]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/disk-io.c
Merge branch 'sh/st-integration' into sh/urgent
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include "compat.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "locking.h"
41 #include "tree-log.h"
42 #include "free-space-cache.h"
43
44 static struct extent_io_ops btree_extent_io_ops;
45 static void end_workqueue_fn(struct btrfs_work *work);
46 static void free_fs_root(struct btrfs_root *root);
47 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
48 int read_only);
49 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
50 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
51 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
52 struct btrfs_root *root);
53 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
54 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
55 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
56 struct extent_io_tree *dirty_pages,
57 int mark);
58 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
59 struct extent_io_tree *pinned_extents);
60 static int btrfs_cleanup_transaction(struct btrfs_root *root);
61
62 /*
63 * end_io_wq structs are used to do processing in task context when an IO is
64 * complete. This is used during reads to verify checksums, and it is used
65 * by writes to insert metadata for new file extents after IO is complete.
66 */
67 struct end_io_wq {
68 struct bio *bio;
69 bio_end_io_t *end_io;
70 void *private;
71 struct btrfs_fs_info *info;
72 int error;
73 int metadata;
74 struct list_head list;
75 struct btrfs_work work;
76 };
77
78 /*
79 * async submit bios are used to offload expensive checksumming
80 * onto the worker threads. They checksum file and metadata bios
81 * just before they are sent down the IO stack.
82 */
83 struct async_submit_bio {
84 struct inode *inode;
85 struct bio *bio;
86 struct list_head list;
87 extent_submit_bio_hook_t *submit_bio_start;
88 extent_submit_bio_hook_t *submit_bio_done;
89 int rw;
90 int mirror_num;
91 unsigned long bio_flags;
92 /*
93 * bio_offset is optional, can be used if the pages in the bio
94 * can't tell us where in the file the bio should go
95 */
96 u64 bio_offset;
97 struct btrfs_work work;
98 };
99
100 /* These are used to set the lockdep class on the extent buffer locks.
101 * The class is set by the readpage_end_io_hook after the buffer has
102 * passed csum validation but before the pages are unlocked.
103 *
104 * The lockdep class is also set by btrfs_init_new_buffer on freshly
105 * allocated blocks.
106 *
107 * The class is based on the level in the tree block, which allows lockdep
108 * to know that lower nodes nest inside the locks of higher nodes.
109 *
110 * We also add a check to make sure the highest level of the tree is
111 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
112 * code needs update as well.
113 */
114 #ifdef CONFIG_DEBUG_LOCK_ALLOC
115 # if BTRFS_MAX_LEVEL != 8
116 # error
117 # endif
118 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
119 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
120 /* leaf */
121 "btrfs-extent-00",
122 "btrfs-extent-01",
123 "btrfs-extent-02",
124 "btrfs-extent-03",
125 "btrfs-extent-04",
126 "btrfs-extent-05",
127 "btrfs-extent-06",
128 "btrfs-extent-07",
129 /* highest possible level */
130 "btrfs-extent-08",
131 };
132 #endif
133
134 /*
135 * extents on the btree inode are pretty simple, there's one extent
136 * that covers the entire device
137 */
138 static struct extent_map *btree_get_extent(struct inode *inode,
139 struct page *page, size_t page_offset, u64 start, u64 len,
140 int create)
141 {
142 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
143 struct extent_map *em;
144 int ret;
145
146 read_lock(&em_tree->lock);
147 em = lookup_extent_mapping(em_tree, start, len);
148 if (em) {
149 em->bdev =
150 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
151 read_unlock(&em_tree->lock);
152 goto out;
153 }
154 read_unlock(&em_tree->lock);
155
156 em = alloc_extent_map(GFP_NOFS);
157 if (!em) {
158 em = ERR_PTR(-ENOMEM);
159 goto out;
160 }
161 em->start = 0;
162 em->len = (u64)-1;
163 em->block_len = (u64)-1;
164 em->block_start = 0;
165 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
166
167 write_lock(&em_tree->lock);
168 ret = add_extent_mapping(em_tree, em);
169 if (ret == -EEXIST) {
170 u64 failed_start = em->start;
171 u64 failed_len = em->len;
172
173 free_extent_map(em);
174 em = lookup_extent_mapping(em_tree, start, len);
175 if (em) {
176 ret = 0;
177 } else {
178 em = lookup_extent_mapping(em_tree, failed_start,
179 failed_len);
180 ret = -EIO;
181 }
182 } else if (ret) {
183 free_extent_map(em);
184 em = NULL;
185 }
186 write_unlock(&em_tree->lock);
187
188 if (ret)
189 em = ERR_PTR(ret);
190 out:
191 return em;
192 }
193
194 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
195 {
196 return crc32c(seed, data, len);
197 }
198
199 void btrfs_csum_final(u32 crc, char *result)
200 {
201 *(__le32 *)result = ~cpu_to_le32(crc);
202 }
203
204 /*
205 * compute the csum for a btree block, and either verify it or write it
206 * into the csum field of the block.
207 */
208 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
209 int verify)
210 {
211 u16 csum_size =
212 btrfs_super_csum_size(&root->fs_info->super_copy);
213 char *result = NULL;
214 unsigned long len;
215 unsigned long cur_len;
216 unsigned long offset = BTRFS_CSUM_SIZE;
217 char *map_token = NULL;
218 char *kaddr;
219 unsigned long map_start;
220 unsigned long map_len;
221 int err;
222 u32 crc = ~(u32)0;
223 unsigned long inline_result;
224
225 len = buf->len - offset;
226 while (len > 0) {
227 err = map_private_extent_buffer(buf, offset, 32,
228 &map_token, &kaddr,
229 &map_start, &map_len, KM_USER0);
230 if (err)
231 return 1;
232 cur_len = min(len, map_len - (offset - map_start));
233 crc = btrfs_csum_data(root, kaddr + offset - map_start,
234 crc, cur_len);
235 len -= cur_len;
236 offset += cur_len;
237 unmap_extent_buffer(buf, map_token, KM_USER0);
238 }
239 if (csum_size > sizeof(inline_result)) {
240 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
241 if (!result)
242 return 1;
243 } else {
244 result = (char *)&inline_result;
245 }
246
247 btrfs_csum_final(crc, result);
248
249 if (verify) {
250 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
251 u32 val;
252 u32 found = 0;
253 memcpy(&found, result, csum_size);
254
255 read_extent_buffer(buf, &val, 0, csum_size);
256 if (printk_ratelimit()) {
257 printk(KERN_INFO "btrfs: %s checksum verify "
258 "failed on %llu wanted %X found %X "
259 "level %d\n",
260 root->fs_info->sb->s_id,
261 (unsigned long long)buf->start, val, found,
262 btrfs_header_level(buf));
263 }
264 if (result != (char *)&inline_result)
265 kfree(result);
266 return 1;
267 }
268 } else {
269 write_extent_buffer(buf, result, 0, csum_size);
270 }
271 if (result != (char *)&inline_result)
272 kfree(result);
273 return 0;
274 }
275
276 /*
277 * we can't consider a given block up to date unless the transid of the
278 * block matches the transid in the parent node's pointer. This is how we
279 * detect blocks that either didn't get written at all or got written
280 * in the wrong place.
281 */
282 static int verify_parent_transid(struct extent_io_tree *io_tree,
283 struct extent_buffer *eb, u64 parent_transid)
284 {
285 struct extent_state *cached_state = NULL;
286 int ret;
287
288 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
289 return 0;
290
291 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
292 0, &cached_state, GFP_NOFS);
293 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
294 btrfs_header_generation(eb) == parent_transid) {
295 ret = 0;
296 goto out;
297 }
298 if (printk_ratelimit()) {
299 printk("parent transid verify failed on %llu wanted %llu "
300 "found %llu\n",
301 (unsigned long long)eb->start,
302 (unsigned long long)parent_transid,
303 (unsigned long long)btrfs_header_generation(eb));
304 }
305 ret = 1;
306 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
307 out:
308 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
309 &cached_state, GFP_NOFS);
310 return ret;
311 }
312
313 /*
314 * helper to read a given tree block, doing retries as required when
315 * the checksums don't match and we have alternate mirrors to try.
