]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/disk-io.c
Btrfs: cleanup destroy_marked_extents
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59 int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61 struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
72
73 /*
74 * end_io_wq structs are used to do processing in task context when an IO is
75 * complete. This is used during reads to verify checksums, and it is used
76 * by writes to insert metadata for new file extents after IO is complete.
77 */
78 struct end_io_wq {
79 struct bio *bio;
80 bio_end_io_t *end_io;
81 void *private;
82 struct btrfs_fs_info *info;
83 int error;
84 int metadata;
85 struct list_head list;
86 struct btrfs_work work;
87 };
88
89 /*
90 * async submit bios are used to offload expensive checksumming
91 * onto the worker threads. They checksum file and metadata bios
92 * just before they are sent down the IO stack.
93 */
94 struct async_submit_bio {
95 struct inode *inode;
96 struct bio *bio;
97 struct list_head list;
98 extent_submit_bio_hook_t *submit_bio_start;
99 extent_submit_bio_hook_t *submit_bio_done;
100 int rw;
101 int mirror_num;
102 unsigned long bio_flags;
103 /*
104 * bio_offset is optional, can be used if the pages in the bio
105 * can't tell us where in the file the bio should go
106 */
107 u64 bio_offset;
108 struct btrfs_work work;
109 int error;
110 };
111
112 /*
113 * Lockdep class keys for extent_buffer->lock's in this root. For a given
114 * eb, the lockdep key is determined by the btrfs_root it belongs to and
115 * the level the eb occupies in the tree.
116 *
117 * Different roots are used for different purposes and may nest inside each
118 * other and they require separate keysets. As lockdep keys should be
119 * static, assign keysets according to the purpose of the root as indicated
120 * by btrfs_root->objectid. This ensures that all special purpose roots
121 * have separate keysets.
122 *
123 * Lock-nesting across peer nodes is always done with the immediate parent
124 * node locked thus preventing deadlock. As lockdep doesn't know this, use
125 * subclass to avoid triggering lockdep warning in such cases.
126 *
127 * The key is set by the readpage_end_io_hook after the buffer has passed
128 * csum validation but before the pages are unlocked. It is also set by
129 * btrfs_init_new_buffer on freshly allocated blocks.
130 *
131 * We also add a check to make sure the highest level of the tree is the
132 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
133 * needs update as well.
134 */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 # error
138 # endif
139
140 static struct btrfs_lockdep_keyset {
141 u64 id; /* root objectid */
142 const char *name_stem; /* lock name stem */
143 char names[BTRFS_MAX_LEVEL + 1][20];
144 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
147 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
148 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
149 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
150 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
151 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
152 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
153 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
154 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
155 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
156 { .id = 0, .name_stem = "tree" },
157 };
158
159 void __init btrfs_init_lockdep(void)
160 {
161 int i, j;
162
163 /* initialize lockdep class names */
164 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168 snprintf(ks->names[j], sizeof(ks->names[j]),
169 "btrfs-%s-%02d", ks->name_stem, j);
170 }
171 }
172
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174 int level)
175 {
176 struct btrfs_lockdep_keyset *ks;
177
178 BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180 /* find the matching keyset, id 0 is the default entry */
181 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182 if (ks->id == objectid)
183 break;
184
185 lockdep_set_class_and_name(&eb->lock,
186 &ks->keys[level], ks->names[level]);
187 }
188
189 #endif
190
191 /*
192 * extents on the btree inode are pretty simple, there's one extent
193 * that covers the entire device
194 */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196 struct page *page, size_t pg_offset, u64 start, u64 len,
197 int create)
198 {
199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200 struct extent_map *em;
201 int ret;
202
203 read_lock(&em_tree->lock);
204 em = lookup_extent_mapping(em_tree, start, len);
205 if (em) {
206 em->bdev =
207 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208 read_unlock(&em_tree->lock);
209 goto out;
210 }
211 read_unlock(&em_tree->lock);
212
213 em = alloc_extent_map();
214 if (!em) {
215 em = ERR_PTR(-ENOMEM);
216 goto out;
217 }
218 em->start = 0;
219 em->len = (u64)-1;
220 em->block_len = (u64)-1;
221 em->block_start = 0;
222 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223
224 write_lock(&em_tree->lock);
225 ret = add_extent_mapping(em_tree, em, 0);
226 if (ret == -EEXIST) {
227 free_extent_map(em);
228 em = lookup_extent_mapping(em_tree, start, len);
229 if (!em)
230 em = ERR_PTR(-EIO);
231 } else if (ret) {
232 free_extent_map(em);
233 em = ERR_PTR(ret);
234 }
235 write_unlock(&em_tree->lock);
236
237 out:
238 return em;
239 }
240
241 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
242 {
243 return crc32c(seed, data, len);
244 }
245
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248 put_unaligned_le32(~crc, result);
249 }
250
251 /*
252 * compute the csum for a btree block, and either verify it or write it
253 * into the csum field of the block.
254 */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256 int verify)
257 {
258 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259 char *result = NULL;
260 unsigned long len;
261 unsigned long cur_len;
262 unsigned long offset = BTRFS_CSUM_SIZE;
263 char *kaddr;
264 unsigned long map_start;
265 unsigned long map_len;
266 int err;
267 u32 crc = ~(u32)0;
268 unsigned long inline_result;
269
270 len = buf->len - offset;
271 while (len > 0) {
272 err = map_private_extent_buffer(buf, offset, 32,
273 &kaddr, &map_start, &map_len);
274 if (err)
275 return 1;
276 cur_len = min(len, map_len - (offset - map_start));
277 crc = btrfs_csum_data(kaddr + offset - map_start,
278 crc, cur_len);
279 len -= cur_len;
280 offset += cur_len;
281 }
282 if (csum_size > sizeof(inline_result)) {
283 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284 if (!result)
285 return 1;
286 } else {
287 result = (char *)&inline_result;
288 }
289
290 btrfs_csum_final(crc, result);
291
292 if (verify) {
293 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294 u32 val;
295 u32 found = 0;
296 memcpy(&found, result, csum_size);
297
298 read_extent_buffer(buf, &val, 0, csum_size);
299 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300 "failed on %llu wanted %X found %X "
301 "level %d\n",
302 root->fs_info->sb->s_id,
303 (unsigned long long)buf->start, val, found,
304 btrfs_header_level(buf));
305 if (result != (char *)&inline_result)
306 kfree(result);
307 return 1;
308 }
309 } else {
310 write_extent_buffer(buf, result, 0, csum_size);
311 }
312 if (result != (char *)&inline_result)
313 kfree(result);
314 return 0;
315 }
316
317 /*
318 * we can't consider a given block up to date unless the transid of the
319 * block matches the transid in the parent node's pointer. This is how we
320 * detect blocks that either didn't get written at all or got written
321 * in the wrong place.
322 */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 struct extent_buffer *eb, u64 parent_transid,
325 int atomic)
326 {
327 struct extent_state *cached_state = NULL;
328 int ret;
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
333 if (atomic)
334 return -EAGAIN;
335
336 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337 0, &cached_state);
338 if (extent_buffer_uptodate(eb) &&
339 btrfs_header_generation(eb) == parent_transid) {
340 ret = 0;
341 goto out;
342 }
343 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344 "found %llu\n",
345 (unsigned long long)eb->start,
346 (unsigned long long)parent_transid,
347 (unsigned long long)btrfs_header_generation(eb));
348 ret = 1;
349 clear_extent_buffer_uptodate(eb);
350 out:
351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 &cached_state, GFP_NOFS);
353 return ret;
354 }
355
356 /*
357 * helper to read a given tree block, doing retries as required when
358 * the checksums don't match and we have alternate mirrors to try.
359 */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361 struct extent_buffer *eb,
362 u64 start, u64 parent_transid)
363 {
364 struct extent_io_tree *io_tree;
365 int failed = 0;
366 int ret;
367 int num_copies = 0;
368 int mirror_num = 0;
369 int failed_mirror = 0;
370
371 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373 while (1) {
374 ret = read_extent_buffer_pages(io_tree, eb, start,
375 WAIT_COMPLETE,
376 btree_get_extent, mirror_num);
377 if (!ret) {
378 if (!verify_parent_transid(io_tree, eb,
379 parent_transid, 0))
380 break;
381 else
382 ret = -EIO;
383 }
384
385 /*
386 * This buffer's crc is fine, but its contents are corrupted, so
387 * there is no reason to read the other copies, they won't be
388 * any less wrong.
389 */
390 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391 break;
392
393 num_copies = btrfs_num_copies(root->fs_info,
394 eb->start, eb->len);
395 if (num_copies == 1)
396 break;
397
398 if (!failed_mirror) {
399 failed = 1;
400 failed_mirror = eb->read_mirror;
401 }
402
403 mirror_num++;
404 if (mirror_num == failed_mirror)
405 mirror_num++;
406
407 if (mirror_num > num_copies)
408 break;
409 }
410
411 if (failed && !ret && failed_mirror)
412 repair_eb_io_failure(root, eb, failed_mirror);
413
414 return ret;
415 }
416
417 /*
418 * checksum a dirty tree block before IO. This has extra checks to make sure
419 * we only fill in the checksum field in the first page of a multi-page block
420 */
421
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424 struct extent_io_tree *tree;
425 u64 start = page_offset(page);
426 u64 found_start;
427 struct extent_buffer *eb;
428
429 tree = &BTRFS_I(page->mapping->host)->io_tree;
430
431 eb = (struct extent_buffer *)page->private;
432 if (page != eb->pages[0])
433 return 0;
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
436 WARN_ON(1);
437 return 0;
438 }
439 if (!PageUptodate(page)) {
440 WARN_ON(1);
441 return 0;
442 }
443 csum_tree_block(root, eb, 0);
444 return 0;
445 }
446
447 static int check_tree_block_fsid(struct btrfs_root *root,
448 struct extent_buffer *eb)
449 {
450 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451 u8 fsid[BTRFS_UUID_SIZE];
452 int ret = 1;
453
454 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455 BTRFS_FSID_SIZE);
456 while (fs_devices) {
457 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458 ret = 0;
459 break;
460 }
461 fs_devices = fs_devices->seed;
462 }
463 return ret;
464 }
465
466 #define CORRUPT(reason, eb, root, slot) \
467 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468 "root=%llu, slot=%d\n", reason, \
469 (unsigned long long)btrfs_header_bytenr(eb), \
470 (unsigned long long)root->objectid, slot)
471
472 static noinline int check_leaf(struct btrfs_root *root,
473 struct extent_buffer *leaf)
474 {
475 struct btrfs_key key;
476 struct btrfs_key leaf_key;
477 u32 nritems = btrfs_header_nritems(leaf);
478 int slot;
479
480 if (nritems == 0)
481 return 0;
482
483 /* Check the 0 item */
484 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485 BTRFS_LEAF_DATA_SIZE(root)) {
486 CORRUPT("invalid item offset size pair", leaf, root, 0);
487 return -EIO;
488 }
489
490 /*
491 * Check to make sure each items keys are in the correct order and their
492 * offsets make sense. We only have to loop through nritems-1 because
493 * we check the current slot against the next slot, which verifies the
494 * next slot's offset+size makes sense and that the current's slot
495 * offset is correct.
496 */
497 for (slot = 0; slot < nritems - 1; slot++) {
498 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501 /* Make sure the keys are in the right order */
502 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503 CORRUPT("bad key order", leaf, root, slot);
504 return -EIO;
505 }
506
507 /*
508 * Make sure the offset and ends are right, remember that the
509 * item data starts at the end of the leaf and grows towards the
510 * front.
511 */
512 if (btrfs_item_offset_nr(leaf, slot) !=
513 btrfs_item_end_nr(leaf, slot + 1)) {
514 CORRUPT("slot offset bad", leaf, root, slot);
515 return -EIO;
516 }
517
518 /*
519 * Check to make sure that we don't point outside of the leaf,
520 * just incase all the items are consistent to eachother, but
521 * all point outside of the leaf.
522 */
523 if (btrfs_item_end_nr(leaf, slot) >
524 BTRFS_LEAF_DATA_SIZE(root)) {
525 CORRUPT("slot end outside of leaf", leaf, root, slot);
526 return -EIO;
527 }
528 }
529
530 return 0;
531 }
532
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534 struct page *page, int max_walk)
535 {
536 struct extent_buffer *eb;
537 u64 start = page_offset(page);
538 u64 target = start;
539 u64 min_start;
540
541 if (start < max_walk)
542 min_start = 0;
543 else
544 min_start = start - max_walk;
545
546 while (start >= min_start) {
547 eb = find_extent_buffer(tree, start, 0);
548 if (eb) {
549 /*
550 * we found an extent buffer and it contains our page
551 * horray!
552 */
553 if (eb->start <= target &&
554 eb->start + eb->len > target)
555 return eb;
556
557 /* we found an extent buffer that wasn't for us */
558 free_extent_buffer(eb);
559 return NULL;
560 }
561 if (start == 0)
562 break;
563 start -= PAGE_CACHE_SIZE;
564 }
565 return NULL;
566 }
567
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569 struct extent_state *state, int mirror)
570 {
571 struct extent_io_tree *tree;
572 u64 found_start;
573 int found_level;
574 struct extent_buffer *eb;
575 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576 int ret = 0;
577 int reads_done;
578
579 if (!page->private)
580 goto out;
581
582 tree = &BTRFS_I(page->mapping->host)->io_tree;
583 eb = (struct extent_buffer *)page->private;
584
585 /* the pending IO might have been the only thing that kept this buffer
586 * in memory. Make sure we have a ref for all this other checks
587 */
588 extent_buffer_get(eb);
589
590 reads_done = atomic_dec_and_test(&eb->io_pages);
591 if (!reads_done)
592 goto err;
593
594 eb->read_mirror = mirror;
595 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596 ret = -EIO;
597 goto err;
598 }
599
600 found_start = btrfs_header_bytenr(eb);
601 if (found_start != eb->start) {
602 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603 "%llu %llu\n",
604 (unsigned long long)found_start,
605 (unsigned long long)eb->start);
606 ret = -EIO;
607 goto err;
608 }
609 if (check_tree_block_fsid(root, eb)) {
610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611 (unsigned long long)eb->start);
612 ret = -EIO;
613 goto err;
614 }
615 found_level = btrfs_header_level(eb);
616 if (found_level >= BTRFS_MAX_LEVEL) {
617 btrfs_info(root->fs_info, "bad tree block level %d\n",
618 (int)btrfs_header_level(eb));
619 ret = -EIO;
620 goto err;
621 }
622
623 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
624 eb, found_level);
625
626 ret = csum_tree_block(root, eb, 1);
627 if (ret) {
628 ret = -EIO;
629 goto err;
630 }
631
632 /*
633 * If this is a leaf block and it is corrupt, set the corrupt bit so
634 * that we don't try and read the other copies of this block, just
635 * return -EIO.
