]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/extent-tree.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 u64 extent_start, extent_end, size, total_added = 0;
344 int ret;
345
346 while (start < end) {
347 ret = find_first_extent_bit(info->pinned_extents, start,
348 &extent_start, &extent_end,
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
351 if (ret)
352 break;
353
354 if (extent_start <= start) {
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
358 total_added += size;
359 ret = btrfs_add_free_space(block_group, start,
360 size);
361 BUG_ON(ret); /* -ENOMEM or logic error */
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
370 total_added += size;
371 ret = btrfs_add_free_space(block_group, start, size);
372 BUG_ON(ret); /* -ENOMEM or logic error */
373 }
374
375 return total_added;
376 }
377
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret = -ENOMEM;
391
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
397 path = btrfs_alloc_path();
398 if (!path)
399 goto out;
400
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 /*
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
408 */
409 path->skip_locking = 1;
410 path->search_commit_root = 1;
411 path->reada = 1;
412
413 key.objectid = last;
414 key.offset = 0;
415 key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 mutex_lock(&caching_ctl->mutex);
418 /* need to make sure the commit_root doesn't disappear */
419 down_read(&fs_info->commit_root_sem);
420
421 next:
422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 if (ret < 0)
424 goto err;
425
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
429 while (1) {
430 if (btrfs_fs_closing(fs_info) > 1) {
431 last = (u64)-1;
432 break;
433 }
434
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
440 break;
441
442 if (need_resched() ||
443 rwsem_is_contended(&fs_info->commit_root_sem)) {
444 caching_ctl->progress = last;
445 btrfs_release_path(path);
446 up_read(&fs_info->commit_root_sem);
447 mutex_unlock(&caching_ctl->mutex);
448 cond_resched();
449 goto again;
450 }
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
460 }
461
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
474 continue;
475 }
476
477 if (key.objectid >= block_group->key.objectid +
478 block_group->key.offset)
479 break;
480
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
488 fs_info->tree_root->nodesize;
489 else
490 last = key.objectid + key.offset;
491
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
496 }
497 path->slots[0]++;
498 }
499 ret = 0;
500
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
504 caching_ctl->progress = (u64)-1;
505
506 spin_lock(&block_group->lock);
507 block_group->caching_ctl = NULL;
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
510
511 err:
512 btrfs_free_path(path);
513 up_read(&fs_info->commit_root_sem);
514
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
518 out:
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
528 btrfs_put_block_group(block_group);
529 }
530
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 int load_cache_only)
533 {
534 DEFINE_WAIT(wait);
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
537 int ret = 0;
538
539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 if (!caching_ctl)
541 return -ENOMEM;
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 mutex_lock(&caching_ctl->mutex);
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 caching_ctl->progress = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 cache->has_caching_ctl = 1;
607 }
608 }
609 spin_unlock(&cache->lock);
610 mutex_unlock(&caching_ctl->mutex);
611
612 wake_up(&caching_ctl->wait);
613 if (ret == 1) {
614 put_caching_control(caching_ctl);
615 free_excluded_extents(fs_info->extent_root, cache);
616 return 0;
617 }
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
629 cache->has_caching_ctl = 1;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->nodesize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
795 key.offset == root->nodesize)
796 ret = 0;
797 }
798 }
799
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 BUG();
819 #endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
839 btrfs_release_path(path);
840
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
848 goto search_again;
849 }
850 spin_lock(&head->lock);
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
857 spin_unlock(&head->lock);
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861 out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867 out_free:
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 /*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
936 *
937 * The extent ref structure for the implicit back refs has fields for:
938 *
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
943 *
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
946 *
947 * The extent ref structure for the full back refs has field for:
948 *
949 * - number of pointers in the tree leaf
950 *
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
953 *
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
956 *
957 * (root_key.objectid, inode objectid, offset in file, 1)
958 *
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
961 *
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
963 *
964 * Btree extents can be referenced by:
965 *
966 * - Different subvolumes
967 *
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
972 *
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
976 */
977
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
983 {
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
989 struct btrfs_key key;
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
1009 BUG_ON(ret > 0); /* Corruption */
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
1025 btrfs_release_path(path);
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
1035 BUG_ON(ret); /* Corruption */
1036
1037 btrfs_extend_item(root, path, new_size);
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057 }
1058 #endif
1059
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 lenum = cpu_to_le64(owner);
1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(offset);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078 {
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093 }
1094
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101 {
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
1104 struct extent_buffer *leaf;
1105 u32 nritems;
1106 int ret;
1107 int recow;
1108 int err = -ENOENT;
1109
1110 key.objectid = bytenr;
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119 again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
1126
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 btrfs_release_path(path);
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140 #endif
1141 goto fail;
1142 }
1143
1144 leaf = path->nodes[0];
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
1170 btrfs_release_path(path);
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
1177 }
1178 fail:
1179 return err;
1180 }
1181
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
1188 {
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
1191 u32 size;
1192 u32 num_refs;
1193 int ret;
1194
1195 key.objectid = bytenr;
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
1214 ref = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 }
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
1231 btrfs_release_path(path);
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
1237
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 }
1253 }
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256 fail:
1257 btrfs_release_path(path);
1258 return ret;
1259 }
1260
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 int refs_to_drop, int *last_ref)
1265 {
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
1269 struct extent_buffer *leaf;
1270 u32 num_refs = 0;
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 } else {
1292 BUG();
1293 }
1294
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
1297
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
1300 *last_ref = 1;
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
1322 {
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359 }
1360
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1366 {
1367 struct btrfs_key key;
1368 int ret;
1369
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1377 }
1378
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
1384 btrfs_release_path(path);
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1390 #endif
1391 return ret;
1392 }
1393
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
1399 {
1400 struct btrfs_key key;
1401 int ret;
1402
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 btrfs_release_path(path);
1414 return ret;
1415 }
1416
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
1432 }
1433
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
1436
1437 {
1438 for (; level < BTRFS_MAX_LEVEL; level++) {
1439 if (!path->nodes[level])
1440 break;
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453 }
1454
1455 /*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476 {
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
1492
1493 key.objectid = bytenr;
1494 key.type = BTRFS_EXTENT_ITEM_KEY;
1495 key.offset = num_bytes;
1496
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
1500 path->keep_locks = 1;
1501 } else
1502 extra_size = -1;
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513 again:
1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 if (ret < 0) {
1516 err = ret;
1517 goto out;
1518 }
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
1536 key.objectid = bytenr;
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
1547 } else if (WARN_ON(ret)) {
1548 err = -EIO;
1549 goto out;
1550 }
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569 #endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 if (insert) {
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656 }
1657
1658 /*
1659 * helper to add new inline back ref
1660 */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
1685 btrfs_extend_item(root, path, size);
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
1720 }
1721
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
1735 return ret;
1736
1737 btrfs_release_path(path);
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
1746 }
1747 return ret;
1748 }
1749
1750 /*
1751 * helper to update/remove inline back ref
1752 */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
1760 {
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
1792 }
1793
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
1803 *last_ref = 1;
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
1812 btrfs_truncate_item(root, path, item_size, 1);
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
1815 }
1816
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 update_inline_extent_backref(root, path, iref,
1835 refs_to_add, extent_op, NULL);
1836 } else if (ret == -ENOENT) {
1837 setup_inline_extent_backref(root, path, iref, parent,
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
1841 }
1842 return ret;
1843 }
1844
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862 }
1863
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
1868 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 int ret = 0;
1871
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
1874 update_inline_extent_backref(root, path, iref,
1875 -refs_to_drop, NULL, last_ref);
1876 } else if (is_data) {
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
1879 } else {
1880 *last_ref = 1;
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884 }
1885
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 u64 start, u64 len)
1888 {
1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891
1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 int ret;
1896 u64 discarded_bytes = 0;
1897 struct btrfs_bio *bbio = NULL;
1898
1899
1900 /* Tell the block device(s) that the sectors can be discarded */
1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 bytenr, &num_bytes, &bbio, 0);
1903 /* Error condition is -ENOMEM */
1904 if (!ret) {
1905 struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 int i;
1907
1908
1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 if (!stripe->dev->can_discard)
1911 continue;
1912
1913 ret = btrfs_issue_discard(stripe->dev->bdev,
1914 stripe->physical,
1915 stripe->length);
1916 if (!ret)
1917 discarded_bytes += stripe->length;
1918 else if (ret != -EOPNOTSUPP)
1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920
1921 /*
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1925 */
1926 ret = 0;
1927 }
1928 btrfs_put_bbio(bbio);
1929 }
1930
1931 if (actual_bytes)
1932 *actual_bytes = discarded_bytes;
1933
1934
1935 if (ret == -EOPNOTSUPP)
1936 ret = 0;
1937 return ret;
1938 }
1939
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 u64 bytenr, u64 num_bytes, u64 parent,
1944 u64 root_objectid, u64 owner, u64 offset,
1945 int no_quota)
1946 {
1947 int ret;
1948 struct btrfs_fs_info *fs_info = root->fs_info;
1949
1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952
1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 num_bytes,
1956 parent, root_objectid, (int)owner,
1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 } else {
1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 num_bytes,
1961 parent, root_objectid, owner, offset,
1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 }
1964 return ret;
1965 }
1966
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
1969 struct btrfs_delayed_ref_node *node,
1970 u64 parent, u64 root_objectid,
1971 u64 owner, u64 offset, int refs_to_add,
1972 struct btrfs_delayed_extent_op *extent_op)
1973 {
1974 struct btrfs_fs_info *fs_info = root->fs_info;
1975 struct btrfs_path *path;
1976 struct extent_buffer *leaf;
1977 struct btrfs_extent_item *item;
1978 struct btrfs_key key;
1979 u64 bytenr = node->bytenr;
1980 u64 num_bytes = node->num_bytes;
1981 u64 refs;
1982 int ret;
1983 int no_quota = node->no_quota;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || !ret)
2000 goto out;
2001
2002 /*
2003 * Ok we had -EAGAIN which means we didn't have space to insert and
2004 * inline extent ref, so just update the reference count and add a
2005 * normal backref.
2006 */
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2010 refs = btrfs_extent_refs(leaf, item);
2011 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2012 if (extent_op)
2013 __run_delayed_extent_op(extent_op, leaf, item);
2014
2015 btrfs_mark_buffer_dirty(leaf);
2016 btrfs_release_path(path);
2017
2018 path->reada = 1;
2019 path->leave_spinning = 1;
2020 /* now insert the actual backref */
2021 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2022 path, bytenr, parent, root_objectid,
2023 owner, offset, refs_to_add);
2024 if (ret)
2025 btrfs_abort_transaction(trans, root, ret);
2026 out:
2027 btrfs_free_path(path);
2028 return ret;
2029 }
2030
2031 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2032 struct btrfs_root *root,
2033 struct btrfs_delayed_ref_node *node,
2034 struct btrfs_delayed_extent_op *extent_op,
2035 int insert_reserved)
2036 {
2037 int ret = 0;
2038 struct btrfs_delayed_data_ref *ref;
2039 struct btrfs_key ins;
2040 u64 parent = 0;
2041 u64 ref_root = 0;
2042 u64 flags = 0;
2043
2044 ins.objectid = node->bytenr;
2045 ins.offset = node->num_bytes;
2046 ins.type = BTRFS_EXTENT_ITEM_KEY;
2047
2048 ref = btrfs_delayed_node_to_data_ref(node);
2049 trace_run_delayed_data_ref(node, ref, node->action);
2050
2051 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2052 parent = ref->parent;
2053 ref_root = ref->root;
2054
2055 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2056 if (extent_op)
2057 flags |= extent_op->flags_to_set;
2058 ret = alloc_reserved_file_extent(trans, root,
2059 parent, ref_root, flags,
2060 ref->objectid, ref->offset,
2061 &ins, node->ref_mod);
2062 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2063 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2064 ref_root, ref->objectid,
2065 ref->offset, node->ref_mod,
2066 extent_op);
2067 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2068 ret = __btrfs_free_extent(trans, root, node, parent,
2069 ref_root, ref->objectid,
2070 ref->offset, node->ref_mod,
2071 extent_op);
2072 } else {
2073 BUG();
2074 }
2075 return ret;
2076 }
2077
2078 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2079 struct extent_buffer *leaf,
2080 struct btrfs_extent_item *ei)
2081 {
2082 u64 flags = btrfs_extent_flags(leaf, ei);
2083 if (extent_op->update_flags) {
2084 flags |= extent_op->flags_to_set;
2085 btrfs_set_extent_flags(leaf, ei, flags);
2086 }
2087
2088 if (extent_op->update_key) {
2089 struct btrfs_tree_block_info *bi;
2090 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2091 bi = (struct btrfs_tree_block_info *)(ei + 1);
2092 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2093 }
2094 }
2095
2096 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2097 struct btrfs_root *root,
2098 struct btrfs_delayed_ref_node *node,
2099 struct btrfs_delayed_extent_op *extent_op)
2100 {
2101 struct btrfs_key key;
2102 struct btrfs_path *path;
2103 struct btrfs_extent_item *ei;
2104 struct extent_buffer *leaf;
2105 u32 item_size;
2106 int ret;
2107 int err = 0;
2108 int metadata = !extent_op->is_data;
2109
2110 if (trans->aborted)
2111 return 0;
2112
2113 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2114 metadata = 0;
2115
2116 path = btrfs_alloc_path();
2117 if (!path)
2118 return -ENOMEM;
2119
2120 key.objectid = node->bytenr;
2121
2122 if (metadata) {
2123 key.type = BTRFS_METADATA_ITEM_KEY;
2124 key.offset = extent_op->level;
2125 } else {
2126 key.type = BTRFS_EXTENT_ITEM_KEY;
2127 key.offset = node->num_bytes;
2128 }
2129
2130 again:
2131 path->reada = 1;
2132 path->leave_spinning = 1;
2133 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2134 path, 0, 1);
2135 if (ret < 0) {
2136 err = ret;
2137 goto out;
2138 }
2139 if (ret > 0) {
2140 if (metadata) {
2141 if (path->slots[0] > 0) {
2142 path->slots[0]--;
2143 btrfs_item_key_to_cpu(path->nodes[0], &key,
2144 path->slots[0]);
2145 if (key.objectid == node->bytenr &&
2146 key.type == BTRFS_EXTENT_ITEM_KEY &&
2147 key.offset == node->num_bytes)
2148 ret = 0;
2149 }
2150 if (ret > 0) {
2151 btrfs_release_path(path);
2152 metadata = 0;
2153
2154 key.objectid = node->bytenr;
2155 key.offset = node->num_bytes;
2156 key.type = BTRFS_EXTENT_ITEM_KEY;
2157 goto again;
2158 }
2159 } else {
2160 err = -EIO;
2161 goto out;
2162 }
2163 }
2164
2165 leaf = path->nodes[0];
2166 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2168 if (item_size < sizeof(*ei)) {
2169 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2170 path, (u64)-1, 0);
2171 if (ret < 0) {
2172 err = ret;
2173 goto out;
2174 }
2175 leaf = path->nodes[0];
2176 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2177 }
2178 #endif
2179 BUG_ON(item_size < sizeof(*ei));
2180 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2181 __run_delayed_extent_op(extent_op, leaf, ei);
2182
2183 btrfs_mark_buffer_dirty(leaf);
2184 out:
2185 btrfs_free_path(path);
2186 return err;
2187 }
2188
2189 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 struct btrfs_delayed_ref_node *node,
2192 struct btrfs_delayed_extent_op *extent_op,
2193 int insert_reserved)
2194 {
2195 int ret = 0;
2196 struct btrfs_delayed_tree_ref *ref;
2197 struct btrfs_key ins;
2198 u64 parent = 0;
2199 u64 ref_root = 0;
2200 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2201 SKINNY_METADATA);
2202
2203 ref = btrfs_delayed_node_to_tree_ref(node);
2204 trace_run_delayed_tree_ref(node, ref, node->action);
2205
2206 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2207 parent = ref->parent;
2208 ref_root = ref->root;
2209
2210 ins.objectid = node->bytenr;
2211 if (skinny_metadata) {
2212 ins.offset = ref->level;
2213 ins.type = BTRFS_METADATA_ITEM_KEY;
2214 } else {
2215 ins.offset = node->num_bytes;
2216 ins.type = BTRFS_EXTENT_ITEM_KEY;
2217 }
2218
2219 BUG_ON(node->ref_mod != 1);
2220 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2221 BUG_ON(!extent_op || !extent_op->update_flags);
2222 ret = alloc_reserved_tree_block(trans, root,
2223 parent, ref_root,
2224 extent_op->flags_to_set,
2225 &extent_op->key,
2226 ref->level, &ins,
2227 node->no_quota);
2228 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2229 ret = __btrfs_inc_extent_ref(trans, root, node,
2230 parent, ref_root,
2231 ref->level, 0, 1,
2232 extent_op);
2233 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2234 ret = __btrfs_free_extent(trans, root, node,
2235 parent, ref_root,
2236 ref->level, 0, 1, extent_op);
2237 } else {
2238 BUG();
2239 }
2240 return ret;
2241 }
2242
2243 /* helper function to actually process a single delayed ref entry */
2244 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op,
2248 int insert_reserved)
2249 {
2250 int ret = 0;
2251
2252 if (trans->aborted) {
2253 if (insert_reserved)
2254 btrfs_pin_extent(root, node->bytenr,
2255 node->num_bytes, 1);
2256 return 0;
2257 }
2258
2259 if (btrfs_delayed_ref_is_head(node)) {
2260 struct btrfs_delayed_ref_head *head;
2261 /*
2262 * we've hit the end of the chain and we were supposed
2263 * to insert this extent into the tree. But, it got
2264 * deleted before we ever needed to insert it, so all
2265 * we have to do is clean up the accounting
2266 */
2267 BUG_ON(extent_op);
2268 head = btrfs_delayed_node_to_head(node);
2269 trace_run_delayed_ref_head(node, head, node->action);
2270
2271 if (insert_reserved) {
2272 btrfs_pin_extent(root, node->bytenr,
2273 node->num_bytes, 1);
2274 if (head->is_data) {
2275 ret = btrfs_del_csums(trans, root,
2276 node->bytenr,
2277 node->num_bytes);
2278 }
2279 }
2280 return ret;
2281 }
2282
2283 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2284 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2285 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2286 insert_reserved);
2287 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2288 node->type == BTRFS_SHARED_DATA_REF_KEY)
2289 ret = run_delayed_data_ref(trans, root, node, extent_op,
2290 insert_reserved);
2291 else
2292 BUG();
2293 return ret;
2294 }
2295
2296 static inline struct btrfs_delayed_ref_node *
2297 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2298 {
2299 struct btrfs_delayed_ref_node *ref;
2300
2301 if (list_empty(&head->ref_list))
2302 return NULL;
2303
2304 /*
2305 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2306 * This is to prevent a ref count from going down to zero, which deletes
2307 * the extent item from the extent tree, when there still are references
2308 * to add, which would fail because they would not find the extent item.
2309 */
2310 list_for_each_entry(ref, &head->ref_list, list) {
2311 if (ref->action == BTRFS_ADD_DELAYED_REF)
2312 return ref;
2313 }
2314
2315 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2316 list);
2317 }
2318
2319 /*
2320 * Returns 0 on success or if called with an already aborted transaction.
2321 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2322 */
2323 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2324 struct btrfs_root *root,
2325 unsigned long nr)
2326 {
2327 struct btrfs_delayed_ref_root *delayed_refs;
2328 struct btrfs_delayed_ref_node *ref;
2329 struct btrfs_delayed_ref_head *locked_ref = NULL;
2330 struct btrfs_delayed_extent_op *extent_op;
2331 struct btrfs_fs_info *fs_info = root->fs_info;
2332 ktime_t start = ktime_get();
2333 int ret;
2334 unsigned long count = 0;
2335 unsigned long actual_count = 0;
2336 int must_insert_reserved = 0;
2337
2338 delayed_refs = &trans->transaction->delayed_refs;
2339 while (1) {
2340 if (!locked_ref) {
2341 if (count >= nr)
2342 break;
2343
2344 spin_lock(&delayed_refs->lock);
2345 locked_ref = btrfs_select_ref_head(trans);
2346 if (!locked_ref) {
2347 spin_unlock(&delayed_refs->lock);
2348 break;
2349 }
2350
2351 /* grab the lock that says we are going to process
2352 * all the refs for this head */
2353 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2354 spin_unlock(&delayed_refs->lock);
2355 /*
2356 * we may have dropped the spin lock to get the head
2357 * mutex lock, and that might have given someone else
2358 * time to free the head. If that's true, it has been
2359 * removed from our list and we can move on.
2360 */
2361 if (ret == -EAGAIN) {
2362 locked_ref = NULL;
2363 count++;
2364 continue;
2365 }
2366 }
2367
2368 spin_lock(&locked_ref->lock);
2369
2370 /*
2371 * locked_ref is the head node, so we have to go one
2372 * node back for any delayed ref updates
2373 */
2374 ref = select_delayed_ref(locked_ref);
2375
2376 if (ref && ref->seq &&
2377 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2378 spin_unlock(&locked_ref->lock);
2379 btrfs_delayed_ref_unlock(locked_ref);
2380 spin_lock(&delayed_refs->lock);
2381 locked_ref->processing = 0;
2382 delayed_refs->num_heads_ready++;
2383 spin_unlock(&delayed_refs->lock);
2384 locked_ref = NULL;
2385 cond_resched();
2386 count++;
2387 continue;
2388 }
2389
2390 /*
2391 * record the must insert reserved flag before we
2392 * drop the spin lock.
2393 */
2394 must_insert_reserved = locked_ref->must_insert_reserved;
2395 locked_ref->must_insert_reserved = 0;
2396
2397 extent_op = locked_ref->extent_op;
2398 locked_ref->extent_op = NULL;
2399
2400 if (!ref) {
2401
2402
2403 /* All delayed refs have been processed, Go ahead
2404 * and send the head node to run_one_delayed_ref,
2405 * so that any accounting fixes can happen
2406 */
2407 ref = &locked_ref->node;
2408
2409 if (extent_op && must_insert_reserved) {
2410 btrfs_free_delayed_extent_op(extent_op);
2411 extent_op = NULL;
2412 }
2413
2414 if (extent_op) {
2415 spin_unlock(&locked_ref->lock);
2416 ret = run_delayed_extent_op(trans, root,
2417 ref, extent_op);
2418 btrfs_free_delayed_extent_op(extent_op);
2419
2420 if (ret) {
2421 /*
2422 * Need to reset must_insert_reserved if
2423 * there was an error so the abort stuff
2424 * can cleanup the reserved space
2425 * properly.
2426 */
2427 if (must_insert_reserved)
2428 locked_ref->must_insert_reserved = 1;
2429 locked_ref->processing = 0;
2430 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2431 btrfs_delayed_ref_unlock(locked_ref);
2432 return ret;
2433 }
2434 continue;
2435 }
2436
2437 /*
2438 * Need to drop our head ref lock and re-aqcuire the
2439 * delayed ref lock and then re-check to make sure
2440 * nobody got added.
2441 */
2442 spin_unlock(&locked_ref->lock);
2443 spin_lock(&delayed_refs->lock);
2444 spin_lock(&locked_ref->lock);
2445 if (!list_empty(&locked_ref->ref_list) ||
2446 locked_ref->extent_op) {
2447 spin_unlock(&locked_ref->lock);
2448 spin_unlock(&delayed_refs->lock);
2449 continue;
2450 }
2451 ref->in_tree = 0;
2452 delayed_refs->num_heads--;
2453 rb_erase(&locked_ref->href_node,
2454 &delayed_refs->href_root);
2455 spin_unlock(&delayed_refs->lock);
2456 } else {
2457 actual_count++;
2458 ref->in_tree = 0;
2459 list_del(&ref->list);
2460 }
2461 atomic_dec(&delayed_refs->num_entries);
2462
2463 if (!btrfs_delayed_ref_is_head(ref)) {
2464 /*
2465 * when we play the delayed ref, also correct the
2466 * ref_mod on head
2467 */
2468 switch (ref->action) {
2469 case BTRFS_ADD_DELAYED_REF:
2470 case BTRFS_ADD_DELAYED_EXTENT:
2471 locked_ref->node.ref_mod -= ref->ref_mod;
2472 break;
2473 case BTRFS_DROP_DELAYED_REF:
2474 locked_ref->node.ref_mod += ref->ref_mod;
2475 break;
2476 default:
2477 WARN_ON(1);
2478 }
2479 }
2480 spin_unlock(&locked_ref->lock);
2481
2482 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2483 must_insert_reserved);
2484
2485 btrfs_free_delayed_extent_op(extent_op);
2486 if (ret) {
2487 locked_ref->processing = 0;
2488 btrfs_delayed_ref_unlock(locked_ref);
2489 btrfs_put_delayed_ref(ref);
2490 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2491 return ret;
2492 }
2493
2494 /*
2495 * If this node is a head, that means all the refs in this head
2496 * have been dealt with, and we will pick the next head to deal
2497 * with, so we must unlock the head and drop it from the cluster
2498 * list before we release it.
2499 */
2500 if (btrfs_delayed_ref_is_head(ref)) {
2501 if (locked_ref->is_data &&
2502 locked_ref->total_ref_mod < 0) {
2503 spin_lock(&delayed_refs->lock);
2504 delayed_refs->pending_csums -= ref->num_bytes;
2505 spin_unlock(&delayed_refs->lock);
2506 }
2507 btrfs_delayed_ref_unlock(locked_ref);
2508 locked_ref = NULL;
2509 }
2510 btrfs_put_delayed_ref(ref);
2511 count++;
2512 cond_resched();
2513 }
2514
2515 /*
2516 * We don't want to include ref heads since we can have empty ref heads
2517 * and those will drastically skew our runtime down since we just do
2518 * accounting, no actual extent tree updates.
2519 */
2520 if (actual_count > 0) {
2521 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2522 u64 avg;
2523
2524 /*
2525 * We weigh the current average higher than our current runtime
2526 * to avoid large swings in the average.
2527 */
2528 spin_lock(&delayed_refs->lock);
2529 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2530 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2531 spin_unlock(&delayed_refs->lock);
2532 }
2533 return 0;
2534 }
2535
2536 #ifdef SCRAMBLE_DELAYED_REFS
2537 /*
2538 * Normally delayed refs get processed in ascending bytenr order. This
2539 * correlates in most cases to the order added. To expose dependencies on this
2540 * order, we start to process the tree in the middle instead of the beginning
2541 */
2542 static u64 find_middle(struct rb_root *root)
2543 {
2544 struct rb_node *n = root->rb_node;
2545 struct btrfs_delayed_ref_node *entry;
2546 int alt = 1;
2547 u64 middle;
2548 u64 first = 0, last = 0;
2549
2550 n = rb_first(root);
2551 if (n) {
2552 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2553 first = entry->bytenr;
2554 }
2555 n = rb_last(root);
2556 if (n) {
2557 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2558 last = entry->bytenr;
2559 }
2560 n = root->rb_node;
2561
2562 while (n) {
2563 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2564 WARN_ON(!entry->in_tree);
2565
2566 middle = entry->bytenr;
2567
2568 if (alt)
2569 n = n->rb_left;
2570 else
2571 n = n->rb_right;
2572
2573 alt = 1 - alt;
2574 }
2575 return middle;
2576 }
2577 #endif
2578
2579 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2580 {
2581 u64 num_bytes;
2582
2583 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2584 sizeof(struct btrfs_extent_inline_ref));
2585 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2586 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2587
2588 /*
2589 * We don't ever fill up leaves all the way so multiply by 2 just to be
2590 * closer to what we're really going to want to ouse.
2591 */
2592 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2593 }
2594
2595 /*
2596 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2597 * would require to store the csums for that many bytes.
2598 */
2599 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2600 {
2601 u64 csum_size;
2602 u64 num_csums_per_leaf;
2603 u64 num_csums;
2604
2605 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2606 num_csums_per_leaf = div64_u64(csum_size,
2607 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2608 num_csums = div64_u64(csum_bytes, root->sectorsize);
2609 num_csums += num_csums_per_leaf - 1;
2610 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2611 return num_csums;
2612 }
2613
2614 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2615 struct btrfs_root *root)
2616 {
2617 struct btrfs_block_rsv *global_rsv;
2618 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2619 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2620 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2621 u64 num_bytes, num_dirty_bgs_bytes;
2622 int ret = 0;
2623
2624 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2625 num_heads = heads_to_leaves(root, num_heads);
2626 if (num_heads > 1)
2627 num_bytes += (num_heads - 1) * root->nodesize;
2628 num_bytes <<= 1;
2629 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2630 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2631 num_dirty_bgs);
2632 global_rsv = &root->fs_info->global_block_rsv;
2633
2634 /*
2635 * If we can't allocate any more chunks lets make sure we have _lots_ of
2636 * wiggle room since running delayed refs can create more delayed refs.
2637 */
2638 if (global_rsv->space_info->full) {
2639 num_dirty_bgs_bytes <<= 1;
2640 num_bytes <<= 1;
2641 }
2642
2643 spin_lock(&global_rsv->lock);
2644 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2645 ret = 1;
2646 spin_unlock(&global_rsv->lock);
2647 return ret;
2648 }
2649
2650 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2651 struct btrfs_root *root)
2652 {
2653 struct btrfs_fs_info *fs_info = root->fs_info;
2654 u64 num_entries =
2655 atomic_read(&trans->transaction->delayed_refs.num_entries);
2656 u64 avg_runtime;
2657 u64 val;
2658
2659 smp_mb();
2660 avg_runtime = fs_info->avg_delayed_ref_runtime;
2661 val = num_entries * avg_runtime;
2662 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2663 return 1;
2664 if (val >= NSEC_PER_SEC / 2)
2665 return 2;
2666
2667 return btrfs_check_space_for_delayed_refs(trans, root);
2668 }
2669
2670 struct async_delayed_refs {
2671 struct btrfs_root *root;
2672 int count;
2673 int error;
2674 int sync;
2675 struct completion wait;
2676 struct btrfs_work work;
2677 };
2678
2679 static void delayed_ref_async_start(struct btrfs_work *work)
2680 {
2681 struct async_delayed_refs *async;
2682 struct btrfs_trans_handle *trans;
2683 int ret;
2684
2685 async = container_of(work, struct async_delayed_refs, work);
2686
2687 trans = btrfs_join_transaction(async->root);
2688 if (IS_ERR(trans)) {
2689 async->error = PTR_ERR(trans);
2690 goto done;
2691 }
2692
2693 /*
2694 * trans->sync means that when we call end_transaciton, we won't
2695 * wait on delayed refs
2696 */
2697 trans->sync = true;
2698 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2699 if (ret)
2700 async->error = ret;
2701
2702 ret = btrfs_end_transaction(trans, async->root);
2703 if (ret && !async->error)
2704 async->error = ret;
2705 done:
2706 if (async->sync)
2707 complete(&async->wait);
2708 else
2709 kfree(async);
2710 }
2711
2712 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2713 unsigned long count, int wait)
2714 {
2715 struct async_delayed_refs *async;
2716 int ret;
2717
2718 async = kmalloc(sizeof(*async), GFP_NOFS);
2719 if (!async)
2720 return -ENOMEM;
2721
2722 async->root = root->fs_info->tree_root;
2723 async->count = count;
2724 async->error = 0;
2725 if (wait)
2726 async->sync = 1;
2727 else
2728 async->sync = 0;
2729 init_completion(&async->wait);
2730
2731 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2732 delayed_ref_async_start, NULL, NULL);
2733
2734 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2735
2736 if (wait) {
2737 wait_for_completion(&async->wait);
2738 ret = async->error;
2739 kfree(async);
2740 return ret;
2741 }
2742 return 0;
2743 }
2744
2745 /*
2746 * this starts processing the delayed reference count updates and
2747 * extent insertions we have queued up so far. count can be
2748 * 0, which means to process everything in the tree at the start
2749 * of the run (but not newly added entries), or it can be some target
2750 * number you'd like to process.
