
746 struct btrfs_fs_info *fs_info;
747 struct async_submit_bio *async;
748 int limit;
749
750 async = container_of(work, struct async_submit_bio, work);
751 fs_info = BTRFS_I(async->inode)->root->fs_info;
752
753 limit = btrfs_async_submit_limit(fs_info);
754 limit = limit * 2 / 3;
755
756 atomic_dec(&fs_info->nr_async_submits);
757
758 if (atomic_read(&fs_info->nr_async_submits) < limit &&
759 waitqueue_active(&fs_info->async_submit_wait))
760 wake_up(&fs_info->async_submit_wait);
761
762 /* If an error occured we just want to clean up the bio and move on */
763 if (async->error) {
764 bio_endio(async->bio, async->error);
765 return;
766 }
767
768 async->submit_bio_done(async->inode, async->rw, async->bio,
769 async->mirror_num, async->bio_flags,
770 async->bio_offset);
771 }
772
773 static void run_one_async_free(struct btrfs_work *work)
774 {
775 struct async_submit_bio *async;
776
777 async = container_of(work, struct async_submit_bio, work);
778 kfree(async);
779 }
780
781 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
782 int rw, struct bio *bio, int mirror_num,
783 unsigned long bio_flags,
784 u64 bio_offset,
785 extent_submit_bio_hook_t *submit_bio_start,
786 extent_submit_bio_hook_t *submit_bio_done)
787 {
788 struct async_submit_bio *async;
789
790 async = kmalloc(sizeof(*async), GFP_NOFS);
791 if (!async)
792 return -ENOMEM;
793
794 async->inode = inode;
795 async->rw = rw;
796 async->bio = bio;
797 async->mirror_num = mirror_num;
798 async->submit_bio_start = submit_bio_start;
799 async->submit_bio_done = submit_bio_done;
800
801 async->work.func = run_one_async_start;
802 async->work.ordered_func = run_one_async_done;
803 async->work.ordered_free = run_one_async_free;
804
805 async->work.flags = 0;
806 async->bio_flags = bio_flags;
807 async->bio_offset = bio_offset;
808
809 async->error = 0;
810
811 atomic_inc(&fs_info->nr_async_submits);
812
813 if (rw & REQ_SYNC)
814 btrfs_set_work_high_prio(&async->work);
815
816 btrfs_queue_worker(&fs_info->workers, &async->work);
817
818 while (atomic_read(&fs_info->async_submit_draining) &&
819 atomic_read(&fs_info->nr_async_submits)) {
820 wait_event(fs_info->async_submit_wait,
821 (atomic_read(&fs_info->nr_async_submits) == 0));
822 }
823
824 return 0;
825 }
826
827 static int btree_csum_one_bio(struct bio *bio)
828 {
829 struct bio_vec *bvec = bio->bi_io_vec;
830 int bio_index = 0;
831 struct btrfs_root *root;
832 int ret = 0;
833
834 WARN_ON(bio->bi_vcnt <= 0);
835 while (bio_index < bio->bi_vcnt) {
836 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
837 ret = csum_dirty_buffer(root, bvec->bv_page);
838 if (ret)
839 break;
840 bio_index++;
841 bvec++;
842 }
843 return ret;
844 }
845
846 static int __btree_submit_bio_start(struct inode *inode, int rw,
847 struct bio *bio, int mirror_num,
848 unsigned long bio_flags,
849 u64 bio_offset)
850 {
851 /*
852 * when we're called for a write, we're already in the async
853 * submission context. Just jump into btrfs_map_bio
854 */
855 return btree_csum_one_bio(bio);
856 }
857
858 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
859 int mirror_num, unsigned long bio_flags,
860 u64 bio_offset)
861 {
862 /*
863 * when we're called for a write, we're already in the async
864 * submission context. Just jump into btrfs_map_bio
865 */
866 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
867 }
868
869 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
872 {
873 int ret;
874
875 if (!(rw & REQ_WRITE)) {
876
877 /*
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
880 */
881 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
882 bio, 1);
883 if (ret)
884 return ret;
885 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
886 mirror_num, 0);
887 }
888
889 /*
890 * kthread helpers are used to submit writes so that checksumming
891 * can happen in parallel across all CPUs
892 */
893 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
894 inode, rw, bio, mirror_num, 0,
895 bio_offset,
896 __btree_submit_bio_start,
897 __btree_submit_bio_done);
898 }
899
900 #ifdef CONFIG_MIGRATION
901 static int btree_migratepage(struct address_space *mapping,
902 struct page *newpage, struct page *page,
903 enum migrate_mode mode)
904 {
905 /*
906 * we can't safely write a btree page from here,
907 * we haven't done the locking hook
908 */
909 if (PageDirty(page))
910 return -EAGAIN;
911 /*
912 * Buffers may be managed in a filesystem specific way.
913 * We must have no buffers or drop them.
914 */
915 if (page_has_private(page) &&
916 !try_to_release_page(page, GFP_KERNEL))
917 return -EAGAIN;
918 return migrate_page(mapping, newpage, page, mode);
919 }
920 #endif
921
922
923 static int btree_writepages(struct address_space *mapping,
924 struct writeback_control *wbc)
925 {
926 struct extent_io_tree *tree;
927 tree = &BTRFS_I(mapping->host)->io_tree;
928 if (wbc->sync_mode == WB_SYNC_NONE) {
929 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
930 u64 num_dirty;
931 unsigned long thresh = 32 * 1024 * 1024;
932
933 if (wbc->for_kupdate)
934 return 0;
935
936 /* this is a bit racy, but that's ok */
937 num_dirty = root->fs_info->dirty_metadata_bytes;
938 if (num_dirty < thresh)
939 return 0;
940 }
941 return btree_write_cache_pages(mapping, wbc);
942 }
943
944 static int btree_readpage(struct file *file, struct page *page)
945 {
946 struct extent_io_tree *tree;
947 tree = &BTRFS_I(page->mapping->host)->io_tree;
948 return extent_read_full_page(tree, page, btree_get_extent, 0);
949 }
950
951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
952 {
953 if (PageWriteback(page) || PageDirty(page))
954 return 0;
955 /*
956 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
957 * slab allocation from alloc_extent_state down the callchain where
958 * it'd hit a BUG_ON as those flags are not allowed.
959 */
960 gfp_flags &= ~GFP_SLAB_BUG_MASK;
961
962 return try_release_extent_buffer(page, gfp_flags);
963 }
964
965 static void btree_invalidatepage(struct page *page, unsigned long offset)
966 {
967 struct extent_io_tree *tree;
968 tree = &BTRFS_I(page->mapping->host)->io_tree;
969 extent_invalidatepage(tree, page, offset);
970 btree_releasepage(page, GFP_NOFS);
971 if (PagePrivate(page)) {
972 printk(KERN_WARNING "btrfs warning page private not zero "
973 "on page %llu\n", (unsigned long long)page_offset(page));
974 ClearPagePrivate(page);
975 set_page_private(page, 0);
976 page_cache_release(page);
977 }
978 }
979
980 static int btree_set_page_dirty(struct page *page)
981 {
982 struct extent_buffer *eb;
983
984 BUG_ON(!PagePrivate(page));
985 eb = (struct extent_buffer *)page->private;
986 BUG_ON(!eb);
987 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
988 BUG_ON(!atomic_read(&eb->refs));
989 btrfs_assert_tree_locked(eb);
990 return __set_page_dirty_nobuffers(page);
991 }
992
993 static const struct address_space_operations btree_aops = {
994 .readpage = btree_readpage,
995 .writepages = btree_writepages,
996 .releasepage = btree_releasepage,
997 .invalidatepage = btree_invalidatepage,
998 #ifdef CONFIG_MIGRATION
999 .migratepage = btree_migratepage,
1000 #endif
1001 .set_page_dirty = btree_set_page_dirty,
1002 };
1003
1004 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1005 u64 parent_transid)
1006 {
1007 struct extent_buffer *buf = NULL;
1008 struct inode *btree_inode = root->fs_info->btree_inode;
1009 int ret = 0;
1010
1011 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1012 if (!buf)
1013 return 0;
1014 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1015 buf, 0, WAIT_NONE, btree_get_extent, 0);
1016 free_extent_buffer(buf);
1017 return ret;
1018 }
1019
1020 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1021 int mirror_num, struct extent_buffer **eb)
1022 {
1023 struct extent_buffer *buf = NULL;
1024 struct inode *btree_inode = root->fs_info->btree_inode;
1025 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1026 int ret;
1027
1028 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1029 if (!buf)
1030 return 0;
1031
1032 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1033
1034 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1035 btree_get_extent, mirror_num);
1036 if (ret) {
1037 free_extent_buffer(buf);
1038 return ret;
1039 }
1040
1041 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1042 free_extent_buffer(buf);
1043 return -EIO;
1044 } else if (extent_buffer_uptodate(buf)) {
1045 *eb = buf;
1046 } else {
1047 free_extent_buffer(buf);
1048 }
1049 return 0;
1050 }
1051
1052 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1053 u64 bytenr, u32 blocksize)
1054 {
1055 struct inode *btree_inode = root->fs_info->btree_inode;
1056 struct extent_buffer *eb;
1057 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1058 bytenr, blocksize);
1059 return eb;
1060 }
1061
1062 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1063 u64 bytenr, u32 blocksize)
1064 {
1065 struct inode *btree_inode = root->fs_info->btree_inode;
1066 struct extent_buffer *eb;
1067
1068 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1069 bytenr, blocksize);
1070 return eb;
1071 }
1072
1073
1074 int btrfs_write_tree_block(struct extent_buffer *buf)
1075 {
1076 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1077 buf->start + buf->len - 1);
1078 }
1079
1080 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1081 {
1082 return filemap_fdatawait_range(buf->pages[0]->mapping,
1083 buf->start, buf->start + buf->len - 1);
1084 }
1085
1086 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1087 u32 blocksize, u64 parent_transid)
1088 {
1089 struct extent_buffer *buf = NULL;
1090 int ret;
1091
1092 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1093 if (!buf)
1094 return NULL;
1095
1096 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1097 return buf;
1098
1099 }
1100
1101 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1102 struct extent_buffer *buf)
1103 {
1104 if (btrfs_header_generation(buf) ==
1105 root->fs_info->running_transaction->transid) {
1106 btrfs_assert_tree_locked(buf);
1107
1108 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1109 spin_lock(&root->fs_info->delalloc_lock);
1110 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1111 root->fs_info->dirty_metadata_bytes -= buf->len;
1112 else {
1113 spin_unlock(&root->fs_info->delalloc_lock);
1114 btrfs_panic(root->fs_info, -EOVERFLOW,
1115 "Can't clear %lu bytes from "
1116 " dirty_mdatadata_bytes (%lu)",
1117 buf->len,
1118 root->fs_info->dirty_metadata_bytes);
1119 }
1120 spin_unlock(&root->fs_info->delalloc_lock);
1121 }
1122
1123 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1124 btrfs_set_lock_blocking(buf);
1125 clear_extent_buffer_dirty(buf);
1126 }
1127 }
1128
1129 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1130 u32 stripesize, struct btrfs_root *root,
1131 struct btrfs_fs_info *fs_info,
1132 u64 objectid)
1133 {
1134 root->node = NULL;
1135 root->commit_root = NULL;
1136 root->sectorsize = sectorsize;
1137 root->nodesize = nodesize;
1138 root->leafsize = leafsize;
1139 root->stripesize = stripesize;
1140 root->ref_cows = 0;
1141 root->track_dirty = 0;
1142 root->in_radix = 0;
1143 root->orphan_item_inserted = 0;
1144 root->orphan_cleanup_state = 0;
1145
1146 root->objectid = objectid;
1147 root->last_trans = 0;
1148 root->highest_objectid = 0;
1149 root->name = NULL;
1150 root->inode_tree = RB_ROOT;
1151 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1152 root->block_rsv = NULL;
1153 root->orphan_block_rsv = NULL;
1154
1155 INIT_LIST_HEAD(&root->dirty_list);
1156 INIT_LIST_HEAD(&root->orphan_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 spin_lock_init(&root->orphan_lock);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 mutex_init(&root->objectid_mutex);
1162 mutex_init(&root->log_mutex);
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
1169 root->log_batch = 0;
1170 root->log_transid = 0;
1171 root->last_log_commit = 0;
1172 extent_io_tree_init(&root->dirty_log_pages,
1173 fs_info->btree_inode->i_mapping);
1174
1175 memset(&root->root_key, 0, sizeof(root->root_key));
1176 memset(&root->root_item, 0, sizeof(root->root_item));
1177 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1178 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1179 root->defrag_trans_start = fs_info->generation;
1180 init_completion(&root->kobj_unregister);
1181 root->defrag_running = 0;
1182 root->root_key.objectid = objectid;
1183 root->anon_dev = 0;
1184 }
1185
1186 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1187 struct btrfs_fs_info *fs_info,
1188 u64 objectid,
1189 struct btrfs_root *root)
1190 {
1191 int ret;
1192 u32 blocksize;
1193 u64 generation;
1194
1195 __setup_root(tree_root->nodesize, tree_root->leafsize,
1196 tree_root->sectorsize, tree_root->stripesize,
1197 root, fs_info, objectid);
1198 ret = btrfs_find_last_root(tree_root, objectid,
1199 &root->root_item, &root->root_key);
1200 if (ret > 0)
1201 return -ENOENT;
1202 else if (ret < 0)
1203 return ret;
1204
1205 generation = btrfs_root_generation(&root->root_item);
1206 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1207 root->commit_root = NULL;
1208 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1209 blocksize, generation);
1210 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1211 free_extent_buffer(root->node);
1212 root->node = NULL;
1213 return -EIO;
1214 }
1215 root->commit_root = btrfs_root_node(root);
1216 return 0;
1217 }
1218
1219 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1220 {
1221 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1222 if (root)
1223 root->fs_info = fs_info;
1224 return root;
1225 }
1226
1227 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1228 struct btrfs_fs_info *fs_info)
1229 {
1230 struct btrfs_root *root;
1231 struct btrfs_root *tree_root = fs_info->tree_root;
1232 struct extent_buffer *leaf;
1233
1234 root = btrfs_alloc_root(fs_info);
1235 if (!root)
1236 return ERR_PTR(-ENOMEM);
1237
1238 __setup_root(tree_root->nodesize, tree_root->leafsize,
1239 tree_root->sectorsize, tree_root->stripesize,
1240 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1241
1242 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1243 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1244 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1245 /*
1246 * log trees do not get reference counted because they go away
1247 * before a real commit is actually done. They do store pointers
1248 * to file data extents, and those reference counts still get
1249 * updated (along with back refs to the log tree).
