]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
btrfs: qgroup: Use new metadata reservation.
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 u64 extent_start, extent_end, size, total_added = 0;
344 int ret;
345
346 while (start < end) {
347 ret = find_first_extent_bit(info->pinned_extents, start,
348 &extent_start, &extent_end,
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
351 if (ret)
352 break;
353
354 if (extent_start <= start) {
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
358 total_added += size;
359 ret = btrfs_add_free_space(block_group, start,
360 size);
361 BUG_ON(ret); /* -ENOMEM or logic error */
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
370 total_added += size;
371 ret = btrfs_add_free_space(block_group, start, size);
372 BUG_ON(ret); /* -ENOMEM or logic error */
373 }
374
375 return total_added;
376 }
377
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret = -ENOMEM;
391
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
397 path = btrfs_alloc_path();
398 if (!path)
399 goto out;
400
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 /*
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
408 */
409 path->skip_locking = 1;
410 path->search_commit_root = 1;
411 path->reada = 1;
412
413 key.objectid = last;
414 key.offset = 0;
415 key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 mutex_lock(&caching_ctl->mutex);
418 /* need to make sure the commit_root doesn't disappear */
419 down_read(&fs_info->commit_root_sem);
420
421 next:
422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 if (ret < 0)
424 goto err;
425
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
429 while (1) {
430 if (btrfs_fs_closing(fs_info) > 1) {
431 last = (u64)-1;
432 break;
433 }
434
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
440 break;
441
442 if (need_resched() ||
443 rwsem_is_contended(&fs_info->commit_root_sem)) {
444 caching_ctl->progress = last;
445 btrfs_release_path(path);
446 up_read(&fs_info->commit_root_sem);
447 mutex_unlock(&caching_ctl->mutex);
448 cond_resched();
449 goto again;
450 }
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
460 }
461
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
474 continue;
475 }
476
477 if (key.objectid >= block_group->key.objectid +
478 block_group->key.offset)
479 break;
480
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
488 fs_info->tree_root->nodesize;
489 else
490 last = key.objectid + key.offset;
491
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
496 }
497 path->slots[0]++;
498 }
499 ret = 0;
500
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
504 caching_ctl->progress = (u64)-1;
505
506 spin_lock(&block_group->lock);
507 block_group->caching_ctl = NULL;
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
510
511 err:
512 btrfs_free_path(path);
513 up_read(&fs_info->commit_root_sem);
514
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
518 out:
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
528 btrfs_put_block_group(block_group);
529 }
530
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 int load_cache_only)
533 {
534 DEFINE_WAIT(wait);
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
537 int ret = 0;
538
539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 if (!caching_ctl)
541 return -ENOMEM;
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 mutex_lock(&caching_ctl->mutex);
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 caching_ctl->progress = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 cache->has_caching_ctl = 1;
607 }
608 }
609 spin_unlock(&cache->lock);
610 mutex_unlock(&caching_ctl->mutex);
611
612 wake_up(&caching_ctl->wait);
613 if (ret == 1) {
614 put_caching_control(caching_ctl);
615 free_excluded_extents(fs_info->extent_root, cache);
616 return 0;
617 }
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
629 cache->has_caching_ctl = 1;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->nodesize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
795 key.offset == root->nodesize)
796 ret = 0;
797 }
798 }
799
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 BUG();
819 #endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
839 btrfs_release_path(path);
840
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
848 goto search_again;
849 }
850 spin_lock(&head->lock);
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
857 spin_unlock(&head->lock);
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861 out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867 out_free:
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 /*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
936 *
937 * The extent ref structure for the implicit back refs has fields for:
938 *
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
943 *
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
946 *
947 * The extent ref structure for the full back refs has field for:
948 *
949 * - number of pointers in the tree leaf
950 *
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
953 *
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
956 *
957 * (root_key.objectid, inode objectid, offset in file, 1)
958 *
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
961 *
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
963 *
964 * Btree extents can be referenced by:
965 *
966 * - Different subvolumes
967 *
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
972 *
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
976 */
977
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
983 {
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
989 struct btrfs_key key;
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
1009 BUG_ON(ret > 0); /* Corruption */
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
1025 btrfs_release_path(path);
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
1035 BUG_ON(ret); /* Corruption */
1036
1037 btrfs_extend_item(root, path, new_size);
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057 }
1058 #endif
1059
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 lenum = cpu_to_le64(owner);
1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(offset);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078 {
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093 }
1094
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101 {
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
1104 struct extent_buffer *leaf;
1105 u32 nritems;
1106 int ret;
1107 int recow;
1108 int err = -ENOENT;
1109
1110 key.objectid = bytenr;
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119 again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
1126
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 btrfs_release_path(path);
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140 #endif
1141 goto fail;
1142 }
1143
1144 leaf = path->nodes[0];
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
1170 btrfs_release_path(path);
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
1177 }
1178 fail:
1179 return err;
1180 }
1181
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
1188 {
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
1191 u32 size;
1192 u32 num_refs;
1193 int ret;
1194
1195 key.objectid = bytenr;
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
1214 ref = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 }
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
1231 btrfs_release_path(path);
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
1237
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 }
1253 }
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256 fail:
1257 btrfs_release_path(path);
1258 return ret;
1259 }
1260
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 int refs_to_drop, int *last_ref)
1265 {
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
1269 struct extent_buffer *leaf;
1270 u32 num_refs = 0;
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 } else {
1292 BUG();
1293 }
1294
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
1297
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
1300 *last_ref = 1;
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1320 struct btrfs_extent_inline_ref *iref)
1321 {
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358 }
1359
1360 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1365 {
1366 struct btrfs_key key;
1367 int ret;
1368
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1376 }
1377
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
1383 btrfs_release_path(path);
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1389 #endif
1390 return ret;
1391 }
1392
1393 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
1398 {
1399 struct btrfs_key key;
1400 int ret;
1401
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1412 btrfs_release_path(path);
1413 return ret;
1414 }
1415
1416 static inline int extent_ref_type(u64 parent, u64 owner)
1417 {
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
1431 }
1432
1433 static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
1435
1436 {
1437 for (; level < BTRFS_MAX_LEVEL; level++) {
1438 if (!path->nodes[level])
1439 break;
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452 }
1453
1454 /*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467 static noinline_for_stack
1468 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475 {
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
1491
1492 key.objectid = bytenr;
1493 key.type = BTRFS_EXTENT_ITEM_KEY;
1494 key.offset = num_bytes;
1495
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
1499 path->keep_locks = 1;
1500 } else
1501 extra_size = -1;
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512 again:
1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1514 if (ret < 0) {
1515 err = ret;
1516 goto out;
1517 }
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
1535 key.objectid = bytenr;
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
1546 } else if (WARN_ON(ret)) {
1547 err = -EIO;
1548 goto out;
1549 }
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568 #endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649 out:
1650 if (insert) {
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655 }
1656
1657 /*
1658 * helper to add new inline back ref
1659 */
1660 static noinline_for_stack
1661 void setup_inline_extent_backref(struct btrfs_root *root,
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
1667 {
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
1684 btrfs_extend_item(root, path, size);
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
1719 }
1720
1721 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727 {
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
1734 return ret;
1735
1736 btrfs_release_path(path);
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
1745 }
1746 return ret;
1747 }
1748
1749 /*
1750 * helper to update/remove inline back ref
1751 */
1752 static noinline_for_stack
1753 void update_inline_extent_backref(struct btrfs_root *root,
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
1759 {
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
1791 }
1792
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
1802 *last_ref = 1;
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
1811 btrfs_truncate_item(root, path, item_size, 1);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
1814 }
1815
1816 static noinline_for_stack
1817 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824 {
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1833 update_inline_extent_backref(root, path, iref,
1834 refs_to_add, extent_op, NULL);
1835 } else if (ret == -ENOENT) {
1836 setup_inline_extent_backref(root, path, iref, parent,
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
1840 }
1841 return ret;
1842 }
1843
1844 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849 {
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861 }
1862
1863 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
1867 int refs_to_drop, int is_data, int *last_ref)
1868 {
1869 int ret = 0;
1870
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
1873 update_inline_extent_backref(root, path, iref,
1874 -refs_to_drop, NULL, last_ref);
1875 } else if (is_data) {
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
1878 } else {
1879 *last_ref = 1;
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883 }
1884
1885 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1886 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
1888 {
1889 int j, ret = 0;
1890 u64 bytes_left, end;
1891 u64 aligned_start = ALIGN(start, 1 << 9);
1892
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
1898
1899 *discarded_bytes = 0;
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1951 GFP_NOFS, 0);
1952 if (!ret)
1953 *discarded_bytes += bytes_left;
1954 }
1955 return ret;
1956 }
1957
1958 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
1960 {
1961 int ret;
1962 u64 discarded_bytes = 0;
1963 struct btrfs_bio *bbio = NULL;
1964
1965
1966 /* Tell the block device(s) that the sectors can be discarded */
1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1968 bytenr, &num_bytes, &bbio, 0);
1969 /* Error condition is -ENOMEM */
1970 if (!ret) {
1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
1972 int i;
1973
1974
1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1976 u64 bytes;
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
1982 stripe->length,
1983 &bytes);
1984 if (!ret)
1985 discarded_bytes += bytes;
1986 else if (ret != -EOPNOTSUPP)
1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
1995 }
1996 btrfs_put_bbio(bbio);
1997 }
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
2002
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
2005 return ret;
2006 }
2007
2008 /* Can return -ENOMEM */
2009 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
2014 {
2015 int ret;
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
2024 parent, root_objectid, (int)owner,
2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2026 } else {
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
2029 parent, root_objectid, owner, offset,
2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2031 }
2032 return ret;
2033 }
2034
2035 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
2037 struct btrfs_delayed_ref_node *node,
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041 {
2042 struct btrfs_fs_info *fs_info = root->fs_info;
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
2046 struct btrfs_key key;
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
2049 u64 refs;
2050 int ret;
2051 int no_quota = node->no_quota;
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
2068 goto out;
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
2075 leaf = path->nodes[0];
2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
2082
2083 btrfs_mark_buffer_dirty(leaf);
2084 btrfs_release_path(path);
2085
2086 path->reada = 1;
2087 path->leave_spinning = 1;
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
2094 out:
2095 btrfs_free_path(path);
2096 return ret;
2097 }
2098
2099 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
2104 {
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
2121 ref_root = ref->root;
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2124 if (extent_op)
2125 flags |= extent_op->flags_to_set;
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
2134 extent_op);
2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2136 ret = __btrfs_free_extent(trans, root, node, parent,
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
2139 extent_op);
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144 }
2145
2146 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149 {
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162 }
2163
2164 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168 {
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
2174 int ret;
2175 int err = 0;
2176 int metadata = !extent_op->is_data;
2177
2178 if (trans->aborted)
2179 return 0;
2180
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
2189
2190 if (metadata) {
2191 key.type = BTRFS_METADATA_ITEM_KEY;
2192 key.offset = extent_op->level;
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198 again:
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
2208 if (metadata) {
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
2221
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
2230 }
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246 #endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
2250
2251 btrfs_mark_buffer_dirty(leaf);
2252 out:
2253 btrfs_free_path(path);
2254 return err;
2255 }
2256
2257 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
2262 {
2263 int ret = 0;
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
2270
2271 ref = btrfs_delayed_node_to_tree_ref(node);
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
2276 ref_root = ref->root;
2277
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2289 BUG_ON(!extent_op || !extent_op->update_flags);
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
2294 ref->level, &ins,
2295 node->no_quota);
2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
2300 extent_op);
2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
2305 } else {
2306 BUG();
2307 }
2308 return ret;
2309 }
2310
2311 /* helper function to actually process a single delayed ref entry */
2312 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
2317 {
2318 int ret = 0;
2319
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
2324 return 0;
2325 }
2326
2327 if (btrfs_delayed_ref_is_head(node)) {
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
2339 if (insert_reserved) {
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
2346 }
2347 }
2348
2349 /* Also free its reserved qgroup space */
2350 btrfs_qgroup_free_delayed_ref(root->fs_info,
2351 head->qgroup_ref_root,
2352 head->qgroup_reserved);
2353 return ret;
2354 }
2355
2356 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2357 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2358 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2359 insert_reserved);
2360 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2361 node->type == BTRFS_SHARED_DATA_REF_KEY)
2362 ret = run_delayed_data_ref(trans, root, node, extent_op,
2363 insert_reserved);
2364 else
2365 BUG();
2366 return ret;
2367 }
2368
2369 static inline struct btrfs_delayed_ref_node *
2370 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2371 {
2372 struct btrfs_delayed_ref_node *ref;
2373
2374 if (list_empty(&head->ref_list))
2375 return NULL;
2376
2377 /*
2378 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2379 * This is to prevent a ref count from going down to zero, which deletes
2380 * the extent item from the extent tree, when there still are references
2381 * to add, which would fail because they would not find the extent item.
2382 */
2383 list_for_each_entry(ref, &head->ref_list, list) {
2384 if (ref->action == BTRFS_ADD_DELAYED_REF)
2385 return ref;
2386 }
2387
2388 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2389 list);
2390 }
2391
2392 /*
2393 * Returns 0 on success or if called with an already aborted transaction.
2394 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2395 */
2396 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2397 struct btrfs_root *root,
2398 unsigned long nr)
2399 {
2400 struct btrfs_delayed_ref_root *delayed_refs;
2401 struct btrfs_delayed_ref_node *ref;
2402 struct btrfs_delayed_ref_head *locked_ref = NULL;
2403 struct btrfs_delayed_extent_op *extent_op;
2404 struct btrfs_fs_info *fs_info = root->fs_info;
2405 ktime_t start = ktime_get();
2406 int ret;
2407 unsigned long count = 0;
2408 unsigned long actual_count = 0;
2409 int must_insert_reserved = 0;
2410
2411 delayed_refs = &trans->transaction->delayed_refs;
2412 while (1) {
2413 if (!locked_ref) {
2414 if (count >= nr)
2415 break;
2416
2417 spin_lock(&delayed_refs->lock);
2418 locked_ref = btrfs_select_ref_head(trans);
2419 if (!locked_ref) {
2420 spin_unlock(&delayed_refs->lock);
2421 break;
2422 }
2423
2424 /* grab the lock that says we are going to process
2425 * all the refs for this head */
2426 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2427 spin_unlock(&delayed_refs->lock);
2428 /*
2429 * we may have dropped the spin lock to get the head
2430 * mutex lock, and that might have given someone else
2431 * time to free the head. If that's true, it has been
2432 * removed from our list and we can move on.
2433 */
2434 if (ret == -EAGAIN) {
2435 locked_ref = NULL;
2436 count++;
2437 continue;
2438 }
2439 }
2440
2441 spin_lock(&locked_ref->lock);
2442
2443 /*
2444 * locked_ref is the head node, so we have to go one
2445 * node back for any delayed ref updates
2446 */
2447 ref = select_delayed_ref(locked_ref);
2448
2449 if (ref && ref->seq &&
2450 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2451 spin_unlock(&locked_ref->lock);
2452 btrfs_delayed_ref_unlock(locked_ref);
2453 spin_lock(&delayed_refs->lock);
2454 locked_ref->processing = 0;
2455 delayed_refs->num_heads_ready++;
2456 spin_unlock(&delayed_refs->lock);
2457 locked_ref = NULL;
2458 cond_resched();
2459 count++;
2460 continue;
2461 }
2462
2463 /*
2464 * record the must insert reserved flag before we
2465 * drop the spin lock.
2466 */
2467 must_insert_reserved = locked_ref->must_insert_reserved;
2468 locked_ref->must_insert_reserved = 0;
2469
2470 extent_op = locked_ref->extent_op;
2471 locked_ref->extent_op = NULL;
2472
2473 if (!ref) {
2474
2475
2476 /* All delayed refs have been processed, Go ahead
2477 * and send the head node to run_one_delayed_ref,
2478 * so that any accounting fixes can happen
2479 */
2480 ref = &locked_ref->node;
2481
2482 if (extent_op && must_insert_reserved) {
2483 btrfs_free_delayed_extent_op(extent_op);
2484 extent_op = NULL;
2485 }
2486
2487 if (extent_op) {
2488 spin_unlock(&locked_ref->lock);
2489 ret = run_delayed_extent_op(trans, root,
2490 ref, extent_op);
2491 btrfs_free_delayed_extent_op(extent_op);
2492
2493 if (ret) {
2494 /*
2495 * Need to reset must_insert_reserved if
2496 * there was an error so the abort stuff
2497 * can cleanup the reserved space
2498 * properly.
2499 */
2500 if (must_insert_reserved)
2501 locked_ref->must_insert_reserved = 1;
2502 locked_ref->processing = 0;
2503 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2504 btrfs_delayed_ref_unlock(locked_ref);
2505 return ret;
2506 }
2507 continue;
2508 }
2509
2510 /*
2511 * Need to drop our head ref lock and re-aqcuire the
2512 * delayed ref lock and then re-check to make sure
2513 * nobody got added.
2514 */
2515 spin_unlock(&locked_ref->lock);
2516 spin_lock(&delayed_refs->lock);
2517 spin_lock(&locked_ref->lock);
2518 if (!list_empty(&locked_ref->ref_list) ||
2519 locked_ref->extent_op) {
2520 spin_unlock(&locked_ref->lock);
2521 spin_unlock(&delayed_refs->lock);
2522 continue;
2523 }
2524 ref->in_tree = 0;
2525 delayed_refs->num_heads--;
2526 rb_erase(&locked_ref->href_node,
2527 &delayed_refs->href_root);
2528 spin_unlock(&delayed_refs->lock);
2529 } else {
2530 actual_count++;
2531 ref->in_tree = 0;
2532 list_del(&ref->list);
2533 }
2534 atomic_dec(&delayed_refs->num_entries);
2535
2536 if (!btrfs_delayed_ref_is_head(ref)) {
2537 /*
2538 * when we play the delayed ref, also correct the
2539 * ref_mod on head
2540 */
2541 switch (ref->action) {
2542 case BTRFS_ADD_DELAYED_REF:
2543 case BTRFS_ADD_DELAYED_EXTENT:
2544 locked_ref->node.ref_mod -= ref->ref_mod;
2545 break;
2546 case BTRFS_DROP_DELAYED_REF:
2547 locked_ref->node.ref_mod += ref->ref_mod;
2548 break;
2549 default:
2550 WARN_ON(1);
2551 }
2552 }
2553 spin_unlock(&locked_ref->lock);
2554
2555 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2556 must_insert_reserved);
2557
2558 btrfs_free_delayed_extent_op(extent_op);
2559 if (ret) {
2560 locked_ref->processing = 0;
2561 btrfs_delayed_ref_unlock(locked_ref);
2562 btrfs_put_delayed_ref(ref);
2563 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2564 return ret;
2565 }
2566
2567 /*
2568 * If this node is a head, that means all the refs in this head
2569 * have been dealt with, and we will pick the next head to deal
2570 * with, so we must unlock the head and drop it from the cluster
2571 * list before we release it.
2572 */
2573 if (btrfs_delayed_ref_is_head(ref)) {
2574 if (locked_ref->is_data &&
2575 locked_ref->total_ref_mod < 0) {
2576 spin_lock(&delayed_refs->lock);
2577 delayed_refs->pending_csums -= ref->num_bytes;
2578 spin_unlock(&delayed_refs->lock);
2579 }
2580 btrfs_delayed_ref_unlock(locked_ref);
2581 locked_ref = NULL;
2582 }
2583 btrfs_put_delayed_ref(ref);
2584 count++;
2585 cond_resched();
2586 }
2587
2588 /*
2589 * We don't want to include ref heads since we can have empty ref heads
2590 * and those will drastically skew our runtime down since we just do
2591 * accounting, no actual extent tree updates.
2592 */
2593 if (actual_count > 0) {
2594 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2595 u64 avg;
2596
2597 /*
2598 * We weigh the current average higher than our current runtime
2599 * to avoid large swings in the average.
2600 */
2601 spin_lock(&delayed_refs->lock);
2602 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2603 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2604 spin_unlock(&delayed_refs->lock);
2605 }
2606 return 0;
2607 }
2608
2609 #ifdef SCRAMBLE_DELAYED_REFS
2610 /*
2611 * Normally delayed refs get processed in ascending bytenr order. This
2612 * correlates in most cases to the order added. To expose dependencies on this
2613 * order, we start to process the tree in the middle instead of the beginning
2614 */
2615 static u64 find_middle(struct rb_root *root)
2616 {
2617 struct rb_node *n = root->rb_node;
2618 struct btrfs_delayed_ref_node *entry;
2619 int alt = 1;
2620 u64 middle;
2621 u64 first = 0, last = 0;
2622
2623 n = rb_first(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 first = entry->bytenr;
2627 }
2628 n = rb_last(root);
2629 if (n) {
2630 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2631 last = entry->bytenr;
2632 }
2633 n = root->rb_node;
2634
2635 while (n) {
2636 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2637 WARN_ON(!entry->in_tree);
2638
2639 middle = entry->bytenr;
2640
2641 if (alt)
2642 n = n->rb_left;
2643 else
2644 n = n->rb_right;
2645
2646 alt = 1 - alt;
2647 }
2648 return middle;
2649 }
2650 #endif
2651
2652 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2653 {
2654 u64 num_bytes;
2655
2656 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2657 sizeof(struct btrfs_extent_inline_ref));
2658 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2659 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2660
2661 /*
2662 * We don't ever fill up leaves all the way so multiply by 2 just to be
2663 * closer to what we're really going to want to ouse.
2664 */
2665 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2666 }
2667
2668 /*
2669 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2670 * would require to store the csums for that many bytes.
2671 */
2672 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2673 {
2674 u64 csum_size;
2675 u64 num_csums_per_leaf;
2676 u64 num_csums;
2677
2678 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2679 num_csums_per_leaf = div64_u64(csum_size,
2680 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2681 num_csums = div64_u64(csum_bytes, root->sectorsize);
2682 num_csums += num_csums_per_leaf - 1;
2683 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2684 return num_csums;
2685 }
2686
2687 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root)
2689 {
2690 struct btrfs_block_rsv *global_rsv;
2691 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2692 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2693 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2694 u64 num_bytes, num_dirty_bgs_bytes;
2695 int ret = 0;
2696
2697 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2698 num_heads = heads_to_leaves(root, num_heads);
2699 if (num_heads > 1)
2700 num_bytes += (num_heads - 1) * root->nodesize;
2701 num_bytes <<= 1;
2702 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2703 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2704 num_dirty_bgs);
2705 global_rsv = &root->fs_info->global_block_rsv;
2706
2707 /*
2708 * If we can't allocate any more chunks lets make sure we have _lots_ of
2709 * wiggle room since running delayed refs can create more delayed refs.
2710 */
2711 if (global_rsv->space_info->full) {
2712 num_dirty_bgs_bytes <<= 1;
2713 num_bytes <<= 1;
2714 }
2715
2716 spin_lock(&global_rsv->lock);
2717 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2718 ret = 1;
2719 spin_unlock(&global_rsv->lock);
2720 return ret;
2721 }
2722
2723 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root)
2725 {
2726 struct btrfs_fs_info *fs_info = root->fs_info;
2727 u64 num_entries =
2728 atomic_read(&trans->transaction->delayed_refs.num_entries);
2729 u64 avg_runtime;
2730 u64 val;
2731
2732 smp_mb();
2733 avg_runtime = fs_info->avg_delayed_ref_runtime;
2734 val = num_entries * avg_runtime;
2735 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2736 return 1;
2737 if (val >= NSEC_PER_SEC / 2)
2738 return 2;
2739
2740 return btrfs_check_space_for_delayed_refs(trans, root);
2741 }
2742
2743 struct async_delayed_refs {
2744 struct btrfs_root *root;
2745 int count;
2746 int error;
2747 int sync;
2748 struct completion wait;
2749 struct btrfs_work work;
2750 };
2751
2752 static void delayed_ref_async_start(struct btrfs_work *work)
2753 {
2754 struct async_delayed_refs *async;
2755 struct btrfs_trans_handle *trans;
2756 int ret;
2757
2758 async = container_of(work, struct async_delayed_refs, work);
2759
2760 trans = btrfs_join_transaction(async->root);
2761 if (IS_ERR(trans)) {
2762 async->error = PTR_ERR(trans);
2763 goto done;
2764 }
2765
2766 /*
2767 * trans->sync means that when we call end_transaciton, we won't
2768 * wait on delayed refs
2769 */
2770 trans->sync = true;
2771 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2772 if (ret)
2773 async->error = ret;
2774
2775 ret = btrfs_end_transaction(trans, async->root);
2776 if (ret && !async->error)
2777 async->error = ret;
2778 done:
2779 if (async->sync)
2780 complete(&async->wait);
2781 else
2782 kfree(async);
2783 }
2784
2785 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2786 unsigned long count, int wait)
2787 {
2788 struct async_delayed_refs *async;
2789 int ret;
2790
2791 async = kmalloc(sizeof(*async), GFP_NOFS);
2792 if (!async)
2793 return -ENOMEM;
2794
2795 async->root = root->fs_info->tree_root;
2796 async->count = count;
2797 async->error = 0;
2798 if (wait)
2799 async->sync = 1;
2800 else
2801 async->sync = 0;
2802 init_completion(&async->wait);
2803
2804 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2805 delayed_ref_async_start, NULL, NULL);
2806
2807 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2808
2809 if (wait) {
2810 wait_for_completion(&async->wait);
2811 ret = async->error;
2812 kfree(async);
2813 return ret;
2814 }
2815 return 0;
2816 }
2817
2818 /*
2819 * this starts processing the delayed reference count updates and
2820 * extent insertions we have queued up so far. count can be
2821 * 0, which means to process everything in the tree at the start
2822 * of the run (but not newly added entries), or it can be some target
2823 * number you'd like to process.
2824 *
2825 * Returns 0 on success or if called with an aborted transaction
2826 * Returns <0 on error and aborts the transaction
2827 */
2828 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2829 struct btrfs_root *root, unsigned long count)
2830 {
2831 struct rb_node *node;
2832 struct btrfs_delayed_ref_root *delayed_refs;
2833 struct btrfs_delayed_ref_head *head;
2834 int ret;
2835 int run_all = count == (unsigned long)-1;
2836 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2837
2838 /* We'll clean this up in btrfs_cleanup_transaction */
2839 if (trans->aborted)
2840 return 0;
2841
2842 if (root == root->fs_info->extent_root)
2843 root = root->fs_info->tree_root;
2844
2845 delayed_refs = &trans->transaction->delayed_refs;
2846 if (count == 0)
2847 count = atomic_read(&delayed_refs->num_entries) * 2;
2848
2849 again:
2850 #ifdef SCRAMBLE_DELAYED_REFS
2851 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2852 #endif
2853 trans->can_flush_pending_bgs = false;
2854 ret = __btrfs_run_delayed_refs(trans, root, count);
2855 if (ret < 0) {
2856 btrfs_abort_transaction(trans, root, ret);
2857 return ret;
2858 }
2859
2860 if (run_all) {
2861 if (!list_empty(&trans->new_bgs))
2862 btrfs_create_pending_block_groups(trans, root);
2863
2864 spin_lock(&delayed_refs->lock);
2865 node = rb_first(&delayed_refs->href_root);
2866 if (!node) {
2867 spin_unlock(&delayed_refs->lock);
2868 goto out;
2869 }
2870 count = (unsigned long)-1;
2871
2872 while (node) {
2873 head = rb_entry(node, struct btrfs_delayed_ref_head,
2874 href_node);
2875 if (btrfs_delayed_ref_is_head(&head->node)) {
2876 struct btrfs_delayed_ref_node *ref;
2877
2878 ref = &head->node;
2879 atomic_inc(&ref->refs);
2880
2881 spin_unlock(&delayed_refs->lock);
2882 /*
2883 * Mutex was contended, block until it's
2884 * released and try again
2885 */
2886 mutex_lock(&head->mutex);
2887 mutex_unlock(&head->mutex);
2888
2889 btrfs_put_delayed_ref(ref);
2890 cond_resched();
2891 goto again;
2892 } else {
2893 WARN_ON(1);
2894 }
2895 node = rb_next(node);
2896 }
2897 spin_unlock(&delayed_refs->lock);
2898 cond_resched();
2899 goto again;
2900 }
2901 out:
2902 assert_qgroups_uptodate(trans);
2903 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2904 return 0;
2905 }
2906
2907 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2908 struct btrfs_root *root,
2909 u64 bytenr, u64 num_bytes, u64 flags,
2910 int level, int is_data)
2911 {
2912 struct btrfs_delayed_extent_op *extent_op;
2913 int ret;
2914
2915 extent_op = btrfs_alloc_delayed_extent_op();
2916 if (!extent_op)
2917 return -ENOMEM;
2918
2919 extent_op->flags_to_set = flags;
2920 extent_op->update_flags = 1;
2921 extent_op->update_key = 0;
2922 extent_op->is_data = is_data ? 1 : 0;
2923 extent_op->level = level;
2924
2925 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2926 num_bytes, extent_op);
2927 if (ret)
2928 btrfs_free_delayed_extent_op(extent_op);
2929 return ret;
2930 }
2931
2932 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root,
2934 struct btrfs_path *path,
2935 u64 objectid, u64 offset, u64 bytenr)
2936 {
2937 struct btrfs_delayed_ref_head *head;
2938 struct btrfs_delayed_ref_node *ref;
2939 struct btrfs_delayed_data_ref *data_ref;
2940 struct btrfs_delayed_ref_root *delayed_refs;
2941 int ret = 0;
2942
2943 delayed_refs = &trans->transaction->delayed_refs;
2944 spin_lock(&delayed_refs->lock);
2945 head = btrfs_find_delayed_ref_head(trans, bytenr);
2946 if (!head) {
2947 spin_unlock(&delayed_refs->lock);
2948 return 0;
2949 }
2950
2951 if (!mutex_trylock(&head->mutex)) {
2952 atomic_inc(&head->node.refs);
2953 spin_unlock(&delayed_refs->lock);
2954
2955 btrfs_release_path(path);
2956
2957 /*
2958 * Mutex was contended, block until it's released and let
2959 * caller try again
2960 */
2961 mutex_lock(&head->mutex);
2962 mutex_unlock(&head->mutex);
2963 btrfs_put_delayed_ref(&head->node);
2964 return -EAGAIN;
2965 }
2966 spin_unlock(&delayed_refs->lock);
2967
2968 spin_lock(&head->lock);
2969 list_for_each_entry(ref, &head->ref_list, list) {
2970 /* If it's a shared ref we know a cross reference exists */
2971 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2972 ret = 1;
2973 break;
2974 }
2975
2976 data_ref = btrfs_delayed_node_to_data_ref(ref);
2977
2978 /*
2979 * If our ref doesn't match the one we're currently looking at
2980 * then we have a cross reference.