636 */
637 if (found_level == 0 && check_leaf(root, eb)) {
638 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
639 ret = -EIO;
640 }
641
642 if (!ret)
643 set_extent_buffer_uptodate(eb);
644 err:
645 if (reads_done &&
646 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
647 btree_readahead_hook(root, eb, eb->start, ret);
648
649 if (ret) {
650 /*
651 * our io error hook is going to dec the io pages
652 * again, we have to make sure it has something
653 * to decrement
654 */
655 atomic_inc(&eb->io_pages);
656 clear_extent_buffer_uptodate(eb);
657 }
658 free_extent_buffer(eb);
659 out:
660 return ret;
661 }
662
663 static int btree_io_failed_hook(struct page *page, int failed_mirror)
664 {
665 struct extent_buffer *eb;
666 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
667
668 eb = (struct extent_buffer *)page->private;
669 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
670 eb->read_mirror = failed_mirror;
671 atomic_dec(&eb->io_pages);
672 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
673 btree_readahead_hook(root, eb, eb->start, -EIO);
674 return -EIO; /* we fixed nothing */
675 }
676
677 static void end_workqueue_bio(struct bio *bio, int err)
678 {
679 struct end_io_wq *end_io_wq = bio->bi_private;
680 struct btrfs_fs_info *fs_info;
681
682 fs_info = end_io_wq->info;
683 end_io_wq->error = err;
684 end_io_wq->work.func = end_workqueue_fn;
685 end_io_wq->work.flags = 0;
686
687 if (bio->bi_rw & REQ_WRITE) {
688 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
689 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
690 &end_io_wq->work);
691 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
692 btrfs_queue_worker(&fs_info->endio_freespace_worker,
693 &end_io_wq->work);
694 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
695 btrfs_queue_worker(&fs_info->endio_raid56_workers,
696 &end_io_wq->work);
697 else
698 btrfs_queue_worker(&fs_info->endio_write_workers,
699 &end_io_wq->work);
700 } else {
701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702 btrfs_queue_worker(&fs_info->endio_raid56_workers,
703 &end_io_wq->work);
704 else if (end_io_wq->metadata)
705 btrfs_queue_worker(&fs_info->endio_meta_workers,
706 &end_io_wq->work);
707 else
708 btrfs_queue_worker(&fs_info->endio_workers,
709 &end_io_wq->work);
710 }
711 }
712
713 /*
714 * For the metadata arg you want
715 *
716 * 0 - if data
717 * 1 - if normal metadta
718 * 2 - if writing to the free space cache area
719 * 3 - raid parity work
720 */
721 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
722 int metadata)
723 {
724 struct end_io_wq *end_io_wq;
725 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
726 if (!end_io_wq)
727 return -ENOMEM;
728
729 end_io_wq->private = bio->bi_private;
730 end_io_wq->end_io = bio->bi_end_io;
731 end_io_wq->info = info;
732 end_io_wq->error = 0;
733 end_io_wq->bio = bio;
734 end_io_wq->metadata = metadata;
735
736 bio->bi_private = end_io_wq;
737 bio->bi_end_io = end_workqueue_bio;
738 return 0;
739 }
740
741 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
742 {
743 unsigned long limit = min_t(unsigned long,
744 info->workers.max_workers,
745 info->fs_devices->open_devices);
746 return 256 * limit;
747 }
748
749 static void run_one_async_start(struct btrfs_work *work)
750 {
751 struct async_submit_bio *async;
752 int ret;
753
754 async = container_of(work, struct async_submit_bio, work);
755 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
756 async->mirror_num, async->bio_flags,
757 async->bio_offset);
758 if (ret)
759 async->error = ret;
760 }
761
762 static void run_one_async_done(struct btrfs_work *work)
763 {
764 struct btrfs_fs_info *fs_info;
765 struct async_submit_bio *async;
766 int limit;
767
768 async = container_of(work, struct async_submit_bio, work);
769 fs_info = BTRFS_I(async->inode)->root->fs_info;
770
771 limit = btrfs_async_submit_limit(fs_info);
772 limit = limit * 2 / 3;
773
774 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
775 waitqueue_active(&fs_info->async_submit_wait))
776 wake_up(&fs_info->async_submit_wait);
777
778 /* If an error occured we just want to clean up the bio and move on */
779 if (async->error) {
780 bio_endio(async->bio, async->error);
781 return;
782 }
783
784 async->submit_bio_done(async->inode, async->rw, async->bio,
785 async->mirror_num, async->bio_flags,
786 async->bio_offset);
787 }
788
789 static void run_one_async_free(struct btrfs_work *work)
790 {
791 struct async_submit_bio *async;
792
793 async = container_of(work, struct async_submit_bio, work);
794 kfree(async);
795 }
796
797 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
798 int rw, struct bio *bio, int mirror_num,
799 unsigned long bio_flags,
800 u64 bio_offset,
801 extent_submit_bio_hook_t *submit_bio_start,
802 extent_submit_bio_hook_t *submit_bio_done)
803 {
804 struct async_submit_bio *async;
805
806 async = kmalloc(sizeof(*async), GFP_NOFS);
807 if (!async)
808 return -ENOMEM;
809
810 async->inode = inode;
811 async->rw = rw;
812 async->bio = bio;
813 async->mirror_num = mirror_num;
814 async->submit_bio_start = submit_bio_start;
815 async->submit_bio_done = submit_bio_done;
816
817 async->work.func = run_one_async_start;
818 async->work.ordered_func = run_one_async_done;
819 async->work.ordered_free = run_one_async_free;
820
821 async->work.flags = 0;
822 async->bio_flags = bio_flags;
823 async->bio_offset = bio_offset;
824
825 async->error = 0;
826
827 atomic_inc(&fs_info->nr_async_submits);
828
829 if (rw & REQ_SYNC)
830 btrfs_set_work_high_prio(&async->work);
831
832 btrfs_queue_worker(&fs_info->workers, &async->work);
833
834 while (atomic_read(&fs_info->async_submit_draining) &&
835 atomic_read(&fs_info->nr_async_submits)) {
836 wait_event(fs_info->async_submit_wait,
837 (atomic_read(&fs_info->nr_async_submits) == 0));
838 }
839
840 return 0;
841 }
842
843 static int btree_csum_one_bio(struct bio *bio)
844 {
845 struct bio_vec *bvec = bio->bi_io_vec;
846 int bio_index = 0;
847 struct btrfs_root *root;
848 int ret = 0;
849
850 WARN_ON(bio->bi_vcnt <= 0);
851 while (bio_index < bio->bi_vcnt) {
852 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
853 ret = csum_dirty_buffer(root, bvec->bv_page);
854 if (ret)
855 break;
856 bio_index++;
857 bvec++;
858 }
859 return ret;
860 }
861
862 static int __btree_submit_bio_start(struct inode *inode, int rw,
863 struct bio *bio, int mirror_num,
864 unsigned long bio_flags,
865 u64 bio_offset)
866 {
867 /*
868 * when we're called for a write, we're already in the async
869 * submission context. Just jump into btrfs_map_bio
870 */
871 return btree_csum_one_bio(bio);
872 }
873
874 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
875 int mirror_num, unsigned long bio_flags,
876 u64 bio_offset)
877 {
878 int ret;
879
880 /*
881 * when we're called for a write, we're already in the async
882 * submission context. Just jump into btrfs_map_bio
883 */
884 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
885 if (ret)
886 bio_endio(bio, ret);
887 return ret;
888 }
889
890 static int check_async_write(struct inode *inode, unsigned long bio_flags)
891 {
892 if (bio_flags & EXTENT_BIO_TREE_LOG)
893 return 0;
894 #ifdef CONFIG_X86
895 if (cpu_has_xmm4_2)
896 return 0;
897 #endif
898 return 1;
899 }
900
901 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
902 int mirror_num, unsigned long bio_flags,
903 u64 bio_offset)
904 {
905 int async = check_async_write(inode, bio_flags);
906 int ret;
907
908 if (!(rw & REQ_WRITE)) {
909 /*
910 * called for a read, do the setup so that checksum validation
911 * can happen in the async kernel threads
912 */
913 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
914 bio, 1);
915 if (ret)
916 goto out_w_error;
917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918 mirror_num, 0);
919 } else if (!async) {
920 ret = btree_csum_one_bio(bio);
921 if (ret)
922 goto out_w_error;
923 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
924 mirror_num, 0);
925 } else {
926 /*
927 * kthread helpers are used to submit writes so that
928 * checksumming can happen in parallel across all CPUs
929 */
930 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
931 inode, rw, bio, mirror_num, 0,
932 bio_offset,
933 __btree_submit_bio_start,
934 __btree_submit_bio_done);
935 }
936
937 if (ret) {
938 out_w_error:
939 bio_endio(bio, ret);
940 }
941 return ret;
942 }
943
944 #ifdef CONFIG_MIGRATION
945 static int btree_migratepage(struct address_space *mapping,
946 struct page *newpage, struct page *page,
947 enum migrate_mode mode)
948 {
949 /*
950 * we can't safely write a btree page from here,
951 * we haven't done the locking hook
952 */
953 if (PageDirty(page))
954 return -EAGAIN;
955 /*
956 * Buffers may be managed in a filesystem specific way.
957 * We must have no buffers or drop them.
958 */
959 if (page_has_private(page) &&
960 !try_to_release_page(page, GFP_KERNEL))
961 return -EAGAIN;
962 return migrate_page(mapping, newpage, page, mode);
963 }
964 #endif
965
966
967 static int btree_writepages(struct address_space *mapping,
968 struct writeback_control *wbc)
969 {
970 struct extent_io_tree *tree;
971 struct btrfs_fs_info *fs_info;
972 int ret;
973
974 tree = &BTRFS_I(mapping->host)->io_tree;
975 if (wbc->sync_mode == WB_SYNC_NONE) {
976
977 if (wbc->for_kupdate)
978 return 0;
979
980 fs_info = BTRFS_I(mapping->host)->root->fs_info;
981 /* this is a bit racy, but that's ok */
982 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
983 BTRFS_DIRTY_METADATA_THRESH);
984 if (ret < 0)
985 return 0;
986 }
987 return btree_write_cache_pages(mapping, wbc);
988 }
989
990 static int btree_readpage(struct file *file, struct page *page)
991 {
992 struct extent_io_tree *tree;
993 tree = &BTRFS_I(page->mapping->host)->io_tree;
994 return extent_read_full_page(tree, page, btree_get_extent, 0);
995 }
996
997 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
998 {
999 if (PageWriteback(page) || PageDirty(page))
1000 return 0;
1001 /*
1002 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
1003 * slab allocation from alloc_extent_state down the callchain where
1004 * it'd hit a BUG_ON as those flags are not allowed.