1250 */
1251 root->ref_cows = 0;
1252
1253 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1254 BTRFS_TREE_LOG_OBJECTID, NULL,
1255 0, 0, 0, 0);
1256 if (IS_ERR(leaf)) {
1257 kfree(root);
1258 return ERR_CAST(leaf);
1259 }
1260
1261 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1262 btrfs_set_header_bytenr(leaf, leaf->start);
1263 btrfs_set_header_generation(leaf, trans->transid);
1264 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1265 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1266 root->node = leaf;
1267
1268 write_extent_buffer(root->node, root->fs_info->fsid,
1269 (unsigned long)btrfs_header_fsid(root->node),
1270 BTRFS_FSID_SIZE);
1271 btrfs_mark_buffer_dirty(root->node);
1272 btrfs_tree_unlock(root->node);
1273 return root;
1274 }
1275
1276 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1277 struct btrfs_fs_info *fs_info)
1278 {
1279 struct btrfs_root *log_root;
1280
1281 log_root = alloc_log_tree(trans, fs_info);
1282 if (IS_ERR(log_root))
1283 return PTR_ERR(log_root);
1284 WARN_ON(fs_info->log_root_tree);
1285 fs_info->log_root_tree = log_root;
1286 return 0;
1287 }
1288
1289 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1290 struct btrfs_root *root)
1291 {
1292 struct btrfs_root *log_root;
1293 struct btrfs_inode_item *inode_item;
1294
1295 log_root = alloc_log_tree(trans, root->fs_info);
1296 if (IS_ERR(log_root))
1297 return PTR_ERR(log_root);
1298
1299 log_root->last_trans = trans->transid;
1300 log_root->root_key.offset = root->root_key.objectid;
1301
1302 inode_item = &log_root->root_item.inode;
1303 inode_item->generation = cpu_to_le64(1);
1304 inode_item->size = cpu_to_le64(3);
1305 inode_item->nlink = cpu_to_le32(1);
1306 inode_item->nbytes = cpu_to_le64(root->leafsize);
1307 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1308
1309 btrfs_set_root_node(&log_root->root_item, log_root->node);
1310
1311 WARN_ON(root->log_root);
1312 root->log_root = log_root;
1313 root->log_transid = 0;
1314 root->last_log_commit = 0;
1315 return 0;
1316 }
1317
1318 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1319 struct btrfs_key *location)
1320 {
1321 struct btrfs_root *root;
1322 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1323 struct btrfs_path *path;
1324 struct extent_buffer *l;
1325 u64 generation;
1326 u32 blocksize;
1327 int ret = 0;
1328
1329 root = btrfs_alloc_root(fs_info);
1330 if (!root)
1331 return ERR_PTR(-ENOMEM);
1332 if (location->offset == (u64)-1) {
1333 ret = find_and_setup_root(tree_root, fs_info,
1334 location->objectid, root);
1335 if (ret) {
1336 kfree(root);
1337 return ERR_PTR(ret);
1338 }
1339 goto out;
1340 }
1341
1342 __setup_root(tree_root->nodesize, tree_root->leafsize,
1343 tree_root->sectorsize, tree_root->stripesize,
1344 root, fs_info, location->objectid);
1345
1346 path = btrfs_alloc_path();
1347 if (!path) {
1348 kfree(root);
1349 return ERR_PTR(-ENOMEM);
1350 }
1351 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1352 if (ret == 0) {
1353 l = path->nodes[0];
1354 read_extent_buffer(l, &root->root_item,
1355 btrfs_item_ptr_offset(l, path->slots[0]),
1356 sizeof(root->root_item));
1357 memcpy(&root->root_key, location, sizeof(*location));
1358 }
1359 btrfs_free_path(path);
1360 if (ret) {
1361 kfree(root);
1362 if (ret > 0)
1363 ret = -ENOENT;
1364 return ERR_PTR(ret);
1365 }
1366
1367 generation = btrfs_root_generation(&root->root_item);
1368 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1369 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1370 blocksize, generation);
1371 root->commit_root = btrfs_root_node(root);
1372 BUG_ON(!root->node); /* -ENOMEM */
1373 out:
1374 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1375 root->ref_cows = 1;
1376 btrfs_check_and_init_root_item(&root->root_item);
1377 }
1378
1379 return root;
1380 }
1381
1382 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1383 struct btrfs_key *location)
1384 {
1385 struct btrfs_root *root;
1386 int ret;
1387
1388 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1389 return fs_info->tree_root;
1390 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1391 return fs_info->extent_root;
1392 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1393 return fs_info->chunk_root;
1394 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1395 return fs_info->dev_root;
1396 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1397 return fs_info->csum_root;
1398 again:
1399 spin_lock(&fs_info->fs_roots_radix_lock);
1400 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1401 (unsigned long)location->objectid);
1402 spin_unlock(&fs_info->fs_roots_radix_lock);
1403 if (root)
1404 return root;
1405
1406 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1407 if (IS_ERR(root))
1408 return root;
1409
1410 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1411 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1412 GFP_NOFS);
1413 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1414 ret = -ENOMEM;
1415 goto fail;
1416 }
1417
1418 btrfs_init_free_ino_ctl(root);
1419 mutex_init(&root->fs_commit_mutex);
1420 spin_lock_init(&root->cache_lock);
1421 init_waitqueue_head(&root->cache_wait);
1422
1423 ret = get_anon_bdev(&root->anon_dev);
1424 if (ret)
1425 goto fail;
1426
1427 if (btrfs_root_refs(&root->root_item) == 0) {
1428 ret = -ENOENT;
1429 goto fail;
1430 }
1431
1432 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1433 if (ret < 0)
1434 goto fail;
1435 if (ret == 0)
1436 root->orphan_item_inserted = 1;
1437
1438 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1439 if (ret)
1440 goto fail;
1441
1442 spin_lock(&fs_info->fs_roots_radix_lock);
1443 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1444 (unsigned long)root->root_key.objectid,
1445 root);
1446 if (ret == 0)
1447 root->in_radix = 1;
1448
1449 spin_unlock(&fs_info->fs_roots_radix_lock);
1450 radix_tree_preload_end();
1451 if (ret) {
1452 if (ret == -EEXIST) {
1453 free_fs_root(root);
1454 goto again;
1455 }
1456 goto fail;
1457 }
1458
1459 ret = btrfs_find_dead_roots(fs_info->tree_root,
1460 root->root_key.objectid);
1461 WARN_ON(ret);
1462 return root;
1463 fail:
1464 free_fs_root(root);
1465 return ERR_PTR(ret);
1466 }
1467
1468 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1469 {
1470 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1471 int ret = 0;
1472 struct btrfs_device *device;
1473 struct backing_dev_info *bdi;
1474
1475 rcu_read_lock();
1476 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1477 if (!device->bdev)
1478 continue;
1479 bdi = blk_get_backing_dev_info(device->bdev);
1480 if (bdi && bdi_congested(bdi, bdi_bits)) {
1481 ret = 1;
1482 break;
1483 }
1484 }
1485 rcu_read_unlock();
1486 return ret;
1487 }
1488
1489 /*
1490 * If this fails, caller must call bdi_destroy() to get rid of the
1491 * bdi again.