2981 */
2982 if (data_ref->root != root->root_key.objectid ||
2983 data_ref->objectid != objectid ||
2984 data_ref->offset != offset) {
2985 ret = 1;
2986 break;
2987 }
2988 }
2989 spin_unlock(&head->lock);
2990 mutex_unlock(&head->mutex);
2991 return ret;
2992 }
2993
2994 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2995 struct btrfs_root *root,
2996 struct btrfs_path *path,
2997 u64 objectid, u64 offset, u64 bytenr)
2998 {
2999 struct btrfs_root *extent_root = root->fs_info->extent_root;
3000 struct extent_buffer *leaf;
3001 struct btrfs_extent_data_ref *ref;
3002 struct btrfs_extent_inline_ref *iref;
3003 struct btrfs_extent_item *ei;
3004 struct btrfs_key key;
3005 u32 item_size;
3006 int ret;
3007
3008 key.objectid = bytenr;
3009 key.offset = (u64)-1;
3010 key.type = BTRFS_EXTENT_ITEM_KEY;
3011
3012 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3013 if (ret < 0)
3014 goto out;
3015 BUG_ON(ret == 0); /* Corruption */
3016
3017 ret = -ENOENT;
3018 if (path->slots[0] == 0)
3019 goto out;
3020
3021 path->slots[0]--;
3022 leaf = path->nodes[0];
3023 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3024
3025 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3026 goto out;
3027
3028 ret = 1;
3029 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3030 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3031 if (item_size < sizeof(*ei)) {
3032 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3033 goto out;
3034 }
3035 #endif
3036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3037
3038 if (item_size != sizeof(*ei) +
3039 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3040 goto out;
3041
3042 if (btrfs_extent_generation(leaf, ei) <=
3043 btrfs_root_last_snapshot(&root->root_item))
3044 goto out;
3045
3046 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3047 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3048 BTRFS_EXTENT_DATA_REF_KEY)
3049 goto out;
3050
3051 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3052 if (btrfs_extent_refs(leaf, ei) !=
3053 btrfs_extent_data_ref_count(leaf, ref) ||
3054 btrfs_extent_data_ref_root(leaf, ref) !=
3055 root->root_key.objectid ||
3056 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3057 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3058 goto out;
3059
3060 ret = 0;
3061 out:
3062 return ret;
3063 }
3064
3065 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 u64 objectid, u64 offset, u64 bytenr)
3068 {
3069 struct btrfs_path *path;
3070 int ret;
3071 int ret2;
3072
3073 path = btrfs_alloc_path();
3074 if (!path)
3075 return -ENOENT;
3076
3077 do {
3078 ret = check_committed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 if (ret && ret != -ENOENT)
3081 goto out;
3082
3083 ret2 = check_delayed_ref(trans, root, path, objectid,
3084 offset, bytenr);
3085 } while (ret2 == -EAGAIN);
3086
3087 if (ret2 && ret2 != -ENOENT) {
3088 ret = ret2;
3089 goto out;
3090 }
3091
3092 if (ret != -ENOENT || ret2 != -ENOENT)
3093 ret = 0;
3094 out:
3095 btrfs_free_path(path);
3096 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3097 WARN_ON(ret > 0);
3098 return ret;
3099 }
3100
3101 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct extent_buffer *buf,
3104 int full_backref, int inc)
3105 {
3106 u64 bytenr;
3107 u64 num_bytes;
3108 u64 parent;
3109 u64 ref_root;
3110 u32 nritems;
3111 struct btrfs_key key;
3112 struct btrfs_file_extent_item *fi;
3113 int i;
3114 int level;
3115 int ret = 0;
3116 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3117 u64, u64, u64, u64, u64, u64, int);
3118
3119
3120 if (btrfs_test_is_dummy_root(root))
3121 return 0;
3122
3123 ref_root = btrfs_header_owner(buf);
3124 nritems = btrfs_header_nritems(buf);
3125 level = btrfs_header_level(buf);
3126
3127 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3128 return 0;
3129
3130 if (inc)
3131 process_func = btrfs_inc_extent_ref;
3132 else
3133 process_func = btrfs_free_extent;
3134
3135 if (full_backref)
3136 parent = buf->start;
3137 else
3138 parent = 0;
3139
3140 for (i = 0; i < nritems; i++) {
3141 if (level == 0) {
3142 btrfs_item_key_to_cpu(buf, &key, i);
3143 if (key.type != BTRFS_EXTENT_DATA_KEY)
3144 continue;
3145 fi = btrfs_item_ptr(buf, i,
3146 struct btrfs_file_extent_item);
3147 if (btrfs_file_extent_type(buf, fi) ==
3148 BTRFS_FILE_EXTENT_INLINE)
3149 continue;
3150 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3151 if (bytenr == 0)
3152 continue;
3153
3154 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3155 key.offset -= btrfs_file_extent_offset(buf, fi);
3156 ret = process_func(trans, root, bytenr, num_bytes,
3157 parent, ref_root, key.objectid,
3158 key.offset, 1);
3159 if (ret)
3160 goto fail;
3161 } else {
3162 bytenr = btrfs_node_blockptr(buf, i);
3163 num_bytes = root->nodesize;
3164 ret = process_func(trans, root, bytenr, num_bytes,
3165 parent, ref_root, level - 1, 0,
3166 1);
3167 if (ret)
3168 goto fail;
3169 }
3170 }
3171 return 0;
3172 fail:
3173 return ret;
3174 }
3175
3176 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3177 struct extent_buffer *buf, int full_backref)
3178 {
3179 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3180 }
3181
3182 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3183 struct extent_buffer *buf, int full_backref)
3184 {
3185 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3186 }
3187
3188 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 struct btrfs_path *path,
3191 struct btrfs_block_group_cache *cache)
3192 {
3193 int ret;
3194 struct btrfs_root *extent_root = root->fs_info->extent_root;
3195 unsigned long bi;
3196 struct extent_buffer *leaf;
3197
3198 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3199 if (ret) {
3200 if (ret > 0)
3201 ret = -ENOENT;
3202 goto fail;
3203 }
3204
3205 leaf = path->nodes[0];
3206 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3207 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3208 btrfs_mark_buffer_dirty(leaf);
3209 fail:
3210 btrfs_release_path(path);
3211 return ret;
3212
3213 }
3214
3215 static struct btrfs_block_group_cache *
3216 next_block_group(struct btrfs_root *root,
3217 struct btrfs_block_group_cache *cache)
3218 {
3219 struct rb_node *node;
3220
3221 spin_lock(&root->fs_info->block_group_cache_lock);
3222
3223 /* If our block group was removed, we need a full search. */
3224 if (RB_EMPTY_NODE(&cache->cache_node)) {
3225 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3226
3227 spin_unlock(&root->fs_info->block_group_cache_lock);
3228 btrfs_put_block_group(cache);
3229 cache = btrfs_lookup_first_block_group(root->fs_info,
3230 next_bytenr);
3231 return cache;
3232 }
3233 node = rb_next(&cache->cache_node);
3234 btrfs_put_block_group(cache);
3235 if (node) {
3236 cache = rb_entry(node, struct btrfs_block_group_cache,
3237 cache_node);
3238 btrfs_get_block_group(cache);
3239 } else
3240 cache = NULL;
3241 spin_unlock(&root->fs_info->block_group_cache_lock);
3242 return cache;
3243 }
3244
3245 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3246 struct btrfs_trans_handle *trans,
3247 struct btrfs_path *path)
3248 {
3249 struct btrfs_root *root = block_group->fs_info->tree_root;
3250 struct inode *inode = NULL;
3251 u64 alloc_hint = 0;
3252 int dcs = BTRFS_DC_ERROR;
3253 u64 num_pages = 0;
3254 int retries = 0;
3255 int ret = 0;
3256
3257 /*
3258 * If this block group is smaller than 100 megs don't bother caching the
3259 * block group.
3260 */
3261 if (block_group->key.offset < (100 * 1024 * 1024)) {
3262 spin_lock(&block_group->lock);
3263 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3264 spin_unlock(&block_group->lock);
3265 return 0;
3266 }
3267
3268 if (trans->aborted)
3269 return 0;
3270 again:
3271 inode = lookup_free_space_inode(root, block_group, path);
3272 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3273 ret = PTR_ERR(inode);
3274 btrfs_release_path(path);
3275 goto out;
3276 }
3277
3278 if (IS_ERR(inode)) {
3279 BUG_ON(retries);
3280 retries++;
3281
3282 if (block_group->ro)
3283 goto out_free;
3284
3285 ret = create_free_space_inode(root, trans, block_group, path);
3286 if (ret)
3287 goto out_free;
3288 goto again;
3289 }
3290
3291 /* We've already setup this transaction, go ahead and exit */
3292 if (block_group->cache_generation == trans->transid &&
3293 i_size_read(inode)) {
3294 dcs = BTRFS_DC_SETUP;
3295 goto out_put;
3296 }
3297
3298 /*
3299 * We want to set the generation to 0, that way if anything goes wrong
3300 * from here on out we know not to trust this cache when we load up next
3301 * time.
3302 */
3303 BTRFS_I(inode)->generation = 0;
3304 ret = btrfs_update_inode(trans, root, inode);
3305 if (ret) {
3306 /*
3307 * So theoretically we could recover from this, simply set the
3308 * super cache generation to 0 so we know to invalidate the
3309 * cache, but then we'd have to keep track of the block groups
3310 * that fail this way so we know we _have_ to reset this cache
3311 * before the next commit or risk reading stale cache. So to
3312 * limit our exposure to horrible edge cases lets just abort the
3313 * transaction, this only happens in really bad situations
3314 * anyway.
3315 */
3316 btrfs_abort_transaction(trans, root, ret);
3317 goto out_put;
3318 }
3319 WARN_ON(ret);
3320
3321 if (i_size_read(inode) > 0) {
3322 ret = btrfs_check_trunc_cache_free_space(root,
3323 &root->fs_info->global_block_rsv);
3324 if (ret)
3325 goto out_put;
3326
3327 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3328 if (ret)
3329 goto out_put;
3330 }
3331
3332 spin_lock(&block_group->lock);
3333 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3334 !btrfs_test_opt(root, SPACE_CACHE)) {
3335 /*
3336 * don't bother trying to write stuff out _if_
3337 * a) we're not cached,
3338 * b) we're with nospace_cache mount option.
3339 */
3340 dcs = BTRFS_DC_WRITTEN;
3341 spin_unlock(&block_group->lock);
3342 goto out_put;
3343 }
3344 spin_unlock(&block_group->lock);
3345
3346 /*
3347 * Try to preallocate enough space based on how big the block group is.
3348 * Keep in mind this has to include any pinned space which could end up
3349 * taking up quite a bit since it's not folded into the other space
3350 * cache.
3351 */
3352 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3353 if (!num_pages)
3354 num_pages = 1;
3355
3356 num_pages *= 16;
3357 num_pages *= PAGE_CACHE_SIZE;
3358
3359 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3360 if (ret)
3361 goto out_put;
3362
3363 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3364 num_pages, num_pages,
3365 &alloc_hint);
3366 if (!ret)
3367 dcs = BTRFS_DC_SETUP;
3368 btrfs_free_reserved_data_space(inode, num_pages);
3369
3370 out_put:
3371 iput(inode);
3372 out_free:
3373 btrfs_release_path(path);
3374 out:
3375 spin_lock(&block_group->lock);
3376 if (!ret && dcs == BTRFS_DC_SETUP)
3377 block_group->cache_generation = trans->transid;
3378 block_group->disk_cache_state = dcs;
3379 spin_unlock(&block_group->lock);
3380
3381 return ret;
3382 }
3383
3384 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3385 struct btrfs_root *root)
3386 {
3387 struct btrfs_block_group_cache *cache, *tmp;
3388 struct btrfs_transaction *cur_trans = trans->transaction;
3389 struct btrfs_path *path;
3390
3391 if (list_empty(&cur_trans->dirty_bgs) ||
3392 !btrfs_test_opt(root, SPACE_CACHE))
3393 return 0;
3394
3395 path = btrfs_alloc_path();
3396 if (!path)
3397 return -ENOMEM;
3398
3399 /* Could add new block groups, use _safe just in case */
3400 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3401 dirty_list) {
3402 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3403 cache_save_setup(cache, trans, path);
3404 }
3405
3406 btrfs_free_path(path);
3407 return 0;
3408 }
3409
3410 /*
3411 * transaction commit does final block group cache writeback during a
3412 * critical section where nothing is allowed to change the FS. This is
3413 * required in order for the cache to actually match the block group,
3414 * but can introduce a lot of latency into the commit.
3415 *
3416 * So, btrfs_start_dirty_block_groups is here to kick off block group
3417 * cache IO. There's a chance we'll have to redo some of it if the
3418 * block group changes again during the commit, but it greatly reduces
3419 * the commit latency by getting rid of the easy block groups while
3420 * we're still allowing others to join the commit.
3421 */
3422 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3423 struct btrfs_root *root)
3424 {
3425 struct btrfs_block_group_cache *cache;
3426 struct btrfs_transaction *cur_trans = trans->transaction;
3427 int ret = 0;
3428 int should_put;
3429 struct btrfs_path *path = NULL;
3430 LIST_HEAD(dirty);
3431 struct list_head *io = &cur_trans->io_bgs;
3432 int num_started = 0;
3433 int loops = 0;
3434
3435 spin_lock(&cur_trans->dirty_bgs_lock);
3436 if (list_empty(&cur_trans->dirty_bgs)) {
3437 spin_unlock(&cur_trans->dirty_bgs_lock);
3438 return 0;
3439 }
3440 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3441 spin_unlock(&cur_trans->dirty_bgs_lock);
3442
3443 again:
3444 /*
3445 * make sure all the block groups on our dirty list actually
3446 * exist
3447 */
3448 btrfs_create_pending_block_groups(trans, root);
3449
3450 if (!path) {
3451 path = btrfs_alloc_path();
3452 if (!path)
3453 return -ENOMEM;
3454 }
3455
3456 /*
3457 * cache_write_mutex is here only to save us from balance or automatic
3458 * removal of empty block groups deleting this block group while we are
3459 * writing out the cache
3460 */
3461 mutex_lock(&trans->transaction->cache_write_mutex);
3462 while (!list_empty(&dirty)) {
3463 cache = list_first_entry(&dirty,
3464 struct btrfs_block_group_cache,
3465 dirty_list);
3466 /*
3467 * this can happen if something re-dirties a block
3468 * group that is already under IO. Just wait for it to
3469 * finish and then do it all again
3470 */
3471 if (!list_empty(&cache->io_list)) {
3472 list_del_init(&cache->io_list);
3473 btrfs_wait_cache_io(root, trans, cache,
3474 &cache->io_ctl, path,
3475 cache->key.objectid);
3476 btrfs_put_block_group(cache);
3477 }
3478
3479
3480 /*
3481 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3482 * if it should update the cache_state. Don't delete
3483 * until after we wait.
3484 *
3485 * Since we're not running in the commit critical section
3486 * we need the dirty_bgs_lock to protect from update_block_group
3487 */
3488 spin_lock(&cur_trans->dirty_bgs_lock);
3489 list_del_init(&cache->dirty_list);
3490 spin_unlock(&cur_trans->dirty_bgs_lock);
3491
3492 should_put = 1;
3493
3494 cache_save_setup(cache, trans, path);
3495
3496 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3497 cache->io_ctl.inode = NULL;
3498 ret = btrfs_write_out_cache(root, trans, cache, path);
3499 if (ret == 0 && cache->io_ctl.inode) {
3500 num_started++;
3501 should_put = 0;
3502
3503 /*
3504 * the cache_write_mutex is protecting
3505 * the io_list
3506 */
3507 list_add_tail(&cache->io_list, io);
3508 } else {
3509 /*
3510 * if we failed to write the cache, the
3511 * generation will be bad and life goes on
3512 */
3513 ret = 0;
3514 }
3515 }
3516 if (!ret) {
3517 ret = write_one_cache_group(trans, root, path, cache);
3518 /*
3519 * Our block group might still be attached to the list
3520 * of new block groups in the transaction handle of some
3521 * other task (struct btrfs_trans_handle->new_bgs). This
3522 * means its block group item isn't yet in the extent
3523 * tree. If this happens ignore the error, as we will
3524 * try again later in the critical section of the
3525 * transaction commit.
3526 */
3527 if (ret == -ENOENT) {
3528 ret = 0;
3529 spin_lock(&cur_trans->dirty_bgs_lock);
3530 if (list_empty(&cache->dirty_list)) {
3531 list_add_tail(&cache->dirty_list,
3532 &cur_trans->dirty_bgs);
3533 btrfs_get_block_group(cache);
3534 }
3535 spin_unlock(&cur_trans->dirty_bgs_lock);
3536 } else if (ret) {
3537 btrfs_abort_transaction(trans, root, ret);
3538 }
3539 }
3540
3541 /* if its not on the io list, we need to put the block group */
3542 if (should_put)
3543 btrfs_put_block_group(cache);
3544
3545 if (ret)
3546 break;
3547
3548 /*
3549 * Avoid blocking other tasks for too long. It might even save
3550 * us from writing caches for block groups that are going to be
3551 * removed.
3552 */
3553 mutex_unlock(&trans->transaction->cache_write_mutex);
3554 mutex_lock(&trans->transaction->cache_write_mutex);
3555 }
3556 mutex_unlock(&trans->transaction->cache_write_mutex);
3557
3558 /*
3559 * go through delayed refs for all the stuff we've just kicked off
3560 * and then loop back (just once)
3561 */
3562 ret = btrfs_run_delayed_refs(trans, root, 0);
3563 if (!ret && loops == 0) {
3564 loops++;
3565 spin_lock(&cur_trans->dirty_bgs_lock);
3566 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3567 /*
3568 * dirty_bgs_lock protects us from concurrent block group
3569 * deletes too (not just cache_write_mutex).
3570 */
3571 if (!list_empty(&dirty)) {
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3573 goto again;
3574 }
3575 spin_unlock(&cur_trans->dirty_bgs_lock);
3576 }
3577
3578 btrfs_free_path(path);
3579 return ret;
3580 }
3581
3582 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root)
3584 {
3585 struct btrfs_block_group_cache *cache;
3586 struct btrfs_transaction *cur_trans = trans->transaction;
3587 int ret = 0;
3588 int should_put;
3589 struct btrfs_path *path;
3590 struct list_head *io = &cur_trans->io_bgs;
3591 int num_started = 0;
3592
3593 path = btrfs_alloc_path();
3594 if (!path)
3595 return -ENOMEM;
3596
3597 /*
3598 * We don't need the lock here since we are protected by the transaction
3599 * commit. We want to do the cache_save_setup first and then run the
3600 * delayed refs to make sure we have the best chance at doing this all
3601 * in one shot.
3602 */
3603 while (!list_empty(&cur_trans->dirty_bgs)) {
3604 cache = list_first_entry(&cur_trans->dirty_bgs,
3605 struct btrfs_block_group_cache,
3606 dirty_list);
3607
3608 /*
3609 * this can happen if cache_save_setup re-dirties a block
3610 * group that is already under IO. Just wait for it to
3611 * finish and then do it all again
3612 */
3613 if (!list_empty(&cache->io_list)) {
3614 list_del_init(&cache->io_list);
3615 btrfs_wait_cache_io(root, trans, cache,
3616 &cache->io_ctl, path,
3617 cache->key.objectid);
3618 btrfs_put_block_group(cache);
3619 }
3620
3621 /*
3622 * don't remove from the dirty list until after we've waited
3623 * on any pending IO
3624 */
3625 list_del_init(&cache->dirty_list);
3626 should_put = 1;
3627
3628 cache_save_setup(cache, trans, path);
3629
3630 if (!ret)
3631 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3632
3633 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3634 cache->io_ctl.inode = NULL;
3635 ret = btrfs_write_out_cache(root, trans, cache, path);
3636 if (ret == 0 && cache->io_ctl.inode) {
3637 num_started++;
3638 should_put = 0;
3639 list_add_tail(&cache->io_list, io);
3640 } else {
3641 /*
3642 * if we failed to write the cache, the
3643 * generation will be bad and life goes on
3644 */
3645 ret = 0;
3646 }
3647 }
3648 if (!ret) {
3649 ret = write_one_cache_group(trans, root, path, cache);
3650 if (ret)
3651 btrfs_abort_transaction(trans, root, ret);
3652 }
3653
3654 /* if its not on the io list, we need to put the block group */
3655 if (should_put)
3656 btrfs_put_block_group(cache);
3657 }
3658
3659 while (!list_empty(io)) {
3660 cache = list_first_entry(io, struct btrfs_block_group_cache,
3661 io_list);
3662 list_del_init(&cache->io_list);
3663 btrfs_wait_cache_io(root, trans, cache,
3664 &cache->io_ctl, path, cache->key.objectid);
3665 btrfs_put_block_group(cache);
3666 }
3667
3668 btrfs_free_path(path);
3669 return ret;
3670 }
3671
3672 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3673 {
3674 struct btrfs_block_group_cache *block_group;
3675 int readonly = 0;
3676
3677 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3678 if (!block_group || block_group->ro)
3679 readonly = 1;
3680 if (block_group)
3681 btrfs_put_block_group(block_group);
3682 return readonly;
3683 }
3684
3685 static const char *alloc_name(u64 flags)
3686 {
3687 switch (flags) {
3688 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3689 return "mixed";
3690 case BTRFS_BLOCK_GROUP_METADATA:
3691 return "metadata";
3692 case BTRFS_BLOCK_GROUP_DATA:
3693 return "data";
3694 case BTRFS_BLOCK_GROUP_SYSTEM:
3695 return "system";
3696 default:
3697 WARN_ON(1);
3698 return "invalid-combination";
3699 };
3700 }
3701
3702 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3703 u64 total_bytes, u64 bytes_used,
3704 struct btrfs_space_info **space_info)
3705 {
3706 struct btrfs_space_info *found;
3707 int i;
3708 int factor;
3709 int ret;
3710
3711 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3712 BTRFS_BLOCK_GROUP_RAID10))
3713 factor = 2;
3714 else
3715 factor = 1;
3716
3717 found = __find_space_info(info, flags);
3718 if (found) {
3719 spin_lock(&found->lock);
3720 found->total_bytes += total_bytes;
3721 found->disk_total += total_bytes * factor;
3722 found->bytes_used += bytes_used;
3723 found->disk_used += bytes_used * factor;
3724 if (total_bytes > 0)
3725 found->full = 0;
3726 spin_unlock(&found->lock);
3727 *space_info = found;
3728 return 0;
3729 }
3730 found = kzalloc(sizeof(*found), GFP_NOFS);
3731 if (!found)
3732 return -ENOMEM;
3733
3734 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3735 if (ret) {
3736 kfree(found);
3737 return ret;
3738 }
3739
3740 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3741 INIT_LIST_HEAD(&found->block_groups[i]);
3742 init_rwsem(&found->groups_sem);
3743 spin_lock_init(&found->lock);
3744 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3745 found->total_bytes = total_bytes;
3746 found->disk_total = total_bytes * factor;
3747 found->bytes_used = bytes_used;
3748 found->disk_used = bytes_used * factor;
3749 found->bytes_pinned = 0;
3750 found->bytes_reserved = 0;
3751 found->bytes_readonly = 0;
3752 found->bytes_may_use = 0;
3753 found->full = 0;
3754 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3755 found->chunk_alloc = 0;
3756 found->flush = 0;
3757 init_waitqueue_head(&found->wait);
3758 INIT_LIST_HEAD(&found->ro_bgs);
3759
3760 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3761 info->space_info_kobj, "%s",
3762 alloc_name(found->flags));
3763 if (ret) {
3764 kfree(found);
3765 return ret;
3766 }
3767
3768 *space_info = found;
3769 list_add_rcu(&found->list, &info->space_info);
3770 if (flags & BTRFS_BLOCK_GROUP_DATA)
3771 info->data_sinfo = found;
3772
3773 return ret;
3774 }
3775
3776 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3777 {
3778 u64 extra_flags = chunk_to_extended(flags) &
3779 BTRFS_EXTENDED_PROFILE_MASK;
3780
3781 write_seqlock(&fs_info->profiles_lock);
3782 if (flags & BTRFS_BLOCK_GROUP_DATA)
3783 fs_info->avail_data_alloc_bits |= extra_flags;
3784 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3785 fs_info->avail_metadata_alloc_bits |= extra_flags;
3786 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3787 fs_info->avail_system_alloc_bits |= extra_flags;
3788 write_sequnlock(&fs_info->profiles_lock);
3789 }
3790
3791 /*
3792 * returns target flags in extended format or 0 if restripe for this
3793 * chunk_type is not in progress
3794 *
3795 * should be called with either volume_mutex or balance_lock held
3796 */
3797 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3798 {
3799 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3800 u64 target = 0;
3801
3802 if (!bctl)
3803 return 0;
3804
3805 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3806 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3807 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3808 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3809 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3810 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3811 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3812 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3813 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3814 }
3815
3816 return target;
3817 }
3818
3819 /*
3820 * @flags: available profiles in extended format (see ctree.h)
3821 *
3822 * Returns reduced profile in chunk format. If profile changing is in
3823 * progress (either running or paused) picks the target profile (if it's
3824 * already available), otherwise falls back to plain reducing.
3825 */
3826 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3827 {
3828 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3829 u64 target;
3830 u64 raid_type;
3831 u64 allowed = 0;
3832
3833 /*
3834 * see if restripe for this chunk_type is in progress, if so
3835 * try to reduce to the target profile
3836 */
3837 spin_lock(&root->fs_info->balance_lock);
3838 target = get_restripe_target(root->fs_info, flags);
3839 if (target) {
3840 /* pick target profile only if it's already available */
3841 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3842 spin_unlock(&root->fs_info->balance_lock);
3843 return extended_to_chunk(target);
3844 }
3845 }
3846 spin_unlock(&root->fs_info->balance_lock);
3847
3848 /* First, mask out the RAID levels which aren't possible */
3849 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3850 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3851 allowed |= btrfs_raid_group[raid_type];
3852 }
3853 allowed &= flags;
3854
3855 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3856 allowed = BTRFS_BLOCK_GROUP_RAID6;
3857 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3858 allowed = BTRFS_BLOCK_GROUP_RAID5;
3859 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3860 allowed = BTRFS_BLOCK_GROUP_RAID10;
3861 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3862 allowed = BTRFS_BLOCK_GROUP_RAID1;
3863 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3864 allowed = BTRFS_BLOCK_GROUP_RAID0;
3865
3866 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3867
3868 return extended_to_chunk(flags | allowed);
3869 }
3870
3871 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3872 {
3873 unsigned seq;
3874 u64 flags;
3875
3876 do {
3877 flags = orig_flags;
3878 seq = read_seqbegin(&root->fs_info->profiles_lock);
3879
3880 if (flags & BTRFS_BLOCK_GROUP_DATA)
3881 flags |= root->fs_info->avail_data_alloc_bits;
3882 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3883 flags |= root->fs_info->avail_system_alloc_bits;
3884 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885 flags |= root->fs_info->avail_metadata_alloc_bits;
3886 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3887
3888 return btrfs_reduce_alloc_profile(root, flags);
3889 }
3890
3891 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3892 {
3893 u64 flags;
3894 u64 ret;
3895
3896 if (data)
3897 flags = BTRFS_BLOCK_GROUP_DATA;
3898 else if (root == root->fs_info->chunk_root)
3899 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3900 else
3901 flags = BTRFS_BLOCK_GROUP_METADATA;
3902
3903 ret = get_alloc_profile(root, flags);
3904 return ret;
3905 }
3906
3907 /*
3908 * This will check the space that the inode allocates from to make sure we have
3909 * enough space for bytes.
3910 */
3911 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3912 {
3913 struct btrfs_space_info *data_sinfo;
3914 struct btrfs_root *root = BTRFS_I(inode)->root;
3915 struct btrfs_fs_info *fs_info = root->fs_info;
3916 u64 used;
3917 int ret = 0;
3918 int need_commit = 2;
3919 int have_pinned_space;
3920
3921 /* make sure bytes are sectorsize aligned */
3922 bytes = ALIGN(bytes, root->sectorsize);
3923
3924 if (btrfs_is_free_space_inode(inode)) {
3925 need_commit = 0;
3926 ASSERT(current->journal_info);
3927 }
3928
3929 data_sinfo = fs_info->data_sinfo;
3930 if (!data_sinfo)
3931 goto alloc;
3932
3933 again:
3934 /* make sure we have enough space to handle the data first */
3935 spin_lock(&data_sinfo->lock);
3936 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3937 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3938 data_sinfo->bytes_may_use;
3939
3940 if (used + bytes > data_sinfo->total_bytes) {
3941 struct btrfs_trans_handle *trans;
3942
3943 /*
3944 * if we don't have enough free bytes in this space then we need
3945 * to alloc a new chunk.
3946 */
3947 if (!data_sinfo->full) {
3948 u64 alloc_target;
3949
3950 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3951 spin_unlock(&data_sinfo->lock);
3952 alloc:
3953 alloc_target = btrfs_get_alloc_profile(root, 1);
3954 /*
3955 * It is ugly that we don't call nolock join
3956 * transaction for the free space inode case here.
3957 * But it is safe because we only do the data space
3958 * reservation for the free space cache in the
3959 * transaction context, the common join transaction
3960 * just increase the counter of the current transaction
3961 * handler, doesn't try to acquire the trans_lock of
3962 * the fs.
3963 */
3964 trans = btrfs_join_transaction(root);
3965 if (IS_ERR(trans))
3966 return PTR_ERR(trans);
3967
3968 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3969 alloc_target,
3970 CHUNK_ALLOC_NO_FORCE);
3971 btrfs_end_transaction(trans, root);
3972 if (ret < 0) {
3973 if (ret != -ENOSPC)
3974 return ret;
3975 else {
3976 have_pinned_space = 1;
3977 goto commit_trans;
3978 }
3979 }
3980
3981 if (!data_sinfo)
3982 data_sinfo = fs_info->data_sinfo;
3983
3984 goto again;
3985 }
3986
3987 /*
3988 * If we don't have enough pinned space to deal with this
3989 * allocation, and no removed chunk in current transaction,
3990 * don't bother committing the transaction.
3991 */
3992 have_pinned_space = percpu_counter_compare(
3993 &data_sinfo->total_bytes_pinned,
3994 used + bytes - data_sinfo->total_bytes);
3995 spin_unlock(&data_sinfo->lock);
3996
3997 /* commit the current transaction and try again */
3998 commit_trans:
3999 if (need_commit &&
4000 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4001 need_commit--;
4002
4003 if (need_commit > 0)
4004 btrfs_wait_ordered_roots(fs_info, -1);
4005
4006 trans = btrfs_join_transaction(root);
4007 if (IS_ERR(trans))
4008 return PTR_ERR(trans);
4009 if (have_pinned_space >= 0 ||
4010 trans->transaction->have_free_bgs ||
4011 need_commit > 0) {
4012 ret = btrfs_commit_transaction(trans, root);
4013 if (ret)
4014 return ret;
4015 /*
4016 * make sure that all running delayed iput are
4017 * done
4018 */
4019 down_write(&root->fs_info->delayed_iput_sem);
4020 up_write(&root->fs_info->delayed_iput_sem);
4021 goto again;
4022 } else {
4023 btrfs_end_transaction(trans, root);
4024 }
4025 }
4026
4027 trace_btrfs_space_reservation(root->fs_info,
4028 "space_info:enospc",
4029 data_sinfo->flags, bytes, 1);
4030 return -ENOSPC;
4031 }
4032 ret = btrfs_qgroup_reserve(root, write_bytes);
4033 if (ret)
4034 goto out;
4035 data_sinfo->bytes_may_use += bytes;
4036 trace_btrfs_space_reservation(root->fs_info, "space_info",
4037 data_sinfo->flags, bytes, 1);
4038 out:
4039 spin_unlock(&data_sinfo->lock);
4040
4041 return ret;
4042 }
4043
4044 /*
4045 * Called if we need to clear a data reservation for this inode.
4046 */
4047 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4048 {
4049 struct btrfs_root *root = BTRFS_I(inode)->root;
4050 struct btrfs_space_info *data_sinfo;
4051
4052 /* make sure bytes are sectorsize aligned */
4053 bytes = ALIGN(bytes, root->sectorsize);
4054
4055 data_sinfo = root->fs_info->data_sinfo;
4056 spin_lock(&data_sinfo->lock);
4057 WARN_ON(data_sinfo->bytes_may_use < bytes);
4058 data_sinfo->bytes_may_use -= bytes;
4059 trace_btrfs_space_reservation(root->fs_info, "space_info",
4060 data_sinfo->flags, bytes, 0);
4061 spin_unlock(&data_sinfo->lock);
4062 }
4063
4064 static void force_metadata_allocation(struct btrfs_fs_info *info)
4065 {
4066 struct list_head *head = &info->space_info;
4067 struct btrfs_space_info *found;
4068
4069 rcu_read_lock();
4070 list_for_each_entry_rcu(found, head, list) {
4071 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4072 found->force_alloc = CHUNK_ALLOC_FORCE;
4073 }
4074 rcu_read_unlock();
4075 }
4076
4077 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4078 {
4079 return (global->size << 1);
4080 }
4081
4082 static int should_alloc_chunk(struct btrfs_root *root,
4083 struct btrfs_space_info *sinfo, int force)
4084 {
4085 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4086 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4087 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4088 u64 thresh;
4089
4090 if (force == CHUNK_ALLOC_FORCE)
4091 return 1;
4092
4093 /*
4094 * We need to take into account the global rsv because for all intents
4095 * and purposes it's used space. Don't worry about locking the
4096 * global_rsv, it doesn't change except when the transaction commits.
4097 */
4098 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4099 num_allocated += calc_global_rsv_need_space(global_rsv);
4100
4101 /*
4102 * in limited mode, we want to have some free space up to
4103 * about 1% of the FS size.
4104 */
4105 if (force == CHUNK_ALLOC_LIMITED) {
4106 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4107 thresh = max_t(u64, 64 * 1024 * 1024,
4108 div_factor_fine(thresh, 1));
4109
4110 if (num_bytes - num_allocated < thresh)
4111 return 1;
4112 }
4113
4114 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4115 return 0;
4116 return 1;
4117 }
4118
4119 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4120 {
4121 u64 num_dev;
4122
4123 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4124 BTRFS_BLOCK_GROUP_RAID0 |
4125 BTRFS_BLOCK_GROUP_RAID5 |
4126 BTRFS_BLOCK_GROUP_RAID6))
4127 num_dev = root->fs_info->fs_devices->rw_devices;
4128 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4129 num_dev = 2;
4130 else
4131 num_dev = 1; /* DUP or single */
4132
4133 return num_dev;
4134 }
4135
4136 /*
4137 * If @is_allocation is true, reserve space in the system space info necessary
4138 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4139 * removing a chunk.