1005 */
1006 gfp_flags &= ~GFP_SLAB_BUG_MASK;
1007
1008 return try_release_extent_buffer(page, gfp_flags);
1009 }
1010
1011 static void btree_invalidatepage(struct page *page, unsigned long offset)
1012 {
1013 struct extent_io_tree *tree;
1014 tree = &BTRFS_I(page->mapping->host)->io_tree;
1015 extent_invalidatepage(tree, page, offset);
1016 btree_releasepage(page, GFP_NOFS);
1017 if (PagePrivate(page)) {
1018 printk(KERN_WARNING "btrfs warning page private not zero "
1019 "on page %llu\n", (unsigned long long)page_offset(page));
1020 ClearPagePrivate(page);
1021 set_page_private(page, 0);
1022 page_cache_release(page);
1023 }
1024 }
1025
1026 static int btree_set_page_dirty(struct page *page)
1027 {
1028 #ifdef DEBUG
1029 struct extent_buffer *eb;
1030
1031 BUG_ON(!PagePrivate(page));
1032 eb = (struct extent_buffer *)page->private;
1033 BUG_ON(!eb);
1034 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1035 BUG_ON(!atomic_read(&eb->refs));
1036 btrfs_assert_tree_locked(eb);
1037 #endif
1038 return __set_page_dirty_nobuffers(page);
1039 }
1040
1041 static const struct address_space_operations btree_aops = {
1042 .readpage = btree_readpage,
1043 .writepages = btree_writepages,
1044 .releasepage = btree_releasepage,
1045 .invalidatepage = btree_invalidatepage,
1046 #ifdef CONFIG_MIGRATION
1047 .migratepage = btree_migratepage,
1048 #endif
1049 .set_page_dirty = btree_set_page_dirty,
1050 };
1051
1052 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1053 u64 parent_transid)
1054 {
1055 struct extent_buffer *buf = NULL;
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 int ret = 0;
1058
1059 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1060 if (!buf)
1061 return 0;
1062 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1063 buf, 0, WAIT_NONE, btree_get_extent, 0);
1064 free_extent_buffer(buf);
1065 return ret;
1066 }
1067
1068 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1069 int mirror_num, struct extent_buffer **eb)
1070 {
1071 struct extent_buffer *buf = NULL;
1072 struct inode *btree_inode = root->fs_info->btree_inode;
1073 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1074 int ret;
1075
1076 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1077 if (!buf)
1078 return 0;
1079
1080 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1081
1082 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1083 btree_get_extent, mirror_num);
1084 if (ret) {
1085 free_extent_buffer(buf);
1086 return ret;
1087 }
1088
1089 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1090 free_extent_buffer(buf);
1091 return -EIO;
1092 } else if (extent_buffer_uptodate(buf)) {
1093 *eb = buf;
1094 } else {
1095 free_extent_buffer(buf);
1096 }
1097 return 0;
1098 }
1099
1100 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1101 u64 bytenr, u32 blocksize)
1102 {
1103 struct inode *btree_inode = root->fs_info->btree_inode;
1104 struct extent_buffer *eb;
1105 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1106 bytenr, blocksize);
1107 return eb;
1108 }
1109
1110 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1111 u64 bytenr, u32 blocksize)
1112 {
1113 struct inode *btree_inode = root->fs_info->btree_inode;
1114 struct extent_buffer *eb;
1115
1116 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1117 bytenr, blocksize);
1118 return eb;
1119 }
1120
1121
1122 int btrfs_write_tree_block(struct extent_buffer *buf)
1123 {
1124 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1125 buf->start + buf->len - 1);
1126 }
1127
1128 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1129 {
1130 return filemap_fdatawait_range(buf->pages[0]->mapping,
1131 buf->start, buf->start + buf->len - 1);
1132 }
1133
1134 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1135 u32 blocksize, u64 parent_transid)
1136 {
1137 struct extent_buffer *buf = NULL;
1138 int ret;
1139
1140 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1141 if (!buf)
1142 return NULL;
1143
1144 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1145 return buf;
1146
1147 }
1148
1149 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1150 struct extent_buffer *buf)
1151 {
1152 struct btrfs_fs_info *fs_info = root->fs_info;
1153
1154 if (btrfs_header_generation(buf) ==
1155 fs_info->running_transaction->transid) {
1156 btrfs_assert_tree_locked(buf);
1157
1158 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1159 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1160 -buf->len,
1161 fs_info->dirty_metadata_batch);
1162 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1163 btrfs_set_lock_blocking(buf);
1164 clear_extent_buffer_dirty(buf);
1165 }
1166 }
1167 }
1168
1169 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1170 u32 stripesize, struct btrfs_root *root,
1171 struct btrfs_fs_info *fs_info,
1172 u64 objectid)
1173 {
1174 root->node = NULL;
1175 root->commit_root = NULL;
1176 root->sectorsize = sectorsize;
1177 root->nodesize = nodesize;
1178 root->leafsize = leafsize;
1179 root->stripesize = stripesize;
1180 root->ref_cows = 0;
1181 root->track_dirty = 0;
1182 root->in_radix = 0;
1183 root->orphan_item_inserted = 0;
1184 root->orphan_cleanup_state = 0;
1185
1186 root->objectid = objectid;
1187 root->last_trans = 0;
1188 root->highest_objectid = 0;
1189 root->name = NULL;
1190 root->inode_tree = RB_ROOT;
1191 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1192 root->block_rsv = NULL;
1193 root->orphan_block_rsv = NULL;
1194
1195 INIT_LIST_HEAD(&root->dirty_list);
1196 INIT_LIST_HEAD(&root->root_list);
1197 INIT_LIST_HEAD(&root->logged_list[0]);
1198 INIT_LIST_HEAD(&root->logged_list[1]);
1199 spin_lock_init(&root->orphan_lock);
1200 spin_lock_init(&root->inode_lock);
1201 spin_lock_init(&root->accounting_lock);
1202 spin_lock_init(&root->log_extents_lock[0]);
1203 spin_lock_init(&root->log_extents_lock[1]);
1204 mutex_init(&root->objectid_mutex);
1205 mutex_init(&root->log_mutex);
1206 init_waitqueue_head(&root->log_writer_wait);
1207 init_waitqueue_head(&root->log_commit_wait[0]);
1208 init_waitqueue_head(&root->log_commit_wait[1]);
1209 atomic_set(&root->log_commit[0], 0);
1210 atomic_set(&root->log_commit[1], 0);
1211 atomic_set(&root->log_writers, 0);
1212 atomic_set(&root->log_batch, 0);
1213 atomic_set(&root->orphan_inodes, 0);
1214 root->log_transid = 0;
1215 root->last_log_commit = 0;
1216 extent_io_tree_init(&root->dirty_log_pages,
1217 fs_info->btree_inode->i_mapping);
1218
1219 memset(&root->root_key, 0, sizeof(root->root_key));
1220 memset(&root->root_item, 0, sizeof(root->root_item));
1221 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1222 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1223 root->defrag_trans_start = fs_info->generation;
1224 init_completion(&root->kobj_unregister);
1225 root->defrag_running = 0;
1226 root->root_key.objectid = objectid;
1227 root->anon_dev = 0;
1228
1229 spin_lock_init(&root->root_item_lock);
1230 }
1231
1232 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1233 struct btrfs_fs_info *fs_info,
1234 u64 objectid,
1235 struct btrfs_root *root)
1236 {
1237 int ret;
1238 u32 blocksize;
1239 u64 generation;
1240
1241 __setup_root(tree_root->nodesize, tree_root->leafsize,
1242 tree_root->sectorsize, tree_root->stripesize,
1243 root, fs_info, objectid);
1244 ret = btrfs_find_last_root(tree_root, objectid,
1245 &root->root_item, &root->root_key);
1246 if (ret > 0)
1247 return -ENOENT;
1248 else if (ret < 0)
1249 return ret;
1250
1251 generation = btrfs_root_generation(&root->root_item);
1252 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1253 root->commit_root = NULL;
1254 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1255 blocksize, generation);
1256 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1257 free_extent_buffer(root->node);
1258 root->node = NULL;
1259 return -EIO;
1260 }
1261 root->commit_root = btrfs_root_node(root);
1262 return 0;
1263 }
1264
1265 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1266 {
1267 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1268 if (root)
1269 root->fs_info = fs_info;
1270 return root;
1271 }
1272
1273 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1274 struct btrfs_fs_info *fs_info,
1275 u64 objectid)
1276 {
1277 struct extent_buffer *leaf;
1278 struct btrfs_root *tree_root = fs_info->tree_root;
1279 struct btrfs_root *root;
1280 struct btrfs_key key;
1281 int ret = 0;
1282 u64 bytenr;
1283
1284 root = btrfs_alloc_root(fs_info);
1285 if (!root)
1286 return ERR_PTR(-ENOMEM);
1287
1288 __setup_root(tree_root->nodesize, tree_root->leafsize,
1289 tree_root->sectorsize, tree_root->stripesize,
1290 root, fs_info, objectid);
1291 root->root_key.objectid = objectid;
1292 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1293 root->root_key.offset = 0;
1294
1295 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1296 0, objectid, NULL, 0, 0, 0);
1297 if (IS_ERR(leaf)) {
1298 ret = PTR_ERR(leaf);
1299 leaf = NULL;
1300 goto fail;
1301 }
1302
1303 bytenr = leaf->start;
1304 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1305 btrfs_set_header_bytenr(leaf, leaf->start);
1306 btrfs_set_header_generation(leaf, trans->transid);
1307 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1308 btrfs_set_header_owner(leaf, objectid);
1309 root->node = leaf;
1310
1311 write_extent_buffer(leaf, fs_info->fsid,
1312 (unsigned long)btrfs_header_fsid(leaf),
1313 BTRFS_FSID_SIZE);
1314 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1315 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1316 BTRFS_UUID_SIZE);
1317 btrfs_mark_buffer_dirty(leaf);
1318
1319 root->commit_root = btrfs_root_node(root);
1320 root->track_dirty = 1;
1321
1322
1323 root->root_item.flags = 0;
1324 root->root_item.byte_limit = 0;
1325 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1326 btrfs_set_root_generation(&root->root_item, trans->transid);
1327 btrfs_set_root_level(&root->root_item, 0);
1328 btrfs_set_root_refs(&root->root_item, 1);
1329 btrfs_set_root_used(&root->root_item, leaf->len);
1330 btrfs_set_root_last_snapshot(&root->root_item, 0);
1331 btrfs_set_root_dirid(&root->root_item, 0);
1332 root->root_item.drop_level = 0;
1333
1334 key.objectid = objectid;
1335 key.type = BTRFS_ROOT_ITEM_KEY;
1336 key.offset = 0;
1337 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1338 if (ret)
1339 goto fail;
1340
1341 btrfs_tree_unlock(leaf);
1342
1343 return root;
1344
1345 fail:
1346 if (leaf) {
1347 btrfs_tree_unlock(leaf);
1348 free_extent_buffer(leaf);
1349 }
1350 kfree(root);
1351
1352 return ERR_PTR(ret);
1353 }
1354
1355 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1356 struct btrfs_fs_info *fs_info)
1357 {
1358 struct btrfs_root *root;
1359 struct btrfs_root *tree_root = fs_info->tree_root;
1360 struct extent_buffer *leaf;
1361
1362 root = btrfs_alloc_root(fs_info);
1363 if (!root)
1364 return ERR_PTR(-ENOMEM);
1365
1366 __setup_root(tree_root->nodesize, tree_root->leafsize,
1367 tree_root->sectorsize, tree_root->stripesize,
1368 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1369
1370 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1371 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1372 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1373 /*
1374 * log trees do not get reference counted because they go away
1375 * before a real commit is actually done. They do store pointers
1376 * to file data extents, and those reference counts still get
1377 * updated (along with back refs to the log tree).
1378 */
1379 root->ref_cows = 0;
1380
1381 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1382 BTRFS_TREE_LOG_OBJECTID, NULL,
1383 0, 0, 0);
1384 if (IS_ERR(leaf)) {
1385 kfree(root);
1386 return ERR_CAST(leaf);
1387 }
1388
1389 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1390 btrfs_set_header_bytenr(leaf, leaf->start);
1391 btrfs_set_header_generation(leaf, trans->transid);
1392 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1393 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1394 root->node = leaf;
1395
1396 write_extent_buffer(root->node, root->fs_info->fsid,
1397 (unsigned long)btrfs_header_fsid(root->node),
1398 BTRFS_FSID_SIZE);
1399 btrfs_mark_buffer_dirty(root->node);
1400 btrfs_tree_unlock(root->node);
1401 return root;
1402 }
1403
1404 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1405 struct btrfs_fs_info *fs_info)
1406 {
1407 struct btrfs_root *log_root;
1408
1409 log_root = alloc_log_tree(trans, fs_info);
1410 if (IS_ERR(log_root))
1411 return PTR_ERR(log_root);
1412 WARN_ON(fs_info->log_root_tree);
1413 fs_info->log_root_tree = log_root;
1414 return 0;
1415 }
1416
1417 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1418 struct btrfs_root *root)
1419 {
1420 struct btrfs_root *log_root;
1421 struct btrfs_inode_item *inode_item;
1422
1423 log_root = alloc_log_tree(trans, root->fs_info);
1424 if (IS_ERR(log_root))
1425 return PTR_ERR(log_root);
1426
1427 log_root->last_trans = trans->transid;
1428 log_root->root_key.offset = root->root_key.objectid;
1429
1430 inode_item = &log_root->root_item.inode;
1431 inode_item->generation = cpu_to_le64(1);
1432 inode_item->size = cpu_to_le64(3);
1433 inode_item->nlink = cpu_to_le32(1);
1434 inode_item->nbytes = cpu_to_le64(root->leafsize);
1435 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1436
1437 btrfs_set_root_node(&log_root->root_item, log_root->node);
1438
1439 WARN_ON(root->log_root);
1440 root->log_root = log_root;
1441 root->log_transid = 0;
1442 root->last_log_commit = 0;
1443 return 0;
1444 }
1445
1446 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1447 struct btrfs_key *location)
1448 {
1449 struct btrfs_root *root;
1450 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1451 struct btrfs_path *path;
1452 struct extent_buffer *l;
1453 u64 generation;
1454 u32 blocksize;
1455 int ret = 0;
1456 int slot;
1457
1458 root = btrfs_alloc_root(fs_info);
1459 if (!root)
1460 return ERR_PTR(-ENOMEM);
1461 if (location->offset == (u64)-1) {
1462 ret = find_and_setup_root(tree_root, fs_info,
1463 location->objectid, root);
1464 if (ret) {
1465 kfree(root);
1466 return ERR_PTR(ret);
1467 }
1468 goto out;
1469 }
1470
1471 __setup_root(tree_root->nodesize, tree_root->leafsize,
1472 tree_root->sectorsize, tree_root->stripesize,
1473 root, fs_info, location->objectid);
1474
1475 path = btrfs_alloc_path();
1476 if (!path) {
1477 kfree(root);
1478 return ERR_PTR(-ENOMEM);
1479 }
1480 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1481 if (ret == 0) {
1482 l = path->nodes[0];
1483 slot = path->slots[0];
1484 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1485 memcpy(&root->root_key, location, sizeof(*location));
1486 }
1487 btrfs_free_path(path);
1488 if (ret) {
1489 kfree(root);
1490 if (ret > 0)
1491 ret = -ENOENT;
1492 return ERR_PTR(ret);
1493 }
1494
1495 generation = btrfs_root_generation(&root->root_item);
1496 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1497 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1498 blocksize, generation);
1499 if (!root->node || !extent_buffer_uptodate(root->node)) {
1500 ret = (!root->node) ? -ENOMEM : -EIO;
1501
1502 free_extent_buffer(root->node);
1503 kfree(root);
1504 return ERR_PTR(ret);
1505 }
1506
1507 root->commit_root = btrfs_root_node(root);
1508 BUG_ON(!root->node); /* -ENOMEM */
1509 out:
1510 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1511 root->ref_cows = 1;
1512 btrfs_check_and_init_root_item(&root->root_item);
1513 }
1514
1515 return root;
1516 }
1517
1518 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1519 struct btrfs_key *location)
1520 {
1521 struct btrfs_root *root;
1522 int ret;
1523
1524 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1525 return fs_info->tree_root;
1526 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1527 return fs_info->extent_root;
1528 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1529 return fs_info->chunk_root;
1530 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1531 return fs_info->dev_root;
1532 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1533 return fs_info->csum_root;
1534 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1535 return fs_info->quota_root ? fs_info->quota_root :
1536 ERR_PTR(-ENOENT);
1537 again:
1538 spin_lock(&fs_info->fs_roots_radix_lock);
1539 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1540 (unsigned long)location->objectid);
1541 spin_unlock(&fs_info->fs_roots_radix_lock);
1542 if (root)
1543 return root;
1544
1545 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1546 if (IS_ERR(root))
1547 return root;
1548
1549 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1550 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1551 GFP_NOFS);
1552 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1553 ret = -ENOMEM;
1554 goto fail;
1555 }
1556
1557 btrfs_init_free_ino_ctl(root);
1558 mutex_init(&root->fs_commit_mutex);
1559 spin_lock_init(&root->cache_lock);
1560 init_waitqueue_head(&root->cache_wait);
1561
1562 ret = get_anon_bdev(&root->anon_dev);
1563 if (ret)
1564 goto fail;
1565
1566 if (btrfs_root_refs(&root->root_item) == 0) {
1567 ret = -ENOENT;
1568 goto fail;
1569 }
1570
1571 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1572 if (ret < 0)
1573 goto fail;
1574 if (ret == 0)
1575 root->orphan_item_inserted = 1;
1576
1577 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1578 if (ret)
1579 goto fail;
1580
1581 spin_lock(&fs_info->fs_roots_radix_lock);
1582 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1583 (unsigned long)root->root_key.objectid,
1584 root);
1585 if (ret == 0)
1586 root->in_radix = 1;
1587
1588 spin_unlock(&fs_info->fs_roots_radix_lock);
1589 radix_tree_preload_end();
1590 if (ret) {
1591 if (ret == -EEXIST) {
1592 free_fs_root(root);
1593 goto again;
1594 }
1595 goto fail;
1596 }
1597
1598 ret = btrfs_find_dead_roots(fs_info->tree_root,
1599 root->root_key.objectid);
1600 WARN_ON(ret);
1601 return root;
1602 fail:
1603 free_fs_root(root);
1604 return ERR_PTR(ret);
1605 }
1606
1607 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1608 {
1609 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1610 int ret = 0;
1611 struct btrfs_device *device;
1612 struct backing_dev_info *bdi;
1613
1614 rcu_read_lock();
1615 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1616 if (!device->bdev)
1617 continue;
1618 bdi = blk_get_backing_dev_info(device->bdev);
1619 if (bdi && bdi_congested(bdi, bdi_bits)) {
1620 ret = 1;
1621 break;
1622 }
1623 }
1624 rcu_read_unlock();
1625 return ret;
1626 }
1627
1628 /*
1629 * If this fails, caller must call bdi_destroy() to get rid of the
1630 * bdi again.