1492 */
1493 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1494 {
1495 int err;
1496
1497 bdi->capabilities = BDI_CAP_MAP_COPY;
1498 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1499 if (err)
1500 return err;
1501
1502 bdi->ra_pages = default_backing_dev_info.ra_pages;
1503 bdi->congested_fn = btrfs_congested_fn;
1504 bdi->congested_data = info;
1505 return 0;
1506 }
1507
1508 /*
1509 * called by the kthread helper functions to finally call the bio end_io
1510 * functions. This is where read checksum verification actually happens
1511 */
1512 static void end_workqueue_fn(struct btrfs_work *work)
1513 {
1514 struct bio *bio;
1515 struct end_io_wq *end_io_wq;
1516 struct btrfs_fs_info *fs_info;
1517 int error;
1518
1519 end_io_wq = container_of(work, struct end_io_wq, work);
1520 bio = end_io_wq->bio;
1521 fs_info = end_io_wq->info;
1522
1523 error = end_io_wq->error;
1524 bio->bi_private = end_io_wq->private;
1525 bio->bi_end_io = end_io_wq->end_io;
1526 kfree(end_io_wq);
1527 bio_endio(bio, error);
1528 }
1529
1530 static int cleaner_kthread(void *arg)
1531 {
1532 struct btrfs_root *root = arg;
1533
1534 do {
1535 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1536
1537 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1538 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1539 btrfs_run_delayed_iputs(root);
1540 btrfs_clean_old_snapshots(root);
1541 mutex_unlock(&root->fs_info->cleaner_mutex);
1542 btrfs_run_defrag_inodes(root->fs_info);
1543 }
1544
1545 if (!try_to_freeze()) {
1546 set_current_state(TASK_INTERRUPTIBLE);
1547 if (!kthread_should_stop())
1548 schedule();
1549 __set_current_state(TASK_RUNNING);
1550 }
1551 } while (!kthread_should_stop());
1552 return 0;
1553 }
1554
1555 static int transaction_kthread(void *arg)
1556 {
1557 struct btrfs_root *root = arg;
1558 struct btrfs_trans_handle *trans;
1559 struct btrfs_transaction *cur;
1560 u64 transid;
1561 unsigned long now;
1562 unsigned long delay;
1563 bool cannot_commit;
1564
1565 do {
1566 cannot_commit = false;
1567 delay = HZ * 30;
1568 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1569 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1570
1571 spin_lock(&root->fs_info->trans_lock);
1572 cur = root->fs_info->running_transaction;
1573 if (!cur) {
1574 spin_unlock(&root->fs_info->trans_lock);
1575 goto sleep;
1576 }
1577
1578 now = get_seconds();
1579 if (!cur->blocked &&
1580 (now < cur->start_time || now - cur->start_time < 30)) {
1581 spin_unlock(&root->fs_info->trans_lock);
1582 delay = HZ * 5;
1583 goto sleep;
1584 }
1585 transid = cur->transid;
1586 spin_unlock(&root->fs_info->trans_lock);
1587
1588 /* If the file system is aborted, this will always fail. */
1589 trans = btrfs_join_transaction(root);
1590 if (IS_ERR(trans)) {
1591 cannot_commit = true;
1592 goto sleep;
1593 }
1594 if (transid == trans->transid) {
1595 btrfs_commit_transaction(trans, root);
1596 } else {
1597 btrfs_end_transaction(trans, root);
1598 }
1599 sleep:
1600 wake_up_process(root->fs_info->cleaner_kthread);
1601 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1602
1603 if (!try_to_freeze()) {
1604 set_current_state(TASK_INTERRUPTIBLE);
1605 if (!kthread_should_stop() &&
1606 (!btrfs_transaction_blocked(root->fs_info) ||
1607 cannot_commit))
1608 schedule_timeout(delay);
1609 __set_current_state(TASK_RUNNING);
1610 }
1611 } while (!kthread_should_stop());
1612 return 0;
1613 }
1614
1615 /*
1616 * this will find the highest generation in the array of
1617 * root backups. The index of the highest array is returned,
1618 * or -1 if we can't find anything.
1619 *
1620 * We check to make sure the array is valid by comparing the
1621 * generation of the latest root in the array with the generation
1622 * in the super block. If they don't match we pitch it.
1623 */
1624 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1625 {
1626 u64 cur;
1627 int newest_index = -1;
1628 struct btrfs_root_backup *root_backup;
1629 int i;
1630
1631 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1632 root_backup = info->super_copy->super_roots + i;
1633 cur = btrfs_backup_tree_root_gen(root_backup);
1634 if (cur == newest_gen)
1635 newest_index = i;
1636 }
1637
1638 /* check to see if we actually wrapped around */
1639 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1640 root_backup = info->super_copy->super_roots;
1641 cur = btrfs_backup_tree_root_gen(root_backup);
1642 if (cur == newest_gen)
1643 newest_index = 0;
1644 }
1645 return newest_index;
1646 }
1647
1648
1649 /*
1650 * find the oldest backup so we know where to store new entries
1651 * in the backup array. This will set the backup_root_index
1652 * field in the fs_info struct
1653 */
1654 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1655 u64 newest_gen)
1656 {
1657 int newest_index = -1;
1658
1659 newest_index = find_newest_super_backup(info, newest_gen);
1660 /* if there was garbage in there, just move along */
1661 if (newest_index == -1) {
1662 info->backup_root_index = 0;
1663 } else {
1664 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1665 }
1666 }
1667
1668 /*
1669 * copy all the root pointers into the super backup array.
1670 * this will bump the backup pointer by one when it is
1671 * done
1672 */
1673 static void backup_super_roots(struct btrfs_fs_info *info)
1674 {
1675 int next_backup;
1676 struct btrfs_root_backup *root_backup;
1677 int last_backup;
1678
1679 next_backup = info->backup_root_index;
1680 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1681 BTRFS_NUM_BACKUP_ROOTS;
1682
1683 /*
1684 * just overwrite the last backup if we're at the same generation
1685 * this happens only at umount
1686 */
1687 root_backup = info->super_for_commit->super_roots + last_backup;
1688 if (btrfs_backup_tree_root_gen(root_backup) ==
1689 btrfs_header_generation(info->tree_root->node))
1690 next_backup = last_backup;
1691
1692 root_backup = info->super_for_commit->super_roots + next_backup;
1693
1694 /*
1695 * make sure all of our padding and empty slots get zero filled
1696 * regardless of which ones we use today
1697 */
1698 memset(root_backup, 0, sizeof(*root_backup));
1699
1700 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1701
1702 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1703 btrfs_set_backup_tree_root_gen(root_backup,
1704 btrfs_header_generation(info->tree_root->node));
1705
1706 btrfs_set_backup_tree_root_level(root_backup,
1707 btrfs_header_level(info->tree_root->node));
1708
1709 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1710 btrfs_set_backup_chunk_root_gen(root_backup,
1711 btrfs_header_generation(info->chunk_root->node));
1712 btrfs_set_backup_chunk_root_level(root_backup,
1713 btrfs_header_level(info->chunk_root->node));
1714
1715 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1716 btrfs_set_backup_extent_root_gen(root_backup,
1717 btrfs_header_generation(info->extent_root->node));
1718 btrfs_set_backup_extent_root_level(root_backup,
1719 btrfs_header_level(info->extent_root->node));
1720
1721 /*
1722 * we might commit during log recovery, which happens before we set
1723 * the fs_root. Make sure it is valid before we fill it in.
1724 */
1725 if (info->fs_root && info->fs_root->node) {
1726 btrfs_set_backup_fs_root(root_backup,
1727 info->fs_root->node->start);
1728 btrfs_set_backup_fs_root_gen(root_backup,
1729 btrfs_header_generation(info->fs_root->node));
1730 btrfs_set_backup_fs_root_level(root_backup,
1731 btrfs_header_level(info->fs_root->node));
1732 }
1733
1734 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1735 btrfs_set_backup_dev_root_gen(root_backup,
1736 btrfs_header_generation(info->dev_root->node));
1737 btrfs_set_backup_dev_root_level(root_backup,
1738 btrfs_header_level(info->dev_root->node));
1739
1740 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1741 btrfs_set_backup_csum_root_gen(root_backup,
1742 btrfs_header_generation(info->csum_root->node));
1743 btrfs_set_backup_csum_root_level(root_backup,
1744 btrfs_header_level(info->csum_root->node));
1745
1746 btrfs_set_backup_total_bytes(root_backup,
1747 btrfs_super_total_bytes(info->super_copy));
1748 btrfs_set_backup_bytes_used(root_backup,
1749 btrfs_super_bytes_used(info->super_copy));
1750 btrfs_set_backup_num_devices(root_backup,
1751 btrfs_super_num_devices(info->super_copy));
1752
1753 /*
1754 * if we don't copy this out to the super_copy, it won't get remembered
1755 * for the next commit
1756 */
1757 memcpy(&info->super_copy->super_roots,
1758 &info->super_for_commit->super_roots,
1759 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1760 }
1761
1762 /*
1763 * this copies info out of the root backup array and back into
1764 * the in-memory super block. It is meant to help iterate through
1765 * the array, so you send it the number of backups you've already
1766 * tried and the last backup index you used.
1767 *
1768 * this returns -1 when it has tried all the backups
1769 */
1770 static noinline int next_root_backup(struct btrfs_fs_info *info,
1771 struct btrfs_super_block *super,
1772 int *num_backups_tried, int *backup_index)
1773 {
1774 struct btrfs_root_backup *root_backup;
1775 int newest = *backup_index;
1776
1777 if (*num_backups_tried == 0) {
1778 u64 gen = btrfs_super_generation(super);
1779
1780 newest = find_newest_super_backup(info, gen);
1781 if (newest == -1)
1782 return -1;
1783
1784 *backup_index = newest;
1785 *num_backups_tried = 1;
1786 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1787 /* we've tried all the backups, all done */
1788 return -1;
1789 } else {
1790 /* jump to the next oldest backup */
1791 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1792 BTRFS_NUM_BACKUP_ROOTS;
1793 *backup_index = newest;
1794 *num_backups_tried += 1;
1795 }
1796 root_backup = super->super_roots + newest;
1797
1798 btrfs_set_super_generation(super,
1799 btrfs_backup_tree_root_gen(root_backup));
1800 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1801 btrfs_set_super_root_level(super,
1802 btrfs_backup_tree_root_level(root_backup));
1803 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1804
1805 /*
1806 * fixme: the total bytes and num_devices need to match or we should
1807 * need a fsck
1808 */
1809 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1810 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1811 return 0;
1812 }
1813
1814 /* helper to cleanup tree roots */
1815 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1816 {
1817 free_extent_buffer(info->tree_root->node);
1818 free_extent_buffer(info->tree_root->commit_root);
1819 free_extent_buffer(info->dev_root->node);
1820 free_extent_buffer(info->dev_root->commit_root);
1821 free_extent_buffer(info->extent_root->node);
1822 free_extent_buffer(info->extent_root->commit_root);
1823 free_extent_buffer(info->csum_root->node);
1824 free_extent_buffer(info->csum_root->commit_root);
1825
1826 info->tree_root->node = NULL;
1827 info->tree_root->commit_root = NULL;
1828 info->dev_root->node = NULL;
1829 info->dev_root->commit_root = NULL;
1830 info->extent_root->node = NULL;
1831 info->extent_root->commit_root = NULL;
1832 info->csum_root->node = NULL;
1833 info->csum_root->commit_root = NULL;
1834
1835 if (chunk_root) {
1836 free_extent_buffer(info->chunk_root->node);
1837 free_extent_buffer(info->chunk_root->commit_root);
1838 info->chunk_root->node = NULL;
1839 info->chunk_root->commit_root = NULL;
1840 }
1841 }
1842
1843
1844 int open_ctree(struct super_block *sb,
1845 struct btrfs_fs_devices *fs_devices,
1846 char *options)
1847 {
1848 u32 sectorsize;
1849 u32 nodesize;
1850 u32 leafsize;
1851 u32 blocksize;
1852 u32 stripesize;
1853 u64 generation;
1854 u64 features;
1855 struct btrfs_key location;
1856 struct buffer_head *bh;
1857 struct btrfs_super_block *disk_super;
1858 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1859 struct btrfs_root *tree_root;
1860 struct btrfs_root *extent_root;
1861 struct btrfs_root *csum_root;
1862 struct btrfs_root *chunk_root;
1863 struct btrfs_root *dev_root;
1864 struct btrfs_root *log_tree_root;
1865 int ret;
1866 int err = -EINVAL;
1867 int num_backups_tried = 0;
1868 int backup_index = 0;
1869
1870 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1871 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1872 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1873 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1874 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1875