4140 */
4141 void check_system_chunk(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *root,
4143 u64 type)
4144 {
4145 struct btrfs_space_info *info;
4146 u64 left;
4147 u64 thresh;
4148 int ret = 0;
4149 u64 num_devs;
4150
4151 /*
4152 * Needed because we can end up allocating a system chunk and for an
4153 * atomic and race free space reservation in the chunk block reserve.
4154 */
4155 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4156
4157 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4158 spin_lock(&info->lock);
4159 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4160 info->bytes_reserved - info->bytes_readonly -
4161 info->bytes_may_use;
4162 spin_unlock(&info->lock);
4163
4164 num_devs = get_profile_num_devs(root, type);
4165
4166 /* num_devs device items to update and 1 chunk item to add or remove */
4167 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4168 btrfs_calc_trans_metadata_size(root, 1);
4169
4170 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4171 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4172 left, thresh, type);
4173 dump_space_info(info, 0, 0);
4174 }
4175
4176 if (left < thresh) {
4177 u64 flags;
4178
4179 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4180 /*
4181 * Ignore failure to create system chunk. We might end up not
4182 * needing it, as we might not need to COW all nodes/leafs from
4183 * the paths we visit in the chunk tree (they were already COWed
4184 * or created in the current transaction for example).
4185 */
4186 ret = btrfs_alloc_chunk(trans, root, flags);
4187 }
4188
4189 if (!ret) {
4190 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4191 &root->fs_info->chunk_block_rsv,
4192 thresh, BTRFS_RESERVE_NO_FLUSH);
4193 if (!ret)
4194 trans->chunk_bytes_reserved += thresh;
4195 }
4196 }
4197
4198 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4199 struct btrfs_root *extent_root, u64 flags, int force)
4200 {
4201 struct btrfs_space_info *space_info;
4202 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4203 int wait_for_alloc = 0;
4204 int ret = 0;
4205
4206 /* Don't re-enter if we're already allocating a chunk */
4207 if (trans->allocating_chunk)
4208 return -ENOSPC;
4209
4210 space_info = __find_space_info(extent_root->fs_info, flags);
4211 if (!space_info) {
4212 ret = update_space_info(extent_root->fs_info, flags,
4213 0, 0, &space_info);
4214 BUG_ON(ret); /* -ENOMEM */
4215 }
4216 BUG_ON(!space_info); /* Logic error */
4217
4218 again:
4219 spin_lock(&space_info->lock);
4220 if (force < space_info->force_alloc)
4221 force = space_info->force_alloc;
4222 if (space_info->full) {
4223 if (should_alloc_chunk(extent_root, space_info, force))
4224 ret = -ENOSPC;
4225 else
4226 ret = 0;
4227 spin_unlock(&space_info->lock);
4228 return ret;
4229 }
4230
4231 if (!should_alloc_chunk(extent_root, space_info, force)) {
4232 spin_unlock(&space_info->lock);
4233 return 0;
4234 } else if (space_info->chunk_alloc) {
4235 wait_for_alloc = 1;
4236 } else {
4237 space_info->chunk_alloc = 1;
4238 }
4239
4240 spin_unlock(&space_info->lock);
4241
4242 mutex_lock(&fs_info->chunk_mutex);
4243
4244 /*
4245 * The chunk_mutex is held throughout the entirety of a chunk
4246 * allocation, so once we've acquired the chunk_mutex we know that the
4247 * other guy is done and we need to recheck and see if we should
4248 * allocate.
4249 */
4250 if (wait_for_alloc) {
4251 mutex_unlock(&fs_info->chunk_mutex);
4252 wait_for_alloc = 0;
4253 goto again;
4254 }
4255
4256 trans->allocating_chunk = true;
4257
4258 /*
4259 * If we have mixed data/metadata chunks we want to make sure we keep
4260 * allocating mixed chunks instead of individual chunks.
4261 */
4262 if (btrfs_mixed_space_info(space_info))
4263 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4264
4265 /*
4266 * if we're doing a data chunk, go ahead and make sure that
4267 * we keep a reasonable number of metadata chunks allocated in the
4268 * FS as well.
4269 */
4270 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4271 fs_info->data_chunk_allocations++;
4272 if (!(fs_info->data_chunk_allocations %
4273 fs_info->metadata_ratio))
4274 force_metadata_allocation(fs_info);
4275 }
4276
4277 /*
4278 * Check if we have enough space in SYSTEM chunk because we may need
4279 * to update devices.
4280 */
4281 check_system_chunk(trans, extent_root, flags);
4282
4283 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4284 trans->allocating_chunk = false;
4285
4286 spin_lock(&space_info->lock);
4287 if (ret < 0 && ret != -ENOSPC)
4288 goto out;
4289 if (ret)
4290 space_info->full = 1;
4291 else
4292 ret = 1;
4293
4294 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4295 out:
4296 space_info->chunk_alloc = 0;
4297 spin_unlock(&space_info->lock);
4298 mutex_unlock(&fs_info->chunk_mutex);
4299 /*
4300 * When we allocate a new chunk we reserve space in the chunk block
4301 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4302 * add new nodes/leafs to it if we end up needing to do it when
4303 * inserting the chunk item and updating device items as part of the
4304 * second phase of chunk allocation, performed by
4305 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4306 * large number of new block groups to create in our transaction
4307 * handle's new_bgs list to avoid exhausting the chunk block reserve
4308 * in extreme cases - like having a single transaction create many new
4309 * block groups when starting to write out the free space caches of all
4310 * the block groups that were made dirty during the lifetime of the
4311 * transaction.
4312 */
4313 if (trans->can_flush_pending_bgs &&
4314 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4315 btrfs_create_pending_block_groups(trans, trans->root);
4316 btrfs_trans_release_chunk_metadata(trans);
4317 }
4318 return ret;
4319 }
4320
4321 static int can_overcommit(struct btrfs_root *root,
4322 struct btrfs_space_info *space_info, u64 bytes,
4323 enum btrfs_reserve_flush_enum flush)
4324 {
4325 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4326 u64 profile = btrfs_get_alloc_profile(root, 0);
4327 u64 space_size;
4328 u64 avail;
4329 u64 used;
4330
4331 used = space_info->bytes_used + space_info->bytes_reserved +
4332 space_info->bytes_pinned + space_info->bytes_readonly;
4333
4334 /*
4335 * We only want to allow over committing if we have lots of actual space
4336 * free, but if we don't have enough space to handle the global reserve
4337 * space then we could end up having a real enospc problem when trying
4338 * to allocate a chunk or some other such important allocation.
4339 */
4340 spin_lock(&global_rsv->lock);
4341 space_size = calc_global_rsv_need_space(global_rsv);
4342 spin_unlock(&global_rsv->lock);
4343 if (used + space_size >= space_info->total_bytes)
4344 return 0;
4345
4346 used += space_info->bytes_may_use;
4347
4348 spin_lock(&root->fs_info->free_chunk_lock);
4349 avail = root->fs_info->free_chunk_space;
4350 spin_unlock(&root->fs_info->free_chunk_lock);
4351
4352 /*
4353 * If we have dup, raid1 or raid10 then only half of the free
4354 * space is actually useable. For raid56, the space info used
4355 * doesn't include the parity drive, so we don't have to
4356 * change the math
4357 */
4358 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4359 BTRFS_BLOCK_GROUP_RAID1 |
4360 BTRFS_BLOCK_GROUP_RAID10))
4361 avail >>= 1;
4362
4363 /*
4364 * If we aren't flushing all things, let us overcommit up to
4365 * 1/2th of the space. If we can flush, don't let us overcommit
4366 * too much, let it overcommit up to 1/8 of the space.
4367 */
4368 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4369 avail >>= 3;
4370 else
4371 avail >>= 1;
4372
4373 if (used + bytes < space_info->total_bytes + avail)
4374 return 1;
4375 return 0;
4376 }
4377
4378 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4379 unsigned long nr_pages, int nr_items)
4380 {
4381 struct super_block *sb = root->fs_info->sb;
4382
4383 if (down_read_trylock(&sb->s_umount)) {
4384 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4385 up_read(&sb->s_umount);
4386 } else {
4387 /*
4388 * We needn't worry the filesystem going from r/w to r/o though
4389 * we don't acquire ->s_umount mutex, because the filesystem
4390 * should guarantee the delalloc inodes list be empty after
4391 * the filesystem is readonly(all dirty pages are written to
4392 * the disk).
4393 */
4394 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4395 if (!current->journal_info)
4396 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4397 }
4398 }
4399
4400 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4401 {
4402 u64 bytes;
4403 int nr;
4404
4405 bytes = btrfs_calc_trans_metadata_size(root, 1);
4406 nr = (int)div64_u64(to_reclaim, bytes);
4407 if (!nr)
4408 nr = 1;
4409 return nr;
4410 }
4411
4412 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4413
4414 /*
4415 * shrink metadata reservation for delalloc
4416 */
4417 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4418 bool wait_ordered)
4419 {
4420 struct btrfs_block_rsv *block_rsv;
4421 struct btrfs_space_info *space_info;
4422 struct btrfs_trans_handle *trans;
4423 u64 delalloc_bytes;
4424 u64 max_reclaim;
4425 long time_left;
4426 unsigned long nr_pages;
4427 int loops;
4428 int items;
4429 enum btrfs_reserve_flush_enum flush;
4430
4431 /* Calc the number of the pages we need flush for space reservation */
4432 items = calc_reclaim_items_nr(root, to_reclaim);
4433 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4434
4435 trans = (struct btrfs_trans_handle *)current->journal_info;
4436 block_rsv = &root->fs_info->delalloc_block_rsv;
4437 space_info = block_rsv->space_info;
4438
4439 delalloc_bytes = percpu_counter_sum_positive(
4440 &root->fs_info->delalloc_bytes);
4441 if (delalloc_bytes == 0) {
4442 if (trans)
4443 return;
4444 if (wait_ordered)
4445 btrfs_wait_ordered_roots(root->fs_info, items);
4446 return;
4447 }
4448
4449 loops = 0;
4450 while (delalloc_bytes && loops < 3) {
4451 max_reclaim = min(delalloc_bytes, to_reclaim);
4452 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4453 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4454 /*
4455 * We need to wait for the async pages to actually start before
4456 * we do anything.
4457 */
4458 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4459 if (!max_reclaim)
4460 goto skip_async;
4461
4462 if (max_reclaim <= nr_pages)
4463 max_reclaim = 0;
4464 else
4465 max_reclaim -= nr_pages;
4466
4467 wait_event(root->fs_info->async_submit_wait,
4468 atomic_read(&root->fs_info->async_delalloc_pages) <=
4469 (int)max_reclaim);
4470 skip_async:
4471 if (!trans)
4472 flush = BTRFS_RESERVE_FLUSH_ALL;
4473 else
4474 flush = BTRFS_RESERVE_NO_FLUSH;
4475 spin_lock(&space_info->lock);
4476 if (can_overcommit(root, space_info, orig, flush)) {
4477 spin_unlock(&space_info->lock);
4478 break;
4479 }
4480 spin_unlock(&space_info->lock);
4481
4482 loops++;
4483 if (wait_ordered && !trans) {
4484 btrfs_wait_ordered_roots(root->fs_info, items);
4485 } else {
4486 time_left = schedule_timeout_killable(1);
4487 if (time_left)
4488 break;
4489 }
4490 delalloc_bytes = percpu_counter_sum_positive(
4491 &root->fs_info->delalloc_bytes);
4492 }
4493 }
4494
4495 /**
4496 * maybe_commit_transaction - possibly commit the transaction if its ok to
4497 * @root - the root we're allocating for
4498 * @bytes - the number of bytes we want to reserve
4499 * @force - force the commit
4500 *
4501 * This will check to make sure that committing the transaction will actually
4502 * get us somewhere and then commit the transaction if it does. Otherwise it
4503 * will return -ENOSPC.
4504 */
4505 static int may_commit_transaction(struct btrfs_root *root,
4506 struct btrfs_space_info *space_info,
4507 u64 bytes, int force)
4508 {
4509 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4510 struct btrfs_trans_handle *trans;
4511
4512 trans = (struct btrfs_trans_handle *)current->journal_info;
4513 if (trans)
4514 return -EAGAIN;
4515
4516 if (force)
4517 goto commit;
4518
4519 /* See if there is enough pinned space to make this reservation */
4520 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4521 bytes) >= 0)
4522 goto commit;
4523
4524 /*
4525 * See if there is some space in the delayed insertion reservation for
4526 * this reservation.
4527 */
4528 if (space_info != delayed_rsv->space_info)
4529 return -ENOSPC;
4530
4531 spin_lock(&delayed_rsv->lock);
4532 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4533 bytes - delayed_rsv->size) >= 0) {
4534 spin_unlock(&delayed_rsv->lock);
4535 return -ENOSPC;
4536 }
4537 spin_unlock(&delayed_rsv->lock);
4538
4539 commit:
4540 trans = btrfs_join_transaction(root);
4541 if (IS_ERR(trans))
4542 return -ENOSPC;
4543
4544 return btrfs_commit_transaction(trans, root);
4545 }
4546
4547 enum flush_state {
4548 FLUSH_DELAYED_ITEMS_NR = 1,
4549 FLUSH_DELAYED_ITEMS = 2,
4550 FLUSH_DELALLOC = 3,
4551 FLUSH_DELALLOC_WAIT = 4,
4552 ALLOC_CHUNK = 5,
4553 COMMIT_TRANS = 6,
4554 };
4555
4556 static int flush_space(struct btrfs_root *root,
4557 struct btrfs_space_info *space_info, u64 num_bytes,
4558 u64 orig_bytes, int state)
4559 {
4560 struct btrfs_trans_handle *trans;
4561 int nr;
4562 int ret = 0;
4563
4564 switch (state) {
4565 case FLUSH_DELAYED_ITEMS_NR:
4566 case FLUSH_DELAYED_ITEMS:
4567 if (state == FLUSH_DELAYED_ITEMS_NR)
4568 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4569 else
4570 nr = -1;
4571
4572 trans = btrfs_join_transaction(root);
4573 if (IS_ERR(trans)) {
4574 ret = PTR_ERR(trans);
4575 break;
4576 }
4577 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4578 btrfs_end_transaction(trans, root);
4579 break;
4580 case FLUSH_DELALLOC:
4581 case FLUSH_DELALLOC_WAIT:
4582 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4583 state == FLUSH_DELALLOC_WAIT);
4584 break;
4585 case ALLOC_CHUNK:
4586 trans = btrfs_join_transaction(root);
4587 if (IS_ERR(trans)) {
4588 ret = PTR_ERR(trans);
4589 break;
4590 }
4591 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4592 btrfs_get_alloc_profile(root, 0),
4593 CHUNK_ALLOC_NO_FORCE);
4594 btrfs_end_transaction(trans, root);
4595 if (ret == -ENOSPC)
4596 ret = 0;
4597 break;
4598 case COMMIT_TRANS:
4599 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4600 break;
4601 default:
4602 ret = -ENOSPC;
4603 break;
4604 }
4605
4606 return ret;
4607 }
4608
4609 static inline u64
4610 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4611 struct btrfs_space_info *space_info)
4612 {
4613 u64 used;
4614 u64 expected;
4615 u64 to_reclaim;
4616
4617 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4618 16 * 1024 * 1024);
4619 spin_lock(&space_info->lock);
4620 if (can_overcommit(root, space_info, to_reclaim,
4621 BTRFS_RESERVE_FLUSH_ALL)) {
4622 to_reclaim = 0;
4623 goto out;
4624 }
4625
4626 used = space_info->bytes_used + space_info->bytes_reserved +
4627 space_info->bytes_pinned + space_info->bytes_readonly +
4628 space_info->bytes_may_use;
4629 if (can_overcommit(root, space_info, 1024 * 1024,
4630 BTRFS_RESERVE_FLUSH_ALL))
4631 expected = div_factor_fine(space_info->total_bytes, 95);
4632 else
4633 expected = div_factor_fine(space_info->total_bytes, 90);
4634
4635 if (used > expected)
4636 to_reclaim = used - expected;
4637 else
4638 to_reclaim = 0;
4639 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4640 space_info->bytes_reserved);
4641 out:
4642 spin_unlock(&space_info->lock);
4643
4644 return to_reclaim;
4645 }
4646
4647 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4648 struct btrfs_fs_info *fs_info, u64 used)
4649 {
4650 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4651
4652 /* If we're just plain full then async reclaim just slows us down. */
4653 if (space_info->bytes_used >= thresh)
4654 return 0;
4655
4656 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4657 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4658 }
4659
4660 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4661 struct btrfs_fs_info *fs_info,
4662 int flush_state)
4663 {
4664 u64 used;
4665
4666 spin_lock(&space_info->lock);
4667 /*
4668 * We run out of space and have not got any free space via flush_space,
4669 * so don't bother doing async reclaim.
4670 */
4671 if (flush_state > COMMIT_TRANS && space_info->full) {
4672 spin_unlock(&space_info->lock);
4673 return 0;
4674 }
4675
4676 used = space_info->bytes_used + space_info->bytes_reserved +
4677 space_info->bytes_pinned + space_info->bytes_readonly +
4678 space_info->bytes_may_use;
4679 if (need_do_async_reclaim(space_info, fs_info, used)) {
4680 spin_unlock(&space_info->lock);
4681 return 1;
4682 }
4683 spin_unlock(&space_info->lock);
4684
4685 return 0;
4686 }
4687
4688 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4689 {
4690 struct btrfs_fs_info *fs_info;
4691 struct btrfs_space_info *space_info;
4692 u64 to_reclaim;
4693 int flush_state;
4694
4695 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4696 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4697
4698 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4699 space_info);
4700 if (!to_reclaim)
4701 return;
4702
4703 flush_state = FLUSH_DELAYED_ITEMS_NR;
4704 do {
4705 flush_space(fs_info->fs_root, space_info, to_reclaim,
4706 to_reclaim, flush_state);
4707 flush_state++;
4708 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4709 flush_state))
4710 return;
4711 } while (flush_state < COMMIT_TRANS);
4712 }
4713
4714 void btrfs_init_async_reclaim_work(struct work_struct *work)
4715 {
4716 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4717 }
4718
4719 /**
4720 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4721 * @root - the root we're allocating for
4722 * @block_rsv - the block_rsv we're allocating for
4723 * @orig_bytes - the number of bytes we want
4724 * @flush - whether or not we can flush to make our reservation
4725 *
4726 * This will reserve orgi_bytes number of bytes from the space info associated
4727 * with the block_rsv. If there is not enough space it will make an attempt to
4728 * flush out space to make room. It will do this by flushing delalloc if
4729 * possible or committing the transaction. If flush is 0 then no attempts to
4730 * regain reservations will be made and this will fail if there is not enough
4731 * space already.
4732 */
4733 static int reserve_metadata_bytes(struct btrfs_root *root,
4734 struct btrfs_block_rsv *block_rsv,
4735 u64 orig_bytes,
4736 enum btrfs_reserve_flush_enum flush)
4737 {
4738 struct btrfs_space_info *space_info = block_rsv->space_info;
4739 u64 used;
4740 u64 num_bytes = orig_bytes;
4741 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4742 int ret = 0;
4743 bool flushing = false;
4744
4745 again:
4746 ret = 0;
4747 spin_lock(&space_info->lock);
4748 /*
4749 * We only want to wait if somebody other than us is flushing and we
4750 * are actually allowed to flush all things.
4751 */
4752 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4753 space_info->flush) {
4754 spin_unlock(&space_info->lock);
4755 /*
4756 * If we have a trans handle we can't wait because the flusher
4757 * may have to commit the transaction, which would mean we would
4758 * deadlock since we are waiting for the flusher to finish, but
4759 * hold the current transaction open.
4760 */
4761 if (current->journal_info)
4762 return -EAGAIN;
4763 ret = wait_event_killable(space_info->wait, !space_info->flush);
4764 /* Must have been killed, return */
4765 if (ret)
4766 return -EINTR;
4767
4768 spin_lock(&space_info->lock);
4769 }
4770
4771 ret = -ENOSPC;
4772 used = space_info->bytes_used + space_info->bytes_reserved +
4773 space_info->bytes_pinned + space_info->bytes_readonly +
4774 space_info->bytes_may_use;
4775
4776 /*
4777 * The idea here is that we've not already over-reserved the block group
4778 * then we can go ahead and save our reservation first and then start
4779 * flushing if we need to. Otherwise if we've already overcommitted
4780 * lets start flushing stuff first and then come back and try to make
4781 * our reservation.
4782 */
4783 if (used <= space_info->total_bytes) {
4784 if (used + orig_bytes <= space_info->total_bytes) {
4785 space_info->bytes_may_use += orig_bytes;
4786 trace_btrfs_space_reservation(root->fs_info,
4787 "space_info", space_info->flags, orig_bytes, 1);
4788 ret = 0;
4789 } else {
4790 /*
4791 * Ok set num_bytes to orig_bytes since we aren't
4792 * overocmmitted, this way we only try and reclaim what
4793 * we need.
4794 */
4795 num_bytes = orig_bytes;
4796 }
4797 } else {
4798 /*
4799 * Ok we're over committed, set num_bytes to the overcommitted
4800 * amount plus the amount of bytes that we need for this
4801 * reservation.
4802 */
4803 num_bytes = used - space_info->total_bytes +
4804 (orig_bytes * 2);
4805 }
4806
4807 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4808 space_info->bytes_may_use += orig_bytes;
4809 trace_btrfs_space_reservation(root->fs_info, "space_info",
4810 space_info->flags, orig_bytes,
4811 1);
4812 ret = 0;
4813 }
4814
4815 /*
4816 * Couldn't make our reservation, save our place so while we're trying
4817 * to reclaim space we can actually use it instead of somebody else
4818 * stealing it from us.
4819 *
4820 * We make the other tasks wait for the flush only when we can flush
4821 * all things.
4822 */
4823 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4824 flushing = true;
4825 space_info->flush = 1;
4826 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4827 used += orig_bytes;
4828 /*
4829 * We will do the space reservation dance during log replay,
4830 * which means we won't have fs_info->fs_root set, so don't do
4831 * the async reclaim as we will panic.
4832 */
4833 if (!root->fs_info->log_root_recovering &&
4834 need_do_async_reclaim(space_info, root->fs_info, used) &&
4835 !work_busy(&root->fs_info->async_reclaim_work))
4836 queue_work(system_unbound_wq,
4837 &root->fs_info->async_reclaim_work);
4838 }
4839 spin_unlock(&space_info->lock);
4840
4841 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4842 goto out;
4843
4844 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4845 flush_state);
4846 flush_state++;
4847
4848 /*
4849 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4850 * would happen. So skip delalloc flush.
4851 */
4852 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4853 (flush_state == FLUSH_DELALLOC ||
4854 flush_state == FLUSH_DELALLOC_WAIT))
4855 flush_state = ALLOC_CHUNK;
4856
4857 if (!ret)
4858 goto again;
4859 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4860 flush_state < COMMIT_TRANS)
4861 goto again;
4862 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4863 flush_state <= COMMIT_TRANS)
4864 goto again;
4865
4866 out:
4867 if (ret == -ENOSPC &&
4868 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4869 struct btrfs_block_rsv *global_rsv =
4870 &root->fs_info->global_block_rsv;
4871
4872 if (block_rsv != global_rsv &&
4873 !block_rsv_use_bytes(global_rsv, orig_bytes))
4874 ret = 0;
4875 }
4876 if (ret == -ENOSPC)
4877 trace_btrfs_space_reservation(root->fs_info,
4878 "space_info:enospc",
4879 space_info->flags, orig_bytes, 1);
4880 if (flushing) {
4881 spin_lock(&space_info->lock);
4882 space_info->flush = 0;
4883 wake_up_all(&space_info->wait);
4884 spin_unlock(&space_info->lock);
4885 }
4886 return ret;
4887 }
4888
4889 static struct btrfs_block_rsv *get_block_rsv(
4890 const struct btrfs_trans_handle *trans,
4891 const struct btrfs_root *root)
4892 {
4893 struct btrfs_block_rsv *block_rsv = NULL;
4894
4895 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4896 (root == root->fs_info->csum_root && trans->adding_csums) ||
4897 (root == root->fs_info->uuid_root))
4898 block_rsv = trans->block_rsv;
4899
4900 if (!block_rsv)
4901 block_rsv = root->block_rsv;
4902
4903 if (!block_rsv)
4904 block_rsv = &root->fs_info->empty_block_rsv;
4905
4906 return block_rsv;
4907 }
4908
4909 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4910 u64 num_bytes)
4911 {
4912 int ret = -ENOSPC;
4913 spin_lock(&block_rsv->lock);
4914 if (block_rsv->reserved >= num_bytes) {
4915 block_rsv->reserved -= num_bytes;
4916 if (block_rsv->reserved < block_rsv->size)
4917 block_rsv->full = 0;
4918 ret = 0;
4919 }
4920 spin_unlock(&block_rsv->lock);
4921 return ret;
4922 }
4923
4924 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4925 u64 num_bytes, int update_size)
4926 {
4927 spin_lock(&block_rsv->lock);
4928 block_rsv->reserved += num_bytes;
4929 if (update_size)
4930 block_rsv->size += num_bytes;
4931 else if (block_rsv->reserved >= block_rsv->size)
4932 block_rsv->full = 1;
4933 spin_unlock(&block_rsv->lock);
4934 }
4935
4936 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4937 struct btrfs_block_rsv *dest, u64 num_bytes,
4938 int min_factor)
4939 {
4940 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4941 u64 min_bytes;
4942
4943 if (global_rsv->space_info != dest->space_info)
4944 return -ENOSPC;
4945
4946 spin_lock(&global_rsv->lock);
4947 min_bytes = div_factor(global_rsv->size, min_factor);
4948 if (global_rsv->reserved < min_bytes + num_bytes) {
4949 spin_unlock(&global_rsv->lock);
4950 return -ENOSPC;
4951 }
4952 global_rsv->reserved -= num_bytes;
4953 if (global_rsv->reserved < global_rsv->size)
4954 global_rsv->full = 0;
4955 spin_unlock(&global_rsv->lock);
4956
4957 block_rsv_add_bytes(dest, num_bytes, 1);
4958 return 0;
4959 }
4960
4961 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4962 struct btrfs_block_rsv *block_rsv,
4963 struct btrfs_block_rsv *dest, u64 num_bytes)
4964 {
4965 struct btrfs_space_info *space_info = block_rsv->space_info;
4966
4967 spin_lock(&block_rsv->lock);
4968 if (num_bytes == (u64)-1)
4969 num_bytes = block_rsv->size;
4970 block_rsv->size -= num_bytes;
4971 if (block_rsv->reserved >= block_rsv->size) {
4972 num_bytes = block_rsv->reserved - block_rsv->size;
4973 block_rsv->reserved = block_rsv->size;
4974 block_rsv->full = 1;
4975 } else {
4976 num_bytes = 0;
4977 }
4978 spin_unlock(&block_rsv->lock);
4979
4980 if (num_bytes > 0) {
4981 if (dest) {
4982 spin_lock(&dest->lock);
4983 if (!dest->full) {
4984 u64 bytes_to_add;
4985
4986 bytes_to_add = dest->size - dest->reserved;
4987 bytes_to_add = min(num_bytes, bytes_to_add);
4988 dest->reserved += bytes_to_add;
4989 if (dest->reserved >= dest->size)
4990 dest->full = 1;
4991 num_bytes -= bytes_to_add;
4992 }
4993 spin_unlock(&dest->lock);
4994 }
4995 if (num_bytes) {
4996 spin_lock(&space_info->lock);
4997 space_info->bytes_may_use -= num_bytes;
4998 trace_btrfs_space_reservation(fs_info, "space_info",
4999 space_info->flags, num_bytes, 0);
5000 spin_unlock(&space_info->lock);
5001 }
5002 }
5003 }
5004
5005 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5006 struct btrfs_block_rsv *dst, u64 num_bytes)
5007 {
5008 int ret;
5009
5010 ret = block_rsv_use_bytes(src, num_bytes);
5011 if (ret)
5012 return ret;
5013
5014 block_rsv_add_bytes(dst, num_bytes, 1);
5015 return 0;
5016 }
5017
5018 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5019 {
5020 memset(rsv, 0, sizeof(*rsv));
5021 spin_lock_init(&rsv->lock);
5022 rsv->type = type;
5023 }
5024
5025 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5026 unsigned short type)
5027 {
5028 struct btrfs_block_rsv *block_rsv;
5029 struct btrfs_fs_info *fs_info = root->fs_info;
5030
5031 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5032 if (!block_rsv)
5033 return NULL;
5034
5035 btrfs_init_block_rsv(block_rsv, type);
5036 block_rsv->space_info = __find_space_info(fs_info,
5037 BTRFS_BLOCK_GROUP_METADATA);
5038 return block_rsv;
5039 }
5040
5041 void btrfs_free_block_rsv(struct btrfs_root *root,
5042 struct btrfs_block_rsv *rsv)
5043 {
5044 if (!rsv)
5045 return;
5046 btrfs_block_rsv_release(root, rsv, (u64)-1);
5047 kfree(rsv);
5048 }
5049
5050 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5051 {
5052 kfree(rsv);
5053 }
5054
5055 int btrfs_block_rsv_add(struct btrfs_root *root,
5056 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5057 enum btrfs_reserve_flush_enum flush)
5058 {
5059 int ret;
5060
5061 if (num_bytes == 0)
5062 return 0;
5063
5064 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5065 if (!ret) {
5066 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5067 return 0;
5068 }
5069
5070 return ret;
5071 }
5072
5073 int btrfs_block_rsv_check(struct btrfs_root *root,
5074 struct btrfs_block_rsv *block_rsv, int min_factor)
5075 {
5076 u64 num_bytes = 0;
5077 int ret = -ENOSPC;
5078
5079 if (!block_rsv)
5080 return 0;
5081
5082 spin_lock(&block_rsv->lock);
5083 num_bytes = div_factor(block_rsv->size, min_factor);
5084 if (block_rsv->reserved >= num_bytes)
5085 ret = 0;
5086 spin_unlock(&block_rsv->lock);
5087
5088 return ret;
5089 }
5090
5091 int btrfs_block_rsv_refill(struct btrfs_root *root,
5092 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5093 enum btrfs_reserve_flush_enum flush)
5094 {
5095 u64 num_bytes = 0;
5096 int ret = -ENOSPC;
5097
5098 if (!block_rsv)
5099 return 0;
5100
5101 spin_lock(&block_rsv->lock);
5102 num_bytes = min_reserved;
5103 if (block_rsv->reserved >= num_bytes)
5104 ret = 0;
5105 else
5106 num_bytes -= block_rsv->reserved;
5107 spin_unlock(&block_rsv->lock);
5108
5109 if (!ret)
5110 return 0;
5111
5112 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5113 if (!ret) {
5114 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5115 return 0;
5116 }
5117
5118 return ret;
5119 }
5120
5121 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5122 struct btrfs_block_rsv *dst_rsv,
5123 u64 num_bytes)
5124 {
5125 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5126 }
5127
5128 void btrfs_block_rsv_release(struct btrfs_root *root,
5129 struct btrfs_block_rsv *block_rsv,
5130 u64 num_bytes)
5131 {
5132 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5133 if (global_rsv == block_rsv ||
5134 block_rsv->space_info != global_rsv->space_info)
5135 global_rsv = NULL;
5136 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5137 num_bytes);
5138 }
5139
5140 /*
5141 * helper to calculate size of global block reservation.