1631 */
1632 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1633 {
1634 int err;
1635
1636 bdi->capabilities = BDI_CAP_MAP_COPY;
1637 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1638 if (err)
1639 return err;
1640
1641 bdi->ra_pages = default_backing_dev_info.ra_pages;
1642 bdi->congested_fn = btrfs_congested_fn;
1643 bdi->congested_data = info;
1644 return 0;
1645 }
1646
1647 /*
1648 * called by the kthread helper functions to finally call the bio end_io
1649 * functions. This is where read checksum verification actually happens
1650 */
1651 static void end_workqueue_fn(struct btrfs_work *work)
1652 {
1653 struct bio *bio;
1654 struct end_io_wq *end_io_wq;
1655 struct btrfs_fs_info *fs_info;
1656 int error;
1657
1658 end_io_wq = container_of(work, struct end_io_wq, work);
1659 bio = end_io_wq->bio;
1660 fs_info = end_io_wq->info;
1661
1662 error = end_io_wq->error;
1663 bio->bi_private = end_io_wq->private;
1664 bio->bi_end_io = end_io_wq->end_io;
1665 kfree(end_io_wq);
1666 bio_endio(bio, error);
1667 }
1668
1669 static int cleaner_kthread(void *arg)
1670 {
1671 struct btrfs_root *root = arg;
1672
1673 do {
1674 int again = 0;
1675
1676 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1677 down_read_trylock(&root->fs_info->sb->s_umount)) {
1678 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1679 btrfs_run_delayed_iputs(root);
1680 again = btrfs_clean_one_deleted_snapshot(root);
1681 mutex_unlock(&root->fs_info->cleaner_mutex);
1682 }
1683 btrfs_run_defrag_inodes(root->fs_info);
1684 up_read(&root->fs_info->sb->s_umount);
1685 }
1686
1687 if (!try_to_freeze() && !again) {
1688 set_current_state(TASK_INTERRUPTIBLE);
1689 if (!kthread_should_stop())
1690 schedule();
1691 __set_current_state(TASK_RUNNING);
1692 }
1693 } while (!kthread_should_stop());
1694 return 0;
1695 }
1696
1697 static int transaction_kthread(void *arg)
1698 {
1699 struct btrfs_root *root = arg;
1700 struct btrfs_trans_handle *trans;
1701 struct btrfs_transaction *cur;
1702 u64 transid;
1703 unsigned long now;
1704 unsigned long delay;
1705 bool cannot_commit;
1706
1707 do {
1708 cannot_commit = false;
1709 delay = HZ * 30;
1710 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1711
1712 spin_lock(&root->fs_info->trans_lock);
1713 cur = root->fs_info->running_transaction;
1714 if (!cur) {
1715 spin_unlock(&root->fs_info->trans_lock);
1716 goto sleep;
1717 }
1718
1719 now = get_seconds();
1720 if (!cur->blocked &&
1721 (now < cur->start_time || now - cur->start_time < 30)) {
1722 spin_unlock(&root->fs_info->trans_lock);
1723 delay = HZ * 5;
1724 goto sleep;
1725 }
1726 transid = cur->transid;
1727 spin_unlock(&root->fs_info->trans_lock);
1728
1729 /* If the file system is aborted, this will always fail. */
1730 trans = btrfs_attach_transaction(root);
1731 if (IS_ERR(trans)) {
1732 if (PTR_ERR(trans) != -ENOENT)
1733 cannot_commit = true;
1734 goto sleep;
1735 }
1736 if (transid == trans->transid) {
1737 btrfs_commit_transaction(trans, root);
1738 } else {
1739 btrfs_end_transaction(trans, root);
1740 }
1741 sleep:
1742 wake_up_process(root->fs_info->cleaner_kthread);
1743 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1744
1745 if (!try_to_freeze()) {
1746 set_current_state(TASK_INTERRUPTIBLE);
1747 if (!kthread_should_stop() &&
1748 (!btrfs_transaction_blocked(root->fs_info) ||
1749 cannot_commit))
1750 schedule_timeout(delay);
1751 __set_current_state(TASK_RUNNING);
1752 }
1753 } while (!kthread_should_stop());
1754 return 0;
1755 }
1756
1757 /*
1758 * this will find the highest generation in the array of
1759 * root backups. The index of the highest array is returned,
1760 * or -1 if we can't find anything.
1761 *
1762 * We check to make sure the array is valid by comparing the
1763 * generation of the latest root in the array with the generation
1764 * in the super block. If they don't match we pitch it.
1765 */
1766 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1767 {
1768 u64 cur;
1769 int newest_index = -1;
1770 struct btrfs_root_backup *root_backup;
1771 int i;
1772
1773 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1774 root_backup = info->super_copy->super_roots + i;
1775 cur = btrfs_backup_tree_root_gen(root_backup);
1776 if (cur == newest_gen)
1777 newest_index = i;
1778 }
1779
1780 /* check to see if we actually wrapped around */
1781 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1782 root_backup = info->super_copy->super_roots;
1783 cur = btrfs_backup_tree_root_gen(root_backup);
1784 if (cur == newest_gen)
1785 newest_index = 0;
1786 }
1787 return newest_index;
1788 }
1789
1790
1791 /*
1792 * find the oldest backup so we know where to store new entries
1793 * in the backup array. This will set the backup_root_index
1794 * field in the fs_info struct
1795 */
1796 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1797 u64 newest_gen)
1798 {
1799 int newest_index = -1;
1800
1801 newest_index = find_newest_super_backup(info, newest_gen);
1802 /* if there was garbage in there, just move along */
1803 if (newest_index == -1) {
1804 info->backup_root_index = 0;
1805 } else {
1806 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1807 }
1808 }
1809
1810 /*
1811 * copy all the root pointers into the super backup array.
1812 * this will bump the backup pointer by one when it is
1813 * done
1814 */
1815 static void backup_super_roots(struct btrfs_fs_info *info)
1816 {
1817 int next_backup;
1818 struct btrfs_root_backup *root_backup;
1819 int last_backup;
1820
1821 next_backup = info->backup_root_index;
1822 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1823 BTRFS_NUM_BACKUP_ROOTS;
1824
1825 /*
1826 * just overwrite the last backup if we're at the same generation
1827 * this happens only at umount
1828 */
1829 root_backup = info->super_for_commit->super_roots + last_backup;
1830 if (btrfs_backup_tree_root_gen(root_backup) ==
1831 btrfs_header_generation(info->tree_root->node))
1832 next_backup = last_backup;
1833
1834 root_backup = info->super_for_commit->super_roots + next_backup;
1835
1836 /*
1837 * make sure all of our padding and empty slots get zero filled
1838 * regardless of which ones we use today
1839 */
1840 memset(root_backup, 0, sizeof(*root_backup));
1841
1842 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1843
1844 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1845 btrfs_set_backup_tree_root_gen(root_backup,
1846 btrfs_header_generation(info->tree_root->node));
1847
1848 btrfs_set_backup_tree_root_level(root_backup,
1849 btrfs_header_level(info->tree_root->node));
1850
1851 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1852 btrfs_set_backup_chunk_root_gen(root_backup,
1853 btrfs_header_generation(info->chunk_root->node));
1854 btrfs_set_backup_chunk_root_level(root_backup,
1855 btrfs_header_level(info->chunk_root->node));
1856
1857 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1858 btrfs_set_backup_extent_root_gen(root_backup,
1859 btrfs_header_generation(info->extent_root->node));
1860 btrfs_set_backup_extent_root_level(root_backup,
1861 btrfs_header_level(info->extent_root->node));
1862
1863 /*
1864 * we might commit during log recovery, which happens before we set
1865 * the fs_root. Make sure it is valid before we fill it in.
1866 */
1867 if (info->fs_root && info->fs_root->node) {
1868 btrfs_set_backup_fs_root(root_backup,
1869 info->fs_root->node->start);
1870 btrfs_set_backup_fs_root_gen(root_backup,
1871 btrfs_header_generation(info->fs_root->node));
1872 btrfs_set_backup_fs_root_level(root_backup,
1873 btrfs_header_level(info->fs_root->node));
1874 }
1875
1876 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1877 btrfs_set_backup_dev_root_gen(root_backup,
1878 btrfs_header_generation(info->dev_root->node));
1879 btrfs_set_backup_dev_root_level(root_backup,
1880 btrfs_header_level(info->dev_root->node));
1881
1882 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1883 btrfs_set_backup_csum_root_gen(root_backup,
1884 btrfs_header_generation(info->csum_root->node));
1885 btrfs_set_backup_csum_root_level(root_backup,
1886 btrfs_header_level(info->csum_root->node));
1887
1888 btrfs_set_backup_total_bytes(root_backup,
1889 btrfs_super_total_bytes(info->super_copy));
1890 btrfs_set_backup_bytes_used(root_backup,
1891 btrfs_super_bytes_used(info->super_copy));
1892 btrfs_set_backup_num_devices(root_backup,
1893 btrfs_super_num_devices(info->super_copy));
1894
1895 /*
1896 * if we don't copy this out to the super_copy, it won't get remembered
1897 * for the next commit
1898 */
1899 memcpy(&info->super_copy->super_roots,
1900 &info->super_for_commit->super_roots,
1901 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1902 }
1903
1904 /*
1905 * this copies info out of the root backup array and back into
1906 * the in-memory super block. It is meant to help iterate through
1907 * the array, so you send it the number of backups you've already
1908 * tried and the last backup index you used.
1909 *
1910 * this returns -1 when it has tried all the backups
1911 */
1912 static noinline int next_root_backup(struct btrfs_fs_info *info,
1913 struct btrfs_super_block *super,
1914 int *num_backups_tried, int *backup_index)
1915 {
1916 struct btrfs_root_backup *root_backup;
1917 int newest = *backup_index;
1918
1919 if (*num_backups_tried == 0) {
1920 u64 gen = btrfs_super_generation(super);
1921
1922 newest = find_newest_super_backup(info, gen);
1923 if (newest == -1)
1924 return -1;
1925
1926 *backup_index = newest;
1927 *num_backups_tried = 1;
1928 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1929 /* we've tried all the backups, all done */
1930 return -1;
1931 } else {
1932 /* jump to the next oldest backup */
1933 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1934 BTRFS_NUM_BACKUP_ROOTS;
1935 *backup_index = newest;
1936 *num_backups_tried += 1;
1937 }
1938 root_backup = super->super_roots + newest;
1939
1940 btrfs_set_super_generation(super,
1941 btrfs_backup_tree_root_gen(root_backup));
1942 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1943 btrfs_set_super_root_level(super,
1944 btrfs_backup_tree_root_level(root_backup));
1945 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1946
1947 /*
1948 * fixme: the total bytes and num_devices need to match or we should
1949 * need a fsck
1950 */
1951 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1952 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1953 return 0;
1954 }
1955
1956 /* helper to cleanup workers */
1957 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1958 {
1959 btrfs_stop_workers(&fs_info->generic_worker);
1960 btrfs_stop_workers(&fs_info->fixup_workers);
1961 btrfs_stop_workers(&fs_info->delalloc_workers);
1962 btrfs_stop_workers(&fs_info->workers);
1963 btrfs_stop_workers(&fs_info->endio_workers);
1964 btrfs_stop_workers(&fs_info->endio_meta_workers);
1965 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1966 btrfs_stop_workers(&fs_info->rmw_workers);
1967 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1968 btrfs_stop_workers(&fs_info->endio_write_workers);
1969 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1970 btrfs_stop_workers(&fs_info->submit_workers);
1971 btrfs_stop_workers(&fs_info->delayed_workers);
1972 btrfs_stop_workers(&fs_info->caching_workers);
1973 btrfs_stop_workers(&fs_info->readahead_workers);
1974 btrfs_stop_workers(&fs_info->flush_workers);
1975 }
1976
1977 /* helper to cleanup tree roots */
1978 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1979 {
1980 free_extent_buffer(info->tree_root->node);
1981 free_extent_buffer(info->tree_root->commit_root);
1982 free_extent_buffer(info->dev_root->node);
1983 free_extent_buffer(info->dev_root->commit_root);
1984 free_extent_buffer(info->extent_root->node);
1985 free_extent_buffer(info->extent_root->commit_root);
1986 free_extent_buffer(info->csum_root->node);
1987 free_extent_buffer(info->csum_root->commit_root);
1988 if (info->quota_root) {
1989 free_extent_buffer(info->quota_root->node);
1990 free_extent_buffer(info->quota_root->commit_root);
1991 }
1992
1993 info->tree_root->node = NULL;
1994 info->tree_root->commit_root = NULL;
1995 info->dev_root->node = NULL;
1996 info->dev_root->commit_root = NULL;
1997 info->extent_root->node = NULL;
1998 info->extent_root->commit_root = NULL;
1999 info->csum_root->node = NULL;
2000 info->csum_root->commit_root = NULL;
2001 if (info->quota_root) {
2002 info->quota_root->node = NULL;
2003 info->quota_root->commit_root = NULL;
2004 }
2005
2006 if (chunk_root) {
2007 free_extent_buffer(info->chunk_root->node);
2008 free_extent_buffer(info->chunk_root->commit_root);
2009 info->chunk_root->node = NULL;
2010 info->chunk_root->commit_root = NULL;
2011 }
2012 }
2013
2014 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2015 {
2016 int ret;
2017 struct btrfs_root *gang[8];
2018 int i;
2019
2020 while (!list_empty(&fs_info->dead_roots)) {
2021 gang[0] = list_entry(fs_info->dead_roots.next,
2022 struct btrfs_root, root_list);
2023 list_del(&gang[0]->root_list);
2024
2025 if (gang[0]->in_radix) {
2026 btrfs_free_fs_root(fs_info, gang[0]);
2027 } else {
2028 free_extent_buffer(gang[0]->node);
2029 free_extent_buffer(gang[0]->commit_root);
2030 kfree(gang[0]);
2031 }
2032 }
2033
2034 while (1) {
2035 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2036 (void **)gang, 0,
2037 ARRAY_SIZE(gang));
2038 if (!ret)
2039 break;
2040 for (i = 0; i < ret; i++)
2041 btrfs_free_fs_root(fs_info, gang[i]);
2042 }
2043 }
2044
2045 int open_ctree(struct super_block *sb,
2046 struct btrfs_fs_devices *fs_devices,
2047 char *options)
2048 {
2049 u32 sectorsize;
2050 u32 nodesize;
2051 u32 leafsize;
2052 u32 blocksize;
2053 u32 stripesize;
2054 u64 generation;
2055 u64 features;
2056 struct btrfs_key location;
2057 struct buffer_head *bh;
2058 struct btrfs_super_block *disk_super;
2059 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2060 struct btrfs_root *tree_root;
2061 struct btrfs_root *extent_root;
2062 struct btrfs_root *csum_root;
2063 struct btrfs_root *chunk_root;
2064 struct btrfs_root *dev_root;
2065 struct btrfs_root *quota_root;
2066 struct btrfs_root *log_tree_root;
2067 int ret;
2068 int err = -EINVAL;
2069 int num_backups_tried = 0;
2070 int backup_index = 0;
2071
2072 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2073 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2074 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2075 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2076 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2077 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2078
2079 if (!tree_root || !extent_root || !csum_root ||