316 */
317 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
318 struct extent_buffer *eb,
319 u64 start, u64 parent_transid)
320 {
321 struct extent_io_tree *io_tree;
322 int ret;
323 int num_copies = 0;
324 int mirror_num = 0;
325
326 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
327 while (1) {
328 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
329 btree_get_extent, mirror_num);
330 if (!ret &&
331 !verify_parent_transid(io_tree, eb, parent_transid))
332 return ret;
333
334 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
335 eb->start, eb->len);
336 if (num_copies == 1)
337 return ret;
338
339 mirror_num++;
340 if (mirror_num > num_copies)
341 return ret;
342 }
343 return -EIO;
344 }
345
346 /*
347 * checksum a dirty tree block before IO. This has extra checks to make sure
348 * we only fill in the checksum field in the first page of a multi-page block
349 */
350
351 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
352 {
353 struct extent_io_tree *tree;
354 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
355 u64 found_start;
356 unsigned long len;
357 struct extent_buffer *eb;
358 int ret;
359
360 tree = &BTRFS_I(page->mapping->host)->io_tree;
361
362 if (page->private == EXTENT_PAGE_PRIVATE)
363 goto out;
364 if (!page->private)
365 goto out;
366 len = page->private >> 2;
367 WARN_ON(len == 0);
368
369 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
370 if (eb == NULL) {
371 WARN_ON(1);
372 goto out;
373 }
374 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
375 btrfs_header_generation(eb));
376 BUG_ON(ret);
377 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
378
379 found_start = btrfs_header_bytenr(eb);
380 if (found_start != start) {
381 WARN_ON(1);
382 goto err;
383 }
384 if (eb->first_page != page) {
385 WARN_ON(1);
386 goto err;
387 }
388 if (!PageUptodate(page)) {
389 WARN_ON(1);
390 goto err;
391 }
392 csum_tree_block(root, eb, 0);
393 err:
394 free_extent_buffer(eb);
395 out:
396 return 0;
397 }
398
399 static int check_tree_block_fsid(struct btrfs_root *root,
400 struct extent_buffer *eb)
401 {
402 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
403 u8 fsid[BTRFS_UUID_SIZE];
404 int ret = 1;
405
406 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
407 BTRFS_FSID_SIZE);
408 while (fs_devices) {
409 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
410 ret = 0;
411 break;
412 }
413 fs_devices = fs_devices->seed;
414 }
415 return ret;
416 }
417
418 #ifdef CONFIG_DEBUG_LOCK_ALLOC
419 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
420 {
421 lockdep_set_class_and_name(&eb->lock,
422 &btrfs_eb_class[level],
423 btrfs_eb_name[level]);
424 }
425 #endif
426
427 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
428 struct extent_state *state)
429 {
430 struct extent_io_tree *tree;
431 u64 found_start;
432 int found_level;
433 unsigned long len;
434 struct extent_buffer *eb;
435 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
436 int ret = 0;
437
438 tree = &BTRFS_I(page->mapping->host)->io_tree;
439 if (page->private == EXTENT_PAGE_PRIVATE)
440 goto out;
441 if (!page->private)
442 goto out;
443
444 len = page->private >> 2;
445 WARN_ON(len == 0);
446
447 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
448 if (eb == NULL) {
449 ret = -EIO;
450 goto out;
451 }
452
453 found_start = btrfs_header_bytenr(eb);
454 if (found_start != start) {
455 if (printk_ratelimit()) {
456 printk(KERN_INFO "btrfs bad tree block start "
457 "%llu %llu\n",
458 (unsigned long long)found_start,
459 (unsigned long long)eb->start);
460 }
461 ret = -EIO;
462 goto err;
463 }
464 if (eb->first_page != page) {
465 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
466 eb->first_page->index, page->index);
467 WARN_ON(1);
468 ret = -EIO;
469 goto err;
470 }
471 if (check_tree_block_fsid(root, eb)) {
472 if (printk_ratelimit()) {
473 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
474 (unsigned long long)eb->start);
475 }
476 ret = -EIO;
477 goto err;
478 }
479 found_level = btrfs_header_level(eb);
480
481 btrfs_set_buffer_lockdep_class(eb, found_level);
482
483 ret = csum_tree_block(root, eb, 1);
484 if (ret)
485 ret = -EIO;
486
487 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
488 end = eb->start + end - 1;
489 err:
490 free_extent_buffer(eb);
491 out:
492 return ret;
493 }
494
495 static void end_workqueue_bio(struct bio *bio, int err)
496 {
497 struct end_io_wq *end_io_wq = bio->bi_private;
498 struct btrfs_fs_info *fs_info;
499
500 fs_info = end_io_wq->info;
501 end_io_wq->error = err;
502 end_io_wq->work.func = end_workqueue_fn;
503 end_io_wq->work.flags = 0;
504
505 if (bio->bi_rw & REQ_WRITE) {
506 if (end_io_wq->metadata == 1)
507 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
508 &end_io_wq->work);
509 else if (end_io_wq->metadata == 2)
510 btrfs_queue_worker(&fs_info->endio_freespace_worker,
511 &end_io_wq->work);
512 else
513 btrfs_queue_worker(&fs_info->endio_write_workers,
514 &end_io_wq->work);
515 } else {
516 if (end_io_wq->metadata)
517 btrfs_queue_worker(&fs_info->endio_meta_workers,
518 &end_io_wq->work);
519 else
520 btrfs_queue_worker(&fs_info->endio_workers,
521 &end_io_wq->work);
522 }
523 }
524
525 /*
526 * For the metadata arg you want
527 *
528 * 0 - if data
529 * 1 - if normal metadta
530 * 2 - if writing to the free space cache area
531 */
532 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
533 int metadata)
534 {
535 struct end_io_wq *end_io_wq;
536 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
537 if (!end_io_wq)
538 return -ENOMEM;
539
540 end_io_wq->private = bio->bi_private;
541 end_io_wq->end_io = bio->bi_end_io;
542 end_io_wq->info = info;
543 end_io_wq->error = 0;
544 end_io_wq->bio = bio;
545 end_io_wq->metadata = metadata;
546
547 bio->bi_private = end_io_wq;
548 bio->bi_end_io = end_workqueue_bio;
549 return 0;
550 }
551
552 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
553 {
554 unsigned long limit = min_t(unsigned long,
555 info->workers.max_workers,
556 info->fs_devices->open_devices);
557 return 256 * limit;
558 }
559
560 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
561 {
562 return atomic_read(&info->nr_async_bios) >
563 btrfs_async_submit_limit(info);
564 }
565
566 static void run_one_async_start(struct btrfs_work *work)
567 {
568 struct async_submit_bio *async;
569
570 async = container_of(work, struct async_submit_bio, work);
571 async->submit_bio_start(async->inode, async->rw, async->bio,
572 async->mirror_num, async->bio_flags,
573 async->bio_offset);
574 }
575
576 static void run_one_async_done(struct btrfs_work *work)
577 {
578 struct btrfs_fs_info *fs_info;
579 struct async_submit_bio *async;
580 int limit;
581
582 async = container_of(work, struct async_submit_bio, work);
583 fs_info = BTRFS_I(async->inode)->root->fs_info;
584
585 limit = btrfs_async_submit_limit(fs_info);
586 limit = limit * 2 / 3;
587
588 atomic_dec(&fs_info->nr_async_submits);
589
590 if (atomic_read(&fs_info->nr_async_submits) < limit &&
591 waitqueue_active(&fs_info->async_submit_wait))
592 wake_up(&fs_info->async_submit_wait);
593
594 async->submit_bio_done(async->inode, async->rw, async->bio,
595 async->mirror_num, async->bio_flags,
596 async->bio_offset);
597 }
598
599 static void run_one_async_free(struct btrfs_work *work)
600 {
601 struct async_submit_bio *async;
602
603 async = container_of(work, struct async_submit_bio, work);
604 kfree(async);
605 }
606
607 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
608 int rw, struct bio *bio, int mirror_num,
609 unsigned long bio_flags,
610 u64 bio_offset,
611 extent_submit_bio_hook_t *submit_bio_start,
612 extent_submit_bio_hook_t *submit_bio_done)
613 {
614 struct async_submit_bio *async;
615
616 async = kmalloc(sizeof(*async), GFP_NOFS);
617 if (!async)
618 return -ENOMEM;
619
620 async->inode = inode;
621 async->rw = rw;
622 async->bio = bio;
623 async->mirror_num = mirror_num;
624 async->submit_bio_start = submit_bio_start;
625 async->submit_bio_done = submit_bio_done;
626
627 async->work.func = run_one_async_start;
628 async->work.ordered_func = run_one_async_done;
629 async->work.ordered_free = run_one_async_free;
630
631 async->work.flags = 0;
632 async->bio_flags = bio_flags;
633 async->bio_offset = bio_offset;
634
635 atomic_inc(&fs_info->nr_async_submits);
636
637 if (rw & REQ_SYNC)
638 btrfs_set_work_high_prio(&async->work);
639
640 btrfs_queue_worker(&fs_info->workers, &async->work);
641
642 while (atomic_read(&fs_info->async_submit_draining) &&
643 atomic_read(&fs_info->nr_async_submits)) {
644 wait_event(fs_info->async_submit_wait,
645 (atomic_read(&fs_info->nr_async_submits) == 0));
646 }
647
648 return 0;
649 }
650
651 static int btree_csum_one_bio(struct bio *bio)
652 {
653 struct bio_vec *bvec = bio->bi_io_vec;
654 int bio_index = 0;
655 struct btrfs_root *root;
656
657 WARN_ON(bio->bi_vcnt <= 0);
658 while (bio_index < bio->bi_vcnt) {
659 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
660 csum_dirty_buffer(root, bvec->bv_page);
661 bio_index++;
662 bvec++;
663 }
664 return 0;
665 }
666
667 static int __btree_submit_bio_start(struct inode *inode, int rw,
668 struct bio *bio, int mirror_num,
669 unsigned long bio_flags,
670 u64 bio_offset)
671 {
672 /*
673 * when we're called for a write, we're already in the async
674 * submission context. Just jump into btrfs_map_bio
675 */
676 btree_csum_one_bio(bio);
677 return 0;
678 }
679
680 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
681 int mirror_num, unsigned long bio_flags,
682 u64 bio_offset)
683 {
684 /*
685 * when we're called for a write, we're already in the async
686 * submission context. Just jump into btrfs_map_bio
687 */
688 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
689 }
690
691 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
692 int mirror_num, unsigned long bio_flags,
693 u64 bio_offset)
694 {
695 int ret;
696
697 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
698 bio, 1);
699 BUG_ON(ret);
700
701 if (!(rw & REQ_WRITE)) {
702 /*
703 * called for a read, do the setup so that checksum validation
704 * can happen in the async kernel threads
705 */
706 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
707 mirror_num, 0);
708 }
709
710 /*
711 * kthread helpers are used to submit writes so that checksumming
712 * can happen in parallel across all CPUs
713 */
714 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
715 inode, rw, bio, mirror_num, 0,
716 bio_offset,
717 __btree_submit_bio_start,
718 __btree_submit_bio_done);
719 }
720
721 #ifdef CONFIG_MIGRATION
722 static int btree_migratepage(struct address_space *mapping,
723 struct page *newpage, struct page *page)
724 {
725 /*
726 * we can't safely write a btree page from here,
727 * we haven't done the locking hook
728 */
729 if (PageDirty(page))
730 return -EAGAIN;
731 /*
732 * Buffers may be managed in a filesystem specific way.
733 * We must have no buffers or drop them.