2751 *
2752 * Returns 0 on success or if called with an aborted transaction
2753 * Returns <0 on error and aborts the transaction
2754 */
2755 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2756 struct btrfs_root *root, unsigned long count)
2757 {
2758 struct rb_node *node;
2759 struct btrfs_delayed_ref_root *delayed_refs;
2760 struct btrfs_delayed_ref_head *head;
2761 int ret;
2762 int run_all = count == (unsigned long)-1;
2763
2764 /* We'll clean this up in btrfs_cleanup_transaction */
2765 if (trans->aborted)
2766 return 0;
2767
2768 if (root == root->fs_info->extent_root)
2769 root = root->fs_info->tree_root;
2770
2771 delayed_refs = &trans->transaction->delayed_refs;
2772 if (count == 0)
2773 count = atomic_read(&delayed_refs->num_entries) * 2;
2774
2775 again:
2776 #ifdef SCRAMBLE_DELAYED_REFS
2777 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2778 #endif
2779 ret = __btrfs_run_delayed_refs(trans, root, count);
2780 if (ret < 0) {
2781 btrfs_abort_transaction(trans, root, ret);
2782 return ret;
2783 }
2784
2785 if (run_all) {
2786 if (!list_empty(&trans->new_bgs))
2787 btrfs_create_pending_block_groups(trans, root);
2788
2789 spin_lock(&delayed_refs->lock);
2790 node = rb_first(&delayed_refs->href_root);
2791 if (!node) {
2792 spin_unlock(&delayed_refs->lock);
2793 goto out;
2794 }
2795 count = (unsigned long)-1;
2796
2797 while (node) {
2798 head = rb_entry(node, struct btrfs_delayed_ref_head,
2799 href_node);
2800 if (btrfs_delayed_ref_is_head(&head->node)) {
2801 struct btrfs_delayed_ref_node *ref;
2802
2803 ref = &head->node;
2804 atomic_inc(&ref->refs);
2805
2806 spin_unlock(&delayed_refs->lock);
2807 /*
2808 * Mutex was contended, block until it's
2809 * released and try again
2810 */
2811 mutex_lock(&head->mutex);
2812 mutex_unlock(&head->mutex);
2813
2814 btrfs_put_delayed_ref(ref);
2815 cond_resched();
2816 goto again;
2817 } else {
2818 WARN_ON(1);
2819 }
2820 node = rb_next(node);
2821 }
2822 spin_unlock(&delayed_refs->lock);
2823 cond_resched();
2824 goto again;
2825 }
2826 out:
2827 assert_qgroups_uptodate(trans);
2828 return 0;
2829 }
2830
2831 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2832 struct btrfs_root *root,
2833 u64 bytenr, u64 num_bytes, u64 flags,
2834 int level, int is_data)
2835 {
2836 struct btrfs_delayed_extent_op *extent_op;
2837 int ret;
2838
2839 extent_op = btrfs_alloc_delayed_extent_op();
2840 if (!extent_op)
2841 return -ENOMEM;
2842
2843 extent_op->flags_to_set = flags;
2844 extent_op->update_flags = 1;
2845 extent_op->update_key = 0;
2846 extent_op->is_data = is_data ? 1 : 0;
2847 extent_op->level = level;
2848
2849 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2850 num_bytes, extent_op);
2851 if (ret)
2852 btrfs_free_delayed_extent_op(extent_op);
2853 return ret;
2854 }
2855
2856 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2857 struct btrfs_root *root,
2858 struct btrfs_path *path,
2859 u64 objectid, u64 offset, u64 bytenr)
2860 {
2861 struct btrfs_delayed_ref_head *head;
2862 struct btrfs_delayed_ref_node *ref;
2863 struct btrfs_delayed_data_ref *data_ref;
2864 struct btrfs_delayed_ref_root *delayed_refs;
2865 int ret = 0;
2866
2867 delayed_refs = &trans->transaction->delayed_refs;
2868 spin_lock(&delayed_refs->lock);
2869 head = btrfs_find_delayed_ref_head(trans, bytenr);
2870 if (!head) {
2871 spin_unlock(&delayed_refs->lock);
2872 return 0;
2873 }
2874
2875 if (!mutex_trylock(&head->mutex)) {
2876 atomic_inc(&head->node.refs);
2877 spin_unlock(&delayed_refs->lock);
2878
2879 btrfs_release_path(path);
2880
2881 /*
2882 * Mutex was contended, block until it's released and let
2883 * caller try again
2884 */
2885 mutex_lock(&head->mutex);
2886 mutex_unlock(&head->mutex);
2887 btrfs_put_delayed_ref(&head->node);
2888 return -EAGAIN;
2889 }
2890 spin_unlock(&delayed_refs->lock);
2891
2892 spin_lock(&head->lock);
2893 list_for_each_entry(ref, &head->ref_list, list) {
2894 /* If it's a shared ref we know a cross reference exists */
2895 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2896 ret = 1;
2897 break;
2898 }
2899
2900 data_ref = btrfs_delayed_node_to_data_ref(ref);
2901
2902 /*
2903 * If our ref doesn't match the one we're currently looking at
2904 * then we have a cross reference.
2905 */
2906 if (data_ref->root != root->root_key.objectid ||
2907 data_ref->objectid != objectid ||
2908 data_ref->offset != offset) {
2909 ret = 1;
2910 break;
2911 }
2912 }
2913 spin_unlock(&head->lock);
2914 mutex_unlock(&head->mutex);
2915 return ret;
2916 }
2917
2918 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2919 struct btrfs_root *root,
2920 struct btrfs_path *path,
2921 u64 objectid, u64 offset, u64 bytenr)
2922 {
2923 struct btrfs_root *extent_root = root->fs_info->extent_root;
2924 struct extent_buffer *leaf;
2925 struct btrfs_extent_data_ref *ref;
2926 struct btrfs_extent_inline_ref *iref;
2927 struct btrfs_extent_item *ei;
2928 struct btrfs_key key;
2929 u32 item_size;
2930 int ret;
2931
2932 key.objectid = bytenr;
2933 key.offset = (u64)-1;
2934 key.type = BTRFS_EXTENT_ITEM_KEY;
2935
2936 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2937 if (ret < 0)
2938 goto out;
2939 BUG_ON(ret == 0); /* Corruption */
2940
2941 ret = -ENOENT;
2942 if (path->slots[0] == 0)
2943 goto out;
2944
2945 path->slots[0]--;
2946 leaf = path->nodes[0];
2947 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2948
2949 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2950 goto out;
2951
2952 ret = 1;
2953 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2955 if (item_size < sizeof(*ei)) {
2956 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2957 goto out;
2958 }
2959 #endif
2960 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2961
2962 if (item_size != sizeof(*ei) +
2963 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2964 goto out;
2965
2966 if (btrfs_extent_generation(leaf, ei) <=
2967 btrfs_root_last_snapshot(&root->root_item))
2968 goto out;
2969
2970 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2971 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2972 BTRFS_EXTENT_DATA_REF_KEY)
2973 goto out;
2974
2975 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2976 if (btrfs_extent_refs(leaf, ei) !=
2977 btrfs_extent_data_ref_count(leaf, ref) ||
2978 btrfs_extent_data_ref_root(leaf, ref) !=
2979 root->root_key.objectid ||
2980 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2981 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2982 goto out;
2983
2984 ret = 0;
2985 out:
2986 return ret;
2987 }
2988
2989 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2990 struct btrfs_root *root,
2991 u64 objectid, u64 offset, u64 bytenr)
2992 {
2993 struct btrfs_path *path;
2994 int ret;
2995 int ret2;
2996
2997 path = btrfs_alloc_path();
2998 if (!path)
2999 return -ENOENT;
3000
3001 do {
3002 ret = check_committed_ref(trans, root, path, objectid,
3003 offset, bytenr);
3004 if (ret && ret != -ENOENT)
3005 goto out;
3006
3007 ret2 = check_delayed_ref(trans, root, path, objectid,
3008 offset, bytenr);
3009 } while (ret2 == -EAGAIN);
3010
3011 if (ret2 && ret2 != -ENOENT) {
3012 ret = ret2;
3013 goto out;
3014 }
3015
3016 if (ret != -ENOENT || ret2 != -ENOENT)
3017 ret = 0;
3018 out:
3019 btrfs_free_path(path);
3020 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3021 WARN_ON(ret > 0);
3022 return ret;
3023 }
3024
3025 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3026 struct btrfs_root *root,
3027 struct extent_buffer *buf,
3028 int full_backref, int inc)
3029 {
3030 u64 bytenr;
3031 u64 num_bytes;
3032 u64 parent;
3033 u64 ref_root;
3034 u32 nritems;
3035 struct btrfs_key key;
3036 struct btrfs_file_extent_item *fi;
3037 int i;
3038 int level;
3039 int ret = 0;
3040 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3041 u64, u64, u64, u64, u64, u64, int);
3042
3043
3044 if (btrfs_test_is_dummy_root(root))
3045 return 0;
3046
3047 ref_root = btrfs_header_owner(buf);
3048 nritems = btrfs_header_nritems(buf);
3049 level = btrfs_header_level(buf);
3050
3051 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3052 return 0;
3053
3054 if (inc)
3055 process_func = btrfs_inc_extent_ref;
3056 else
3057 process_func = btrfs_free_extent;
3058
3059 if (full_backref)
3060 parent = buf->start;
3061 else
3062 parent = 0;
3063
3064 for (i = 0; i < nritems; i++) {
3065 if (level == 0) {
3066 btrfs_item_key_to_cpu(buf, &key, i);
3067 if (key.type != BTRFS_EXTENT_DATA_KEY)
3068 continue;
3069 fi = btrfs_item_ptr(buf, i,
3070 struct btrfs_file_extent_item);
3071 if (btrfs_file_extent_type(buf, fi) ==
3072 BTRFS_FILE_EXTENT_INLINE)
3073 continue;
3074 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3075 if (bytenr == 0)
3076 continue;
3077
3078 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3079 key.offset -= btrfs_file_extent_offset(buf, fi);
3080 ret = process_func(trans, root, bytenr, num_bytes,
3081 parent, ref_root, key.objectid,
3082 key.offset, 1);
3083 if (ret)
3084 goto fail;
3085 } else {
3086 bytenr = btrfs_node_blockptr(buf, i);
3087 num_bytes = root->nodesize;
3088 ret = process_func(trans, root, bytenr, num_bytes,
3089 parent, ref_root, level - 1, 0,
3090 1);
3091 if (ret)
3092 goto fail;
3093 }
3094 }
3095 return 0;
3096 fail:
3097 return ret;
3098 }
3099
3100 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3101 struct extent_buffer *buf, int full_backref)
3102 {
3103 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3104 }
3105
3106 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3107 struct extent_buffer *buf, int full_backref)
3108 {
3109 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3110 }
3111
3112 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3113 struct btrfs_root *root,
3114 struct btrfs_path *path,
3115 struct btrfs_block_group_cache *cache)
3116 {
3117 int ret;
3118 struct btrfs_root *extent_root = root->fs_info->extent_root;
3119 unsigned long bi;
3120 struct extent_buffer *leaf;
3121
3122 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3123 if (ret) {
3124 if (ret > 0)
3125 ret = -ENOENT;
3126 goto fail;
3127 }
3128
3129 leaf = path->nodes[0];
3130 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3131 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3132 btrfs_mark_buffer_dirty(leaf);
3133 fail:
3134 btrfs_release_path(path);
3135 return ret;
3136
3137 }
3138
3139 static struct btrfs_block_group_cache *
3140 next_block_group(struct btrfs_root *root,
3141 struct btrfs_block_group_cache *cache)
3142 {
3143 struct rb_node *node;
3144
3145 spin_lock(&root->fs_info->block_group_cache_lock);
3146
3147 /* If our block group was removed, we need a full search. */
3148 if (RB_EMPTY_NODE(&cache->cache_node)) {
3149 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3150
3151 spin_unlock(&root->fs_info->block_group_cache_lock);
3152 btrfs_put_block_group(cache);
3153 cache = btrfs_lookup_first_block_group(root->fs_info,
3154 next_bytenr);
3155 return cache;
3156 }
3157 node = rb_next(&cache->cache_node);
3158 btrfs_put_block_group(cache);
3159 if (node) {
3160 cache = rb_entry(node, struct btrfs_block_group_cache,
3161 cache_node);
3162 btrfs_get_block_group(cache);
3163 } else
3164 cache = NULL;
3165 spin_unlock(&root->fs_info->block_group_cache_lock);
3166 return cache;
3167 }
3168
3169 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3170 struct btrfs_trans_handle *trans,
3171 struct btrfs_path *path)
3172 {
3173 struct btrfs_root *root = block_group->fs_info->tree_root;
3174 struct inode *inode = NULL;
3175 u64 alloc_hint = 0;
3176 int dcs = BTRFS_DC_ERROR;
3177 u64 num_pages = 0;
3178 int retries = 0;
3179 int ret = 0;
3180
3181 /*
3182 * If this block group is smaller than 100 megs don't bother caching the
3183 * block group.
3184 */
3185 if (block_group->key.offset < (100 * 1024 * 1024)) {
3186 spin_lock(&block_group->lock);
3187 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3188 spin_unlock(&block_group->lock);
3189 return 0;
3190 }
3191
3192 if (trans->aborted)
3193 return 0;
3194 again:
3195 inode = lookup_free_space_inode(root, block_group, path);
3196 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3197 ret = PTR_ERR(inode);
3198 btrfs_release_path(path);
3199 goto out;
3200 }
3201
3202 if (IS_ERR(inode)) {
3203 BUG_ON(retries);
3204 retries++;
3205
3206 if (block_group->ro)
3207 goto out_free;
3208
3209 ret = create_free_space_inode(root, trans, block_group, path);
3210 if (ret)
3211 goto out_free;
3212 goto again;
3213 }
3214
3215 /* We've already setup this transaction, go ahead and exit */
3216 if (block_group->cache_generation == trans->transid &&
3217 i_size_read(inode)) {
3218 dcs = BTRFS_DC_SETUP;
3219 goto out_put;
3220 }
3221
3222 /*
3223 * We want to set the generation to 0, that way if anything goes wrong
3224 * from here on out we know not to trust this cache when we load up next
3225 * time.
3226 */
3227 BTRFS_I(inode)->generation = 0;
3228 ret = btrfs_update_inode(trans, root, inode);
3229 if (ret) {
3230 /*
3231 * So theoretically we could recover from this, simply set the
3232 * super cache generation to 0 so we know to invalidate the
3233 * cache, but then we'd have to keep track of the block groups
3234 * that fail this way so we know we _have_ to reset this cache
3235 * before the next commit or risk reading stale cache. So to
3236 * limit our exposure to horrible edge cases lets just abort the
3237 * transaction, this only happens in really bad situations
3238 * anyway.
3239 */
3240 btrfs_abort_transaction(trans, root, ret);
3241 goto out_put;
3242 }
3243 WARN_ON(ret);
3244
3245 if (i_size_read(inode) > 0) {
3246 ret = btrfs_check_trunc_cache_free_space(root,
3247 &root->fs_info->global_block_rsv);
3248 if (ret)
3249 goto out_put;
3250
3251 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3252 if (ret)
3253 goto out_put;
3254 }
3255
3256 spin_lock(&block_group->lock);
3257 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3258 !btrfs_test_opt(root, SPACE_CACHE)) {
3259 /*
3260 * don't bother trying to write stuff out _if_
3261 * a) we're not cached,
3262 * b) we're with nospace_cache mount option.
3263 */
3264 dcs = BTRFS_DC_WRITTEN;
3265 spin_unlock(&block_group->lock);
3266 goto out_put;
3267 }
3268 spin_unlock(&block_group->lock);
3269
3270 /*
3271 * Try to preallocate enough space based on how big the block group is.
3272 * Keep in mind this has to include any pinned space which could end up
3273 * taking up quite a bit since it's not folded into the other space
3274 * cache.
3275 */
3276 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3277 if (!num_pages)
3278 num_pages = 1;
3279
3280 num_pages *= 16;
3281 num_pages *= PAGE_CACHE_SIZE;
3282
3283 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3284 if (ret)
3285 goto out_put;
3286
3287 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3288 num_pages, num_pages,
3289 &alloc_hint);
3290 if (!ret)
3291 dcs = BTRFS_DC_SETUP;
3292 btrfs_free_reserved_data_space(inode, num_pages);
3293
3294 out_put:
3295 iput(inode);
3296 out_free:
3297 btrfs_release_path(path);
3298 out:
3299 spin_lock(&block_group->lock);
3300 if (!ret && dcs == BTRFS_DC_SETUP)
3301 block_group->cache_generation = trans->transid;
3302 block_group->disk_cache_state = dcs;
3303 spin_unlock(&block_group->lock);
3304
3305 return ret;
3306 }
3307
3308 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3309 struct btrfs_root *root)
3310 {
3311 struct btrfs_block_group_cache *cache, *tmp;
3312 struct btrfs_transaction *cur_trans = trans->transaction;
3313 struct btrfs_path *path;
3314
3315 if (list_empty(&cur_trans->dirty_bgs) ||
3316 !btrfs_test_opt(root, SPACE_CACHE))
3317 return 0;
3318
3319 path = btrfs_alloc_path();
3320 if (!path)
3321 return -ENOMEM;
3322
3323 /* Could add new block groups, use _safe just in case */
3324 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3325 dirty_list) {
3326 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3327 cache_save_setup(cache, trans, path);
3328 }
3329
3330 btrfs_free_path(path);
3331 return 0;
3332 }
3333
3334 /*
3335 * transaction commit does final block group cache writeback during a
3336 * critical section where nothing is allowed to change the FS. This is
3337 * required in order for the cache to actually match the block group,
3338 * but can introduce a lot of latency into the commit.
3339 *
3340 * So, btrfs_start_dirty_block_groups is here to kick off block group
3341 * cache IO. There's a chance we'll have to redo some of it if the
3342 * block group changes again during the commit, but it greatly reduces
3343 * the commit latency by getting rid of the easy block groups while
3344 * we're still allowing others to join the commit.
3345 */
3346 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3347 struct btrfs_root *root)
3348 {
3349 struct btrfs_block_group_cache *cache;
3350 struct btrfs_transaction *cur_trans = trans->transaction;
3351 int ret = 0;
3352 int should_put;
3353 struct btrfs_path *path = NULL;
3354 LIST_HEAD(dirty);
3355 struct list_head *io = &cur_trans->io_bgs;
3356 int num_started = 0;
3357 int loops = 0;
3358
3359 spin_lock(&cur_trans->dirty_bgs_lock);
3360 if (list_empty(&cur_trans->dirty_bgs)) {
3361 spin_unlock(&cur_trans->dirty_bgs_lock);
3362 return 0;
3363 }
3364 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3365 spin_unlock(&cur_trans->dirty_bgs_lock);
3366
3367 again:
3368 /*
3369 * make sure all the block groups on our dirty list actually
3370 * exist
3371 */
3372 btrfs_create_pending_block_groups(trans, root);
3373
3374 if (!path) {
3375 path = btrfs_alloc_path();
3376 if (!path)
3377 return -ENOMEM;
3378 }
3379
3380 /*
3381 * cache_write_mutex is here only to save us from balance or automatic
3382 * removal of empty block groups deleting this block group while we are
3383 * writing out the cache
3384 */
3385 mutex_lock(&trans->transaction->cache_write_mutex);
3386 while (!list_empty(&dirty)) {
3387 cache = list_first_entry(&dirty,
3388 struct btrfs_block_group_cache,
3389 dirty_list);
3390 /*
3391 * this can happen if something re-dirties a block
3392 * group that is already under IO. Just wait for it to
3393 * finish and then do it all again
3394 */
3395 if (!list_empty(&cache->io_list)) {
3396 list_del_init(&cache->io_list);
3397 btrfs_wait_cache_io(root, trans, cache,
3398 &cache->io_ctl, path,
3399 cache->key.objectid);
3400 btrfs_put_block_group(cache);
3401 }
3402
3403
3404 /*
3405 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3406 * if it should update the cache_state. Don't delete
3407 * until after we wait.
3408 *
3409 * Since we're not running in the commit critical section
3410 * we need the dirty_bgs_lock to protect from update_block_group
3411 */
3412 spin_lock(&cur_trans->dirty_bgs_lock);
3413 list_del_init(&cache->dirty_list);
3414 spin_unlock(&cur_trans->dirty_bgs_lock);
3415
3416 should_put = 1;
3417
3418 cache_save_setup(cache, trans, path);
3419
3420 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3421 cache->io_ctl.inode = NULL;
3422 ret = btrfs_write_out_cache(root, trans, cache, path);
3423 if (ret == 0 && cache->io_ctl.inode) {
3424 num_started++;
3425 should_put = 0;
3426
3427 /*
3428 * the cache_write_mutex is protecting
3429 * the io_list
3430 */
3431 list_add_tail(&cache->io_list, io);
3432 } else {
3433 /*
3434 * if we failed to write the cache, the
3435 * generation will be bad and life goes on
3436 */
3437 ret = 0;
3438 }
3439 }
3440 if (!ret) {
3441 ret = write_one_cache_group(trans, root, path, cache);
3442 /*
3443 * Our block group might still be attached to the list
3444 * of new block groups in the transaction handle of some
3445 * other task (struct btrfs_trans_handle->new_bgs). This
3446 * means its block group item isn't yet in the extent
3447 * tree. If this happens ignore the error, as we will
3448 * try again later in the critical section of the
3449 * transaction commit.
3450 */
3451 if (ret == -ENOENT) {
3452 ret = 0;
3453 spin_lock(&cur_trans->dirty_bgs_lock);
3454 if (list_empty(&cache->dirty_list)) {
3455 list_add_tail(&cache->dirty_list,
3456 &cur_trans->dirty_bgs);
3457 btrfs_get_block_group(cache);
3458 }
3459 spin_unlock(&cur_trans->dirty_bgs_lock);
3460 } else if (ret) {
3461 btrfs_abort_transaction(trans, root, ret);
3462 }
3463 }
3464
3465 /* if its not on the io list, we need to put the block group */
3466 if (should_put)
3467 btrfs_put_block_group(cache);
3468
3469 if (ret)
3470 break;
3471
3472 /*
3473 * Avoid blocking other tasks for too long. It might even save
3474 * us from writing caches for block groups that are going to be
3475 * removed.
3476 */
3477 mutex_unlock(&trans->transaction->cache_write_mutex);
3478 mutex_lock(&trans->transaction->cache_write_mutex);
3479 }
3480 mutex_unlock(&trans->transaction->cache_write_mutex);
3481
3482 /*
3483 * go through delayed refs for all the stuff we've just kicked off
3484 * and then loop back (just once)
3485 */
3486 ret = btrfs_run_delayed_refs(trans, root, 0);
3487 if (!ret && loops == 0) {
3488 loops++;
3489 spin_lock(&cur_trans->dirty_bgs_lock);
3490 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3491 /*
3492 * dirty_bgs_lock protects us from concurrent block group
3493 * deletes too (not just cache_write_mutex).
3494 */
3495 if (!list_empty(&dirty)) {
3496 spin_unlock(&cur_trans->dirty_bgs_lock);
3497 goto again;
3498 }
3499 spin_unlock(&cur_trans->dirty_bgs_lock);
3500 }
3501
3502 btrfs_free_path(path);
3503 return ret;
3504 }
3505
3506 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3507 struct btrfs_root *root)
3508 {
3509 struct btrfs_block_group_cache *cache;
3510 struct btrfs_transaction *cur_trans = trans->transaction;
3511 int ret = 0;
3512 int should_put;
3513 struct btrfs_path *path;
3514 struct list_head *io = &cur_trans->io_bgs;
3515 int num_started = 0;
3516
3517 path = btrfs_alloc_path();
3518 if (!path)
3519 return -ENOMEM;
3520
3521 /*
3522 * We don't need the lock here since we are protected by the transaction
3523 * commit. We want to do the cache_save_setup first and then run the
3524 * delayed refs to make sure we have the best chance at doing this all
3525 * in one shot.
3526 */
3527 while (!list_empty(&cur_trans->dirty_bgs)) {
3528 cache = list_first_entry(&cur_trans->dirty_bgs,
3529 struct btrfs_block_group_cache,
3530 dirty_list);
3531
3532 /*
3533 * this can happen if cache_save_setup re-dirties a block
3534 * group that is already under IO. Just wait for it to
3535 * finish and then do it all again
3536 */
3537 if (!list_empty(&cache->io_list)) {
3538 list_del_init(&cache->io_list);
3539 btrfs_wait_cache_io(root, trans, cache,
3540 &cache->io_ctl, path,
3541 cache->key.objectid);
3542 btrfs_put_block_group(cache);
3543 }
3544
3545 /*
3546 * don't remove from the dirty list until after we've waited
3547 * on any pending IO
3548 */
3549 list_del_init(&cache->dirty_list);
3550 should_put = 1;
3551
3552 cache_save_setup(cache, trans, path);
3553
3554 if (!ret)
3555 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3556
3557 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3558 cache->io_ctl.inode = NULL;
3559 ret = btrfs_write_out_cache(root, trans, cache, path);
3560 if (ret == 0 && cache->io_ctl.inode) {
3561 num_started++;
3562 should_put = 0;
3563 list_add_tail(&cache->io_list, io);
3564 } else {
3565 /*
3566 * if we failed to write the cache, the
3567 * generation will be bad and life goes on
3568 */
3569 ret = 0;
3570 }
3571 }
3572 if (!ret) {
3573 ret = write_one_cache_group(trans, root, path, cache);
3574 if (ret)
3575 btrfs_abort_transaction(trans, root, ret);
3576 }
3577
3578 /* if its not on the io list, we need to put the block group */
3579 if (should_put)
3580 btrfs_put_block_group(cache);
3581 }
3582
3583 while (!list_empty(io)) {
3584 cache = list_first_entry(io, struct btrfs_block_group_cache,
3585 io_list);
3586 list_del_init(&cache->io_list);
3587 btrfs_wait_cache_io(root, trans, cache,
3588 &cache->io_ctl, path, cache->key.objectid);
3589 btrfs_put_block_group(cache);
3590 }
3591
3592 btrfs_free_path(path);
3593 return ret;
3594 }
3595
3596 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3597 {
3598 struct btrfs_block_group_cache *block_group;
3599 int readonly = 0;
3600
3601 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3602 if (!block_group || block_group->ro)
3603 readonly = 1;
3604 if (block_group)
3605 btrfs_put_block_group(block_group);
3606 return readonly;
3607 }
3608
3609 static const char *alloc_name(u64 flags)
3610 {
3611 switch (flags) {
3612 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3613 return "mixed";
3614 case BTRFS_BLOCK_GROUP_METADATA:
3615 return "metadata";
3616 case BTRFS_BLOCK_GROUP_DATA:
3617 return "data";
3618 case BTRFS_BLOCK_GROUP_SYSTEM:
3619 return "system";
3620 default:
3621 WARN_ON(1);
3622 return "invalid-combination";
3623 };
3624 }
3625
3626 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3627 u64 total_bytes, u64 bytes_used,
3628 struct btrfs_space_info **space_info)
3629 {
3630 struct btrfs_space_info *found;
3631 int i;
3632 int factor;
3633 int ret;
3634
3635 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3636 BTRFS_BLOCK_GROUP_RAID10))
3637 factor = 2;
3638 else
3639 factor = 1;
3640
3641 found = __find_space_info(info, flags);
3642 if (found) {
3643 spin_lock(&found->lock);
3644 found->total_bytes += total_bytes;
3645 found->disk_total += total_bytes * factor;
3646 found->bytes_used += bytes_used;
3647 found->disk_used += bytes_used * factor;
3648 if (total_bytes > 0)
3649 found->full = 0;
3650 spin_unlock(&found->lock);
3651 *space_info = found;
3652 return 0;
3653 }
3654 found = kzalloc(sizeof(*found), GFP_NOFS);
3655 if (!found)
3656 return -ENOMEM;
3657
3658 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3659 if (ret) {
3660 kfree(found);
3661 return ret;
3662 }
3663
3664 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3665 INIT_LIST_HEAD(&found->block_groups[i]);
3666 init_rwsem(&found->groups_sem);
3667 spin_lock_init(&found->lock);
3668 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3669 found->total_bytes = total_bytes;
3670 found->disk_total = total_bytes * factor;
3671 found->bytes_used = bytes_used;
3672 found->disk_used = bytes_used * factor;
3673 found->bytes_pinned = 0;
3674 found->bytes_reserved = 0;
3675 found->bytes_readonly = 0;
3676 found->bytes_may_use = 0;
3677 if (total_bytes > 0)
3678 found->full = 0;
3679 else
3680 found->full = 1;
3681 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3682 found->chunk_alloc = 0;
3683 found->flush = 0;
3684 init_waitqueue_head(&found->wait);
3685 INIT_LIST_HEAD(&found->ro_bgs);
3686
3687 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3688 info->space_info_kobj, "%s",
3689 alloc_name(found->flags));
3690 if (ret) {
3691 kfree(found);
3692 return ret;
3693 }
3694
3695 *space_info = found;
3696 list_add_rcu(&found->list, &info->space_info);
3697 if (flags & BTRFS_BLOCK_GROUP_DATA)
3698 info->data_sinfo = found;
3699
3700 return ret;
3701 }
3702
3703 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3704 {
3705 u64 extra_flags = chunk_to_extended(flags) &
3706 BTRFS_EXTENDED_PROFILE_MASK;
3707
3708 write_seqlock(&fs_info->profiles_lock);
3709 if (flags & BTRFS_BLOCK_GROUP_DATA)
3710 fs_info->avail_data_alloc_bits |= extra_flags;
3711 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3712 fs_info->avail_metadata_alloc_bits |= extra_flags;
3713 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3714 fs_info->avail_system_alloc_bits |= extra_flags;
3715 write_sequnlock(&fs_info->profiles_lock);
3716 }
3717
3718 /*
3719 * returns target flags in extended format or 0 if restripe for this
3720 * chunk_type is not in progress
3721 *
3722 * should be called with either volume_mutex or balance_lock held
3723 */
3724 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3725 {
3726 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727 u64 target = 0;
3728
3729 if (!bctl)
3730 return 0;
3731
3732 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3733 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3734 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3735 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3736 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3737 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3738 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3739 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3740 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3741 }
3742
3743 return target;
3744 }
3745
3746 /*
3747 * @flags: available profiles in extended format (see ctree.h)
3748 *
3749 * Returns reduced profile in chunk format. If profile changing is in
3750 * progress (either running or paused) picks the target profile (if it's
3751 * already available), otherwise falls back to plain reducing.