1876 if (!tree_root || !extent_root || !csum_root ||
1877 !chunk_root || !dev_root) {
1878 err = -ENOMEM;
1879 goto fail;
1880 }
1881
1882 ret = init_srcu_struct(&fs_info->subvol_srcu);
1883 if (ret) {
1884 err = ret;
1885 goto fail;
1886 }
1887
1888 ret = setup_bdi(fs_info, &fs_info->bdi);
1889 if (ret) {
1890 err = ret;
1891 goto fail_srcu;
1892 }
1893
1894 fs_info->btree_inode = new_inode(sb);
1895 if (!fs_info->btree_inode) {
1896 err = -ENOMEM;
1897 goto fail_bdi;
1898 }
1899
1900 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1901
1902 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1903 INIT_LIST_HEAD(&fs_info->trans_list);
1904 INIT_LIST_HEAD(&fs_info->dead_roots);
1905 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1906 INIT_LIST_HEAD(&fs_info->hashers);
1907 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1908 INIT_LIST_HEAD(&fs_info->ordered_operations);
1909 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1910 spin_lock_init(&fs_info->delalloc_lock);
1911 spin_lock_init(&fs_info->trans_lock);
1912 spin_lock_init(&fs_info->ref_cache_lock);
1913 spin_lock_init(&fs_info->fs_roots_radix_lock);
1914 spin_lock_init(&fs_info->delayed_iput_lock);
1915 spin_lock_init(&fs_info->defrag_inodes_lock);
1916 spin_lock_init(&fs_info->free_chunk_lock);
1917 mutex_init(&fs_info->reloc_mutex);
1918
1919 init_completion(&fs_info->kobj_unregister);
1920 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1921 INIT_LIST_HEAD(&fs_info->space_info);
1922 btrfs_mapping_init(&fs_info->mapping_tree);
1923 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1924 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1925 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1926 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1927 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1928 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1929 atomic_set(&fs_info->nr_async_submits, 0);
1930 atomic_set(&fs_info->async_delalloc_pages, 0);
1931 atomic_set(&fs_info->async_submit_draining, 0);
1932 atomic_set(&fs_info->nr_async_bios, 0);
1933 atomic_set(&fs_info->defrag_running, 0);
1934 fs_info->sb = sb;
1935 fs_info->max_inline = 8192 * 1024;
1936 fs_info->metadata_ratio = 0;
1937 fs_info->defrag_inodes = RB_ROOT;
1938 fs_info->trans_no_join = 0;
1939 fs_info->free_chunk_space = 0;
1940
1941 /* readahead state */
1942 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1943 spin_lock_init(&fs_info->reada_lock);
1944
1945 fs_info->thread_pool_size = min_t(unsigned long,
1946 num_online_cpus() + 2, 8);
1947
1948 INIT_LIST_HEAD(&fs_info->ordered_extents);
1949 spin_lock_init(&fs_info->ordered_extent_lock);
1950 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1951 GFP_NOFS);
1952 if (!fs_info->delayed_root) {
1953 err = -ENOMEM;
1954 goto fail_iput;
1955 }
1956 btrfs_init_delayed_root(fs_info->delayed_root);
1957
1958 mutex_init(&fs_info->scrub_lock);
1959 atomic_set(&fs_info->scrubs_running, 0);
1960 atomic_set(&fs_info->scrub_pause_req, 0);
1961 atomic_set(&fs_info->scrubs_paused, 0);
1962 atomic_set(&fs_info->scrub_cancel_req, 0);
1963 init_waitqueue_head(&fs_info->scrub_pause_wait);
1964 init_rwsem(&fs_info->scrub_super_lock);
1965 fs_info->scrub_workers_refcnt = 0;
1966 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1967 fs_info->check_integrity_print_mask = 0;
1968 #endif
1969
1970 spin_lock_init(&fs_info->balance_lock);
1971 mutex_init(&fs_info->balance_mutex);
1972 atomic_set(&fs_info->balance_running, 0);
1973 atomic_set(&fs_info->balance_pause_req, 0);
1974 atomic_set(&fs_info->balance_cancel_req, 0);
1975 fs_info->balance_ctl = NULL;
1976 init_waitqueue_head(&fs_info->balance_wait_q);
1977
1978 sb->s_blocksize = 4096;
1979 sb->s_blocksize_bits = blksize_bits(4096);
1980 sb->s_bdi = &fs_info->bdi;
1981
1982 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1983 set_nlink(fs_info->btree_inode, 1);
1984 /*
1985 * we set the i_size on the btree inode to the max possible int.
1986 * the real end of the address space is determined by all of
1987 * the devices in the system
1988 */
1989 fs_info->btree_inode->i_size = OFFSET_MAX;
1990 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1991 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1992
1993 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1994 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1995 fs_info->btree_inode->i_mapping);
1996 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
1997 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1998
1999 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2000
2001 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2002 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2003 sizeof(struct btrfs_key));
2004 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2005 insert_inode_hash(fs_info->btree_inode);
2006
2007 spin_lock_init(&fs_info->block_group_cache_lock);
2008 fs_info->block_group_cache_tree = RB_ROOT;
2009
2010 extent_io_tree_init(&fs_info->freed_extents[0],
2011 fs_info->btree_inode->i_mapping);
2012 extent_io_tree_init(&fs_info->freed_extents[1],
2013 fs_info->btree_inode->i_mapping);
2014 fs_info->pinned_extents = &fs_info->freed_extents[0];
2015 fs_info->do_barriers = 1;
2016
2017
2018 mutex_init(&fs_info->ordered_operations_mutex);
2019 mutex_init(&fs_info->tree_log_mutex);
2020 mutex_init(&fs_info->chunk_mutex);
2021 mutex_init(&fs_info->transaction_kthread_mutex);
2022 mutex_init(&fs_info->cleaner_mutex);
2023 mutex_init(&fs_info->volume_mutex);
2024 init_rwsem(&fs_info->extent_commit_sem);
2025 init_rwsem(&fs_info->cleanup_work_sem);
2026 init_rwsem(&fs_info->subvol_sem);
2027
2028 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2029 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2030
2031 init_waitqueue_head(&fs_info->transaction_throttle);
2032 init_waitqueue_head(&fs_info->transaction_wait);
2033 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2034 init_waitqueue_head(&fs_info->async_submit_wait);
2035
2036 __setup_root(4096, 4096, 4096, 4096, tree_root,
2037 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2038
2039 invalidate_bdev(fs_devices->latest_bdev);
2040 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2041 if (!bh) {
2042 err = -EINVAL;
2043 goto fail_alloc;
2044 }
2045
2046 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2047 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2048 sizeof(*fs_info->super_for_commit));
2049 brelse(bh);
2050
2051 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2052
2053 disk_super = fs_info->super_copy;
2054 if (!btrfs_super_root(disk_super))
2055 goto fail_alloc;
2056
2057 /* check FS state, whether FS is broken. */
2058 fs_info->fs_state |= btrfs_super_flags(disk_super);
2059
2060 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2061 if (ret) {
2062 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2063 err = ret;
2064 goto fail_alloc;
2065 }
2066
2067 /*
2068 * run through our array of backup supers and setup
2069 * our ring pointer to the oldest one
2070 */
2071 generation = btrfs_super_generation(disk_super);
2072 find_oldest_super_backup(fs_info, generation);
2073
2074 /*
2075 * In the long term, we'll store the compression type in the super
2076 * block, and it'll be used for per file compression control.
2077 */
2078 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2079
2080 ret = btrfs_parse_options(tree_root, options);
2081 if (ret) {
2082 err = ret;
2083 goto fail_alloc;
2084 }
2085
2086 features = btrfs_super_incompat_flags(disk_super) &
2087 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2088 if (features) {
2089 printk(KERN_ERR "BTRFS: couldn't mount because of "
2090 "unsupported optional features (%Lx).\n",
2091 (unsigned long long)features);
2092 err = -EINVAL;
2093 goto fail_alloc;
2094 }
2095
2096 if (btrfs_super_leafsize(disk_super) !=
2097 btrfs_super_nodesize(disk_super)) {
2098 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2099 "blocksizes don't match. node %d leaf %d\n",
2100 btrfs_super_nodesize(disk_super),
2101 btrfs_super_leafsize(disk_super));
2102 err = -EINVAL;
2103 goto fail_alloc;
2104 }
2105 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2106 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2107 "blocksize (%d) was too large\n",
2108 btrfs_super_leafsize(disk_super));
2109 err = -EINVAL;
2110 goto fail_alloc;
2111 }
2112
2113 features = btrfs_super_incompat_flags(disk_super);
2114 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2115 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2116 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2117
2118 /*
2119 * flag our filesystem as having big metadata blocks if
2120 * they are bigger than the page size
2121 */
2122 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2123 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2124 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2125 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2126 }
2127
2128 nodesize = btrfs_super_nodesize(disk_super);
2129 leafsize = btrfs_super_leafsize(disk_super);
2130 sectorsize = btrfs_super_sectorsize(disk_super);
2131 stripesize = btrfs_super_stripesize(disk_super);
2132
2133 /*
2134 * mixed block groups end up with duplicate but slightly offset
2135 * extent buffers for the same range. It leads to corruptions
2136 */
2137 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2138 (sectorsize != leafsize)) {
2139 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2140 "are not allowed for mixed block groups on %s\n",
2141 sb->s_id);
2142 goto fail_alloc;
2143 }
2144
2145 btrfs_set_super_incompat_flags(disk_super, features);
2146
2147 features = btrfs_super_compat_ro_flags(disk_super) &
2148 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2149 if (!(sb->s_flags & MS_RDONLY) && features) {
2150 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2151 "unsupported option features (%Lx).\n",
2152 (unsigned long long)features);
2153 err = -EINVAL;
2154 goto fail_alloc;
2155 }
2156
2157 btrfs_init_workers(&fs_info->generic_worker,
2158 "genwork", 1, NULL);
2159
2160 btrfs_init_workers(&fs_info->workers, "worker",
2161 fs_info->thread_pool_size,
2162 &fs_info->generic_worker);
2163
2164 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2165 fs_info->thread_pool_size,
2166 &fs_info->generic_worker);
2167
2168 btrfs_init_workers(&fs_info->submit_workers, "submit",
2169 min_t(u64, fs_devices->num_devices,
2170 fs_info->thread_pool_size),
2171 &fs_info->generic_worker);
2172
2173 btrfs_init_workers(&fs_info->caching_workers, "cache",
2174 2, &fs_info->generic_worker);
2175
2176 /* a higher idle thresh on the submit workers makes it much more
2177 * likely that bios will be send down in a sane order to the
2178 * devices
2179 */
2180 fs_info->submit_workers.idle_thresh = 64;
2181
2182 fs_info->workers.idle_thresh = 16;
2183 fs_info->workers.ordered = 1;
2184
2185 fs_info->delalloc_workers.idle_thresh = 2;
2186 fs_info->delalloc_workers.ordered = 1;
2187
2188 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2189 &fs_info->generic_worker);
2190 btrfs_init_workers(&fs_info->endio_workers, "endio",
2191 fs_info->thread_pool_size,
2192 &fs_info->generic_worker);
2193 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2194 fs_info->thread_pool_size,
2195 &fs_info->generic_worker);
2196 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2197 "endio-meta-write", fs_info->thread_pool_size,
2198 &fs_info->generic_worker);
2199 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2200 fs_info->thread_pool_size,
2201 &fs_info->generic_worker);
2202 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2203 1, &fs_info->generic_worker);
2204 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2205 fs_info->thread_pool_size,
2206 &fs_info->generic_worker);
2207 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2208 fs_info->thread_pool_size,
2209 &fs_info->generic_worker);
2210
2211 /*
2212 * endios are largely parallel and should have a very
2213 * low idle thresh
2214 */
2215 fs_info->endio_workers.idle_thresh = 4;
2216 fs_info->endio_meta_workers.idle_thresh = 4;
2217
2218 fs_info->endio_write_workers.idle_thresh = 2;
2219 fs_info->endio_meta_write_workers.idle_thresh = 2;
2220 fs_info->readahead_workers.idle_thresh = 2;
2221
2222 /*
2223 * btrfs_start_workers can really only fail because of ENOMEM so just
2224 * return -ENOMEM if any of these fail.