5142 * the desired value is sum of space used by extent tree,
5143 * checksum tree and root tree
5144 */
5145 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5146 {
5147 struct btrfs_space_info *sinfo;
5148 u64 num_bytes;
5149 u64 meta_used;
5150 u64 data_used;
5151 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5152
5153 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5154 spin_lock(&sinfo->lock);
5155 data_used = sinfo->bytes_used;
5156 spin_unlock(&sinfo->lock);
5157
5158 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5159 spin_lock(&sinfo->lock);
5160 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5161 data_used = 0;
5162 meta_used = sinfo->bytes_used;
5163 spin_unlock(&sinfo->lock);
5164
5165 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5166 csum_size * 2;
5167 num_bytes += div_u64(data_used + meta_used, 50);
5168
5169 if (num_bytes * 3 > meta_used)
5170 num_bytes = div_u64(meta_used, 3);
5171
5172 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5173 }
5174
5175 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5176 {
5177 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5178 struct btrfs_space_info *sinfo = block_rsv->space_info;
5179 u64 num_bytes;
5180
5181 num_bytes = calc_global_metadata_size(fs_info);
5182
5183 spin_lock(&sinfo->lock);
5184 spin_lock(&block_rsv->lock);
5185
5186 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5187
5188 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5189 sinfo->bytes_reserved + sinfo->bytes_readonly +
5190 sinfo->bytes_may_use;
5191
5192 if (sinfo->total_bytes > num_bytes) {
5193 num_bytes = sinfo->total_bytes - num_bytes;
5194 block_rsv->reserved += num_bytes;
5195 sinfo->bytes_may_use += num_bytes;
5196 trace_btrfs_space_reservation(fs_info, "space_info",
5197 sinfo->flags, num_bytes, 1);
5198 }
5199
5200 if (block_rsv->reserved >= block_rsv->size) {
5201 num_bytes = block_rsv->reserved - block_rsv->size;
5202 sinfo->bytes_may_use -= num_bytes;
5203 trace_btrfs_space_reservation(fs_info, "space_info",
5204 sinfo->flags, num_bytes, 0);
5205 block_rsv->reserved = block_rsv->size;
5206 block_rsv->full = 1;
5207 }
5208
5209 spin_unlock(&block_rsv->lock);
5210 spin_unlock(&sinfo->lock);
5211 }
5212
5213 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5214 {
5215 struct btrfs_space_info *space_info;
5216
5217 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5218 fs_info->chunk_block_rsv.space_info = space_info;
5219
5220 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5221 fs_info->global_block_rsv.space_info = space_info;
5222 fs_info->delalloc_block_rsv.space_info = space_info;
5223 fs_info->trans_block_rsv.space_info = space_info;
5224 fs_info->empty_block_rsv.space_info = space_info;
5225 fs_info->delayed_block_rsv.space_info = space_info;
5226
5227 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5228 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5229 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5230 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5231 if (fs_info->quota_root)
5232 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5233 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5234
5235 update_global_block_rsv(fs_info);
5236 }
5237
5238 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5239 {
5240 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5241 (u64)-1);
5242 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5243 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5244 WARN_ON(fs_info->trans_block_rsv.size > 0);
5245 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5246 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5247 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5248 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5249 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5250 }
5251
5252 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5253 struct btrfs_root *root)
5254 {
5255 if (!trans->block_rsv)
5256 return;
5257
5258 if (!trans->bytes_reserved)
5259 return;
5260
5261 trace_btrfs_space_reservation(root->fs_info, "transaction",
5262 trans->transid, trans->bytes_reserved, 0);
5263 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5264 trans->bytes_reserved = 0;
5265 }
5266
5267 /*
5268 * To be called after all the new block groups attached to the transaction
5269 * handle have been created (btrfs_create_pending_block_groups()).
5270 */
5271 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5272 {
5273 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5274
5275 if (!trans->chunk_bytes_reserved)
5276 return;
5277
5278 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5279
5280 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5281 trans->chunk_bytes_reserved);
5282 trans->chunk_bytes_reserved = 0;
5283 }
5284
5285 /* Can only return 0 or -ENOSPC */
5286 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5287 struct inode *inode)
5288 {
5289 struct btrfs_root *root = BTRFS_I(inode)->root;
5290 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5291 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5292
5293 /*
5294 * We need to hold space in order to delete our orphan item once we've
5295 * added it, so this takes the reservation so we can release it later
5296 * when we are truly done with the orphan item.
5297 */
5298 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5299 trace_btrfs_space_reservation(root->fs_info, "orphan",
5300 btrfs_ino(inode), num_bytes, 1);
5301 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5302 }
5303
5304 void btrfs_orphan_release_metadata(struct inode *inode)
5305 {
5306 struct btrfs_root *root = BTRFS_I(inode)->root;
5307 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5308 trace_btrfs_space_reservation(root->fs_info, "orphan",
5309 btrfs_ino(inode), num_bytes, 0);
5310 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5311 }
5312
5313 /*
5314 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5315 * root: the root of the parent directory
5316 * rsv: block reservation
5317 * items: the number of items that we need do reservation
5318 * qgroup_reserved: used to return the reserved size in qgroup
5319 *
5320 * This function is used to reserve the space for snapshot/subvolume
5321 * creation and deletion. Those operations are different with the
5322 * common file/directory operations, they change two fs/file trees
5323 * and root tree, the number of items that the qgroup reserves is
5324 * different with the free space reservation. So we can not use
5325 * the space reseravtion mechanism in start_transaction().
5326 */
5327 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5328 struct btrfs_block_rsv *rsv,
5329 int items,
5330 u64 *qgroup_reserved,
5331 bool use_global_rsv)
5332 {
5333 u64 num_bytes;
5334 int ret;
5335 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5336
5337 if (root->fs_info->quota_enabled) {
5338 /* One for parent inode, two for dir entries */
5339 num_bytes = 3 * root->nodesize;
5340 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5341 if (ret)
5342 return ret;
5343 } else {
5344 num_bytes = 0;
5345 }
5346
5347 *qgroup_reserved = num_bytes;
5348
5349 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5350 rsv->space_info = __find_space_info(root->fs_info,
5351 BTRFS_BLOCK_GROUP_METADATA);
5352 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5353 BTRFS_RESERVE_FLUSH_ALL);
5354
5355 if (ret == -ENOSPC && use_global_rsv)
5356 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5357
5358 if (ret && *qgroup_reserved)
5359 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5360
5361 return ret;
5362 }
5363
5364 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5365 struct btrfs_block_rsv *rsv,
5366 u64 qgroup_reserved)
5367 {
5368 btrfs_block_rsv_release(root, rsv, (u64)-1);
5369 }
5370
5371 /**
5372 * drop_outstanding_extent - drop an outstanding extent
5373 * @inode: the inode we're dropping the extent for
5374 * @num_bytes: the number of bytes we're relaseing.
5375 *
5376 * This is called when we are freeing up an outstanding extent, either called
5377 * after an error or after an extent is written. This will return the number of
5378 * reserved extents that need to be freed. This must be called with
5379 * BTRFS_I(inode)->lock held.
5380 */
5381 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5382 {
5383 unsigned drop_inode_space = 0;
5384 unsigned dropped_extents = 0;
5385 unsigned num_extents = 0;
5386
5387 num_extents = (unsigned)div64_u64(num_bytes +
5388 BTRFS_MAX_EXTENT_SIZE - 1,
5389 BTRFS_MAX_EXTENT_SIZE);
5390 ASSERT(num_extents);
5391 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5392 BTRFS_I(inode)->outstanding_extents -= num_extents;
5393
5394 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5395 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5396 &BTRFS_I(inode)->runtime_flags))
5397 drop_inode_space = 1;
5398
5399 /*
5400 * If we have more or the same amount of outsanding extents than we have
5401 * reserved then we need to leave the reserved extents count alone.
5402 */
5403 if (BTRFS_I(inode)->outstanding_extents >=
5404 BTRFS_I(inode)->reserved_extents)
5405 return drop_inode_space;
5406
5407 dropped_extents = BTRFS_I(inode)->reserved_extents -
5408 BTRFS_I(inode)->outstanding_extents;
5409 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5410 return dropped_extents + drop_inode_space;
5411 }
5412
5413 /**
5414 * calc_csum_metadata_size - return the amount of metada space that must be
5415 * reserved/free'd for the given bytes.
5416 * @inode: the inode we're manipulating
5417 * @num_bytes: the number of bytes in question
5418 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5419 *
5420 * This adjusts the number of csum_bytes in the inode and then returns the
5421 * correct amount of metadata that must either be reserved or freed. We
5422 * calculate how many checksums we can fit into one leaf and then divide the
5423 * number of bytes that will need to be checksumed by this value to figure out
5424 * how many checksums will be required. If we are adding bytes then the number
5425 * may go up and we will return the number of additional bytes that must be
5426 * reserved. If it is going down we will return the number of bytes that must
5427 * be freed.
5428 *
5429 * This must be called with BTRFS_I(inode)->lock held.
5430 */
5431 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5432 int reserve)
5433 {
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435 u64 old_csums, num_csums;
5436
5437 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5438 BTRFS_I(inode)->csum_bytes == 0)
5439 return 0;
5440
5441 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5442 if (reserve)
5443 BTRFS_I(inode)->csum_bytes += num_bytes;
5444 else
5445 BTRFS_I(inode)->csum_bytes -= num_bytes;
5446 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5447
5448 /* No change, no need to reserve more */
5449 if (old_csums == num_csums)
5450 return 0;
5451
5452 if (reserve)
5453 return btrfs_calc_trans_metadata_size(root,
5454 num_csums - old_csums);
5455
5456 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5457 }
5458
5459 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5460 {
5461 struct btrfs_root *root = BTRFS_I(inode)->root;
5462 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5463 u64 to_reserve = 0;
5464 u64 csum_bytes;
5465 unsigned nr_extents = 0;
5466 int extra_reserve = 0;
5467 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5468 int ret = 0;
5469 bool delalloc_lock = true;
5470 u64 to_free = 0;
5471 unsigned dropped;
5472
5473 /* If we are a free space inode we need to not flush since we will be in
5474 * the middle of a transaction commit. We also don't need the delalloc
5475 * mutex since we won't race with anybody. We need this mostly to make
5476 * lockdep shut its filthy mouth.
5477 */
5478 if (btrfs_is_free_space_inode(inode)) {
5479 flush = BTRFS_RESERVE_NO_FLUSH;
5480 delalloc_lock = false;
5481 }
5482
5483 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5484 btrfs_transaction_in_commit(root->fs_info))
5485 schedule_timeout(1);
5486
5487 if (delalloc_lock)
5488 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5489
5490 num_bytes = ALIGN(num_bytes, root->sectorsize);
5491
5492 spin_lock(&BTRFS_I(inode)->lock);
5493 nr_extents = (unsigned)div64_u64(num_bytes +
5494 BTRFS_MAX_EXTENT_SIZE - 1,
5495 BTRFS_MAX_EXTENT_SIZE);
5496 BTRFS_I(inode)->outstanding_extents += nr_extents;
5497 nr_extents = 0;
5498
5499 if (BTRFS_I(inode)->outstanding_extents >
5500 BTRFS_I(inode)->reserved_extents)
5501 nr_extents = BTRFS_I(inode)->outstanding_extents -
5502 BTRFS_I(inode)->reserved_extents;
5503
5504 /*
5505 * Add an item to reserve for updating the inode when we complete the
5506 * delalloc io.
5507 */
5508 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5509 &BTRFS_I(inode)->runtime_flags)) {
5510 nr_extents++;
5511 extra_reserve = 1;
5512 }
5513
5514 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5515 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5516 csum_bytes = BTRFS_I(inode)->csum_bytes;
5517 spin_unlock(&BTRFS_I(inode)->lock);
5518
5519 if (root->fs_info->quota_enabled) {
5520 ret = btrfs_qgroup_reserve_meta(root,
5521 nr_extents * root->nodesize);
5522 if (ret)
5523 goto out_fail;
5524 }
5525
5526 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5527 if (unlikely(ret)) {
5528 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5529 goto out_fail;
5530 }
5531
5532 spin_lock(&BTRFS_I(inode)->lock);
5533 if (extra_reserve) {
5534 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5535 &BTRFS_I(inode)->runtime_flags);
5536 nr_extents--;
5537 }
5538 BTRFS_I(inode)->reserved_extents += nr_extents;
5539 spin_unlock(&BTRFS_I(inode)->lock);
5540
5541 if (delalloc_lock)
5542 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5543
5544 if (to_reserve)
5545 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5546 btrfs_ino(inode), to_reserve, 1);
5547 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5548
5549 return 0;
5550
5551 out_fail:
5552 spin_lock(&BTRFS_I(inode)->lock);
5553 dropped = drop_outstanding_extent(inode, num_bytes);
5554 /*
5555 * If the inodes csum_bytes is the same as the original
5556 * csum_bytes then we know we haven't raced with any free()ers
5557 * so we can just reduce our inodes csum bytes and carry on.
5558 */
5559 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5560 calc_csum_metadata_size(inode, num_bytes, 0);
5561 } else {
5562 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5563 u64 bytes;
5564
5565 /*
5566 * This is tricky, but first we need to figure out how much we
5567 * free'd from any free-ers that occured during this
5568 * reservation, so we reset ->csum_bytes to the csum_bytes
5569 * before we dropped our lock, and then call the free for the
5570 * number of bytes that were freed while we were trying our
5571 * reservation.
5572 */
5573 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5574 BTRFS_I(inode)->csum_bytes = csum_bytes;
5575 to_free = calc_csum_metadata_size(inode, bytes, 0);
5576
5577
5578 /*
5579 * Now we need to see how much we would have freed had we not
5580 * been making this reservation and our ->csum_bytes were not
5581 * artificially inflated.
5582 */
5583 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5584 bytes = csum_bytes - orig_csum_bytes;
5585 bytes = calc_csum_metadata_size(inode, bytes, 0);
5586
5587 /*
5588 * Now reset ->csum_bytes to what it should be. If bytes is
5589 * more than to_free then we would have free'd more space had we
5590 * not had an artificially high ->csum_bytes, so we need to free
5591 * the remainder. If bytes is the same or less then we don't
5592 * need to do anything, the other free-ers did the correct
5593 * thing.
5594 */
5595 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5596 if (bytes > to_free)
5597 to_free = bytes - to_free;
5598 else
5599 to_free = 0;
5600 }
5601 spin_unlock(&BTRFS_I(inode)->lock);
5602 if (dropped)
5603 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5604
5605 if (to_free) {
5606 btrfs_block_rsv_release(root, block_rsv, to_free);
5607 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5608 btrfs_ino(inode), to_free, 0);
5609 }
5610 if (delalloc_lock)
5611 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5612 return ret;
5613 }
5614
5615 /**
5616 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5617 * @inode: the inode to release the reservation for
5618 * @num_bytes: the number of bytes we're releasing
5619 *
5620 * This will release the metadata reservation for an inode. This can be called
5621 * once we complete IO for a given set of bytes to release their metadata
5622 * reservations.
5623 */
5624 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5625 {
5626 struct btrfs_root *root = BTRFS_I(inode)->root;
5627 u64 to_free = 0;
5628 unsigned dropped;
5629
5630 num_bytes = ALIGN(num_bytes, root->sectorsize);
5631 spin_lock(&BTRFS_I(inode)->lock);
5632 dropped = drop_outstanding_extent(inode, num_bytes);
5633
5634 if (num_bytes)
5635 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5636 spin_unlock(&BTRFS_I(inode)->lock);
5637 if (dropped > 0)
5638 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5639
5640 if (btrfs_test_is_dummy_root(root))
5641 return;
5642
5643 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5644 btrfs_ino(inode), to_free, 0);
5645
5646 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5647 to_free);
5648 }
5649
5650 /**
5651 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5652 * @inode: inode we're writing to
5653 * @num_bytes: the number of bytes we want to allocate
5654 *
5655 * This will do the following things
5656 *
5657 * o reserve space in the data space info for num_bytes
5658 * o reserve space in the metadata space info based on number of outstanding
5659 * extents and how much csums will be needed
5660 * o add to the inodes ->delalloc_bytes
5661 * o add it to the fs_info's delalloc inodes list.
5662 *
5663 * This will return 0 for success and -ENOSPC if there is no space left.
5664 */
5665 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5666 {
5667 int ret;
5668
5669 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5670 if (ret)
5671 return ret;
5672
5673 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5674 if (ret) {
5675 btrfs_free_reserved_data_space(inode, num_bytes);
5676 return ret;
5677 }
5678
5679 return 0;
5680 }
5681
5682 /**
5683 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5684 * @inode: inode we're releasing space for
5685 * @num_bytes: the number of bytes we want to free up
5686 *
5687 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5688 * called in the case that we don't need the metadata AND data reservations
5689 * anymore. So if there is an error or we insert an inline extent.
5690 *
5691 * This function will release the metadata space that was not used and will
5692 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5693 * list if there are no delalloc bytes left.
5694 */
5695 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5696 {
5697 btrfs_delalloc_release_metadata(inode, num_bytes);
5698 btrfs_free_reserved_data_space(inode, num_bytes);
5699 }
5700
5701 static int update_block_group(struct btrfs_trans_handle *trans,
5702 struct btrfs_root *root, u64 bytenr,
5703 u64 num_bytes, int alloc)
5704 {
5705 struct btrfs_block_group_cache *cache = NULL;
5706 struct btrfs_fs_info *info = root->fs_info;
5707 u64 total = num_bytes;
5708 u64 old_val;
5709 u64 byte_in_group;
5710 int factor;
5711
5712 /* block accounting for super block */
5713 spin_lock(&info->delalloc_root_lock);
5714 old_val = btrfs_super_bytes_used(info->super_copy);
5715 if (alloc)
5716 old_val += num_bytes;
5717 else
5718 old_val -= num_bytes;
5719 btrfs_set_super_bytes_used(info->super_copy, old_val);
5720 spin_unlock(&info->delalloc_root_lock);
5721
5722 while (total) {
5723 cache = btrfs_lookup_block_group(info, bytenr);
5724 if (!cache)
5725 return -ENOENT;
5726 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5727 BTRFS_BLOCK_GROUP_RAID1 |
5728 BTRFS_BLOCK_GROUP_RAID10))
5729 factor = 2;
5730 else
5731 factor = 1;
5732 /*
5733 * If this block group has free space cache written out, we
5734 * need to make sure to load it if we are removing space. This
5735 * is because we need the unpinning stage to actually add the
5736 * space back to the block group, otherwise we will leak space.
5737 */
5738 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5739 cache_block_group(cache, 1);
5740
5741 byte_in_group = bytenr - cache->key.objectid;
5742 WARN_ON(byte_in_group > cache->key.offset);
5743
5744 spin_lock(&cache->space_info->lock);
5745 spin_lock(&cache->lock);
5746
5747 if (btrfs_test_opt(root, SPACE_CACHE) &&
5748 cache->disk_cache_state < BTRFS_DC_CLEAR)
5749 cache->disk_cache_state = BTRFS_DC_CLEAR;
5750
5751 old_val = btrfs_block_group_used(&cache->item);
5752 num_bytes = min(total, cache->key.offset - byte_in_group);
5753 if (alloc) {
5754 old_val += num_bytes;
5755 btrfs_set_block_group_used(&cache->item, old_val);
5756 cache->reserved -= num_bytes;
5757 cache->space_info->bytes_reserved -= num_bytes;
5758 cache->space_info->bytes_used += num_bytes;
5759 cache->space_info->disk_used += num_bytes * factor;
5760 spin_unlock(&cache->lock);
5761 spin_unlock(&cache->space_info->lock);
5762 } else {
5763 old_val -= num_bytes;
5764 btrfs_set_block_group_used(&cache->item, old_val);
5765 cache->pinned += num_bytes;
5766 cache->space_info->bytes_pinned += num_bytes;
5767 cache->space_info->bytes_used -= num_bytes;
5768 cache->space_info->disk_used -= num_bytes * factor;
5769 spin_unlock(&cache->lock);
5770 spin_unlock(&cache->space_info->lock);
5771
5772 set_extent_dirty(info->pinned_extents,
5773 bytenr, bytenr + num_bytes - 1,
5774 GFP_NOFS | __GFP_NOFAIL);
5775 /*
5776 * No longer have used bytes in this block group, queue
5777 * it for deletion.
5778 */
5779 if (old_val == 0) {
5780 spin_lock(&info->unused_bgs_lock);
5781 if (list_empty(&cache->bg_list)) {
5782 btrfs_get_block_group(cache);
5783 list_add_tail(&cache->bg_list,
5784 &info->unused_bgs);
5785 }
5786 spin_unlock(&info->unused_bgs_lock);
5787 }
5788 }
5789
5790 spin_lock(&trans->transaction->dirty_bgs_lock);
5791 if (list_empty(&cache->dirty_list)) {
5792 list_add_tail(&cache->dirty_list,
5793 &trans->transaction->dirty_bgs);
5794 trans->transaction->num_dirty_bgs++;
5795 btrfs_get_block_group(cache);
5796 }
5797 spin_unlock(&trans->transaction->dirty_bgs_lock);
5798
5799 btrfs_put_block_group(cache);
5800 total -= num_bytes;
5801 bytenr += num_bytes;
5802 }
5803 return 0;
5804 }
5805
5806 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5807 {
5808 struct btrfs_block_group_cache *cache;
5809 u64 bytenr;
5810
5811 spin_lock(&root->fs_info->block_group_cache_lock);
5812 bytenr = root->fs_info->first_logical_byte;
5813 spin_unlock(&root->fs_info->block_group_cache_lock);
5814
5815 if (bytenr < (u64)-1)
5816 return bytenr;
5817
5818 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5819 if (!cache)
5820 return 0;
5821
5822 bytenr = cache->key.objectid;
5823 btrfs_put_block_group(cache);
5824
5825 return bytenr;
5826 }
5827
5828 static int pin_down_extent(struct btrfs_root *root,
5829 struct btrfs_block_group_cache *cache,
5830 u64 bytenr, u64 num_bytes, int reserved)
5831 {
5832 spin_lock(&cache->space_info->lock);
5833 spin_lock(&cache->lock);
5834 cache->pinned += num_bytes;
5835 cache->space_info->bytes_pinned += num_bytes;
5836 if (reserved) {
5837 cache->reserved -= num_bytes;
5838 cache->space_info->bytes_reserved -= num_bytes;
5839 }
5840 spin_unlock(&cache->lock);
5841 spin_unlock(&cache->space_info->lock);
5842
5843 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5844 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5845 if (reserved)
5846 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5847 return 0;
5848 }
5849
5850 /*
5851 * this function must be called within transaction
5852 */
5853 int btrfs_pin_extent(struct btrfs_root *root,
5854 u64 bytenr, u64 num_bytes, int reserved)
5855 {
5856 struct btrfs_block_group_cache *cache;
5857
5858 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5859 BUG_ON(!cache); /* Logic error */
5860
5861 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5862
5863 btrfs_put_block_group(cache);
5864 return 0;
5865 }
5866
5867 /*
5868 * this function must be called within transaction
5869 */
5870 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5871 u64 bytenr, u64 num_bytes)
5872 {
5873 struct btrfs_block_group_cache *cache;
5874 int ret;
5875
5876 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5877 if (!cache)
5878 return -EINVAL;
5879
5880 /*
5881 * pull in the free space cache (if any) so that our pin
5882 * removes the free space from the cache. We have load_only set
5883 * to one because the slow code to read in the free extents does check
5884 * the pinned extents.
5885 */
5886 cache_block_group(cache, 1);
5887
5888 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5889
5890 /* remove us from the free space cache (if we're there at all) */
5891 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5892 btrfs_put_block_group(cache);
5893 return ret;
5894 }
5895
5896 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5897 {
5898 int ret;
5899 struct btrfs_block_group_cache *block_group;
5900 struct btrfs_caching_control *caching_ctl;
5901
5902 block_group = btrfs_lookup_block_group(root->fs_info, start);
5903 if (!block_group)
5904 return -EINVAL;
5905
5906 cache_block_group(block_group, 0);
5907 caching_ctl = get_caching_control(block_group);
5908
5909 if (!caching_ctl) {
5910 /* Logic error */
5911 BUG_ON(!block_group_cache_done(block_group));
5912 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5913 } else {
5914 mutex_lock(&caching_ctl->mutex);
5915
5916 if (start >= caching_ctl->progress) {
5917 ret = add_excluded_extent(root, start, num_bytes);
5918 } else if (start + num_bytes <= caching_ctl->progress) {
5919 ret = btrfs_remove_free_space(block_group,
5920 start, num_bytes);
5921 } else {
5922 num_bytes = caching_ctl->progress - start;
5923 ret = btrfs_remove_free_space(block_group,
5924 start, num_bytes);
5925 if (ret)
5926 goto out_lock;
5927
5928 num_bytes = (start + num_bytes) -
5929 caching_ctl->progress;
5930 start = caching_ctl->progress;
5931 ret = add_excluded_extent(root, start, num_bytes);
5932 }
5933 out_lock:
5934 mutex_unlock(&caching_ctl->mutex);
5935 put_caching_control(caching_ctl);
5936 }
5937 btrfs_put_block_group(block_group);
5938 return ret;
5939 }
5940
5941 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5942 struct extent_buffer *eb)
5943 {
5944 struct btrfs_file_extent_item *item;
5945 struct btrfs_key key;
5946 int found_type;
5947 int i;
5948
5949 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5950 return 0;
5951
5952 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5953 btrfs_item_key_to_cpu(eb, &key, i);
5954 if (key.type != BTRFS_EXTENT_DATA_KEY)
5955 continue;
5956 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5957 found_type = btrfs_file_extent_type(eb, item);
5958 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5959 continue;
5960 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5961 continue;
5962 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5963 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5964 __exclude_logged_extent(log, key.objectid, key.offset);
5965 }
5966
5967 return 0;
5968 }
5969
5970 /**
5971 * btrfs_update_reserved_bytes - update the block_group and space info counters
5972 * @cache: The cache we are manipulating
5973 * @num_bytes: The number of bytes in question
5974 * @reserve: One of the reservation enums
5975 * @delalloc: The blocks are allocated for the delalloc write
5976 *
5977 * This is called by the allocator when it reserves space, or by somebody who is
5978 * freeing space that was never actually used on disk. For example if you
5979 * reserve some space for a new leaf in transaction A and before transaction A
5980 * commits you free that leaf, you call this with reserve set to 0 in order to
5981 * clear the reservation.
5982 *
5983 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5984 * ENOSPC accounting. For data we handle the reservation through clearing the
5985 * delalloc bits in the io_tree. We have to do this since we could end up
5986 * allocating less disk space for the amount of data we have reserved in the
5987 * case of compression.
5988 *
5989 * If this is a reservation and the block group has become read only we cannot
5990 * make the reservation and return -EAGAIN, otherwise this function always
5991 * succeeds.
5992 */
5993 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5994 u64 num_bytes, int reserve, int delalloc)
5995 {
5996 struct btrfs_space_info *space_info = cache->space_info;
5997 int ret = 0;
5998
5999 spin_lock(&space_info->lock);
6000 spin_lock(&cache->lock);
6001 if (reserve != RESERVE_FREE) {
6002 if (cache->ro) {
6003 ret = -EAGAIN;
6004 } else {
6005 cache->reserved += num_bytes;
6006 space_info->bytes_reserved += num_bytes;
6007 if (reserve == RESERVE_ALLOC) {
6008 trace_btrfs_space_reservation(cache->fs_info,
6009 "space_info", space_info->flags,
6010 num_bytes, 0);
6011 space_info->bytes_may_use -= num_bytes;
6012 }
6013
6014 if (delalloc)
6015 cache->delalloc_bytes += num_bytes;
6016 }
6017 } else {
6018 if (cache->ro)
6019 space_info->bytes_readonly += num_bytes;
6020 cache->reserved -= num_bytes;
6021 space_info->bytes_reserved -= num_bytes;
6022
6023 if (delalloc)
6024 cache->delalloc_bytes -= num_bytes;
6025 }
6026 spin_unlock(&cache->lock);
6027 spin_unlock(&space_info->lock);
6028 return ret;
6029 }
6030
6031 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6032 struct btrfs_root *root)
6033 {
6034 struct btrfs_fs_info *fs_info = root->fs_info;
6035 struct btrfs_caching_control *next;
6036 struct btrfs_caching_control *caching_ctl;
6037 struct btrfs_block_group_cache *cache;
6038
6039 down_write(&fs_info->commit_root_sem);
6040
6041 list_for_each_entry_safe(caching_ctl, next,
6042 &fs_info->caching_block_groups, list) {
6043 cache = caching_ctl->block_group;
6044 if (block_group_cache_done(cache)) {
6045 cache->last_byte_to_unpin = (u64)-1;
6046 list_del_init(&caching_ctl->list);
6047 put_caching_control(caching_ctl);
6048 } else {
6049 cache->last_byte_to_unpin = caching_ctl->progress;
6050 }
6051 }
6052
6053 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6054 fs_info->pinned_extents = &fs_info->freed_extents[1];
6055 else
6056 fs_info->pinned_extents = &fs_info->freed_extents[0];
6057
6058 up_write(&fs_info->commit_root_sem);
6059
6060 update_global_block_rsv(fs_info);
6061 }
6062
6063 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6064 const bool return_free_space)
6065 {
6066 struct btrfs_fs_info *fs_info = root->fs_info;
6067 struct btrfs_block_group_cache *cache = NULL;
6068 struct btrfs_space_info *space_info;
6069 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6070 u64 len;
6071 bool readonly;
6072
6073 while (start <= end) {
6074 readonly = false;
6075 if (!cache ||
6076 start >= cache->key.objectid + cache->key.offset) {
6077 if (cache)
6078 btrfs_put_block_group(cache);
6079 cache = btrfs_lookup_block_group(fs_info, start);
6080 BUG_ON(!cache); /* Logic error */
6081 }
6082
6083 len = cache->key.objectid + cache->key.offset - start;
6084 len = min(len, end + 1 - start);
6085
6086 if (start < cache->last_byte_to_unpin) {
6087 len = min(len, cache->last_byte_to_unpin - start);
6088 if (return_free_space)
6089 btrfs_add_free_space(cache, start, len);
6090 }
6091
6092 start += len;
6093 space_info = cache->space_info;
6094
6095 spin_lock(&space_info->lock);
6096 spin_lock(&cache->lock);
6097 cache->pinned -= len;
6098 space_info->bytes_pinned -= len;
6099 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6100 if (cache->ro) {
6101 space_info->bytes_readonly += len;
6102 readonly = true;
6103 }
6104 spin_unlock(&cache->lock);
6105 if (!readonly && global_rsv->space_info == space_info) {
6106 spin_lock(&global_rsv->lock);
6107 if (!global_rsv->full) {
6108 len = min(len, global_rsv->size -
6109 global_rsv->reserved);
6110 global_rsv->reserved += len;
6111 space_info->bytes_may_use += len;
6112 if (global_rsv->reserved >= global_rsv->size)
6113 global_rsv->full = 1;
6114 }
6115 spin_unlock(&global_rsv->lock);
6116 }
6117 spin_unlock(&space_info->lock);
6118 }
6119
6120 if (cache)
6121 btrfs_put_block_group(cache);
6122 return 0;
6123 }
6124
6125 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6126 struct btrfs_root *root)
6127 {
6128 struct btrfs_fs_info *fs_info = root->fs_info;
6129 struct btrfs_block_group_cache *block_group, *tmp;
6130 struct list_head *deleted_bgs;
6131 struct extent_io_tree *unpin;
6132 u64 start;
6133 u64 end;
6134 int ret;
6135
6136 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6137 unpin = &fs_info->freed_extents[1];
6138 else
6139 unpin = &fs_info->freed_extents[0];
6140
6141 while (!trans->aborted) {
6142 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6143 ret = find_first_extent_bit(unpin, 0, &start, &end,
6144 EXTENT_DIRTY, NULL);
6145 if (ret) {
6146 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6147 break;
6148 }
6149
6150 if (btrfs_test_opt(root, DISCARD))
6151 ret = btrfs_discard_extent(root, start,
6152 end + 1 - start, NULL);
6153
6154 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6155 unpin_extent_range(root, start, end, true);
6156 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6157 cond_resched();
6158 }
6159
6160 /*
6161 * Transaction is finished. We don't need the lock anymore. We
6162 * do need to clean up the block groups in case of a transaction
6163 * abort.