3752 */
3753 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3754 {
3755 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3756 u64 target;
3757 u64 tmp;
3758
3759 /*
3760 * see if restripe for this chunk_type is in progress, if so
3761 * try to reduce to the target profile
3762 */
3763 spin_lock(&root->fs_info->balance_lock);
3764 target = get_restripe_target(root->fs_info, flags);
3765 if (target) {
3766 /* pick target profile only if it's already available */
3767 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3768 spin_unlock(&root->fs_info->balance_lock);
3769 return extended_to_chunk(target);
3770 }
3771 }
3772 spin_unlock(&root->fs_info->balance_lock);
3773
3774 /* First, mask out the RAID levels which aren't possible */
3775 if (num_devices == 1)
3776 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3777 BTRFS_BLOCK_GROUP_RAID5);
3778 if (num_devices < 3)
3779 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3780 if (num_devices < 4)
3781 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3782
3783 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3784 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3785 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3786 flags &= ~tmp;
3787
3788 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3789 tmp = BTRFS_BLOCK_GROUP_RAID6;
3790 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3791 tmp = BTRFS_BLOCK_GROUP_RAID5;
3792 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3793 tmp = BTRFS_BLOCK_GROUP_RAID10;
3794 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3795 tmp = BTRFS_BLOCK_GROUP_RAID1;
3796 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3797 tmp = BTRFS_BLOCK_GROUP_RAID0;
3798
3799 return extended_to_chunk(flags | tmp);
3800 }
3801
3802 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3803 {
3804 unsigned seq;
3805 u64 flags;
3806
3807 do {
3808 flags = orig_flags;
3809 seq = read_seqbegin(&root->fs_info->profiles_lock);
3810
3811 if (flags & BTRFS_BLOCK_GROUP_DATA)
3812 flags |= root->fs_info->avail_data_alloc_bits;
3813 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3814 flags |= root->fs_info->avail_system_alloc_bits;
3815 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3816 flags |= root->fs_info->avail_metadata_alloc_bits;
3817 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3818
3819 return btrfs_reduce_alloc_profile(root, flags);
3820 }
3821
3822 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3823 {
3824 u64 flags;
3825 u64 ret;
3826
3827 if (data)
3828 flags = BTRFS_BLOCK_GROUP_DATA;
3829 else if (root == root->fs_info->chunk_root)
3830 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3831 else
3832 flags = BTRFS_BLOCK_GROUP_METADATA;
3833
3834 ret = get_alloc_profile(root, flags);
3835 return ret;
3836 }
3837
3838 /*
3839 * This will check the space that the inode allocates from to make sure we have
3840 * enough space for bytes.
3841 */
3842 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3843 {
3844 struct btrfs_space_info *data_sinfo;
3845 struct btrfs_root *root = BTRFS_I(inode)->root;
3846 struct btrfs_fs_info *fs_info = root->fs_info;
3847 u64 used;
3848 int ret = 0;
3849 int need_commit = 2;
3850 int have_pinned_space;
3851
3852 /* make sure bytes are sectorsize aligned */
3853 bytes = ALIGN(bytes, root->sectorsize);
3854
3855 if (btrfs_is_free_space_inode(inode)) {
3856 need_commit = 0;
3857 ASSERT(current->journal_info);
3858 }
3859
3860 data_sinfo = fs_info->data_sinfo;
3861 if (!data_sinfo)
3862 goto alloc;
3863
3864 again:
3865 /* make sure we have enough space to handle the data first */
3866 spin_lock(&data_sinfo->lock);
3867 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3868 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3869 data_sinfo->bytes_may_use;
3870
3871 if (used + bytes > data_sinfo->total_bytes) {
3872 struct btrfs_trans_handle *trans;
3873
3874 /*
3875 * if we don't have enough free bytes in this space then we need
3876 * to alloc a new chunk.
3877 */
3878 if (!data_sinfo->full) {
3879 u64 alloc_target;
3880
3881 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3882 spin_unlock(&data_sinfo->lock);
3883 alloc:
3884 alloc_target = btrfs_get_alloc_profile(root, 1);
3885 /*
3886 * It is ugly that we don't call nolock join
3887 * transaction for the free space inode case here.
3888 * But it is safe because we only do the data space
3889 * reservation for the free space cache in the
3890 * transaction context, the common join transaction
3891 * just increase the counter of the current transaction
3892 * handler, doesn't try to acquire the trans_lock of
3893 * the fs.
3894 */
3895 trans = btrfs_join_transaction(root);
3896 if (IS_ERR(trans))
3897 return PTR_ERR(trans);
3898
3899 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3900 alloc_target,
3901 CHUNK_ALLOC_NO_FORCE);
3902 btrfs_end_transaction(trans, root);
3903 if (ret < 0) {
3904 if (ret != -ENOSPC)
3905 return ret;
3906 else {
3907 have_pinned_space = 1;
3908 goto commit_trans;
3909 }
3910 }
3911
3912 if (!data_sinfo)
3913 data_sinfo = fs_info->data_sinfo;
3914
3915 goto again;
3916 }
3917
3918 /*
3919 * If we don't have enough pinned space to deal with this
3920 * allocation, and no removed chunk in current transaction,
3921 * don't bother committing the transaction.
3922 */
3923 have_pinned_space = percpu_counter_compare(
3924 &data_sinfo->total_bytes_pinned,
3925 used + bytes - data_sinfo->total_bytes);
3926 spin_unlock(&data_sinfo->lock);
3927
3928 /* commit the current transaction and try again */
3929 commit_trans:
3930 if (need_commit &&
3931 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3932 need_commit--;
3933
3934 if (need_commit > 0)
3935 btrfs_wait_ordered_roots(fs_info, -1);
3936
3937 trans = btrfs_join_transaction(root);
3938 if (IS_ERR(trans))
3939 return PTR_ERR(trans);
3940 if (have_pinned_space >= 0 ||
3941 trans->transaction->have_free_bgs ||
3942 need_commit > 0) {
3943 ret = btrfs_commit_transaction(trans, root);
3944 if (ret)
3945 return ret;
3946 /*
3947 * make sure that all running delayed iput are
3948 * done
3949 */
3950 down_write(&root->fs_info->delayed_iput_sem);
3951 up_write(&root->fs_info->delayed_iput_sem);
3952 goto again;
3953 } else {
3954 btrfs_end_transaction(trans, root);
3955 }
3956 }
3957
3958 trace_btrfs_space_reservation(root->fs_info,
3959 "space_info:enospc",
3960 data_sinfo->flags, bytes, 1);
3961 return -ENOSPC;
3962 }
3963 ret = btrfs_qgroup_reserve(root, write_bytes);
3964 if (ret)
3965 goto out;
3966 data_sinfo->bytes_may_use += bytes;
3967 trace_btrfs_space_reservation(root->fs_info, "space_info",
3968 data_sinfo->flags, bytes, 1);
3969 out:
3970 spin_unlock(&data_sinfo->lock);
3971
3972 return ret;
3973 }
3974
3975 /*
3976 * Called if we need to clear a data reservation for this inode.
3977 */
3978 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3979 {
3980 struct btrfs_root *root = BTRFS_I(inode)->root;
3981 struct btrfs_space_info *data_sinfo;
3982
3983 /* make sure bytes are sectorsize aligned */
3984 bytes = ALIGN(bytes, root->sectorsize);
3985
3986 data_sinfo = root->fs_info->data_sinfo;
3987 spin_lock(&data_sinfo->lock);
3988 WARN_ON(data_sinfo->bytes_may_use < bytes);
3989 data_sinfo->bytes_may_use -= bytes;
3990 trace_btrfs_space_reservation(root->fs_info, "space_info",
3991 data_sinfo->flags, bytes, 0);
3992 spin_unlock(&data_sinfo->lock);
3993 }
3994
3995 static void force_metadata_allocation(struct btrfs_fs_info *info)
3996 {
3997 struct list_head *head = &info->space_info;
3998 struct btrfs_space_info *found;
3999
4000 rcu_read_lock();
4001 list_for_each_entry_rcu(found, head, list) {
4002 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4003 found->force_alloc = CHUNK_ALLOC_FORCE;
4004 }
4005 rcu_read_unlock();
4006 }
4007
4008 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4009 {
4010 return (global->size << 1);
4011 }
4012
4013 static int should_alloc_chunk(struct btrfs_root *root,
4014 struct btrfs_space_info *sinfo, int force)
4015 {
4016 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4017 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4018 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4019 u64 thresh;
4020
4021 if (force == CHUNK_ALLOC_FORCE)
4022 return 1;
4023
4024 /*
4025 * We need to take into account the global rsv because for all intents
4026 * and purposes it's used space. Don't worry about locking the
4027 * global_rsv, it doesn't change except when the transaction commits.
4028 */
4029 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4030 num_allocated += calc_global_rsv_need_space(global_rsv);
4031
4032 /*
4033 * in limited mode, we want to have some free space up to
4034 * about 1% of the FS size.
4035 */
4036 if (force == CHUNK_ALLOC_LIMITED) {
4037 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4038 thresh = max_t(u64, 64 * 1024 * 1024,
4039 div_factor_fine(thresh, 1));
4040
4041 if (num_bytes - num_allocated < thresh)
4042 return 1;
4043 }
4044
4045 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4046 return 0;
4047 return 1;
4048 }
4049
4050 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4051 {
4052 u64 num_dev;
4053
4054 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4055 BTRFS_BLOCK_GROUP_RAID0 |
4056 BTRFS_BLOCK_GROUP_RAID5 |
4057 BTRFS_BLOCK_GROUP_RAID6))
4058 num_dev = root->fs_info->fs_devices->rw_devices;
4059 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4060 num_dev = 2;
4061 else
4062 num_dev = 1; /* DUP or single */
4063
4064 return num_dev;
4065 }
4066
4067 /*
4068 * If @is_allocation is true, reserve space in the system space info necessary
4069 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4070 * removing a chunk.
4071 */
4072 void check_system_chunk(struct btrfs_trans_handle *trans,
4073 struct btrfs_root *root,
4074 u64 type)
4075 {
4076 struct btrfs_space_info *info;
4077 u64 left;
4078 u64 thresh;
4079 int ret = 0;
4080 u64 num_devs;
4081
4082 /*
4083 * Needed because we can end up allocating a system chunk and for an
4084 * atomic and race free space reservation in the chunk block reserve.
4085 */
4086 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4087
4088 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4089 spin_lock(&info->lock);
4090 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4091 info->bytes_reserved - info->bytes_readonly -
4092 info->bytes_may_use;
4093 spin_unlock(&info->lock);
4094
4095 num_devs = get_profile_num_devs(root, type);
4096
4097 /* num_devs device items to update and 1 chunk item to add or remove */
4098 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4099 btrfs_calc_trans_metadata_size(root, 1);
4100
4101 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4102 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4103 left, thresh, type);
4104 dump_space_info(info, 0, 0);
4105 }
4106
4107 if (left < thresh) {
4108 u64 flags;
4109
4110 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4111 /*
4112 * Ignore failure to create system chunk. We might end up not
4113 * needing it, as we might not need to COW all nodes/leafs from
4114 * the paths we visit in the chunk tree (they were already COWed
4115 * or created in the current transaction for example).
4116 */
4117 ret = btrfs_alloc_chunk(trans, root, flags);
4118 }
4119
4120 if (!ret) {
4121 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4122 &root->fs_info->chunk_block_rsv,
4123 thresh, BTRFS_RESERVE_NO_FLUSH);
4124 if (!ret)
4125 trans->chunk_bytes_reserved += thresh;
4126 }
4127 }
4128
4129 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4130 struct btrfs_root *extent_root, u64 flags, int force)
4131 {
4132 struct btrfs_space_info *space_info;
4133 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4134 int wait_for_alloc = 0;
4135 int ret = 0;
4136
4137 /* Don't re-enter if we're already allocating a chunk */
4138 if (trans->allocating_chunk)
4139 return -ENOSPC;
4140
4141 space_info = __find_space_info(extent_root->fs_info, flags);
4142 if (!space_info) {
4143 ret = update_space_info(extent_root->fs_info, flags,
4144 0, 0, &space_info);
4145 BUG_ON(ret); /* -ENOMEM */
4146 }
4147 BUG_ON(!space_info); /* Logic error */
4148
4149 again:
4150 spin_lock(&space_info->lock);
4151 if (force < space_info->force_alloc)
4152 force = space_info->force_alloc;
4153 if (space_info->full) {
4154 if (should_alloc_chunk(extent_root, space_info, force))
4155 ret = -ENOSPC;
4156 else
4157 ret = 0;
4158 spin_unlock(&space_info->lock);
4159 return ret;
4160 }
4161
4162 if (!should_alloc_chunk(extent_root, space_info, force)) {
4163 spin_unlock(&space_info->lock);
4164 return 0;
4165 } else if (space_info->chunk_alloc) {
4166 wait_for_alloc = 1;
4167 } else {
4168 space_info->chunk_alloc = 1;
4169 }
4170
4171 spin_unlock(&space_info->lock);
4172
4173 mutex_lock(&fs_info->chunk_mutex);
4174
4175 /*
4176 * The chunk_mutex is held throughout the entirety of a chunk
4177 * allocation, so once we've acquired the chunk_mutex we know that the
4178 * other guy is done and we need to recheck and see if we should
4179 * allocate.
4180 */
4181 if (wait_for_alloc) {
4182 mutex_unlock(&fs_info->chunk_mutex);
4183 wait_for_alloc = 0;
4184 goto again;
4185 }
4186
4187 trans->allocating_chunk = true;
4188
4189 /*
4190 * If we have mixed data/metadata chunks we want to make sure we keep
4191 * allocating mixed chunks instead of individual chunks.
4192 */
4193 if (btrfs_mixed_space_info(space_info))
4194 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4195
4196 /*
4197 * if we're doing a data chunk, go ahead and make sure that
4198 * we keep a reasonable number of metadata chunks allocated in the
4199 * FS as well.
4200 */
4201 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4202 fs_info->data_chunk_allocations++;
4203 if (!(fs_info->data_chunk_allocations %
4204 fs_info->metadata_ratio))
4205 force_metadata_allocation(fs_info);
4206 }
4207
4208 /*
4209 * Check if we have enough space in SYSTEM chunk because we may need
4210 * to update devices.
4211 */
4212 check_system_chunk(trans, extent_root, flags);
4213
4214 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4215 trans->allocating_chunk = false;
4216
4217 spin_lock(&space_info->lock);
4218 if (ret < 0 && ret != -ENOSPC)
4219 goto out;
4220 if (ret)
4221 space_info->full = 1;
4222 else
4223 ret = 1;
4224
4225 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4226 out:
4227 space_info->chunk_alloc = 0;
4228 spin_unlock(&space_info->lock);
4229 mutex_unlock(&fs_info->chunk_mutex);
4230 return ret;
4231 }
4232
4233 static int can_overcommit(struct btrfs_root *root,
4234 struct btrfs_space_info *space_info, u64 bytes,
4235 enum btrfs_reserve_flush_enum flush)
4236 {
4237 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4238 u64 profile = btrfs_get_alloc_profile(root, 0);
4239 u64 space_size;
4240 u64 avail;
4241 u64 used;
4242
4243 used = space_info->bytes_used + space_info->bytes_reserved +
4244 space_info->bytes_pinned + space_info->bytes_readonly;
4245
4246 /*
4247 * We only want to allow over committing if we have lots of actual space
4248 * free, but if we don't have enough space to handle the global reserve
4249 * space then we could end up having a real enospc problem when trying
4250 * to allocate a chunk or some other such important allocation.
4251 */
4252 spin_lock(&global_rsv->lock);
4253 space_size = calc_global_rsv_need_space(global_rsv);
4254 spin_unlock(&global_rsv->lock);
4255 if (used + space_size >= space_info->total_bytes)
4256 return 0;
4257
4258 used += space_info->bytes_may_use;
4259
4260 spin_lock(&root->fs_info->free_chunk_lock);
4261 avail = root->fs_info->free_chunk_space;
4262 spin_unlock(&root->fs_info->free_chunk_lock);
4263
4264 /*
4265 * If we have dup, raid1 or raid10 then only half of the free
4266 * space is actually useable. For raid56, the space info used
4267 * doesn't include the parity drive, so we don't have to
4268 * change the math
4269 */
4270 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4271 BTRFS_BLOCK_GROUP_RAID1 |
4272 BTRFS_BLOCK_GROUP_RAID10))
4273 avail >>= 1;
4274
4275 /*
4276 * If we aren't flushing all things, let us overcommit up to
4277 * 1/2th of the space. If we can flush, don't let us overcommit
4278 * too much, let it overcommit up to 1/8 of the space.
4279 */
4280 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4281 avail >>= 3;
4282 else
4283 avail >>= 1;
4284
4285 if (used + bytes < space_info->total_bytes + avail)
4286 return 1;
4287 return 0;
4288 }
4289
4290 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4291 unsigned long nr_pages, int nr_items)
4292 {
4293 struct super_block *sb = root->fs_info->sb;
4294
4295 if (down_read_trylock(&sb->s_umount)) {
4296 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4297 up_read(&sb->s_umount);
4298 } else {
4299 /*
4300 * We needn't worry the filesystem going from r/w to r/o though
4301 * we don't acquire ->s_umount mutex, because the filesystem
4302 * should guarantee the delalloc inodes list be empty after
4303 * the filesystem is readonly(all dirty pages are written to
4304 * the disk).
4305 */
4306 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4307 if (!current->journal_info)
4308 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4309 }
4310 }
4311
4312 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4313 {
4314 u64 bytes;
4315 int nr;
4316
4317 bytes = btrfs_calc_trans_metadata_size(root, 1);
4318 nr = (int)div64_u64(to_reclaim, bytes);
4319 if (!nr)
4320 nr = 1;
4321 return nr;
4322 }
4323
4324 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4325
4326 /*
4327 * shrink metadata reservation for delalloc
4328 */
4329 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4330 bool wait_ordered)
4331 {
4332 struct btrfs_block_rsv *block_rsv;
4333 struct btrfs_space_info *space_info;
4334 struct btrfs_trans_handle *trans;
4335 u64 delalloc_bytes;
4336 u64 max_reclaim;
4337 long time_left;
4338 unsigned long nr_pages;
4339 int loops;
4340 int items;
4341 enum btrfs_reserve_flush_enum flush;
4342
4343 /* Calc the number of the pages we need flush for space reservation */
4344 items = calc_reclaim_items_nr(root, to_reclaim);
4345 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4346
4347 trans = (struct btrfs_trans_handle *)current->journal_info;
4348 block_rsv = &root->fs_info->delalloc_block_rsv;
4349 space_info = block_rsv->space_info;
4350
4351 delalloc_bytes = percpu_counter_sum_positive(
4352 &root->fs_info->delalloc_bytes);
4353 if (delalloc_bytes == 0) {
4354 if (trans)
4355 return;
4356 if (wait_ordered)
4357 btrfs_wait_ordered_roots(root->fs_info, items);
4358 return;
4359 }
4360
4361 loops = 0;
4362 while (delalloc_bytes && loops < 3) {
4363 max_reclaim = min(delalloc_bytes, to_reclaim);
4364 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4365 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4366 /*
4367 * We need to wait for the async pages to actually start before
4368 * we do anything.
4369 */
4370 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4371 if (!max_reclaim)
4372 goto skip_async;
4373
4374 if (max_reclaim <= nr_pages)
4375 max_reclaim = 0;
4376 else
4377 max_reclaim -= nr_pages;
4378
4379 wait_event(root->fs_info->async_submit_wait,
4380 atomic_read(&root->fs_info->async_delalloc_pages) <=
4381 (int)max_reclaim);
4382 skip_async:
4383 if (!trans)
4384 flush = BTRFS_RESERVE_FLUSH_ALL;
4385 else
4386 flush = BTRFS_RESERVE_NO_FLUSH;
4387 spin_lock(&space_info->lock);
4388 if (can_overcommit(root, space_info, orig, flush)) {
4389 spin_unlock(&space_info->lock);
4390 break;
4391 }
4392 spin_unlock(&space_info->lock);
4393
4394 loops++;
4395 if (wait_ordered && !trans) {
4396 btrfs_wait_ordered_roots(root->fs_info, items);
4397 } else {
4398 time_left = schedule_timeout_killable(1);
4399 if (time_left)
4400 break;
4401 }
4402 delalloc_bytes = percpu_counter_sum_positive(
4403 &root->fs_info->delalloc_bytes);
4404 }
4405 }
4406
4407 /**
4408 * maybe_commit_transaction - possibly commit the transaction if its ok to
4409 * @root - the root we're allocating for
4410 * @bytes - the number of bytes we want to reserve
4411 * @force - force the commit
4412 *
4413 * This will check to make sure that committing the transaction will actually
4414 * get us somewhere and then commit the transaction if it does. Otherwise it
4415 * will return -ENOSPC.
4416 */
4417 static int may_commit_transaction(struct btrfs_root *root,
4418 struct btrfs_space_info *space_info,
4419 u64 bytes, int force)
4420 {
4421 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4422 struct btrfs_trans_handle *trans;
4423
4424 trans = (struct btrfs_trans_handle *)current->journal_info;
4425 if (trans)
4426 return -EAGAIN;
4427
4428 if (force)
4429 goto commit;
4430
4431 /* See if there is enough pinned space to make this reservation */
4432 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4433 bytes) >= 0)
4434 goto commit;
4435
4436 /*
4437 * See if there is some space in the delayed insertion reservation for
4438 * this reservation.
4439 */
4440 if (space_info != delayed_rsv->space_info)
4441 return -ENOSPC;
4442
4443 spin_lock(&delayed_rsv->lock);
4444 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4445 bytes - delayed_rsv->size) >= 0) {
4446 spin_unlock(&delayed_rsv->lock);
4447 return -ENOSPC;
4448 }
4449 spin_unlock(&delayed_rsv->lock);
4450
4451 commit:
4452 trans = btrfs_join_transaction(root);
4453 if (IS_ERR(trans))
4454 return -ENOSPC;
4455
4456 return btrfs_commit_transaction(trans, root);
4457 }
4458
4459 enum flush_state {
4460 FLUSH_DELAYED_ITEMS_NR = 1,
4461 FLUSH_DELAYED_ITEMS = 2,
4462 FLUSH_DELALLOC = 3,
4463 FLUSH_DELALLOC_WAIT = 4,
4464 ALLOC_CHUNK = 5,
4465 COMMIT_TRANS = 6,
4466 };
4467
4468 static int flush_space(struct btrfs_root *root,
4469 struct btrfs_space_info *space_info, u64 num_bytes,
4470 u64 orig_bytes, int state)
4471 {
4472 struct btrfs_trans_handle *trans;
4473 int nr;
4474 int ret = 0;
4475
4476 switch (state) {
4477 case FLUSH_DELAYED_ITEMS_NR:
4478 case FLUSH_DELAYED_ITEMS:
4479 if (state == FLUSH_DELAYED_ITEMS_NR)
4480 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4481 else
4482 nr = -1;
4483
4484 trans = btrfs_join_transaction(root);
4485 if (IS_ERR(trans)) {
4486 ret = PTR_ERR(trans);
4487 break;
4488 }
4489 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4490 btrfs_end_transaction(trans, root);
4491 break;
4492 case FLUSH_DELALLOC:
4493 case FLUSH_DELALLOC_WAIT:
4494 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4495 state == FLUSH_DELALLOC_WAIT);
4496 break;
4497 case ALLOC_CHUNK:
4498 trans = btrfs_join_transaction(root);
4499 if (IS_ERR(trans)) {
4500 ret = PTR_ERR(trans);
4501 break;
4502 }
4503 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4504 btrfs_get_alloc_profile(root, 0),
4505 CHUNK_ALLOC_NO_FORCE);
4506 btrfs_end_transaction(trans, root);
4507 if (ret == -ENOSPC)
4508 ret = 0;
4509 break;
4510 case COMMIT_TRANS:
4511 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4512 break;
4513 default:
4514 ret = -ENOSPC;
4515 break;
4516 }
4517
4518 return ret;
4519 }
4520
4521 static inline u64
4522 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4523 struct btrfs_space_info *space_info)
4524 {
4525 u64 used;
4526 u64 expected;
4527 u64 to_reclaim;
4528
4529 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4530 16 * 1024 * 1024);
4531 spin_lock(&space_info->lock);
4532 if (can_overcommit(root, space_info, to_reclaim,
4533 BTRFS_RESERVE_FLUSH_ALL)) {
4534 to_reclaim = 0;
4535 goto out;
4536 }
4537
4538 used = space_info->bytes_used + space_info->bytes_reserved +
4539 space_info->bytes_pinned + space_info->bytes_readonly +
4540 space_info->bytes_may_use;
4541 if (can_overcommit(root, space_info, 1024 * 1024,
4542 BTRFS_RESERVE_FLUSH_ALL))
4543 expected = div_factor_fine(space_info->total_bytes, 95);
4544 else
4545 expected = div_factor_fine(space_info->total_bytes, 90);
4546
4547 if (used > expected)
4548 to_reclaim = used - expected;
4549 else
4550 to_reclaim = 0;
4551 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4552 space_info->bytes_reserved);
4553 out:
4554 spin_unlock(&space_info->lock);
4555
4556 return to_reclaim;
4557 }
4558
4559 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4560 struct btrfs_fs_info *fs_info, u64 used)
4561 {
4562 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4563
4564 /* If we're just plain full then async reclaim just slows us down. */
4565 if (space_info->bytes_used >= thresh)
4566 return 0;
4567
4568 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4569 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4570 }
4571
4572 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4573 struct btrfs_fs_info *fs_info,
4574 int flush_state)
4575 {
4576 u64 used;
4577
4578 spin_lock(&space_info->lock);
4579 /*
4580 * We run out of space and have not got any free space via flush_space,
4581 * so don't bother doing async reclaim.
4582 */
4583 if (flush_state > COMMIT_TRANS && space_info->full) {
4584 spin_unlock(&space_info->lock);
4585 return 0;
4586 }
4587
4588 used = space_info->bytes_used + space_info->bytes_reserved +
4589 space_info->bytes_pinned + space_info->bytes_readonly +
4590 space_info->bytes_may_use;
4591 if (need_do_async_reclaim(space_info, fs_info, used)) {
4592 spin_unlock(&space_info->lock);
4593 return 1;
4594 }
4595 spin_unlock(&space_info->lock);
4596
4597 return 0;
4598 }
4599
4600 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4601 {
4602 struct btrfs_fs_info *fs_info;
4603 struct btrfs_space_info *space_info;
4604 u64 to_reclaim;
4605 int flush_state;
4606
4607 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4608 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4609
4610 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4611 space_info);
4612 if (!to_reclaim)
4613 return;
4614
4615 flush_state = FLUSH_DELAYED_ITEMS_NR;
4616 do {
4617 flush_space(fs_info->fs_root, space_info, to_reclaim,
4618 to_reclaim, flush_state);
4619 flush_state++;
4620 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4621 flush_state))
4622 return;
4623 } while (flush_state < COMMIT_TRANS);
4624 }
4625
4626 void btrfs_init_async_reclaim_work(struct work_struct *work)
4627 {
4628 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4629 }
4630
4631 /**
4632 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4633 * @root - the root we're allocating for
4634 * @block_rsv - the block_rsv we're allocating for
4635 * @orig_bytes - the number of bytes we want
4636 * @flush - whether or not we can flush to make our reservation
4637 *
4638 * This will reserve orgi_bytes number of bytes from the space info associated
4639 * with the block_rsv. If there is not enough space it will make an attempt to
4640 * flush out space to make room. It will do this by flushing delalloc if
4641 * possible or committing the transaction. If flush is 0 then no attempts to
4642 * regain reservations will be made and this will fail if there is not enough
4643 * space already.
4644 */
4645 static int reserve_metadata_bytes(struct btrfs_root *root,
4646 struct btrfs_block_rsv *block_rsv,
4647 u64 orig_bytes,
4648 enum btrfs_reserve_flush_enum flush)
4649 {
4650 struct btrfs_space_info *space_info = block_rsv->space_info;
4651 u64 used;
4652 u64 num_bytes = orig_bytes;
4653 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4654 int ret = 0;
4655 bool flushing = false;
4656
4657 again:
4658 ret = 0;
4659 spin_lock(&space_info->lock);
4660 /*
4661 * We only want to wait if somebody other than us is flushing and we
4662 * are actually allowed to flush all things.
4663 */
4664 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4665 space_info->flush) {
4666 spin_unlock(&space_info->lock);
4667 /*
4668 * If we have a trans handle we can't wait because the flusher
4669 * may have to commit the transaction, which would mean we would
4670 * deadlock since we are waiting for the flusher to finish, but
4671 * hold the current transaction open.
4672 */
4673 if (current->journal_info)
4674 return -EAGAIN;
4675 ret = wait_event_killable(space_info->wait, !space_info->flush);
4676 /* Must have been killed, return */
4677 if (ret)
4678 return -EINTR;
4679
4680 spin_lock(&space_info->lock);
4681 }
4682
4683 ret = -ENOSPC;
4684 used = space_info->bytes_used + space_info->bytes_reserved +
4685 space_info->bytes_pinned + space_info->bytes_readonly +
4686 space_info->bytes_may_use;
4687
4688 /*
4689 * The idea here is that we've not already over-reserved the block group
4690 * then we can go ahead and save our reservation first and then start
4691 * flushing if we need to. Otherwise if we've already overcommitted
4692 * lets start flushing stuff first and then come back and try to make
4693 * our reservation.