2080 !chunk_root || !dev_root || !quota_root) {
2081 err = -ENOMEM;
2082 goto fail;
2083 }
2084
2085 ret = init_srcu_struct(&fs_info->subvol_srcu);
2086 if (ret) {
2087 err = ret;
2088 goto fail;
2089 }
2090
2091 ret = setup_bdi(fs_info, &fs_info->bdi);
2092 if (ret) {
2093 err = ret;
2094 goto fail_srcu;
2095 }
2096
2097 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2098 if (ret) {
2099 err = ret;
2100 goto fail_bdi;
2101 }
2102 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2103 (1 + ilog2(nr_cpu_ids));
2104
2105 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2106 if (ret) {
2107 err = ret;
2108 goto fail_dirty_metadata_bytes;
2109 }
2110
2111 fs_info->btree_inode = new_inode(sb);
2112 if (!fs_info->btree_inode) {
2113 err = -ENOMEM;
2114 goto fail_delalloc_bytes;
2115 }
2116
2117 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2118
2119 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2120 INIT_LIST_HEAD(&fs_info->trans_list);
2121 INIT_LIST_HEAD(&fs_info->dead_roots);
2122 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2123 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2124 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2125 spin_lock_init(&fs_info->delalloc_lock);
2126 spin_lock_init(&fs_info->trans_lock);
2127 spin_lock_init(&fs_info->fs_roots_radix_lock);
2128 spin_lock_init(&fs_info->delayed_iput_lock);
2129 spin_lock_init(&fs_info->defrag_inodes_lock);
2130 spin_lock_init(&fs_info->free_chunk_lock);
2131 spin_lock_init(&fs_info->tree_mod_seq_lock);
2132 spin_lock_init(&fs_info->super_lock);
2133 rwlock_init(&fs_info->tree_mod_log_lock);
2134 mutex_init(&fs_info->reloc_mutex);
2135 seqlock_init(&fs_info->profiles_lock);
2136
2137 init_completion(&fs_info->kobj_unregister);
2138 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2139 INIT_LIST_HEAD(&fs_info->space_info);
2140 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2141 btrfs_mapping_init(&fs_info->mapping_tree);
2142 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2143 BTRFS_BLOCK_RSV_GLOBAL);
2144 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2145 BTRFS_BLOCK_RSV_DELALLOC);
2146 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2147 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2148 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2149 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2150 BTRFS_BLOCK_RSV_DELOPS);
2151 atomic_set(&fs_info->nr_async_submits, 0);
2152 atomic_set(&fs_info->async_delalloc_pages, 0);
2153 atomic_set(&fs_info->async_submit_draining, 0);
2154 atomic_set(&fs_info->nr_async_bios, 0);
2155 atomic_set(&fs_info->defrag_running, 0);
2156 atomic_set(&fs_info->tree_mod_seq, 0);
2157 fs_info->sb = sb;
2158 fs_info->max_inline = 8192 * 1024;
2159 fs_info->metadata_ratio = 0;
2160 fs_info->defrag_inodes = RB_ROOT;
2161 fs_info->trans_no_join = 0;
2162 fs_info->free_chunk_space = 0;
2163 fs_info->tree_mod_log = RB_ROOT;
2164
2165 /* readahead state */
2166 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2167 spin_lock_init(&fs_info->reada_lock);
2168
2169 fs_info->thread_pool_size = min_t(unsigned long,
2170 num_online_cpus() + 2, 8);
2171
2172 INIT_LIST_HEAD(&fs_info->ordered_extents);
2173 spin_lock_init(&fs_info->ordered_extent_lock);
2174 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2175 GFP_NOFS);
2176 if (!fs_info->delayed_root) {
2177 err = -ENOMEM;
2178 goto fail_iput;
2179 }
2180 btrfs_init_delayed_root(fs_info->delayed_root);
2181
2182 mutex_init(&fs_info->scrub_lock);
2183 atomic_set(&fs_info->scrubs_running, 0);
2184 atomic_set(&fs_info->scrub_pause_req, 0);
2185 atomic_set(&fs_info->scrubs_paused, 0);
2186 atomic_set(&fs_info->scrub_cancel_req, 0);
2187 init_waitqueue_head(&fs_info->scrub_pause_wait);
2188 init_rwsem(&fs_info->scrub_super_lock);
2189 fs_info->scrub_workers_refcnt = 0;
2190 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2191 fs_info->check_integrity_print_mask = 0;
2192 #endif
2193
2194 spin_lock_init(&fs_info->balance_lock);
2195 mutex_init(&fs_info->balance_mutex);
2196 atomic_set(&fs_info->balance_running, 0);
2197 atomic_set(&fs_info->balance_pause_req, 0);
2198 atomic_set(&fs_info->balance_cancel_req, 0);
2199 fs_info->balance_ctl = NULL;
2200 init_waitqueue_head(&fs_info->balance_wait_q);
2201
2202 sb->s_blocksize = 4096;
2203 sb->s_blocksize_bits = blksize_bits(4096);
2204 sb->s_bdi = &fs_info->bdi;
2205
2206 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2207 set_nlink(fs_info->btree_inode, 1);
2208 /*
2209 * we set the i_size on the btree inode to the max possible int.
2210 * the real end of the address space is determined by all of
2211 * the devices in the system
2212 */
2213 fs_info->btree_inode->i_size = OFFSET_MAX;
2214 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2215 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2216
2217 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2218 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2219 fs_info->btree_inode->i_mapping);
2220 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2221 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2222
2223 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2224
2225 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2226 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2227 sizeof(struct btrfs_key));
2228 set_bit(BTRFS_INODE_DUMMY,
2229 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2230 insert_inode_hash(fs_info->btree_inode);
2231
2232 spin_lock_init(&fs_info->block_group_cache_lock);
2233 fs_info->block_group_cache_tree = RB_ROOT;
2234 fs_info->first_logical_byte = (u64)-1;
2235
2236 extent_io_tree_init(&fs_info->freed_extents[0],
2237 fs_info->btree_inode->i_mapping);
2238 extent_io_tree_init(&fs_info->freed_extents[1],
2239 fs_info->btree_inode->i_mapping);
2240 fs_info->pinned_extents = &fs_info->freed_extents[0];
2241 fs_info->do_barriers = 1;
2242
2243
2244 mutex_init(&fs_info->ordered_operations_mutex);
2245 mutex_init(&fs_info->tree_log_mutex);
2246 mutex_init(&fs_info->chunk_mutex);
2247 mutex_init(&fs_info->transaction_kthread_mutex);
2248 mutex_init(&fs_info->cleaner_mutex);
2249 mutex_init(&fs_info->volume_mutex);
2250 init_rwsem(&fs_info->extent_commit_sem);
2251 init_rwsem(&fs_info->cleanup_work_sem);
2252 init_rwsem(&fs_info->subvol_sem);
2253 fs_info->dev_replace.lock_owner = 0;
2254 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2255 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2256 mutex_init(&fs_info->dev_replace.lock_management_lock);
2257 mutex_init(&fs_info->dev_replace.lock);
2258
2259 spin_lock_init(&fs_info->qgroup_lock);
2260 mutex_init(&fs_info->qgroup_ioctl_lock);
2261 fs_info->qgroup_tree = RB_ROOT;
2262 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2263 fs_info->qgroup_seq = 1;
2264 fs_info->quota_enabled = 0;
2265 fs_info->pending_quota_state = 0;
2266
2267 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2268 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2269
2270 init_waitqueue_head(&fs_info->transaction_throttle);
2271 init_waitqueue_head(&fs_info->transaction_wait);
2272 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2273 init_waitqueue_head(&fs_info->async_submit_wait);
2274
2275 ret = btrfs_alloc_stripe_hash_table(fs_info);
2276 if (ret) {
2277 err = ret;
2278 goto fail_alloc;
2279 }
2280
2281 __setup_root(4096, 4096, 4096, 4096, tree_root,
2282 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2283
2284 invalidate_bdev(fs_devices->latest_bdev);
2285 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2286 if (!bh) {
2287 err = -EINVAL;
2288 goto fail_alloc;
2289 }
2290
2291 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2292 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2293 sizeof(*fs_info->super_for_commit));
2294 brelse(bh);
2295
2296 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2297
2298 disk_super = fs_info->super_copy;
2299 if (!btrfs_super_root(disk_super))
2300 goto fail_alloc;
2301
2302 /* check FS state, whether FS is broken. */
2303 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2304 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2305
2306 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2307 if (ret) {
2308 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2309 err = ret;
2310 goto fail_alloc;
2311 }
2312
2313 /*
2314 * run through our array of backup supers and setup
2315 * our ring pointer to the oldest one
2316 */
2317 generation = btrfs_super_generation(disk_super);
2318 find_oldest_super_backup(fs_info, generation);
2319
2320 /*
2321 * In the long term, we'll store the compression type in the super
2322 * block, and it'll be used for per file compression control.
2323 */
2324 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2325
2326 ret = btrfs_parse_options(tree_root, options);
2327 if (ret) {
2328 err = ret;
2329 goto fail_alloc;
2330 }
2331
2332 features = btrfs_super_incompat_flags(disk_super) &
2333 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2334 if (features) {
2335 printk(KERN_ERR "BTRFS: couldn't mount because of "
2336 "unsupported optional features (%Lx).\n",
2337 (unsigned long long)features);
2338 err = -EINVAL;
2339 goto fail_alloc;
2340 }
2341
2342 if (btrfs_super_leafsize(disk_super) !=
2343 btrfs_super_nodesize(disk_super)) {
2344 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2345 "blocksizes don't match. node %d leaf %d\n",
2346 btrfs_super_nodesize(disk_super),
2347 btrfs_super_leafsize(disk_super));
2348 err = -EINVAL;
2349 goto fail_alloc;
2350 }
2351 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2352 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2353 "blocksize (%d) was too large\n",
2354 btrfs_super_leafsize(disk_super));
2355 err = -EINVAL;
2356 goto fail_alloc;
2357 }
2358
2359 features = btrfs_super_incompat_flags(disk_super);
2360 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2361 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2362 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2363
2364 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2365 printk(KERN_ERR "btrfs: has skinny extents\n");
2366
2367 /*
2368 * flag our filesystem as having big metadata blocks if
2369 * they are bigger than the page size
2370 */
2371 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2372 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2373 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2374 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2375 }
2376
2377 nodesize = btrfs_super_nodesize(disk_super);
2378 leafsize = btrfs_super_leafsize(disk_super);
2379 sectorsize = btrfs_super_sectorsize(disk_super);
2380 stripesize = btrfs_super_stripesize(disk_super);
2381 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2382 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2383
2384 /*
2385 * mixed block groups end up with duplicate but slightly offset
2386 * extent buffers for the same range. It leads to corruptions
2387 */
2388 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2389 (sectorsize != leafsize)) {
2390 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2391 "are not allowed for mixed block groups on %s\n",
2392 sb->s_id);
2393 goto fail_alloc;
2394 }
2395
2396 /*
2397 * Needn't use the lock because there is no other task which will
2398 * update the flag.
2399 */
2400 btrfs_set_super_incompat_flags(disk_super, features);
2401
2402 features = btrfs_super_compat_ro_flags(disk_super) &
2403 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2404 if (!(sb->s_flags & MS_RDONLY) && features) {
2405 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2406 "unsupported option features (%Lx).\n",
2407 (unsigned long long)features);
2408 err = -EINVAL;
2409 goto fail_alloc;
2410 }
2411
2412 btrfs_init_workers(&fs_info->generic_worker,
2413 "genwork", 1, NULL);
2414
2415 btrfs_init_workers(&fs_info->workers, "worker",
2416 fs_info->thread_pool_size,
2417 &fs_info->generic_worker);
2418
2419 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2420 fs_info->thread_pool_size,
2421 &fs_info->generic_worker);
2422
2423 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2424 fs_info->thread_pool_size,
2425 &fs_info->generic_worker);
2426
2427 btrfs_init_workers(&fs_info->submit_workers, "submit",
2428 min_t(u64, fs_devices->num_devices,
2429 fs_info->thread_pool_size),
2430 &fs_info->generic_worker);
2431
2432 btrfs_init_workers(&fs_info->caching_workers, "cache",
2433 2, &fs_info->generic_worker);
2434
2435 /* a higher idle thresh on the submit workers makes it much more
2436 * likely that bios will be send down in a sane order to the
2437 * devices
2438 */
2439 fs_info->submit_workers.idle_thresh = 64;
2440
2441 fs_info->workers.idle_thresh = 16;
2442 fs_info->workers.ordered = 1;
2443
2444 fs_info->delalloc_workers.idle_thresh = 2;
2445 fs_info->delalloc_workers.ordered = 1;
2446
2447 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2448 &fs_info->generic_worker);
2449 btrfs_init_workers(&fs_info->endio_workers, "endio",
2450 fs_info->thread_pool_size,
2451 &fs_info->generic_worker);
2452 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2453 fs_info->thread_pool_size,
2454 &fs_info->generic_worker);
2455 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2456 "endio-meta-write", fs_info->thread_pool_size,
2457 &fs_info->generic_worker);
2458 btrfs_init_workers(&fs_info->endio_raid56_workers,
2459 "endio-raid56", fs_info->thread_pool_size,
2460 &fs_info->generic_worker);
2461 btrfs_init_workers(&fs_info->rmw_workers,
2462 "rmw", fs_info->thread_pool_size,
2463 &fs_info->generic_worker);
2464 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2465 fs_info->thread_pool_size,
2466 &fs_info->generic_worker);
2467 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2468 1, &fs_info->generic_worker);
2469 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2470 fs_info->thread_pool_size,
2471 &fs_info->generic_worker);
2472 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2473 fs_info->thread_pool_size,
2474 &fs_info->generic_worker);
2475
2476 /*
2477 * endios are largely parallel and should have a very
2478 * low idle thresh
2479 */
2480 fs_info->endio_workers.idle_thresh = 4;
2481 fs_info->endio_meta_workers.idle_thresh = 4;
2482 fs_info->endio_raid56_workers.idle_thresh = 4;
2483 fs_info->rmw_workers.idle_thresh = 2;
2484
2485 fs_info->endio_write_workers.idle_thresh = 2;
2486 fs_info->endio_meta_write_workers.idle_thresh = 2;
2487 fs_info->readahead_workers.idle_thresh = 2;
2488
2489 /*
2490 * btrfs_start_workers can really only fail because of ENOMEM so just
2491 * return -ENOMEM if any of these fail.