2225 */
2226 ret = btrfs_start_workers(&fs_info->workers);
2227 ret |= btrfs_start_workers(&fs_info->generic_worker);
2228 ret |= btrfs_start_workers(&fs_info->submit_workers);
2229 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2230 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2231 ret |= btrfs_start_workers(&fs_info->endio_workers);
2232 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2233 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2234 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2235 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2236 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2237 ret |= btrfs_start_workers(&fs_info->caching_workers);
2238 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2239 if (ret) {
2240 ret = -ENOMEM;
2241 goto fail_sb_buffer;
2242 }
2243
2244 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2245 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2246 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2247
2248 tree_root->nodesize = nodesize;
2249 tree_root->leafsize = leafsize;
2250 tree_root->sectorsize = sectorsize;
2251 tree_root->stripesize = stripesize;
2252
2253 sb->s_blocksize = sectorsize;
2254 sb->s_blocksize_bits = blksize_bits(sectorsize);
2255
2256 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2257 sizeof(disk_super->magic))) {
2258 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2259 goto fail_sb_buffer;
2260 }
2261
2262 if (sectorsize != PAGE_SIZE) {
2263 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2264 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2265 goto fail_sb_buffer;
2266 }
2267
2268 mutex_lock(&fs_info->chunk_mutex);
2269 ret = btrfs_read_sys_array(tree_root);
2270 mutex_unlock(&fs_info->chunk_mutex);
2271 if (ret) {
2272 printk(KERN_WARNING "btrfs: failed to read the system "
2273 "array on %s\n", sb->s_id);
2274 goto fail_sb_buffer;
2275 }
2276
2277 blocksize = btrfs_level_size(tree_root,
2278 btrfs_super_chunk_root_level(disk_super));
2279 generation = btrfs_super_chunk_root_generation(disk_super);
2280
2281 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2282 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2283
2284 chunk_root->node = read_tree_block(chunk_root,
2285 btrfs_super_chunk_root(disk_super),
2286 blocksize, generation);
2287 BUG_ON(!chunk_root->node); /* -ENOMEM */
2288 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2289 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2290 sb->s_id);
2291 goto fail_tree_roots;
2292 }
2293 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2294 chunk_root->commit_root = btrfs_root_node(chunk_root);
2295
2296 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2297 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2298 BTRFS_UUID_SIZE);
2299
2300 ret = btrfs_read_chunk_tree(chunk_root);
2301 if (ret) {
2302 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2303 sb->s_id);
2304 goto fail_tree_roots;
2305 }
2306
2307 btrfs_close_extra_devices(fs_devices);
2308
2309 if (!fs_devices->latest_bdev) {
2310 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2311 sb->s_id);
2312 goto fail_tree_roots;
2313 }
2314
2315 retry_root_backup:
2316 blocksize = btrfs_level_size(tree_root,
2317 btrfs_super_root_level(disk_super));
2318 generation = btrfs_super_generation(disk_super);
2319
2320 tree_root->node = read_tree_block(tree_root,
2321 btrfs_super_root(disk_super),
2322 blocksize, generation);
2323 if (!tree_root->node ||
2324 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2325 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2326 sb->s_id);
2327
2328 goto recovery_tree_root;
2329 }
2330
2331 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2332 tree_root->commit_root = btrfs_root_node(tree_root);
2333
2334 ret = find_and_setup_root(tree_root, fs_info,
2335 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2336 if (ret)
2337 goto recovery_tree_root;
2338 extent_root->track_dirty = 1;
2339
2340 ret = find_and_setup_root(tree_root, fs_info,
2341 BTRFS_DEV_TREE_OBJECTID, dev_root);
2342 if (ret)
2343 goto recovery_tree_root;
2344 dev_root->track_dirty = 1;
2345
2346 ret = find_and_setup_root(tree_root, fs_info,
2347 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2348 if (ret)
2349 goto recovery_tree_root;
2350
2351 csum_root->track_dirty = 1;
2352
2353 fs_info->generation = generation;
2354 fs_info->last_trans_committed = generation;
2355
2356 ret = btrfs_init_space_info(fs_info);
2357 if (ret) {
2358 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2359 goto fail_block_groups;
2360 }
2361
2362 ret = btrfs_read_block_groups(extent_root);
2363 if (ret) {
2364 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2365 goto fail_block_groups;
2366 }
2367
2368 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2369 "btrfs-cleaner");
2370 if (IS_ERR(fs_info->cleaner_kthread))
2371 goto fail_block_groups;
2372
2373 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2374 tree_root,
2375 "btrfs-transaction");
2376 if (IS_ERR(fs_info->transaction_kthread))
2377 goto fail_cleaner;
2378
2379 if (!btrfs_test_opt(tree_root, SSD) &&
2380 !btrfs_test_opt(tree_root, NOSSD) &&
2381 !fs_info->fs_devices->rotating) {
2382 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2383 "mode\n");
2384 btrfs_set_opt(fs_info->mount_opt, SSD);
2385 }
2386
2387 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2388 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2389 ret = btrfsic_mount(tree_root, fs_devices,
2390 btrfs_test_opt(tree_root,
2391 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2392 1 : 0,
2393 fs_info->check_integrity_print_mask);
2394 if (ret)
2395 printk(KERN_WARNING "btrfs: failed to initialize"
2396 " integrity check module %s\n", sb->s_id);
2397 }
2398 #endif
2399
2400 /* do not make disk changes in broken FS */
2401 if (btrfs_super_log_root(disk_super) != 0 &&
2402 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2403 u64 bytenr = btrfs_super_log_root(disk_super);
2404
2405 if (fs_devices->rw_devices == 0) {
2406 printk(KERN_WARNING "Btrfs log replay required "
2407 "on RO media\n");
2408 err = -EIO;
2409 goto fail_trans_kthread;
2410 }
2411 blocksize =
2412 btrfs_level_size(tree_root,
2413 btrfs_super_log_root_level(disk_super));
2414
2415 log_tree_root = btrfs_alloc_root(fs_info);
2416 if (!log_tree_root) {
2417 err = -ENOMEM;
2418 goto fail_trans_kthread;
2419 }
2420
2421 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2422 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2423
2424 log_tree_root->node = read_tree_block(tree_root, bytenr,
2425 blocksize,
2426 generation + 1);
2427 /* returns with log_tree_root freed on success */
2428 ret = btrfs_recover_log_trees(log_tree_root);
2429 if (ret) {
2430 btrfs_error(tree_root->fs_info, ret,
2431 "Failed to recover log tree");
2432 free_extent_buffer(log_tree_root->node);
2433 kfree(log_tree_root);
2434 goto fail_trans_kthread;
2435 }
2436
2437 if (sb->s_flags & MS_RDONLY) {
2438 ret = btrfs_commit_super(tree_root);
2439 if (ret)
2440 goto fail_trans_kthread;
2441 }
2442 }
2443
2444 ret = btrfs_find_orphan_roots(tree_root);
2445 if (ret)
2446 goto fail_trans_kthread;
2447
2448 if (!(sb->s_flags & MS_RDONLY)) {
2449 ret = btrfs_cleanup_fs_roots(fs_info);
2450 if (ret) {
2451 }
2452
2453 ret = btrfs_recover_relocation(tree_root);
2454 if (ret < 0) {
2455 printk(KERN_WARNING
2456 "btrfs: failed to recover relocation\n");
2457 err = -EINVAL;
2458 goto fail_trans_kthread;
2459 }
2460 }
2461
2462 location.objectid = BTRFS_FS_TREE_OBJECTID;
2463 location.type = BTRFS_ROOT_ITEM_KEY;
2464 location.offset = (u64)-1;
2465
2466 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2467 if (!fs_info->fs_root)
2468 goto fail_trans_kthread;
2469 if (IS_ERR(fs_info->fs_root)) {
2470 err = PTR_ERR(fs_info->fs_root);
2471 goto fail_trans_kthread;
2472 }
2473
2474 if (!(sb->s_flags & MS_RDONLY)) {
2475 down_read(&fs_info->cleanup_work_sem);
2476 err = btrfs_orphan_cleanup(fs_info->fs_root);
2477 if (!err)
2478 err = btrfs_orphan_cleanup(fs_info->tree_root);
2479 up_read(&fs_info->cleanup_work_sem);
2480
2481 if (!err)
2482 err = btrfs_recover_balance(fs_info->tree_root);
2483
2484 if (err) {
2485 close_ctree(tree_root);
2486 return err;
2487 }
2488 }
2489
2490 return 0;
2491
2492 fail_trans_kthread:
2493 kthread_stop(fs_info->transaction_kthread);
2494 fail_cleaner:
2495 kthread_stop(fs_info->cleaner_kthread);
2496
2497 /*
2498 * make sure we're done with the btree inode before we stop our
2499 * kthreads
2500 */
2501 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2502 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2503
2504 fail_block_groups:
2505 btrfs_free_block_groups(fs_info);
2506
2507 fail_tree_roots:
2508 free_root_pointers(fs_info, 1);
2509
2510 fail_sb_buffer:
2511 btrfs_stop_workers(&fs_info->generic_worker);
2512 btrfs_stop_workers(&fs_info->readahead_workers);
2513 btrfs_stop_workers(&fs_info->fixup_workers);
2514 btrfs_stop_workers(&fs_info->delalloc_workers);
2515 btrfs_stop_workers(&fs_info->workers);
2516 btrfs_stop_workers(&fs_info->endio_workers);
2517 btrfs_stop_workers(&fs_info->endio_meta_workers);
2518 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2519 btrfs_stop_workers(&fs_info->endio_write_workers);
2520 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2521 btrfs_stop_workers(&fs_info->submit_workers);
2522 btrfs_stop_workers(&fs_info->delayed_workers);
2523 btrfs_stop_workers(&fs_info->caching_workers);
2524 fail_alloc:
2525 fail_iput:
2526 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2527
2528 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2529 iput(fs_info->btree_inode);
2530 fail_bdi:
2531 bdi_destroy(&fs_info->bdi);
2532 fail_srcu:
2533 cleanup_srcu_struct(&fs_info->subvol_srcu);
2534 fail:
2535 btrfs_close_devices(fs_info->fs_devices);
2536 return err;
2537
2538 recovery_tree_root:
2539 if (!btrfs_test_opt(tree_root, RECOVERY))
2540 goto fail_tree_roots;
2541
2542 free_root_pointers(fs_info, 0);
2543
2544 /* don't use the log in recovery mode, it won't be valid */
2545 btrfs_set_super_log_root(disk_super, 0);
2546
2547 /* we can't trust the free space cache either */
2548 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2549
2550 ret = next_root_backup(fs_info, fs_info->super_copy,
2551 &num_backups_tried, &backup_index);
2552 if (ret == -1)
2553 goto fail_block_groups;
2554 goto retry_root_backup;
2555 }
2556
2557 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2558 {
2559 char b[BDEVNAME_SIZE];
2560
2561 if (uptodate) {
2562 set_buffer_uptodate(bh);
2563 } else {
2564 printk_ratelimited(KERN_WARNING "lost page write due to "
2565 "I/O error on %s\n",
2566 bdevname(bh->b_bdev, b));
2567 /* note, we dont' set_buffer_write_io_error because we have
2568 * our own ways of dealing with the IO errors
2569 */
2570 clear_buffer_uptodate(bh);
2571 }
2572 unlock_buffer(bh);
2573 put_bh(bh);
2574 }
2575
2576 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2577 {
2578 struct buffer_head *bh;
2579 struct buffer_head *latest = NULL;
2580 struct btrfs_super_block *super;
2581 int i;
2582 u64 transid = 0;
2583 u64 bytenr;
2584
2585 /* we would like to check all the supers, but that would make
2586 * a btrfs mount succeed after a mkfs from a different FS.