734 */
735 if (page_has_private(page) &&
736 !try_to_release_page(page, GFP_KERNEL))
737 return -EAGAIN;
738 return migrate_page(mapping, newpage, page);
739 }
740 #endif
741
742 static int btree_writepage(struct page *page, struct writeback_control *wbc)
743 {
744 struct extent_io_tree *tree;
745 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
746 struct extent_buffer *eb;
747 int was_dirty;
748
749 tree = &BTRFS_I(page->mapping->host)->io_tree;
750 if (!(current->flags & PF_MEMALLOC)) {
751 return extent_write_full_page(tree, page,
752 btree_get_extent, wbc);
753 }
754
755 redirty_page_for_writepage(wbc, page);
756 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
757 WARN_ON(!eb);
758
759 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
760 if (!was_dirty) {
761 spin_lock(&root->fs_info->delalloc_lock);
762 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
763 spin_unlock(&root->fs_info->delalloc_lock);
764 }
765 free_extent_buffer(eb);
766
767 unlock_page(page);
768 return 0;
769 }
770
771 static int btree_writepages(struct address_space *mapping,
772 struct writeback_control *wbc)
773 {
774 struct extent_io_tree *tree;
775 tree = &BTRFS_I(mapping->host)->io_tree;
776 if (wbc->sync_mode == WB_SYNC_NONE) {
777 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
778 u64 num_dirty;
779 unsigned long thresh = 32 * 1024 * 1024;
780
781 if (wbc->for_kupdate)
782 return 0;
783
784 /* this is a bit racy, but that's ok */
785 num_dirty = root->fs_info->dirty_metadata_bytes;
786 if (num_dirty < thresh)
787 return 0;
788 }
789 return extent_writepages(tree, mapping, btree_get_extent, wbc);
790 }
791
792 static int btree_readpage(struct file *file, struct page *page)
793 {
794 struct extent_io_tree *tree;
795 tree = &BTRFS_I(page->mapping->host)->io_tree;
796 return extent_read_full_page(tree, page, btree_get_extent);
797 }
798
799 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
800 {
801 struct extent_io_tree *tree;
802 struct extent_map_tree *map;
803 int ret;
804
805 if (PageWriteback(page) || PageDirty(page))
806 return 0;
807
808 tree = &BTRFS_I(page->mapping->host)->io_tree;
809 map = &BTRFS_I(page->mapping->host)->extent_tree;
810
811 ret = try_release_extent_state(map, tree, page, gfp_flags);
812 if (!ret)
813 return 0;
814
815 ret = try_release_extent_buffer(tree, page);
816 if (ret == 1) {
817 ClearPagePrivate(page);
818 set_page_private(page, 0);
819 page_cache_release(page);
820 }
821
822 return ret;
823 }
824
825 static void btree_invalidatepage(struct page *page, unsigned long offset)
826 {
827 struct extent_io_tree *tree;
828 tree = &BTRFS_I(page->mapping->host)->io_tree;
829 extent_invalidatepage(tree, page, offset);
830 btree_releasepage(page, GFP_NOFS);
831 if (PagePrivate(page)) {
832 printk(KERN_WARNING "btrfs warning page private not zero "
833 "on page %llu\n", (unsigned long long)page_offset(page));
834 ClearPagePrivate(page);
835 set_page_private(page, 0);
836 page_cache_release(page);
837 }
838 }
839
840 static const struct address_space_operations btree_aops = {
841 .readpage = btree_readpage,
842 .writepage = btree_writepage,
843 .writepages = btree_writepages,
844 .releasepage = btree_releasepage,
845 .invalidatepage = btree_invalidatepage,
846 .sync_page = block_sync_page,
847 #ifdef CONFIG_MIGRATION
848 .migratepage = btree_migratepage,
849 #endif
850 };
851
852 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
853 u64 parent_transid)
854 {
855 struct extent_buffer *buf = NULL;
856 struct inode *btree_inode = root->fs_info->btree_inode;
857 int ret = 0;
858
859 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
860 if (!buf)
861 return 0;
862 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
863 buf, 0, 0, btree_get_extent, 0);
864 free_extent_buffer(buf);
865 return ret;
866 }
867
868 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
869 u64 bytenr, u32 blocksize)
870 {
871 struct inode *btree_inode = root->fs_info->btree_inode;
872 struct extent_buffer *eb;
873 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
874 bytenr, blocksize, GFP_NOFS);
875 return eb;
876 }
877
878 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
879 u64 bytenr, u32 blocksize)
880 {
881 struct inode *btree_inode = root->fs_info->btree_inode;
882 struct extent_buffer *eb;
883
884 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
885 bytenr, blocksize, NULL, GFP_NOFS);
886 return eb;
887 }
888
889
890 int btrfs_write_tree_block(struct extent_buffer *buf)
891 {
892 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
893 buf->start + buf->len - 1);
894 }
895
896 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
897 {
898 return filemap_fdatawait_range(buf->first_page->mapping,
899 buf->start, buf->start + buf->len - 1);
900 }
901
902 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
903 u32 blocksize, u64 parent_transid)
904 {
905 struct extent_buffer *buf = NULL;
906 int ret;
907
908 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
909 if (!buf)
910 return NULL;
911
912 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
913
914 if (ret == 0)
915 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
916 return buf;
917
918 }
919
920 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
921 struct extent_buffer *buf)
922 {
923 struct inode *btree_inode = root->fs_info->btree_inode;
924 if (btrfs_header_generation(buf) ==
925 root->fs_info->running_transaction->transid) {
926 btrfs_assert_tree_locked(buf);
927
928 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
929 spin_lock(&root->fs_info->delalloc_lock);
930 if (root->fs_info->dirty_metadata_bytes >= buf->len)
931 root->fs_info->dirty_metadata_bytes -= buf->len;
932 else
933 WARN_ON(1);
934 spin_unlock(&root->fs_info->delalloc_lock);
935 }
936
937 /* ugh, clear_extent_buffer_dirty needs to lock the page */
938 btrfs_set_lock_blocking(buf);
939 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
940 buf);
941 }
942 return 0;
943 }
944
945 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
946 u32 stripesize, struct btrfs_root *root,
947 struct btrfs_fs_info *fs_info,
948 u64 objectid)
949 {
950 root->node = NULL;
951 root->commit_root = NULL;
952 root->sectorsize = sectorsize;
953 root->nodesize = nodesize;
954 root->leafsize = leafsize;
955 root->stripesize = stripesize;
956 root->ref_cows = 0;
957 root->track_dirty = 0;
958 root->in_radix = 0;
959 root->orphan_item_inserted = 0;
960 root->orphan_cleanup_state = 0;
961
962 root->fs_info = fs_info;
963 root->objectid = objectid;
964 root->last_trans = 0;
965 root->highest_objectid = 0;
966 root->name = NULL;
967 root->in_sysfs = 0;
968 root->inode_tree = RB_ROOT;
969 root->block_rsv = NULL;
970 root->orphan_block_rsv = NULL;
971
972 INIT_LIST_HEAD(&root->dirty_list);
973 INIT_LIST_HEAD(&root->orphan_list);
974 INIT_LIST_HEAD(&root->root_list);
975 spin_lock_init(&root->node_lock);
976 spin_lock_init(&root->orphan_lock);
977 spin_lock_init(&root->inode_lock);
978 spin_lock_init(&root->accounting_lock);
979 mutex_init(&root->objectid_mutex);
980 mutex_init(&root->log_mutex);
981 init_waitqueue_head(&root->log_writer_wait);
982 init_waitqueue_head(&root->log_commit_wait[0]);
983 init_waitqueue_head(&root->log_commit_wait[1]);
984 atomic_set(&root->log_commit[0], 0);
985 atomic_set(&root->log_commit[1], 0);
986 atomic_set(&root->log_writers, 0);
987 root->log_batch = 0;
988 root->log_transid = 0;
989 root->last_log_commit = 0;
990 extent_io_tree_init(&root->dirty_log_pages,
991 fs_info->btree_inode->i_mapping, GFP_NOFS);
992
993 memset(&root->root_key, 0, sizeof(root->root_key));
994 memset(&root->root_item, 0, sizeof(root->root_item));
995 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
996 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
997 root->defrag_trans_start = fs_info->generation;
998 init_completion(&root->kobj_unregister);
999 root->defrag_running = 0;
1000 root->root_key.objectid = objectid;
1001 root->anon_super.s_root = NULL;
1002 root->anon_super.s_dev = 0;
1003 INIT_LIST_HEAD(&root->anon_super.s_list);
1004 INIT_LIST_HEAD(&root->anon_super.s_instances);
1005 init_rwsem(&root->anon_super.s_umount);
1006
1007 return 0;
1008 }
1009
1010 static int find_and_setup_root(struct btrfs_root *tree_root,
1011 struct btrfs_fs_info *fs_info,
1012 u64 objectid,
1013 struct btrfs_root *root)
1014 {
1015 int ret;
1016 u32 blocksize;
1017 u64 generation;
1018
1019 __setup_root(tree_root->nodesize, tree_root->leafsize,
1020 tree_root->sectorsize, tree_root->stripesize,
1021 root, fs_info, objectid);
1022 ret = btrfs_find_last_root(tree_root, objectid,
1023 &root->root_item, &root->root_key);
1024 if (ret > 0)
1025 return -ENOENT;
1026 BUG_ON(ret);
1027
1028 generation = btrfs_root_generation(&root->root_item);
1029 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1030 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1031 blocksize, generation);
1032 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1033 free_extent_buffer(root->node);
1034 return -EIO;
1035 }
1036 root->commit_root = btrfs_root_node(root);
1037 return 0;
1038 }
1039
1040 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1041 struct btrfs_fs_info *fs_info)
1042 {
1043 struct btrfs_root *root;
1044 struct btrfs_root *tree_root = fs_info->tree_root;