2492 */
2493 ret = btrfs_start_workers(&fs_info->workers);
2494 ret |= btrfs_start_workers(&fs_info->generic_worker);
2495 ret |= btrfs_start_workers(&fs_info->submit_workers);
2496 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2497 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2498 ret |= btrfs_start_workers(&fs_info->endio_workers);
2499 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2500 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2501 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2502 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2503 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2504 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2505 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2506 ret |= btrfs_start_workers(&fs_info->caching_workers);
2507 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2508 ret |= btrfs_start_workers(&fs_info->flush_workers);
2509 if (ret) {
2510 err = -ENOMEM;
2511 goto fail_sb_buffer;
2512 }
2513
2514 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2515 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2516 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2517
2518 tree_root->nodesize = nodesize;
2519 tree_root->leafsize = leafsize;
2520 tree_root->sectorsize = sectorsize;
2521 tree_root->stripesize = stripesize;
2522
2523 sb->s_blocksize = sectorsize;
2524 sb->s_blocksize_bits = blksize_bits(sectorsize);
2525
2526 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2527 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2528 goto fail_sb_buffer;
2529 }
2530
2531 if (sectorsize != PAGE_SIZE) {
2532 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2533 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2534 goto fail_sb_buffer;
2535 }
2536
2537 mutex_lock(&fs_info->chunk_mutex);
2538 ret = btrfs_read_sys_array(tree_root);
2539 mutex_unlock(&fs_info->chunk_mutex);
2540 if (ret) {
2541 printk(KERN_WARNING "btrfs: failed to read the system "
2542 "array on %s\n", sb->s_id);
2543 goto fail_sb_buffer;
2544 }
2545
2546 blocksize = btrfs_level_size(tree_root,
2547 btrfs_super_chunk_root_level(disk_super));
2548 generation = btrfs_super_chunk_root_generation(disk_super);
2549
2550 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2551 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2552
2553 chunk_root->node = read_tree_block(chunk_root,
2554 btrfs_super_chunk_root(disk_super),
2555 blocksize, generation);
2556 if (!chunk_root->node ||
2557 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2558 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2559 sb->s_id);
2560 goto fail_tree_roots;
2561 }
2562 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2563 chunk_root->commit_root = btrfs_root_node(chunk_root);
2564
2565 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2566 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2567 BTRFS_UUID_SIZE);
2568
2569 ret = btrfs_read_chunk_tree(chunk_root);
2570 if (ret) {
2571 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2572 sb->s_id);
2573 goto fail_tree_roots;
2574 }
2575
2576 /*
2577 * keep the device that is marked to be the target device for the
2578 * dev_replace procedure
2579 */
2580 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2581
2582 if (!fs_devices->latest_bdev) {
2583 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2584 sb->s_id);
2585 goto fail_tree_roots;
2586 }
2587
2588 retry_root_backup:
2589 blocksize = btrfs_level_size(tree_root,
2590 btrfs_super_root_level(disk_super));
2591 generation = btrfs_super_generation(disk_super);
2592
2593 tree_root->node = read_tree_block(tree_root,
2594 btrfs_super_root(disk_super),
2595 blocksize, generation);
2596 if (!tree_root->node ||
2597 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2598 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2599 sb->s_id);
2600
2601 goto recovery_tree_root;
2602 }
2603
2604 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2605 tree_root->commit_root = btrfs_root_node(tree_root);
2606
2607 ret = find_and_setup_root(tree_root, fs_info,
2608 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2609 if (ret)
2610 goto recovery_tree_root;
2611 extent_root->track_dirty = 1;
2612
2613 ret = find_and_setup_root(tree_root, fs_info,
2614 BTRFS_DEV_TREE_OBJECTID, dev_root);
2615 if (ret)
2616 goto recovery_tree_root;
2617 dev_root->track_dirty = 1;
2618
2619 ret = find_and_setup_root(tree_root, fs_info,
2620 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2621 if (ret)
2622 goto recovery_tree_root;
2623 csum_root->track_dirty = 1;
2624
2625 ret = find_and_setup_root(tree_root, fs_info,
2626 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2627 if (ret) {
2628 kfree(quota_root);
2629 quota_root = fs_info->quota_root = NULL;
2630 } else {
2631 quota_root->track_dirty = 1;
2632 fs_info->quota_enabled = 1;
2633 fs_info->pending_quota_state = 1;
2634 }
2635
2636 fs_info->generation = generation;
2637 fs_info->last_trans_committed = generation;
2638
2639 ret = btrfs_recover_balance(fs_info);
2640 if (ret) {
2641 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2642 goto fail_block_groups;
2643 }
2644
2645 ret = btrfs_init_dev_stats(fs_info);
2646 if (ret) {
2647 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2648 ret);
2649 goto fail_block_groups;
2650 }
2651
2652 ret = btrfs_init_dev_replace(fs_info);
2653 if (ret) {
2654 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2655 goto fail_block_groups;
2656 }
2657
2658 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2659
2660 ret = btrfs_init_space_info(fs_info);
2661 if (ret) {
2662 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2663 goto fail_block_groups;
2664 }
2665
2666 ret = btrfs_read_block_groups(extent_root);
2667 if (ret) {
2668 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2669 goto fail_block_groups;
2670 }
2671 fs_info->num_tolerated_disk_barrier_failures =
2672 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2673 if (fs_info->fs_devices->missing_devices >
2674 fs_info->num_tolerated_disk_barrier_failures &&
2675 !(sb->s_flags & MS_RDONLY)) {
2676 printk(KERN_WARNING
2677 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2678 goto fail_block_groups;
2679 }
2680
2681 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2682 "btrfs-cleaner");
2683 if (IS_ERR(fs_info->cleaner_kthread))
2684 goto fail_block_groups;
2685
2686 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2687 tree_root,
2688 "btrfs-transaction");
2689 if (IS_ERR(fs_info->transaction_kthread))
2690 goto fail_cleaner;
2691
2692 if (!btrfs_test_opt(tree_root, SSD) &&
2693 !btrfs_test_opt(tree_root, NOSSD) &&
2694 !fs_info->fs_devices->rotating) {
2695 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2696 "mode\n");
2697 btrfs_set_opt(fs_info->mount_opt, SSD);
2698 }
2699
2700 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2701 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2702 ret = btrfsic_mount(tree_root, fs_devices,
2703 btrfs_test_opt(tree_root,
2704 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2705 1 : 0,
2706 fs_info->check_integrity_print_mask);
2707 if (ret)
2708 printk(KERN_WARNING "btrfs: failed to initialize"
2709 " integrity check module %s\n", sb->s_id);
2710 }
2711 #endif
2712 ret = btrfs_read_qgroup_config(fs_info);
2713 if (ret)
2714 goto fail_trans_kthread;
2715
2716 /* do not make disk changes in broken FS */
2717 if (btrfs_super_log_root(disk_super) != 0) {
2718 u64 bytenr = btrfs_super_log_root(disk_super);
2719
2720 if (fs_devices->rw_devices == 0) {
2721 printk(KERN_WARNING "Btrfs log replay required "
2722 "on RO media\n");
2723 err = -EIO;
2724 goto fail_qgroup;
2725 }
2726 blocksize =
2727 btrfs_level_size(tree_root,
2728 btrfs_super_log_root_level(disk_super));
2729
2730 log_tree_root = btrfs_alloc_root(fs_info);
2731 if (!log_tree_root) {
2732 err = -ENOMEM;
2733 goto fail_qgroup;
2734 }
2735
2736 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2737 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2738
2739 log_tree_root->node = read_tree_block(tree_root, bytenr,
2740 blocksize,
2741 generation + 1);
2742 if (!log_tree_root->node ||
2743 !extent_buffer_uptodate(log_tree_root->node)) {
2744 printk(KERN_ERR "btrfs: failed to read log tree\n");
2745 free_extent_buffer(log_tree_root->node);
2746 kfree(log_tree_root);
2747 goto fail_trans_kthread;
2748 }
2749 /* returns with log_tree_root freed on success */
2750 ret = btrfs_recover_log_trees(log_tree_root);
2751 if (ret) {
2752 btrfs_error(tree_root->fs_info, ret,
2753 "Failed to recover log tree");
2754 free_extent_buffer(log_tree_root->node);
2755 kfree(log_tree_root);
2756 goto fail_trans_kthread;
2757 }
2758
2759 if (sb->s_flags & MS_RDONLY) {
2760 ret = btrfs_commit_super(tree_root);
2761 if (ret)
2762 goto fail_trans_kthread;
2763 }
2764 }
2765
2766 ret = btrfs_find_orphan_roots(tree_root);
2767 if (ret)
2768 goto fail_trans_kthread;
2769
2770 if (!(sb->s_flags & MS_RDONLY)) {
2771 ret = btrfs_cleanup_fs_roots(fs_info);
2772 if (ret)
2773 goto fail_trans_kthread;
2774
2775 ret = btrfs_recover_relocation(tree_root);
2776 if (ret < 0) {
2777 printk(KERN_WARNING
2778 "btrfs: failed to recover relocation\n");
2779 err = -EINVAL;
2780 goto fail_qgroup;
2781 }
2782 }
2783
2784 location.objectid = BTRFS_FS_TREE_OBJECTID;
2785 location.type = BTRFS_ROOT_ITEM_KEY;
2786 location.offset = (u64)-1;
2787
2788 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2789 if (!fs_info->fs_root)
2790 goto fail_qgroup;
2791 if (IS_ERR(fs_info->fs_root)) {
2792 err = PTR_ERR(fs_info->fs_root);
2793 goto fail_qgroup;
2794 }
2795
2796 if (sb->s_flags & MS_RDONLY)
2797 return 0;
2798
2799 down_read(&fs_info->cleanup_work_sem);
2800 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2801 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2802 up_read(&fs_info->cleanup_work_sem);
2803 close_ctree(tree_root);
2804 return ret;
2805 }
2806 up_read(&fs_info->cleanup_work_sem);
2807
2808 ret = btrfs_resume_balance_async(fs_info);
2809 if (ret) {
2810 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2811 close_ctree(tree_root);
2812 return ret;
2813 }
2814
2815 ret = btrfs_resume_dev_replace_async(fs_info);
2816 if (ret) {
2817 pr_warn("btrfs: failed to resume dev_replace\n");
2818 close_ctree(tree_root);
2819 return ret;
2820 }
2821
2822 return 0;
2823
2824 fail_qgroup:
2825 btrfs_free_qgroup_config(fs_info);
2826 fail_trans_kthread:
2827 kthread_stop(fs_info->transaction_kthread);
2828 del_fs_roots(fs_info);
2829 fail_cleaner:
2830 kthread_stop(fs_info->cleaner_kthread);
2831
2832 /*
2833 * make sure we're done with the btree inode before we stop our
2834 * kthreads
2835 */
2836 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2837
2838 fail_block_groups:
2839 btrfs_free_block_groups(fs_info);
2840
2841 fail_tree_roots:
2842 free_root_pointers(fs_info, 1);
2843 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2844
2845 fail_sb_buffer:
2846 btrfs_stop_all_workers(fs_info);
2847 fail_alloc:
2848 fail_iput:
2849 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2850
2851 iput(fs_info->btree_inode);
2852 fail_delalloc_bytes:
2853 percpu_counter_destroy(&fs_info->delalloc_bytes);
2854 fail_dirty_metadata_bytes:
2855 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2856 fail_bdi:
2857 bdi_destroy(&fs_info->bdi);
2858 fail_srcu:
2859 cleanup_srcu_struct(&fs_info->subvol_srcu);
2860 fail:
2861 btrfs_free_stripe_hash_table(fs_info);
2862 btrfs_close_devices(fs_info->fs_devices);
2863 return err;
2864
2865 recovery_tree_root:
2866 if (!btrfs_test_opt(tree_root, RECOVERY))
2867 goto fail_tree_roots;
2868
2869 free_root_pointers(fs_info, 0);
2870
2871 /* don't use the log in recovery mode, it won't be valid */
2872 btrfs_set_super_log_root(disk_super, 0);
2873
2874 /* we can't trust the free space cache either */
2875 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2876
2877 ret = next_root_backup(fs_info, fs_info->super_copy,
2878 &num_backups_tried, &backup_index);
2879 if (ret == -1)
2880 goto fail_block_groups;
2881 goto retry_root_backup;
2882 }
2883
2884 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2885 {
2886 if (uptodate) {
2887 set_buffer_uptodate(bh);
2888 } else {
2889 struct btrfs_device *device = (struct btrfs_device *)
2890 bh->b_private;
2891
2892 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2893 "I/O error on %s\n",
2894 rcu_str_deref(device->name));
2895 /* note, we dont' set_buffer_write_io_error because we have
2896 * our own ways of dealing with the IO errors
2897 */
2898 clear_buffer_uptodate(bh);
2899 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2900 }
2901 unlock_buffer(bh);
2902 put_bh(bh);
2903 }
2904
2905 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2906 {
2907 struct buffer_head *bh;
2908 struct buffer_head *latest = NULL;
2909 struct btrfs_super_block *super;
2910 int i;
2911 u64 transid = 0;
2912 u64 bytenr;
2913
2914 /* we would like to check all the supers, but that would make
2915 * a btrfs mount succeed after a mkfs from a different FS.
2916 * So, we need to add a special mount option to scan for
2917 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2918 */
2919 for (i = 0; i < 1; i++) {
2920 bytenr = btrfs_sb_offset(i);
2921 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2922 break;
2923 bh = __bread(bdev, bytenr / 4096, 4096);
2924 if (!bh)
2925 continue;
2926
2927 super = (struct btrfs_super_block *)bh->b_data;
2928 if (btrfs_super_bytenr(super) != bytenr ||
2929 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2930 brelse(bh);
2931 continue;
2932 }
2933
2934 if (!latest || btrfs_super_generation(super) > transid) {
2935 brelse(latest);
2936 latest = bh;
2937 transid = btrfs_super_generation(super);
2938 } else {
2939 brelse(bh);
2940 }
2941 }
2942 return latest;
2943 }
2944
2945 /*
2946 * this should be called twice, once with wait == 0 and
2947 * once with wait == 1. When wait == 0 is done, all the buffer heads
2948 * we write are pinned.