2587 * So, we need to add a special mount option to scan for
2588 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2589 */
2590 for (i = 0; i < 1; i++) {
2591 bytenr = btrfs_sb_offset(i);
2592 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2593 break;
2594 bh = __bread(bdev, bytenr / 4096, 4096);
2595 if (!bh)
2596 continue;
2597
2598 super = (struct btrfs_super_block *)bh->b_data;
2599 if (btrfs_super_bytenr(super) != bytenr ||
2600 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2601 sizeof(super->magic))) {
2602 brelse(bh);
2603 continue;
2604 }
2605
2606 if (!latest || btrfs_super_generation(super) > transid) {
2607 brelse(latest);
2608 latest = bh;
2609 transid = btrfs_super_generation(super);
2610 } else {
2611 brelse(bh);
2612 }
2613 }
2614 return latest;
2615 }
2616
2617 /*
2618 * this should be called twice, once with wait == 0 and
2619 * once with wait == 1. When wait == 0 is done, all the buffer heads
2620 * we write are pinned.
2621 *
2622 * They are released when wait == 1 is done.
2623 * max_mirrors must be the same for both runs, and it indicates how
2624 * many supers on this one device should be written.
2625 *
2626 * max_mirrors == 0 means to write them all.
2627 */
2628 static int write_dev_supers(struct btrfs_device *device,
2629 struct btrfs_super_block *sb,
2630 int do_barriers, int wait, int max_mirrors)
2631 {
2632 struct buffer_head *bh;
2633 int i;
2634 int ret;
2635 int errors = 0;
2636 u32 crc;
2637 u64 bytenr;
2638
2639 if (max_mirrors == 0)
2640 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2641
2642 for (i = 0; i < max_mirrors; i++) {
2643 bytenr = btrfs_sb_offset(i);
2644 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2645 break;
2646
2647 if (wait) {
2648 bh = __find_get_block(device->bdev, bytenr / 4096,
2649 BTRFS_SUPER_INFO_SIZE);
2650 BUG_ON(!bh);
2651 wait_on_buffer(bh);
2652 if (!buffer_uptodate(bh))
2653 errors++;
2654
2655 /* drop our reference */
2656 brelse(bh);
2657
2658 /* drop the reference from the wait == 0 run */
2659 brelse(bh);
2660 continue;
2661 } else {
2662 btrfs_set_super_bytenr(sb, bytenr);
2663
2664 crc = ~(u32)0;
2665 crc = btrfs_csum_data(NULL, (char *)sb +
2666 BTRFS_CSUM_SIZE, crc,
2667 BTRFS_SUPER_INFO_SIZE -
2668 BTRFS_CSUM_SIZE);
2669 btrfs_csum_final(crc, sb->csum);
2670
2671 /*
2672 * one reference for us, and we leave it for the
2673 * caller
2674 */
2675 bh = __getblk(device->bdev, bytenr / 4096,
2676 BTRFS_SUPER_INFO_SIZE);
2677 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2678
2679 /* one reference for submit_bh */
2680 get_bh(bh);
2681
2682 set_buffer_uptodate(bh);
2683 lock_buffer(bh);
2684 bh->b_end_io = btrfs_end_buffer_write_sync;
2685 }
2686
2687 /*
2688 * we fua the first super. The others we allow
2689 * to go down lazy.
2690 */
2691 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2692 if (ret)
2693 errors++;
2694 }
2695 return errors < i ? 0 : -1;
2696 }
2697
2698 /*
2699 * endio for the write_dev_flush, this will wake anyone waiting
2700 * for the barrier when it is done
2701 */
2702 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2703 {
2704 if (err) {
2705 if (err == -EOPNOTSUPP)
2706 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2707 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2708 }
2709 if (bio->bi_private)
2710 complete(bio->bi_private);
2711 bio_put(bio);
2712 }
2713
2714 /*
2715 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2716 * sent down. With wait == 1, it waits for the previous flush.
2717 *
2718 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2719 * capable
2720 */
2721 static int write_dev_flush(struct btrfs_device *device, int wait)
2722 {
2723 struct bio *bio;
2724 int ret = 0;
2725
2726 if (device->nobarriers)
2727 return 0;
2728
2729 if (wait) {
2730 bio = device->flush_bio;
2731 if (!bio)
2732 return 0;
2733
2734 wait_for_completion(&device->flush_wait);
2735
2736 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2737 printk("btrfs: disabling barriers on dev %s\n",
2738 device->name);
2739 device->nobarriers = 1;
2740 }
2741 if (!bio_flagged(bio, BIO_UPTODATE)) {
2742 ret = -EIO;
2743 }
2744
2745 /* drop the reference from the wait == 0 run */
2746 bio_put(bio);
2747 device->flush_bio = NULL;
2748
2749 return ret;
2750 }
2751
2752 /*
2753 * one reference for us, and we leave it for the
2754 * caller
2755 */
2756 device->flush_bio = NULL;
2757 bio = bio_alloc(GFP_NOFS, 0);
2758 if (!bio)
2759 return -ENOMEM;
2760
2761 bio->bi_end_io = btrfs_end_empty_barrier;
2762 bio->bi_bdev = device->bdev;
2763 init_completion(&device->flush_wait);
2764 bio->bi_private = &device->flush_wait;
2765 device->flush_bio = bio;
2766
2767 bio_get(bio);
2768 btrfsic_submit_bio(WRITE_FLUSH, bio);
2769
2770 return 0;
2771 }
2772
2773 /*
2774 * send an empty flush down to each device in parallel,
2775 * then wait for them
2776 */
2777 static int barrier_all_devices(struct btrfs_fs_info *info)
2778 {
2779 struct list_head *head;
2780 struct btrfs_device *dev;
2781 int errors = 0;
2782 int ret;
2783
2784 /* send down all the barriers */
2785 head = &info->fs_devices->devices;
2786 list_for_each_entry_rcu(dev, head, dev_list) {
2787 if (!dev->bdev) {
2788 errors++;
2789 continue;
2790 }
2791 if (!dev->in_fs_metadata || !dev->writeable)
2792 continue;
2793
2794 ret = write_dev_flush(dev, 0);
2795 if (ret)
2796 errors++;
2797 }
2798
2799 /* wait for all the barriers */
2800 list_for_each_entry_rcu(dev, head, dev_list) {
2801 if (!dev->bdev) {
2802 errors++;
2803 continue;
2804 }
2805 if (!dev->in_fs_metadata || !dev->writeable)
2806 continue;
2807
2808 ret = write_dev_flush(dev, 1);
2809 if (ret)
2810 errors++;
2811 }
2812 if (errors)
2813 return -EIO;
2814 return 0;
2815 }
2816
2817 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2818 {
2819 struct list_head *head;
2820 struct btrfs_device *dev;
2821 struct btrfs_super_block *sb;
2822 struct btrfs_dev_item *dev_item;
2823 int ret;
2824 int do_barriers;
2825 int max_errors;
2826 int total_errors = 0;
2827 u64 flags;
2828
2829 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2830 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2831 backup_super_roots(root->fs_info);
2832
2833 sb = root->fs_info->super_for_commit;
2834 dev_item = &sb->dev_item;
2835
2836 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2837 head = &root->fs_info->fs_devices->devices;
2838
2839 if (do_barriers)
2840 barrier_all_devices(root->fs_info);
2841
2842 list_for_each_entry_rcu(dev, head, dev_list) {
2843 if (!dev->bdev) {
2844 total_errors++;
2845 continue;
2846 }
2847 if (!dev->in_fs_metadata || !dev->writeable)
2848 continue;
2849
2850 btrfs_set_stack_device_generation(dev_item, 0);
2851 btrfs_set_stack_device_type(dev_item, dev->type);
2852 btrfs_set_stack_device_id(dev_item, dev->devid);
2853 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2854 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2855 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2856 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2857 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2858 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2859 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2860
2861 flags = btrfs_super_flags(sb);
2862 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2863
2864 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2865 if (ret)
2866 total_errors++;
2867 }
2868 if (total_errors > max_errors) {
2869 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2870 total_errors);
2871
2872 /* This shouldn't happen. FUA is masked off if unsupported */
2873 BUG();
2874 }
2875
2876 total_errors = 0;
2877 list_for_each_entry_rcu(dev, head, dev_list) {
2878 if (!dev->bdev)
2879 continue;
2880 if (!dev->in_fs_metadata || !dev->writeable)
2881 continue;
2882
2883 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2884 if (ret)
2885 total_errors++;
2886 }
2887 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2888 if (total_errors > max_errors) {
2889 btrfs_error(root->fs_info, -EIO,
2890 "%d errors while writing supers", total_errors);
2891 return -EIO;
2892 }
2893 return 0;
2894 }
2895
2896 int write_ctree_super(struct btrfs_trans_handle *trans,
2897 struct btrfs_root *root, int max_mirrors)
2898 {
2899 int ret;
2900
2901 ret = write_all_supers(root, max_mirrors);
2902 return ret;
2903 }
2904
2905 /* Kill all outstanding I/O */
2906 void btrfs_abort_devices(struct btrfs_root *root)
2907 {
2908 struct list_head *head;
2909 struct btrfs_device *dev;
2910 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2911 head = &root->fs_info->fs_devices->devices;
2912 list_for_each_entry_rcu(dev, head, dev_list) {
2913 blk_abort_queue(dev->bdev->bd_disk->queue);
2914 }
2915 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916 }
2917
2918 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2919 {
2920 spin_lock(&fs_info->fs_roots_radix_lock);
2921 radix_tree_delete(&fs_info->fs_roots_radix,
2922 (unsigned long)root->root_key.objectid);
2923 spin_unlock(&fs_info->fs_roots_radix_lock);
2924
2925 if (btrfs_root_refs(&root->root_item) == 0)
2926 synchronize_srcu(&fs_info->subvol_srcu);
2927
2928 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2929 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2930 free_fs_root(root);
2931 }
2932
2933 static void free_fs_root(struct btrfs_root *root)
2934 {
2935 iput(root->cache_inode);
2936 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2937 if (root->anon_dev)