1045 struct extent_buffer *leaf;
1046
1047 root = kzalloc(sizeof(*root), GFP_NOFS);
1048 if (!root)
1049 return ERR_PTR(-ENOMEM);
1050
1051 __setup_root(tree_root->nodesize, tree_root->leafsize,
1052 tree_root->sectorsize, tree_root->stripesize,
1053 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1054
1055 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1056 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1057 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1058 /*
1059 * log trees do not get reference counted because they go away
1060 * before a real commit is actually done. They do store pointers
1061 * to file data extents, and those reference counts still get
1062 * updated (along with back refs to the log tree).
1063 */
1064 root->ref_cows = 0;
1065
1066 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1067 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1068 if (IS_ERR(leaf)) {
1069 kfree(root);
1070 return ERR_CAST(leaf);
1071 }
1072
1073 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1074 btrfs_set_header_bytenr(leaf, leaf->start);
1075 btrfs_set_header_generation(leaf, trans->transid);
1076 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1077 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1078 root->node = leaf;
1079
1080 write_extent_buffer(root->node, root->fs_info->fsid,
1081 (unsigned long)btrfs_header_fsid(root->node),
1082 BTRFS_FSID_SIZE);
1083 btrfs_mark_buffer_dirty(root->node);
1084 btrfs_tree_unlock(root->node);
1085 return root;
1086 }
1087
1088 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1089 struct btrfs_fs_info *fs_info)
1090 {
1091 struct btrfs_root *log_root;
1092
1093 log_root = alloc_log_tree(trans, fs_info);
1094 if (IS_ERR(log_root))
1095 return PTR_ERR(log_root);
1096 WARN_ON(fs_info->log_root_tree);
1097 fs_info->log_root_tree = log_root;
1098 return 0;
1099 }
1100
1101 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1102 struct btrfs_root *root)
1103 {
1104 struct btrfs_root *log_root;
1105 struct btrfs_inode_item *inode_item;
1106
1107 log_root = alloc_log_tree(trans, root->fs_info);
1108 if (IS_ERR(log_root))
1109 return PTR_ERR(log_root);
1110
1111 log_root->last_trans = trans->transid;
1112 log_root->root_key.offset = root->root_key.objectid;
1113
1114 inode_item = &log_root->root_item.inode;
1115 inode_item->generation = cpu_to_le64(1);
1116 inode_item->size = cpu_to_le64(3);
1117 inode_item->nlink = cpu_to_le32(1);
1118 inode_item->nbytes = cpu_to_le64(root->leafsize);
1119 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1120
1121 btrfs_set_root_node(&log_root->root_item, log_root->node);
1122
1123 WARN_ON(root->log_root);
1124 root->log_root = log_root;
1125 root->log_transid = 0;
1126 root->last_log_commit = 0;
1127 return 0;
1128 }
1129
1130 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1131 struct btrfs_key *location)
1132 {
1133 struct btrfs_root *root;
1134 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1135 struct btrfs_path *path;
1136 struct extent_buffer *l;
1137 u64 generation;
1138 u32 blocksize;
1139 int ret = 0;
1140
1141 root = kzalloc(sizeof(*root), GFP_NOFS);
1142 if (!root)
1143 return ERR_PTR(-ENOMEM);
1144 if (location->offset == (u64)-1) {
1145 ret = find_and_setup_root(tree_root, fs_info,
1146 location->objectid, root);
1147 if (ret) {
1148 kfree(root);
1149 return ERR_PTR(ret);
1150 }
1151 goto out;
1152 }
1153
1154 __setup_root(tree_root->nodesize, tree_root->leafsize,
1155 tree_root->sectorsize, tree_root->stripesize,
1156 root, fs_info, location->objectid);
1157
1158 path = btrfs_alloc_path();
1159 BUG_ON(!path);
1160 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1161 if (ret == 0) {
1162 l = path->nodes[0];
1163 read_extent_buffer(l, &root->root_item,
1164 btrfs_item_ptr_offset(l, path->slots[0]),
1165 sizeof(root->root_item));
1166 memcpy(&root->root_key, location, sizeof(*location));
1167 }
1168 btrfs_free_path(path);
1169 if (ret) {
1170 kfree(root);
1171 if (ret > 0)
1172 ret = -ENOENT;
1173 return ERR_PTR(ret);
1174 }
1175
1176 generation = btrfs_root_generation(&root->root_item);
1177 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1178 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1179 blocksize, generation);
1180 root->commit_root = btrfs_root_node(root);
1181 BUG_ON(!root->node);
1182 out:
1183 if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1184 root->ref_cows = 1;
1185
1186 return root;
1187 }
1188
1189 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1190 u64 root_objectid)
1191 {
1192 struct btrfs_root *root;
1193
1194 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1195 return fs_info->tree_root;
1196 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1197 return fs_info->extent_root;
1198
1199 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1200 (unsigned long)root_objectid);
1201 return root;
1202 }
1203
1204 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1205 struct btrfs_key *location)
1206 {
1207 struct btrfs_root *root;
1208 int ret;
1209
1210 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1211 return fs_info->tree_root;
1212 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1213 return fs_info->extent_root;
1214 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1215 return fs_info->chunk_root;
1216 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1217 return fs_info->dev_root;
1218 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1219 return fs_info->csum_root;
1220 again:
1221 spin_lock(&fs_info->fs_roots_radix_lock);
1222 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1223 (unsigned long)location->objectid);
1224 spin_unlock(&fs_info->fs_roots_radix_lock);
1225 if (root)
1226 return root;
1227
1228 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1229 if (IS_ERR(root))
1230 return root;
1231
1232 set_anon_super(&root->anon_super, NULL);
1233
1234 if (btrfs_root_refs(&root->root_item) == 0) {
1235 ret = -ENOENT;
1236 goto fail;
1237 }
1238
1239 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1240 if (ret < 0)
1241 goto fail;
1242 if (ret == 0)
1243 root->orphan_item_inserted = 1;
1244
1245 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1246 if (ret)
1247 goto fail;
1248
1249 spin_lock(&fs_info->fs_roots_radix_lock);
1250 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1251 (unsigned long)root->root_key.objectid,
1252 root);
1253 if (ret == 0)
1254 root->in_radix = 1;
1255
1256 spin_unlock(&fs_info->fs_roots_radix_lock);
1257 radix_tree_preload_end();
1258 if (ret) {
1259 if (ret == -EEXIST) {
1260 free_fs_root(root);
1261 goto again;
1262 }
1263 goto fail;
1264 }
1265
1266 ret = btrfs_find_dead_roots(fs_info->tree_root,
1267 root->root_key.objectid);
1268 WARN_ON(ret);
1269 return root;
1270 fail:
1271 free_fs_root(root);
1272 return ERR_PTR(ret);
1273 }
1274
1275 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1276 struct btrfs_key *location,
1277 const char *name, int namelen)
1278 {
1279 return btrfs_read_fs_root_no_name(fs_info, location);
1280 #if 0
1281 struct btrfs_root *root;
1282 int ret;
1283
1284 root = btrfs_read_fs_root_no_name(fs_info, location);
1285 if (!root)
1286 return NULL;
1287
1288 if (root->in_sysfs)
1289 return root;
1290
1291 ret = btrfs_set_root_name(root, name, namelen);
1292 if (ret) {
1293 free_extent_buffer(root->node);
1294 kfree(root);
1295 return ERR_PTR(ret);
1296 }
1297
1298 ret = btrfs_sysfs_add_root(root);
1299 if (ret) {
1300 free_extent_buffer(root->node);
1301 kfree(root->name);
1302 kfree(root);
1303 return ERR_PTR(ret);
1304 }
1305 root->in_sysfs = 1;
1306 return root;
1307 #endif
1308 }
1309
1310 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1311 {
1312 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1313 int ret = 0;
1314 struct btrfs_device *device;
1315 struct backing_dev_info *bdi;
1316
1317 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1318 if (!device->bdev)
1319 continue;
1320 bdi = blk_get_backing_dev_info(device->bdev);
1321 if (bdi && bdi_congested(bdi, bdi_bits)) {
1322 ret = 1;
1323 break;
1324 }
1325 }
1326 return ret;
1327 }
1328
1329 /*
1330 * this unplugs every device on the box, and it is only used when page
1331 * is null
1332 */
1333 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1334 {
1335 struct btrfs_device *device;
1336 struct btrfs_fs_info *info;
1337
1338 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1339 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1340 if (!device->bdev)
1341 continue;
1342
1343 bdi = blk_get_backing_dev_info(device->bdev);
1344 if (bdi->unplug_io_fn)
1345 bdi->unplug_io_fn(bdi, page);
1346 }
1347 }
1348
1349 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1350 {
1351 struct inode *inode;
1352 struct extent_map_tree *em_tree;
1353 struct extent_map *em;
1354 struct address_space *mapping;
1355 u64 offset;
1356
1357 /* the generic O_DIRECT read code does this */
1358 if (1 || !page) {
1359 __unplug_io_fn(bdi, page);
1360 return;
1361 }
1362
1363 /*
1364 * page->mapping may change at any time. Get a consistent copy
1365 * and use that for everything below
1366 */
1367 smp_mb();
1368 mapping = page->mapping;
1369 if (!mapping)
1370 return;
1371
1372 inode = mapping->host;
1373
1374 /*