4694 */
4695 if (used <= space_info->total_bytes) {
4696 if (used + orig_bytes <= space_info->total_bytes) {
4697 space_info->bytes_may_use += orig_bytes;
4698 trace_btrfs_space_reservation(root->fs_info,
4699 "space_info", space_info->flags, orig_bytes, 1);
4700 ret = 0;
4701 } else {
4702 /*
4703 * Ok set num_bytes to orig_bytes since we aren't
4704 * overocmmitted, this way we only try and reclaim what
4705 * we need.
4706 */
4707 num_bytes = orig_bytes;
4708 }
4709 } else {
4710 /*
4711 * Ok we're over committed, set num_bytes to the overcommitted
4712 * amount plus the amount of bytes that we need for this
4713 * reservation.
4714 */
4715 num_bytes = used - space_info->total_bytes +
4716 (orig_bytes * 2);
4717 }
4718
4719 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4720 space_info->bytes_may_use += orig_bytes;
4721 trace_btrfs_space_reservation(root->fs_info, "space_info",
4722 space_info->flags, orig_bytes,
4723 1);
4724 ret = 0;
4725 }
4726
4727 /*
4728 * Couldn't make our reservation, save our place so while we're trying
4729 * to reclaim space we can actually use it instead of somebody else
4730 * stealing it from us.
4731 *
4732 * We make the other tasks wait for the flush only when we can flush
4733 * all things.
4734 */
4735 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4736 flushing = true;
4737 space_info->flush = 1;
4738 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4739 used += orig_bytes;
4740 /*
4741 * We will do the space reservation dance during log replay,
4742 * which means we won't have fs_info->fs_root set, so don't do
4743 * the async reclaim as we will panic.
4744 */
4745 if (!root->fs_info->log_root_recovering &&
4746 need_do_async_reclaim(space_info, root->fs_info, used) &&
4747 !work_busy(&root->fs_info->async_reclaim_work))
4748 queue_work(system_unbound_wq,
4749 &root->fs_info->async_reclaim_work);
4750 }
4751 spin_unlock(&space_info->lock);
4752
4753 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4754 goto out;
4755
4756 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4757 flush_state);
4758 flush_state++;
4759
4760 /*
4761 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4762 * would happen. So skip delalloc flush.
4763 */
4764 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4765 (flush_state == FLUSH_DELALLOC ||
4766 flush_state == FLUSH_DELALLOC_WAIT))
4767 flush_state = ALLOC_CHUNK;
4768
4769 if (!ret)
4770 goto again;
4771 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4772 flush_state < COMMIT_TRANS)
4773 goto again;
4774 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4775 flush_state <= COMMIT_TRANS)
4776 goto again;
4777
4778 out:
4779 if (ret == -ENOSPC &&
4780 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4781 struct btrfs_block_rsv *global_rsv =
4782 &root->fs_info->global_block_rsv;
4783
4784 if (block_rsv != global_rsv &&
4785 !block_rsv_use_bytes(global_rsv, orig_bytes))
4786 ret = 0;
4787 }
4788 if (ret == -ENOSPC)
4789 trace_btrfs_space_reservation(root->fs_info,
4790 "space_info:enospc",
4791 space_info->flags, orig_bytes, 1);
4792 if (flushing) {
4793 spin_lock(&space_info->lock);
4794 space_info->flush = 0;
4795 wake_up_all(&space_info->wait);
4796 spin_unlock(&space_info->lock);
4797 }
4798 return ret;
4799 }
4800
4801 static struct btrfs_block_rsv *get_block_rsv(
4802 const struct btrfs_trans_handle *trans,
4803 const struct btrfs_root *root)
4804 {
4805 struct btrfs_block_rsv *block_rsv = NULL;
4806
4807 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4808 block_rsv = trans->block_rsv;
4809
4810 if (root == root->fs_info->csum_root && trans->adding_csums)
4811 block_rsv = trans->block_rsv;
4812
4813 if (root == root->fs_info->uuid_root)
4814 block_rsv = trans->block_rsv;
4815
4816 if (!block_rsv)
4817 block_rsv = root->block_rsv;
4818
4819 if (!block_rsv)
4820 block_rsv = &root->fs_info->empty_block_rsv;
4821
4822 return block_rsv;
4823 }
4824
4825 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4826 u64 num_bytes)
4827 {
4828 int ret = -ENOSPC;
4829 spin_lock(&block_rsv->lock);
4830 if (block_rsv->reserved >= num_bytes) {
4831 block_rsv->reserved -= num_bytes;
4832 if (block_rsv->reserved < block_rsv->size)
4833 block_rsv->full = 0;
4834 ret = 0;
4835 }
4836 spin_unlock(&block_rsv->lock);
4837 return ret;
4838 }
4839
4840 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4841 u64 num_bytes, int update_size)
4842 {
4843 spin_lock(&block_rsv->lock);
4844 block_rsv->reserved += num_bytes;
4845 if (update_size)
4846 block_rsv->size += num_bytes;
4847 else if (block_rsv->reserved >= block_rsv->size)
4848 block_rsv->full = 1;
4849 spin_unlock(&block_rsv->lock);
4850 }
4851
4852 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4853 struct btrfs_block_rsv *dest, u64 num_bytes,
4854 int min_factor)
4855 {
4856 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4857 u64 min_bytes;
4858
4859 if (global_rsv->space_info != dest->space_info)
4860 return -ENOSPC;
4861
4862 spin_lock(&global_rsv->lock);
4863 min_bytes = div_factor(global_rsv->size, min_factor);
4864 if (global_rsv->reserved < min_bytes + num_bytes) {
4865 spin_unlock(&global_rsv->lock);
4866 return -ENOSPC;
4867 }
4868 global_rsv->reserved -= num_bytes;
4869 if (global_rsv->reserved < global_rsv->size)
4870 global_rsv->full = 0;
4871 spin_unlock(&global_rsv->lock);
4872
4873 block_rsv_add_bytes(dest, num_bytes, 1);
4874 return 0;
4875 }
4876
4877 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4878 struct btrfs_block_rsv *block_rsv,
4879 struct btrfs_block_rsv *dest, u64 num_bytes)
4880 {
4881 struct btrfs_space_info *space_info = block_rsv->space_info;
4882
4883 spin_lock(&block_rsv->lock);
4884 if (num_bytes == (u64)-1)
4885 num_bytes = block_rsv->size;
4886 block_rsv->size -= num_bytes;
4887 if (block_rsv->reserved >= block_rsv->size) {
4888 num_bytes = block_rsv->reserved - block_rsv->size;
4889 block_rsv->reserved = block_rsv->size;
4890 block_rsv->full = 1;
4891 } else {
4892 num_bytes = 0;
4893 }
4894 spin_unlock(&block_rsv->lock);
4895
4896 if (num_bytes > 0) {
4897 if (dest) {
4898 spin_lock(&dest->lock);
4899 if (!dest->full) {
4900 u64 bytes_to_add;
4901
4902 bytes_to_add = dest->size - dest->reserved;
4903 bytes_to_add = min(num_bytes, bytes_to_add);
4904 dest->reserved += bytes_to_add;
4905 if (dest->reserved >= dest->size)
4906 dest->full = 1;
4907 num_bytes -= bytes_to_add;
4908 }
4909 spin_unlock(&dest->lock);
4910 }
4911 if (num_bytes) {
4912 spin_lock(&space_info->lock);
4913 space_info->bytes_may_use -= num_bytes;
4914 trace_btrfs_space_reservation(fs_info, "space_info",
4915 space_info->flags, num_bytes, 0);
4916 spin_unlock(&space_info->lock);
4917 }
4918 }
4919 }
4920
4921 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4922 struct btrfs_block_rsv *dst, u64 num_bytes)
4923 {
4924 int ret;
4925
4926 ret = block_rsv_use_bytes(src, num_bytes);
4927 if (ret)
4928 return ret;
4929
4930 block_rsv_add_bytes(dst, num_bytes, 1);
4931 return 0;
4932 }
4933
4934 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4935 {
4936 memset(rsv, 0, sizeof(*rsv));
4937 spin_lock_init(&rsv->lock);
4938 rsv->type = type;
4939 }
4940
4941 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4942 unsigned short type)
4943 {
4944 struct btrfs_block_rsv *block_rsv;
4945 struct btrfs_fs_info *fs_info = root->fs_info;
4946
4947 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4948 if (!block_rsv)
4949 return NULL;
4950
4951 btrfs_init_block_rsv(block_rsv, type);
4952 block_rsv->space_info = __find_space_info(fs_info,
4953 BTRFS_BLOCK_GROUP_METADATA);
4954 return block_rsv;
4955 }
4956
4957 void btrfs_free_block_rsv(struct btrfs_root *root,
4958 struct btrfs_block_rsv *rsv)
4959 {
4960 if (!rsv)
4961 return;
4962 btrfs_block_rsv_release(root, rsv, (u64)-1);
4963 kfree(rsv);
4964 }
4965
4966 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4967 {
4968 kfree(rsv);
4969 }
4970
4971 int btrfs_block_rsv_add(struct btrfs_root *root,
4972 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4973 enum btrfs_reserve_flush_enum flush)
4974 {
4975 int ret;
4976
4977 if (num_bytes == 0)
4978 return 0;
4979
4980 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4981 if (!ret) {
4982 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4983 return 0;
4984 }
4985
4986 return ret;
4987 }
4988
4989 int btrfs_block_rsv_check(struct btrfs_root *root,
4990 struct btrfs_block_rsv *block_rsv, int min_factor)
4991 {
4992 u64 num_bytes = 0;
4993 int ret = -ENOSPC;
4994
4995 if (!block_rsv)
4996 return 0;
4997
4998 spin_lock(&block_rsv->lock);
4999 num_bytes = div_factor(block_rsv->size, min_factor);
5000 if (block_rsv->reserved >= num_bytes)
5001 ret = 0;
5002 spin_unlock(&block_rsv->lock);
5003
5004 return ret;
5005 }
5006
5007 int btrfs_block_rsv_refill(struct btrfs_root *root,
5008 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5009 enum btrfs_reserve_flush_enum flush)
5010 {
5011 u64 num_bytes = 0;
5012 int ret = -ENOSPC;
5013
5014 if (!block_rsv)
5015 return 0;
5016
5017 spin_lock(&block_rsv->lock);
5018 num_bytes = min_reserved;
5019 if (block_rsv->reserved >= num_bytes)
5020 ret = 0;
5021 else
5022 num_bytes -= block_rsv->reserved;
5023 spin_unlock(&block_rsv->lock);
5024
5025 if (!ret)
5026 return 0;
5027
5028 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5029 if (!ret) {
5030 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5031 return 0;
5032 }
5033
5034 return ret;
5035 }
5036
5037 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5038 struct btrfs_block_rsv *dst_rsv,
5039 u64 num_bytes)
5040 {
5041 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5042 }
5043
5044 void btrfs_block_rsv_release(struct btrfs_root *root,
5045 struct btrfs_block_rsv *block_rsv,
5046 u64 num_bytes)
5047 {
5048 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5049 if (global_rsv == block_rsv ||
5050 block_rsv->space_info != global_rsv->space_info)
5051 global_rsv = NULL;
5052 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5053 num_bytes);
5054 }
5055
5056 /*
5057 * helper to calculate size of global block reservation.
5058 * the desired value is sum of space used by extent tree,
5059 * checksum tree and root tree
5060 */
5061 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5062 {
5063 struct btrfs_space_info *sinfo;
5064 u64 num_bytes;
5065 u64 meta_used;
5066 u64 data_used;
5067 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5068
5069 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5070 spin_lock(&sinfo->lock);
5071 data_used = sinfo->bytes_used;
5072 spin_unlock(&sinfo->lock);
5073
5074 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5075 spin_lock(&sinfo->lock);
5076 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5077 data_used = 0;
5078 meta_used = sinfo->bytes_used;
5079 spin_unlock(&sinfo->lock);
5080
5081 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5082 csum_size * 2;
5083 num_bytes += div_u64(data_used + meta_used, 50);
5084
5085 if (num_bytes * 3 > meta_used)
5086 num_bytes = div_u64(meta_used, 3);
5087
5088 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5089 }
5090
5091 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5092 {
5093 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5094 struct btrfs_space_info *sinfo = block_rsv->space_info;
5095 u64 num_bytes;
5096
5097 num_bytes = calc_global_metadata_size(fs_info);
5098
5099 spin_lock(&sinfo->lock);
5100 spin_lock(&block_rsv->lock);
5101
5102 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5103
5104 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5105 sinfo->bytes_reserved + sinfo->bytes_readonly +
5106 sinfo->bytes_may_use;
5107
5108 if (sinfo->total_bytes > num_bytes) {
5109 num_bytes = sinfo->total_bytes - num_bytes;
5110 block_rsv->reserved += num_bytes;
5111 sinfo->bytes_may_use += num_bytes;
5112 trace_btrfs_space_reservation(fs_info, "space_info",
5113 sinfo->flags, num_bytes, 1);
5114 }
5115
5116 if (block_rsv->reserved >= block_rsv->size) {
5117 num_bytes = block_rsv->reserved - block_rsv->size;
5118 sinfo->bytes_may_use -= num_bytes;
5119 trace_btrfs_space_reservation(fs_info, "space_info",
5120 sinfo->flags, num_bytes, 0);
5121 block_rsv->reserved = block_rsv->size;
5122 block_rsv->full = 1;
5123 }
5124
5125 spin_unlock(&block_rsv->lock);
5126 spin_unlock(&sinfo->lock);
5127 }
5128
5129 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5130 {
5131 struct btrfs_space_info *space_info;
5132
5133 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5134 fs_info->chunk_block_rsv.space_info = space_info;
5135
5136 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5137 fs_info->global_block_rsv.space_info = space_info;
5138 fs_info->delalloc_block_rsv.space_info = space_info;
5139 fs_info->trans_block_rsv.space_info = space_info;
5140 fs_info->empty_block_rsv.space_info = space_info;
5141 fs_info->delayed_block_rsv.space_info = space_info;
5142
5143 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5144 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5145 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5146 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5147 if (fs_info->quota_root)
5148 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5149 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5150
5151 update_global_block_rsv(fs_info);
5152 }
5153
5154 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5155 {
5156 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5157 (u64)-1);
5158 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5159 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5160 WARN_ON(fs_info->trans_block_rsv.size > 0);
5161 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5162 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5163 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5164 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5165 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5166 }
5167
5168 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5169 struct btrfs_root *root)
5170 {
5171 if (!trans->block_rsv)
5172 return;
5173
5174 if (!trans->bytes_reserved)
5175 return;
5176
5177 trace_btrfs_space_reservation(root->fs_info, "transaction",
5178 trans->transid, trans->bytes_reserved, 0);
5179 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5180 trans->bytes_reserved = 0;
5181 }
5182
5183 /*
5184 * To be called after all the new block groups attached to the transaction
5185 * handle have been created (btrfs_create_pending_block_groups()).
5186 */
5187 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5188 {
5189 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5190
5191 if (!trans->chunk_bytes_reserved)
5192 return;
5193
5194 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5195
5196 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5197 trans->chunk_bytes_reserved);
5198 trans->chunk_bytes_reserved = 0;
5199 }
5200
5201 /* Can only return 0 or -ENOSPC */
5202 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5203 struct inode *inode)
5204 {
5205 struct btrfs_root *root = BTRFS_I(inode)->root;
5206 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5207 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5208
5209 /*
5210 * We need to hold space in order to delete our orphan item once we've
5211 * added it, so this takes the reservation so we can release it later
5212 * when we are truly done with the orphan item.
5213 */
5214 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5215 trace_btrfs_space_reservation(root->fs_info, "orphan",
5216 btrfs_ino(inode), num_bytes, 1);
5217 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5218 }
5219
5220 void btrfs_orphan_release_metadata(struct inode *inode)
5221 {
5222 struct btrfs_root *root = BTRFS_I(inode)->root;
5223 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5224 trace_btrfs_space_reservation(root->fs_info, "orphan",
5225 btrfs_ino(inode), num_bytes, 0);
5226 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5227 }
5228
5229 /*
5230 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5231 * root: the root of the parent directory
5232 * rsv: block reservation
5233 * items: the number of items that we need do reservation
5234 * qgroup_reserved: used to return the reserved size in qgroup
5235 *
5236 * This function is used to reserve the space for snapshot/subvolume
5237 * creation and deletion. Those operations are different with the
5238 * common file/directory operations, they change two fs/file trees
5239 * and root tree, the number of items that the qgroup reserves is
5240 * different with the free space reservation. So we can not use
5241 * the space reseravtion mechanism in start_transaction().
5242 */
5243 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5244 struct btrfs_block_rsv *rsv,
5245 int items,
5246 u64 *qgroup_reserved,
5247 bool use_global_rsv)
5248 {
5249 u64 num_bytes;
5250 int ret;
5251 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5252
5253 if (root->fs_info->quota_enabled) {
5254 /* One for parent inode, two for dir entries */
5255 num_bytes = 3 * root->nodesize;
5256 ret = btrfs_qgroup_reserve(root, num_bytes);
5257 if (ret)
5258 return ret;
5259 } else {
5260 num_bytes = 0;
5261 }
5262
5263 *qgroup_reserved = num_bytes;
5264
5265 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5266 rsv->space_info = __find_space_info(root->fs_info,
5267 BTRFS_BLOCK_GROUP_METADATA);
5268 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5269 BTRFS_RESERVE_FLUSH_ALL);
5270
5271 if (ret == -ENOSPC && use_global_rsv)
5272 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5273
5274 if (ret) {
5275 if (*qgroup_reserved)
5276 btrfs_qgroup_free(root, *qgroup_reserved);
5277 }
5278
5279 return ret;
5280 }
5281
5282 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5283 struct btrfs_block_rsv *rsv,
5284 u64 qgroup_reserved)
5285 {
5286 btrfs_block_rsv_release(root, rsv, (u64)-1);
5287 }
5288
5289 /**
5290 * drop_outstanding_extent - drop an outstanding extent
5291 * @inode: the inode we're dropping the extent for
5292 * @num_bytes: the number of bytes we're relaseing.
5293 *
5294 * This is called when we are freeing up an outstanding extent, either called
5295 * after an error or after an extent is written. This will return the number of
5296 * reserved extents that need to be freed. This must be called with
5297 * BTRFS_I(inode)->lock held.
5298 */
5299 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5300 {
5301 unsigned drop_inode_space = 0;
5302 unsigned dropped_extents = 0;
5303 unsigned num_extents = 0;
5304
5305 num_extents = (unsigned)div64_u64(num_bytes +
5306 BTRFS_MAX_EXTENT_SIZE - 1,
5307 BTRFS_MAX_EXTENT_SIZE);
5308 ASSERT(num_extents);
5309 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5310 BTRFS_I(inode)->outstanding_extents -= num_extents;
5311
5312 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5313 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5314 &BTRFS_I(inode)->runtime_flags))
5315 drop_inode_space = 1;
5316
5317 /*
5318 * If we have more or the same amount of outsanding extents than we have
5319 * reserved then we need to leave the reserved extents count alone.
5320 */
5321 if (BTRFS_I(inode)->outstanding_extents >=
5322 BTRFS_I(inode)->reserved_extents)
5323 return drop_inode_space;
5324
5325 dropped_extents = BTRFS_I(inode)->reserved_extents -
5326 BTRFS_I(inode)->outstanding_extents;
5327 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5328 return dropped_extents + drop_inode_space;
5329 }
5330
5331 /**
5332 * calc_csum_metadata_size - return the amount of metada space that must be
5333 * reserved/free'd for the given bytes.
5334 * @inode: the inode we're manipulating
5335 * @num_bytes: the number of bytes in question
5336 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5337 *
5338 * This adjusts the number of csum_bytes in the inode and then returns the
5339 * correct amount of metadata that must either be reserved or freed. We
5340 * calculate how many checksums we can fit into one leaf and then divide the
5341 * number of bytes that will need to be checksumed by this value to figure out
5342 * how many checksums will be required. If we are adding bytes then the number
5343 * may go up and we will return the number of additional bytes that must be
5344 * reserved. If it is going down we will return the number of bytes that must
5345 * be freed.
5346 *
5347 * This must be called with BTRFS_I(inode)->lock held.
5348 */
5349 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5350 int reserve)
5351 {
5352 struct btrfs_root *root = BTRFS_I(inode)->root;
5353 u64 old_csums, num_csums;
5354
5355 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5356 BTRFS_I(inode)->csum_bytes == 0)
5357 return 0;
5358
5359 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5360 if (reserve)
5361 BTRFS_I(inode)->csum_bytes += num_bytes;
5362 else
5363 BTRFS_I(inode)->csum_bytes -= num_bytes;
5364 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5365
5366 /* No change, no need to reserve more */
5367 if (old_csums == num_csums)
5368 return 0;
5369
5370 if (reserve)
5371 return btrfs_calc_trans_metadata_size(root,
5372 num_csums - old_csums);
5373
5374 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5375 }
5376
5377 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5378 {
5379 struct btrfs_root *root = BTRFS_I(inode)->root;
5380 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5381 u64 to_reserve = 0;
5382 u64 csum_bytes;
5383 unsigned nr_extents = 0;
5384 int extra_reserve = 0;
5385 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5386 int ret = 0;
5387 bool delalloc_lock = true;
5388 u64 to_free = 0;
5389 unsigned dropped;
5390
5391 /* If we are a free space inode we need to not flush since we will be in
5392 * the middle of a transaction commit. We also don't need the delalloc
5393 * mutex since we won't race with anybody. We need this mostly to make
5394 * lockdep shut its filthy mouth.
5395 */
5396 if (btrfs_is_free_space_inode(inode)) {
5397 flush = BTRFS_RESERVE_NO_FLUSH;
5398 delalloc_lock = false;
5399 }
5400
5401 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5402 btrfs_transaction_in_commit(root->fs_info))
5403 schedule_timeout(1);
5404
5405 if (delalloc_lock)
5406 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5407
5408 num_bytes = ALIGN(num_bytes, root->sectorsize);
5409
5410 spin_lock(&BTRFS_I(inode)->lock);
5411 nr_extents = (unsigned)div64_u64(num_bytes +
5412 BTRFS_MAX_EXTENT_SIZE - 1,
5413 BTRFS_MAX_EXTENT_SIZE);
5414 BTRFS_I(inode)->outstanding_extents += nr_extents;
5415 nr_extents = 0;
5416
5417 if (BTRFS_I(inode)->outstanding_extents >
5418 BTRFS_I(inode)->reserved_extents)
5419 nr_extents = BTRFS_I(inode)->outstanding_extents -
5420 BTRFS_I(inode)->reserved_extents;
5421
5422 /*
5423 * Add an item to reserve for updating the inode when we complete the
5424 * delalloc io.
5425 */
5426 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5427 &BTRFS_I(inode)->runtime_flags)) {
5428 nr_extents++;
5429 extra_reserve = 1;
5430 }
5431
5432 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5433 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5434 csum_bytes = BTRFS_I(inode)->csum_bytes;
5435 spin_unlock(&BTRFS_I(inode)->lock);
5436
5437 if (root->fs_info->quota_enabled) {
5438 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5439 if (ret)
5440 goto out_fail;
5441 }
5442
5443 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5444 if (unlikely(ret)) {
5445 if (root->fs_info->quota_enabled)
5446 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5447 goto out_fail;
5448 }
5449
5450 spin_lock(&BTRFS_I(inode)->lock);
5451 if (extra_reserve) {
5452 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5453 &BTRFS_I(inode)->runtime_flags);
5454 nr_extents--;
5455 }
5456 BTRFS_I(inode)->reserved_extents += nr_extents;
5457 spin_unlock(&BTRFS_I(inode)->lock);
5458
5459 if (delalloc_lock)
5460 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5461
5462 if (to_reserve)
5463 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5464 btrfs_ino(inode), to_reserve, 1);
5465 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5466
5467 return 0;
5468
5469 out_fail:
5470 spin_lock(&BTRFS_I(inode)->lock);
5471 dropped = drop_outstanding_extent(inode, num_bytes);
5472 /*
5473 * If the inodes csum_bytes is the same as the original
5474 * csum_bytes then we know we haven't raced with any free()ers
5475 * so we can just reduce our inodes csum bytes and carry on.
5476 */
5477 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5478 calc_csum_metadata_size(inode, num_bytes, 0);
5479 } else {
5480 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5481 u64 bytes;
5482
5483 /*
5484 * This is tricky, but first we need to figure out how much we
5485 * free'd from any free-ers that occured during this
5486 * reservation, so we reset ->csum_bytes to the csum_bytes
5487 * before we dropped our lock, and then call the free for the
5488 * number of bytes that were freed while we were trying our
5489 * reservation.
5490 */
5491 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5492 BTRFS_I(inode)->csum_bytes = csum_bytes;
5493 to_free = calc_csum_metadata_size(inode, bytes, 0);
5494
5495
5496 /*
5497 * Now we need to see how much we would have freed had we not
5498 * been making this reservation and our ->csum_bytes were not
5499 * artificially inflated.
5500 */
5501 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5502 bytes = csum_bytes - orig_csum_bytes;
5503 bytes = calc_csum_metadata_size(inode, bytes, 0);
5504
5505 /*
5506 * Now reset ->csum_bytes to what it should be. If bytes is
5507 * more than to_free then we would have free'd more space had we
5508 * not had an artificially high ->csum_bytes, so we need to free
5509 * the remainder. If bytes is the same or less then we don't
5510 * need to do anything, the other free-ers did the correct
5511 * thing.
5512 */
5513 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5514 if (bytes > to_free)
5515 to_free = bytes - to_free;
5516 else
5517 to_free = 0;
5518 }
5519 spin_unlock(&BTRFS_I(inode)->lock);
5520 if (dropped)
5521 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5522
5523 if (to_free) {
5524 btrfs_block_rsv_release(root, block_rsv, to_free);
5525 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5526 btrfs_ino(inode), to_free, 0);
5527 }
5528 if (delalloc_lock)
5529 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5530 return ret;
5531 }
5532
5533 /**
5534 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5535 * @inode: the inode to release the reservation for
5536 * @num_bytes: the number of bytes we're releasing
5537 *
5538 * This will release the metadata reservation for an inode. This can be called
5539 * once we complete IO for a given set of bytes to release their metadata
5540 * reservations.
5541 */
5542 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5543 {
5544 struct btrfs_root *root = BTRFS_I(inode)->root;
5545 u64 to_free = 0;
5546 unsigned dropped;
5547
5548 num_bytes = ALIGN(num_bytes, root->sectorsize);
5549 spin_lock(&BTRFS_I(inode)->lock);
5550 dropped = drop_outstanding_extent(inode, num_bytes);
5551
5552 if (num_bytes)
5553 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5554 spin_unlock(&BTRFS_I(inode)->lock);
5555 if (dropped > 0)
5556 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5557
5558 if (btrfs_test_is_dummy_root(root))
5559 return;
5560
5561 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5562 btrfs_ino(inode), to_free, 0);
5563
5564 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5565 to_free);
5566 }
5567
5568 /**
5569 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5570 * @inode: inode we're writing to
5571 * @num_bytes: the number of bytes we want to allocate
5572 *
5573 * This will do the following things
5574 *
5575 * o reserve space in the data space info for num_bytes
5576 * o reserve space in the metadata space info based on number of outstanding
5577 * extents and how much csums will be needed
5578 * o add to the inodes ->delalloc_bytes
5579 * o add it to the fs_info's delalloc inodes list.
5580 *
5581 * This will return 0 for success and -ENOSPC if there is no space left.
5582 */
5583 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5584 {
5585 int ret;
5586
5587 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5588 if (ret)
5589 return ret;
5590
5591 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5592 if (ret) {
5593 btrfs_free_reserved_data_space(inode, num_bytes);
5594 return ret;
5595 }
5596
5597 return 0;
5598 }
5599
5600 /**
5601 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5602 * @inode: inode we're releasing space for
5603 * @num_bytes: the number of bytes we want to free up
5604 *
5605 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5606 * called in the case that we don't need the metadata AND data reservations
5607 * anymore. So if there is an error or we insert an inline extent.
5608 *
5609 * This function will release the metadata space that was not used and will
5610 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5611 * list if there are no delalloc bytes left.
5612 */
5613 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5614 {
5615 btrfs_delalloc_release_metadata(inode, num_bytes);
5616 btrfs_free_reserved_data_space(inode, num_bytes);
5617 }
5618
5619 static int update_block_group(struct btrfs_trans_handle *trans,
5620 struct btrfs_root *root, u64 bytenr,
5621 u64 num_bytes, int alloc)
5622 {
5623 struct btrfs_block_group_cache *cache = NULL;
5624 struct btrfs_fs_info *info = root->fs_info;
5625 u64 total = num_bytes;
5626 u64 old_val;
5627 u64 byte_in_group;
5628 int factor;
5629
5630 /* block accounting for super block */
5631 spin_lock(&info->delalloc_root_lock);
5632 old_val = btrfs_super_bytes_used(info->super_copy);
5633 if (alloc)
5634 old_val += num_bytes;
5635 else
5636 old_val -= num_bytes;
5637 btrfs_set_super_bytes_used(info->super_copy, old_val);
5638 spin_unlock(&info->delalloc_root_lock);
5639
5640 while (total) {
5641 cache = btrfs_lookup_block_group(info, bytenr);
5642 if (!cache)
5643 return -ENOENT;
5644 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5645 BTRFS_BLOCK_GROUP_RAID1 |
5646 BTRFS_BLOCK_GROUP_RAID10))
5647 factor = 2;
5648 else
5649 factor = 1;
5650 /*
5651 * If this block group has free space cache written out, we
5652 * need to make sure to load it if we are removing space. This
5653 * is because we need the unpinning stage to actually add the
5654 * space back to the block group, otherwise we will leak space.
5655 */
5656 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5657 cache_block_group(cache, 1);
5658
5659 byte_in_group = bytenr - cache->key.objectid;
5660 WARN_ON(byte_in_group > cache->key.offset);
5661
5662 spin_lock(&cache->space_info->lock);
5663 spin_lock(&cache->lock);
5664
5665 if (btrfs_test_opt(root, SPACE_CACHE) &&
5666 cache->disk_cache_state < BTRFS_DC_CLEAR)
5667 cache->disk_cache_state = BTRFS_DC_CLEAR;
5668
5669 old_val = btrfs_block_group_used(&cache->item);
5670 num_bytes = min(total, cache->key.offset - byte_in_group);
5671 if (alloc) {
5672 old_val += num_bytes;
5673 btrfs_set_block_group_used(&cache->item, old_val);
5674 cache->reserved -= num_bytes;
5675 cache->space_info->bytes_reserved -= num_bytes;
5676 cache->space_info->bytes_used += num_bytes;
5677 cache->space_info->disk_used += num_bytes * factor;
5678 spin_unlock(&cache->lock);
5679 spin_unlock(&cache->space_info->lock);
5680 } else {
5681 old_val -= num_bytes;
5682 btrfs_set_block_group_used(&cache->item, old_val);
5683 cache->pinned += num_bytes;
5684 cache->space_info->bytes_pinned += num_bytes;
5685 cache->space_info->bytes_used -= num_bytes;
5686 cache->space_info->disk_used -= num_bytes * factor;
5687 spin_unlock(&cache->lock);
5688 spin_unlock(&cache->space_info->lock);
5689
5690 set_extent_dirty(info->pinned_extents,
5691 bytenr, bytenr + num_bytes - 1,
5692 GFP_NOFS | __GFP_NOFAIL);
5693 /*
5694 * No longer have used bytes in this block group, queue
5695 * it for deletion.