6164 */
6165 deleted_bgs = &trans->transaction->deleted_bgs;
6166 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6167 u64 trimmed = 0;
6168
6169 ret = -EROFS;
6170 if (!trans->aborted)
6171 ret = btrfs_discard_extent(root,
6172 block_group->key.objectid,
6173 block_group->key.offset,
6174 &trimmed);
6175
6176 list_del_init(&block_group->bg_list);
6177 btrfs_put_block_group_trimming(block_group);
6178 btrfs_put_block_group(block_group);
6179
6180 if (ret) {
6181 const char *errstr = btrfs_decode_error(ret);
6182 btrfs_warn(fs_info,
6183 "Discard failed while removing blockgroup: errno=%d %s\n",
6184 ret, errstr);
6185 }
6186 }
6187
6188 return 0;
6189 }
6190
6191 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6192 u64 owner, u64 root_objectid)
6193 {
6194 struct btrfs_space_info *space_info;
6195 u64 flags;
6196
6197 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6198 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6199 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6200 else
6201 flags = BTRFS_BLOCK_GROUP_METADATA;
6202 } else {
6203 flags = BTRFS_BLOCK_GROUP_DATA;
6204 }
6205
6206 space_info = __find_space_info(fs_info, flags);
6207 BUG_ON(!space_info); /* Logic bug */
6208 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6209 }
6210
6211
6212 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6213 struct btrfs_root *root,
6214 struct btrfs_delayed_ref_node *node, u64 parent,
6215 u64 root_objectid, u64 owner_objectid,
6216 u64 owner_offset, int refs_to_drop,
6217 struct btrfs_delayed_extent_op *extent_op)
6218 {
6219 struct btrfs_key key;
6220 struct btrfs_path *path;
6221 struct btrfs_fs_info *info = root->fs_info;
6222 struct btrfs_root *extent_root = info->extent_root;
6223 struct extent_buffer *leaf;
6224 struct btrfs_extent_item *ei;
6225 struct btrfs_extent_inline_ref *iref;
6226 int ret;
6227 int is_data;
6228 int extent_slot = 0;
6229 int found_extent = 0;
6230 int num_to_del = 1;
6231 int no_quota = node->no_quota;
6232 u32 item_size;
6233 u64 refs;
6234 u64 bytenr = node->bytenr;
6235 u64 num_bytes = node->num_bytes;
6236 int last_ref = 0;
6237 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6238 SKINNY_METADATA);
6239
6240 if (!info->quota_enabled || !is_fstree(root_objectid))
6241 no_quota = 1;
6242
6243 path = btrfs_alloc_path();
6244 if (!path)
6245 return -ENOMEM;
6246
6247 path->reada = 1;
6248 path->leave_spinning = 1;
6249
6250 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6251 BUG_ON(!is_data && refs_to_drop != 1);
6252
6253 if (is_data)
6254 skinny_metadata = 0;
6255
6256 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6257 bytenr, num_bytes, parent,
6258 root_objectid, owner_objectid,
6259 owner_offset);
6260 if (ret == 0) {
6261 extent_slot = path->slots[0];
6262 while (extent_slot >= 0) {
6263 btrfs_item_key_to_cpu(path->nodes[0], &key,
6264 extent_slot);
6265 if (key.objectid != bytenr)
6266 break;
6267 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6268 key.offset == num_bytes) {
6269 found_extent = 1;
6270 break;
6271 }
6272 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6273 key.offset == owner_objectid) {
6274 found_extent = 1;
6275 break;
6276 }
6277 if (path->slots[0] - extent_slot > 5)
6278 break;
6279 extent_slot--;
6280 }
6281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6282 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6283 if (found_extent && item_size < sizeof(*ei))
6284 found_extent = 0;
6285 #endif
6286 if (!found_extent) {
6287 BUG_ON(iref);
6288 ret = remove_extent_backref(trans, extent_root, path,
6289 NULL, refs_to_drop,
6290 is_data, &last_ref);
6291 if (ret) {
6292 btrfs_abort_transaction(trans, extent_root, ret);
6293 goto out;
6294 }
6295 btrfs_release_path(path);
6296 path->leave_spinning = 1;
6297
6298 key.objectid = bytenr;
6299 key.type = BTRFS_EXTENT_ITEM_KEY;
6300 key.offset = num_bytes;
6301
6302 if (!is_data && skinny_metadata) {
6303 key.type = BTRFS_METADATA_ITEM_KEY;
6304 key.offset = owner_objectid;
6305 }
6306
6307 ret = btrfs_search_slot(trans, extent_root,
6308 &key, path, -1, 1);
6309 if (ret > 0 && skinny_metadata && path->slots[0]) {
6310 /*
6311 * Couldn't find our skinny metadata item,
6312 * see if we have ye olde extent item.
6313 */
6314 path->slots[0]--;
6315 btrfs_item_key_to_cpu(path->nodes[0], &key,
6316 path->slots[0]);
6317 if (key.objectid == bytenr &&
6318 key.type == BTRFS_EXTENT_ITEM_KEY &&
6319 key.offset == num_bytes)
6320 ret = 0;
6321 }
6322
6323 if (ret > 0 && skinny_metadata) {
6324 skinny_metadata = false;
6325 key.objectid = bytenr;
6326 key.type = BTRFS_EXTENT_ITEM_KEY;
6327 key.offset = num_bytes;
6328 btrfs_release_path(path);
6329 ret = btrfs_search_slot(trans, extent_root,
6330 &key, path, -1, 1);
6331 }
6332
6333 if (ret) {
6334 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6335 ret, bytenr);
6336 if (ret > 0)
6337 btrfs_print_leaf(extent_root,
6338 path->nodes[0]);
6339 }
6340 if (ret < 0) {
6341 btrfs_abort_transaction(trans, extent_root, ret);
6342 goto out;
6343 }
6344 extent_slot = path->slots[0];
6345 }
6346 } else if (WARN_ON(ret == -ENOENT)) {
6347 btrfs_print_leaf(extent_root, path->nodes[0]);
6348 btrfs_err(info,
6349 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6350 bytenr, parent, root_objectid, owner_objectid,
6351 owner_offset);
6352 btrfs_abort_transaction(trans, extent_root, ret);
6353 goto out;
6354 } else {
6355 btrfs_abort_transaction(trans, extent_root, ret);
6356 goto out;
6357 }
6358
6359 leaf = path->nodes[0];
6360 item_size = btrfs_item_size_nr(leaf, extent_slot);
6361 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6362 if (item_size < sizeof(*ei)) {
6363 BUG_ON(found_extent || extent_slot != path->slots[0]);
6364 ret = convert_extent_item_v0(trans, extent_root, path,
6365 owner_objectid, 0);
6366 if (ret < 0) {
6367 btrfs_abort_transaction(trans, extent_root, ret);
6368 goto out;
6369 }
6370
6371 btrfs_release_path(path);
6372 path->leave_spinning = 1;
6373
6374 key.objectid = bytenr;
6375 key.type = BTRFS_EXTENT_ITEM_KEY;
6376 key.offset = num_bytes;
6377
6378 ret = btrfs_search_slot(trans, extent_root, &key, path,
6379 -1, 1);
6380 if (ret) {
6381 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6382 ret, bytenr);
6383 btrfs_print_leaf(extent_root, path->nodes[0]);
6384 }
6385 if (ret < 0) {
6386 btrfs_abort_transaction(trans, extent_root, ret);
6387 goto out;
6388 }
6389
6390 extent_slot = path->slots[0];
6391 leaf = path->nodes[0];
6392 item_size = btrfs_item_size_nr(leaf, extent_slot);
6393 }
6394 #endif
6395 BUG_ON(item_size < sizeof(*ei));
6396 ei = btrfs_item_ptr(leaf, extent_slot,
6397 struct btrfs_extent_item);
6398 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6399 key.type == BTRFS_EXTENT_ITEM_KEY) {
6400 struct btrfs_tree_block_info *bi;
6401 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6402 bi = (struct btrfs_tree_block_info *)(ei + 1);
6403 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6404 }
6405
6406 refs = btrfs_extent_refs(leaf, ei);
6407 if (refs < refs_to_drop) {
6408 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6409 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6410 ret = -EINVAL;
6411 btrfs_abort_transaction(trans, extent_root, ret);
6412 goto out;
6413 }
6414 refs -= refs_to_drop;
6415
6416 if (refs > 0) {
6417 if (extent_op)
6418 __run_delayed_extent_op(extent_op, leaf, ei);
6419 /*
6420 * In the case of inline back ref, reference count will
6421 * be updated by remove_extent_backref
6422 */
6423 if (iref) {
6424 BUG_ON(!found_extent);
6425 } else {
6426 btrfs_set_extent_refs(leaf, ei, refs);
6427 btrfs_mark_buffer_dirty(leaf);
6428 }
6429 if (found_extent) {
6430 ret = remove_extent_backref(trans, extent_root, path,
6431 iref, refs_to_drop,
6432 is_data, &last_ref);
6433 if (ret) {
6434 btrfs_abort_transaction(trans, extent_root, ret);
6435 goto out;
6436 }
6437 }
6438 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6439 root_objectid);
6440 } else {
6441 if (found_extent) {
6442 BUG_ON(is_data && refs_to_drop !=
6443 extent_data_ref_count(path, iref));
6444 if (iref) {
6445 BUG_ON(path->slots[0] != extent_slot);
6446 } else {
6447 BUG_ON(path->slots[0] != extent_slot + 1);
6448 path->slots[0] = extent_slot;
6449 num_to_del = 2;
6450 }
6451 }
6452
6453 last_ref = 1;
6454 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6455 num_to_del);
6456 if (ret) {
6457 btrfs_abort_transaction(trans, extent_root, ret);
6458 goto out;
6459 }
6460 btrfs_release_path(path);
6461
6462 if (is_data) {
6463 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6464 if (ret) {
6465 btrfs_abort_transaction(trans, extent_root, ret);
6466 goto out;
6467 }
6468 }
6469
6470 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6471 if (ret) {
6472 btrfs_abort_transaction(trans, extent_root, ret);
6473 goto out;
6474 }
6475 }
6476 btrfs_release_path(path);
6477
6478 out:
6479 btrfs_free_path(path);
6480 return ret;
6481 }
6482
6483 /*
6484 * when we free an block, it is possible (and likely) that we free the last
6485 * delayed ref for that extent as well. This searches the delayed ref tree for
6486 * a given extent, and if there are no other delayed refs to be processed, it
6487 * removes it from the tree.
6488 */
6489 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6490 struct btrfs_root *root, u64 bytenr)
6491 {
6492 struct btrfs_delayed_ref_head *head;
6493 struct btrfs_delayed_ref_root *delayed_refs;
6494 int ret = 0;
6495
6496 delayed_refs = &trans->transaction->delayed_refs;
6497 spin_lock(&delayed_refs->lock);
6498 head = btrfs_find_delayed_ref_head(trans, bytenr);
6499 if (!head)
6500 goto out_delayed_unlock;
6501
6502 spin_lock(&head->lock);
6503 if (!list_empty(&head->ref_list))
6504 goto out;
6505
6506 if (head->extent_op) {
6507 if (!head->must_insert_reserved)
6508 goto out;
6509 btrfs_free_delayed_extent_op(head->extent_op);
6510 head->extent_op = NULL;
6511 }
6512
6513 /*
6514 * waiting for the lock here would deadlock. If someone else has it
6515 * locked they are already in the process of dropping it anyway
6516 */
6517 if (!mutex_trylock(&head->mutex))
6518 goto out;
6519
6520 /*
6521 * at this point we have a head with no other entries. Go
6522 * ahead and process it.
6523 */
6524 head->node.in_tree = 0;
6525 rb_erase(&head->href_node, &delayed_refs->href_root);
6526
6527 atomic_dec(&delayed_refs->num_entries);
6528
6529 /*
6530 * we don't take a ref on the node because we're removing it from the
6531 * tree, so we just steal the ref the tree was holding.
6532 */
6533 delayed_refs->num_heads--;
6534 if (head->processing == 0)
6535 delayed_refs->num_heads_ready--;
6536 head->processing = 0;
6537 spin_unlock(&head->lock);
6538 spin_unlock(&delayed_refs->lock);
6539
6540 BUG_ON(head->extent_op);
6541 if (head->must_insert_reserved)
6542 ret = 1;
6543
6544 mutex_unlock(&head->mutex);
6545 btrfs_put_delayed_ref(&head->node);
6546 return ret;
6547 out:
6548 spin_unlock(&head->lock);
6549
6550 out_delayed_unlock:
6551 spin_unlock(&delayed_refs->lock);
6552 return 0;
6553 }
6554
6555 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6556 struct btrfs_root *root,
6557 struct extent_buffer *buf,
6558 u64 parent, int last_ref)
6559 {
6560 int pin = 1;
6561 int ret;
6562
6563 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6564 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6565 buf->start, buf->len,
6566 parent, root->root_key.objectid,
6567 btrfs_header_level(buf),
6568 BTRFS_DROP_DELAYED_REF, NULL, 0);
6569 BUG_ON(ret); /* -ENOMEM */
6570 }
6571
6572 if (!last_ref)
6573 return;
6574
6575 if (btrfs_header_generation(buf) == trans->transid) {
6576 struct btrfs_block_group_cache *cache;
6577
6578 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6579 ret = check_ref_cleanup(trans, root, buf->start);
6580 if (!ret)
6581 goto out;
6582 }
6583
6584 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6585
6586 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6587 pin_down_extent(root, cache, buf->start, buf->len, 1);
6588 btrfs_put_block_group(cache);
6589 goto out;
6590 }
6591
6592 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6593
6594 btrfs_add_free_space(cache, buf->start, buf->len);
6595 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6596 btrfs_put_block_group(cache);
6597 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6598 pin = 0;
6599 }
6600 out:
6601 if (pin)
6602 add_pinned_bytes(root->fs_info, buf->len,
6603 btrfs_header_level(buf),
6604 root->root_key.objectid);
6605
6606 /*
6607 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6608 * anymore.
6609 */
6610 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6611 }
6612
6613 /* Can return -ENOMEM */
6614 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6615 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6616 u64 owner, u64 offset, int no_quota)
6617 {
6618 int ret;
6619 struct btrfs_fs_info *fs_info = root->fs_info;
6620
6621 if (btrfs_test_is_dummy_root(root))
6622 return 0;
6623
6624 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6625
6626 /*
6627 * tree log blocks never actually go into the extent allocation
6628 * tree, just update pinning info and exit early.
6629 */
6630 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6631 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6632 /* unlocks the pinned mutex */
6633 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6634 ret = 0;
6635 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6636 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6637 num_bytes,
6638 parent, root_objectid, (int)owner,
6639 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6640 } else {
6641 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6642 num_bytes,
6643 parent, root_objectid, owner,
6644 offset, BTRFS_DROP_DELAYED_REF,
6645 NULL, no_quota);
6646 }
6647 return ret;
6648 }
6649
6650 /*
6651 * when we wait for progress in the block group caching, its because
6652 * our allocation attempt failed at least once. So, we must sleep
6653 * and let some progress happen before we try again.
6654 *
6655 * This function will sleep at least once waiting for new free space to
6656 * show up, and then it will check the block group free space numbers
6657 * for our min num_bytes. Another option is to have it go ahead
6658 * and look in the rbtree for a free extent of a given size, but this
6659 * is a good start.
6660 *
6661 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6662 * any of the information in this block group.
6663 */
6664 static noinline void
6665 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6666 u64 num_bytes)
6667 {
6668 struct btrfs_caching_control *caching_ctl;
6669
6670 caching_ctl = get_caching_control(cache);
6671 if (!caching_ctl)
6672 return;
6673
6674 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6675 (cache->free_space_ctl->free_space >= num_bytes));
6676
6677 put_caching_control(caching_ctl);
6678 }
6679
6680 static noinline int
6681 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6682 {
6683 struct btrfs_caching_control *caching_ctl;
6684 int ret = 0;
6685
6686 caching_ctl = get_caching_control(cache);
6687 if (!caching_ctl)
6688 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6689
6690 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6691 if (cache->cached == BTRFS_CACHE_ERROR)
6692 ret = -EIO;
6693 put_caching_control(caching_ctl);
6694 return ret;
6695 }
6696
6697 int __get_raid_index(u64 flags)
6698 {
6699 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6700 return BTRFS_RAID_RAID10;
6701 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6702 return BTRFS_RAID_RAID1;
6703 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6704 return BTRFS_RAID_DUP;
6705 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6706 return BTRFS_RAID_RAID0;
6707 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6708 return BTRFS_RAID_RAID5;
6709 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6710 return BTRFS_RAID_RAID6;
6711
6712 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6713 }
6714
6715 int get_block_group_index(struct btrfs_block_group_cache *cache)
6716 {
6717 return __get_raid_index(cache->flags);
6718 }
6719
6720 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6721 [BTRFS_RAID_RAID10] = "raid10",
6722 [BTRFS_RAID_RAID1] = "raid1",
6723 [BTRFS_RAID_DUP] = "dup",
6724 [BTRFS_RAID_RAID0] = "raid0",
6725 [BTRFS_RAID_SINGLE] = "single",
6726 [BTRFS_RAID_RAID5] = "raid5",
6727 [BTRFS_RAID_RAID6] = "raid6",
6728 };
6729
6730 static const char *get_raid_name(enum btrfs_raid_types type)
6731 {
6732 if (type >= BTRFS_NR_RAID_TYPES)
6733 return NULL;
6734
6735 return btrfs_raid_type_names[type];
6736 }
6737
6738 enum btrfs_loop_type {
6739 LOOP_CACHING_NOWAIT = 0,
6740 LOOP_CACHING_WAIT = 1,
6741 LOOP_ALLOC_CHUNK = 2,
6742 LOOP_NO_EMPTY_SIZE = 3,
6743 };
6744
6745 static inline void
6746 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6747 int delalloc)
6748 {
6749 if (delalloc)
6750 down_read(&cache->data_rwsem);
6751 }
6752
6753 static inline void
6754 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6755 int delalloc)
6756 {
6757 btrfs_get_block_group(cache);
6758 if (delalloc)
6759 down_read(&cache->data_rwsem);
6760 }
6761
6762 static struct btrfs_block_group_cache *
6763 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6764 struct btrfs_free_cluster *cluster,
6765 int delalloc)
6766 {
6767 struct btrfs_block_group_cache *used_bg;
6768 bool locked = false;
6769 again:
6770 spin_lock(&cluster->refill_lock);
6771 if (locked) {
6772 if (used_bg == cluster->block_group)
6773 return used_bg;
6774
6775 up_read(&used_bg->data_rwsem);
6776 btrfs_put_block_group(used_bg);
6777 }
6778
6779 used_bg = cluster->block_group;
6780 if (!used_bg)
6781 return NULL;
6782
6783 if (used_bg == block_group)
6784 return used_bg;
6785
6786 btrfs_get_block_group(used_bg);
6787
6788 if (!delalloc)
6789 return used_bg;
6790
6791 if (down_read_trylock(&used_bg->data_rwsem))
6792 return used_bg;
6793
6794 spin_unlock(&cluster->refill_lock);
6795 down_read(&used_bg->data_rwsem);
6796 locked = true;
6797 goto again;
6798 }
6799
6800 static inline void
6801 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6802 int delalloc)
6803 {
6804 if (delalloc)
6805 up_read(&cache->data_rwsem);
6806 btrfs_put_block_group(cache);
6807 }
6808
6809 /*
6810 * walks the btree of allocated extents and find a hole of a given size.
6811 * The key ins is changed to record the hole:
6812 * ins->objectid == start position
6813 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6814 * ins->offset == the size of the hole.
6815 * Any available blocks before search_start are skipped.
6816 *
6817 * If there is no suitable free space, we will record the max size of
6818 * the free space extent currently.
6819 */
6820 static noinline int find_free_extent(struct btrfs_root *orig_root,
6821 u64 num_bytes, u64 empty_size,
6822 u64 hint_byte, struct btrfs_key *ins,
6823 u64 flags, int delalloc)
6824 {
6825 int ret = 0;
6826 struct btrfs_root *root = orig_root->fs_info->extent_root;
6827 struct btrfs_free_cluster *last_ptr = NULL;
6828 struct btrfs_block_group_cache *block_group = NULL;
6829 u64 search_start = 0;
6830 u64 max_extent_size = 0;
6831 int empty_cluster = 2 * 1024 * 1024;
6832 struct btrfs_space_info *space_info;
6833 int loop = 0;
6834 int index = __get_raid_index(flags);
6835 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6836 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6837 bool failed_cluster_refill = false;
6838 bool failed_alloc = false;
6839 bool use_cluster = true;
6840 bool have_caching_bg = false;
6841
6842 WARN_ON(num_bytes < root->sectorsize);
6843 ins->type = BTRFS_EXTENT_ITEM_KEY;
6844 ins->objectid = 0;
6845 ins->offset = 0;
6846
6847 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6848
6849 space_info = __find_space_info(root->fs_info, flags);
6850 if (!space_info) {
6851 btrfs_err(root->fs_info, "No space info for %llu", flags);
6852 return -ENOSPC;
6853 }
6854
6855 /*
6856 * If the space info is for both data and metadata it means we have a
6857 * small filesystem and we can't use the clustering stuff.
6858 */
6859 if (btrfs_mixed_space_info(space_info))
6860 use_cluster = false;
6861
6862 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6863 last_ptr = &root->fs_info->meta_alloc_cluster;
6864 if (!btrfs_test_opt(root, SSD))
6865 empty_cluster = 64 * 1024;
6866 }
6867
6868 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6869 btrfs_test_opt(root, SSD)) {
6870 last_ptr = &root->fs_info->data_alloc_cluster;
6871 }
6872
6873 if (last_ptr) {
6874 spin_lock(&last_ptr->lock);
6875 if (last_ptr->block_group)
6876 hint_byte = last_ptr->window_start;
6877 spin_unlock(&last_ptr->lock);
6878 }
6879
6880 search_start = max(search_start, first_logical_byte(root, 0));
6881 search_start = max(search_start, hint_byte);
6882
6883 if (!last_ptr)
6884 empty_cluster = 0;
6885
6886 if (search_start == hint_byte) {
6887 block_group = btrfs_lookup_block_group(root->fs_info,
6888 search_start);
6889 /*
6890 * we don't want to use the block group if it doesn't match our
6891 * allocation bits, or if its not cached.
6892 *
6893 * However if we are re-searching with an ideal block group
6894 * picked out then we don't care that the block group is cached.
6895 */
6896 if (block_group && block_group_bits(block_group, flags) &&
6897 block_group->cached != BTRFS_CACHE_NO) {
6898 down_read(&space_info->groups_sem);
6899 if (list_empty(&block_group->list) ||
6900 block_group->ro) {
6901 /*
6902 * someone is removing this block group,
6903 * we can't jump into the have_block_group
6904 * target because our list pointers are not
6905 * valid
6906 */
6907 btrfs_put_block_group(block_group);
6908 up_read(&space_info->groups_sem);
6909 } else {
6910 index = get_block_group_index(block_group);
6911 btrfs_lock_block_group(block_group, delalloc);
6912 goto have_block_group;
6913 }
6914 } else if (block_group) {
6915 btrfs_put_block_group(block_group);
6916 }
6917 }
6918 search:
6919 have_caching_bg = false;
6920 down_read(&space_info->groups_sem);
6921 list_for_each_entry(block_group, &space_info->block_groups[index],
6922 list) {
6923 u64 offset;
6924 int cached;
6925
6926 btrfs_grab_block_group(block_group, delalloc);
6927 search_start = block_group->key.objectid;
6928
6929 /*
6930 * this can happen if we end up cycling through all the
6931 * raid types, but we want to make sure we only allocate
6932 * for the proper type.
6933 */
6934 if (!block_group_bits(block_group, flags)) {
6935 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6936 BTRFS_BLOCK_GROUP_RAID1 |
6937 BTRFS_BLOCK_GROUP_RAID5 |
6938 BTRFS_BLOCK_GROUP_RAID6 |
6939 BTRFS_BLOCK_GROUP_RAID10;
6940
6941 /*
6942 * if they asked for extra copies and this block group
6943 * doesn't provide them, bail. This does allow us to
6944 * fill raid0 from raid1.
6945 */
6946 if ((flags & extra) && !(block_group->flags & extra))
6947 goto loop;
6948 }
6949
6950 have_block_group:
6951 cached = block_group_cache_done(block_group);
6952 if (unlikely(!cached)) {
6953 ret = cache_block_group(block_group, 0);
6954 BUG_ON(ret < 0);
6955 ret = 0;
6956 }
6957
6958 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6959 goto loop;
6960 if (unlikely(block_group->ro))
6961 goto loop;
6962
6963 /*
6964 * Ok we want to try and use the cluster allocator, so
6965 * lets look there
6966 */
6967 if (last_ptr) {
6968 struct btrfs_block_group_cache *used_block_group;
6969 unsigned long aligned_cluster;
6970 /*
6971 * the refill lock keeps out other
6972 * people trying to start a new cluster
6973 */
6974 used_block_group = btrfs_lock_cluster(block_group,
6975 last_ptr,
6976 delalloc);
6977 if (!used_block_group)
6978 goto refill_cluster;
6979
6980 if (used_block_group != block_group &&
6981 (used_block_group->ro ||
6982 !block_group_bits(used_block_group, flags)))
6983 goto release_cluster;
6984
6985 offset = btrfs_alloc_from_cluster(used_block_group,
6986 last_ptr,
6987 num_bytes,
6988 used_block_group->key.objectid,
6989 &max_extent_size);
6990 if (offset) {
6991 /* we have a block, we're done */
6992 spin_unlock(&last_ptr->refill_lock);
6993 trace_btrfs_reserve_extent_cluster(root,
6994 used_block_group,
6995 search_start, num_bytes);
6996 if (used_block_group != block_group) {
6997 btrfs_release_block_group(block_group,
6998 delalloc);
6999 block_group = used_block_group;
7000 }
7001 goto checks;
7002 }
7003
7004 WARN_ON(last_ptr->block_group != used_block_group);
7005 release_cluster:
7006 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7007 * set up a new clusters, so lets just skip it
7008 * and let the allocator find whatever block
7009 * it can find. If we reach this point, we
7010 * will have tried the cluster allocator
7011 * plenty of times and not have found
7012 * anything, so we are likely way too
7013 * fragmented for the clustering stuff to find
7014 * anything.
7015 *
7016 * However, if the cluster is taken from the
7017 * current block group, release the cluster
7018 * first, so that we stand a better chance of
7019 * succeeding in the unclustered
7020 * allocation. */
7021 if (loop >= LOOP_NO_EMPTY_SIZE &&
7022 used_block_group != block_group) {
7023 spin_unlock(&last_ptr->refill_lock);
7024 btrfs_release_block_group(used_block_group,
7025 delalloc);
7026 goto unclustered_alloc;
7027 }
7028
7029 /*
7030 * this cluster didn't work out, free it and
7031 * start over
7032 */
7033 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7034
7035 if (used_block_group != block_group)
7036 btrfs_release_block_group(used_block_group,
7037 delalloc);
7038 refill_cluster:
7039 if (loop >= LOOP_NO_EMPTY_SIZE) {
7040 spin_unlock(&last_ptr->refill_lock);
7041 goto unclustered_alloc;
7042 }
7043
7044 aligned_cluster = max_t(unsigned long,
7045 empty_cluster + empty_size,
7046 block_group->full_stripe_len);
7047
7048 /* allocate a cluster in this block group */
7049 ret = btrfs_find_space_cluster(root, block_group,
7050 last_ptr, search_start,
7051 num_bytes,
7052 aligned_cluster);
7053 if (ret == 0) {
7054 /*
7055 * now pull our allocation out of this
7056 * cluster
7057 */
7058 offset = btrfs_alloc_from_cluster(block_group,
7059 last_ptr,
7060 num_bytes,
7061 search_start,
7062 &max_extent_size);
7063 if (offset) {
7064 /* we found one, proceed */
7065 spin_unlock(&last_ptr->refill_lock);
7066 trace_btrfs_reserve_extent_cluster(root,
7067 block_group, search_start,
7068 num_bytes);
7069 goto checks;
7070 }
7071 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7072 && !failed_cluster_refill) {
7073 spin_unlock(&last_ptr->refill_lock);
7074
7075 failed_cluster_refill = true;
7076 wait_block_group_cache_progress(block_group,
7077 num_bytes + empty_cluster + empty_size);
7078 goto have_block_group;
7079 }
7080
7081 /*
7082 * at this point we either didn't find a cluster
7083 * or we weren't able to allocate a block from our
7084 * cluster. Free the cluster we've been trying
7085 * to use, and go to the next block group
7086 */
7087 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7088 spin_unlock(&last_ptr->refill_lock);
7089 goto loop;
7090 }
7091
7092 unclustered_alloc:
7093 spin_lock(&block_group->free_space_ctl->tree_lock);
7094 if (cached &&
7095 block_group->free_space_ctl->free_space <
7096 num_bytes + empty_cluster + empty_size) {
7097 if (block_group->free_space_ctl->free_space >
7098 max_extent_size)
7099 max_extent_size =
7100 block_group->free_space_ctl->free_space;
7101 spin_unlock(&block_group->free_space_ctl->tree_lock);
7102 goto loop;
7103 }
7104 spin_unlock(&block_group->free_space_ctl->tree_lock);
7105
7106 offset = btrfs_find_space_for_alloc(block_group, search_start,
7107 num_bytes, empty_size,
7108 &max_extent_size);
7109 /*
7110 * If we didn't find a chunk, and we haven't failed on this
7111 * block group before, and this block group is in the middle of
7112 * caching and we are ok with waiting, then go ahead and wait
7113 * for progress to be made, and set failed_alloc to true.
7114 *
7115 * If failed_alloc is true then we've already waited on this
7116 * block group once and should move on to the next block group.
7117 */
7118 if (!offset && !failed_alloc && !cached &&
7119 loop > LOOP_CACHING_NOWAIT) {
7120 wait_block_group_cache_progress(block_group,
7121 num_bytes + empty_size);
7122 failed_alloc = true;
7123 goto have_block_group;
7124 } else if (!offset) {
7125 if (!cached)
7126 have_caching_bg = true;
7127 goto loop;
7128 }
7129 checks:
7130 search_start = ALIGN(offset, root->stripesize);
7131
7132 /* move on to the next group */
7133 if (search_start + num_bytes >
7134 block_group->key.objectid + block_group->key.offset) {
7135 btrfs_add_free_space(block_group, offset, num_bytes);
7136 goto loop;
7137 }
7138
7139 if (offset < search_start)
7140 btrfs_add_free_space(block_group, offset,
7141 search_start - offset);
7142 BUG_ON(offset > search_start);
7143
7144 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7145 alloc_type, delalloc);
7146 if (ret == -EAGAIN) {
7147 btrfs_add_free_space(block_group, offset, num_bytes);
7148 goto loop;
7149 }
7150
7151 /* we are all good, lets return */
7152 ins->objectid = search_start;
7153 ins->offset = num_bytes;
7154
7155 trace_btrfs_reserve_extent(orig_root, block_group,
7156 search_start, num_bytes);
7157 btrfs_release_block_group(block_group, delalloc);
7158 break;
7159 loop:
7160 failed_cluster_refill = false;
7161 failed_alloc = false;
7162 BUG_ON(index != get_block_group_index(block_group));
7163 btrfs_release_block_group(block_group, delalloc);
7164 }
7165 up_read(&space_info->groups_sem);
7166
7167 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7168 goto search;
7169
7170 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7171 goto search;
7172
7173 /*
7174 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7175 * caching kthreads as we move along
7176 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7177 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7178 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7179 * again
7180 */
7181 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7182 index = 0;
7183 loop++;
7184 if (loop == LOOP_ALLOC_CHUNK) {
7185 struct btrfs_trans_handle *trans;
7186 int exist = 0;
7187
7188 trans = current->journal_info;
7189 if (trans)
7190 exist = 1;
7191 else
7192 trans = btrfs_join_transaction(root);
7193
7194 if (IS_ERR(trans)) {
7195 ret = PTR_ERR(trans);
7196 goto out;
7197 }
7198
7199 ret = do_chunk_alloc(trans, root, flags,
7200 CHUNK_ALLOC_FORCE);
7201 /*
7202 * Do not bail out on ENOSPC since we
7203 * can do more things.