1375 * don't do the expensive searching for a small number of
1376 * devices
1377 */
1378 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1379 __unplug_io_fn(bdi, page);
1380 return;
1381 }
1382
1383 offset = page_offset(page);
1384
1385 em_tree = &BTRFS_I(inode)->extent_tree;
1386 read_lock(&em_tree->lock);
1387 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1388 read_unlock(&em_tree->lock);
1389 if (!em) {
1390 __unplug_io_fn(bdi, page);
1391 return;
1392 }
1393
1394 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1395 free_extent_map(em);
1396 __unplug_io_fn(bdi, page);
1397 return;
1398 }
1399 offset = offset - em->start;
1400 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1401 em->block_start + offset, page);
1402 free_extent_map(em);
1403 }
1404
1405 /*
1406 * If this fails, caller must call bdi_destroy() to get rid of the
1407 * bdi again.
1408 */
1409 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1410 {
1411 int err;
1412
1413 bdi->capabilities = BDI_CAP_MAP_COPY;
1414 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1415 if (err)
1416 return err;
1417
1418 bdi->ra_pages = default_backing_dev_info.ra_pages;
1419 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1420 bdi->unplug_io_data = info;
1421 bdi->congested_fn = btrfs_congested_fn;
1422 bdi->congested_data = info;
1423 return 0;
1424 }
1425
1426 static int bio_ready_for_csum(struct bio *bio)
1427 {
1428 u64 length = 0;
1429 u64 buf_len = 0;
1430 u64 start = 0;
1431 struct page *page;
1432 struct extent_io_tree *io_tree = NULL;
1433 struct bio_vec *bvec;
1434 int i;
1435 int ret;
1436
1437 bio_for_each_segment(bvec, bio, i) {
1438 page = bvec->bv_page;
1439 if (page->private == EXTENT_PAGE_PRIVATE) {
1440 length += bvec->bv_len;
1441 continue;
1442 }
1443 if (!page->private) {
1444 length += bvec->bv_len;
1445 continue;
1446 }
1447 length = bvec->bv_len;
1448 buf_len = page->private >> 2;
1449 start = page_offset(page) + bvec->bv_offset;
1450 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1451 }
1452 /* are we fully contained in this bio? */
1453 if (buf_len <= length)
1454 return 1;
1455
1456 ret = extent_range_uptodate(io_tree, start + length,
1457 start + buf_len - 1);
1458 return ret;
1459 }
1460
1461 /*
1462 * called by the kthread helper functions to finally call the bio end_io
1463 * functions. This is where read checksum verification actually happens
1464 */
1465 static void end_workqueue_fn(struct btrfs_work *work)
1466 {
1467 struct bio *bio;
1468 struct end_io_wq *end_io_wq;
1469 struct btrfs_fs_info *fs_info;
1470 int error;
1471
1472 end_io_wq = container_of(work, struct end_io_wq, work);
1473 bio = end_io_wq->bio;
1474 fs_info = end_io_wq->info;
1475
1476 /* metadata bio reads are special because the whole tree block must
1477 * be checksummed at once. This makes sure the entire block is in
1478 * ram and up to date before trying to verify things. For
1479 * blocksize <= pagesize, it is basically a noop
1480 */
1481 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1482 !bio_ready_for_csum(bio)) {
1483 btrfs_queue_worker(&fs_info->endio_meta_workers,
1484 &end_io_wq->work);
1485 return;
1486 }
1487 error = end_io_wq->error;
1488 bio->bi_private = end_io_wq->private;
1489 bio->bi_end_io = end_io_wq->end_io;
1490 kfree(end_io_wq);
1491 bio_endio(bio, error);
1492 }
1493
1494 static int cleaner_kthread(void *arg)
1495 {
1496 struct btrfs_root *root = arg;
1497
1498 do {
1499 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1500
1501 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1502 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1503 btrfs_run_delayed_iputs(root);
1504 btrfs_clean_old_snapshots(root);
1505 mutex_unlock(&root->fs_info->cleaner_mutex);
1506 }
1507
1508 if (freezing(current)) {
1509 refrigerator();
1510 } else {
1511 set_current_state(TASK_INTERRUPTIBLE);
1512 if (!kthread_should_stop())
1513 schedule();
1514 __set_current_state(TASK_RUNNING);
1515 }
1516 } while (!kthread_should_stop());
1517 return 0;
1518 }
1519
1520 static int transaction_kthread(void *arg)
1521 {
1522 struct btrfs_root *root = arg;
1523 struct btrfs_trans_handle *trans;
1524 struct btrfs_transaction *cur;
1525 u64 transid;
1526 unsigned long now;
1527 unsigned long delay;
1528 int ret;
1529
1530 do {
1531 delay = HZ * 30;
1532 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1533 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1534
1535 spin_lock(&root->fs_info->new_trans_lock);
1536 cur = root->fs_info->running_transaction;
1537 if (!cur) {
1538 spin_unlock(&root->fs_info->new_trans_lock);
1539 goto sleep;
1540 }
1541
1542 now = get_seconds();
1543 if (!cur->blocked &&
1544 (now < cur->start_time || now - cur->start_time < 30)) {
1545 spin_unlock(&root->fs_info->new_trans_lock);
1546 delay = HZ * 5;
1547 goto sleep;
1548 }
1549 transid = cur->transid;
1550 spin_unlock(&root->fs_info->new_trans_lock);
1551
1552 trans = btrfs_join_transaction(root, 1);
1553 BUG_ON(IS_ERR(trans));
1554 if (transid == trans->transid) {
1555 ret = btrfs_commit_transaction(trans, root);
1556 BUG_ON(ret);
1557 } else {
1558 btrfs_end_transaction(trans, root);
1559 }
1560 sleep:
1561 wake_up_process(root->fs_info->cleaner_kthread);
1562 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1563
1564 if (freezing(current)) {
1565 refrigerator();
1566 } else {
1567 set_current_state(TASK_INTERRUPTIBLE);
1568 if (!kthread_should_stop() &&
1569 !btrfs_transaction_blocked(root->fs_info))
1570 schedule_timeout(delay);
1571 __set_current_state(TASK_RUNNING);
1572 }
1573 } while (!kthread_should_stop());
1574 return 0;
1575 }
1576
1577 struct btrfs_root *open_ctree(struct super_block *sb,
1578 struct btrfs_fs_devices *fs_devices,
1579 char *options)
1580 {
1581 u32 sectorsize;
1582 u32 nodesize;
1583 u32 leafsize;
1584 u32 blocksize;
1585 u32 stripesize;
1586 u64 generation;
1587 u64 features;
1588 struct btrfs_key location;
1589 struct buffer_head *bh;
1590 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1591 GFP_NOFS);
1592 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1593 GFP_NOFS);
1594 struct btrfs_root *tree_root = btrfs_sb(sb);
1595 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1596 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1597 GFP_NOFS);
1598 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1599 GFP_NOFS);
1600 struct btrfs_root *log_tree_root;
1601
1602 int ret;
1603 int err = -EINVAL;
1604
1605 struct btrfs_super_block *disk_super;
1606
1607 if (!extent_root || !tree_root || !fs_info ||
1608 !chunk_root || !dev_root || !csum_root) {
1609 err = -ENOMEM;
1610 goto fail;
1611 }
1612
1613 ret = init_srcu_struct(&fs_info->subvol_srcu);
1614 if (ret) {
1615 err = ret;
1616 goto fail;
1617 }
1618
1619 ret = setup_bdi(fs_info, &fs_info->bdi);
1620 if (ret) {
1621 err = ret;
1622 goto fail_srcu;
1623 }
1624
1625 fs_info->btree_inode = new_inode(sb);
1626 if (!fs_info->btree_inode) {
1627 err = -ENOMEM;
1628 goto fail_bdi;
1629 }
1630
1631 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1632 INIT_LIST_HEAD(&fs_info->trans_list);
1633 INIT_LIST_HEAD(&fs_info->dead_roots);
1634 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1635 INIT_LIST_HEAD(&fs_info->hashers);
1636 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1637 INIT_LIST_HEAD(&fs_info->ordered_operations);
1638 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1639 spin_lock_init(&fs_info->delalloc_lock);
1640 spin_lock_init(&fs_info->new_trans_lock);
1641 spin_lock_init(&fs_info->ref_cache_lock);
1642 spin_lock_init(&fs_info->fs_roots_radix_lock);
1643 spin_lock_init(&fs_info->delayed_iput_lock);
1644
1645 init_completion(&fs_info->kobj_unregister);
1646 fs_info->tree_root = tree_root;
1647 fs_info->extent_root = extent_root;
1648 fs_info->csum_root = csum_root;
1649 fs_info->chunk_root = chunk_root;
1650 fs_info->dev_root = dev_root;
1651 fs_info->fs_devices = fs_devices;
1652 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1653 INIT_LIST_HEAD(&fs_info->space_info);
1654 btrfs_mapping_init(&fs_info->mapping_tree);
1655 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1656 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1657 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1658 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1659 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1660 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1661 mutex_init(&fs_info->durable_block_rsv_mutex);
1662 atomic_set(&fs_info->nr_async_submits, 0);
1663 atomic_set(&fs_info->async_delalloc_pages, 0);
1664 atomic_set(&fs_info->async_submit_draining, 0);
1665 atomic_set(&fs_info->nr_async_bios, 0);
1666 fs_info->sb = sb;
1667 fs_info->max_inline = 8192 * 1024;
1668 fs_info->metadata_ratio = 0;
1669
1670 fs_info->thread_pool_size = min_t(unsigned long,
1671 num_online_cpus() + 2, 8);
1672
1673 INIT_LIST_HEAD(&fs_info->ordered_extents);
1674 spin_lock_init(&fs_info->ordered_extent_lock);
1675
1676 sb->s_blocksize = 4096;
1677 sb->s_blocksize_bits = blksize_bits(4096);
1678 sb->s_bdi = &fs_info->bdi;
1679
1680 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1681 fs_info->btree_inode->i_nlink = 1;
1682 /*
1683 * we set the i_size on the btree inode to the max possible int.