5696 */
5697 if (old_val == 0) {
5698 spin_lock(&info->unused_bgs_lock);
5699 if (list_empty(&cache->bg_list)) {
5700 btrfs_get_block_group(cache);
5701 list_add_tail(&cache->bg_list,
5702 &info->unused_bgs);
5703 }
5704 spin_unlock(&info->unused_bgs_lock);
5705 }
5706 }
5707
5708 spin_lock(&trans->transaction->dirty_bgs_lock);
5709 if (list_empty(&cache->dirty_list)) {
5710 list_add_tail(&cache->dirty_list,
5711 &trans->transaction->dirty_bgs);
5712 trans->transaction->num_dirty_bgs++;
5713 btrfs_get_block_group(cache);
5714 }
5715 spin_unlock(&trans->transaction->dirty_bgs_lock);
5716
5717 btrfs_put_block_group(cache);
5718 total -= num_bytes;
5719 bytenr += num_bytes;
5720 }
5721 return 0;
5722 }
5723
5724 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5725 {
5726 struct btrfs_block_group_cache *cache;
5727 u64 bytenr;
5728
5729 spin_lock(&root->fs_info->block_group_cache_lock);
5730 bytenr = root->fs_info->first_logical_byte;
5731 spin_unlock(&root->fs_info->block_group_cache_lock);
5732
5733 if (bytenr < (u64)-1)
5734 return bytenr;
5735
5736 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5737 if (!cache)
5738 return 0;
5739
5740 bytenr = cache->key.objectid;
5741 btrfs_put_block_group(cache);
5742
5743 return bytenr;
5744 }
5745
5746 static int pin_down_extent(struct btrfs_root *root,
5747 struct btrfs_block_group_cache *cache,
5748 u64 bytenr, u64 num_bytes, int reserved)
5749 {
5750 spin_lock(&cache->space_info->lock);
5751 spin_lock(&cache->lock);
5752 cache->pinned += num_bytes;
5753 cache->space_info->bytes_pinned += num_bytes;
5754 if (reserved) {
5755 cache->reserved -= num_bytes;
5756 cache->space_info->bytes_reserved -= num_bytes;
5757 }
5758 spin_unlock(&cache->lock);
5759 spin_unlock(&cache->space_info->lock);
5760
5761 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5762 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5763 if (reserved)
5764 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5765 return 0;
5766 }
5767
5768 /*
5769 * this function must be called within transaction
5770 */
5771 int btrfs_pin_extent(struct btrfs_root *root,
5772 u64 bytenr, u64 num_bytes, int reserved)
5773 {
5774 struct btrfs_block_group_cache *cache;
5775
5776 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5777 BUG_ON(!cache); /* Logic error */
5778
5779 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5780
5781 btrfs_put_block_group(cache);
5782 return 0;
5783 }
5784
5785 /*
5786 * this function must be called within transaction
5787 */
5788 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5789 u64 bytenr, u64 num_bytes)
5790 {
5791 struct btrfs_block_group_cache *cache;
5792 int ret;
5793
5794 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5795 if (!cache)
5796 return -EINVAL;
5797
5798 /*
5799 * pull in the free space cache (if any) so that our pin
5800 * removes the free space from the cache. We have load_only set
5801 * to one because the slow code to read in the free extents does check
5802 * the pinned extents.
5803 */
5804 cache_block_group(cache, 1);
5805
5806 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5807
5808 /* remove us from the free space cache (if we're there at all) */
5809 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5810 btrfs_put_block_group(cache);
5811 return ret;
5812 }
5813
5814 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5815 {
5816 int ret;
5817 struct btrfs_block_group_cache *block_group;
5818 struct btrfs_caching_control *caching_ctl;
5819
5820 block_group = btrfs_lookup_block_group(root->fs_info, start);
5821 if (!block_group)
5822 return -EINVAL;
5823
5824 cache_block_group(block_group, 0);
5825 caching_ctl = get_caching_control(block_group);
5826
5827 if (!caching_ctl) {
5828 /* Logic error */
5829 BUG_ON(!block_group_cache_done(block_group));
5830 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5831 } else {
5832 mutex_lock(&caching_ctl->mutex);
5833
5834 if (start >= caching_ctl->progress) {
5835 ret = add_excluded_extent(root, start, num_bytes);
5836 } else if (start + num_bytes <= caching_ctl->progress) {
5837 ret = btrfs_remove_free_space(block_group,
5838 start, num_bytes);
5839 } else {
5840 num_bytes = caching_ctl->progress - start;
5841 ret = btrfs_remove_free_space(block_group,
5842 start, num_bytes);
5843 if (ret)
5844 goto out_lock;
5845
5846 num_bytes = (start + num_bytes) -
5847 caching_ctl->progress;
5848 start = caching_ctl->progress;
5849 ret = add_excluded_extent(root, start, num_bytes);
5850 }
5851 out_lock:
5852 mutex_unlock(&caching_ctl->mutex);
5853 put_caching_control(caching_ctl);
5854 }
5855 btrfs_put_block_group(block_group);
5856 return ret;
5857 }
5858
5859 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5860 struct extent_buffer *eb)
5861 {
5862 struct btrfs_file_extent_item *item;
5863 struct btrfs_key key;
5864 int found_type;
5865 int i;
5866
5867 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5868 return 0;
5869
5870 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5871 btrfs_item_key_to_cpu(eb, &key, i);
5872 if (key.type != BTRFS_EXTENT_DATA_KEY)
5873 continue;
5874 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5875 found_type = btrfs_file_extent_type(eb, item);
5876 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5877 continue;
5878 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5879 continue;
5880 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5881 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5882 __exclude_logged_extent(log, key.objectid, key.offset);
5883 }
5884
5885 return 0;
5886 }
5887
5888 /**
5889 * btrfs_update_reserved_bytes - update the block_group and space info counters
5890 * @cache: The cache we are manipulating
5891 * @num_bytes: The number of bytes in question
5892 * @reserve: One of the reservation enums
5893 * @delalloc: The blocks are allocated for the delalloc write
5894 *
5895 * This is called by the allocator when it reserves space, or by somebody who is
5896 * freeing space that was never actually used on disk. For example if you
5897 * reserve some space for a new leaf in transaction A and before transaction A
5898 * commits you free that leaf, you call this with reserve set to 0 in order to
5899 * clear the reservation.
5900 *
5901 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5902 * ENOSPC accounting. For data we handle the reservation through clearing the
5903 * delalloc bits in the io_tree. We have to do this since we could end up
5904 * allocating less disk space for the amount of data we have reserved in the
5905 * case of compression.
5906 *
5907 * If this is a reservation and the block group has become read only we cannot
5908 * make the reservation and return -EAGAIN, otherwise this function always
5909 * succeeds.
5910 */
5911 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5912 u64 num_bytes, int reserve, int delalloc)
5913 {
5914 struct btrfs_space_info *space_info = cache->space_info;
5915 int ret = 0;
5916
5917 spin_lock(&space_info->lock);
5918 spin_lock(&cache->lock);
5919 if (reserve != RESERVE_FREE) {
5920 if (cache->ro) {
5921 ret = -EAGAIN;
5922 } else {
5923 cache->reserved += num_bytes;
5924 space_info->bytes_reserved += num_bytes;
5925 if (reserve == RESERVE_ALLOC) {
5926 trace_btrfs_space_reservation(cache->fs_info,
5927 "space_info", space_info->flags,
5928 num_bytes, 0);
5929 space_info->bytes_may_use -= num_bytes;
5930 }
5931
5932 if (delalloc)
5933 cache->delalloc_bytes += num_bytes;
5934 }
5935 } else {
5936 if (cache->ro)
5937 space_info->bytes_readonly += num_bytes;
5938 cache->reserved -= num_bytes;
5939 space_info->bytes_reserved -= num_bytes;
5940
5941 if (delalloc)
5942 cache->delalloc_bytes -= num_bytes;
5943 }
5944 spin_unlock(&cache->lock);
5945 spin_unlock(&space_info->lock);
5946 return ret;
5947 }
5948
5949 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5950 struct btrfs_root *root)
5951 {
5952 struct btrfs_fs_info *fs_info = root->fs_info;
5953 struct btrfs_caching_control *next;
5954 struct btrfs_caching_control *caching_ctl;
5955 struct btrfs_block_group_cache *cache;
5956
5957 down_write(&fs_info->commit_root_sem);
5958
5959 list_for_each_entry_safe(caching_ctl, next,
5960 &fs_info->caching_block_groups, list) {
5961 cache = caching_ctl->block_group;
5962 if (block_group_cache_done(cache)) {
5963 cache->last_byte_to_unpin = (u64)-1;
5964 list_del_init(&caching_ctl->list);
5965 put_caching_control(caching_ctl);
5966 } else {
5967 cache->last_byte_to_unpin = caching_ctl->progress;
5968 }
5969 }
5970
5971 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5972 fs_info->pinned_extents = &fs_info->freed_extents[1];
5973 else
5974 fs_info->pinned_extents = &fs_info->freed_extents[0];
5975
5976 up_write(&fs_info->commit_root_sem);
5977
5978 update_global_block_rsv(fs_info);
5979 }
5980
5981 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5982 const bool return_free_space)
5983 {
5984 struct btrfs_fs_info *fs_info = root->fs_info;
5985 struct btrfs_block_group_cache *cache = NULL;
5986 struct btrfs_space_info *space_info;
5987 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5988 u64 len;
5989 bool readonly;
5990
5991 while (start <= end) {
5992 readonly = false;
5993 if (!cache ||
5994 start >= cache->key.objectid + cache->key.offset) {
5995 if (cache)
5996 btrfs_put_block_group(cache);
5997 cache = btrfs_lookup_block_group(fs_info, start);
5998 BUG_ON(!cache); /* Logic error */
5999 }
6000
6001 len = cache->key.objectid + cache->key.offset - start;
6002 len = min(len, end + 1 - start);
6003
6004 if (start < cache->last_byte_to_unpin) {
6005 len = min(len, cache->last_byte_to_unpin - start);
6006 if (return_free_space)
6007 btrfs_add_free_space(cache, start, len);
6008 }
6009
6010 start += len;
6011 space_info = cache->space_info;
6012
6013 spin_lock(&space_info->lock);
6014 spin_lock(&cache->lock);
6015 cache->pinned -= len;
6016 space_info->bytes_pinned -= len;
6017 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6018 if (cache->ro) {
6019 space_info->bytes_readonly += len;
6020 readonly = true;
6021 }
6022 spin_unlock(&cache->lock);
6023 if (!readonly && global_rsv->space_info == space_info) {
6024 spin_lock(&global_rsv->lock);
6025 if (!global_rsv->full) {
6026 len = min(len, global_rsv->size -
6027 global_rsv->reserved);
6028 global_rsv->reserved += len;
6029 space_info->bytes_may_use += len;
6030 if (global_rsv->reserved >= global_rsv->size)
6031 global_rsv->full = 1;
6032 }
6033 spin_unlock(&global_rsv->lock);
6034 }
6035 spin_unlock(&space_info->lock);
6036 }
6037
6038 if (cache)
6039 btrfs_put_block_group(cache);
6040 return 0;
6041 }
6042
6043 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6044 struct btrfs_root *root)
6045 {
6046 struct btrfs_fs_info *fs_info = root->fs_info;
6047 struct extent_io_tree *unpin;
6048 u64 start;
6049 u64 end;
6050 int ret;
6051
6052 if (trans->aborted)
6053 return 0;
6054
6055 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6056 unpin = &fs_info->freed_extents[1];
6057 else
6058 unpin = &fs_info->freed_extents[0];
6059
6060 while (1) {
6061 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6062 ret = find_first_extent_bit(unpin, 0, &start, &end,
6063 EXTENT_DIRTY, NULL);
6064 if (ret) {
6065 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6066 break;
6067 }
6068
6069 if (btrfs_test_opt(root, DISCARD))
6070 ret = btrfs_discard_extent(root, start,
6071 end + 1 - start, NULL);
6072
6073 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6074 unpin_extent_range(root, start, end, true);
6075 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6076 cond_resched();
6077 }
6078
6079 return 0;
6080 }
6081
6082 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6083 u64 owner, u64 root_objectid)
6084 {
6085 struct btrfs_space_info *space_info;
6086 u64 flags;
6087
6088 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6089 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6090 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6091 else
6092 flags = BTRFS_BLOCK_GROUP_METADATA;
6093 } else {
6094 flags = BTRFS_BLOCK_GROUP_DATA;
6095 }
6096
6097 space_info = __find_space_info(fs_info, flags);
6098 BUG_ON(!space_info); /* Logic bug */
6099 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6100 }
6101
6102
6103 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6104 struct btrfs_root *root,
6105 struct btrfs_delayed_ref_node *node, u64 parent,
6106 u64 root_objectid, u64 owner_objectid,
6107 u64 owner_offset, int refs_to_drop,
6108 struct btrfs_delayed_extent_op *extent_op)
6109 {
6110 struct btrfs_key key;
6111 struct btrfs_path *path;
6112 struct btrfs_fs_info *info = root->fs_info;
6113 struct btrfs_root *extent_root = info->extent_root;
6114 struct extent_buffer *leaf;
6115 struct btrfs_extent_item *ei;
6116 struct btrfs_extent_inline_ref *iref;
6117 int ret;
6118 int is_data;
6119 int extent_slot = 0;
6120 int found_extent = 0;
6121 int num_to_del = 1;
6122 int no_quota = node->no_quota;
6123 u32 item_size;
6124 u64 refs;
6125 u64 bytenr = node->bytenr;
6126 u64 num_bytes = node->num_bytes;
6127 int last_ref = 0;
6128 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6129 SKINNY_METADATA);
6130
6131 if (!info->quota_enabled || !is_fstree(root_objectid))
6132 no_quota = 1;
6133
6134 path = btrfs_alloc_path();
6135 if (!path)
6136 return -ENOMEM;
6137
6138 path->reada = 1;
6139 path->leave_spinning = 1;
6140
6141 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6142 BUG_ON(!is_data && refs_to_drop != 1);
6143
6144 if (is_data)
6145 skinny_metadata = 0;
6146
6147 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6148 bytenr, num_bytes, parent,
6149 root_objectid, owner_objectid,
6150 owner_offset);
6151 if (ret == 0) {
6152 extent_slot = path->slots[0];
6153 while (extent_slot >= 0) {
6154 btrfs_item_key_to_cpu(path->nodes[0], &key,
6155 extent_slot);
6156 if (key.objectid != bytenr)
6157 break;
6158 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6159 key.offset == num_bytes) {
6160 found_extent = 1;
6161 break;
6162 }
6163 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6164 key.offset == owner_objectid) {
6165 found_extent = 1;
6166 break;
6167 }
6168 if (path->slots[0] - extent_slot > 5)
6169 break;
6170 extent_slot--;
6171 }
6172 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6173 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6174 if (found_extent && item_size < sizeof(*ei))
6175 found_extent = 0;
6176 #endif
6177 if (!found_extent) {
6178 BUG_ON(iref);
6179 ret = remove_extent_backref(trans, extent_root, path,
6180 NULL, refs_to_drop,
6181 is_data, &last_ref);
6182 if (ret) {
6183 btrfs_abort_transaction(trans, extent_root, ret);
6184 goto out;
6185 }
6186 btrfs_release_path(path);
6187 path->leave_spinning = 1;
6188
6189 key.objectid = bytenr;
6190 key.type = BTRFS_EXTENT_ITEM_KEY;
6191 key.offset = num_bytes;
6192
6193 if (!is_data && skinny_metadata) {
6194 key.type = BTRFS_METADATA_ITEM_KEY;
6195 key.offset = owner_objectid;
6196 }
6197
6198 ret = btrfs_search_slot(trans, extent_root,
6199 &key, path, -1, 1);
6200 if (ret > 0 && skinny_metadata && path->slots[0]) {
6201 /*
6202 * Couldn't find our skinny metadata item,
6203 * see if we have ye olde extent item.
6204 */
6205 path->slots[0]--;
6206 btrfs_item_key_to_cpu(path->nodes[0], &key,
6207 path->slots[0]);
6208 if (key.objectid == bytenr &&
6209 key.type == BTRFS_EXTENT_ITEM_KEY &&
6210 key.offset == num_bytes)
6211 ret = 0;
6212 }
6213
6214 if (ret > 0 && skinny_metadata) {
6215 skinny_metadata = false;
6216 key.objectid = bytenr;
6217 key.type = BTRFS_EXTENT_ITEM_KEY;
6218 key.offset = num_bytes;
6219 btrfs_release_path(path);
6220 ret = btrfs_search_slot(trans, extent_root,
6221 &key, path, -1, 1);
6222 }
6223
6224 if (ret) {
6225 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6226 ret, bytenr);
6227 if (ret > 0)
6228 btrfs_print_leaf(extent_root,
6229 path->nodes[0]);
6230 }
6231 if (ret < 0) {
6232 btrfs_abort_transaction(trans, extent_root, ret);
6233 goto out;
6234 }
6235 extent_slot = path->slots[0];
6236 }
6237 } else if (WARN_ON(ret == -ENOENT)) {
6238 btrfs_print_leaf(extent_root, path->nodes[0]);
6239 btrfs_err(info,
6240 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6241 bytenr, parent, root_objectid, owner_objectid,
6242 owner_offset);
6243 btrfs_abort_transaction(trans, extent_root, ret);
6244 goto out;
6245 } else {
6246 btrfs_abort_transaction(trans, extent_root, ret);
6247 goto out;
6248 }
6249
6250 leaf = path->nodes[0];
6251 item_size = btrfs_item_size_nr(leaf, extent_slot);
6252 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6253 if (item_size < sizeof(*ei)) {
6254 BUG_ON(found_extent || extent_slot != path->slots[0]);
6255 ret = convert_extent_item_v0(trans, extent_root, path,
6256 owner_objectid, 0);
6257 if (ret < 0) {
6258 btrfs_abort_transaction(trans, extent_root, ret);
6259 goto out;
6260 }
6261
6262 btrfs_release_path(path);
6263 path->leave_spinning = 1;
6264
6265 key.objectid = bytenr;
6266 key.type = BTRFS_EXTENT_ITEM_KEY;
6267 key.offset = num_bytes;
6268
6269 ret = btrfs_search_slot(trans, extent_root, &key, path,
6270 -1, 1);
6271 if (ret) {
6272 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6273 ret, bytenr);
6274 btrfs_print_leaf(extent_root, path->nodes[0]);
6275 }
6276 if (ret < 0) {
6277 btrfs_abort_transaction(trans, extent_root, ret);
6278 goto out;
6279 }
6280
6281 extent_slot = path->slots[0];
6282 leaf = path->nodes[0];
6283 item_size = btrfs_item_size_nr(leaf, extent_slot);
6284 }
6285 #endif
6286 BUG_ON(item_size < sizeof(*ei));
6287 ei = btrfs_item_ptr(leaf, extent_slot,
6288 struct btrfs_extent_item);
6289 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6290 key.type == BTRFS_EXTENT_ITEM_KEY) {
6291 struct btrfs_tree_block_info *bi;
6292 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6293 bi = (struct btrfs_tree_block_info *)(ei + 1);
6294 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6295 }
6296
6297 refs = btrfs_extent_refs(leaf, ei);
6298 if (refs < refs_to_drop) {
6299 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6300 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6301 ret = -EINVAL;
6302 btrfs_abort_transaction(trans, extent_root, ret);
6303 goto out;
6304 }
6305 refs -= refs_to_drop;
6306
6307 if (refs > 0) {
6308 if (extent_op)
6309 __run_delayed_extent_op(extent_op, leaf, ei);
6310 /*
6311 * In the case of inline back ref, reference count will
6312 * be updated by remove_extent_backref
6313 */
6314 if (iref) {
6315 BUG_ON(!found_extent);
6316 } else {
6317 btrfs_set_extent_refs(leaf, ei, refs);
6318 btrfs_mark_buffer_dirty(leaf);
6319 }
6320 if (found_extent) {
6321 ret = remove_extent_backref(trans, extent_root, path,
6322 iref, refs_to_drop,
6323 is_data, &last_ref);
6324 if (ret) {
6325 btrfs_abort_transaction(trans, extent_root, ret);
6326 goto out;
6327 }
6328 }
6329 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6330 root_objectid);
6331 } else {
6332 if (found_extent) {
6333 BUG_ON(is_data && refs_to_drop !=
6334 extent_data_ref_count(root, path, iref));
6335 if (iref) {
6336 BUG_ON(path->slots[0] != extent_slot);
6337 } else {
6338 BUG_ON(path->slots[0] != extent_slot + 1);
6339 path->slots[0] = extent_slot;
6340 num_to_del = 2;
6341 }
6342 }
6343
6344 last_ref = 1;
6345 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6346 num_to_del);
6347 if (ret) {
6348 btrfs_abort_transaction(trans, extent_root, ret);
6349 goto out;
6350 }
6351 btrfs_release_path(path);
6352
6353 if (is_data) {
6354 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6355 if (ret) {
6356 btrfs_abort_transaction(trans, extent_root, ret);
6357 goto out;
6358 }
6359 }
6360
6361 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6362 if (ret) {
6363 btrfs_abort_transaction(trans, extent_root, ret);
6364 goto out;
6365 }
6366 }
6367 btrfs_release_path(path);
6368
6369 out:
6370 btrfs_free_path(path);
6371 return ret;
6372 }
6373
6374 /*
6375 * when we free an block, it is possible (and likely) that we free the last
6376 * delayed ref for that extent as well. This searches the delayed ref tree for
6377 * a given extent, and if there are no other delayed refs to be processed, it
6378 * removes it from the tree.
6379 */
6380 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6381 struct btrfs_root *root, u64 bytenr)
6382 {
6383 struct btrfs_delayed_ref_head *head;
6384 struct btrfs_delayed_ref_root *delayed_refs;
6385 int ret = 0;
6386
6387 delayed_refs = &trans->transaction->delayed_refs;
6388 spin_lock(&delayed_refs->lock);
6389 head = btrfs_find_delayed_ref_head(trans, bytenr);
6390 if (!head)
6391 goto out_delayed_unlock;
6392
6393 spin_lock(&head->lock);
6394 if (!list_empty(&head->ref_list))
6395 goto out;
6396
6397 if (head->extent_op) {
6398 if (!head->must_insert_reserved)
6399 goto out;
6400 btrfs_free_delayed_extent_op(head->extent_op);
6401 head->extent_op = NULL;
6402 }
6403
6404 /*
6405 * waiting for the lock here would deadlock. If someone else has it
6406 * locked they are already in the process of dropping it anyway
6407 */
6408 if (!mutex_trylock(&head->mutex))
6409 goto out;
6410
6411 /*
6412 * at this point we have a head with no other entries. Go
6413 * ahead and process it.
6414 */
6415 head->node.in_tree = 0;
6416 rb_erase(&head->href_node, &delayed_refs->href_root);
6417
6418 atomic_dec(&delayed_refs->num_entries);
6419
6420 /*
6421 * we don't take a ref on the node because we're removing it from the
6422 * tree, so we just steal the ref the tree was holding.
6423 */
6424 delayed_refs->num_heads--;
6425 if (head->processing == 0)
6426 delayed_refs->num_heads_ready--;
6427 head->processing = 0;
6428 spin_unlock(&head->lock);
6429 spin_unlock(&delayed_refs->lock);
6430
6431 BUG_ON(head->extent_op);
6432 if (head->must_insert_reserved)
6433 ret = 1;
6434
6435 mutex_unlock(&head->mutex);
6436 btrfs_put_delayed_ref(&head->node);
6437 return ret;
6438 out:
6439 spin_unlock(&head->lock);
6440
6441 out_delayed_unlock:
6442 spin_unlock(&delayed_refs->lock);
6443 return 0;
6444 }
6445
6446 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6447 struct btrfs_root *root,
6448 struct extent_buffer *buf,
6449 u64 parent, int last_ref)
6450 {
6451 int pin = 1;
6452 int ret;
6453
6454 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6455 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6456 buf->start, buf->len,
6457 parent, root->root_key.objectid,
6458 btrfs_header_level(buf),
6459 BTRFS_DROP_DELAYED_REF, NULL, 0);
6460 BUG_ON(ret); /* -ENOMEM */
6461 }
6462
6463 if (!last_ref)
6464 return;
6465
6466 if (btrfs_header_generation(buf) == trans->transid) {
6467 struct btrfs_block_group_cache *cache;
6468
6469 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6470 ret = check_ref_cleanup(trans, root, buf->start);
6471 if (!ret)
6472 goto out;
6473 }
6474
6475 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6476
6477 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6478 pin_down_extent(root, cache, buf->start, buf->len, 1);
6479 btrfs_put_block_group(cache);
6480 goto out;
6481 }
6482
6483 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6484
6485 btrfs_add_free_space(cache, buf->start, buf->len);
6486 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6487 btrfs_put_block_group(cache);
6488 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6489 pin = 0;
6490 }
6491 out:
6492 if (pin)
6493 add_pinned_bytes(root->fs_info, buf->len,
6494 btrfs_header_level(buf),
6495 root->root_key.objectid);
6496
6497 /*
6498 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6499 * anymore.
6500 */
6501 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6502 }
6503
6504 /* Can return -ENOMEM */
6505 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6506 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6507 u64 owner, u64 offset, int no_quota)
6508 {
6509 int ret;
6510 struct btrfs_fs_info *fs_info = root->fs_info;
6511
6512 if (btrfs_test_is_dummy_root(root))
6513 return 0;
6514
6515 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6516
6517 /*
6518 * tree log blocks never actually go into the extent allocation
6519 * tree, just update pinning info and exit early.
6520 */
6521 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6522 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6523 /* unlocks the pinned mutex */
6524 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6525 ret = 0;
6526 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6527 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6528 num_bytes,
6529 parent, root_objectid, (int)owner,
6530 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6531 } else {
6532 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6533 num_bytes,
6534 parent, root_objectid, owner,
6535 offset, BTRFS_DROP_DELAYED_REF,
6536 NULL, no_quota);
6537 }
6538 return ret;
6539 }
6540
6541 /*
6542 * when we wait for progress in the block group caching, its because
6543 * our allocation attempt failed at least once. So, we must sleep
6544 * and let some progress happen before we try again.
6545 *
6546 * This function will sleep at least once waiting for new free space to
6547 * show up, and then it will check the block group free space numbers
6548 * for our min num_bytes. Another option is to have it go ahead
6549 * and look in the rbtree for a free extent of a given size, but this
6550 * is a good start.
6551 *
6552 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6553 * any of the information in this block group.
6554 */
6555 static noinline void
6556 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6557 u64 num_bytes)
6558 {
6559 struct btrfs_caching_control *caching_ctl;
6560
6561 caching_ctl = get_caching_control(cache);
6562 if (!caching_ctl)
6563 return;
6564
6565 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6566 (cache->free_space_ctl->free_space >= num_bytes));
6567
6568 put_caching_control(caching_ctl);
6569 }
6570
6571 static noinline int
6572 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6573 {
6574 struct btrfs_caching_control *caching_ctl;
6575 int ret = 0;
6576
6577 caching_ctl = get_caching_control(cache);
6578 if (!caching_ctl)
6579 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6580
6581 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6582 if (cache->cached == BTRFS_CACHE_ERROR)
6583 ret = -EIO;
6584 put_caching_control(caching_ctl);
6585 return ret;
6586 }
6587
6588 int __get_raid_index(u64 flags)
6589 {
6590 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6591 return BTRFS_RAID_RAID10;
6592 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6593 return BTRFS_RAID_RAID1;
6594 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6595 return BTRFS_RAID_DUP;
6596 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6597 return BTRFS_RAID_RAID0;
6598 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6599 return BTRFS_RAID_RAID5;
6600 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6601 return BTRFS_RAID_RAID6;
6602
6603 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6604 }
6605
6606 int get_block_group_index(struct btrfs_block_group_cache *cache)
6607 {
6608 return __get_raid_index(cache->flags);
6609 }
6610
6611 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6612 [BTRFS_RAID_RAID10] = "raid10",
6613 [BTRFS_RAID_RAID1] = "raid1",
6614 [BTRFS_RAID_DUP] = "dup",
6615 [BTRFS_RAID_RAID0] = "raid0",
6616 [BTRFS_RAID_SINGLE] = "single",
6617 [BTRFS_RAID_RAID5] = "raid5",
6618 [BTRFS_RAID_RAID6] = "raid6",
6619 };
6620
6621 static const char *get_raid_name(enum btrfs_raid_types type)
6622 {
6623 if (type >= BTRFS_NR_RAID_TYPES)
6624 return NULL;
6625
6626 return btrfs_raid_type_names[type];
6627 }
6628
6629 enum btrfs_loop_type {
6630 LOOP_CACHING_NOWAIT = 0,
6631 LOOP_CACHING_WAIT = 1,
6632 LOOP_ALLOC_CHUNK = 2,
6633 LOOP_NO_EMPTY_SIZE = 3,
6634 };
6635
6636 static inline void
6637 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6638 int delalloc)
6639 {
6640 if (delalloc)
6641 down_read(&cache->data_rwsem);
6642 }
6643
6644 static inline void
6645 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6646 int delalloc)
6647 {
6648 btrfs_get_block_group(cache);
6649 if (delalloc)
6650 down_read(&cache->data_rwsem);
6651 }
6652
6653 static struct btrfs_block_group_cache *
6654 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6655 struct btrfs_free_cluster *cluster,
6656 int delalloc)
6657 {
6658 struct btrfs_block_group_cache *used_bg;
6659 bool locked = false;
6660 again:
6661 spin_lock(&cluster->refill_lock);
6662 if (locked) {
6663 if (used_bg == cluster->block_group)
6664 return used_bg;
6665
6666 up_read(&used_bg->data_rwsem);
6667 btrfs_put_block_group(used_bg);
6668 }
6669
6670 used_bg = cluster->block_group;
6671 if (!used_bg)
6672 return NULL;
6673
6674 if (used_bg == block_group)
6675 return used_bg;
6676
6677 btrfs_get_block_group(used_bg);
6678
6679 if (!delalloc)
6680 return used_bg;
6681
6682 if (down_read_trylock(&used_bg->data_rwsem))
6683 return used_bg;
6684
6685 spin_unlock(&cluster->refill_lock);
6686 down_read(&used_bg->data_rwsem);
6687 locked = true;
6688 goto again;
6689 }
6690
6691 static inline void
6692 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6693 int delalloc)
6694 {
6695 if (delalloc)
6696 up_read(&cache->data_rwsem);
6697 btrfs_put_block_group(cache);
6698 }
6699
6700 /*
6701 * walks the btree of allocated extents and find a hole of a given size.