7204 */
7205 if (ret < 0 && ret != -ENOSPC)
7206 btrfs_abort_transaction(trans,
7207 root, ret);
7208 else
7209 ret = 0;
7210 if (!exist)
7211 btrfs_end_transaction(trans, root);
7212 if (ret)
7213 goto out;
7214 }
7215
7216 if (loop == LOOP_NO_EMPTY_SIZE) {
7217 empty_size = 0;
7218 empty_cluster = 0;
7219 }
7220
7221 goto search;
7222 } else if (!ins->objectid) {
7223 ret = -ENOSPC;
7224 } else if (ins->objectid) {
7225 ret = 0;
7226 }
7227 out:
7228 if (ret == -ENOSPC)
7229 ins->offset = max_extent_size;
7230 return ret;
7231 }
7232
7233 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7234 int dump_block_groups)
7235 {
7236 struct btrfs_block_group_cache *cache;
7237 int index = 0;
7238
7239 spin_lock(&info->lock);
7240 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7241 info->flags,
7242 info->total_bytes - info->bytes_used - info->bytes_pinned -
7243 info->bytes_reserved - info->bytes_readonly,
7244 (info->full) ? "" : "not ");
7245 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7246 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7247 info->total_bytes, info->bytes_used, info->bytes_pinned,
7248 info->bytes_reserved, info->bytes_may_use,
7249 info->bytes_readonly);
7250 spin_unlock(&info->lock);
7251
7252 if (!dump_block_groups)
7253 return;
7254
7255 down_read(&info->groups_sem);
7256 again:
7257 list_for_each_entry(cache, &info->block_groups[index], list) {
7258 spin_lock(&cache->lock);
7259 printk(KERN_INFO "BTRFS: "
7260 "block group %llu has %llu bytes, "
7261 "%llu used %llu pinned %llu reserved %s\n",
7262 cache->key.objectid, cache->key.offset,
7263 btrfs_block_group_used(&cache->item), cache->pinned,
7264 cache->reserved, cache->ro ? "[readonly]" : "");
7265 btrfs_dump_free_space(cache, bytes);
7266 spin_unlock(&cache->lock);
7267 }
7268 if (++index < BTRFS_NR_RAID_TYPES)
7269 goto again;
7270 up_read(&info->groups_sem);
7271 }
7272
7273 int btrfs_reserve_extent(struct btrfs_root *root,
7274 u64 num_bytes, u64 min_alloc_size,
7275 u64 empty_size, u64 hint_byte,
7276 struct btrfs_key *ins, int is_data, int delalloc)
7277 {
7278 bool final_tried = false;
7279 u64 flags;
7280 int ret;
7281
7282 flags = btrfs_get_alloc_profile(root, is_data);
7283 again:
7284 WARN_ON(num_bytes < root->sectorsize);
7285 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7286 flags, delalloc);
7287
7288 if (ret == -ENOSPC) {
7289 if (!final_tried && ins->offset) {
7290 num_bytes = min(num_bytes >> 1, ins->offset);
7291 num_bytes = round_down(num_bytes, root->sectorsize);
7292 num_bytes = max(num_bytes, min_alloc_size);
7293 if (num_bytes == min_alloc_size)
7294 final_tried = true;
7295 goto again;
7296 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7297 struct btrfs_space_info *sinfo;
7298
7299 sinfo = __find_space_info(root->fs_info, flags);
7300 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7301 flags, num_bytes);
7302 if (sinfo)
7303 dump_space_info(sinfo, num_bytes, 1);
7304 }
7305 }
7306
7307 return ret;
7308 }
7309
7310 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7311 u64 start, u64 len,
7312 int pin, int delalloc)
7313 {
7314 struct btrfs_block_group_cache *cache;
7315 int ret = 0;
7316
7317 cache = btrfs_lookup_block_group(root->fs_info, start);
7318 if (!cache) {
7319 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7320 start);
7321 return -ENOSPC;
7322 }
7323
7324 if (pin)
7325 pin_down_extent(root, cache, start, len, 1);
7326 else {
7327 if (btrfs_test_opt(root, DISCARD))
7328 ret = btrfs_discard_extent(root, start, len, NULL);
7329 btrfs_add_free_space(cache, start, len);
7330 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7331 }
7332
7333 btrfs_put_block_group(cache);
7334
7335 trace_btrfs_reserved_extent_free(root, start, len);
7336
7337 return ret;
7338 }
7339
7340 int btrfs_free_reserved_extent(struct btrfs_root *root,
7341 u64 start, u64 len, int delalloc)
7342 {
7343 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7344 }
7345
7346 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7347 u64 start, u64 len)
7348 {
7349 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7350 }
7351
7352 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7353 struct btrfs_root *root,
7354 u64 parent, u64 root_objectid,
7355 u64 flags, u64 owner, u64 offset,
7356 struct btrfs_key *ins, int ref_mod)
7357 {
7358 int ret;
7359 struct btrfs_fs_info *fs_info = root->fs_info;
7360 struct btrfs_extent_item *extent_item;
7361 struct btrfs_extent_inline_ref *iref;
7362 struct btrfs_path *path;
7363 struct extent_buffer *leaf;
7364 int type;
7365 u32 size;
7366
7367 if (parent > 0)
7368 type = BTRFS_SHARED_DATA_REF_KEY;
7369 else
7370 type = BTRFS_EXTENT_DATA_REF_KEY;
7371
7372 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7373
7374 path = btrfs_alloc_path();
7375 if (!path)
7376 return -ENOMEM;
7377
7378 path->leave_spinning = 1;
7379 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7380 ins, size);
7381 if (ret) {
7382 btrfs_free_path(path);
7383 return ret;
7384 }
7385
7386 leaf = path->nodes[0];
7387 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7388 struct btrfs_extent_item);
7389 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7390 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7391 btrfs_set_extent_flags(leaf, extent_item,
7392 flags | BTRFS_EXTENT_FLAG_DATA);
7393
7394 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7395 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7396 if (parent > 0) {
7397 struct btrfs_shared_data_ref *ref;
7398 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7399 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7400 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7401 } else {
7402 struct btrfs_extent_data_ref *ref;
7403 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7404 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7405 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7406 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7407 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7408 }
7409
7410 btrfs_mark_buffer_dirty(path->nodes[0]);
7411 btrfs_free_path(path);
7412
7413 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7414 if (ret) { /* -ENOENT, logic error */
7415 btrfs_err(fs_info, "update block group failed for %llu %llu",
7416 ins->objectid, ins->offset);
7417 BUG();
7418 }
7419 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7420 return ret;
7421 }
7422
7423 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7424 struct btrfs_root *root,
7425 u64 parent, u64 root_objectid,
7426 u64 flags, struct btrfs_disk_key *key,
7427 int level, struct btrfs_key *ins,
7428 int no_quota)
7429 {
7430 int ret;
7431 struct btrfs_fs_info *fs_info = root->fs_info;
7432 struct btrfs_extent_item *extent_item;
7433 struct btrfs_tree_block_info *block_info;
7434 struct btrfs_extent_inline_ref *iref;
7435 struct btrfs_path *path;
7436 struct extent_buffer *leaf;
7437 u32 size = sizeof(*extent_item) + sizeof(*iref);
7438 u64 num_bytes = ins->offset;
7439 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7440 SKINNY_METADATA);
7441
7442 if (!skinny_metadata)
7443 size += sizeof(*block_info);
7444
7445 path = btrfs_alloc_path();
7446 if (!path) {
7447 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7448 root->nodesize);
7449 return -ENOMEM;
7450 }
7451
7452 path->leave_spinning = 1;
7453 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7454 ins, size);
7455 if (ret) {
7456 btrfs_free_path(path);
7457 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7458 root->nodesize);
7459 return ret;
7460 }
7461
7462 leaf = path->nodes[0];
7463 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7464 struct btrfs_extent_item);
7465 btrfs_set_extent_refs(leaf, extent_item, 1);
7466 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7467 btrfs_set_extent_flags(leaf, extent_item,
7468 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7469
7470 if (skinny_metadata) {
7471 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7472 num_bytes = root->nodesize;
7473 } else {
7474 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7475 btrfs_set_tree_block_key(leaf, block_info, key);
7476 btrfs_set_tree_block_level(leaf, block_info, level);
7477 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7478 }
7479
7480 if (parent > 0) {
7481 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7482 btrfs_set_extent_inline_ref_type(leaf, iref,
7483 BTRFS_SHARED_BLOCK_REF_KEY);
7484 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7485 } else {
7486 btrfs_set_extent_inline_ref_type(leaf, iref,
7487 BTRFS_TREE_BLOCK_REF_KEY);
7488 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7489 }
7490
7491 btrfs_mark_buffer_dirty(leaf);
7492 btrfs_free_path(path);
7493
7494 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7495 1);
7496 if (ret) { /* -ENOENT, logic error */
7497 btrfs_err(fs_info, "update block group failed for %llu %llu",
7498 ins->objectid, ins->offset);
7499 BUG();
7500 }
7501
7502 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7503 return ret;
7504 }
7505
7506 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7507 struct btrfs_root *root,
7508 u64 root_objectid, u64 owner,
7509 u64 offset, struct btrfs_key *ins)
7510 {
7511 int ret;
7512
7513 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7514
7515 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7516 ins->offset, 0,
7517 root_objectid, owner, offset,
7518 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7519 return ret;
7520 }
7521
7522 /*
7523 * this is used by the tree logging recovery code. It records that
7524 * an extent has been allocated and makes sure to clear the free
7525 * space cache bits as well
7526 */
7527 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7528 struct btrfs_root *root,
7529 u64 root_objectid, u64 owner, u64 offset,
7530 struct btrfs_key *ins)
7531 {
7532 int ret;
7533 struct btrfs_block_group_cache *block_group;
7534
7535 /*
7536 * Mixed block groups will exclude before processing the log so we only
7537 * need to do the exlude dance if this fs isn't mixed.
7538 */
7539 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7540 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7541 if (ret)
7542 return ret;
7543 }
7544
7545 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7546 if (!block_group)
7547 return -EINVAL;
7548
7549 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7550 RESERVE_ALLOC_NO_ACCOUNT, 0);
7551 BUG_ON(ret); /* logic error */
7552 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7553 0, owner, offset, ins, 1);
7554 btrfs_put_block_group(block_group);
7555 return ret;
7556 }
7557
7558 static struct extent_buffer *
7559 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7560 u64 bytenr, int level)
7561 {
7562 struct extent_buffer *buf;
7563
7564 buf = btrfs_find_create_tree_block(root, bytenr);
7565 if (!buf)
7566 return ERR_PTR(-ENOMEM);
7567 btrfs_set_header_generation(buf, trans->transid);
7568 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7569 btrfs_tree_lock(buf);
7570 clean_tree_block(trans, root->fs_info, buf);
7571 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7572
7573 btrfs_set_lock_blocking(buf);
7574 btrfs_set_buffer_uptodate(buf);
7575
7576 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7577 buf->log_index = root->log_transid % 2;
7578 /*
7579 * we allow two log transactions at a time, use different
7580 * EXENT bit to differentiate dirty pages.
7581 */
7582 if (buf->log_index == 0)
7583 set_extent_dirty(&root->dirty_log_pages, buf->start,
7584 buf->start + buf->len - 1, GFP_NOFS);
7585 else
7586 set_extent_new(&root->dirty_log_pages, buf->start,
7587 buf->start + buf->len - 1, GFP_NOFS);
7588 } else {
7589 buf->log_index = -1;
7590 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7591 buf->start + buf->len - 1, GFP_NOFS);
7592 }
7593 trans->blocks_used++;
7594 /* this returns a buffer locked for blocking */
7595 return buf;
7596 }
7597
7598 static struct btrfs_block_rsv *
7599 use_block_rsv(struct btrfs_trans_handle *trans,
7600 struct btrfs_root *root, u32 blocksize)
7601 {
7602 struct btrfs_block_rsv *block_rsv;
7603 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7604 int ret;
7605 bool global_updated = false;
7606
7607 block_rsv = get_block_rsv(trans, root);
7608
7609 if (unlikely(block_rsv->size == 0))
7610 goto try_reserve;
7611 again:
7612 ret = block_rsv_use_bytes(block_rsv, blocksize);
7613 if (!ret)
7614 return block_rsv;
7615
7616 if (block_rsv->failfast)
7617 return ERR_PTR(ret);
7618
7619 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7620 global_updated = true;
7621 update_global_block_rsv(root->fs_info);
7622 goto again;
7623 }
7624
7625 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7626 static DEFINE_RATELIMIT_STATE(_rs,
7627 DEFAULT_RATELIMIT_INTERVAL * 10,
7628 /*DEFAULT_RATELIMIT_BURST*/ 1);
7629 if (__ratelimit(&_rs))
7630 WARN(1, KERN_DEBUG
7631 "BTRFS: block rsv returned %d\n", ret);
7632 }
7633 try_reserve:
7634 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7635 BTRFS_RESERVE_NO_FLUSH);
7636 if (!ret)
7637 return block_rsv;
7638 /*
7639 * If we couldn't reserve metadata bytes try and use some from
7640 * the global reserve if its space type is the same as the global
7641 * reservation.
7642 */
7643 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7644 block_rsv->space_info == global_rsv->space_info) {
7645 ret = block_rsv_use_bytes(global_rsv, blocksize);
7646 if (!ret)
7647 return global_rsv;
7648 }
7649 return ERR_PTR(ret);
7650 }
7651
7652 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7653 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7654 {
7655 block_rsv_add_bytes(block_rsv, blocksize, 0);
7656 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7657 }
7658
7659 /*
7660 * finds a free extent and does all the dirty work required for allocation
7661 * returns the tree buffer or an ERR_PTR on error.
7662 */
7663 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7664 struct btrfs_root *root,
7665 u64 parent, u64 root_objectid,
7666 struct btrfs_disk_key *key, int level,
7667 u64 hint, u64 empty_size)
7668 {
7669 struct btrfs_key ins;
7670 struct btrfs_block_rsv *block_rsv;
7671 struct extent_buffer *buf;
7672 struct btrfs_delayed_extent_op *extent_op;
7673 u64 flags = 0;
7674 int ret;
7675 u32 blocksize = root->nodesize;
7676 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7677 SKINNY_METADATA);
7678
7679 if (btrfs_test_is_dummy_root(root)) {
7680 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7681 level);
7682 if (!IS_ERR(buf))
7683 root->alloc_bytenr += blocksize;
7684 return buf;
7685 }
7686
7687 block_rsv = use_block_rsv(trans, root, blocksize);
7688 if (IS_ERR(block_rsv))
7689 return ERR_CAST(block_rsv);
7690
7691 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7692 empty_size, hint, &ins, 0, 0);
7693 if (ret)
7694 goto out_unuse;
7695
7696 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7697 if (IS_ERR(buf)) {
7698 ret = PTR_ERR(buf);
7699 goto out_free_reserved;
7700 }
7701
7702 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7703 if (parent == 0)
7704 parent = ins.objectid;
7705 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7706 } else
7707 BUG_ON(parent > 0);
7708
7709 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7710 extent_op = btrfs_alloc_delayed_extent_op();
7711 if (!extent_op) {
7712 ret = -ENOMEM;
7713 goto out_free_buf;
7714 }
7715 if (key)
7716 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7717 else
7718 memset(&extent_op->key, 0, sizeof(extent_op->key));
7719 extent_op->flags_to_set = flags;
7720 if (skinny_metadata)
7721 extent_op->update_key = 0;
7722 else
7723 extent_op->update_key = 1;
7724 extent_op->update_flags = 1;
7725 extent_op->is_data = 0;
7726 extent_op->level = level;
7727
7728 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7729 ins.objectid, ins.offset,
7730 parent, root_objectid, level,
7731 BTRFS_ADD_DELAYED_EXTENT,
7732 extent_op, 0);
7733 if (ret)
7734 goto out_free_delayed;
7735 }
7736 return buf;
7737
7738 out_free_delayed:
7739 btrfs_free_delayed_extent_op(extent_op);
7740 out_free_buf:
7741 free_extent_buffer(buf);
7742 out_free_reserved:
7743 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7744 out_unuse:
7745 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7746 return ERR_PTR(ret);
7747 }
7748
7749 struct walk_control {
7750 u64 refs[BTRFS_MAX_LEVEL];
7751 u64 flags[BTRFS_MAX_LEVEL];
7752 struct btrfs_key update_progress;
7753 int stage;
7754 int level;
7755 int shared_level;
7756 int update_ref;
7757 int keep_locks;
7758 int reada_slot;
7759 int reada_count;
7760 int for_reloc;
7761 };
7762
7763 #define DROP_REFERENCE 1
7764 #define UPDATE_BACKREF 2
7765
7766 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7767 struct btrfs_root *root,
7768 struct walk_control *wc,
7769 struct btrfs_path *path)
7770 {
7771 u64 bytenr;
7772 u64 generation;
7773 u64 refs;
7774 u64 flags;
7775 u32 nritems;
7776 u32 blocksize;
7777 struct btrfs_key key;
7778 struct extent_buffer *eb;
7779 int ret;
7780 int slot;
7781 int nread = 0;
7782
7783 if (path->slots[wc->level] < wc->reada_slot) {
7784 wc->reada_count = wc->reada_count * 2 / 3;
7785 wc->reada_count = max(wc->reada_count, 2);
7786 } else {
7787 wc->reada_count = wc->reada_count * 3 / 2;
7788 wc->reada_count = min_t(int, wc->reada_count,
7789 BTRFS_NODEPTRS_PER_BLOCK(root));
7790 }
7791
7792 eb = path->nodes[wc->level];
7793 nritems = btrfs_header_nritems(eb);
7794 blocksize = root->nodesize;
7795
7796 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7797 if (nread >= wc->reada_count)
7798 break;
7799
7800 cond_resched();
7801 bytenr = btrfs_node_blockptr(eb, slot);
7802 generation = btrfs_node_ptr_generation(eb, slot);
7803
7804 if (slot == path->slots[wc->level])
7805 goto reada;
7806
7807 if (wc->stage == UPDATE_BACKREF &&
7808 generation <= root->root_key.offset)
7809 continue;
7810
7811 /* We don't lock the tree block, it's OK to be racy here */
7812 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7813 wc->level - 1, 1, &refs,
7814 &flags);
7815 /* We don't care about errors in readahead. */
7816 if (ret < 0)
7817 continue;
7818 BUG_ON(refs == 0);
7819
7820 if (wc->stage == DROP_REFERENCE) {
7821 if (refs == 1)
7822 goto reada;
7823
7824 if (wc->level == 1 &&
7825 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7826 continue;
7827 if (!wc->update_ref ||
7828 generation <= root->root_key.offset)
7829 continue;
7830 btrfs_node_key_to_cpu(eb, &key, slot);
7831 ret = btrfs_comp_cpu_keys(&key,
7832 &wc->update_progress);
7833 if (ret < 0)
7834 continue;
7835 } else {
7836 if (wc->level == 1 &&
7837 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7838 continue;
7839 }
7840 reada:
7841 readahead_tree_block(root, bytenr);
7842 nread++;
7843 }
7844 wc->reada_slot = slot;
7845 }
7846
7847 /*
7848 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7849 * for later qgroup accounting.
7850 *
7851 * Current, this function does nothing.
7852 */
7853 static int account_leaf_items(struct btrfs_trans_handle *trans,
7854 struct btrfs_root *root,
7855 struct extent_buffer *eb)
7856 {
7857 int nr = btrfs_header_nritems(eb);
7858 int i, extent_type;
7859 struct btrfs_key key;
7860 struct btrfs_file_extent_item *fi;
7861 u64 bytenr, num_bytes;
7862
7863 for (i = 0; i < nr; i++) {
7864 btrfs_item_key_to_cpu(eb, &key, i);
7865
7866 if (key.type != BTRFS_EXTENT_DATA_KEY)
7867 continue;
7868
7869 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7870 /* filter out non qgroup-accountable extents */
7871 extent_type = btrfs_file_extent_type(eb, fi);
7872
7873 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7874 continue;
7875
7876 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7877 if (!bytenr)
7878 continue;
7879
7880 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7881 }
7882 return 0;
7883 }
7884
7885 /*
7886 * Walk up the tree from the bottom, freeing leaves and any interior
7887 * nodes which have had all slots visited. If a node (leaf or
7888 * interior) is freed, the node above it will have it's slot
7889 * incremented. The root node will never be freed.
7890 *
7891 * At the end of this function, we should have a path which has all
7892 * slots incremented to the next position for a search. If we need to
7893 * read a new node it will be NULL and the node above it will have the
7894 * correct slot selected for a later read.
7895 *
7896 * If we increment the root nodes slot counter past the number of
7897 * elements, 1 is returned to signal completion of the search.
7898 */
7899 static int adjust_slots_upwards(struct btrfs_root *root,
7900 struct btrfs_path *path, int root_level)
7901 {
7902 int level = 0;
7903 int nr, slot;
7904 struct extent_buffer *eb;
7905
7906 if (root_level == 0)
7907 return 1;
7908
7909 while (level <= root_level) {
7910 eb = path->nodes[level];
7911 nr = btrfs_header_nritems(eb);
7912 path->slots[level]++;
7913 slot = path->slots[level];
7914 if (slot >= nr || level == 0) {
7915 /*
7916 * Don't free the root - we will detect this
7917 * condition after our loop and return a
7918 * positive value for caller to stop walking the tree.
7919 */
7920 if (level != root_level) {
7921 btrfs_tree_unlock_rw(eb, path->locks[level]);
7922 path->locks[level] = 0;
7923
7924 free_extent_buffer(eb);
7925 path->nodes[level] = NULL;
7926 path->slots[level] = 0;
7927 }
7928 } else {
7929 /*
7930 * We have a valid slot to walk back down
7931 * from. Stop here so caller can process these
7932 * new nodes.
7933 */
7934 break;
7935 }
7936
7937 level++;
7938 }
7939
7940 eb = path->nodes[root_level];
7941 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7942 return 1;
7943
7944 return 0;
7945 }
7946
7947 /*
7948 * root_eb is the subtree root and is locked before this function is called.
7949 * TODO: Modify this function to mark all (including complete shared node)
7950 * to dirty_extent_root to allow it get accounted in qgroup.
7951 */
7952 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7953 struct btrfs_root *root,
7954 struct extent_buffer *root_eb,
7955 u64 root_gen,
7956 int root_level)
7957 {
7958 int ret = 0;
7959 int level;
7960 struct extent_buffer *eb = root_eb;
7961 struct btrfs_path *path = NULL;
7962
7963 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7964 BUG_ON(root_eb == NULL);
7965
7966 if (!root->fs_info->quota_enabled)
7967 return 0;
7968
7969 if (!extent_buffer_uptodate(root_eb)) {
7970 ret = btrfs_read_buffer(root_eb, root_gen);
7971 if (ret)
7972 goto out;
7973 }
7974
7975 if (root_level == 0) {
7976 ret = account_leaf_items(trans, root, root_eb);
7977 goto out;
7978 }
7979
7980 path = btrfs_alloc_path();
7981 if (!path)
7982 return -ENOMEM;
7983
7984 /*
7985 * Walk down the tree. Missing extent blocks are filled in as
7986 * we go. Metadata is accounted every time we read a new
7987 * extent block.
7988 *
7989 * When we reach a leaf, we account for file extent items in it,
7990 * walk back up the tree (adjusting slot pointers as we go)
7991 * and restart the search process.
7992 */
7993 extent_buffer_get(root_eb); /* For path */
7994 path->nodes[root_level] = root_eb;
7995 path->slots[root_level] = 0;
7996 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7997 walk_down:
7998 level = root_level;
7999 while (level >= 0) {
8000 if (path->nodes[level] == NULL) {
8001 int parent_slot;
8002 u64 child_gen;
8003 u64 child_bytenr;
8004
8005 /* We need to get child blockptr/gen from
8006 * parent before we can read it. */
8007 eb = path->nodes[level + 1];
8008 parent_slot = path->slots[level + 1];
8009 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8010 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8011
8012 eb = read_tree_block(root, child_bytenr, child_gen);
8013 if (IS_ERR(eb)) {
8014 ret = PTR_ERR(eb);
8015 goto out;
8016 } else if (!extent_buffer_uptodate(eb)) {
8017 free_extent_buffer(eb);
8018 ret = -EIO;
8019 goto out;
8020 }
8021
8022 path->nodes[level] = eb;
8023 path->slots[level] = 0;
8024
8025 btrfs_tree_read_lock(eb);
8026 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8027 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8028 }
8029
8030 if (level == 0) {
8031 ret = account_leaf_items(trans, root, path->nodes[level]);
8032 if (ret)
8033 goto out;
8034
8035 /* Nonzero return here means we completed our search */
8036 ret = adjust_slots_upwards(root, path, root_level);
8037 if (ret)
8038 break;
8039
8040 /* Restart search with new slots */
8041 goto walk_down;
8042 }
8043
8044 level--;
8045 }
8046
8047 ret = 0;
8048 out:
8049 btrfs_free_path(path);
8050
8051 return ret;
8052 }
8053
8054 /*
8055 * helper to process tree block while walking down the tree.
8056 *
8057 * when wc->stage == UPDATE_BACKREF, this function updates
8058 * back refs for pointers in the block.
8059 *
8060 * NOTE: return value 1 means we should stop walking down.
8061 */
8062 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8063 struct btrfs_root *root,
8064 struct btrfs_path *path,
8065 struct walk_control *wc, int lookup_info)
8066 {
8067 int level = wc->level;
8068 struct extent_buffer *eb = path->nodes[level];
8069 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8070 int ret;
8071
8072 if (wc->stage == UPDATE_BACKREF &&
8073 btrfs_header_owner(eb) != root->root_key.objectid)
8074 return 1;
8075
8076 /*
8077 * when reference count of tree block is 1, it won't increase
8078 * again. once full backref flag is set, we never clear it.
8079 */
8080 if (lookup_info &&
8081 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8082 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8083 BUG_ON(!path->locks[level]);
8084 ret = btrfs_lookup_extent_info(trans, root,
8085 eb->start, level, 1,
8086 &wc->refs[level],
8087 &wc->flags[level]);
8088 BUG_ON(ret == -ENOMEM);
8089 if (ret)
8090 return ret;
8091 BUG_ON(wc->refs[level] == 0);
8092 }
8093
8094 if (wc->stage == DROP_REFERENCE) {
8095 if (wc->refs[level] > 1)
8096 return 1;
8097
8098 if (path->locks[level] && !wc->keep_locks) {
8099 btrfs_tree_unlock_rw(eb, path->locks[level]);
8100 path->locks[level] = 0;
8101 }
8102 return 0;
8103 }
8104
8105 /* wc->stage == UPDATE_BACKREF */
8106 if (!(wc->flags[level] & flag)) {
8107 BUG_ON(!path->locks[level]);
8108 ret = btrfs_inc_ref(trans, root, eb, 1);
8109 BUG_ON(ret); /* -ENOMEM */
8110 ret = btrfs_dec_ref(trans, root, eb, 0);
8111 BUG_ON(ret); /* -ENOMEM */
8112 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8113 eb->len, flag,
8114 btrfs_header_level(eb), 0);
8115 BUG_ON(ret); /* -ENOMEM */
8116 wc->flags[level] |= flag;
8117 }
8118
8119 /*
8120 * the block is shared by multiple trees, so it's not good to
8121 * keep the tree lock
8122 */
8123 if (path->locks[level] && level > 0) {
8124 btrfs_tree_unlock_rw(eb, path->locks[level]);
8125 path->locks[level] = 0;
8126 }
8127 return 0;
8128 }
8129
8130 /*
8131 * helper to process tree block pointer.
8132 *
8133 * when wc->stage == DROP_REFERENCE, this function checks
8134 * reference count of the block pointed to. if the block
8135 * is shared and we need update back refs for the subtree
8136 * rooted at the block, this function changes wc->stage to
8137 * UPDATE_BACKREF. if the block is shared and there is no
8138 * need to update back, this function drops the reference
8139 * to the block.
8140 *
8141 * NOTE: return value 1 means we should stop walking down.
8142 */
8143 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8144 struct btrfs_root *root,
8145 struct btrfs_path *path,
8146 struct walk_control *wc, int *lookup_info)
8147 {
8148 u64 bytenr;
8149 u64 generation;
8150 u64 parent;
8151 u32 blocksize;
8152 struct btrfs_key key;
8153 struct extent_buffer *next;
8154 int level = wc->level;
8155 int reada = 0;
8156 int ret = 0;
8157 bool need_account = false;
8158
8159 generation = btrfs_node_ptr_generation(path->nodes[level],
8160 path->slots[level]);
8161 /*
8162 * if the lower level block was created before the snapshot
8163 * was created, we know there is no need to update back refs
8164 * for the subtree
8165 */
8166 if (wc->stage == UPDATE_BACKREF &&
8167 generation <= root->root_key.offset) {
8168 *lookup_info = 1;
8169 return 1;
8170 }
8171
8172 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8173 blocksize = root->nodesize;
8174
8175 next = btrfs_find_tree_block(root->fs_info, bytenr);
8176 if (!next) {
8177 next = btrfs_find_create_tree_block(root, bytenr);
8178 if (!next)
8179 return -ENOMEM;
8180 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8181 level - 1);
8182 reada = 1;
8183 }
8184 btrfs_tree_lock(next);
8185 btrfs_set_lock_blocking(next);
8186
8187 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8188 &wc->refs[level - 1],
8189 &wc->flags[level - 1]);
8190 if (ret < 0) {
8191 btrfs_tree_unlock(next);
8192 return ret;
8193 }
8194
8195 if (unlikely(wc->refs[level - 1] == 0)) {
8196 btrfs_err(root->fs_info, "Missing references.");
8197 BUG();
8198 }
8199 *lookup_info = 0;
8200
8201 if (wc->stage == DROP_REFERENCE) {
8202 if (wc->refs[level - 1] > 1) {
8203 need_account = true;
8204 if (level == 1 &&
8205 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8206 goto skip;
8207
8208 if (!wc->update_ref ||
8209 generation <= root->root_key.offset)
8210 goto skip;
8211
8212 btrfs_node_key_to_cpu(path->nodes[level], &key,
8213 path->slots[level]);
8214 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8215 if (ret < 0)
8216 goto skip;
8217
8218 wc->stage = UPDATE_BACKREF;
8219 wc->shared_level = level - 1;
8220 }
8221 } else {
8222 if (level == 1 &&
8223 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8224 goto skip;
8225 }
8226
8227 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8228 btrfs_tree_unlock(next);
8229 free_extent_buffer(next);
8230 next = NULL;
8231 *lookup_info = 1;
8232 }
8233
8234 if (!next) {
8235 if (reada && level == 1)
8236 reada_walk_down(trans, root, wc, path);
8237 next = read_tree_block(root, bytenr, generation);
8238 if (IS_ERR(next)) {
8239 return PTR_ERR(next);
8240 } else if (!extent_buffer_uptodate(next)) {
8241 free_extent_buffer(next);
8242 return -EIO;
8243 }
8244 btrfs_tree_lock(next);
8245 btrfs_set_lock_blocking(next);
8246 }
8247
8248 level--;
8249 BUG_ON(level != btrfs_header_level(next));
8250 path->nodes[level] = next;
8251 path->slots[level] = 0;
8252 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8253 wc->level = level;
8254 if (wc->level == 1)
8255 wc->reada_slot = 0;
8256 return 0;
8257 skip:
8258 wc->refs[level - 1] = 0;
8259 wc->flags[level - 1] = 0;
8260 if (wc->stage == DROP_REFERENCE) {
8261 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8262 parent = path->nodes[level]->start;
8263 } else {
8264 BUG_ON(root->root_key.objectid !=
8265 btrfs_header_owner(path->nodes[level]));
8266 parent = 0;
8267 }
8268
8269 if (need_account) {
8270 ret = account_shared_subtree(trans, root, next,
8271 generation, level - 1);
8272 if (ret) {
8273 btrfs_err_rl(root->fs_info,
8274 "Error "
8275 "%d accounting shared subtree. Quota "
8276 "is out of sync, rescan required.",
8277 ret);
8278 }
8279 }
8280 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8281 root->root_key.objectid, level - 1, 0, 0);
8282 BUG_ON(ret); /* -ENOMEM */
8283 }
8284 btrfs_tree_unlock(next);
8285 free_extent_buffer(next);
8286 *lookup_info = 1;
8287 return 1;
8288 }
8289
8290 /*
8291 * helper to process tree block while walking up the tree.
8292 *
8293 * when wc->stage == DROP_REFERENCE, this function drops
8294 * reference count on the block.
8295 *
8296 * when wc->stage == UPDATE_BACKREF, this function changes
8297 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8298 * to UPDATE_BACKREF previously while processing the block.
8299 *
8300 * NOTE: return value 1 means we should stop walking up.
8301 */
8302 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8303 struct btrfs_root *root,
8304 struct btrfs_path *path,
8305 struct walk_control *wc)
8306 {
8307 int ret;
8308 int level = wc->level;
8309 struct extent_buffer *eb = path->nodes[level];
8310 u64 parent = 0;
8311
8312 if (wc->stage == UPDATE_BACKREF) {
8313 BUG_ON(wc->shared_level < level);
8314 if (level < wc->shared_level)
8315 goto out;
8316
8317 ret = find_next_key(path, level + 1, &wc->update_progress);
8318 if (ret > 0)
8319 wc->update_ref = 0;
8320
8321 wc->stage = DROP_REFERENCE;
8322 wc->shared_level = -1;
8323 path->slots[level] = 0;
8324
8325 /*
8326 * check reference count again if the block isn't locked.
8327 * we should start walking down the tree again if reference
8328 * count is one.