1684 * the real end of the address space is determined by all of
1685 * the devices in the system
1686 */
1687 fs_info->btree_inode->i_size = OFFSET_MAX;
1688 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1689 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1690
1691 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1692 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1693 fs_info->btree_inode->i_mapping,
1694 GFP_NOFS);
1695 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1696 GFP_NOFS);
1697
1698 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1699
1700 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1701 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1702 sizeof(struct btrfs_key));
1703 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1704 insert_inode_hash(fs_info->btree_inode);
1705
1706 spin_lock_init(&fs_info->block_group_cache_lock);
1707 fs_info->block_group_cache_tree = RB_ROOT;
1708
1709 extent_io_tree_init(&fs_info->freed_extents[0],
1710 fs_info->btree_inode->i_mapping, GFP_NOFS);
1711 extent_io_tree_init(&fs_info->freed_extents[1],
1712 fs_info->btree_inode->i_mapping, GFP_NOFS);
1713 fs_info->pinned_extents = &fs_info->freed_extents[0];
1714 fs_info->do_barriers = 1;
1715
1716
1717 mutex_init(&fs_info->trans_mutex);
1718 mutex_init(&fs_info->ordered_operations_mutex);
1719 mutex_init(&fs_info->tree_log_mutex);
1720 mutex_init(&fs_info->chunk_mutex);
1721 mutex_init(&fs_info->transaction_kthread_mutex);
1722 mutex_init(&fs_info->cleaner_mutex);
1723 mutex_init(&fs_info->volume_mutex);
1724 init_rwsem(&fs_info->extent_commit_sem);
1725 init_rwsem(&fs_info->cleanup_work_sem);
1726 init_rwsem(&fs_info->subvol_sem);
1727
1728 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1729 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1730
1731 init_waitqueue_head(&fs_info->transaction_throttle);
1732 init_waitqueue_head(&fs_info->transaction_wait);
1733 init_waitqueue_head(&fs_info->transaction_blocked_wait);
1734 init_waitqueue_head(&fs_info->async_submit_wait);
1735
1736 __setup_root(4096, 4096, 4096, 4096, tree_root,
1737 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1738
1739 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1740 if (!bh) {
1741 err = -EINVAL;
1742 goto fail_iput;
1743 }
1744
1745 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1746 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1747 sizeof(fs_info->super_for_commit));
1748 brelse(bh);
1749
1750 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1751
1752 disk_super = &fs_info->super_copy;
1753 if (!btrfs_super_root(disk_super))
1754 goto fail_iput;
1755
1756 /* check FS state, whether FS is broken. */
1757 fs_info->fs_state |= btrfs_super_flags(disk_super);
1758
1759 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1760
1761 ret = btrfs_parse_options(tree_root, options);
1762 if (ret) {
1763 err = ret;
1764 goto fail_iput;
1765 }
1766
1767 features = btrfs_super_incompat_flags(disk_super) &
1768 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1769 if (features) {
1770 printk(KERN_ERR "BTRFS: couldn't mount because of "
1771 "unsupported optional features (%Lx).\n",
1772 (unsigned long long)features);
1773 err = -EINVAL;
1774 goto fail_iput;
1775 }
1776
1777 features = btrfs_super_incompat_flags(disk_super);
1778 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1779 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1780 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1781 btrfs_set_super_incompat_flags(disk_super, features);
1782
1783 features = btrfs_super_compat_ro_flags(disk_super) &
1784 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1785 if (!(sb->s_flags & MS_RDONLY) && features) {
1786 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1787 "unsupported option features (%Lx).\n",
1788 (unsigned long long)features);
1789 err = -EINVAL;
1790 goto fail_iput;
1791 }
1792
1793 btrfs_init_workers(&fs_info->generic_worker,
1794 "genwork", 1, NULL);
1795
1796 btrfs_init_workers(&fs_info->workers, "worker",
1797 fs_info->thread_pool_size,
1798 &fs_info->generic_worker);
1799
1800 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1801 fs_info->thread_pool_size,
1802 &fs_info->generic_worker);
1803
1804 btrfs_init_workers(&fs_info->submit_workers, "submit",
1805 min_t(u64, fs_devices->num_devices,
1806 fs_info->thread_pool_size),
1807 &fs_info->generic_worker);
1808
1809 /* a higher idle thresh on the submit workers makes it much more
1810 * likely that bios will be send down in a sane order to the
1811 * devices
1812 */
1813 fs_info->submit_workers.idle_thresh = 64;
1814
1815 fs_info->workers.idle_thresh = 16;
1816 fs_info->workers.ordered = 1;
1817
1818 fs_info->delalloc_workers.idle_thresh = 2;
1819 fs_info->delalloc_workers.ordered = 1;
1820
1821 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1822 &fs_info->generic_worker);
1823 btrfs_init_workers(&fs_info->endio_workers, "endio",
1824 fs_info->thread_pool_size,
1825 &fs_info->generic_worker);
1826 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1827 fs_info->thread_pool_size,
1828 &fs_info->generic_worker);
1829 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1830 "endio-meta-write", fs_info->thread_pool_size,
1831 &fs_info->generic_worker);
1832 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1833 fs_info->thread_pool_size,
1834 &fs_info->generic_worker);
1835 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1836 1, &fs_info->generic_worker);
1837
1838 /*
1839 * endios are largely parallel and should have a very
1840 * low idle thresh
1841 */
1842 fs_info->endio_workers.idle_thresh = 4;
1843 fs_info->endio_meta_workers.idle_thresh = 4;
1844
1845 fs_info->endio_write_workers.idle_thresh = 2;
1846 fs_info->endio_meta_write_workers.idle_thresh = 2;
1847
1848 btrfs_start_workers(&fs_info->workers, 1);
1849 btrfs_start_workers(&fs_info->generic_worker, 1);
1850 btrfs_start_workers(&fs_info->submit_workers, 1);
1851 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1852 btrfs_start_workers(&fs_info->fixup_workers, 1);
1853 btrfs_start_workers(&fs_info->endio_workers, 1);
1854 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1855 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1856 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1857 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1858
1859 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1860 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1861 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1862
1863 nodesize = btrfs_super_nodesize(disk_super);
1864 leafsize = btrfs_super_leafsize(disk_super);
1865 sectorsize = btrfs_super_sectorsize(disk_super);
1866 stripesize = btrfs_super_stripesize(disk_super);
1867 tree_root->nodesize = nodesize;
1868 tree_root->leafsize = leafsize;
1869 tree_root->sectorsize = sectorsize;
1870 tree_root->stripesize = stripesize;
1871
1872 sb->s_blocksize = sectorsize;
1873 sb->s_blocksize_bits = blksize_bits(sectorsize);
1874
1875 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1876 sizeof(disk_super->magic))) {
1877 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1878 goto fail_sb_buffer;
1879 }
1880
1881 mutex_lock(&fs_info->chunk_mutex);
1882 ret = btrfs_read_sys_array(tree_root);
1883 mutex_unlock(&fs_info->chunk_mutex);
1884 if (ret) {
1885 printk(KERN_WARNING "btrfs: failed to read the system "
1886 "array on %s\n", sb->s_id);
1887 goto fail_sb_buffer;
1888 }
1889
1890 blocksize = btrfs_level_size(tree_root,
1891 btrfs_super_chunk_root_level(disk_super));
1892 generation = btrfs_super_chunk_root_generation(disk_super);
1893
1894 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1895 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1896
1897 chunk_root->node = read_tree_block(chunk_root,
1898 btrfs_super_chunk_root(disk_super),
1899 blocksize, generation);
1900 BUG_ON(!chunk_root->node);
1901 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1902 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1903 sb->s_id);
1904 goto fail_chunk_root;
1905 }
1906 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1907 chunk_root->commit_root = btrfs_root_node(chunk_root);
1908
1909 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1910 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1911 BTRFS_UUID_SIZE);
1912
1913 mutex_lock(&fs_info->chunk_mutex);
1914 ret = btrfs_read_chunk_tree(chunk_root);
1915 mutex_unlock(&fs_info->chunk_mutex);
1916 if (ret) {
1917 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1918 sb->s_id);
1919 goto fail_chunk_root;
1920 }
1921
1922 btrfs_close_extra_devices(fs_devices);
1923
1924 blocksize = btrfs_level_size(tree_root,
1925 btrfs_super_root_level(disk_super));
1926 generation = btrfs_super_generation(disk_super);
1927
1928 tree_root->node = read_tree_block(tree_root,
1929 btrfs_super_root(disk_super),
1930 blocksize, generation);
1931 if (!tree_root->node)
1932 goto fail_chunk_root;
1933 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1934 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1935 sb->s_id);
1936 goto fail_tree_root;
1937 }
1938 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1939 tree_root->commit_root = btrfs_root_node(tree_root);
1940
1941 ret = find_and_setup_root(tree_root, fs_info,
1942 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1943 if (ret)
1944 goto fail_tree_root;
1945 extent_root->track_dirty = 1;
1946
1947 ret = find_and_setup_root(tree_root, fs_info,
1948 BTRFS_DEV_TREE_OBJECTID, dev_root);
1949 if (ret)
1950 goto fail_extent_root;
1951 dev_root->track_dirty = 1;
1952
1953 ret = find_and_setup_root(tree_root, fs_info,
1954 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1955 if (ret)
1956 goto fail_dev_root;
1957
1958 csum_root->track_dirty = 1;
1959
1960 fs_info->generation = generation;
1961 fs_info->last_trans_committed = generation;
1962 fs_info->data_alloc_profile = (u64)-1;
1963 fs_info->metadata_alloc_profile = (u64)-1;
1964 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1965
1966 ret = btrfs_read_block_groups(extent_root);
1967 if (ret) {
1968 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1969 goto fail_block_groups;
1970 }
1971
1972 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1973 "btrfs-cleaner");
1974 if (IS_ERR(fs_info->cleaner_kthread))
1975 goto fail_block_groups;
1976
1977 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1978 tree_root,
1979 "btrfs-transaction");
1980 if (IS_ERR(fs_info->transaction_kthread))
1981 goto fail_cleaner;
1982
1983 if (!btrfs_test_opt(tree_root, SSD) &&
1984 !btrfs_test_opt(tree_root, NOSSD) &&
1985 !fs_info->fs_devices->rotating) {
1986 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1987 "mode\n");
1988 btrfs_set_opt(fs_info->mount_opt, SSD);
1989 }
1990
1991 /* do not make disk changes in broken FS */
1992 if (btrfs_super_log_root(disk_super) != 0 &&
1993 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
1994 u64 bytenr = btrfs_super_log_root(disk_super);
1995
1996 if (fs_devices->rw_devices == 0) {
1997 printk(KERN_WARNING "Btrfs log replay required "
1998 "on RO media\n");
1999 err = -EIO;
2000 goto fail_trans_kthread;
2001 }
2002 blocksize =
2003 btrfs_level_size(tree_root,
2004 btrfs_super_log_root_level(disk_super));
2005
2006 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2007 if (!log_tree_root) {
2008 err = -ENOMEM;
2009 goto fail_trans_kthread;
2010 }
2011
2012 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2013 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2014
2015 log_tree_root->node = read_tree_block(tree_root, bytenr,
2016 blocksize,
2017 generation + 1);
2018 ret = btrfs_recover_log_trees(log_tree_root);
2019 BUG_ON(ret);
2020
2021 if (sb->s_flags & MS_RDONLY) {
2022 ret = btrfs_commit_super(tree_root);
2023 BUG_ON(ret);
2024 }
2025 }
2026
2027 ret = btrfs_find_orphan_roots(tree_root);
2028 BUG_ON(ret);
2029
2030 if (!(sb->s_flags & MS_RDONLY)) {
2031 ret = btrfs_cleanup_fs_roots(fs_info);
2032 BUG_ON(ret);
2033
2034 ret = btrfs_recover_relocation(tree_root);
2035 if (ret < 0) {
2036 printk(KERN_WARNING
2037 "btrfs: failed to recover relocation\n");
2038 err = -EINVAL;
2039 goto fail_trans_kthread;
2040 }
2041 }
2042
2043 location.objectid = BTRFS_FS_TREE_OBJECTID;
2044 location.type = BTRFS_ROOT_ITEM_KEY;
2045 location.offset = (u64)-1;
2046
2047 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2048 if (!fs_info->fs_root)
2049 goto fail_trans_kthread;
2050 if (IS_ERR(fs_info->fs_root)) {
2051 err = PTR_ERR(fs_info->fs_root);
2052 goto fail_trans_kthread;
2053 }
2054
2055 if (!(sb->s_flags & MS_RDONLY)) {
2056 down_read(&fs_info->cleanup_work_sem);
2057 btrfs_orphan_cleanup(fs_info->fs_root);
2058 btrfs_orphan_cleanup(fs_info->tree_root);
2059 up_read(&fs_info->cleanup_work_sem);
2060 }
2061
2062 return tree_root;
2063
2064 fail_trans_kthread:
2065 kthread_stop(fs_info->transaction_kthread);
2066 fail_cleaner:
2067 kthread_stop(fs_info->cleaner_kthread);
2068
2069 /*
2070 * make sure we're done with the btree inode before we stop our
2071 * kthreads
2072 */
2073 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2074 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2075
2076 fail_block_groups:
2077 btrfs_free_block_groups(fs_info);
2078 free_extent_buffer(csum_root->node);
2079 free_extent_buffer(csum_root->commit_root);
2080 fail_dev_root:
2081 free_extent_buffer(dev_root->node);
2082 free_extent_buffer(dev_root->commit_root);
2083 fail_extent_root:
2084 free_extent_buffer(extent_root->node);
2085 free_extent_buffer(extent_root->commit_root);
2086 fail_tree_root:
2087 free_extent_buffer(tree_root->node);
2088 free_extent_buffer(tree_root->commit_root);
2089 fail_chunk_root:
2090 free_extent_buffer(chunk_root->node);
2091 free_extent_buffer(chunk_root->commit_root);
2092 fail_sb_buffer:
2093 btrfs_stop_workers(&fs_info->generic_worker);
2094 btrfs_stop_workers(&fs_info->fixup_workers);
2095 btrfs_stop_workers(&fs_info->delalloc_workers);
2096 btrfs_stop_workers(&fs_info->workers);
2097 btrfs_stop_workers(&fs_info->endio_workers);
2098 btrfs_stop_workers(&fs_info->endio_meta_workers);
2099 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2100 btrfs_stop_workers(&fs_info->endio_write_workers);
2101 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2102 btrfs_stop_workers(&fs_info->submit_workers);
2103 fail_iput:
2104 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2105 iput(fs_info->btree_inode);
2106
2107 btrfs_close_devices(fs_info->fs_devices);
2108 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2109 fail_bdi:
2110 bdi_destroy(&fs_info->bdi);
2111 fail_srcu:
2112 cleanup_srcu_struct(&fs_info->subvol_srcu);
2113 fail:
2114 kfree(extent_root);
2115 kfree(tree_root);
2116 kfree(fs_info);
2117 kfree(chunk_root);
2118 kfree(dev_root);
2119 kfree(csum_root);
2120 return ERR_PTR(err);
2121 }
2122
2123 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2124 {
2125 char b[BDEVNAME_SIZE];
2126
2127 if (uptodate) {
2128 set_buffer_uptodate(bh);
2129 } else {
2130 if (printk_ratelimit()) {
2131 printk(KERN_WARNING "lost page write due to "
2132 "I/O error on %s\n",
2133 bdevname(bh->b_bdev, b));
2134 }
2135 /* note, we dont' set_buffer_write_io_error because we have
2136 * our own ways of dealing with the IO errors
2137 */
2138 clear_buffer_uptodate(bh);
2139 }
2140 unlock_buffer(bh);
2141 put_bh(bh);
2142 }
2143
2144 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2145 {
2146 struct buffer_head *bh;
2147 struct buffer_head *latest = NULL;
2148 struct btrfs_super_block *super;
2149 int i;
2150 u64 transid = 0;
2151 u64 bytenr;
2152
2153 /* we would like to check all the supers, but that would make
2154 * a btrfs mount succeed after a mkfs from a different FS.
2155 * So, we need to add a special mount option to scan for
2156 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2157 */
2158 for (i = 0; i < 1; i++) {
2159 bytenr = btrfs_sb_offset(i);
2160 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2161 break;
2162 bh = __bread(bdev, bytenr / 4096, 4096);
2163 if (!bh)
2164 continue;
2165
2166 super = (struct btrfs_super_block *)bh->b_data;
2167 if (btrfs_super_bytenr(super) != bytenr ||
2168 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2169 sizeof(super->magic))) {
2170 brelse(bh);
2171 continue;
2172 }
2173
2174 if (!latest || btrfs_super_generation(super) > transid) {
2175 brelse(latest);
2176 latest = bh;
2177 transid = btrfs_super_generation(super);
2178 } else {
2179 brelse(bh);
2180 }
2181 }
2182 return latest;
2183 }
2184
2185 /*
2186 * this should be called twice, once with wait == 0 and
2187 * once with wait == 1. When wait == 0 is done, all the buffer heads
2188 * we write are pinned.
2189 *
2190 * They are released when wait == 1 is done.
2191 * max_mirrors must be the same for both runs, and it indicates how
2192 * many supers on this one device should be written.
2193 *
2194 * max_mirrors == 0 means to write them all.