2949 *
2950 * They are released when wait == 1 is done.
2951 * max_mirrors must be the same for both runs, and it indicates how
2952 * many supers on this one device should be written.
2953 *
2954 * max_mirrors == 0 means to write them all.
2955 */
2956 static int write_dev_supers(struct btrfs_device *device,
2957 struct btrfs_super_block *sb,
2958 int do_barriers, int wait, int max_mirrors)
2959 {
2960 struct buffer_head *bh;
2961 int i;
2962 int ret;
2963 int errors = 0;
2964 u32 crc;
2965 u64 bytenr;
2966
2967 if (max_mirrors == 0)
2968 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2969
2970 for (i = 0; i < max_mirrors; i++) {
2971 bytenr = btrfs_sb_offset(i);
2972 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2973 break;
2974
2975 if (wait) {
2976 bh = __find_get_block(device->bdev, bytenr / 4096,
2977 BTRFS_SUPER_INFO_SIZE);
2978 BUG_ON(!bh);
2979 wait_on_buffer(bh);
2980 if (!buffer_uptodate(bh))
2981 errors++;
2982
2983 /* drop our reference */
2984 brelse(bh);
2985
2986 /* drop the reference from the wait == 0 run */
2987 brelse(bh);
2988 continue;
2989 } else {
2990 btrfs_set_super_bytenr(sb, bytenr);
2991
2992 crc = ~(u32)0;
2993 crc = btrfs_csum_data((char *)sb +
2994 BTRFS_CSUM_SIZE, crc,
2995 BTRFS_SUPER_INFO_SIZE -
2996 BTRFS_CSUM_SIZE);
2997 btrfs_csum_final(crc, sb->csum);
2998
2999 /*
3000 * one reference for us, and we leave it for the
3001 * caller
3002 */
3003 bh = __getblk(device->bdev, bytenr / 4096,
3004 BTRFS_SUPER_INFO_SIZE);
3005 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3006
3007 /* one reference for submit_bh */
3008 get_bh(bh);
3009
3010 set_buffer_uptodate(bh);
3011 lock_buffer(bh);
3012 bh->b_end_io = btrfs_end_buffer_write_sync;
3013 bh->b_private = device;
3014 }
3015
3016 /*
3017 * we fua the first super. The others we allow
3018 * to go down lazy.
3019 */
3020 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3021 if (ret)
3022 errors++;
3023 }
3024 return errors < i ? 0 : -1;
3025 }
3026
3027 /*
3028 * endio for the write_dev_flush, this will wake anyone waiting
3029 * for the barrier when it is done
3030 */
3031 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3032 {
3033 if (err) {
3034 if (err == -EOPNOTSUPP)
3035 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3036 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3037 }
3038 if (bio->bi_private)
3039 complete(bio->bi_private);
3040 bio_put(bio);
3041 }
3042
3043 /*
3044 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3045 * sent down. With wait == 1, it waits for the previous flush.
3046 *
3047 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3048 * capable
3049 */
3050 static int write_dev_flush(struct btrfs_device *device, int wait)
3051 {
3052 struct bio *bio;
3053 int ret = 0;
3054
3055 if (device->nobarriers)
3056 return 0;
3057
3058 if (wait) {
3059 bio = device->flush_bio;
3060 if (!bio)
3061 return 0;
3062
3063 wait_for_completion(&device->flush_wait);
3064
3065 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3066 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3067 rcu_str_deref(device->name));
3068 device->nobarriers = 1;
3069 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3070 ret = -EIO;
3071 btrfs_dev_stat_inc_and_print(device,
3072 BTRFS_DEV_STAT_FLUSH_ERRS);
3073 }
3074
3075 /* drop the reference from the wait == 0 run */
3076 bio_put(bio);
3077 device->flush_bio = NULL;
3078
3079 return ret;
3080 }
3081
3082 /*
3083 * one reference for us, and we leave it for the
3084 * caller
3085 */
3086 device->flush_bio = NULL;
3087 bio = bio_alloc(GFP_NOFS, 0);
3088 if (!bio)
3089 return -ENOMEM;
3090
3091 bio->bi_end_io = btrfs_end_empty_barrier;
3092 bio->bi_bdev = device->bdev;
3093 init_completion(&device->flush_wait);
3094 bio->bi_private = &device->flush_wait;
3095 device->flush_bio = bio;
3096
3097 bio_get(bio);
3098 btrfsic_submit_bio(WRITE_FLUSH, bio);
3099
3100 return 0;
3101 }
3102
3103 /*
3104 * send an empty flush down to each device in parallel,
3105 * then wait for them
3106 */
3107 static int barrier_all_devices(struct btrfs_fs_info *info)
3108 {
3109 struct list_head *head;
3110 struct btrfs_device *dev;
3111 int errors_send = 0;
3112 int errors_wait = 0;
3113 int ret;
3114
3115 /* send down all the barriers */
3116 head = &info->fs_devices->devices;
3117 list_for_each_entry_rcu(dev, head, dev_list) {
3118 if (!dev->bdev) {
3119 errors_send++;
3120 continue;
3121 }
3122 if (!dev->in_fs_metadata || !dev->writeable)
3123 continue;
3124
3125 ret = write_dev_flush(dev, 0);
3126 if (ret)
3127 errors_send++;
3128 }
3129
3130 /* wait for all the barriers */
3131 list_for_each_entry_rcu(dev, head, dev_list) {
3132 if (!dev->bdev) {
3133 errors_wait++;
3134 continue;
3135 }
3136 if (!dev->in_fs_metadata || !dev->writeable)
3137 continue;
3138
3139 ret = write_dev_flush(dev, 1);
3140 if (ret)
3141 errors_wait++;
3142 }
3143 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3144 errors_wait > info->num_tolerated_disk_barrier_failures)
3145 return -EIO;
3146 return 0;
3147 }
3148
3149 int btrfs_calc_num_tolerated_disk_barrier_failures(
3150 struct btrfs_fs_info *fs_info)
3151 {
3152 struct btrfs_ioctl_space_info space;
3153 struct btrfs_space_info *sinfo;
3154 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3155 BTRFS_BLOCK_GROUP_SYSTEM,
3156 BTRFS_BLOCK_GROUP_METADATA,
3157 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3158 int num_types = 4;
3159 int i;
3160 int c;
3161 int num_tolerated_disk_barrier_failures =
3162 (int)fs_info->fs_devices->num_devices;
3163
3164 for (i = 0; i < num_types; i++) {
3165 struct btrfs_space_info *tmp;
3166
3167 sinfo = NULL;
3168 rcu_read_lock();
3169 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3170 if (tmp->flags == types[i]) {
3171 sinfo = tmp;
3172 break;
3173 }
3174 }
3175 rcu_read_unlock();
3176
3177 if (!sinfo)
3178 continue;
3179
3180 down_read(&sinfo->groups_sem);
3181 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3182 if (!list_empty(&sinfo->block_groups[c])) {
3183 u64 flags;
3184
3185 btrfs_get_block_group_info(
3186 &sinfo->block_groups[c], &space);
3187 if (space.total_bytes == 0 ||
3188 space.used_bytes == 0)
3189 continue;
3190 flags = space.flags;
3191 /*
3192 * return
3193 * 0: if dup, single or RAID0 is configured for
3194 * any of metadata, system or data, else
3195 * 1: if RAID5 is configured, or if RAID1 or
3196 * RAID10 is configured and only two mirrors
3197 * are used, else
3198 * 2: if RAID6 is configured, else
3199 * num_mirrors - 1: if RAID1 or RAID10 is
3200 * configured and more than
3201 * 2 mirrors are used.
3202 */
3203 if (num_tolerated_disk_barrier_failures > 0 &&
3204 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3205 BTRFS_BLOCK_GROUP_RAID0)) ||
3206 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3207 == 0)))
3208 num_tolerated_disk_barrier_failures = 0;
3209 else if (num_tolerated_disk_barrier_failures > 1) {
3210 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3211 BTRFS_BLOCK_GROUP_RAID5 |
3212 BTRFS_BLOCK_GROUP_RAID10)) {
3213 num_tolerated_disk_barrier_failures = 1;
3214 } else if (flags &
3215 BTRFS_BLOCK_GROUP_RAID5) {
3216 num_tolerated_disk_barrier_failures = 2;
3217 }
3218 }
3219 }
3220 }
3221 up_read(&sinfo->groups_sem);
3222 }
3223
3224 return num_tolerated_disk_barrier_failures;
3225 }
3226
3227 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3228 {
3229 struct list_head *head;
3230 struct btrfs_device *dev;
3231 struct btrfs_super_block *sb;
3232 struct btrfs_dev_item *dev_item;
3233 int ret;
3234 int do_barriers;
3235 int max_errors;
3236 int total_errors = 0;
3237 u64 flags;
3238
3239 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3240 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3241 backup_super_roots(root->fs_info);
3242
3243 sb = root->fs_info->super_for_commit;
3244 dev_item = &sb->dev_item;
3245
3246 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3247 head = &root->fs_info->fs_devices->devices;
3248
3249 if (do_barriers) {
3250 ret = barrier_all_devices(root->fs_info);
3251 if (ret) {
3252 mutex_unlock(
3253 &root->fs_info->fs_devices->device_list_mutex);
3254 btrfs_error(root->fs_info, ret,
3255 "errors while submitting device barriers.");
3256 return ret;
3257 }
3258 }
3259
3260 list_for_each_entry_rcu(dev, head, dev_list) {
3261 if (!dev->bdev) {
3262 total_errors++;
3263 continue;
3264 }
3265 if (!dev->in_fs_metadata || !dev->writeable)
3266 continue;
3267
3268 btrfs_set_stack_device_generation(dev_item, 0);
3269 btrfs_set_stack_device_type(dev_item, dev->type);
3270 btrfs_set_stack_device_id(dev_item, dev->devid);
3271 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3272 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3273 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3274 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3275 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3276 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3277 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3278
3279 flags = btrfs_super_flags(sb);
3280 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3281
3282 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3283 if (ret)
3284 total_errors++;
3285 }
3286 if (total_errors > max_errors) {
3287 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3288 total_errors);
3289
3290 /* This shouldn't happen. FUA is masked off if unsupported */
3291 BUG();
3292 }
3293
3294 total_errors = 0;
3295 list_for_each_entry_rcu(dev, head, dev_list) {
3296 if (!dev->bdev)
3297 continue;
3298 if (!dev->in_fs_metadata || !dev->writeable)
3299 continue;
3300
3301 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3302 if (ret)
3303 total_errors++;
3304 }
3305 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3306 if (total_errors > max_errors) {
3307 btrfs_error(root->fs_info, -EIO,
3308 "%d errors while writing supers", total_errors);
3309 return -EIO;
3310 }
3311 return 0;
3312 }
3313
3314 int write_ctree_super(struct btrfs_trans_handle *trans,
3315 struct btrfs_root *root, int max_mirrors)
3316 {
3317 int ret;
3318
3319 ret = write_all_supers(root, max_mirrors);
3320 return ret;
3321 }
3322
3323 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3324 {
3325 spin_lock(&fs_info->fs_roots_radix_lock);
3326 radix_tree_delete(&fs_info->fs_roots_radix,
3327 (unsigned long)root->root_key.objectid);
3328 spin_unlock(&fs_info->fs_roots_radix_lock);
3329
3330 if (btrfs_root_refs(&root->root_item) == 0)
3331 synchronize_srcu(&fs_info->subvol_srcu);
3332
3333 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3334 btrfs_free_log(NULL, root);
3335 btrfs_free_log_root_tree(NULL, fs_info);
3336 }
3337
3338 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3339 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3340 free_fs_root(root);
3341 }
3342
3343 static void free_fs_root(struct btrfs_root *root)
3344 {
3345 iput(root->cache_inode);
3346 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3347 if (root->anon_dev)
3348 free_anon_bdev(root->anon_dev);
3349 free_extent_buffer(root->node);
3350 free_extent_buffer(root->commit_root);
3351 kfree(root->free_ino_ctl);
3352 kfree(root->free_ino_pinned);
3353 kfree(root->name);
3354 kfree(root);
3355 }
3356
3357 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3358 {
3359 u64 root_objectid = 0;
3360 struct btrfs_root *gang[8];
3361 int i;
3362 int ret;
3363
3364 while (1) {
3365 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3366 (void **)gang, root_objectid,
3367 ARRAY_SIZE(gang));
3368 if (!ret)
3369 break;
3370
3371 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3372 for (i = 0; i < ret; i++) {
3373 int err;
3374
3375 root_objectid = gang[i]->root_key.objectid;
3376 err = btrfs_orphan_cleanup(gang[i]);
3377 if (err)
3378 return err;
3379 }
3380 root_objectid++;
3381 }
3382 return 0;
3383 }
3384
3385 int btrfs_commit_super(struct btrfs_root *root)
3386 {
3387 struct btrfs_trans_handle *trans;
3388 int ret;
3389
3390 mutex_lock(&root->fs_info->cleaner_mutex);
3391 btrfs_run_delayed_iputs(root);
3392 mutex_unlock(&root->fs_info->cleaner_mutex);
3393 wake_up_process(root->fs_info->cleaner_kthread);
3394
3395 /* wait until ongoing cleanup work done */
3396 down_write(&root->fs_info->cleanup_work_sem);
3397 up_write(&root->fs_info->cleanup_work_sem);
3398
3399 trans = btrfs_join_transaction(root);
3400 if (IS_ERR(trans))
3401 return PTR_ERR(trans);
3402 ret = btrfs_commit_transaction(trans, root);
3403 if (ret)
3404 return ret;
3405 /* run commit again to drop the original snapshot */
3406 trans = btrfs_join_transaction(root);
3407 if (IS_ERR(trans))
3408 return PTR_ERR(trans);
3409 ret = btrfs_commit_transaction(trans, root);
3410 if (ret)
3411 return ret;
3412 ret = btrfs_write_and_wait_transaction(NULL, root);
3413 if (ret) {
3414 btrfs_error(root->fs_info, ret,
3415 "Failed to sync btree inode to disk.");
3416 return ret;
3417 }
3418
3419 ret = write_ctree_super(NULL, root, 0);
3420 return ret;
3421 }
3422
3423 int close_ctree(struct btrfs_root *root)
3424 {
3425 struct btrfs_fs_info *fs_info = root->fs_info;
3426 int ret;
3427
3428 fs_info->closing = 1;
3429 smp_mb();
3430
3431 /* pause restriper - we want to resume on mount */
3432 btrfs_pause_balance(fs_info);
3433
3434 btrfs_dev_replace_suspend_for_unmount(fs_info);
3435
3436 btrfs_scrub_cancel(fs_info);
3437
3438 /* wait for any defraggers to finish */
3439 wait_event(fs_info->transaction_wait,
3440 (atomic_read(&fs_info->defrag_running) == 0));
3441
3442 /* clear out the rbtree of defraggable inodes */
3443 btrfs_cleanup_defrag_inodes(fs_info);
3444