8329 */
8330 if (!path->locks[level]) {
8331 BUG_ON(level == 0);
8332 btrfs_tree_lock(eb);
8333 btrfs_set_lock_blocking(eb);
8334 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8335
8336 ret = btrfs_lookup_extent_info(trans, root,
8337 eb->start, level, 1,
8338 &wc->refs[level],
8339 &wc->flags[level]);
8340 if (ret < 0) {
8341 btrfs_tree_unlock_rw(eb, path->locks[level]);
8342 path->locks[level] = 0;
8343 return ret;
8344 }
8345 BUG_ON(wc->refs[level] == 0);
8346 if (wc->refs[level] == 1) {
8347 btrfs_tree_unlock_rw(eb, path->locks[level]);
8348 path->locks[level] = 0;
8349 return 1;
8350 }
8351 }
8352 }
8353
8354 /* wc->stage == DROP_REFERENCE */
8355 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8356
8357 if (wc->refs[level] == 1) {
8358 if (level == 0) {
8359 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8360 ret = btrfs_dec_ref(trans, root, eb, 1);
8361 else
8362 ret = btrfs_dec_ref(trans, root, eb, 0);
8363 BUG_ON(ret); /* -ENOMEM */
8364 ret = account_leaf_items(trans, root, eb);
8365 if (ret) {
8366 btrfs_err_rl(root->fs_info,
8367 "error "
8368 "%d accounting leaf items. Quota "
8369 "is out of sync, rescan required.",
8370 ret);
8371 }
8372 }
8373 /* make block locked assertion in clean_tree_block happy */
8374 if (!path->locks[level] &&
8375 btrfs_header_generation(eb) == trans->transid) {
8376 btrfs_tree_lock(eb);
8377 btrfs_set_lock_blocking(eb);
8378 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8379 }
8380 clean_tree_block(trans, root->fs_info, eb);
8381 }
8382
8383 if (eb == root->node) {
8384 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8385 parent = eb->start;
8386 else
8387 BUG_ON(root->root_key.objectid !=
8388 btrfs_header_owner(eb));
8389 } else {
8390 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8391 parent = path->nodes[level + 1]->start;
8392 else
8393 BUG_ON(root->root_key.objectid !=
8394 btrfs_header_owner(path->nodes[level + 1]));
8395 }
8396
8397 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8398 out:
8399 wc->refs[level] = 0;
8400 wc->flags[level] = 0;
8401 return 0;
8402 }
8403
8404 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8405 struct btrfs_root *root,
8406 struct btrfs_path *path,
8407 struct walk_control *wc)
8408 {
8409 int level = wc->level;
8410 int lookup_info = 1;
8411 int ret;
8412
8413 while (level >= 0) {
8414 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8415 if (ret > 0)
8416 break;
8417
8418 if (level == 0)
8419 break;
8420
8421 if (path->slots[level] >=
8422 btrfs_header_nritems(path->nodes[level]))
8423 break;
8424
8425 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8426 if (ret > 0) {
8427 path->slots[level]++;
8428 continue;
8429 } else if (ret < 0)
8430 return ret;
8431 level = wc->level;
8432 }
8433 return 0;
8434 }
8435
8436 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8437 struct btrfs_root *root,
8438 struct btrfs_path *path,
8439 struct walk_control *wc, int max_level)
8440 {
8441 int level = wc->level;
8442 int ret;
8443
8444 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8445 while (level < max_level && path->nodes[level]) {
8446 wc->level = level;
8447 if (path->slots[level] + 1 <
8448 btrfs_header_nritems(path->nodes[level])) {
8449 path->slots[level]++;
8450 return 0;
8451 } else {
8452 ret = walk_up_proc(trans, root, path, wc);
8453 if (ret > 0)
8454 return 0;
8455
8456 if (path->locks[level]) {
8457 btrfs_tree_unlock_rw(path->nodes[level],
8458 path->locks[level]);
8459 path->locks[level] = 0;
8460 }
8461 free_extent_buffer(path->nodes[level]);
8462 path->nodes[level] = NULL;
8463 level++;
8464 }
8465 }
8466 return 1;
8467 }
8468
8469 /*
8470 * drop a subvolume tree.
8471 *
8472 * this function traverses the tree freeing any blocks that only
8473 * referenced by the tree.
8474 *
8475 * when a shared tree block is found. this function decreases its
8476 * reference count by one. if update_ref is true, this function
8477 * also make sure backrefs for the shared block and all lower level
8478 * blocks are properly updated.
8479 *
8480 * If called with for_reloc == 0, may exit early with -EAGAIN
8481 */
8482 int btrfs_drop_snapshot(struct btrfs_root *root,
8483 struct btrfs_block_rsv *block_rsv, int update_ref,
8484 int for_reloc)
8485 {
8486 struct btrfs_path *path;
8487 struct btrfs_trans_handle *trans;
8488 struct btrfs_root *tree_root = root->fs_info->tree_root;
8489 struct btrfs_root_item *root_item = &root->root_item;
8490 struct walk_control *wc;
8491 struct btrfs_key key;
8492 int err = 0;
8493 int ret;
8494 int level;
8495 bool root_dropped = false;
8496
8497 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8498
8499 path = btrfs_alloc_path();
8500 if (!path) {
8501 err = -ENOMEM;
8502 goto out;
8503 }
8504
8505 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8506 if (!wc) {
8507 btrfs_free_path(path);
8508 err = -ENOMEM;
8509 goto out;
8510 }
8511
8512 trans = btrfs_start_transaction(tree_root, 0);
8513 if (IS_ERR(trans)) {
8514 err = PTR_ERR(trans);
8515 goto out_free;
8516 }
8517
8518 if (block_rsv)
8519 trans->block_rsv = block_rsv;
8520
8521 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8522 level = btrfs_header_level(root->node);
8523 path->nodes[level] = btrfs_lock_root_node(root);
8524 btrfs_set_lock_blocking(path->nodes[level]);
8525 path->slots[level] = 0;
8526 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8527 memset(&wc->update_progress, 0,
8528 sizeof(wc->update_progress));
8529 } else {
8530 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8531 memcpy(&wc->update_progress, &key,
8532 sizeof(wc->update_progress));
8533
8534 level = root_item->drop_level;
8535 BUG_ON(level == 0);
8536 path->lowest_level = level;
8537 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8538 path->lowest_level = 0;
8539 if (ret < 0) {
8540 err = ret;
8541 goto out_end_trans;
8542 }
8543 WARN_ON(ret > 0);
8544
8545 /*
8546 * unlock our path, this is safe because only this
8547 * function is allowed to delete this snapshot
8548 */
8549 btrfs_unlock_up_safe(path, 0);
8550
8551 level = btrfs_header_level(root->node);
8552 while (1) {
8553 btrfs_tree_lock(path->nodes[level]);
8554 btrfs_set_lock_blocking(path->nodes[level]);
8555 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8556
8557 ret = btrfs_lookup_extent_info(trans, root,
8558 path->nodes[level]->start,
8559 level, 1, &wc->refs[level],
8560 &wc->flags[level]);
8561 if (ret < 0) {
8562 err = ret;
8563 goto out_end_trans;
8564 }
8565 BUG_ON(wc->refs[level] == 0);
8566
8567 if (level == root_item->drop_level)
8568 break;
8569
8570 btrfs_tree_unlock(path->nodes[level]);
8571 path->locks[level] = 0;
8572 WARN_ON(wc->refs[level] != 1);
8573 level--;
8574 }
8575 }
8576
8577 wc->level = level;
8578 wc->shared_level = -1;
8579 wc->stage = DROP_REFERENCE;
8580 wc->update_ref = update_ref;
8581 wc->keep_locks = 0;
8582 wc->for_reloc = for_reloc;
8583 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8584
8585 while (1) {
8586
8587 ret = walk_down_tree(trans, root, path, wc);
8588 if (ret < 0) {
8589 err = ret;
8590 break;
8591 }
8592
8593 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8594 if (ret < 0) {
8595 err = ret;
8596 break;
8597 }
8598
8599 if (ret > 0) {
8600 BUG_ON(wc->stage != DROP_REFERENCE);
8601 break;
8602 }
8603
8604 if (wc->stage == DROP_REFERENCE) {
8605 level = wc->level;
8606 btrfs_node_key(path->nodes[level],
8607 &root_item->drop_progress,
8608 path->slots[level]);
8609 root_item->drop_level = level;
8610 }
8611
8612 BUG_ON(wc->level == 0);
8613 if (btrfs_should_end_transaction(trans, tree_root) ||
8614 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8615 ret = btrfs_update_root(trans, tree_root,
8616 &root->root_key,
8617 root_item);
8618 if (ret) {
8619 btrfs_abort_transaction(trans, tree_root, ret);
8620 err = ret;
8621 goto out_end_trans;
8622 }
8623
8624 btrfs_end_transaction_throttle(trans, tree_root);
8625 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8626 pr_debug("BTRFS: drop snapshot early exit\n");
8627 err = -EAGAIN;
8628 goto out_free;
8629 }
8630
8631 trans = btrfs_start_transaction(tree_root, 0);
8632 if (IS_ERR(trans)) {
8633 err = PTR_ERR(trans);
8634 goto out_free;
8635 }
8636 if (block_rsv)
8637 trans->block_rsv = block_rsv;
8638 }
8639 }
8640 btrfs_release_path(path);
8641 if (err)
8642 goto out_end_trans;
8643
8644 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8645 if (ret) {
8646 btrfs_abort_transaction(trans, tree_root, ret);
8647 goto out_end_trans;
8648 }
8649
8650 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8651 ret = btrfs_find_root(tree_root, &root->root_key, path,
8652 NULL, NULL);
8653 if (ret < 0) {
8654 btrfs_abort_transaction(trans, tree_root, ret);
8655 err = ret;
8656 goto out_end_trans;
8657 } else if (ret > 0) {
8658 /* if we fail to delete the orphan item this time
8659 * around, it'll get picked up the next time.
8660 *
8661 * The most common failure here is just -ENOENT.
8662 */
8663 btrfs_del_orphan_item(trans, tree_root,
8664 root->root_key.objectid);
8665 }
8666 }
8667
8668 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8669 btrfs_add_dropped_root(trans, root);
8670 } else {
8671 free_extent_buffer(root->node);
8672 free_extent_buffer(root->commit_root);
8673 btrfs_put_fs_root(root);
8674 }
8675 root_dropped = true;
8676 out_end_trans:
8677 btrfs_end_transaction_throttle(trans, tree_root);
8678 out_free:
8679 kfree(wc);
8680 btrfs_free_path(path);
8681 out:
8682 /*
8683 * So if we need to stop dropping the snapshot for whatever reason we
8684 * need to make sure to add it back to the dead root list so that we
8685 * keep trying to do the work later. This also cleans up roots if we
8686 * don't have it in the radix (like when we recover after a power fail
8687 * or unmount) so we don't leak memory.
8688 */
8689 if (!for_reloc && root_dropped == false)
8690 btrfs_add_dead_root(root);
8691 if (err && err != -EAGAIN)
8692 btrfs_std_error(root->fs_info, err, NULL);
8693 return err;
8694 }
8695
8696 /*
8697 * drop subtree rooted at tree block 'node'.
8698 *
8699 * NOTE: this function will unlock and release tree block 'node'
8700 * only used by relocation code
8701 */
8702 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8703 struct btrfs_root *root,
8704 struct extent_buffer *node,
8705 struct extent_buffer *parent)
8706 {
8707 struct btrfs_path *path;
8708 struct walk_control *wc;
8709 int level;
8710 int parent_level;
8711 int ret = 0;
8712 int wret;
8713
8714 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8715
8716 path = btrfs_alloc_path();
8717 if (!path)
8718 return -ENOMEM;
8719
8720 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8721 if (!wc) {
8722 btrfs_free_path(path);
8723 return -ENOMEM;
8724 }
8725
8726 btrfs_assert_tree_locked(parent);
8727 parent_level = btrfs_header_level(parent);
8728 extent_buffer_get(parent);
8729 path->nodes[parent_level] = parent;
8730 path->slots[parent_level] = btrfs_header_nritems(parent);
8731
8732 btrfs_assert_tree_locked(node);
8733 level = btrfs_header_level(node);
8734 path->nodes[level] = node;
8735 path->slots[level] = 0;
8736 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8737
8738 wc->refs[parent_level] = 1;
8739 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8740 wc->level = level;
8741 wc->shared_level = -1;
8742 wc->stage = DROP_REFERENCE;
8743 wc->update_ref = 0;
8744 wc->keep_locks = 1;
8745 wc->for_reloc = 1;
8746 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8747
8748 while (1) {
8749 wret = walk_down_tree(trans, root, path, wc);
8750 if (wret < 0) {
8751 ret = wret;
8752 break;
8753 }
8754
8755 wret = walk_up_tree(trans, root, path, wc, parent_level);
8756 if (wret < 0)
8757 ret = wret;
8758 if (wret != 0)
8759 break;
8760 }
8761
8762 kfree(wc);
8763 btrfs_free_path(path);
8764 return ret;
8765 }
8766
8767 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8768 {
8769 u64 num_devices;
8770 u64 stripped;
8771
8772 /*
8773 * if restripe for this chunk_type is on pick target profile and
8774 * return, otherwise do the usual balance
8775 */
8776 stripped = get_restripe_target(root->fs_info, flags);
8777 if (stripped)
8778 return extended_to_chunk(stripped);
8779
8780 num_devices = root->fs_info->fs_devices->rw_devices;
8781
8782 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8783 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8784 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8785
8786 if (num_devices == 1) {
8787 stripped |= BTRFS_BLOCK_GROUP_DUP;
8788 stripped = flags & ~stripped;
8789
8790 /* turn raid0 into single device chunks */
8791 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8792 return stripped;
8793
8794 /* turn mirroring into duplication */
8795 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8796 BTRFS_BLOCK_GROUP_RAID10))
8797 return stripped | BTRFS_BLOCK_GROUP_DUP;
8798 } else {
8799 /* they already had raid on here, just return */
8800 if (flags & stripped)
8801 return flags;
8802
8803 stripped |= BTRFS_BLOCK_GROUP_DUP;
8804 stripped = flags & ~stripped;
8805
8806 /* switch duplicated blocks with raid1 */
8807 if (flags & BTRFS_BLOCK_GROUP_DUP)
8808 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8809
8810 /* this is drive concat, leave it alone */
8811 }
8812
8813 return flags;
8814 }
8815
8816 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8817 {
8818 struct btrfs_space_info *sinfo = cache->space_info;
8819 u64 num_bytes;
8820 u64 min_allocable_bytes;
8821 int ret = -ENOSPC;
8822
8823 /*
8824 * We need some metadata space and system metadata space for
8825 * allocating chunks in some corner cases until we force to set
8826 * it to be readonly.
8827 */
8828 if ((sinfo->flags &
8829 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8830 !force)
8831 min_allocable_bytes = 1 * 1024 * 1024;
8832 else
8833 min_allocable_bytes = 0;
8834
8835 spin_lock(&sinfo->lock);
8836 spin_lock(&cache->lock);
8837
8838 if (cache->ro) {
8839 cache->ro++;
8840 ret = 0;
8841 goto out;
8842 }
8843
8844 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8845 cache->bytes_super - btrfs_block_group_used(&cache->item);
8846
8847 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8848 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8849 min_allocable_bytes <= sinfo->total_bytes) {
8850 sinfo->bytes_readonly += num_bytes;
8851 cache->ro++;
8852 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8853 ret = 0;
8854 }
8855 out:
8856 spin_unlock(&cache->lock);
8857 spin_unlock(&sinfo->lock);
8858 return ret;
8859 }
8860
8861 int btrfs_inc_block_group_ro(struct btrfs_root *root,
8862 struct btrfs_block_group_cache *cache)
8863
8864 {
8865 struct btrfs_trans_handle *trans;
8866 u64 alloc_flags;
8867 int ret;
8868
8869 again:
8870 trans = btrfs_join_transaction(root);
8871 if (IS_ERR(trans))
8872 return PTR_ERR(trans);
8873
8874 /*
8875 * we're not allowed to set block groups readonly after the dirty
8876 * block groups cache has started writing. If it already started,
8877 * back off and let this transaction commit
8878 */
8879 mutex_lock(&root->fs_info->ro_block_group_mutex);
8880 if (trans->transaction->dirty_bg_run) {
8881 u64 transid = trans->transid;
8882
8883 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8884 btrfs_end_transaction(trans, root);
8885
8886 ret = btrfs_wait_for_commit(root, transid);
8887 if (ret)
8888 return ret;
8889 goto again;
8890 }
8891
8892 /*
8893 * if we are changing raid levels, try to allocate a corresponding
8894 * block group with the new raid level.
8895 */
8896 alloc_flags = update_block_group_flags(root, cache->flags);
8897 if (alloc_flags != cache->flags) {
8898 ret = do_chunk_alloc(trans, root, alloc_flags,
8899 CHUNK_ALLOC_FORCE);
8900 /*
8901 * ENOSPC is allowed here, we may have enough space
8902 * already allocated at the new raid level to
8903 * carry on
8904 */
8905 if (ret == -ENOSPC)
8906 ret = 0;
8907 if (ret < 0)
8908 goto out;
8909 }
8910
8911 ret = inc_block_group_ro(cache, 0);
8912 if (!ret)
8913 goto out;
8914 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8915 ret = do_chunk_alloc(trans, root, alloc_flags,
8916 CHUNK_ALLOC_FORCE);
8917 if (ret < 0)
8918 goto out;
8919 ret = inc_block_group_ro(cache, 0);
8920 out:
8921 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8922 alloc_flags = update_block_group_flags(root, cache->flags);
8923 lock_chunks(root->fs_info->chunk_root);
8924 check_system_chunk(trans, root, alloc_flags);
8925 unlock_chunks(root->fs_info->chunk_root);
8926 }
8927 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8928
8929 btrfs_end_transaction(trans, root);
8930 return ret;
8931 }
8932
8933 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8934 struct btrfs_root *root, u64 type)
8935 {
8936 u64 alloc_flags = get_alloc_profile(root, type);
8937 return do_chunk_alloc(trans, root, alloc_flags,
8938 CHUNK_ALLOC_FORCE);
8939 }
8940
8941 /*
8942 * helper to account the unused space of all the readonly block group in the
8943 * space_info. takes mirrors into account.
8944 */
8945 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8946 {
8947 struct btrfs_block_group_cache *block_group;
8948 u64 free_bytes = 0;
8949 int factor;
8950
8951 /* It's df, we don't care if it's racey */
8952 if (list_empty(&sinfo->ro_bgs))
8953 return 0;
8954
8955 spin_lock(&sinfo->lock);
8956 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8957 spin_lock(&block_group->lock);
8958
8959 if (!block_group->ro) {
8960 spin_unlock(&block_group->lock);
8961 continue;
8962 }
8963
8964 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8965 BTRFS_BLOCK_GROUP_RAID10 |
8966 BTRFS_BLOCK_GROUP_DUP))
8967 factor = 2;
8968 else
8969 factor = 1;
8970
8971 free_bytes += (block_group->key.offset -
8972 btrfs_block_group_used(&block_group->item)) *
8973 factor;
8974
8975 spin_unlock(&block_group->lock);
8976 }
8977 spin_unlock(&sinfo->lock);
8978
8979 return free_bytes;
8980 }
8981
8982 void btrfs_dec_block_group_ro(struct btrfs_root *root,
8983 struct btrfs_block_group_cache *cache)
8984 {
8985 struct btrfs_space_info *sinfo = cache->space_info;
8986 u64 num_bytes;
8987
8988 BUG_ON(!cache->ro);
8989
8990 spin_lock(&sinfo->lock);
8991 spin_lock(&cache->lock);
8992 if (!--cache->ro) {
8993 num_bytes = cache->key.offset - cache->reserved -
8994 cache->pinned - cache->bytes_super -
8995 btrfs_block_group_used(&cache->item);
8996 sinfo->bytes_readonly -= num_bytes;
8997 list_del_init(&cache->ro_list);
8998 }
8999 spin_unlock(&cache->lock);
9000 spin_unlock(&sinfo->lock);
9001 }
9002
9003 /*
9004 * checks to see if its even possible to relocate this block group.
9005 *
9006 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9007 * ok to go ahead and try.
9008 */
9009 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9010 {
9011 struct btrfs_block_group_cache *block_group;
9012 struct btrfs_space_info *space_info;
9013 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9014 struct btrfs_device *device;
9015 struct btrfs_trans_handle *trans;
9016 u64 min_free;
9017 u64 dev_min = 1;
9018 u64 dev_nr = 0;
9019 u64 target;
9020 int index;
9021 int full = 0;
9022 int ret = 0;
9023
9024 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9025
9026 /* odd, couldn't find the block group, leave it alone */
9027 if (!block_group)
9028 return -1;
9029
9030 min_free = btrfs_block_group_used(&block_group->item);
9031
9032 /* no bytes used, we're good */
9033 if (!min_free)
9034 goto out;
9035
9036 space_info = block_group->space_info;
9037 spin_lock(&space_info->lock);
9038
9039 full = space_info->full;
9040
9041 /*
9042 * if this is the last block group we have in this space, we can't
9043 * relocate it unless we're able to allocate a new chunk below.
9044 *
9045 * Otherwise, we need to make sure we have room in the space to handle
9046 * all of the extents from this block group. If we can, we're good
9047 */
9048 if ((space_info->total_bytes != block_group->key.offset) &&
9049 (space_info->bytes_used + space_info->bytes_reserved +
9050 space_info->bytes_pinned + space_info->bytes_readonly +
9051 min_free < space_info->total_bytes)) {
9052 spin_unlock(&space_info->lock);
9053 goto out;
9054 }
9055 spin_unlock(&space_info->lock);
9056
9057 /*
9058 * ok we don't have enough space, but maybe we have free space on our
9059 * devices to allocate new chunks for relocation, so loop through our
9060 * alloc devices and guess if we have enough space. if this block
9061 * group is going to be restriped, run checks against the target
9062 * profile instead of the current one.
9063 */
9064 ret = -1;
9065
9066 /*
9067 * index:
9068 * 0: raid10
9069 * 1: raid1
9070 * 2: dup
9071 * 3: raid0
9072 * 4: single
9073 */
9074 target = get_restripe_target(root->fs_info, block_group->flags);
9075 if (target) {
9076 index = __get_raid_index(extended_to_chunk(target));
9077 } else {
9078 /*
9079 * this is just a balance, so if we were marked as full
9080 * we know there is no space for a new chunk
9081 */
9082 if (full)
9083 goto out;
9084
9085 index = get_block_group_index(block_group);
9086 }
9087
9088 if (index == BTRFS_RAID_RAID10) {
9089 dev_min = 4;
9090 /* Divide by 2 */
9091 min_free >>= 1;
9092 } else if (index == BTRFS_RAID_RAID1) {
9093 dev_min = 2;
9094 } else if (index == BTRFS_RAID_DUP) {
9095 /* Multiply by 2 */
9096 min_free <<= 1;
9097 } else if (index == BTRFS_RAID_RAID0) {
9098 dev_min = fs_devices->rw_devices;
9099 min_free = div64_u64(min_free, dev_min);
9100 }
9101
9102 /* We need to do this so that we can look at pending chunks */
9103 trans = btrfs_join_transaction(root);
9104 if (IS_ERR(trans)) {
9105 ret = PTR_ERR(trans);
9106 goto out;
9107 }
9108
9109 mutex_lock(&root->fs_info->chunk_mutex);
9110 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9111 u64 dev_offset;
9112
9113 /*
9114 * check to make sure we can actually find a chunk with enough
9115 * space to fit our block group in.
9116 */
9117 if (device->total_bytes > device->bytes_used + min_free &&
9118 !device->is_tgtdev_for_dev_replace) {
9119 ret = find_free_dev_extent(trans, device, min_free,
9120 &dev_offset, NULL);
9121 if (!ret)
9122 dev_nr++;
9123
9124 if (dev_nr >= dev_min)
9125 break;
9126
9127 ret = -1;
9128 }
9129 }
9130 mutex_unlock(&root->fs_info->chunk_mutex);
9131 btrfs_end_transaction(trans, root);
9132 out:
9133 btrfs_put_block_group(block_group);
9134 return ret;
9135 }
9136
9137 static int find_first_block_group(struct btrfs_root *root,
9138 struct btrfs_path *path, struct btrfs_key *key)
9139 {
9140 int ret = 0;
9141 struct btrfs_key found_key;
9142 struct extent_buffer *leaf;
9143 int slot;
9144
9145 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9146 if (ret < 0)
9147 goto out;
9148
9149 while (1) {
9150 slot = path->slots[0];
9151 leaf = path->nodes[0];
9152 if (slot >= btrfs_header_nritems(leaf)) {
9153 ret = btrfs_next_leaf(root, path);
9154 if (ret == 0)
9155 continue;
9156 if (ret < 0)
9157 goto out;
9158 break;
9159 }
9160 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9161
9162 if (found_key.objectid >= key->objectid &&
9163 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9164 ret = 0;
9165 goto out;
9166 }
9167 path->slots[0]++;
9168 }
9169 out:
9170 return ret;
9171 }
9172
9173 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9174 {
9175 struct btrfs_block_group_cache *block_group;
9176 u64 last = 0;
9177
9178 while (1) {
9179 struct inode *inode;
9180
9181 block_group = btrfs_lookup_first_block_group(info, last);
9182 while (block_group) {
9183 spin_lock(&block_group->lock);
9184 if (block_group->iref)
9185 break;
9186 spin_unlock(&block_group->lock);
9187 block_group = next_block_group(info->tree_root,
9188 block_group);
9189 }
9190 if (!block_group) {
9191 if (last == 0)
9192 break;
9193 last = 0;
9194 continue;
9195 }
9196
9197 inode = block_group->inode;
9198 block_group->iref = 0;
9199 block_group->inode = NULL;
9200 spin_unlock(&block_group->lock);
9201 iput(inode);
9202 last = block_group->key.objectid + block_group->key.offset;
9203 btrfs_put_block_group(block_group);
9204 }
9205 }
9206
9207 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9208 {
9209 struct btrfs_block_group_cache *block_group;
9210 struct btrfs_space_info *space_info;
9211 struct btrfs_caching_control *caching_ctl;
9212 struct rb_node *n;
9213
9214 down_write(&info->commit_root_sem);
9215 while (!list_empty(&info->caching_block_groups)) {
9216 caching_ctl = list_entry(info->caching_block_groups.next,
9217 struct btrfs_caching_control, list);
9218 list_del(&caching_ctl->list);
9219 put_caching_control(caching_ctl);
9220 }
9221 up_write(&info->commit_root_sem);
9222
9223 spin_lock(&info->unused_bgs_lock);
9224 while (!list_empty(&info->unused_bgs)) {
9225 block_group = list_first_entry(&info->unused_bgs,
9226 struct btrfs_block_group_cache,
9227 bg_list);
9228 list_del_init(&block_group->bg_list);
9229 btrfs_put_block_group(block_group);
9230 }
9231 spin_unlock(&info->unused_bgs_lock);
9232
9233 spin_lock(&info->block_group_cache_lock);
9234 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9235 block_group = rb_entry(n, struct btrfs_block_group_cache,
9236 cache_node);
9237 rb_erase(&block_group->cache_node,
9238 &info->block_group_cache_tree);
9239 RB_CLEAR_NODE(&block_group->cache_node);
9240 spin_unlock(&info->block_group_cache_lock);
9241
9242 down_write(&block_group->space_info->groups_sem);
9243 list_del(&block_group->list);
9244 up_write(&block_group->space_info->groups_sem);
9245
9246 if (block_group->cached == BTRFS_CACHE_STARTED)
9247 wait_block_group_cache_done(block_group);
9248
9249 /*
9250 * We haven't cached this block group, which means we could
9251 * possibly have excluded extents on this block group.
9252 */
9253 if (block_group->cached == BTRFS_CACHE_NO ||
9254 block_group->cached == BTRFS_CACHE_ERROR)
9255 free_excluded_extents(info->extent_root, block_group);
9256
9257 btrfs_remove_free_space_cache(block_group);
9258 btrfs_put_block_group(block_group);
9259
9260 spin_lock(&info->block_group_cache_lock);
9261 }
9262 spin_unlock(&info->block_group_cache_lock);
9263
9264 /* now that all the block groups are freed, go through and
9265 * free all the space_info structs. This is only called during
9266 * the final stages of unmount, and so we know nobody is
9267 * using them. We call synchronize_rcu() once before we start,
9268 * just to be on the safe side.
9269 */
9270 synchronize_rcu();
9271
9272 release_global_block_rsv(info);
9273
9274 while (!list_empty(&info->space_info)) {
9275 int i;
9276
9277 space_info = list_entry(info->space_info.next,
9278 struct btrfs_space_info,
9279 list);
9280 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9281 if (WARN_ON(space_info->bytes_pinned > 0 ||
9282 space_info->bytes_reserved > 0 ||
9283 space_info->bytes_may_use > 0)) {
9284 dump_space_info(space_info, 0, 0);
9285 }
9286 }
9287 list_del(&space_info->list);
9288 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9289 struct kobject *kobj;
9290 kobj = space_info->block_group_kobjs[i];
9291 space_info->block_group_kobjs[i] = NULL;
9292 if (kobj) {
9293 kobject_del(kobj);
9294 kobject_put(kobj);
9295 }
9296 }
9297 kobject_del(&space_info->kobj);
9298 kobject_put(&space_info->kobj);
9299 }
9300 return 0;
9301 }
9302
9303 static void __link_block_group(struct btrfs_space_info *space_info,
9304 struct btrfs_block_group_cache *cache)
9305 {
9306 int index = get_block_group_index(cache);
9307 bool first = false;
9308
9309 down_write(&space_info->groups_sem);
9310 if (list_empty(&space_info->block_groups[index]))
9311 first = true;
9312 list_add_tail(&cache->list, &space_info->block_groups[index]);
9313 up_write(&space_info->groups_sem);
9314
9315 if (first) {
9316 struct raid_kobject *rkobj;
9317 int ret;
9318
9319 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9320 if (!rkobj)
9321 goto out_err;
9322 rkobj->raid_type = index;
9323 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9324 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9325 "%s", get_raid_name(index));
9326 if (ret) {
9327 kobject_put(&rkobj->kobj);
9328 goto out_err;
9329 }
9330 space_info->block_group_kobjs[index] = &rkobj->kobj;
9331 }
9332
9333 return;
9334 out_err:
9335 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9336 }
9337
9338 static struct btrfs_block_group_cache *
9339 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9340 {
9341 struct btrfs_block_group_cache *cache;
9342
9343 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9344 if (!cache)
9345 return NULL;
9346
9347 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9348 GFP_NOFS);
9349 if (!cache->free_space_ctl) {
9350 kfree(cache);
9351 return NULL;
9352 }
9353
9354 cache->key.objectid = start;
9355 cache->key.offset = size;
9356 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9357
9358 cache->sectorsize = root->sectorsize;
9359 cache->fs_info = root->fs_info;
9360 cache->full_stripe_len = btrfs_full_stripe_len(root,
9361 &root->fs_info->mapping_tree,
9362 start);
9363 atomic_set(&cache->count, 1);
9364 spin_lock_init(&cache->lock);
9365 init_rwsem(&cache->data_rwsem);
9366 INIT_LIST_HEAD(&cache->list);
9367 INIT_LIST_HEAD(&cache->cluster_list);
9368 INIT_LIST_HEAD(&cache->bg_list);
9369 INIT_LIST_HEAD(&cache->ro_list);
9370 INIT_LIST_HEAD(&cache->dirty_list);
9371 INIT_LIST_HEAD(&cache->io_list);
9372 btrfs_init_free_space_ctl(cache);
9373 atomic_set(&cache->trimming, 0);
9374
9375 return cache;
9376 }
9377
9378 int btrfs_read_block_groups(struct btrfs_root *root)
9379 {
9380 struct btrfs_path *path;
9381 int ret;
9382 struct btrfs_block_group_cache *cache;
9383 struct btrfs_fs_info *info = root->fs_info;
9384 struct btrfs_space_info *space_info;
9385 struct btrfs_key key;
9386 struct btrfs_key found_key;
9387 struct extent_buffer *leaf;
9388 int need_clear = 0;
9389 u64 cache_gen;
9390
9391 root = info->extent_root;
9392 key.objectid = 0;
9393 key.offset = 0;
9394 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9395 path = btrfs_alloc_path();
9396 if (!path)
9397 return -ENOMEM;
9398 path->reada = 1;
9399
9400 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9401 if (btrfs_test_opt(root, SPACE_CACHE) &&
9402 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9403 need_clear = 1;
9404 if (btrfs_test_opt(root, CLEAR_CACHE))
9405 need_clear = 1;
9406
9407 while (1) {
9408 ret = find_first_block_group(root, path, &key);
9409 if (ret > 0)
9410 break;
9411 if (ret != 0)
9412 goto error;
9413
9414 leaf = path->nodes[0];
9415 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9416
9417 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9418 found_key.offset);
9419 if (!cache) {
9420 ret = -ENOMEM;
9421 goto error;
9422 }
9423
9424 if (need_clear) {
9425 /*
9426 * When we mount with old space cache, we need to
9427 * set BTRFS_DC_CLEAR and set dirty flag.