6702 * The key ins is changed to record the hole:
6703 * ins->objectid == start position
6704 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6705 * ins->offset == the size of the hole.
6706 * Any available blocks before search_start are skipped.
6707 *
6708 * If there is no suitable free space, we will record the max size of
6709 * the free space extent currently.
6710 */
6711 static noinline int find_free_extent(struct btrfs_root *orig_root,
6712 u64 num_bytes, u64 empty_size,
6713 u64 hint_byte, struct btrfs_key *ins,
6714 u64 flags, int delalloc)
6715 {
6716 int ret = 0;
6717 struct btrfs_root *root = orig_root->fs_info->extent_root;
6718 struct btrfs_free_cluster *last_ptr = NULL;
6719 struct btrfs_block_group_cache *block_group = NULL;
6720 u64 search_start = 0;
6721 u64 max_extent_size = 0;
6722 int empty_cluster = 2 * 1024 * 1024;
6723 struct btrfs_space_info *space_info;
6724 int loop = 0;
6725 int index = __get_raid_index(flags);
6726 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6727 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6728 bool failed_cluster_refill = false;
6729 bool failed_alloc = false;
6730 bool use_cluster = true;
6731 bool have_caching_bg = false;
6732
6733 WARN_ON(num_bytes < root->sectorsize);
6734 ins->type = BTRFS_EXTENT_ITEM_KEY;
6735 ins->objectid = 0;
6736 ins->offset = 0;
6737
6738 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6739
6740 space_info = __find_space_info(root->fs_info, flags);
6741 if (!space_info) {
6742 btrfs_err(root->fs_info, "No space info for %llu", flags);
6743 return -ENOSPC;
6744 }
6745
6746 /*
6747 * If the space info is for both data and metadata it means we have a
6748 * small filesystem and we can't use the clustering stuff.
6749 */
6750 if (btrfs_mixed_space_info(space_info))
6751 use_cluster = false;
6752
6753 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6754 last_ptr = &root->fs_info->meta_alloc_cluster;
6755 if (!btrfs_test_opt(root, SSD))
6756 empty_cluster = 64 * 1024;
6757 }
6758
6759 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6760 btrfs_test_opt(root, SSD)) {
6761 last_ptr = &root->fs_info->data_alloc_cluster;
6762 }
6763
6764 if (last_ptr) {
6765 spin_lock(&last_ptr->lock);
6766 if (last_ptr->block_group)
6767 hint_byte = last_ptr->window_start;
6768 spin_unlock(&last_ptr->lock);
6769 }
6770
6771 search_start = max(search_start, first_logical_byte(root, 0));
6772 search_start = max(search_start, hint_byte);
6773
6774 if (!last_ptr)
6775 empty_cluster = 0;
6776
6777 if (search_start == hint_byte) {
6778 block_group = btrfs_lookup_block_group(root->fs_info,
6779 search_start);
6780 /*
6781 * we don't want to use the block group if it doesn't match our
6782 * allocation bits, or if its not cached.
6783 *
6784 * However if we are re-searching with an ideal block group
6785 * picked out then we don't care that the block group is cached.
6786 */
6787 if (block_group && block_group_bits(block_group, flags) &&
6788 block_group->cached != BTRFS_CACHE_NO) {
6789 down_read(&space_info->groups_sem);
6790 if (list_empty(&block_group->list) ||
6791 block_group->ro) {
6792 /*
6793 * someone is removing this block group,
6794 * we can't jump into the have_block_group
6795 * target because our list pointers are not
6796 * valid
6797 */
6798 btrfs_put_block_group(block_group);
6799 up_read(&space_info->groups_sem);
6800 } else {
6801 index = get_block_group_index(block_group);
6802 btrfs_lock_block_group(block_group, delalloc);
6803 goto have_block_group;
6804 }
6805 } else if (block_group) {
6806 btrfs_put_block_group(block_group);
6807 }
6808 }
6809 search:
6810 have_caching_bg = false;
6811 down_read(&space_info->groups_sem);
6812 list_for_each_entry(block_group, &space_info->block_groups[index],
6813 list) {
6814 u64 offset;
6815 int cached;
6816
6817 btrfs_grab_block_group(block_group, delalloc);
6818 search_start = block_group->key.objectid;
6819
6820 /*
6821 * this can happen if we end up cycling through all the
6822 * raid types, but we want to make sure we only allocate
6823 * for the proper type.
6824 */
6825 if (!block_group_bits(block_group, flags)) {
6826 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6827 BTRFS_BLOCK_GROUP_RAID1 |
6828 BTRFS_BLOCK_GROUP_RAID5 |
6829 BTRFS_BLOCK_GROUP_RAID6 |
6830 BTRFS_BLOCK_GROUP_RAID10;
6831
6832 /*
6833 * if they asked for extra copies and this block group
6834 * doesn't provide them, bail. This does allow us to
6835 * fill raid0 from raid1.
6836 */
6837 if ((flags & extra) && !(block_group->flags & extra))
6838 goto loop;
6839 }
6840
6841 have_block_group:
6842 cached = block_group_cache_done(block_group);
6843 if (unlikely(!cached)) {
6844 ret = cache_block_group(block_group, 0);
6845 BUG_ON(ret < 0);
6846 ret = 0;
6847 }
6848
6849 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6850 goto loop;
6851 if (unlikely(block_group->ro))
6852 goto loop;
6853
6854 /*
6855 * Ok we want to try and use the cluster allocator, so
6856 * lets look there
6857 */
6858 if (last_ptr) {
6859 struct btrfs_block_group_cache *used_block_group;
6860 unsigned long aligned_cluster;
6861 /*
6862 * the refill lock keeps out other
6863 * people trying to start a new cluster
6864 */
6865 used_block_group = btrfs_lock_cluster(block_group,
6866 last_ptr,
6867 delalloc);
6868 if (!used_block_group)
6869 goto refill_cluster;
6870
6871 if (used_block_group != block_group &&
6872 (used_block_group->ro ||
6873 !block_group_bits(used_block_group, flags)))
6874 goto release_cluster;
6875
6876 offset = btrfs_alloc_from_cluster(used_block_group,
6877 last_ptr,
6878 num_bytes,
6879 used_block_group->key.objectid,
6880 &max_extent_size);
6881 if (offset) {
6882 /* we have a block, we're done */
6883 spin_unlock(&last_ptr->refill_lock);
6884 trace_btrfs_reserve_extent_cluster(root,
6885 used_block_group,
6886 search_start, num_bytes);
6887 if (used_block_group != block_group) {
6888 btrfs_release_block_group(block_group,
6889 delalloc);
6890 block_group = used_block_group;
6891 }
6892 goto checks;
6893 }
6894
6895 WARN_ON(last_ptr->block_group != used_block_group);
6896 release_cluster:
6897 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6898 * set up a new clusters, so lets just skip it
6899 * and let the allocator find whatever block
6900 * it can find. If we reach this point, we
6901 * will have tried the cluster allocator
6902 * plenty of times and not have found
6903 * anything, so we are likely way too
6904 * fragmented for the clustering stuff to find
6905 * anything.
6906 *
6907 * However, if the cluster is taken from the
6908 * current block group, release the cluster
6909 * first, so that we stand a better chance of
6910 * succeeding in the unclustered
6911 * allocation. */
6912 if (loop >= LOOP_NO_EMPTY_SIZE &&
6913 used_block_group != block_group) {
6914 spin_unlock(&last_ptr->refill_lock);
6915 btrfs_release_block_group(used_block_group,
6916 delalloc);
6917 goto unclustered_alloc;
6918 }
6919
6920 /*
6921 * this cluster didn't work out, free it and
6922 * start over
6923 */
6924 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6925
6926 if (used_block_group != block_group)
6927 btrfs_release_block_group(used_block_group,
6928 delalloc);
6929 refill_cluster:
6930 if (loop >= LOOP_NO_EMPTY_SIZE) {
6931 spin_unlock(&last_ptr->refill_lock);
6932 goto unclustered_alloc;
6933 }
6934
6935 aligned_cluster = max_t(unsigned long,
6936 empty_cluster + empty_size,
6937 block_group->full_stripe_len);
6938
6939 /* allocate a cluster in this block group */
6940 ret = btrfs_find_space_cluster(root, block_group,
6941 last_ptr, search_start,
6942 num_bytes,
6943 aligned_cluster);
6944 if (ret == 0) {
6945 /*
6946 * now pull our allocation out of this
6947 * cluster
6948 */
6949 offset = btrfs_alloc_from_cluster(block_group,
6950 last_ptr,
6951 num_bytes,
6952 search_start,
6953 &max_extent_size);
6954 if (offset) {
6955 /* we found one, proceed */
6956 spin_unlock(&last_ptr->refill_lock);
6957 trace_btrfs_reserve_extent_cluster(root,
6958 block_group, search_start,
6959 num_bytes);
6960 goto checks;
6961 }
6962 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6963 && !failed_cluster_refill) {
6964 spin_unlock(&last_ptr->refill_lock);
6965
6966 failed_cluster_refill = true;
6967 wait_block_group_cache_progress(block_group,
6968 num_bytes + empty_cluster + empty_size);
6969 goto have_block_group;
6970 }
6971
6972 /*
6973 * at this point we either didn't find a cluster
6974 * or we weren't able to allocate a block from our
6975 * cluster. Free the cluster we've been trying
6976 * to use, and go to the next block group
6977 */
6978 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6979 spin_unlock(&last_ptr->refill_lock);
6980 goto loop;
6981 }
6982
6983 unclustered_alloc:
6984 spin_lock(&block_group->free_space_ctl->tree_lock);
6985 if (cached &&
6986 block_group->free_space_ctl->free_space <
6987 num_bytes + empty_cluster + empty_size) {
6988 if (block_group->free_space_ctl->free_space >
6989 max_extent_size)
6990 max_extent_size =
6991 block_group->free_space_ctl->free_space;
6992 spin_unlock(&block_group->free_space_ctl->tree_lock);
6993 goto loop;
6994 }
6995 spin_unlock(&block_group->free_space_ctl->tree_lock);
6996
6997 offset = btrfs_find_space_for_alloc(block_group, search_start,
6998 num_bytes, empty_size,
6999 &max_extent_size);
7000 /*
7001 * If we didn't find a chunk, and we haven't failed on this
7002 * block group before, and this block group is in the middle of
7003 * caching and we are ok with waiting, then go ahead and wait
7004 * for progress to be made, and set failed_alloc to true.
7005 *
7006 * If failed_alloc is true then we've already waited on this
7007 * block group once and should move on to the next block group.
7008 */
7009 if (!offset && !failed_alloc && !cached &&
7010 loop > LOOP_CACHING_NOWAIT) {
7011 wait_block_group_cache_progress(block_group,
7012 num_bytes + empty_size);
7013 failed_alloc = true;
7014 goto have_block_group;
7015 } else if (!offset) {
7016 if (!cached)
7017 have_caching_bg = true;
7018 goto loop;
7019 }
7020 checks:
7021 search_start = ALIGN(offset, root->stripesize);
7022
7023 /* move on to the next group */
7024 if (search_start + num_bytes >
7025 block_group->key.objectid + block_group->key.offset) {
7026 btrfs_add_free_space(block_group, offset, num_bytes);
7027 goto loop;
7028 }
7029
7030 if (offset < search_start)
7031 btrfs_add_free_space(block_group, offset,
7032 search_start - offset);
7033 BUG_ON(offset > search_start);
7034
7035 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7036 alloc_type, delalloc);
7037 if (ret == -EAGAIN) {
7038 btrfs_add_free_space(block_group, offset, num_bytes);
7039 goto loop;
7040 }
7041
7042 /* we are all good, lets return */
7043 ins->objectid = search_start;
7044 ins->offset = num_bytes;
7045
7046 trace_btrfs_reserve_extent(orig_root, block_group,
7047 search_start, num_bytes);
7048 btrfs_release_block_group(block_group, delalloc);
7049 break;
7050 loop:
7051 failed_cluster_refill = false;
7052 failed_alloc = false;
7053 BUG_ON(index != get_block_group_index(block_group));
7054 btrfs_release_block_group(block_group, delalloc);
7055 }
7056 up_read(&space_info->groups_sem);
7057
7058 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7059 goto search;
7060
7061 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7062 goto search;
7063
7064 /*
7065 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7066 * caching kthreads as we move along
7067 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7068 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7069 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7070 * again
7071 */
7072 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7073 index = 0;
7074 loop++;
7075 if (loop == LOOP_ALLOC_CHUNK) {
7076 struct btrfs_trans_handle *trans;
7077 int exist = 0;
7078
7079 trans = current->journal_info;
7080 if (trans)
7081 exist = 1;
7082 else
7083 trans = btrfs_join_transaction(root);
7084
7085 if (IS_ERR(trans)) {
7086 ret = PTR_ERR(trans);
7087 goto out;
7088 }
7089
7090 ret = do_chunk_alloc(trans, root, flags,
7091 CHUNK_ALLOC_FORCE);
7092 /*
7093 * Do not bail out on ENOSPC since we
7094 * can do more things.
7095 */
7096 if (ret < 0 && ret != -ENOSPC)
7097 btrfs_abort_transaction(trans,
7098 root, ret);
7099 else
7100 ret = 0;
7101 if (!exist)
7102 btrfs_end_transaction(trans, root);
7103 if (ret)
7104 goto out;
7105 }
7106
7107 if (loop == LOOP_NO_EMPTY_SIZE) {
7108 empty_size = 0;
7109 empty_cluster = 0;
7110 }
7111
7112 goto search;
7113 } else if (!ins->objectid) {
7114 ret = -ENOSPC;
7115 } else if (ins->objectid) {
7116 ret = 0;
7117 }
7118 out:
7119 if (ret == -ENOSPC)
7120 ins->offset = max_extent_size;
7121 return ret;
7122 }
7123
7124 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7125 int dump_block_groups)
7126 {
7127 struct btrfs_block_group_cache *cache;
7128 int index = 0;
7129
7130 spin_lock(&info->lock);
7131 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7132 info->flags,
7133 info->total_bytes - info->bytes_used - info->bytes_pinned -
7134 info->bytes_reserved - info->bytes_readonly,
7135 (info->full) ? "" : "not ");
7136 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7137 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7138 info->total_bytes, info->bytes_used, info->bytes_pinned,
7139 info->bytes_reserved, info->bytes_may_use,
7140 info->bytes_readonly);
7141 spin_unlock(&info->lock);
7142
7143 if (!dump_block_groups)
7144 return;
7145
7146 down_read(&info->groups_sem);
7147 again:
7148 list_for_each_entry(cache, &info->block_groups[index], list) {
7149 spin_lock(&cache->lock);
7150 printk(KERN_INFO "BTRFS: "
7151 "block group %llu has %llu bytes, "
7152 "%llu used %llu pinned %llu reserved %s\n",
7153 cache->key.objectid, cache->key.offset,
7154 btrfs_block_group_used(&cache->item), cache->pinned,
7155 cache->reserved, cache->ro ? "[readonly]" : "");
7156 btrfs_dump_free_space(cache, bytes);
7157 spin_unlock(&cache->lock);
7158 }
7159 if (++index < BTRFS_NR_RAID_TYPES)
7160 goto again;
7161 up_read(&info->groups_sem);
7162 }
7163
7164 int btrfs_reserve_extent(struct btrfs_root *root,
7165 u64 num_bytes, u64 min_alloc_size,
7166 u64 empty_size, u64 hint_byte,
7167 struct btrfs_key *ins, int is_data, int delalloc)
7168 {
7169 bool final_tried = false;
7170 u64 flags;
7171 int ret;
7172
7173 flags = btrfs_get_alloc_profile(root, is_data);
7174 again:
7175 WARN_ON(num_bytes < root->sectorsize);
7176 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7177 flags, delalloc);
7178
7179 if (ret == -ENOSPC) {
7180 if (!final_tried && ins->offset) {
7181 num_bytes = min(num_bytes >> 1, ins->offset);
7182 num_bytes = round_down(num_bytes, root->sectorsize);
7183 num_bytes = max(num_bytes, min_alloc_size);
7184 if (num_bytes == min_alloc_size)
7185 final_tried = true;
7186 goto again;
7187 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7188 struct btrfs_space_info *sinfo;
7189
7190 sinfo = __find_space_info(root->fs_info, flags);
7191 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7192 flags, num_bytes);
7193 if (sinfo)
7194 dump_space_info(sinfo, num_bytes, 1);
7195 }
7196 }
7197
7198 return ret;
7199 }
7200
7201 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7202 u64 start, u64 len,
7203 int pin, int delalloc)
7204 {
7205 struct btrfs_block_group_cache *cache;
7206 int ret = 0;
7207
7208 cache = btrfs_lookup_block_group(root->fs_info, start);
7209 if (!cache) {
7210 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7211 start);
7212 return -ENOSPC;
7213 }
7214
7215 if (pin)
7216 pin_down_extent(root, cache, start, len, 1);
7217 else {
7218 if (btrfs_test_opt(root, DISCARD))
7219 ret = btrfs_discard_extent(root, start, len, NULL);
7220 btrfs_add_free_space(cache, start, len);
7221 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7222 }
7223
7224 btrfs_put_block_group(cache);
7225
7226 trace_btrfs_reserved_extent_free(root, start, len);
7227
7228 return ret;
7229 }
7230
7231 int btrfs_free_reserved_extent(struct btrfs_root *root,
7232 u64 start, u64 len, int delalloc)
7233 {
7234 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7235 }
7236
7237 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7238 u64 start, u64 len)
7239 {
7240 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7241 }
7242
7243 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7244 struct btrfs_root *root,
7245 u64 parent, u64 root_objectid,
7246 u64 flags, u64 owner, u64 offset,
7247 struct btrfs_key *ins, int ref_mod)
7248 {
7249 int ret;
7250 struct btrfs_fs_info *fs_info = root->fs_info;
7251 struct btrfs_extent_item *extent_item;
7252 struct btrfs_extent_inline_ref *iref;
7253 struct btrfs_path *path;
7254 struct extent_buffer *leaf;
7255 int type;
7256 u32 size;
7257
7258 if (parent > 0)
7259 type = BTRFS_SHARED_DATA_REF_KEY;
7260 else
7261 type = BTRFS_EXTENT_DATA_REF_KEY;
7262
7263 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7264
7265 path = btrfs_alloc_path();
7266 if (!path)
7267 return -ENOMEM;
7268
7269 path->leave_spinning = 1;
7270 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7271 ins, size);
7272 if (ret) {
7273 btrfs_free_path(path);
7274 return ret;
7275 }
7276
7277 leaf = path->nodes[0];
7278 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7279 struct btrfs_extent_item);
7280 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7281 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7282 btrfs_set_extent_flags(leaf, extent_item,
7283 flags | BTRFS_EXTENT_FLAG_DATA);
7284
7285 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7286 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7287 if (parent > 0) {
7288 struct btrfs_shared_data_ref *ref;
7289 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7290 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7291 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7292 } else {
7293 struct btrfs_extent_data_ref *ref;
7294 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7295 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7296 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7297 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7298 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7299 }
7300
7301 btrfs_mark_buffer_dirty(path->nodes[0]);
7302 btrfs_free_path(path);
7303
7304 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7305 if (ret) { /* -ENOENT, logic error */
7306 btrfs_err(fs_info, "update block group failed for %llu %llu",
7307 ins->objectid, ins->offset);
7308 BUG();
7309 }
7310 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7311 return ret;
7312 }
7313
7314 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7315 struct btrfs_root *root,
7316 u64 parent, u64 root_objectid,
7317 u64 flags, struct btrfs_disk_key *key,
7318 int level, struct btrfs_key *ins,
7319 int no_quota)
7320 {
7321 int ret;
7322 struct btrfs_fs_info *fs_info = root->fs_info;
7323 struct btrfs_extent_item *extent_item;
7324 struct btrfs_tree_block_info *block_info;
7325 struct btrfs_extent_inline_ref *iref;
7326 struct btrfs_path *path;
7327 struct extent_buffer *leaf;
7328 u32 size = sizeof(*extent_item) + sizeof(*iref);
7329 u64 num_bytes = ins->offset;
7330 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7331 SKINNY_METADATA);
7332
7333 if (!skinny_metadata)
7334 size += sizeof(*block_info);
7335
7336 path = btrfs_alloc_path();
7337 if (!path) {
7338 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7339 root->nodesize);
7340 return -ENOMEM;
7341 }
7342
7343 path->leave_spinning = 1;
7344 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7345 ins, size);
7346 if (ret) {
7347 btrfs_free_path(path);
7348 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7349 root->nodesize);
7350 return ret;
7351 }
7352
7353 leaf = path->nodes[0];
7354 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7355 struct btrfs_extent_item);
7356 btrfs_set_extent_refs(leaf, extent_item, 1);
7357 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7358 btrfs_set_extent_flags(leaf, extent_item,
7359 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7360
7361 if (skinny_metadata) {
7362 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7363 num_bytes = root->nodesize;
7364 } else {
7365 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7366 btrfs_set_tree_block_key(leaf, block_info, key);
7367 btrfs_set_tree_block_level(leaf, block_info, level);
7368 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7369 }
7370
7371 if (parent > 0) {
7372 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7373 btrfs_set_extent_inline_ref_type(leaf, iref,
7374 BTRFS_SHARED_BLOCK_REF_KEY);
7375 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7376 } else {
7377 btrfs_set_extent_inline_ref_type(leaf, iref,
7378 BTRFS_TREE_BLOCK_REF_KEY);
7379 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7380 }
7381
7382 btrfs_mark_buffer_dirty(leaf);
7383 btrfs_free_path(path);
7384
7385 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7386 1);
7387 if (ret) { /* -ENOENT, logic error */
7388 btrfs_err(fs_info, "update block group failed for %llu %llu",
7389 ins->objectid, ins->offset);
7390 BUG();
7391 }
7392
7393 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7394 return ret;
7395 }
7396
7397 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7398 struct btrfs_root *root,
7399 u64 root_objectid, u64 owner,
7400 u64 offset, struct btrfs_key *ins)
7401 {
7402 int ret;
7403
7404 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7405
7406 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7407 ins->offset, 0,
7408 root_objectid, owner, offset,
7409 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7410 return ret;
7411 }
7412
7413 /*
7414 * this is used by the tree logging recovery code. It records that
7415 * an extent has been allocated and makes sure to clear the free
7416 * space cache bits as well
7417 */
7418 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7419 struct btrfs_root *root,
7420 u64 root_objectid, u64 owner, u64 offset,
7421 struct btrfs_key *ins)
7422 {
7423 int ret;
7424 struct btrfs_block_group_cache *block_group;
7425
7426 /*
7427 * Mixed block groups will exclude before processing the log so we only
7428 * need to do the exlude dance if this fs isn't mixed.
7429 */
7430 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7431 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7432 if (ret)
7433 return ret;
7434 }
7435
7436 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7437 if (!block_group)
7438 return -EINVAL;
7439
7440 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7441 RESERVE_ALLOC_NO_ACCOUNT, 0);
7442 BUG_ON(ret); /* logic error */
7443 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7444 0, owner, offset, ins, 1);
7445 btrfs_put_block_group(block_group);
7446 return ret;
7447 }
7448
7449 static struct extent_buffer *
7450 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7451 u64 bytenr, int level)
7452 {
7453 struct extent_buffer *buf;
7454
7455 buf = btrfs_find_create_tree_block(root, bytenr);
7456 if (!buf)
7457 return ERR_PTR(-ENOMEM);
7458 btrfs_set_header_generation(buf, trans->transid);
7459 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7460 btrfs_tree_lock(buf);
7461 clean_tree_block(trans, root->fs_info, buf);
7462 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7463
7464 btrfs_set_lock_blocking(buf);
7465 btrfs_set_buffer_uptodate(buf);
7466
7467 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7468 buf->log_index = root->log_transid % 2;
7469 /*
7470 * we allow two log transactions at a time, use different
7471 * EXENT bit to differentiate dirty pages.
7472 */
7473 if (buf->log_index == 0)
7474 set_extent_dirty(&root->dirty_log_pages, buf->start,
7475 buf->start + buf->len - 1, GFP_NOFS);
7476 else
7477 set_extent_new(&root->dirty_log_pages, buf->start,
7478 buf->start + buf->len - 1, GFP_NOFS);
7479 } else {
7480 buf->log_index = -1;
7481 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7482 buf->start + buf->len - 1, GFP_NOFS);
7483 }
7484 trans->blocks_used++;
7485 /* this returns a buffer locked for blocking */
7486 return buf;
7487 }
7488
7489 static struct btrfs_block_rsv *
7490 use_block_rsv(struct btrfs_trans_handle *trans,
7491 struct btrfs_root *root, u32 blocksize)
7492 {
7493 struct btrfs_block_rsv *block_rsv;
7494 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7495 int ret;
7496 bool global_updated = false;
7497
7498 block_rsv = get_block_rsv(trans, root);
7499
7500 if (unlikely(block_rsv->size == 0))
7501 goto try_reserve;
7502 again:
7503 ret = block_rsv_use_bytes(block_rsv, blocksize);
7504 if (!ret)
7505 return block_rsv;
7506
7507 if (block_rsv->failfast)
7508 return ERR_PTR(ret);
7509
7510 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7511 global_updated = true;
7512 update_global_block_rsv(root->fs_info);
7513 goto again;
7514 }
7515
7516 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7517 static DEFINE_RATELIMIT_STATE(_rs,
7518 DEFAULT_RATELIMIT_INTERVAL * 10,
7519 /*DEFAULT_RATELIMIT_BURST*/ 1);
7520 if (__ratelimit(&_rs))
7521 WARN(1, KERN_DEBUG
7522 "BTRFS: block rsv returned %d\n", ret);
7523 }
7524 try_reserve:
7525 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7526 BTRFS_RESERVE_NO_FLUSH);
7527 if (!ret)
7528 return block_rsv;
7529 /*
7530 * If we couldn't reserve metadata bytes try and use some from
7531 * the global reserve if its space type is the same as the global
7532 * reservation.
7533 */
7534 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7535 block_rsv->space_info == global_rsv->space_info) {
7536 ret = block_rsv_use_bytes(global_rsv, blocksize);
7537 if (!ret)
7538 return global_rsv;
7539 }
7540 return ERR_PTR(ret);
7541 }
7542
7543 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7544 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7545 {
7546 block_rsv_add_bytes(block_rsv, blocksize, 0);
7547 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7548 }
7549
7550 /*
7551 * finds a free extent and does all the dirty work required for allocation
7552 * returns the key for the extent through ins, and a tree buffer for
7553 * the first block of the extent through buf.
7554 *
7555 * returns the tree buffer or an ERR_PTR on error.
7556 */
7557 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7558 struct btrfs_root *root,
7559 u64 parent, u64 root_objectid,
7560 struct btrfs_disk_key *key, int level,
7561 u64 hint, u64 empty_size)
7562 {
7563 struct btrfs_key ins;
7564 struct btrfs_block_rsv *block_rsv;
7565 struct extent_buffer *buf;
7566 struct btrfs_delayed_extent_op *extent_op;
7567 u64 flags = 0;
7568 int ret;
7569 u32 blocksize = root->nodesize;
7570 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7571 SKINNY_METADATA);
7572
7573 if (btrfs_test_is_dummy_root(root)) {
7574 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7575 level);
7576 if (!IS_ERR(buf))
7577 root->alloc_bytenr += blocksize;
7578 return buf;
7579 }
7580
7581 block_rsv = use_block_rsv(trans, root, blocksize);
7582 if (IS_ERR(block_rsv))
7583 return ERR_CAST(block_rsv);
7584
7585 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7586 empty_size, hint, &ins, 0, 0);
7587 if (ret)
7588 goto out_unuse;
7589
7590 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7591 if (IS_ERR(buf)) {
7592 ret = PTR_ERR(buf);
7593 goto out_free_reserved;
7594 }
7595
7596 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7597 if (parent == 0)
7598 parent = ins.objectid;
7599 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7600 } else
7601 BUG_ON(parent > 0);
7602
7603 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7604 extent_op = btrfs_alloc_delayed_extent_op();
7605 if (!extent_op) {
7606 ret = -ENOMEM;
7607 goto out_free_buf;
7608 }
7609 if (key)
7610 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7611 else
7612 memset(&extent_op->key, 0, sizeof(extent_op->key));
7613 extent_op->flags_to_set = flags;
7614 if (skinny_metadata)
7615 extent_op->update_key = 0;
7616 else
7617 extent_op->update_key = 1;
7618 extent_op->update_flags = 1;
7619 extent_op->is_data = 0;
7620 extent_op->level = level;
7621
7622 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7623 ins.objectid, ins.offset,
7624 parent, root_objectid, level,
7625 BTRFS_ADD_DELAYED_EXTENT,
7626 extent_op, 0);
7627 if (ret)
7628 goto out_free_delayed;
7629 }
7630 return buf;
7631
7632 out_free_delayed:
7633 btrfs_free_delayed_extent_op(extent_op);
7634 out_free_buf:
7635 free_extent_buffer(buf);
7636 out_free_reserved:
7637 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7638 out_unuse:
7639 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7640 return ERR_PTR(ret);
7641 }
7642
7643 struct walk_control {
7644 u64 refs[BTRFS_MAX_LEVEL];
7645 u64 flags[BTRFS_MAX_LEVEL];
7646 struct btrfs_key update_progress;
7647 int stage;
7648 int level;
7649 int shared_level;
7650 int update_ref;
7651 int keep_locks;
7652 int reada_slot;
7653 int reada_count;
7654 int for_reloc;
7655 };
7656
7657 #define DROP_REFERENCE 1
7658 #define UPDATE_BACKREF 2
7659
7660 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7661 struct btrfs_root *root,
7662 struct walk_control *wc,
7663 struct btrfs_path *path)
7664 {
7665 u64 bytenr;
7666 u64 generation;
7667 u64 refs;
7668 u64 flags;
7669 u32 nritems;
7670 u32 blocksize;
7671 struct btrfs_key key;
7672 struct extent_buffer *eb;
7673 int ret;
7674 int slot;
7675 int nread = 0;
7676
7677 if (path->slots[wc->level] < wc->reada_slot) {
7678 wc->reada_count = wc->reada_count * 2 / 3;
7679 wc->reada_count = max(wc->reada_count, 2);
7680 } else {
7681 wc->reada_count = wc->reada_count * 3 / 2;
7682 wc->reada_count = min_t(int, wc->reada_count,
7683 BTRFS_NODEPTRS_PER_BLOCK(root));
7684 }
7685
7686 eb = path->nodes[wc->level];
7687 nritems = btrfs_header_nritems(eb);
7688 blocksize = root->nodesize;
7689
7690 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7691 if (nread >= wc->reada_count)
7692 break;
7693
7694 cond_resched();
7695 bytenr = btrfs_node_blockptr(eb, slot);
7696 generation = btrfs_node_ptr_generation(eb, slot);
7697
7698 if (slot == path->slots[wc->level])
7699 goto reada;
7700
7701 if (wc->stage == UPDATE_BACKREF &&
7702 generation <= root->root_key.offset)
7703 continue;
7704
7705 /* We don't lock the tree block, it's OK to be racy here */
7706 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7707 wc->level - 1, 1, &refs,
7708 &flags);
7709 /* We don't care about errors in readahead. */
7710 if (ret < 0)
7711 continue;
7712 BUG_ON(refs == 0);
7713
7714 if (wc->stage == DROP_REFERENCE) {
7715 if (refs == 1)
7716 goto reada;
7717
7718 if (wc->level == 1 &&
7719 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7720 continue;
7721 if (!wc->update_ref ||
7722 generation <= root->root_key.offset)
7723 continue;
7724 btrfs_node_key_to_cpu(eb, &key, slot);
7725 ret = btrfs_comp_cpu_keys(&key,
7726 &wc->update_progress);
7727 if (ret < 0)
7728 continue;
7729 } else {
7730 if (wc->level == 1 &&
7731 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7732 continue;
7733 }
7734 reada:
7735 readahead_tree_block(root, bytenr);
7736 nread++;
7737 }
7738 wc->reada_slot = slot;
7739 }
7740
7741 /*
7742 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7743 * for later qgroup accounting.