3445 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3446 ret = btrfs_commit_super(root);
3447 if (ret)
3448 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3449 }
3450
3451 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3452 btrfs_error_commit_super(root);
3453
3454 btrfs_put_block_group_cache(fs_info);
3455
3456 kthread_stop(fs_info->transaction_kthread);
3457 kthread_stop(fs_info->cleaner_kthread);
3458
3459 fs_info->closing = 2;
3460 smp_mb();
3461
3462 btrfs_free_qgroup_config(root->fs_info);
3463
3464 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3465 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3466 percpu_counter_sum(&fs_info->delalloc_bytes));
3467 }
3468
3469 free_root_pointers(fs_info, 1);
3470
3471 btrfs_free_block_groups(fs_info);
3472
3473 del_fs_roots(fs_info);
3474
3475 iput(fs_info->btree_inode);
3476
3477 btrfs_stop_all_workers(fs_info);
3478
3479 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3480 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3481 btrfsic_unmount(root, fs_info->fs_devices);
3482 #endif
3483
3484 btrfs_close_devices(fs_info->fs_devices);
3485 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3486
3487 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3488 percpu_counter_destroy(&fs_info->delalloc_bytes);
3489 bdi_destroy(&fs_info->bdi);
3490 cleanup_srcu_struct(&fs_info->subvol_srcu);
3491
3492 btrfs_free_stripe_hash_table(fs_info);
3493
3494 return 0;
3495 }
3496
3497 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3498 int atomic)
3499 {
3500 int ret;
3501 struct inode *btree_inode = buf->pages[0]->mapping->host;
3502
3503 ret = extent_buffer_uptodate(buf);
3504 if (!ret)
3505 return ret;
3506
3507 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3508 parent_transid, atomic);
3509 if (ret == -EAGAIN)
3510 return ret;
3511 return !ret;
3512 }
3513
3514 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3515 {
3516 return set_extent_buffer_uptodate(buf);
3517 }
3518
3519 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3520 {
3521 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3522 u64 transid = btrfs_header_generation(buf);
3523 int was_dirty;
3524
3525 btrfs_assert_tree_locked(buf);
3526 if (transid != root->fs_info->generation)
3527 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3528 "found %llu running %llu\n",
3529 (unsigned long long)buf->start,
3530 (unsigned long long)transid,
3531 (unsigned long long)root->fs_info->generation);
3532 was_dirty = set_extent_buffer_dirty(buf);
3533 if (!was_dirty)
3534 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3535 buf->len,
3536 root->fs_info->dirty_metadata_batch);
3537 }
3538
3539 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3540 int flush_delayed)
3541 {
3542 /*
3543 * looks as though older kernels can get into trouble with
3544 * this code, they end up stuck in balance_dirty_pages forever
3545 */
3546 int ret;
3547
3548 if (current->flags & PF_MEMALLOC)
3549 return;
3550
3551 if (flush_delayed)
3552 btrfs_balance_delayed_items(root);
3553
3554 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3555 BTRFS_DIRTY_METADATA_THRESH);
3556 if (ret > 0) {
3557 balance_dirty_pages_ratelimited(
3558 root->fs_info->btree_inode->i_mapping);
3559 }
3560 return;
3561 }
3562
3563 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3564 {
3565 __btrfs_btree_balance_dirty(root, 1);
3566 }
3567
3568 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3569 {
3570 __btrfs_btree_balance_dirty(root, 0);
3571 }
3572
3573 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3574 {
3575 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3576 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3577 }
3578
3579 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3580 int read_only)
3581 {
3582 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3583 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3584 return -EINVAL;
3585 }
3586
3587 if (read_only)
3588 return 0;
3589
3590 return 0;
3591 }
3592
3593 void btrfs_error_commit_super(struct btrfs_root *root)
3594 {
3595 mutex_lock(&root->fs_info->cleaner_mutex);
3596 btrfs_run_delayed_iputs(root);
3597 mutex_unlock(&root->fs_info->cleaner_mutex);
3598
3599 down_write(&root->fs_info->cleanup_work_sem);
3600 up_write(&root->fs_info->cleanup_work_sem);
3601
3602 /* cleanup FS via transaction */
3603 btrfs_cleanup_transaction(root);
3604 }
3605
3606 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3607 struct btrfs_root *root)
3608 {
3609 struct btrfs_inode *btrfs_inode;
3610 struct list_head splice;
3611
3612 INIT_LIST_HEAD(&splice);
3613
3614 mutex_lock(&root->fs_info->ordered_operations_mutex);
3615 spin_lock(&root->fs_info->ordered_extent_lock);
3616
3617 list_splice_init(&t->ordered_operations, &splice);
3618 while (!list_empty(&splice)) {
3619 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3620 ordered_operations);
3621
3622 list_del_init(&btrfs_inode->ordered_operations);
3623
3624 btrfs_invalidate_inodes(btrfs_inode->root);
3625 }
3626
3627 spin_unlock(&root->fs_info->ordered_extent_lock);
3628 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3629 }
3630
3631 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3632 {
3633 struct btrfs_ordered_extent *ordered;
3634
3635 spin_lock(&root->fs_info->ordered_extent_lock);
3636 /*
3637 * This will just short circuit the ordered completion stuff which will
3638 * make sure the ordered extent gets properly cleaned up.
3639 */
3640 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3641 root_extent_list)
3642 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3643 spin_unlock(&root->fs_info->ordered_extent_lock);
3644 }
3645
3646 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3647 struct btrfs_root *root)
3648 {
3649 struct rb_node *node;
3650 struct btrfs_delayed_ref_root *delayed_refs;
3651 struct btrfs_delayed_ref_node *ref;
3652 int ret = 0;
3653
3654 delayed_refs = &trans->delayed_refs;
3655
3656 spin_lock(&delayed_refs->lock);
3657 if (delayed_refs->num_entries == 0) {
3658 spin_unlock(&delayed_refs->lock);
3659 printk(KERN_INFO "delayed_refs has NO entry\n");
3660 return ret;
3661 }
3662
3663 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3664 struct btrfs_delayed_ref_head *head = NULL;
3665
3666 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3667 atomic_set(&ref->refs, 1);
3668 if (btrfs_delayed_ref_is_head(ref)) {
3669
3670 head = btrfs_delayed_node_to_head(ref);
3671 if (!mutex_trylock(&head->mutex)) {
3672 atomic_inc(&ref->refs);
3673 spin_unlock(&delayed_refs->lock);
3674
3675 /* Need to wait for the delayed ref to run */
3676 mutex_lock(&head->mutex);
3677 mutex_unlock(&head->mutex);
3678 btrfs_put_delayed_ref(ref);
3679
3680 spin_lock(&delayed_refs->lock);
3681 continue;
3682 }
3683
3684 btrfs_free_delayed_extent_op(head->extent_op);
3685 delayed_refs->num_heads--;
3686 if (list_empty(&head->cluster))
3687 delayed_refs->num_heads_ready--;
3688 list_del_init(&head->cluster);
3689 }
3690
3691 ref->in_tree = 0;
3692 rb_erase(&ref->rb_node, &delayed_refs->root);
3693 delayed_refs->num_entries--;
3694 if (head)
3695 mutex_unlock(&head->mutex);
3696 spin_unlock(&delayed_refs->lock);
3697 btrfs_put_delayed_ref(ref);
3698
3699 cond_resched();
3700 spin_lock(&delayed_refs->lock);
3701 }
3702
3703 spin_unlock(&delayed_refs->lock);
3704
3705 return ret;
3706 }
3707
3708 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3709 {
3710 struct btrfs_pending_snapshot *snapshot;
3711 struct list_head splice;
3712
3713 INIT_LIST_HEAD(&splice);
3714
3715 list_splice_init(&t->pending_snapshots, &splice);
3716
3717 while (!list_empty(&splice)) {
3718 snapshot = list_entry(splice.next,
3719 struct btrfs_pending_snapshot,
3720 list);
3721 snapshot->error = -ECANCELED;
3722 list_del_init(&snapshot->list);
3723 }
3724 }
3725
3726 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3727 {
3728 struct btrfs_inode *btrfs_inode;
3729 struct list_head splice;
3730
3731 INIT_LIST_HEAD(&splice);
3732
3733 spin_lock(&root->fs_info->delalloc_lock);
3734 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3735
3736 while (!list_empty(&splice)) {
3737 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3738 delalloc_inodes);
3739
3740 list_del_init(&btrfs_inode->delalloc_inodes);
3741 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3742 &btrfs_inode->runtime_flags);
3743
3744 btrfs_invalidate_inodes(btrfs_inode->root);
3745 }
3746
3747 spin_unlock(&root->fs_info->delalloc_lock);
3748 }
3749
3750 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3751 struct extent_io_tree *dirty_pages,
3752 int mark)
3753 {
3754 int ret;
3755 struct extent_buffer *eb;
3756 u64 start = 0;
3757 u64 end;
3758
3759 while (1) {
3760 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3761 mark, NULL);
3762 if (ret)
3763 break;
3764
3765 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3766 while (start <= end) {
3767 eb = btrfs_find_tree_block(root, start,
3768 root->leafsize);
3769 start += eb->len;
3770 if (!eb)
3771 continue;
3772 wait_on_extent_buffer_writeback(eb);
3773
3774 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3775 &eb->bflags))
3776 clear_extent_buffer_dirty(eb);
3777 free_extent_buffer_stale(eb);
3778 }
3779 }
3780
3781 return ret;
3782 }
3783
3784 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3785 struct extent_io_tree *pinned_extents)
3786 {
3787 struct extent_io_tree *unpin;
3788 u64 start;
3789 u64 end;
3790 int ret;
3791 bool loop = true;
3792
3793 unpin = pinned_extents;
3794 again:
3795 while (1) {
3796 ret = find_first_extent_bit(unpin, 0, &start, &end,
3797 EXTENT_DIRTY, NULL);
3798 if (ret)
3799 break;
3800
3801 /* opt_discard */
3802 if (btrfs_test_opt(root, DISCARD))
3803 ret = btrfs_error_discard_extent(root, start,
3804 end + 1 - start,
3805 NULL);
3806
3807 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3808 btrfs_error_unpin_extent_range(root, start, end);
3809 cond_resched();
3810 }
3811
3812 if (loop) {
3813 if (unpin == &root->fs_info->freed_extents[0])
3814 unpin = &root->fs_info->freed_extents[1];
3815 else
3816 unpin = &root->fs_info->freed_extents[0];
3817 loop = false;
3818 goto again;
3819 }
3820
3821 return 0;
3822 }
3823
3824 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3825 struct btrfs_root *root)
3826 {
3827 btrfs_destroy_delayed_refs(cur_trans, root);
3828 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3829 cur_trans->dirty_pages.dirty_bytes);
3830
3831 /* FIXME: cleanup wait for commit */
3832 cur_trans->in_commit = 1;
3833 cur_trans->blocked = 1;
3834 wake_up(&root->fs_info->transaction_blocked_wait);
3835
3836 btrfs_evict_pending_snapshots(cur_trans);
3837
3838 cur_trans->blocked = 0;
3839 wake_up(&root->fs_info->transaction_wait);
3840
3841 cur_trans->commit_done = 1;
3842 wake_up(&cur_trans->commit_wait);
3843
3844 btrfs_destroy_delayed_inodes(root);
3845 btrfs_assert_delayed_root_empty(root);
3846
3847 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3848 EXTENT_DIRTY);
3849 btrfs_destroy_pinned_extent(root,
3850 root->fs_info->pinned_extents);
3851
3852 /*
3853 memset(cur_trans, 0, sizeof(*cur_trans));
3854 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3855 */
3856 }
3857
3858 int btrfs_cleanup_transaction(struct btrfs_root *root)
3859 {
3860 struct btrfs_transaction *t;
3861 LIST_HEAD(list);
3862
3863 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3864
3865 spin_lock(&root->fs_info->trans_lock);
3866 list_splice_init(&root->fs_info->trans_list, &list);
3867 root->fs_info->trans_no_join = 1;
3868 spin_unlock(&root->fs_info->trans_lock);
3869
3870 while (!list_empty(&list)) {
3871 t = list_entry(list.next, struct btrfs_transaction, list);
3872
3873 btrfs_destroy_ordered_operations(t, root);
3874
3875 btrfs_destroy_ordered_extents(root);
3876
3877 btrfs_destroy_delayed_refs(t, root);
3878
3879 btrfs_block_rsv_release(root,
3880 &root->fs_info->trans_block_rsv,
3881 t->dirty_pages.dirty_bytes);
3882
3883 /* FIXME: cleanup wait for commit */
3884 t->in_commit = 1;
3885 t->blocked = 1;
3886 smp_mb();
3887 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3888 wake_up(&root->fs_info->transaction_blocked_wait);
3889
3890 btrfs_evict_pending_snapshots(t);
3891
3892 t->blocked = 0;
3893 smp_mb();
3894 if (waitqueue_active(&root->fs_info->transaction_wait))
3895 wake_up(&root->fs_info->transaction_wait);
3896
3897 t->commit_done = 1;
3898 smp_mb();
3899 if (waitqueue_active(&t->commit_wait))
3900 wake_up(&t->commit_wait);
3901
3902 btrfs_destroy_delayed_inodes(root);
3903 btrfs_assert_delayed_root_empty(root);
3904
3905 btrfs_destroy_delalloc_inodes(root);
3906
3907 spin_lock(&root->fs_info->trans_lock);
3908 root->fs_info->running_transaction = NULL;
3909 spin_unlock(&root->fs_info->trans_lock);
3910
3911 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3912 EXTENT_DIRTY);
3913
3914 btrfs_destroy_pinned_extent(root,
3915 root->fs_info->pinned_extents);
3916
3917 atomic_set(&t->use_count, 0);
3918 list_del_init(&t->list);
3919 memset(t, 0, sizeof(*t));
3920 kmem_cache_free(btrfs_transaction_cachep, t);
3921 }
3922
3923 spin_lock(&root->fs_info->trans_lock);
3924 root->fs_info->trans_no_join = 0;
3925 spin_unlock(&root->fs_info->trans_lock);
3926 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3927
3928 return 0;
3929 }
3930
3931 static struct extent_io_ops btree_extent_io_ops = {
3932 .readpage_end_io_hook = btree_readpage_end_io_hook,
3933 .readpage_io_failed_hook = btree_io_failed_hook,
3934 .submit_bio_hook = btree_submit_bio_hook,
3935 /* note we're sharing with inode.c for the merge bio hook */
3936 .merge_bio_hook = btrfs_merge_bio_hook,
3937 };