9428 *
9429 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9430 * truncate the old free space cache inode and
9431 * setup a new one.
9432 * b) Setting 'dirty flag' makes sure that we flush
9433 * the new space cache info onto disk.
9434 */
9435 if (btrfs_test_opt(root, SPACE_CACHE))
9436 cache->disk_cache_state = BTRFS_DC_CLEAR;
9437 }
9438
9439 read_extent_buffer(leaf, &cache->item,
9440 btrfs_item_ptr_offset(leaf, path->slots[0]),
9441 sizeof(cache->item));
9442 cache->flags = btrfs_block_group_flags(&cache->item);
9443
9444 key.objectid = found_key.objectid + found_key.offset;
9445 btrfs_release_path(path);
9446
9447 /*
9448 * We need to exclude the super stripes now so that the space
9449 * info has super bytes accounted for, otherwise we'll think
9450 * we have more space than we actually do.
9451 */
9452 ret = exclude_super_stripes(root, cache);
9453 if (ret) {
9454 /*
9455 * We may have excluded something, so call this just in
9456 * case.
9457 */
9458 free_excluded_extents(root, cache);
9459 btrfs_put_block_group(cache);
9460 goto error;
9461 }
9462
9463 /*
9464 * check for two cases, either we are full, and therefore
9465 * don't need to bother with the caching work since we won't
9466 * find any space, or we are empty, and we can just add all
9467 * the space in and be done with it. This saves us _alot_ of
9468 * time, particularly in the full case.
9469 */
9470 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9471 cache->last_byte_to_unpin = (u64)-1;
9472 cache->cached = BTRFS_CACHE_FINISHED;
9473 free_excluded_extents(root, cache);
9474 } else if (btrfs_block_group_used(&cache->item) == 0) {
9475 cache->last_byte_to_unpin = (u64)-1;
9476 cache->cached = BTRFS_CACHE_FINISHED;
9477 add_new_free_space(cache, root->fs_info,
9478 found_key.objectid,
9479 found_key.objectid +
9480 found_key.offset);
9481 free_excluded_extents(root, cache);
9482 }
9483
9484 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9485 if (ret) {
9486 btrfs_remove_free_space_cache(cache);
9487 btrfs_put_block_group(cache);
9488 goto error;
9489 }
9490
9491 ret = update_space_info(info, cache->flags, found_key.offset,
9492 btrfs_block_group_used(&cache->item),
9493 &space_info);
9494 if (ret) {
9495 btrfs_remove_free_space_cache(cache);
9496 spin_lock(&info->block_group_cache_lock);
9497 rb_erase(&cache->cache_node,
9498 &info->block_group_cache_tree);
9499 RB_CLEAR_NODE(&cache->cache_node);
9500 spin_unlock(&info->block_group_cache_lock);
9501 btrfs_put_block_group(cache);
9502 goto error;
9503 }
9504
9505 cache->space_info = space_info;
9506 spin_lock(&cache->space_info->lock);
9507 cache->space_info->bytes_readonly += cache->bytes_super;
9508 spin_unlock(&cache->space_info->lock);
9509
9510 __link_block_group(space_info, cache);
9511
9512 set_avail_alloc_bits(root->fs_info, cache->flags);
9513 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9514 inc_block_group_ro(cache, 1);
9515 } else if (btrfs_block_group_used(&cache->item) == 0) {
9516 spin_lock(&info->unused_bgs_lock);
9517 /* Should always be true but just in case. */
9518 if (list_empty(&cache->bg_list)) {
9519 btrfs_get_block_group(cache);
9520 list_add_tail(&cache->bg_list,
9521 &info->unused_bgs);
9522 }
9523 spin_unlock(&info->unused_bgs_lock);
9524 }
9525 }
9526
9527 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9528 if (!(get_alloc_profile(root, space_info->flags) &
9529 (BTRFS_BLOCK_GROUP_RAID10 |
9530 BTRFS_BLOCK_GROUP_RAID1 |
9531 BTRFS_BLOCK_GROUP_RAID5 |
9532 BTRFS_BLOCK_GROUP_RAID6 |
9533 BTRFS_BLOCK_GROUP_DUP)))
9534 continue;
9535 /*
9536 * avoid allocating from un-mirrored block group if there are
9537 * mirrored block groups.
9538 */
9539 list_for_each_entry(cache,
9540 &space_info->block_groups[BTRFS_RAID_RAID0],
9541 list)
9542 inc_block_group_ro(cache, 1);
9543 list_for_each_entry(cache,
9544 &space_info->block_groups[BTRFS_RAID_SINGLE],
9545 list)
9546 inc_block_group_ro(cache, 1);
9547 }
9548
9549 init_global_block_rsv(info);
9550 ret = 0;
9551 error:
9552 btrfs_free_path(path);
9553 return ret;
9554 }
9555
9556 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9557 struct btrfs_root *root)
9558 {
9559 struct btrfs_block_group_cache *block_group, *tmp;
9560 struct btrfs_root *extent_root = root->fs_info->extent_root;
9561 struct btrfs_block_group_item item;
9562 struct btrfs_key key;
9563 int ret = 0;
9564 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9565
9566 trans->can_flush_pending_bgs = false;
9567 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9568 if (ret)
9569 goto next;
9570
9571 spin_lock(&block_group->lock);
9572 memcpy(&item, &block_group->item, sizeof(item));
9573 memcpy(&key, &block_group->key, sizeof(key));
9574 spin_unlock(&block_group->lock);
9575
9576 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9577 sizeof(item));
9578 if (ret)
9579 btrfs_abort_transaction(trans, extent_root, ret);
9580 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9581 key.objectid, key.offset);
9582 if (ret)
9583 btrfs_abort_transaction(trans, extent_root, ret);
9584 next:
9585 list_del_init(&block_group->bg_list);
9586 }
9587 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9588 }
9589
9590 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9591 struct btrfs_root *root, u64 bytes_used,
9592 u64 type, u64 chunk_objectid, u64 chunk_offset,
9593 u64 size)
9594 {
9595 int ret;
9596 struct btrfs_root *extent_root;
9597 struct btrfs_block_group_cache *cache;
9598
9599 extent_root = root->fs_info->extent_root;
9600
9601 btrfs_set_log_full_commit(root->fs_info, trans);
9602
9603 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9604 if (!cache)
9605 return -ENOMEM;
9606
9607 btrfs_set_block_group_used(&cache->item, bytes_used);
9608 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9609 btrfs_set_block_group_flags(&cache->item, type);
9610
9611 cache->flags = type;
9612 cache->last_byte_to_unpin = (u64)-1;
9613 cache->cached = BTRFS_CACHE_FINISHED;
9614 ret = exclude_super_stripes(root, cache);
9615 if (ret) {
9616 /*
9617 * We may have excluded something, so call this just in
9618 * case.
9619 */
9620 free_excluded_extents(root, cache);
9621 btrfs_put_block_group(cache);
9622 return ret;
9623 }
9624
9625 add_new_free_space(cache, root->fs_info, chunk_offset,
9626 chunk_offset + size);
9627
9628 free_excluded_extents(root, cache);
9629
9630 /*
9631 * Call to ensure the corresponding space_info object is created and
9632 * assigned to our block group, but don't update its counters just yet.
9633 * We want our bg to be added to the rbtree with its ->space_info set.
9634 */
9635 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9636 &cache->space_info);
9637 if (ret) {
9638 btrfs_remove_free_space_cache(cache);
9639 btrfs_put_block_group(cache);
9640 return ret;
9641 }
9642
9643 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9644 if (ret) {
9645 btrfs_remove_free_space_cache(cache);
9646 btrfs_put_block_group(cache);
9647 return ret;
9648 }
9649
9650 /*
9651 * Now that our block group has its ->space_info set and is inserted in
9652 * the rbtree, update the space info's counters.
9653 */
9654 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9655 &cache->space_info);
9656 if (ret) {
9657 btrfs_remove_free_space_cache(cache);
9658 spin_lock(&root->fs_info->block_group_cache_lock);
9659 rb_erase(&cache->cache_node,
9660 &root->fs_info->block_group_cache_tree);
9661 RB_CLEAR_NODE(&cache->cache_node);
9662 spin_unlock(&root->fs_info->block_group_cache_lock);
9663 btrfs_put_block_group(cache);
9664 return ret;
9665 }
9666 update_global_block_rsv(root->fs_info);
9667
9668 spin_lock(&cache->space_info->lock);
9669 cache->space_info->bytes_readonly += cache->bytes_super;
9670 spin_unlock(&cache->space_info->lock);
9671
9672 __link_block_group(cache->space_info, cache);
9673
9674 list_add_tail(&cache->bg_list, &trans->new_bgs);
9675
9676 set_avail_alloc_bits(extent_root->fs_info, type);
9677
9678 return 0;
9679 }
9680
9681 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9682 {
9683 u64 extra_flags = chunk_to_extended(flags) &
9684 BTRFS_EXTENDED_PROFILE_MASK;
9685
9686 write_seqlock(&fs_info->profiles_lock);
9687 if (flags & BTRFS_BLOCK_GROUP_DATA)
9688 fs_info->avail_data_alloc_bits &= ~extra_flags;
9689 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9690 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9691 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9692 fs_info->avail_system_alloc_bits &= ~extra_flags;
9693 write_sequnlock(&fs_info->profiles_lock);
9694 }
9695
9696 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9697 struct btrfs_root *root, u64 group_start,
9698 struct extent_map *em)
9699 {
9700 struct btrfs_path *path;
9701 struct btrfs_block_group_cache *block_group;
9702 struct btrfs_free_cluster *cluster;
9703 struct btrfs_root *tree_root = root->fs_info->tree_root;
9704 struct btrfs_key key;
9705 struct inode *inode;
9706 struct kobject *kobj = NULL;
9707 int ret;
9708 int index;
9709 int factor;
9710 struct btrfs_caching_control *caching_ctl = NULL;
9711 bool remove_em;
9712
9713 root = root->fs_info->extent_root;
9714
9715 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9716 BUG_ON(!block_group);
9717 BUG_ON(!block_group->ro);
9718
9719 /*
9720 * Free the reserved super bytes from this block group before
9721 * remove it.
9722 */
9723 free_excluded_extents(root, block_group);
9724
9725 memcpy(&key, &block_group->key, sizeof(key));
9726 index = get_block_group_index(block_group);
9727 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9728 BTRFS_BLOCK_GROUP_RAID1 |
9729 BTRFS_BLOCK_GROUP_RAID10))
9730 factor = 2;
9731 else
9732 factor = 1;
9733
9734 /* make sure this block group isn't part of an allocation cluster */
9735 cluster = &root->fs_info->data_alloc_cluster;
9736 spin_lock(&cluster->refill_lock);
9737 btrfs_return_cluster_to_free_space(block_group, cluster);
9738 spin_unlock(&cluster->refill_lock);
9739
9740 /*
9741 * make sure this block group isn't part of a metadata
9742 * allocation cluster
9743 */
9744 cluster = &root->fs_info->meta_alloc_cluster;
9745 spin_lock(&cluster->refill_lock);
9746 btrfs_return_cluster_to_free_space(block_group, cluster);
9747 spin_unlock(&cluster->refill_lock);
9748
9749 path = btrfs_alloc_path();
9750 if (!path) {
9751 ret = -ENOMEM;
9752 goto out;
9753 }
9754
9755 /*
9756 * get the inode first so any iput calls done for the io_list
9757 * aren't the final iput (no unlinks allowed now)
9758 */
9759 inode = lookup_free_space_inode(tree_root, block_group, path);
9760
9761 mutex_lock(&trans->transaction->cache_write_mutex);
9762 /*
9763 * make sure our free spache cache IO is done before remove the
9764 * free space inode
9765 */
9766 spin_lock(&trans->transaction->dirty_bgs_lock);
9767 if (!list_empty(&block_group->io_list)) {
9768 list_del_init(&block_group->io_list);
9769
9770 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9771
9772 spin_unlock(&trans->transaction->dirty_bgs_lock);
9773 btrfs_wait_cache_io(root, trans, block_group,
9774 &block_group->io_ctl, path,
9775 block_group->key.objectid);
9776 btrfs_put_block_group(block_group);
9777 spin_lock(&trans->transaction->dirty_bgs_lock);
9778 }
9779
9780 if (!list_empty(&block_group->dirty_list)) {
9781 list_del_init(&block_group->dirty_list);
9782 btrfs_put_block_group(block_group);
9783 }
9784 spin_unlock(&trans->transaction->dirty_bgs_lock);
9785 mutex_unlock(&trans->transaction->cache_write_mutex);
9786
9787 if (!IS_ERR(inode)) {
9788 ret = btrfs_orphan_add(trans, inode);
9789 if (ret) {
9790 btrfs_add_delayed_iput(inode);
9791 goto out;
9792 }
9793 clear_nlink(inode);
9794 /* One for the block groups ref */
9795 spin_lock(&block_group->lock);
9796 if (block_group->iref) {
9797 block_group->iref = 0;
9798 block_group->inode = NULL;
9799 spin_unlock(&block_group->lock);
9800 iput(inode);
9801 } else {
9802 spin_unlock(&block_group->lock);
9803 }
9804 /* One for our lookup ref */
9805 btrfs_add_delayed_iput(inode);
9806 }
9807
9808 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9809 key.offset = block_group->key.objectid;
9810 key.type = 0;
9811
9812 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9813 if (ret < 0)
9814 goto out;
9815 if (ret > 0)
9816 btrfs_release_path(path);
9817 if (ret == 0) {
9818 ret = btrfs_del_item(trans, tree_root, path);
9819 if (ret)
9820 goto out;
9821 btrfs_release_path(path);
9822 }
9823
9824 spin_lock(&root->fs_info->block_group_cache_lock);
9825 rb_erase(&block_group->cache_node,
9826 &root->fs_info->block_group_cache_tree);
9827 RB_CLEAR_NODE(&block_group->cache_node);
9828
9829 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9830 root->fs_info->first_logical_byte = (u64)-1;
9831 spin_unlock(&root->fs_info->block_group_cache_lock);
9832
9833 down_write(&block_group->space_info->groups_sem);
9834 /*
9835 * we must use list_del_init so people can check to see if they
9836 * are still on the list after taking the semaphore
9837 */
9838 list_del_init(&block_group->list);
9839 if (list_empty(&block_group->space_info->block_groups[index])) {
9840 kobj = block_group->space_info->block_group_kobjs[index];
9841 block_group->space_info->block_group_kobjs[index] = NULL;
9842 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9843 }
9844 up_write(&block_group->space_info->groups_sem);
9845 if (kobj) {
9846 kobject_del(kobj);
9847 kobject_put(kobj);
9848 }
9849
9850 if (block_group->has_caching_ctl)
9851 caching_ctl = get_caching_control(block_group);
9852 if (block_group->cached == BTRFS_CACHE_STARTED)
9853 wait_block_group_cache_done(block_group);
9854 if (block_group->has_caching_ctl) {
9855 down_write(&root->fs_info->commit_root_sem);
9856 if (!caching_ctl) {
9857 struct btrfs_caching_control *ctl;
9858
9859 list_for_each_entry(ctl,
9860 &root->fs_info->caching_block_groups, list)
9861 if (ctl->block_group == block_group) {
9862 caching_ctl = ctl;
9863 atomic_inc(&caching_ctl->count);
9864 break;
9865 }
9866 }
9867 if (caching_ctl)
9868 list_del_init(&caching_ctl->list);
9869 up_write(&root->fs_info->commit_root_sem);
9870 if (caching_ctl) {
9871 /* Once for the caching bgs list and once for us. */
9872 put_caching_control(caching_ctl);
9873 put_caching_control(caching_ctl);
9874 }
9875 }
9876
9877 spin_lock(&trans->transaction->dirty_bgs_lock);
9878 if (!list_empty(&block_group->dirty_list)) {
9879 WARN_ON(1);
9880 }
9881 if (!list_empty(&block_group->io_list)) {
9882 WARN_ON(1);
9883 }
9884 spin_unlock(&trans->transaction->dirty_bgs_lock);
9885 btrfs_remove_free_space_cache(block_group);
9886
9887 spin_lock(&block_group->space_info->lock);
9888 list_del_init(&block_group->ro_list);
9889
9890 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9891 WARN_ON(block_group->space_info->total_bytes
9892 < block_group->key.offset);
9893 WARN_ON(block_group->space_info->bytes_readonly
9894 < block_group->key.offset);
9895 WARN_ON(block_group->space_info->disk_total
9896 < block_group->key.offset * factor);
9897 }
9898 block_group->space_info->total_bytes -= block_group->key.offset;
9899 block_group->space_info->bytes_readonly -= block_group->key.offset;
9900 block_group->space_info->disk_total -= block_group->key.offset * factor;
9901
9902 spin_unlock(&block_group->space_info->lock);
9903
9904 memcpy(&key, &block_group->key, sizeof(key));
9905
9906 lock_chunks(root);
9907 if (!list_empty(&em->list)) {
9908 /* We're in the transaction->pending_chunks list. */
9909 free_extent_map(em);
9910 }
9911 spin_lock(&block_group->lock);
9912 block_group->removed = 1;
9913 /*
9914 * At this point trimming can't start on this block group, because we
9915 * removed the block group from the tree fs_info->block_group_cache_tree
9916 * so no one can't find it anymore and even if someone already got this
9917 * block group before we removed it from the rbtree, they have already
9918 * incremented block_group->trimming - if they didn't, they won't find
9919 * any free space entries because we already removed them all when we
9920 * called btrfs_remove_free_space_cache().
9921 *
9922 * And we must not remove the extent map from the fs_info->mapping_tree
9923 * to prevent the same logical address range and physical device space
9924 * ranges from being reused for a new block group. This is because our
9925 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9926 * completely transactionless, so while it is trimming a range the
9927 * currently running transaction might finish and a new one start,
9928 * allowing for new block groups to be created that can reuse the same
9929 * physical device locations unless we take this special care.
9930 *
9931 * There may also be an implicit trim operation if the file system
9932 * is mounted with -odiscard. The same protections must remain
9933 * in place until the extents have been discarded completely when
9934 * the transaction commit has completed.
9935 */
9936 remove_em = (atomic_read(&block_group->trimming) == 0);
9937 /*
9938 * Make sure a trimmer task always sees the em in the pinned_chunks list
9939 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9940 * before checking block_group->removed).
9941 */
9942 if (!remove_em) {
9943 /*
9944 * Our em might be in trans->transaction->pending_chunks which
9945 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9946 * and so is the fs_info->pinned_chunks list.
9947 *
9948 * So at this point we must be holding the chunk_mutex to avoid
9949 * any races with chunk allocation (more specifically at
9950 * volumes.c:contains_pending_extent()), to ensure it always
9951 * sees the em, either in the pending_chunks list or in the
9952 * pinned_chunks list.
9953 */
9954 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9955 }
9956 spin_unlock(&block_group->lock);
9957
9958 if (remove_em) {
9959 struct extent_map_tree *em_tree;
9960
9961 em_tree = &root->fs_info->mapping_tree.map_tree;
9962 write_lock(&em_tree->lock);
9963 /*
9964 * The em might be in the pending_chunks list, so make sure the
9965 * chunk mutex is locked, since remove_extent_mapping() will
9966 * delete us from that list.
9967 */
9968 remove_extent_mapping(em_tree, em);
9969 write_unlock(&em_tree->lock);
9970 /* once for the tree */
9971 free_extent_map(em);
9972 }
9973
9974 unlock_chunks(root);
9975
9976 btrfs_put_block_group(block_group);
9977 btrfs_put_block_group(block_group);
9978
9979 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9980 if (ret > 0)
9981 ret = -EIO;
9982 if (ret < 0)
9983 goto out;
9984
9985 ret = btrfs_del_item(trans, root, path);
9986 out:
9987 btrfs_free_path(path);
9988 return ret;
9989 }
9990
9991 /*
9992 * Process the unused_bgs list and remove any that don't have any allocated
9993 * space inside of them.
9994 */
9995 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9996 {
9997 struct btrfs_block_group_cache *block_group;
9998 struct btrfs_space_info *space_info;
9999 struct btrfs_root *root = fs_info->extent_root;
10000 struct btrfs_trans_handle *trans;
10001 int ret = 0;
10002
10003 if (!fs_info->open)
10004 return;
10005
10006 spin_lock(&fs_info->unused_bgs_lock);
10007 while (!list_empty(&fs_info->unused_bgs)) {
10008 u64 start, end;
10009 int trimming;
10010
10011 block_group = list_first_entry(&fs_info->unused_bgs,
10012 struct btrfs_block_group_cache,
10013 bg_list);
10014 space_info = block_group->space_info;
10015 list_del_init(&block_group->bg_list);
10016 if (ret || btrfs_mixed_space_info(space_info)) {
10017 btrfs_put_block_group(block_group);
10018 continue;
10019 }
10020 spin_unlock(&fs_info->unused_bgs_lock);
10021
10022 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10023
10024 /* Don't want to race with allocators so take the groups_sem */
10025 down_write(&space_info->groups_sem);
10026 spin_lock(&block_group->lock);
10027 if (block_group->reserved ||
10028 btrfs_block_group_used(&block_group->item) ||
10029 block_group->ro) {
10030 /*
10031 * We want to bail if we made new allocations or have
10032 * outstanding allocations in this block group. We do
10033 * the ro check in case balance is currently acting on
10034 * this block group.
10035 */
10036 spin_unlock(&block_group->lock);
10037 up_write(&space_info->groups_sem);
10038 goto next;
10039 }
10040 spin_unlock(&block_group->lock);
10041
10042 /* We don't want to force the issue, only flip if it's ok. */
10043 ret = inc_block_group_ro(block_group, 0);
10044 up_write(&space_info->groups_sem);
10045 if (ret < 0) {
10046 ret = 0;
10047 goto next;
10048 }
10049
10050 /*
10051 * Want to do this before we do anything else so we can recover
10052 * properly if we fail to join the transaction.
10053 */
10054 /* 1 for btrfs_orphan_reserve_metadata() */
10055 trans = btrfs_start_transaction(root, 1);
10056 if (IS_ERR(trans)) {
10057 btrfs_dec_block_group_ro(root, block_group);
10058 ret = PTR_ERR(trans);
10059 goto next;
10060 }
10061
10062 /*
10063 * We could have pending pinned extents for this block group,
10064 * just delete them, we don't care about them anymore.
10065 */
10066 start = block_group->key.objectid;
10067 end = start + block_group->key.offset - 1;
10068 /*
10069 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10070 * btrfs_finish_extent_commit(). If we are at transaction N,
10071 * another task might be running finish_extent_commit() for the
10072 * previous transaction N - 1, and have seen a range belonging
10073 * to the block group in freed_extents[] before we were able to
10074 * clear the whole block group range from freed_extents[]. This
10075 * means that task can lookup for the block group after we
10076 * unpinned it from freed_extents[] and removed it, leading to
10077 * a BUG_ON() at btrfs_unpin_extent_range().
10078 */
10079 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10080 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10081 EXTENT_DIRTY, GFP_NOFS);
10082 if (ret) {
10083 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10084 btrfs_dec_block_group_ro(root, block_group);
10085 goto end_trans;
10086 }
10087 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10088 EXTENT_DIRTY, GFP_NOFS);
10089 if (ret) {
10090 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10091 btrfs_dec_block_group_ro(root, block_group);
10092 goto end_trans;
10093 }
10094 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10095
10096 /* Reset pinned so btrfs_put_block_group doesn't complain */
10097 spin_lock(&space_info->lock);
10098 spin_lock(&block_group->lock);
10099
10100 space_info->bytes_pinned -= block_group->pinned;
10101 space_info->bytes_readonly += block_group->pinned;
10102 percpu_counter_add(&space_info->total_bytes_pinned,
10103 -block_group->pinned);
10104 block_group->pinned = 0;
10105
10106 spin_unlock(&block_group->lock);
10107 spin_unlock(&space_info->lock);
10108
10109 /* DISCARD can flip during remount */
10110 trimming = btrfs_test_opt(root, DISCARD);
10111
10112 /* Implicit trim during transaction commit. */
10113 if (trimming)
10114 btrfs_get_block_group_trimming(block_group);
10115
10116 /*
10117 * Btrfs_remove_chunk will abort the transaction if things go
10118 * horribly wrong.
10119 */
10120 ret = btrfs_remove_chunk(trans, root,
10121 block_group->key.objectid);
10122
10123 if (ret) {
10124 if (trimming)
10125 btrfs_put_block_group_trimming(block_group);
10126 goto end_trans;
10127 }
10128
10129 /*
10130 * If we're not mounted with -odiscard, we can just forget
10131 * about this block group. Otherwise we'll need to wait
10132 * until transaction commit to do the actual discard.
10133 */
10134 if (trimming) {
10135 WARN_ON(!list_empty(&block_group->bg_list));
10136 spin_lock(&trans->transaction->deleted_bgs_lock);
10137 list_move(&block_group->bg_list,
10138 &trans->transaction->deleted_bgs);
10139 spin_unlock(&trans->transaction->deleted_bgs_lock);
10140 btrfs_get_block_group(block_group);
10141 }
10142 end_trans:
10143 btrfs_end_transaction(trans, root);
10144 next:
10145 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10146 btrfs_put_block_group(block_group);
10147 spin_lock(&fs_info->unused_bgs_lock);
10148 }
10149 spin_unlock(&fs_info->unused_bgs_lock);
10150 }
10151
10152 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10153 {
10154 struct btrfs_space_info *space_info;
10155 struct btrfs_super_block *disk_super;
10156 u64 features;
10157 u64 flags;
10158 int mixed = 0;
10159 int ret;
10160
10161 disk_super = fs_info->super_copy;
10162 if (!btrfs_super_root(disk_super))
10163 return 1;
10164
10165 features = btrfs_super_incompat_flags(disk_super);
10166 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10167 mixed = 1;
10168
10169 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10170 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10171 if (ret)
10172 goto out;
10173
10174 if (mixed) {
10175 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10176 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10177 } else {
10178 flags = BTRFS_BLOCK_GROUP_METADATA;
10179 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10180 if (ret)
10181 goto out;
10182
10183 flags = BTRFS_BLOCK_GROUP_DATA;
10184 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10185 }
10186 out:
10187 return ret;
10188 }
10189
10190 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10191 {
10192 return unpin_extent_range(root, start, end, false);
10193 }
10194
10195 /*
10196 * It used to be that old block groups would be left around forever.
10197 * Iterating over them would be enough to trim unused space. Since we
10198 * now automatically remove them, we also need to iterate over unallocated
10199 * space.
10200 *
10201 * We don't want a transaction for this since the discard may take a
10202 * substantial amount of time. We don't require that a transaction be
10203 * running, but we do need to take a running transaction into account
10204 * to ensure that we're not discarding chunks that were released in
10205 * the current transaction.
10206 *
10207 * Holding the chunks lock will prevent other threads from allocating
10208 * or releasing chunks, but it won't prevent a running transaction
10209 * from committing and releasing the memory that the pending chunks
10210 * list head uses. For that, we need to take a reference to the
10211 * transaction.
10212 */
10213 static int btrfs_trim_free_extents(struct btrfs_device *device,
10214 u64 minlen, u64 *trimmed)
10215 {
10216 u64 start = 0, len = 0;
10217 int ret;
10218
10219 *trimmed = 0;
10220
10221 /* Not writeable = nothing to do. */
10222 if (!device->writeable)
10223 return 0;
10224
10225 /* No free space = nothing to do. */
10226 if (device->total_bytes <= device->bytes_used)
10227 return 0;
10228
10229 ret = 0;
10230
10231 while (1) {
10232 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10233 struct btrfs_transaction *trans;
10234 u64 bytes;
10235
10236 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10237 if (ret)
10238 return ret;
10239
10240 down_read(&fs_info->commit_root_sem);
10241
10242 spin_lock(&fs_info->trans_lock);
10243 trans = fs_info->running_transaction;
10244 if (trans)
10245 atomic_inc(&trans->use_count);
10246 spin_unlock(&fs_info->trans_lock);
10247
10248 ret = find_free_dev_extent_start(trans, device, minlen, start,
10249 &start, &len);
10250 if (trans)
10251 btrfs_put_transaction(trans);
10252
10253 if (ret) {
10254 up_read(&fs_info->commit_root_sem);
10255 mutex_unlock(&fs_info->chunk_mutex);
10256 if (ret == -ENOSPC)
10257 ret = 0;
10258 break;
10259 }
10260
10261 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10262 up_read(&fs_info->commit_root_sem);
10263 mutex_unlock(&fs_info->chunk_mutex);
10264
10265 if (ret)
10266 break;
10267
10268 start += len;
10269 *trimmed += bytes;
10270
10271 if (fatal_signal_pending(current)) {
10272 ret = -ERESTARTSYS;
10273 break;
10274 }
10275
10276 cond_resched();
10277 }
10278
10279 return ret;
10280 }
10281
10282 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10283 {
10284 struct btrfs_fs_info *fs_info = root->fs_info;
10285 struct btrfs_block_group_cache *cache = NULL;
10286 struct btrfs_device *device;
10287 struct list_head *devices;
10288 u64 group_trimmed;
10289 u64 start;
10290 u64 end;
10291 u64 trimmed = 0;
10292 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10293 int ret = 0;
10294
10295 /*
10296 * try to trim all FS space, our block group may start from non-zero.
10297 */
10298 if (range->len == total_bytes)
10299 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10300 else
10301 cache = btrfs_lookup_block_group(fs_info, range->start);
10302
10303 while (cache) {
10304 if (cache->key.objectid >= (range->start + range->len)) {
10305 btrfs_put_block_group(cache);
10306 break;
10307 }
10308
10309 start = max(range->start, cache->key.objectid);
10310 end = min(range->start + range->len,
10311 cache->key.objectid + cache->key.offset);
10312
10313 if (end - start >= range->minlen) {
10314 if (!block_group_cache_done(cache)) {
10315 ret = cache_block_group(cache, 0);
10316 if (ret) {
10317 btrfs_put_block_group(cache);
10318 break;
10319 }
10320 ret = wait_block_group_cache_done(cache);
10321 if (ret) {
10322 btrfs_put_block_group(cache);
10323 break;
10324 }
10325 }
10326 ret = btrfs_trim_block_group(cache,
10327 &group_trimmed,
10328 start,
10329 end,
10330 range->minlen);
10331
10332 trimmed += group_trimmed;
10333 if (ret) {
10334 btrfs_put_block_group(cache);
10335 break;
10336 }
10337 }
10338
10339 cache = next_block_group(fs_info->tree_root, cache);
10340 }
10341
10342 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10343 devices = &root->fs_info->fs_devices->alloc_list;
10344 list_for_each_entry(device, devices, dev_alloc_list) {
10345 ret = btrfs_trim_free_extents(device, range->minlen,
10346 &group_trimmed);
10347 if (ret)
10348 break;
10349
10350 trimmed += group_trimmed;
10351 }
10352 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10353
10354 range->len = trimmed;
10355 return ret;
10356 }
10357
10358 /*
10359 * btrfs_{start,end}_write_no_snapshoting() are similar to
10360 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10361 * data into the page cache through nocow before the subvolume is snapshoted,
10362 * but flush the data into disk after the snapshot creation, or to prevent
10363 * operations while snapshoting is ongoing and that cause the snapshot to be
10364 * inconsistent (writes followed by expanding truncates for example).
10365 */
10366 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10367 {
10368 percpu_counter_dec(&root->subv_writers->counter);
10369 /*
10370 * Make sure counter is updated before we wake up waiters.
10371 */
10372 smp_mb();
10373 if (waitqueue_active(&root->subv_writers->wait))
10374 wake_up(&root->subv_writers->wait);
10375 }
10376
10377 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10378 {
10379 if (atomic_read(&root->will_be_snapshoted))
10380 return 0;
10381
10382 percpu_counter_inc(&root->subv_writers->counter);
10383 /*
10384 * Make sure counter is updated before we check for snapshot creation.
10385 */
10386 smp_mb();
10387 if (atomic_read(&root->will_be_snapshoted)) {
10388 btrfs_end_write_no_snapshoting(root);
10389 return 0;
10390 }
10391 return 1;
10392 }