7744 *
7745 * Current, this function does nothing.
7746 */
7747 static int account_leaf_items(struct btrfs_trans_handle *trans,
7748 struct btrfs_root *root,
7749 struct extent_buffer *eb)
7750 {
7751 int nr = btrfs_header_nritems(eb);
7752 int i, extent_type;
7753 struct btrfs_key key;
7754 struct btrfs_file_extent_item *fi;
7755 u64 bytenr, num_bytes;
7756
7757 for (i = 0; i < nr; i++) {
7758 btrfs_item_key_to_cpu(eb, &key, i);
7759
7760 if (key.type != BTRFS_EXTENT_DATA_KEY)
7761 continue;
7762
7763 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7764 /* filter out non qgroup-accountable extents */
7765 extent_type = btrfs_file_extent_type(eb, fi);
7766
7767 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7768 continue;
7769
7770 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7771 if (!bytenr)
7772 continue;
7773
7774 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7775 }
7776 return 0;
7777 }
7778
7779 /*
7780 * Walk up the tree from the bottom, freeing leaves and any interior
7781 * nodes which have had all slots visited. If a node (leaf or
7782 * interior) is freed, the node above it will have it's slot
7783 * incremented. The root node will never be freed.
7784 *
7785 * At the end of this function, we should have a path which has all
7786 * slots incremented to the next position for a search. If we need to
7787 * read a new node it will be NULL and the node above it will have the
7788 * correct slot selected for a later read.
7789 *
7790 * If we increment the root nodes slot counter past the number of
7791 * elements, 1 is returned to signal completion of the search.
7792 */
7793 static int adjust_slots_upwards(struct btrfs_root *root,
7794 struct btrfs_path *path, int root_level)
7795 {
7796 int level = 0;
7797 int nr, slot;
7798 struct extent_buffer *eb;
7799
7800 if (root_level == 0)
7801 return 1;
7802
7803 while (level <= root_level) {
7804 eb = path->nodes[level];
7805 nr = btrfs_header_nritems(eb);
7806 path->slots[level]++;
7807 slot = path->slots[level];
7808 if (slot >= nr || level == 0) {
7809 /*
7810 * Don't free the root - we will detect this
7811 * condition after our loop and return a
7812 * positive value for caller to stop walking the tree.
7813 */
7814 if (level != root_level) {
7815 btrfs_tree_unlock_rw(eb, path->locks[level]);
7816 path->locks[level] = 0;
7817
7818 free_extent_buffer(eb);
7819 path->nodes[level] = NULL;
7820 path->slots[level] = 0;
7821 }
7822 } else {
7823 /*
7824 * We have a valid slot to walk back down
7825 * from. Stop here so caller can process these
7826 * new nodes.
7827 */
7828 break;
7829 }
7830
7831 level++;
7832 }
7833
7834 eb = path->nodes[root_level];
7835 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7836 return 1;
7837
7838 return 0;
7839 }
7840
7841 /*
7842 * root_eb is the subtree root and is locked before this function is called.
7843 * TODO: Modify this function to mark all (including complete shared node)
7844 * to dirty_extent_root to allow it get accounted in qgroup.
7845 */
7846 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7847 struct btrfs_root *root,
7848 struct extent_buffer *root_eb,
7849 u64 root_gen,
7850 int root_level)
7851 {
7852 int ret = 0;
7853 int level;
7854 struct extent_buffer *eb = root_eb;
7855 struct btrfs_path *path = NULL;
7856
7857 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7858 BUG_ON(root_eb == NULL);
7859
7860 if (!root->fs_info->quota_enabled)
7861 return 0;
7862
7863 if (!extent_buffer_uptodate(root_eb)) {
7864 ret = btrfs_read_buffer(root_eb, root_gen);
7865 if (ret)
7866 goto out;
7867 }
7868
7869 if (root_level == 0) {
7870 ret = account_leaf_items(trans, root, root_eb);
7871 goto out;
7872 }
7873
7874 path = btrfs_alloc_path();
7875 if (!path)
7876 return -ENOMEM;
7877
7878 /*
7879 * Walk down the tree. Missing extent blocks are filled in as
7880 * we go. Metadata is accounted every time we read a new
7881 * extent block.
7882 *
7883 * When we reach a leaf, we account for file extent items in it,
7884 * walk back up the tree (adjusting slot pointers as we go)
7885 * and restart the search process.
7886 */
7887 extent_buffer_get(root_eb); /* For path */
7888 path->nodes[root_level] = root_eb;
7889 path->slots[root_level] = 0;
7890 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7891 walk_down:
7892 level = root_level;
7893 while (level >= 0) {
7894 if (path->nodes[level] == NULL) {
7895 int parent_slot;
7896 u64 child_gen;
7897 u64 child_bytenr;
7898
7899 /* We need to get child blockptr/gen from
7900 * parent before we can read it. */
7901 eb = path->nodes[level + 1];
7902 parent_slot = path->slots[level + 1];
7903 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7904 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7905
7906 eb = read_tree_block(root, child_bytenr, child_gen);
7907 if (IS_ERR(eb)) {
7908 ret = PTR_ERR(eb);
7909 goto out;
7910 } else if (!extent_buffer_uptodate(eb)) {
7911 free_extent_buffer(eb);
7912 ret = -EIO;
7913 goto out;
7914 }
7915
7916 path->nodes[level] = eb;
7917 path->slots[level] = 0;
7918
7919 btrfs_tree_read_lock(eb);
7920 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7921 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7922 }
7923
7924 if (level == 0) {
7925 ret = account_leaf_items(trans, root, path->nodes[level]);
7926 if (ret)
7927 goto out;
7928
7929 /* Nonzero return here means we completed our search */
7930 ret = adjust_slots_upwards(root, path, root_level);
7931 if (ret)
7932 break;
7933
7934 /* Restart search with new slots */
7935 goto walk_down;
7936 }
7937
7938 level--;
7939 }
7940
7941 ret = 0;
7942 out:
7943 btrfs_free_path(path);
7944
7945 return ret;
7946 }
7947
7948 /*
7949 * helper to process tree block while walking down the tree.
7950 *
7951 * when wc->stage == UPDATE_BACKREF, this function updates
7952 * back refs for pointers in the block.
7953 *
7954 * NOTE: return value 1 means we should stop walking down.
7955 */
7956 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7957 struct btrfs_root *root,
7958 struct btrfs_path *path,
7959 struct walk_control *wc, int lookup_info)
7960 {
7961 int level = wc->level;
7962 struct extent_buffer *eb = path->nodes[level];
7963 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7964 int ret;
7965
7966 if (wc->stage == UPDATE_BACKREF &&
7967 btrfs_header_owner(eb) != root->root_key.objectid)
7968 return 1;
7969
7970 /*
7971 * when reference count of tree block is 1, it won't increase
7972 * again. once full backref flag is set, we never clear it.
7973 */
7974 if (lookup_info &&
7975 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7976 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7977 BUG_ON(!path->locks[level]);
7978 ret = btrfs_lookup_extent_info(trans, root,
7979 eb->start, level, 1,
7980 &wc->refs[level],
7981 &wc->flags[level]);
7982 BUG_ON(ret == -ENOMEM);
7983 if (ret)
7984 return ret;
7985 BUG_ON(wc->refs[level] == 0);
7986 }
7987
7988 if (wc->stage == DROP_REFERENCE) {
7989 if (wc->refs[level] > 1)
7990 return 1;
7991
7992 if (path->locks[level] && !wc->keep_locks) {
7993 btrfs_tree_unlock_rw(eb, path->locks[level]);
7994 path->locks[level] = 0;
7995 }
7996 return 0;
7997 }
7998
7999 /* wc->stage == UPDATE_BACKREF */
8000 if (!(wc->flags[level] & flag)) {
8001 BUG_ON(!path->locks[level]);
8002 ret = btrfs_inc_ref(trans, root, eb, 1);
8003 BUG_ON(ret); /* -ENOMEM */
8004 ret = btrfs_dec_ref(trans, root, eb, 0);
8005 BUG_ON(ret); /* -ENOMEM */
8006 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8007 eb->len, flag,
8008 btrfs_header_level(eb), 0);
8009 BUG_ON(ret); /* -ENOMEM */
8010 wc->flags[level] |= flag;
8011 }
8012
8013 /*
8014 * the block is shared by multiple trees, so it's not good to
8015 * keep the tree lock
8016 */
8017 if (path->locks[level] && level > 0) {
8018 btrfs_tree_unlock_rw(eb, path->locks[level]);
8019 path->locks[level] = 0;
8020 }
8021 return 0;
8022 }
8023
8024 /*
8025 * helper to process tree block pointer.
8026 *
8027 * when wc->stage == DROP_REFERENCE, this function checks
8028 * reference count of the block pointed to. if the block
8029 * is shared and we need update back refs for the subtree
8030 * rooted at the block, this function changes wc->stage to
8031 * UPDATE_BACKREF. if the block is shared and there is no
8032 * need to update back, this function drops the reference
8033 * to the block.
8034 *
8035 * NOTE: return value 1 means we should stop walking down.
8036 */
8037 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8038 struct btrfs_root *root,
8039 struct btrfs_path *path,
8040 struct walk_control *wc, int *lookup_info)
8041 {
8042 u64 bytenr;
8043 u64 generation;
8044 u64 parent;
8045 u32 blocksize;
8046 struct btrfs_key key;
8047 struct extent_buffer *next;
8048 int level = wc->level;
8049 int reada = 0;
8050 int ret = 0;
8051 bool need_account = false;
8052
8053 generation = btrfs_node_ptr_generation(path->nodes[level],
8054 path->slots[level]);
8055 /*
8056 * if the lower level block was created before the snapshot
8057 * was created, we know there is no need to update back refs
8058 * for the subtree
8059 */
8060 if (wc->stage == UPDATE_BACKREF &&
8061 generation <= root->root_key.offset) {
8062 *lookup_info = 1;
8063 return 1;
8064 }
8065
8066 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8067 blocksize = root->nodesize;
8068
8069 next = btrfs_find_tree_block(root->fs_info, bytenr);
8070 if (!next) {
8071 next = btrfs_find_create_tree_block(root, bytenr);
8072 if (!next)
8073 return -ENOMEM;
8074 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8075 level - 1);
8076 reada = 1;
8077 }
8078 btrfs_tree_lock(next);
8079 btrfs_set_lock_blocking(next);
8080
8081 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8082 &wc->refs[level - 1],
8083 &wc->flags[level - 1]);
8084 if (ret < 0) {
8085 btrfs_tree_unlock(next);
8086 return ret;
8087 }
8088
8089 if (unlikely(wc->refs[level - 1] == 0)) {
8090 btrfs_err(root->fs_info, "Missing references.");
8091 BUG();
8092 }
8093 *lookup_info = 0;
8094
8095 if (wc->stage == DROP_REFERENCE) {
8096 if (wc->refs[level - 1] > 1) {
8097 need_account = true;
8098 if (level == 1 &&
8099 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8100 goto skip;
8101
8102 if (!wc->update_ref ||
8103 generation <= root->root_key.offset)
8104 goto skip;
8105
8106 btrfs_node_key_to_cpu(path->nodes[level], &key,
8107 path->slots[level]);
8108 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8109 if (ret < 0)
8110 goto skip;
8111
8112 wc->stage = UPDATE_BACKREF;
8113 wc->shared_level = level - 1;
8114 }
8115 } else {
8116 if (level == 1 &&
8117 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8118 goto skip;
8119 }
8120
8121 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8122 btrfs_tree_unlock(next);
8123 free_extent_buffer(next);
8124 next = NULL;
8125 *lookup_info = 1;
8126 }
8127
8128 if (!next) {
8129 if (reada && level == 1)
8130 reada_walk_down(trans, root, wc, path);
8131 next = read_tree_block(root, bytenr, generation);
8132 if (IS_ERR(next)) {
8133 return PTR_ERR(next);
8134 } else if (!extent_buffer_uptodate(next)) {
8135 free_extent_buffer(next);
8136 return -EIO;
8137 }
8138 btrfs_tree_lock(next);
8139 btrfs_set_lock_blocking(next);
8140 }
8141
8142 level--;
8143 BUG_ON(level != btrfs_header_level(next));
8144 path->nodes[level] = next;
8145 path->slots[level] = 0;
8146 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8147 wc->level = level;
8148 if (wc->level == 1)
8149 wc->reada_slot = 0;
8150 return 0;
8151 skip:
8152 wc->refs[level - 1] = 0;
8153 wc->flags[level - 1] = 0;
8154 if (wc->stage == DROP_REFERENCE) {
8155 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8156 parent = path->nodes[level]->start;
8157 } else {
8158 BUG_ON(root->root_key.objectid !=
8159 btrfs_header_owner(path->nodes[level]));
8160 parent = 0;
8161 }
8162
8163 if (need_account) {
8164 ret = account_shared_subtree(trans, root, next,
8165 generation, level - 1);
8166 if (ret) {
8167 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8168 "%d accounting shared subtree. Quota "
8169 "is out of sync, rescan required.\n",
8170 root->fs_info->sb->s_id, ret);
8171 }
8172 }
8173 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8174 root->root_key.objectid, level - 1, 0, 0);
8175 BUG_ON(ret); /* -ENOMEM */
8176 }
8177 btrfs_tree_unlock(next);
8178 free_extent_buffer(next);
8179 *lookup_info = 1;
8180 return 1;
8181 }
8182
8183 /*
8184 * helper to process tree block while walking up the tree.
8185 *
8186 * when wc->stage == DROP_REFERENCE, this function drops
8187 * reference count on the block.
8188 *
8189 * when wc->stage == UPDATE_BACKREF, this function changes
8190 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8191 * to UPDATE_BACKREF previously while processing the block.
8192 *
8193 * NOTE: return value 1 means we should stop walking up.
8194 */
8195 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8196 struct btrfs_root *root,
8197 struct btrfs_path *path,
8198 struct walk_control *wc)
8199 {
8200 int ret;
8201 int level = wc->level;
8202 struct extent_buffer *eb = path->nodes[level];
8203 u64 parent = 0;
8204
8205 if (wc->stage == UPDATE_BACKREF) {
8206 BUG_ON(wc->shared_level < level);
8207 if (level < wc->shared_level)
8208 goto out;
8209
8210 ret = find_next_key(path, level + 1, &wc->update_progress);
8211 if (ret > 0)
8212 wc->update_ref = 0;
8213
8214 wc->stage = DROP_REFERENCE;
8215 wc->shared_level = -1;
8216 path->slots[level] = 0;
8217
8218 /*
8219 * check reference count again if the block isn't locked.
8220 * we should start walking down the tree again if reference
8221 * count is one.
8222 */
8223 if (!path->locks[level]) {
8224 BUG_ON(level == 0);
8225 btrfs_tree_lock(eb);
8226 btrfs_set_lock_blocking(eb);
8227 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8228
8229 ret = btrfs_lookup_extent_info(trans, root,
8230 eb->start, level, 1,
8231 &wc->refs[level],
8232 &wc->flags[level]);
8233 if (ret < 0) {
8234 btrfs_tree_unlock_rw(eb, path->locks[level]);
8235 path->locks[level] = 0;
8236 return ret;
8237 }
8238 BUG_ON(wc->refs[level] == 0);
8239 if (wc->refs[level] == 1) {
8240 btrfs_tree_unlock_rw(eb, path->locks[level]);
8241 path->locks[level] = 0;
8242 return 1;
8243 }
8244 }
8245 }
8246
8247 /* wc->stage == DROP_REFERENCE */
8248 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8249
8250 if (wc->refs[level] == 1) {
8251 if (level == 0) {
8252 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8253 ret = btrfs_dec_ref(trans, root, eb, 1);
8254 else
8255 ret = btrfs_dec_ref(trans, root, eb, 0);
8256 BUG_ON(ret); /* -ENOMEM */
8257 ret = account_leaf_items(trans, root, eb);
8258 if (ret) {
8259 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8260 "%d accounting leaf items. Quota "
8261 "is out of sync, rescan required.\n",
8262 root->fs_info->sb->s_id, ret);
8263 }
8264 }
8265 /* make block locked assertion in clean_tree_block happy */
8266 if (!path->locks[level] &&
8267 btrfs_header_generation(eb) == trans->transid) {
8268 btrfs_tree_lock(eb);
8269 btrfs_set_lock_blocking(eb);
8270 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8271 }
8272 clean_tree_block(trans, root->fs_info, eb);
8273 }
8274
8275 if (eb == root->node) {
8276 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8277 parent = eb->start;
8278 else
8279 BUG_ON(root->root_key.objectid !=
8280 btrfs_header_owner(eb));
8281 } else {
8282 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8283 parent = path->nodes[level + 1]->start;
8284 else
8285 BUG_ON(root->root_key.objectid !=
8286 btrfs_header_owner(path->nodes[level + 1]));
8287 }
8288
8289 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8290 out:
8291 wc->refs[level] = 0;
8292 wc->flags[level] = 0;
8293 return 0;
8294 }
8295
8296 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8297 struct btrfs_root *root,
8298 struct btrfs_path *path,
8299 struct walk_control *wc)
8300 {
8301 int level = wc->level;
8302 int lookup_info = 1;
8303 int ret;
8304
8305 while (level >= 0) {
8306 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8307 if (ret > 0)
8308 break;
8309
8310 if (level == 0)
8311 break;
8312
8313 if (path->slots[level] >=
8314 btrfs_header_nritems(path->nodes[level]))
8315 break;
8316
8317 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8318 if (ret > 0) {
8319 path->slots[level]++;
8320 continue;
8321 } else if (ret < 0)
8322 return ret;
8323 level = wc->level;
8324 }
8325 return 0;
8326 }
8327
8328 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8329 struct btrfs_root *root,
8330 struct btrfs_path *path,
8331 struct walk_control *wc, int max_level)
8332 {
8333 int level = wc->level;
8334 int ret;
8335
8336 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8337 while (level < max_level && path->nodes[level]) {
8338 wc->level = level;
8339 if (path->slots[level] + 1 <
8340 btrfs_header_nritems(path->nodes[level])) {
8341 path->slots[level]++;
8342 return 0;
8343 } else {
8344 ret = walk_up_proc(trans, root, path, wc);
8345 if (ret > 0)
8346 return 0;
8347
8348 if (path->locks[level]) {
8349 btrfs_tree_unlock_rw(path->nodes[level],
8350 path->locks[level]);
8351 path->locks[level] = 0;
8352 }
8353 free_extent_buffer(path->nodes[level]);
8354 path->nodes[level] = NULL;
8355 level++;
8356 }
8357 }
8358 return 1;
8359 }
8360
8361 /*
8362 * drop a subvolume tree.
8363 *
8364 * this function traverses the tree freeing any blocks that only
8365 * referenced by the tree.
8366 *
8367 * when a shared tree block is found. this function decreases its
8368 * reference count by one. if update_ref is true, this function
8369 * also make sure backrefs for the shared block and all lower level
8370 * blocks are properly updated.
8371 *
8372 * If called with for_reloc == 0, may exit early with -EAGAIN
8373 */
8374 int btrfs_drop_snapshot(struct btrfs_root *root,
8375 struct btrfs_block_rsv *block_rsv, int update_ref,
8376 int for_reloc)
8377 {
8378 struct btrfs_path *path;
8379 struct btrfs_trans_handle *trans;
8380 struct btrfs_root *tree_root = root->fs_info->tree_root;
8381 struct btrfs_root_item *root_item = &root->root_item;
8382 struct walk_control *wc;
8383 struct btrfs_key key;
8384 int err = 0;
8385 int ret;
8386 int level;
8387 bool root_dropped = false;
8388
8389 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8390
8391 path = btrfs_alloc_path();
8392 if (!path) {
8393 err = -ENOMEM;
8394 goto out;
8395 }
8396
8397 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8398 if (!wc) {
8399 btrfs_free_path(path);
8400 err = -ENOMEM;
8401 goto out;
8402 }
8403
8404 trans = btrfs_start_transaction(tree_root, 0);
8405 if (IS_ERR(trans)) {
8406 err = PTR_ERR(trans);
8407 goto out_free;
8408 }
8409
8410 if (block_rsv)
8411 trans->block_rsv = block_rsv;
8412
8413 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8414 level = btrfs_header_level(root->node);
8415 path->nodes[level] = btrfs_lock_root_node(root);
8416 btrfs_set_lock_blocking(path->nodes[level]);
8417 path->slots[level] = 0;
8418 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8419 memset(&wc->update_progress, 0,
8420 sizeof(wc->update_progress));
8421 } else {
8422 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8423 memcpy(&wc->update_progress, &key,
8424 sizeof(wc->update_progress));
8425
8426 level = root_item->drop_level;
8427 BUG_ON(level == 0);
8428 path->lowest_level = level;
8429 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8430 path->lowest_level = 0;
8431 if (ret < 0) {
8432 err = ret;
8433 goto out_end_trans;
8434 }
8435 WARN_ON(ret > 0);
8436
8437 /*
8438 * unlock our path, this is safe because only this
8439 * function is allowed to delete this snapshot
8440 */
8441 btrfs_unlock_up_safe(path, 0);
8442
8443 level = btrfs_header_level(root->node);
8444 while (1) {
8445 btrfs_tree_lock(path->nodes[level]);
8446 btrfs_set_lock_blocking(path->nodes[level]);
8447 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8448
8449 ret = btrfs_lookup_extent_info(trans, root,
8450 path->nodes[level]->start,
8451 level, 1, &wc->refs[level],
8452 &wc->flags[level]);
8453 if (ret < 0) {
8454 err = ret;
8455 goto out_end_trans;
8456 }
8457 BUG_ON(wc->refs[level] == 0);
8458
8459 if (level == root_item->drop_level)
8460 break;
8461
8462 btrfs_tree_unlock(path->nodes[level]);
8463 path->locks[level] = 0;
8464 WARN_ON(wc->refs[level] != 1);
8465 level--;
8466 }
8467 }
8468
8469 wc->level = level;
8470 wc->shared_level = -1;
8471 wc->stage = DROP_REFERENCE;
8472 wc->update_ref = update_ref;
8473 wc->keep_locks = 0;
8474 wc->for_reloc = for_reloc;
8475 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8476
8477 while (1) {
8478
8479 ret = walk_down_tree(trans, root, path, wc);
8480 if (ret < 0) {
8481 err = ret;
8482 break;
8483 }
8484
8485 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8486 if (ret < 0) {
8487 err = ret;
8488 break;
8489 }
8490
8491 if (ret > 0) {
8492 BUG_ON(wc->stage != DROP_REFERENCE);
8493 break;
8494 }
8495
8496 if (wc->stage == DROP_REFERENCE) {
8497 level = wc->level;
8498 btrfs_node_key(path->nodes[level],
8499 &root_item->drop_progress,
8500 path->slots[level]);
8501 root_item->drop_level = level;
8502 }
8503
8504 BUG_ON(wc->level == 0);
8505 if (btrfs_should_end_transaction(trans, tree_root) ||
8506 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8507 ret = btrfs_update_root(trans, tree_root,
8508 &root->root_key,
8509 root_item);
8510 if (ret) {
8511 btrfs_abort_transaction(trans, tree_root, ret);
8512 err = ret;
8513 goto out_end_trans;
8514 }
8515
8516 btrfs_end_transaction_throttle(trans, tree_root);
8517 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8518 pr_debug("BTRFS: drop snapshot early exit\n");
8519 err = -EAGAIN;
8520 goto out_free;
8521 }
8522
8523 trans = btrfs_start_transaction(tree_root, 0);
8524 if (IS_ERR(trans)) {
8525 err = PTR_ERR(trans);
8526 goto out_free;
8527 }
8528 if (block_rsv)
8529 trans->block_rsv = block_rsv;
8530 }
8531 }
8532 btrfs_release_path(path);
8533 if (err)
8534 goto out_end_trans;
8535
8536 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8537 if (ret) {
8538 btrfs_abort_transaction(trans, tree_root, ret);
8539 goto out_end_trans;
8540 }
8541
8542 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8543 ret = btrfs_find_root(tree_root, &root->root_key, path,
8544 NULL, NULL);
8545 if (ret < 0) {
8546 btrfs_abort_transaction(trans, tree_root, ret);
8547 err = ret;
8548 goto out_end_trans;
8549 } else if (ret > 0) {
8550 /* if we fail to delete the orphan item this time
8551 * around, it'll get picked up the next time.
8552 *
8553 * The most common failure here is just -ENOENT.
8554 */
8555 btrfs_del_orphan_item(trans, tree_root,
8556 root->root_key.objectid);
8557 }
8558 }
8559
8560 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8561 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8562 } else {
8563 free_extent_buffer(root->node);
8564 free_extent_buffer(root->commit_root);
8565 btrfs_put_fs_root(root);
8566 }
8567 root_dropped = true;
8568 out_end_trans:
8569 btrfs_end_transaction_throttle(trans, tree_root);
8570 out_free:
8571 kfree(wc);
8572 btrfs_free_path(path);
8573 out:
8574 /*
8575 * So if we need to stop dropping the snapshot for whatever reason we
8576 * need to make sure to add it back to the dead root list so that we
8577 * keep trying to do the work later. This also cleans up roots if we
8578 * don't have it in the radix (like when we recover after a power fail
8579 * or unmount) so we don't leak memory.
8580 */
8581 if (!for_reloc && root_dropped == false)
8582 btrfs_add_dead_root(root);
8583 if (err && err != -EAGAIN)
8584 btrfs_std_error(root->fs_info, err);
8585 return err;
8586 }
8587
8588 /*
8589 * drop subtree rooted at tree block 'node'.
8590 *
8591 * NOTE: this function will unlock and release tree block 'node'
8592 * only used by relocation code
8593 */
8594 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8595 struct btrfs_root *root,
8596 struct extent_buffer *node,
8597 struct extent_buffer *parent)
8598 {
8599 struct btrfs_path *path;
8600 struct walk_control *wc;
8601 int level;
8602 int parent_level;
8603 int ret = 0;
8604 int wret;
8605
8606 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8607
8608 path = btrfs_alloc_path();
8609 if (!path)
8610 return -ENOMEM;
8611
8612 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8613 if (!wc) {
8614 btrfs_free_path(path);
8615 return -ENOMEM;
8616 }
8617
8618 btrfs_assert_tree_locked(parent);
8619 parent_level = btrfs_header_level(parent);
8620 extent_buffer_get(parent);
8621 path->nodes[parent_level] = parent;
8622 path->slots[parent_level] = btrfs_header_nritems(parent);
8623
8624 btrfs_assert_tree_locked(node);
8625 level = btrfs_header_level(node);
8626 path->nodes[level] = node;
8627 path->slots[level] = 0;
8628 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8629
8630 wc->refs[parent_level] = 1;
8631 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8632 wc->level = level;
8633 wc->shared_level = -1;
8634 wc->stage = DROP_REFERENCE;
8635 wc->update_ref = 0;
8636 wc->keep_locks = 1;
8637 wc->for_reloc = 1;
8638 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8639
8640 while (1) {
8641 wret = walk_down_tree(trans, root, path, wc);
8642 if (wret < 0) {
8643 ret = wret;
8644 break;
8645 }
8646
8647 wret = walk_up_tree(trans, root, path, wc, parent_level);
8648 if (wret < 0)
8649 ret = wret;
8650 if (wret != 0)
8651 break;
8652 }
8653
8654 kfree(wc);
8655 btrfs_free_path(path);
8656 return ret;
8657 }
8658
8659 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8660 {
8661 u64 num_devices;
8662 u64 stripped;
8663
8664 /*
8665 * if restripe for this chunk_type is on pick target profile and
8666 * return, otherwise do the usual balance
8667 */
8668 stripped = get_restripe_target(root->fs_info, flags);
8669 if (stripped)
8670 return extended_to_chunk(stripped);
8671
8672 num_devices = root->fs_info->fs_devices->rw_devices;
8673
8674 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8675 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8676 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8677
8678 if (num_devices == 1) {
8679 stripped |= BTRFS_BLOCK_GROUP_DUP;
8680 stripped = flags & ~stripped;
8681
8682 /* turn raid0 into single device chunks */
8683 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8684 return stripped;
8685
8686 /* turn mirroring into duplication */
8687 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8688 BTRFS_BLOCK_GROUP_RAID10))
8689 return stripped | BTRFS_BLOCK_GROUP_DUP;
8690 } else {
8691 /* they already had raid on here, just return */
8692 if (flags & stripped)
8693 return flags;
8694
8695 stripped |= BTRFS_BLOCK_GROUP_DUP;
8696 stripped = flags & ~stripped;
8697
8698 /* switch duplicated blocks with raid1 */
8699 if (flags & BTRFS_BLOCK_GROUP_DUP)
8700 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8701
8702 /* this is drive concat, leave it alone */
8703 }
8704
8705 return flags;
8706 }
8707
8708 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8709 {
8710 struct btrfs_space_info *sinfo = cache->space_info;
8711 u64 num_bytes;
8712 u64 min_allocable_bytes;
8713 int ret = -ENOSPC;
8714
8715
8716 /*
8717 * We need some metadata space and system metadata space for
8718 * allocating chunks in some corner cases until we force to set
8719 * it to be readonly.