2195 */
2196 static int write_dev_supers(struct btrfs_device *device,
2197 struct btrfs_super_block *sb,
2198 int do_barriers, int wait, int max_mirrors)
2199 {
2200 struct buffer_head *bh;
2201 int i;
2202 int ret;
2203 int errors = 0;
2204 u32 crc;
2205 u64 bytenr;
2206 int last_barrier = 0;
2207
2208 if (max_mirrors == 0)
2209 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2210
2211 /* make sure only the last submit_bh does a barrier */
2212 if (do_barriers) {
2213 for (i = 0; i < max_mirrors; i++) {
2214 bytenr = btrfs_sb_offset(i);
2215 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2216 device->total_bytes)
2217 break;
2218 last_barrier = i;
2219 }
2220 }
2221
2222 for (i = 0; i < max_mirrors; i++) {
2223 bytenr = btrfs_sb_offset(i);
2224 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2225 break;
2226
2227 if (wait) {
2228 bh = __find_get_block(device->bdev, bytenr / 4096,
2229 BTRFS_SUPER_INFO_SIZE);
2230 BUG_ON(!bh);
2231 wait_on_buffer(bh);
2232 if (!buffer_uptodate(bh))
2233 errors++;
2234
2235 /* drop our reference */
2236 brelse(bh);
2237
2238 /* drop the reference from the wait == 0 run */
2239 brelse(bh);
2240 continue;
2241 } else {
2242 btrfs_set_super_bytenr(sb, bytenr);
2243
2244 crc = ~(u32)0;
2245 crc = btrfs_csum_data(NULL, (char *)sb +
2246 BTRFS_CSUM_SIZE, crc,
2247 BTRFS_SUPER_INFO_SIZE -
2248 BTRFS_CSUM_SIZE);
2249 btrfs_csum_final(crc, sb->csum);
2250
2251 /*
2252 * one reference for us, and we leave it for the
2253 * caller
2254 */
2255 bh = __getblk(device->bdev, bytenr / 4096,
2256 BTRFS_SUPER_INFO_SIZE);
2257 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2258
2259 /* one reference for submit_bh */
2260 get_bh(bh);
2261
2262 set_buffer_uptodate(bh);
2263 lock_buffer(bh);
2264 bh->b_end_io = btrfs_end_buffer_write_sync;
2265 }
2266
2267 if (i == last_barrier && do_barriers)
2268 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2269 else
2270 ret = submit_bh(WRITE_SYNC, bh);
2271
2272 if (ret)
2273 errors++;
2274 }
2275 return errors < i ? 0 : -1;
2276 }
2277
2278 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2279 {
2280 struct list_head *head;
2281 struct btrfs_device *dev;
2282 struct btrfs_super_block *sb;
2283 struct btrfs_dev_item *dev_item;
2284 int ret;
2285 int do_barriers;
2286 int max_errors;
2287 int total_errors = 0;
2288 u64 flags;
2289
2290 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2291 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2292
2293 sb = &root->fs_info->super_for_commit;
2294 dev_item = &sb->dev_item;
2295
2296 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2297 head = &root->fs_info->fs_devices->devices;
2298 list_for_each_entry(dev, head, dev_list) {
2299 if (!dev->bdev) {
2300 total_errors++;
2301 continue;
2302 }
2303 if (!dev->in_fs_metadata || !dev->writeable)
2304 continue;
2305
2306 btrfs_set_stack_device_generation(dev_item, 0);
2307 btrfs_set_stack_device_type(dev_item, dev->type);
2308 btrfs_set_stack_device_id(dev_item, dev->devid);
2309 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2310 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2311 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2312 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2313 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2314 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2315 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2316
2317 flags = btrfs_super_flags(sb);
2318 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2319
2320 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2321 if (ret)
2322 total_errors++;
2323 }
2324 if (total_errors > max_errors) {
2325 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2326 total_errors);
2327 BUG();
2328 }
2329
2330 total_errors = 0;
2331 list_for_each_entry(dev, head, dev_list) {
2332 if (!dev->bdev)
2333 continue;
2334 if (!dev->in_fs_metadata || !dev->writeable)
2335 continue;
2336
2337 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2338 if (ret)
2339 total_errors++;
2340 }
2341 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2342 if (total_errors > max_errors) {
2343 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2344 total_errors);
2345 BUG();
2346 }
2347 return 0;
2348 }
2349
2350 int write_ctree_super(struct btrfs_trans_handle *trans,
2351 struct btrfs_root *root, int max_mirrors)
2352 {
2353 int ret;
2354
2355 ret = write_all_supers(root, max_mirrors);
2356 return ret;
2357 }
2358
2359 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2360 {
2361 spin_lock(&fs_info->fs_roots_radix_lock);
2362 radix_tree_delete(&fs_info->fs_roots_radix,
2363 (unsigned long)root->root_key.objectid);
2364 spin_unlock(&fs_info->fs_roots_radix_lock);
2365
2366 if (btrfs_root_refs(&root->root_item) == 0)
2367 synchronize_srcu(&fs_info->subvol_srcu);
2368
2369 free_fs_root(root);
2370 return 0;
2371 }
2372
2373 static void free_fs_root(struct btrfs_root *root)
2374 {
2375 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2376 if (root->anon_super.s_dev) {
2377 down_write(&root->anon_super.s_umount);
2378 kill_anon_super(&root->anon_super);
2379 }
2380 free_extent_buffer(root->node);
2381 free_extent_buffer(root->commit_root);
2382 kfree(root->name);
2383 kfree(root);
2384 }
2385
2386 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2387 {
2388 int ret;
2389 struct btrfs_root *gang[8];
2390 int i;
2391
2392 while (!list_empty(&fs_info->dead_roots)) {
2393 gang[0] = list_entry(fs_info->dead_roots.next,
2394 struct btrfs_root, root_list);
2395 list_del(&gang[0]->root_list);
2396
2397 if (gang[0]->in_radix) {
2398 btrfs_free_fs_root(fs_info, gang[0]);
2399 } else {
2400 free_extent_buffer(gang[0]->node);
2401 free_extent_buffer(gang[0]->commit_root);
2402 kfree(gang[0]);
2403 }
2404 }
2405
2406 while (1) {
2407 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2408 (void **)gang, 0,
2409 ARRAY_SIZE(gang));
2410 if (!ret)
2411 break;
2412 for (i = 0; i < ret; i++)
2413 btrfs_free_fs_root(fs_info, gang[i]);
2414 }
2415 return 0;
2416 }
2417
2418 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2419 {
2420 u64 root_objectid = 0;
2421 struct btrfs_root *gang[8];
2422 int i;
2423 int ret;
2424
2425 while (1) {
2426 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2427 (void **)gang, root_objectid,
2428 ARRAY_SIZE(gang));
2429 if (!ret)
2430 break;
2431
2432 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2433 for (i = 0; i < ret; i++) {
2434 root_objectid = gang[i]->root_key.objectid;
2435 btrfs_orphan_cleanup(gang[i]);
2436 }
2437 root_objectid++;
2438 }
2439 return 0;
2440 }
2441
2442 int btrfs_commit_super(struct btrfs_root *root)
2443 {
2444 struct btrfs_trans_handle *trans;
2445 int ret;
2446
2447 mutex_lock(&root->fs_info->cleaner_mutex);
2448 btrfs_run_delayed_iputs(root);
2449 btrfs_clean_old_snapshots(root);
2450 mutex_unlock(&root->fs_info->cleaner_mutex);
2451
2452 /* wait until ongoing cleanup work done */
2453 down_write(&root->fs_info->cleanup_work_sem);
2454 up_write(&root->fs_info->cleanup_work_sem);
2455
2456 trans = btrfs_join_transaction(root, 1);
2457 if (IS_ERR(trans))
2458 return PTR_ERR(trans);
2459 ret = btrfs_commit_transaction(trans, root);
2460 BUG_ON(ret);
2461 /* run commit again to drop the original snapshot */
2462 trans = btrfs_join_transaction(root, 1);
2463 if (IS_ERR(trans))
2464 return PTR_ERR(trans);
2465 btrfs_commit_transaction(trans, root);
2466 ret = btrfs_write_and_wait_transaction(NULL, root);
2467 BUG_ON(ret);
2468
2469 ret = write_ctree_super(NULL, root, 0);
2470 return ret;
2471 }
2472
2473 int close_ctree(struct btrfs_root *root)
2474 {
2475 struct btrfs_fs_info *fs_info = root->fs_info;
2476 int ret;
2477
2478 fs_info->closing = 1;
2479 smp_mb();
2480
2481 btrfs_put_block_group_cache(fs_info);
2482
2483 /*
2484 * Here come 2 situations when btrfs is broken to flip readonly:
2485 *
2486 * 1. when btrfs flips readonly somewhere else before
2487 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2488 * and btrfs will skip to write sb directly to keep
2489 * ERROR state on disk.
2490 *
2491 * 2. when btrfs flips readonly just in btrfs_commit_super,
2492 * and in such case, btrfs cannnot write sb via btrfs_commit_super,
2493 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2494 * btrfs will cleanup all FS resources first and write sb then.
2495 */
2496 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2497 ret = btrfs_commit_super(root);
2498 if (ret)
2499 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2500 }
2501
2502 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2503 ret = btrfs_error_commit_super(root);
2504 if (ret)
2505 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2506 }
2507
2508 kthread_stop(root->fs_info->transaction_kthread);
2509 kthread_stop(root->fs_info->cleaner_kthread);
2510
2511 fs_info->closing = 2;
2512 smp_mb();
2513
2514 if (fs_info->delalloc_bytes) {
2515 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2516 (unsigned long long)fs_info->delalloc_bytes);
2517 }
2518 if (fs_info->total_ref_cache_size) {
2519 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2520 (unsigned long long)fs_info->total_ref_cache_size);
2521 }
2522
2523 free_extent_buffer(fs_info->extent_root->node);
2524 free_extent_buffer(fs_info->extent_root->commit_root);
2525 free_extent_buffer(fs_info->tree_root->node);
2526 free_extent_buffer(fs_info->tree_root->commit_root);
2527 free_extent_buffer(root->fs_info->chunk_root->node);
2528 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2529 free_extent_buffer(root->fs_info->dev_root->node);
2530 free_extent_buffer(root->fs_info->dev_root->commit_root);
2531 free_extent_buffer(root->fs_info->csum_root->node);
2532 free_extent_buffer(root->fs_info->csum_root->commit_root);
2533
2534 btrfs_free_block_groups(root->fs_info);
2535
2536 del_fs_roots(fs_info);
2537
2538 iput(fs_info->btree_inode);
2539
2540 btrfs_stop_workers(&fs_info->generic_worker);
2541 btrfs_stop_workers(&fs_info->fixup_workers);
2542 btrfs_stop_workers(&fs_info->delalloc_workers);
2543 btrfs_stop_workers(&fs_info->workers);
2544 btrfs_stop_workers(&fs_info->endio_workers);
2545 btrfs_stop_workers(&fs_info->endio_meta_workers);
2546 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2547 btrfs_stop_workers(&fs_info->endio_write_workers);
2548 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2549 btrfs_stop_workers(&fs_info->submit_workers);
2550
2551 btrfs_close_devices(fs_info->fs_devices);
2552 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2553
2554 bdi_destroy(&fs_info->bdi);
2555 cleanup_srcu_struct(&fs_info->subvol_srcu);
2556
2557 kfree(fs_info->extent_root);
2558 kfree(fs_info->tree_root);
2559 kfree(fs_info->chunk_root);
2560 kfree(fs_info->dev_root);
2561 kfree(fs_info->csum_root);
2562 kfree(fs_info);
2563
2564 return 0;
2565 }
2566
2567 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2568 {
2569 int ret;
2570 struct inode *btree_inode = buf->first_page->mapping->host;
2571
2572 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2573 NULL);
2574 if (!ret)
2575 return ret;
2576
2577 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2578 parent_transid);
2579 return !ret;
2580 }
2581
2582 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2583 {
2584 struct inode *btree_inode = buf->first_page->mapping->host;
2585 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2586 buf);
2587 }
2588
2589 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2590 {
2591 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2592 u64 transid = btrfs_header_generation(buf);
2593 struct inode *btree_inode = root->fs_info->btree_inode;
2594 int was_dirty;
2595
2596 btrfs_assert_tree_locked(buf);
2597 if (transid != root->fs_info->generation) {
2598 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2599 "found %llu running %llu\n",