2938 free_anon_bdev(root->anon_dev);
2939 free_extent_buffer(root->node);
2940 free_extent_buffer(root->commit_root);
2941 kfree(root->free_ino_ctl);
2942 kfree(root->free_ino_pinned);
2943 kfree(root->name);
2944 kfree(root);
2945 }
2946
2947 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2948 {
2949 int ret;
2950 struct btrfs_root *gang[8];
2951 int i;
2952
2953 while (!list_empty(&fs_info->dead_roots)) {
2954 gang[0] = list_entry(fs_info->dead_roots.next,
2955 struct btrfs_root, root_list);
2956 list_del(&gang[0]->root_list);
2957
2958 if (gang[0]->in_radix) {
2959 btrfs_free_fs_root(fs_info, gang[0]);
2960 } else {
2961 free_extent_buffer(gang[0]->node);
2962 free_extent_buffer(gang[0]->commit_root);
2963 kfree(gang[0]);
2964 }
2965 }
2966
2967 while (1) {
2968 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2969 (void **)gang, 0,
2970 ARRAY_SIZE(gang));
2971 if (!ret)
2972 break;
2973 for (i = 0; i < ret; i++)
2974 btrfs_free_fs_root(fs_info, gang[i]);
2975 }
2976 }
2977
2978 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2979 {
2980 u64 root_objectid = 0;
2981 struct btrfs_root *gang[8];
2982 int i;
2983 int ret;
2984
2985 while (1) {
2986 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2987 (void **)gang, root_objectid,
2988 ARRAY_SIZE(gang));
2989 if (!ret)
2990 break;
2991
2992 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2993 for (i = 0; i < ret; i++) {
2994 int err;
2995
2996 root_objectid = gang[i]->root_key.objectid;
2997 err = btrfs_orphan_cleanup(gang[i]);
2998 if (err)
2999 return err;
3000 }
3001 root_objectid++;
3002 }
3003 return 0;
3004 }
3005
3006 int btrfs_commit_super(struct btrfs_root *root)
3007 {
3008 struct btrfs_trans_handle *trans;
3009 int ret;
3010
3011 mutex_lock(&root->fs_info->cleaner_mutex);
3012 btrfs_run_delayed_iputs(root);
3013 btrfs_clean_old_snapshots(root);
3014 mutex_unlock(&root->fs_info->cleaner_mutex);
3015
3016 /* wait until ongoing cleanup work done */
3017 down_write(&root->fs_info->cleanup_work_sem);
3018 up_write(&root->fs_info->cleanup_work_sem);
3019
3020 trans = btrfs_join_transaction(root);
3021 if (IS_ERR(trans))
3022 return PTR_ERR(trans);
3023 ret = btrfs_commit_transaction(trans, root);
3024 if (ret)
3025 return ret;
3026 /* run commit again to drop the original snapshot */
3027 trans = btrfs_join_transaction(root);
3028 if (IS_ERR(trans))
3029 return PTR_ERR(trans);
3030 ret = btrfs_commit_transaction(trans, root);
3031 if (ret)
3032 return ret;
3033 ret = btrfs_write_and_wait_transaction(NULL, root);
3034 if (ret) {
3035 btrfs_error(root->fs_info, ret,
3036 "Failed to sync btree inode to disk.");
3037 return ret;
3038 }
3039
3040 ret = write_ctree_super(NULL, root, 0);
3041 return ret;
3042 }
3043
3044 int close_ctree(struct btrfs_root *root)
3045 {
3046 struct btrfs_fs_info *fs_info = root->fs_info;
3047 int ret;
3048
3049 fs_info->closing = 1;
3050 smp_mb();
3051
3052 /* pause restriper - we want to resume on mount */
3053 btrfs_pause_balance(root->fs_info);
3054
3055 btrfs_scrub_cancel(root);
3056
3057 /* wait for any defraggers to finish */
3058 wait_event(fs_info->transaction_wait,
3059 (atomic_read(&fs_info->defrag_running) == 0));
3060
3061 /* clear out the rbtree of defraggable inodes */
3062 btrfs_run_defrag_inodes(fs_info);
3063
3064 /*
3065 * Here come 2 situations when btrfs is broken to flip readonly:
3066 *
3067 * 1. when btrfs flips readonly somewhere else before
3068 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3069 * and btrfs will skip to write sb directly to keep
3070 * ERROR state on disk.
3071 *
3072 * 2. when btrfs flips readonly just in btrfs_commit_super,
3073 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3074 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3075 * btrfs will cleanup all FS resources first and write sb then.
3076 */
3077 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3078 ret = btrfs_commit_super(root);
3079 if (ret)
3080 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3081 }
3082
3083 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3084 ret = btrfs_error_commit_super(root);
3085 if (ret)
3086 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3087 }
3088
3089 btrfs_put_block_group_cache(fs_info);
3090
3091 kthread_stop(fs_info->transaction_kthread);
3092 kthread_stop(fs_info->cleaner_kthread);
3093
3094 fs_info->closing = 2;
3095 smp_mb();
3096
3097 if (fs_info->delalloc_bytes) {
3098 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3099 (unsigned long long)fs_info->delalloc_bytes);
3100 }
3101 if (fs_info->total_ref_cache_size) {
3102 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3103 (unsigned long long)fs_info->total_ref_cache_size);
3104 }
3105
3106 free_extent_buffer(fs_info->extent_root->node);
3107 free_extent_buffer(fs_info->extent_root->commit_root);
3108 free_extent_buffer(fs_info->tree_root->node);
3109 free_extent_buffer(fs_info->tree_root->commit_root);
3110 free_extent_buffer(fs_info->chunk_root->node);
3111 free_extent_buffer(fs_info->chunk_root->commit_root);
3112 free_extent_buffer(fs_info->dev_root->node);
3113 free_extent_buffer(fs_info->dev_root->commit_root);
3114 free_extent_buffer(fs_info->csum_root->node);
3115 free_extent_buffer(fs_info->csum_root->commit_root);
3116
3117 btrfs_free_block_groups(fs_info);
3118
3119 del_fs_roots(fs_info);
3120
3121 iput(fs_info->btree_inode);
3122
3123 btrfs_stop_workers(&fs_info->generic_worker);
3124 btrfs_stop_workers(&fs_info->fixup_workers);
3125 btrfs_stop_workers(&fs_info->delalloc_workers);
3126 btrfs_stop_workers(&fs_info->workers);
3127 btrfs_stop_workers(&fs_info->endio_workers);
3128 btrfs_stop_workers(&fs_info->endio_meta_workers);
3129 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3130 btrfs_stop_workers(&fs_info->endio_write_workers);
3131 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3132 btrfs_stop_workers(&fs_info->submit_workers);
3133 btrfs_stop_workers(&fs_info->delayed_workers);
3134 btrfs_stop_workers(&fs_info->caching_workers);
3135 btrfs_stop_workers(&fs_info->readahead_workers);
3136
3137 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3138 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3139 btrfsic_unmount(root, fs_info->fs_devices);
3140 #endif
3141
3142 btrfs_close_devices(fs_info->fs_devices);
3143 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3144
3145 bdi_destroy(&fs_info->bdi);
3146 cleanup_srcu_struct(&fs_info->subvol_srcu);
3147
3148 return 0;
3149 }
3150
3151 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3152 int atomic)
3153 {
3154 int ret;
3155 struct inode *btree_inode = buf->pages[0]->mapping->host;
3156
3157 ret = extent_buffer_uptodate(buf);
3158 if (!ret)
3159 return ret;
3160
3161 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3162 parent_transid, atomic);
3163 if (ret == -EAGAIN)
3164 return ret;
3165 return !ret;
3166 }
3167
3168 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3169 {
3170 return set_extent_buffer_uptodate(buf);
3171 }
3172
3173 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3174 {
3175 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3176 u64 transid = btrfs_header_generation(buf);
3177 int was_dirty;
3178
3179 btrfs_assert_tree_locked(buf);
3180 if (transid != root->fs_info->generation) {
3181 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3182 "found %llu running %llu\n",
3183 (unsigned long long)buf->start,
3184 (unsigned long long)transid,
3185 (unsigned long long)root->fs_info->generation);
3186 WARN_ON(1);
3187 }
3188 was_dirty = set_extent_buffer_dirty(buf);
3189 if (!was_dirty) {
3190 spin_lock(&root->fs_info->delalloc_lock);
3191 root->fs_info->dirty_metadata_bytes += buf->len;
3192 spin_unlock(&root->fs_info->delalloc_lock);
3193 }
3194 }
3195
3196 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3197 {
3198 /*
3199 * looks as though older kernels can get into trouble with
3200 * this code, they end up stuck in balance_dirty_pages forever
3201 */
3202 u64 num_dirty;
3203 unsigned long thresh = 32 * 1024 * 1024;
3204
3205 if (current->flags & PF_MEMALLOC)
3206 return;
3207
3208 btrfs_balance_delayed_items(root);
3209
3210 num_dirty = root->fs_info->dirty_metadata_bytes;
3211
3212 if (num_dirty > thresh) {
3213 balance_dirty_pages_ratelimited_nr(
3214 root->fs_info->btree_inode->i_mapping, 1);
3215 }
3216 return;
3217 }
3218
3219 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3220 {
3221 /*
3222 * looks as though older kernels can get into trouble with
3223 * this code, they end up stuck in balance_dirty_pages forever
3224 */
3225 u64 num_dirty;
3226 unsigned long thresh = 32 * 1024 * 1024;
3227
3228 if (current->flags & PF_MEMALLOC)
3229 return;
3230
3231 num_dirty = root->fs_info->dirty_metadata_bytes;
3232
3233 if (num_dirty > thresh) {
3234 balance_dirty_pages_ratelimited_nr(
3235 root->fs_info->btree_inode->i_mapping, 1);
3236 }
3237 return;
3238 }
3239
3240 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3241 {
3242 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3243 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3244 }
3245
3246 static int btree_lock_page_hook(struct page *page, void *data,
3247 void (*flush_fn)(void *))
3248 {
3249 struct inode *inode = page->mapping->host;
3250 struct btrfs_root *root = BTRFS_I(inode)->root;
3251 struct extent_buffer *eb;
3252
3253 /*
3254 * We culled this eb but the page is still hanging out on the mapping,
3255 * carry on.
3256 */
3257 if (!PagePrivate(page))
3258 goto out;
3259
3260 eb = (struct extent_buffer *)page->private;
3261 if (!eb) {
3262 WARN_ON(1);
3263 goto out;
3264 }
3265 if (page != eb->pages[0])
3266 goto out;
3267
3268 if (!btrfs_try_tree_write_lock(eb)) {
3269 flush_fn(data);
3270 btrfs_tree_lock(eb);
3271 }
3272 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3273
3274 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3275 spin_lock(&root->fs_info->delalloc_lock);
3276 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3277 root->fs_info->dirty_metadata_bytes -= eb->len;
3278 else
3279 WARN_ON(1);
3280 spin_unlock(&root->fs_info->delalloc_lock);
3281 }
3282
3283 btrfs_tree_unlock(eb);
3284 out:
3285 if (!trylock_page(page)) {
3286 flush_fn(data);
3287 lock_page(page);
3288 }
3289 return 0;
3290 }
3291
3292 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3293 int read_only)
3294 {
3295 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3296 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3297 return -EINVAL;
3298 }
3299
3300 if (read_only)
3301 return 0;
3302
3303 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3304 printk(KERN_WARNING "warning: mount fs with errors, "
3305 "running btrfsck is recommended\n");
3306 }
3307
3308 return 0;
3309 }
3310
3311 int btrfs_error_commit_super(struct btrfs_root *root)
3312 {
3313 int ret;
3314
3315 mutex_lock(&root->fs_info->cleaner_mutex);
3316 btrfs_run_delayed_iputs(root);
3317 mutex_unlock(&root->fs_info->cleaner_mutex);
3318
3319 down_write(&root->fs_info->cleanup_work_sem);
3320 up_write(&root->fs_info->cleanup_work_sem);
3321
3322 /* cleanup FS via transaction */
3323 btrfs_cleanup_transaction(root);
3324
3325 ret = write_ctree_super(NULL, root, 0);
3326
3327 return ret;
3328 }
3329
3330 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3331 {
3332 struct btrfs_inode *btrfs_inode;
3333 struct list_head splice;
3334
3335 INIT_LIST_HEAD(&splice);
3336
3337 mutex_lock(&root->fs_info->ordered_operations_mutex);
3338 spin_lock(&root->fs_info->ordered_extent_lock);
3339
3340 list_splice_init(&root->fs_info->ordered_operations, &splice);
3341 while (!list_empty(&splice)) {
3342 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3343 ordered_operations);
3344
3345 list_del_init(&btrfs_inode->ordered_operations);
3346
3347 btrfs_invalidate_inodes(btrfs_inode->root);
3348 }
3349
3350 spin_unlock(&root->fs_info->ordered_extent_lock);
3351 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3352 }
3353
3354 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3355 {
3356 struct list_head splice;
3357 struct btrfs_ordered_extent *ordered;
3358 struct inode *inode;
3359
3360 INIT_LIST_HEAD(&splice);
3361
3362 spin_lock(&root->fs_info->ordered_extent_lock);
3363
3364 list_splice_init(&root->fs_info->ordered_extents, &splice);
3365 while (!list_empty(&splice)) {
3366 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3367 root_extent_list);
3368
3369 list_del_init(&ordered->root_extent_list);
3370 atomic_inc(&ordered->refs);
3371
3372 /* the inode may be getting freed (in sys_unlink path). */
3373 inode = igrab(ordered->inode);
3374
3375 spin_unlock(&root->fs_info->ordered_extent_lock);
3376 if (inode)
3377 iput(inode);
3378
3379 atomic_set(&ordered->refs, 1);
3380 btrfs_put_ordered_extent(ordered);
3381
3382 spin_lock(&root->fs_info->ordered_extent_lock);
3383 }
3384
3385 spin_unlock(&root->fs_info->ordered_extent_lock);
3386 }
3387
3388 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3389 struct btrfs_root *root)
3390 {
3391 struct rb_node *node;
3392 struct btrfs_delayed_ref_root *delayed_refs;
3393 struct btrfs_delayed_ref_node *ref;
3394 int ret = 0;
3395
3396 delayed_refs = &trans->delayed_refs;
3397
3398 again:
3399 spin_lock(&delayed_refs->lock);
3400 if (delayed_refs->num_entries == 0) {
3401 spin_unlock(&delayed_refs->lock);
3402 printk(KERN_INFO "delayed_refs has NO entry\n");
3403 return ret;
3404 }
3405
3406 node = rb_first(&delayed_refs->root);
3407 while (node) {
3408 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3409 node = rb_next(node);
3410
3411 ref->in_tree = 0;
3412 rb_erase(&ref->rb_node, &delayed_refs->root);
3413 delayed_refs->num_entries--;
3414
3415 atomic_set(&ref->refs, 1);
3416 if (btrfs_delayed_ref_is_head(ref)) {
3417 struct btrfs_delayed_ref_head *head;
3418
3419 head = btrfs_delayed_node_to_head(ref);
3420 spin_unlock(&delayed_refs->lock);
3421 mutex_lock(&head->mutex);
3422 kfree(head->extent_op);
3423 delayed_refs->num_heads--;
3424 if (list_empty(&head->cluster))
3425 delayed_refs->num_heads_ready--;
3426 list_del_init(&head->cluster);
3427 mutex_unlock(&head->mutex);
3428 btrfs_put_delayed_ref(ref);
3429 goto again;
3430 }
3431 spin_unlock(&delayed_refs->lock);
3432 btrfs_put_delayed_ref(ref);
3433
3434 cond_resched();
3435 spin_lock(&delayed_refs->lock);
3436 }
3437
3438 spin_unlock(&delayed_refs->lock);
3439
3440 return ret;
3441 }
3442
3443 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3444 {
3445 struct btrfs_pending_snapshot *snapshot;
3446 struct list_head splice;
3447
3448 INIT_LIST_HEAD(&splice);
3449
3450 list_splice_init(&t->pending_snapshots, &splice);
3451
3452 while (!list_empty(&splice)) {
3453 snapshot = list_entry(splice.next,
3454 struct btrfs_pending_snapshot,
3455 list);
3456
3457 list_del_init(&snapshot->list);
3458
3459 kfree(snapshot);
3460 }
3461 }
3462
3463 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3464 {
3465 struct btrfs_inode *btrfs_inode;
3466 struct list_head splice;
3467
3468 INIT_LIST_HEAD(&splice);
3469
3470 spin_lock(&root->fs_info->delalloc_lock);
3471 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3472
3473 while (!list_empty(&splice)) {
3474 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3475 delalloc_inodes);
3476
3477 list_del_init(&btrfs_inode->delalloc_inodes);
3478
3479 btrfs_invalidate_inodes(btrfs_inode->root);
3480 }
3481
3482 spin_unlock(&root->fs_info->delalloc_lock);
3483 }
3484
3485 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3486 struct extent_io_tree *dirty_pages,
3487 int mark)
3488 {
3489 int ret;
3490 struct page *page;
3491 struct inode *btree_inode = root->fs_info->btree_inode;
3492 struct extent_buffer *eb;
3493 u64 start = 0;
3494 u64 end;
3495 u64 offset;
3496 unsigned long index;
3497
3498 while (1) {
3499 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3500 mark);
3501 if (ret)
3502 break;
3503
3504 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3505 while (start <= end) {
3506 index = start >> PAGE_CACHE_SHIFT;
3507 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3508 page = find_get_page(btree_inode->i_mapping, index);
3509 if (!page)
3510 continue;
3511 offset = page_offset(page);
3512
3513 spin_lock(&dirty_pages->buffer_lock);
3514 eb = radix_tree_lookup(
3515 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3516 offset >> PAGE_CACHE_SHIFT);
3517 spin_unlock(&dirty_pages->buffer_lock);
3518 if (eb) {
3519 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3520 &eb->bflags);
3521 atomic_set(&eb->refs, 1);
3522 }
3523 if (PageWriteback(page))
3524 end_page_writeback(page);
3525
3526 lock_page(page);
3527 if (PageDirty(page)) {
3528 clear_page_dirty_for_io(page);
3529 spin_lock_irq(&page->mapping->tree_lock);
3530 radix_tree_tag_clear(&page->mapping->page_tree,
3531 page_index(page),
3532 PAGECACHE_TAG_DIRTY);
3533 spin_unlock_irq(&page->mapping->tree_lock);
3534 }
3535
3536 page->mapping->a_ops->invalidatepage(page, 0);
3537 unlock_page(page);
3538 }
3539 }
3540
3541 return ret;
3542 }
3543
3544 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3545 struct extent_io_tree *pinned_extents)
3546 {
3547 struct extent_io_tree *unpin;
3548 u64 start;
3549 u64 end;
3550 int ret;
3551
3552 unpin = pinned_extents;
3553 while (1) {
3554 ret = find_first_extent_bit(unpin, 0, &start, &end,
3555 EXTENT_DIRTY);
3556 if (ret)
3557 break;
3558
3559 /* opt_discard */
3560 if (btrfs_test_opt(root, DISCARD))
3561 ret = btrfs_error_discard_extent(root, start,
3562 end + 1 - start,
3563 NULL);
3564
3565 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3566 btrfs_error_unpin_extent_range(root, start, end);
3567 cond_resched();
3568 }
3569
3570 return 0;
3571 }
3572
3573 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3574 struct btrfs_root *root)
3575 {
3576 btrfs_destroy_delayed_refs(cur_trans, root);
3577 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3578 cur_trans->dirty_pages.dirty_bytes);
3579
3580 /* FIXME: cleanup wait for commit */
3581 cur_trans->in_commit = 1;
3582 cur_trans->blocked = 1;
3583 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3584 wake_up(&root->fs_info->transaction_blocked_wait);
3585
3586 cur_trans->blocked = 0;
3587 if (waitqueue_active(&root->fs_info->transaction_wait))
3588 wake_up(&root->fs_info->transaction_wait);
3589
3590 cur_trans->commit_done = 1;
3591 if (waitqueue_active(&cur_trans->commit_wait))
3592 wake_up(&cur_trans->commit_wait);
3593
3594 btrfs_destroy_pending_snapshots(cur_trans);
3595
3596 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3597 EXTENT_DIRTY);
3598
3599 /*
3600 memset(cur_trans, 0, sizeof(*cur_trans));
3601 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3602 */
3603 }
3604
3605 int btrfs_cleanup_transaction(struct btrfs_root *root)
3606 {
3607 struct btrfs_transaction *t;
3608 LIST_HEAD(list);
3609
3610 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3611
3612 spin_lock(&root->fs_info->trans_lock);
3613 list_splice_init(&root->fs_info->trans_list, &list);
3614 root->fs_info->trans_no_join = 1;
3615 spin_unlock(&root->fs_info->trans_lock);
3616
3617 while (!list_empty(&list)) {
3618 t = list_entry(list.next, struct btrfs_transaction, list);
3619 if (!t)
3620 break;
3621
3622 btrfs_destroy_ordered_operations(root);
3623
3624 btrfs_destroy_ordered_extents(root);
3625
3626 btrfs_destroy_delayed_refs(t, root);
3627
3628 btrfs_block_rsv_release(root,
3629 &root->fs_info->trans_block_rsv,
3630 t->dirty_pages.dirty_bytes);
3631
3632 /* FIXME: cleanup wait for commit */
3633 t->in_commit = 1;
3634 t->blocked = 1;
3635 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3636 wake_up(&root->fs_info->transaction_blocked_wait);
3637
3638 t->blocked = 0;
3639 if (waitqueue_active(&root->fs_info->transaction_wait))
3640 wake_up(&root->fs_info->transaction_wait);
3641
3642 t->commit_done = 1;
3643 if (waitqueue_active(&t->commit_wait))
3644 wake_up(&t->commit_wait);
3645
3646 btrfs_destroy_pending_snapshots(t);
3647
3648 btrfs_destroy_delalloc_inodes(root);
3649
3650 spin_lock(&root->fs_info->trans_lock);
3651 root->fs_info->running_transaction = NULL;
3652 spin_unlock(&root->fs_info->trans_lock);
3653
3654 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3655 EXTENT_DIRTY);
3656
3657 btrfs_destroy_pinned_extent(root,
3658 root->fs_info->pinned_extents);
3659
3660 atomic_set(&t->use_count, 0);
3661 list_del_init(&t->list);
3662 memset(t, 0, sizeof(*t));
3663 kmem_cache_free(btrfs_transaction_cachep, t);
3664 }
3665
3666 spin_lock(&root->fs_info->trans_lock);
3667 root->fs_info->trans_no_join = 0;
3668 spin_unlock(&root->fs_info->trans_lock);
3669 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3670
3671 return 0;
3672 }
3673
3674 static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
3675 u64 start, u64 end,
3676 struct extent_state *state)
3677 {
3678 struct super_block *sb = page->mapping->host->i_sb;
3679 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3680 btrfs_error(fs_info, -EIO,
3681 "Error occured while writing out btree at %llu", start);
3682 return -EIO;
3683 }
3684
3685 static struct extent_io_ops btree_extent_io_ops = {
3686 .write_cache_pages_lock_hook = btree_lock_page_hook,
3687 .readpage_end_io_hook = btree_readpage_end_io_hook,
3688 .readpage_io_failed_hook = btree_io_failed_hook,
3689 .submit_bio_hook = btree_submit_bio_hook,
3690 /* note we're sharing with inode.c for the merge bio hook */
3691 .merge_bio_hook = btrfs_merge_bio_hook,
3692 .writepage_io_failed_hook = btree_writepage_io_failed_hook,
3693 };