2600 (unsigned long long)buf->start,
2601 (unsigned long long)transid,
2602 (unsigned long long)root->fs_info->generation);
2603 WARN_ON(1);
2604 }
2605 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2606 buf);
2607 if (!was_dirty) {
2608 spin_lock(&root->fs_info->delalloc_lock);
2609 root->fs_info->dirty_metadata_bytes += buf->len;
2610 spin_unlock(&root->fs_info->delalloc_lock);
2611 }
2612 }
2613
2614 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2615 {
2616 /*
2617 * looks as though older kernels can get into trouble with
2618 * this code, they end up stuck in balance_dirty_pages forever
2619 */
2620 u64 num_dirty;
2621 unsigned long thresh = 32 * 1024 * 1024;
2622
2623 if (current->flags & PF_MEMALLOC)
2624 return;
2625
2626 num_dirty = root->fs_info->dirty_metadata_bytes;
2627
2628 if (num_dirty > thresh) {
2629 balance_dirty_pages_ratelimited_nr(
2630 root->fs_info->btree_inode->i_mapping, 1);
2631 }
2632 return;
2633 }
2634
2635 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2636 {
2637 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2638 int ret;
2639 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2640 if (ret == 0)
2641 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2642 return ret;
2643 }
2644
2645 int btree_lock_page_hook(struct page *page)
2646 {
2647 struct inode *inode = page->mapping->host;
2648 struct btrfs_root *root = BTRFS_I(inode)->root;
2649 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2650 struct extent_buffer *eb;
2651 unsigned long len;
2652 u64 bytenr = page_offset(page);
2653
2654 if (page->private == EXTENT_PAGE_PRIVATE)
2655 goto out;
2656
2657 len = page->private >> 2;
2658 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2659 if (!eb)
2660 goto out;
2661
2662 btrfs_tree_lock(eb);
2663 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2664
2665 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2666 spin_lock(&root->fs_info->delalloc_lock);
2667 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2668 root->fs_info->dirty_metadata_bytes -= eb->len;
2669 else
2670 WARN_ON(1);
2671 spin_unlock(&root->fs_info->delalloc_lock);
2672 }
2673
2674 btrfs_tree_unlock(eb);
2675 free_extent_buffer(eb);
2676 out:
2677 lock_page(page);
2678 return 0;
2679 }
2680
2681 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2682 int read_only)
2683 {
2684 if (read_only)
2685 return;
2686
2687 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2688 printk(KERN_WARNING "warning: mount fs with errors, "
2689 "running btrfsck is recommended\n");
2690 }
2691
2692 int btrfs_error_commit_super(struct btrfs_root *root)
2693 {
2694 int ret;
2695
2696 mutex_lock(&root->fs_info->cleaner_mutex);
2697 btrfs_run_delayed_iputs(root);
2698 mutex_unlock(&root->fs_info->cleaner_mutex);
2699
2700 down_write(&root->fs_info->cleanup_work_sem);
2701 up_write(&root->fs_info->cleanup_work_sem);
2702
2703 /* cleanup FS via transaction */
2704 btrfs_cleanup_transaction(root);
2705
2706 ret = write_ctree_super(NULL, root, 0);
2707
2708 return ret;
2709 }
2710
2711 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2712 {
2713 struct btrfs_inode *btrfs_inode;
2714 struct list_head splice;
2715
2716 INIT_LIST_HEAD(&splice);
2717
2718 mutex_lock(&root->fs_info->ordered_operations_mutex);
2719 spin_lock(&root->fs_info->ordered_extent_lock);
2720
2721 list_splice_init(&root->fs_info->ordered_operations, &splice);
2722 while (!list_empty(&splice)) {
2723 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2724 ordered_operations);
2725
2726 list_del_init(&btrfs_inode->ordered_operations);
2727
2728 btrfs_invalidate_inodes(btrfs_inode->root);
2729 }
2730
2731 spin_unlock(&root->fs_info->ordered_extent_lock);
2732 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2733
2734 return 0;
2735 }
2736
2737 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2738 {
2739 struct list_head splice;
2740 struct btrfs_ordered_extent *ordered;
2741 struct inode *inode;
2742
2743 INIT_LIST_HEAD(&splice);
2744
2745 spin_lock(&root->fs_info->ordered_extent_lock);
2746
2747 list_splice_init(&root->fs_info->ordered_extents, &splice);
2748 while (!list_empty(&splice)) {
2749 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2750 root_extent_list);
2751
2752 list_del_init(&ordered->root_extent_list);
2753 atomic_inc(&ordered->refs);
2754
2755 /* the inode may be getting freed (in sys_unlink path). */
2756 inode = igrab(ordered->inode);
2757
2758 spin_unlock(&root->fs_info->ordered_extent_lock);
2759 if (inode)
2760 iput(inode);
2761
2762 atomic_set(&ordered->refs, 1);
2763 btrfs_put_ordered_extent(ordered);
2764
2765 spin_lock(&root->fs_info->ordered_extent_lock);
2766 }
2767
2768 spin_unlock(&root->fs_info->ordered_extent_lock);
2769
2770 return 0;
2771 }
2772
2773 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2774 struct btrfs_root *root)
2775 {
2776 struct rb_node *node;
2777 struct btrfs_delayed_ref_root *delayed_refs;
2778 struct btrfs_delayed_ref_node *ref;
2779 int ret = 0;
2780
2781 delayed_refs = &trans->delayed_refs;
2782
2783 spin_lock(&delayed_refs->lock);
2784 if (delayed_refs->num_entries == 0) {
2785 printk(KERN_INFO "delayed_refs has NO entry\n");
2786 return ret;
2787 }
2788
2789 node = rb_first(&delayed_refs->root);
2790 while (node) {
2791 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2792 node = rb_next(node);
2793
2794 ref->in_tree = 0;
2795 rb_erase(&ref->rb_node, &delayed_refs->root);
2796 delayed_refs->num_entries--;
2797
2798 atomic_set(&ref->refs, 1);
2799 if (btrfs_delayed_ref_is_head(ref)) {
2800 struct btrfs_delayed_ref_head *head;
2801
2802 head = btrfs_delayed_node_to_head(ref);
2803 mutex_lock(&head->mutex);
2804 kfree(head->extent_op);
2805 delayed_refs->num_heads--;
2806 if (list_empty(&head->cluster))
2807 delayed_refs->num_heads_ready--;
2808 list_del_init(&head->cluster);
2809 mutex_unlock(&head->mutex);
2810 }
2811
2812 spin_unlock(&delayed_refs->lock);
2813 btrfs_put_delayed_ref(ref);
2814
2815 cond_resched();
2816 spin_lock(&delayed_refs->lock);
2817 }
2818
2819 spin_unlock(&delayed_refs->lock);
2820
2821 return ret;
2822 }
2823
2824 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2825 {
2826 struct btrfs_pending_snapshot *snapshot;
2827 struct list_head splice;
2828
2829 INIT_LIST_HEAD(&splice);
2830
2831 list_splice_init(&t->pending_snapshots, &splice);
2832
2833 while (!list_empty(&splice)) {
2834 snapshot = list_entry(splice.next,
2835 struct btrfs_pending_snapshot,
2836 list);
2837
2838 list_del_init(&snapshot->list);
2839
2840 kfree(snapshot);
2841 }
2842
2843 return 0;
2844 }
2845
2846 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2847 {
2848 struct btrfs_inode *btrfs_inode;
2849 struct list_head splice;
2850
2851 INIT_LIST_HEAD(&splice);
2852
2853 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2854
2855 spin_lock(&root->fs_info->delalloc_lock);
2856
2857 while (!list_empty(&splice)) {
2858 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2859 delalloc_inodes);
2860
2861 list_del_init(&btrfs_inode->delalloc_inodes);
2862
2863 btrfs_invalidate_inodes(btrfs_inode->root);
2864 }
2865
2866 spin_unlock(&root->fs_info->delalloc_lock);
2867
2868 return 0;
2869 }
2870
2871 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2872 struct extent_io_tree *dirty_pages,
2873 int mark)
2874 {
2875 int ret;
2876 struct page *page;
2877 struct inode *btree_inode = root->fs_info->btree_inode;
2878 struct extent_buffer *eb;
2879 u64 start = 0;
2880 u64 end;
2881 u64 offset;
2882 unsigned long index;
2883
2884 while (1) {
2885 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2886 mark);
2887 if (ret)
2888 break;
2889
2890 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2891 while (start <= end) {
2892 index = start >> PAGE_CACHE_SHIFT;
2893 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2894 page = find_get_page(btree_inode->i_mapping, index);
2895 if (!page)
2896 continue;
2897 offset = page_offset(page);
2898
2899 spin_lock(&dirty_pages->buffer_lock);
2900 eb = radix_tree_lookup(
2901 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2902 offset >> PAGE_CACHE_SHIFT);
2903 spin_unlock(&dirty_pages->buffer_lock);
2904 if (eb) {
2905 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2906 &eb->bflags);
2907 atomic_set(&eb->refs, 1);
2908 }
2909 if (PageWriteback(page))
2910 end_page_writeback(page);
2911
2912 lock_page(page);
2913 if (PageDirty(page)) {
2914 clear_page_dirty_for_io(page);
2915 spin_lock_irq(&page->mapping->tree_lock);
2916 radix_tree_tag_clear(&page->mapping->page_tree,
2917 page_index(page),
2918 PAGECACHE_TAG_DIRTY);
2919 spin_unlock_irq(&page->mapping->tree_lock);
2920 }
2921
2922 page->mapping->a_ops->invalidatepage(page, 0);
2923 unlock_page(page);
2924 }
2925 }
2926
2927 return ret;
2928 }
2929
2930 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2931 struct extent_io_tree *pinned_extents)
2932 {
2933 struct extent_io_tree *unpin;
2934 u64 start;
2935 u64 end;
2936 int ret;
2937
2938 unpin = pinned_extents;
2939 while (1) {
2940 ret = find_first_extent_bit(unpin, 0, &start, &end,
2941 EXTENT_DIRTY);
2942 if (ret)
2943 break;
2944
2945 /* opt_discard */
2946 ret = btrfs_error_discard_extent(root, start, end + 1 - start);
2947
2948 clear_extent_dirty(unpin, start, end, GFP_NOFS);
2949 btrfs_error_unpin_extent_range(root, start, end);
2950 cond_resched();
2951 }
2952
2953 return 0;
2954 }
2955
2956 static int btrfs_cleanup_transaction(struct btrfs_root *root)
2957 {
2958 struct btrfs_transaction *t;
2959 LIST_HEAD(list);
2960
2961 WARN_ON(1);
2962
2963 mutex_lock(&root->fs_info->trans_mutex);
2964 mutex_lock(&root->fs_info->transaction_kthread_mutex);
2965
2966 list_splice_init(&root->fs_info->trans_list, &list);
2967 while (!list_empty(&list)) {
2968 t = list_entry(list.next, struct btrfs_transaction, list);
2969 if (!t)
2970 break;
2971
2972 btrfs_destroy_ordered_operations(root);
2973
2974 btrfs_destroy_ordered_extents(root);
2975
2976 btrfs_destroy_delayed_refs(t, root);
2977
2978 btrfs_block_rsv_release(root,
2979 &root->fs_info->trans_block_rsv,
2980 t->dirty_pages.dirty_bytes);
2981
2982 /* FIXME: cleanup wait for commit */
2983 t->in_commit = 1;
2984 t->blocked = 1;
2985 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
2986 wake_up(&root->fs_info->transaction_blocked_wait);
2987
2988 t->blocked = 0;
2989 if (waitqueue_active(&root->fs_info->transaction_wait))
2990 wake_up(&root->fs_info->transaction_wait);
2991 mutex_unlock(&root->fs_info->trans_mutex);
2992
2993 mutex_lock(&root->fs_info->trans_mutex);
2994 t->commit_done = 1;
2995 if (waitqueue_active(&t->commit_wait))
2996 wake_up(&t->commit_wait);
2997 mutex_unlock(&root->fs_info->trans_mutex);
2998
2999 mutex_lock(&root->fs_info->trans_mutex);
3000
3001 btrfs_destroy_pending_snapshots(t);
3002
3003 btrfs_destroy_delalloc_inodes(root);
3004
3005 spin_lock(&root->fs_info->new_trans_lock);
3006 root->fs_info->running_transaction = NULL;
3007 spin_unlock(&root->fs_info->new_trans_lock);
3008
3009 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3010 EXTENT_DIRTY);
3011
3012 btrfs_destroy_pinned_extent(root,
3013 root->fs_info->pinned_extents);
3014
3015 t->use_count = 0;
3016 list_del_init(&t->list);
3017 memset(t, 0, sizeof(*t));
3018 kmem_cache_free(btrfs_transaction_cachep, t);
3019 }
3020
3021 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3022 mutex_unlock(&root->fs_info->trans_mutex);
3023
3024 return 0;
3025 }
3026
3027 static struct extent_io_ops btree_extent_io_ops = {
3028 .write_cache_pages_lock_hook = btree_lock_page_hook,
3029 .readpage_end_io_hook = btree_readpage_end_io_hook,
3030 .submit_bio_hook = btree_submit_bio_hook,
3031 /* note we're sharing with inode.c for the merge bio hook */
3032 .merge_bio_hook = btrfs_merge_bio_hook,
3033 };