8720 */
8721 if ((sinfo->flags &
8722 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8723 !force)
8724 min_allocable_bytes = 1 * 1024 * 1024;
8725 else
8726 min_allocable_bytes = 0;
8727
8728 spin_lock(&sinfo->lock);
8729 spin_lock(&cache->lock);
8730
8731 if (cache->ro) {
8732 ret = 0;
8733 goto out;
8734 }
8735
8736 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8737 cache->bytes_super - btrfs_block_group_used(&cache->item);
8738
8739 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8740 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8741 min_allocable_bytes <= sinfo->total_bytes) {
8742 sinfo->bytes_readonly += num_bytes;
8743 cache->ro = 1;
8744 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8745 ret = 0;
8746 }
8747 out:
8748 spin_unlock(&cache->lock);
8749 spin_unlock(&sinfo->lock);
8750 return ret;
8751 }
8752
8753 int btrfs_set_block_group_ro(struct btrfs_root *root,
8754 struct btrfs_block_group_cache *cache)
8755
8756 {
8757 struct btrfs_trans_handle *trans;
8758 u64 alloc_flags;
8759 int ret;
8760
8761 BUG_ON(cache->ro);
8762
8763 again:
8764 trans = btrfs_join_transaction(root);
8765 if (IS_ERR(trans))
8766 return PTR_ERR(trans);
8767
8768 /*
8769 * we're not allowed to set block groups readonly after the dirty
8770 * block groups cache has started writing. If it already started,
8771 * back off and let this transaction commit
8772 */
8773 mutex_lock(&root->fs_info->ro_block_group_mutex);
8774 if (trans->transaction->dirty_bg_run) {
8775 u64 transid = trans->transid;
8776
8777 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8778 btrfs_end_transaction(trans, root);
8779
8780 ret = btrfs_wait_for_commit(root, transid);
8781 if (ret)
8782 return ret;
8783 goto again;
8784 }
8785
8786 /*
8787 * if we are changing raid levels, try to allocate a corresponding
8788 * block group with the new raid level.
8789 */
8790 alloc_flags = update_block_group_flags(root, cache->flags);
8791 if (alloc_flags != cache->flags) {
8792 ret = do_chunk_alloc(trans, root, alloc_flags,
8793 CHUNK_ALLOC_FORCE);
8794 /*
8795 * ENOSPC is allowed here, we may have enough space
8796 * already allocated at the new raid level to
8797 * carry on
8798 */
8799 if (ret == -ENOSPC)
8800 ret = 0;
8801 if (ret < 0)
8802 goto out;
8803 }
8804
8805 ret = set_block_group_ro(cache, 0);
8806 if (!ret)
8807 goto out;
8808 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8809 ret = do_chunk_alloc(trans, root, alloc_flags,
8810 CHUNK_ALLOC_FORCE);
8811 if (ret < 0)
8812 goto out;
8813 ret = set_block_group_ro(cache, 0);
8814 out:
8815 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8816 alloc_flags = update_block_group_flags(root, cache->flags);
8817 lock_chunks(root->fs_info->chunk_root);
8818 check_system_chunk(trans, root, alloc_flags);
8819 unlock_chunks(root->fs_info->chunk_root);
8820 }
8821 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8822
8823 btrfs_end_transaction(trans, root);
8824 return ret;
8825 }
8826
8827 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8828 struct btrfs_root *root, u64 type)
8829 {
8830 u64 alloc_flags = get_alloc_profile(root, type);
8831 return do_chunk_alloc(trans, root, alloc_flags,
8832 CHUNK_ALLOC_FORCE);
8833 }
8834
8835 /*
8836 * helper to account the unused space of all the readonly block group in the
8837 * space_info. takes mirrors into account.
8838 */
8839 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8840 {
8841 struct btrfs_block_group_cache *block_group;
8842 u64 free_bytes = 0;
8843 int factor;
8844
8845 /* It's df, we don't care if it's racey */
8846 if (list_empty(&sinfo->ro_bgs))
8847 return 0;
8848
8849 spin_lock(&sinfo->lock);
8850 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8851 spin_lock(&block_group->lock);
8852
8853 if (!block_group->ro) {
8854 spin_unlock(&block_group->lock);
8855 continue;
8856 }
8857
8858 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8859 BTRFS_BLOCK_GROUP_RAID10 |
8860 BTRFS_BLOCK_GROUP_DUP))
8861 factor = 2;
8862 else
8863 factor = 1;
8864
8865 free_bytes += (block_group->key.offset -
8866 btrfs_block_group_used(&block_group->item)) *
8867 factor;
8868
8869 spin_unlock(&block_group->lock);
8870 }
8871 spin_unlock(&sinfo->lock);
8872
8873 return free_bytes;
8874 }
8875
8876 void btrfs_set_block_group_rw(struct btrfs_root *root,
8877 struct btrfs_block_group_cache *cache)
8878 {
8879 struct btrfs_space_info *sinfo = cache->space_info;
8880 u64 num_bytes;
8881
8882 BUG_ON(!cache->ro);
8883
8884 spin_lock(&sinfo->lock);
8885 spin_lock(&cache->lock);
8886 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8887 cache->bytes_super - btrfs_block_group_used(&cache->item);
8888 sinfo->bytes_readonly -= num_bytes;
8889 cache->ro = 0;
8890 list_del_init(&cache->ro_list);
8891 spin_unlock(&cache->lock);
8892 spin_unlock(&sinfo->lock);
8893 }
8894
8895 /*
8896 * checks to see if its even possible to relocate this block group.
8897 *
8898 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8899 * ok to go ahead and try.
8900 */
8901 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8902 {
8903 struct btrfs_block_group_cache *block_group;
8904 struct btrfs_space_info *space_info;
8905 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8906 struct btrfs_device *device;
8907 struct btrfs_trans_handle *trans;
8908 u64 min_free;
8909 u64 dev_min = 1;
8910 u64 dev_nr = 0;
8911 u64 target;
8912 int index;
8913 int full = 0;
8914 int ret = 0;
8915
8916 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8917
8918 /* odd, couldn't find the block group, leave it alone */
8919 if (!block_group)
8920 return -1;
8921
8922 min_free = btrfs_block_group_used(&block_group->item);
8923
8924 /* no bytes used, we're good */
8925 if (!min_free)
8926 goto out;
8927
8928 space_info = block_group->space_info;
8929 spin_lock(&space_info->lock);
8930
8931 full = space_info->full;
8932
8933 /*
8934 * if this is the last block group we have in this space, we can't
8935 * relocate it unless we're able to allocate a new chunk below.
8936 *
8937 * Otherwise, we need to make sure we have room in the space to handle
8938 * all of the extents from this block group. If we can, we're good
8939 */
8940 if ((space_info->total_bytes != block_group->key.offset) &&
8941 (space_info->bytes_used + space_info->bytes_reserved +
8942 space_info->bytes_pinned + space_info->bytes_readonly +
8943 min_free < space_info->total_bytes)) {
8944 spin_unlock(&space_info->lock);
8945 goto out;
8946 }
8947 spin_unlock(&space_info->lock);
8948
8949 /*
8950 * ok we don't have enough space, but maybe we have free space on our
8951 * devices to allocate new chunks for relocation, so loop through our
8952 * alloc devices and guess if we have enough space. if this block
8953 * group is going to be restriped, run checks against the target
8954 * profile instead of the current one.
8955 */
8956 ret = -1;
8957
8958 /*
8959 * index:
8960 * 0: raid10
8961 * 1: raid1
8962 * 2: dup
8963 * 3: raid0
8964 * 4: single
8965 */
8966 target = get_restripe_target(root->fs_info, block_group->flags);
8967 if (target) {
8968 index = __get_raid_index(extended_to_chunk(target));
8969 } else {
8970 /*
8971 * this is just a balance, so if we were marked as full
8972 * we know there is no space for a new chunk
8973 */
8974 if (full)
8975 goto out;
8976
8977 index = get_block_group_index(block_group);
8978 }
8979
8980 if (index == BTRFS_RAID_RAID10) {
8981 dev_min = 4;
8982 /* Divide by 2 */
8983 min_free >>= 1;
8984 } else if (index == BTRFS_RAID_RAID1) {
8985 dev_min = 2;
8986 } else if (index == BTRFS_RAID_DUP) {
8987 /* Multiply by 2 */
8988 min_free <<= 1;
8989 } else if (index == BTRFS_RAID_RAID0) {
8990 dev_min = fs_devices->rw_devices;
8991 min_free = div64_u64(min_free, dev_min);
8992 }
8993
8994 /* We need to do this so that we can look at pending chunks */
8995 trans = btrfs_join_transaction(root);
8996 if (IS_ERR(trans)) {
8997 ret = PTR_ERR(trans);
8998 goto out;
8999 }
9000
9001 mutex_lock(&root->fs_info->chunk_mutex);
9002 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9003 u64 dev_offset;
9004
9005 /*
9006 * check to make sure we can actually find a chunk with enough
9007 * space to fit our block group in.
9008 */
9009 if (device->total_bytes > device->bytes_used + min_free &&
9010 !device->is_tgtdev_for_dev_replace) {
9011 ret = find_free_dev_extent(trans, device, min_free,
9012 &dev_offset, NULL);
9013 if (!ret)
9014 dev_nr++;
9015
9016 if (dev_nr >= dev_min)
9017 break;
9018
9019 ret = -1;
9020 }
9021 }
9022 mutex_unlock(&root->fs_info->chunk_mutex);
9023 btrfs_end_transaction(trans, root);
9024 out:
9025 btrfs_put_block_group(block_group);
9026 return ret;
9027 }
9028
9029 static int find_first_block_group(struct btrfs_root *root,
9030 struct btrfs_path *path, struct btrfs_key *key)
9031 {
9032 int ret = 0;
9033 struct btrfs_key found_key;
9034 struct extent_buffer *leaf;
9035 int slot;
9036
9037 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9038 if (ret < 0)
9039 goto out;
9040
9041 while (1) {
9042 slot = path->slots[0];
9043 leaf = path->nodes[0];
9044 if (slot >= btrfs_header_nritems(leaf)) {
9045 ret = btrfs_next_leaf(root, path);
9046 if (ret == 0)
9047 continue;
9048 if (ret < 0)
9049 goto out;
9050 break;
9051 }
9052 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9053
9054 if (found_key.objectid >= key->objectid &&
9055 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9056 ret = 0;
9057 goto out;
9058 }
9059 path->slots[0]++;
9060 }
9061 out:
9062 return ret;
9063 }
9064
9065 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9066 {
9067 struct btrfs_block_group_cache *block_group;
9068 u64 last = 0;
9069
9070 while (1) {
9071 struct inode *inode;
9072
9073 block_group = btrfs_lookup_first_block_group(info, last);
9074 while (block_group) {
9075 spin_lock(&block_group->lock);
9076 if (block_group->iref)
9077 break;
9078 spin_unlock(&block_group->lock);
9079 block_group = next_block_group(info->tree_root,
9080 block_group);
9081 }
9082 if (!block_group) {
9083 if (last == 0)
9084 break;
9085 last = 0;
9086 continue;
9087 }
9088
9089 inode = block_group->inode;
9090 block_group->iref = 0;
9091 block_group->inode = NULL;
9092 spin_unlock(&block_group->lock);
9093 iput(inode);
9094 last = block_group->key.objectid + block_group->key.offset;
9095 btrfs_put_block_group(block_group);
9096 }
9097 }
9098
9099 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9100 {
9101 struct btrfs_block_group_cache *block_group;
9102 struct btrfs_space_info *space_info;
9103 struct btrfs_caching_control *caching_ctl;
9104 struct rb_node *n;
9105
9106 down_write(&info->commit_root_sem);
9107 while (!list_empty(&info->caching_block_groups)) {
9108 caching_ctl = list_entry(info->caching_block_groups.next,
9109 struct btrfs_caching_control, list);
9110 list_del(&caching_ctl->list);
9111 put_caching_control(caching_ctl);
9112 }
9113 up_write(&info->commit_root_sem);
9114
9115 spin_lock(&info->unused_bgs_lock);
9116 while (!list_empty(&info->unused_bgs)) {
9117 block_group = list_first_entry(&info->unused_bgs,
9118 struct btrfs_block_group_cache,
9119 bg_list);
9120 list_del_init(&block_group->bg_list);
9121 btrfs_put_block_group(block_group);
9122 }
9123 spin_unlock(&info->unused_bgs_lock);
9124
9125 spin_lock(&info->block_group_cache_lock);
9126 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9127 block_group = rb_entry(n, struct btrfs_block_group_cache,
9128 cache_node);
9129 rb_erase(&block_group->cache_node,
9130 &info->block_group_cache_tree);
9131 RB_CLEAR_NODE(&block_group->cache_node);
9132 spin_unlock(&info->block_group_cache_lock);
9133
9134 down_write(&block_group->space_info->groups_sem);
9135 list_del(&block_group->list);
9136 up_write(&block_group->space_info->groups_sem);
9137
9138 if (block_group->cached == BTRFS_CACHE_STARTED)
9139 wait_block_group_cache_done(block_group);
9140
9141 /*
9142 * We haven't cached this block group, which means we could
9143 * possibly have excluded extents on this block group.
9144 */
9145 if (block_group->cached == BTRFS_CACHE_NO ||
9146 block_group->cached == BTRFS_CACHE_ERROR)
9147 free_excluded_extents(info->extent_root, block_group);
9148
9149 btrfs_remove_free_space_cache(block_group);
9150 btrfs_put_block_group(block_group);
9151
9152 spin_lock(&info->block_group_cache_lock);
9153 }
9154 spin_unlock(&info->block_group_cache_lock);
9155
9156 /* now that all the block groups are freed, go through and
9157 * free all the space_info structs. This is only called during
9158 * the final stages of unmount, and so we know nobody is
9159 * using them. We call synchronize_rcu() once before we start,
9160 * just to be on the safe side.
9161 */
9162 synchronize_rcu();
9163
9164 release_global_block_rsv(info);
9165
9166 while (!list_empty(&info->space_info)) {
9167 int i;
9168
9169 space_info = list_entry(info->space_info.next,
9170 struct btrfs_space_info,
9171 list);
9172 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9173 if (WARN_ON(space_info->bytes_pinned > 0 ||
9174 space_info->bytes_reserved > 0 ||
9175 space_info->bytes_may_use > 0)) {
9176 dump_space_info(space_info, 0, 0);
9177 }
9178 }
9179 list_del(&space_info->list);
9180 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9181 struct kobject *kobj;
9182 kobj = space_info->block_group_kobjs[i];
9183 space_info->block_group_kobjs[i] = NULL;
9184 if (kobj) {
9185 kobject_del(kobj);
9186 kobject_put(kobj);
9187 }
9188 }
9189 kobject_del(&space_info->kobj);
9190 kobject_put(&space_info->kobj);
9191 }
9192 return 0;
9193 }
9194
9195 static void __link_block_group(struct btrfs_space_info *space_info,
9196 struct btrfs_block_group_cache *cache)
9197 {
9198 int index = get_block_group_index(cache);
9199 bool first = false;
9200
9201 down_write(&space_info->groups_sem);
9202 if (list_empty(&space_info->block_groups[index]))
9203 first = true;
9204 list_add_tail(&cache->list, &space_info->block_groups[index]);
9205 up_write(&space_info->groups_sem);
9206
9207 if (first) {
9208 struct raid_kobject *rkobj;
9209 int ret;
9210
9211 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9212 if (!rkobj)
9213 goto out_err;
9214 rkobj->raid_type = index;
9215 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9216 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9217 "%s", get_raid_name(index));
9218 if (ret) {
9219 kobject_put(&rkobj->kobj);
9220 goto out_err;
9221 }
9222 space_info->block_group_kobjs[index] = &rkobj->kobj;
9223 }
9224
9225 return;
9226 out_err:
9227 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9228 }
9229
9230 static struct btrfs_block_group_cache *
9231 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9232 {
9233 struct btrfs_block_group_cache *cache;
9234
9235 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9236 if (!cache)
9237 return NULL;
9238
9239 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9240 GFP_NOFS);
9241 if (!cache->free_space_ctl) {
9242 kfree(cache);
9243 return NULL;
9244 }
9245
9246 cache->key.objectid = start;
9247 cache->key.offset = size;
9248 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9249
9250 cache->sectorsize = root->sectorsize;
9251 cache->fs_info = root->fs_info;
9252 cache->full_stripe_len = btrfs_full_stripe_len(root,
9253 &root->fs_info->mapping_tree,
9254 start);
9255 atomic_set(&cache->count, 1);
9256 spin_lock_init(&cache->lock);
9257 init_rwsem(&cache->data_rwsem);
9258 INIT_LIST_HEAD(&cache->list);
9259 INIT_LIST_HEAD(&cache->cluster_list);
9260 INIT_LIST_HEAD(&cache->bg_list);
9261 INIT_LIST_HEAD(&cache->ro_list);
9262 INIT_LIST_HEAD(&cache->dirty_list);
9263 INIT_LIST_HEAD(&cache->io_list);
9264 btrfs_init_free_space_ctl(cache);
9265 atomic_set(&cache->trimming, 0);
9266
9267 return cache;
9268 }
9269
9270 int btrfs_read_block_groups(struct btrfs_root *root)
9271 {
9272 struct btrfs_path *path;
9273 int ret;
9274 struct btrfs_block_group_cache *cache;
9275 struct btrfs_fs_info *info = root->fs_info;
9276 struct btrfs_space_info *space_info;
9277 struct btrfs_key key;
9278 struct btrfs_key found_key;
9279 struct extent_buffer *leaf;
9280 int need_clear = 0;
9281 u64 cache_gen;
9282
9283 root = info->extent_root;
9284 key.objectid = 0;
9285 key.offset = 0;
9286 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9287 path = btrfs_alloc_path();
9288 if (!path)
9289 return -ENOMEM;
9290 path->reada = 1;
9291
9292 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9293 if (btrfs_test_opt(root, SPACE_CACHE) &&
9294 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9295 need_clear = 1;
9296 if (btrfs_test_opt(root, CLEAR_CACHE))
9297 need_clear = 1;
9298
9299 while (1) {
9300 ret = find_first_block_group(root, path, &key);
9301 if (ret > 0)
9302 break;
9303 if (ret != 0)
9304 goto error;
9305
9306 leaf = path->nodes[0];
9307 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9308
9309 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9310 found_key.offset);
9311 if (!cache) {
9312 ret = -ENOMEM;
9313 goto error;
9314 }
9315
9316 if (need_clear) {
9317 /*
9318 * When we mount with old space cache, we need to
9319 * set BTRFS_DC_CLEAR and set dirty flag.
9320 *
9321 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9322 * truncate the old free space cache inode and
9323 * setup a new one.
9324 * b) Setting 'dirty flag' makes sure that we flush
9325 * the new space cache info onto disk.
9326 */
9327 if (btrfs_test_opt(root, SPACE_CACHE))
9328 cache->disk_cache_state = BTRFS_DC_CLEAR;
9329 }
9330
9331 read_extent_buffer(leaf, &cache->item,
9332 btrfs_item_ptr_offset(leaf, path->slots[0]),
9333 sizeof(cache->item));
9334 cache->flags = btrfs_block_group_flags(&cache->item);
9335
9336 key.objectid = found_key.objectid + found_key.offset;
9337 btrfs_release_path(path);
9338
9339 /*
9340 * We need to exclude the super stripes now so that the space
9341 * info has super bytes accounted for, otherwise we'll think
9342 * we have more space than we actually do.
9343 */
9344 ret = exclude_super_stripes(root, cache);
9345 if (ret) {
9346 /*
9347 * We may have excluded something, so call this just in
9348 * case.
9349 */
9350 free_excluded_extents(root, cache);
9351 btrfs_put_block_group(cache);
9352 goto error;
9353 }
9354
9355 /*
9356 * check for two cases, either we are full, and therefore
9357 * don't need to bother with the caching work since we won't
9358 * find any space, or we are empty, and we can just add all
9359 * the space in and be done with it. This saves us _alot_ of
9360 * time, particularly in the full case.
9361 */
9362 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9363 cache->last_byte_to_unpin = (u64)-1;
9364 cache->cached = BTRFS_CACHE_FINISHED;
9365 free_excluded_extents(root, cache);
9366 } else if (btrfs_block_group_used(&cache->item) == 0) {
9367 cache->last_byte_to_unpin = (u64)-1;
9368 cache->cached = BTRFS_CACHE_FINISHED;
9369 add_new_free_space(cache, root->fs_info,
9370 found_key.objectid,
9371 found_key.objectid +
9372 found_key.offset);
9373 free_excluded_extents(root, cache);
9374 }
9375
9376 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9377 if (ret) {
9378 btrfs_remove_free_space_cache(cache);
9379 btrfs_put_block_group(cache);
9380 goto error;
9381 }
9382
9383 ret = update_space_info(info, cache->flags, found_key.offset,
9384 btrfs_block_group_used(&cache->item),
9385 &space_info);
9386 if (ret) {
9387 btrfs_remove_free_space_cache(cache);
9388 spin_lock(&info->block_group_cache_lock);
9389 rb_erase(&cache->cache_node,
9390 &info->block_group_cache_tree);
9391 RB_CLEAR_NODE(&cache->cache_node);
9392 spin_unlock(&info->block_group_cache_lock);
9393 btrfs_put_block_group(cache);
9394 goto error;
9395 }
9396
9397 cache->space_info = space_info;
9398 spin_lock(&cache->space_info->lock);
9399 cache->space_info->bytes_readonly += cache->bytes_super;
9400 spin_unlock(&cache->space_info->lock);
9401
9402 __link_block_group(space_info, cache);
9403
9404 set_avail_alloc_bits(root->fs_info, cache->flags);
9405 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9406 set_block_group_ro(cache, 1);
9407 } else if (btrfs_block_group_used(&cache->item) == 0) {
9408 spin_lock(&info->unused_bgs_lock);
9409 /* Should always be true but just in case. */
9410 if (list_empty(&cache->bg_list)) {
9411 btrfs_get_block_group(cache);
9412 list_add_tail(&cache->bg_list,
9413 &info->unused_bgs);
9414 }
9415 spin_unlock(&info->unused_bgs_lock);
9416 }
9417 }
9418
9419 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9420 if (!(get_alloc_profile(root, space_info->flags) &
9421 (BTRFS_BLOCK_GROUP_RAID10 |
9422 BTRFS_BLOCK_GROUP_RAID1 |
9423 BTRFS_BLOCK_GROUP_RAID5 |
9424 BTRFS_BLOCK_GROUP_RAID6 |
9425 BTRFS_BLOCK_GROUP_DUP)))
9426 continue;
9427 /*
9428 * avoid allocating from un-mirrored block group if there are
9429 * mirrored block groups.
9430 */
9431 list_for_each_entry(cache,
9432 &space_info->block_groups[BTRFS_RAID_RAID0],
9433 list)
9434 set_block_group_ro(cache, 1);
9435 list_for_each_entry(cache,
9436 &space_info->block_groups[BTRFS_RAID_SINGLE],
9437 list)
9438 set_block_group_ro(cache, 1);
9439 }
9440
9441 init_global_block_rsv(info);
9442 ret = 0;
9443 error:
9444 btrfs_free_path(path);
9445 return ret;
9446 }
9447
9448 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9449 struct btrfs_root *root)
9450 {
9451 struct btrfs_block_group_cache *block_group, *tmp;
9452 struct btrfs_root *extent_root = root->fs_info->extent_root;
9453 struct btrfs_block_group_item item;
9454 struct btrfs_key key;
9455 int ret = 0;
9456
9457 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9458 if (ret)
9459 goto next;
9460
9461 spin_lock(&block_group->lock);
9462 memcpy(&item, &block_group->item, sizeof(item));
9463 memcpy(&key, &block_group->key, sizeof(key));
9464 spin_unlock(&block_group->lock);
9465
9466 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9467 sizeof(item));
9468 if (ret)
9469 btrfs_abort_transaction(trans, extent_root, ret);
9470 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9471 key.objectid, key.offset);
9472 if (ret)
9473 btrfs_abort_transaction(trans, extent_root, ret);
9474 next:
9475 list_del_init(&block_group->bg_list);
9476 }
9477 }
9478
9479 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9480 struct btrfs_root *root, u64 bytes_used,
9481 u64 type, u64 chunk_objectid, u64 chunk_offset,
9482 u64 size)
9483 {
9484 int ret;
9485 struct btrfs_root *extent_root;
9486 struct btrfs_block_group_cache *cache;
9487
9488 extent_root = root->fs_info->extent_root;
9489
9490 btrfs_set_log_full_commit(root->fs_info, trans);
9491
9492 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9493 if (!cache)
9494 return -ENOMEM;
9495
9496 btrfs_set_block_group_used(&cache->item, bytes_used);
9497 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9498 btrfs_set_block_group_flags(&cache->item, type);
9499
9500 cache->flags = type;
9501 cache->last_byte_to_unpin = (u64)-1;
9502 cache->cached = BTRFS_CACHE_FINISHED;
9503 ret = exclude_super_stripes(root, cache);
9504 if (ret) {
9505 /*
9506 * We may have excluded something, so call this just in
9507 * case.
9508 */
9509 free_excluded_extents(root, cache);
9510 btrfs_put_block_group(cache);
9511 return ret;
9512 }
9513
9514 add_new_free_space(cache, root->fs_info, chunk_offset,
9515 chunk_offset + size);
9516
9517 free_excluded_extents(root, cache);
9518
9519 /*
9520 * Call to ensure the corresponding space_info object is created and
9521 * assigned to our block group, but don't update its counters just yet.
9522 * We want our bg to be added to the rbtree with its ->space_info set.
9523 */
9524 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9525 &cache->space_info);
9526 if (ret) {
9527 btrfs_remove_free_space_cache(cache);
9528 btrfs_put_block_group(cache);
9529 return ret;
9530 }
9531
9532 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9533 if (ret) {
9534 btrfs_remove_free_space_cache(cache);
9535 btrfs_put_block_group(cache);
9536 return ret;
9537 }
9538
9539 /*
9540 * Now that our block group has its ->space_info set and is inserted in
9541 * the rbtree, update the space info's counters.
9542 */
9543 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9544 &cache->space_info);
9545 if (ret) {
9546 btrfs_remove_free_space_cache(cache);
9547 spin_lock(&root->fs_info->block_group_cache_lock);
9548 rb_erase(&cache->cache_node,
9549 &root->fs_info->block_group_cache_tree);
9550 RB_CLEAR_NODE(&cache->cache_node);
9551 spin_unlock(&root->fs_info->block_group_cache_lock);
9552 btrfs_put_block_group(cache);
9553 return ret;
9554 }
9555 update_global_block_rsv(root->fs_info);
9556
9557 spin_lock(&cache->space_info->lock);
9558 cache->space_info->bytes_readonly += cache->bytes_super;
9559 spin_unlock(&cache->space_info->lock);
9560
9561 __link_block_group(cache->space_info, cache);
9562
9563 list_add_tail(&cache->bg_list, &trans->new_bgs);
9564
9565 set_avail_alloc_bits(extent_root->fs_info, type);
9566
9567 return 0;
9568 }
9569
9570 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9571 {
9572 u64 extra_flags = chunk_to_extended(flags) &
9573 BTRFS_EXTENDED_PROFILE_MASK;
9574
9575 write_seqlock(&fs_info->profiles_lock);
9576 if (flags & BTRFS_BLOCK_GROUP_DATA)
9577 fs_info->avail_data_alloc_bits &= ~extra_flags;
9578 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9579 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9580 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9581 fs_info->avail_system_alloc_bits &= ~extra_flags;
9582 write_sequnlock(&fs_info->profiles_lock);
9583 }
9584
9585 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9586 struct btrfs_root *root, u64 group_start,
9587 struct extent_map *em)
9588 {
9589 struct btrfs_path *path;
9590 struct btrfs_block_group_cache *block_group;
9591 struct btrfs_free_cluster *cluster;
9592 struct btrfs_root *tree_root = root->fs_info->tree_root;
9593 struct btrfs_key key;
9594 struct inode *inode;
9595 struct kobject *kobj = NULL;
9596 int ret;
9597 int index;
9598 int factor;
9599 struct btrfs_caching_control *caching_ctl = NULL;
9600 bool remove_em;
9601
9602 root = root->fs_info->extent_root;
9603
9604 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9605 BUG_ON(!block_group);
9606 BUG_ON(!block_group->ro);
9607
9608 /*
9609 * Free the reserved super bytes from this block group before
9610 * remove it.
9611 */
9612 free_excluded_extents(root, block_group);
9613
9614 memcpy(&key, &block_group->key, sizeof(key));
9615 index = get_block_group_index(block_group);
9616 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9617 BTRFS_BLOCK_GROUP_RAID1 |
9618 BTRFS_BLOCK_GROUP_RAID10))
9619 factor = 2;
9620 else
9621 factor = 1;
9622
9623 /* make sure this block group isn't part of an allocation cluster */
9624 cluster = &root->fs_info->data_alloc_cluster;
9625 spin_lock(&cluster->refill_lock);
9626 btrfs_return_cluster_to_free_space(block_group, cluster);
9627 spin_unlock(&cluster->refill_lock);
9628
9629 /*
9630 * make sure this block group isn't part of a metadata
9631 * allocation cluster
9632 */
9633 cluster = &root->fs_info->meta_alloc_cluster;
9634 spin_lock(&cluster->refill_lock);
9635 btrfs_return_cluster_to_free_space(block_group, cluster);
9636 spin_unlock(&cluster->refill_lock);
9637
9638 path = btrfs_alloc_path();
9639 if (!path) {
9640 ret = -ENOMEM;
9641 goto out;
9642 }
9643
9644 /*
9645 * get the inode first so any iput calls done for the io_list
9646 * aren't the final iput (no unlinks allowed now)
9647 */
9648 inode = lookup_free_space_inode(tree_root, block_group, path);
9649
9650 mutex_lock(&trans->transaction->cache_write_mutex);
9651 /*
9652 * make sure our free spache cache IO is done before remove the
9653 * free space inode
9654 */
9655 spin_lock(&trans->transaction->dirty_bgs_lock);
9656 if (!list_empty(&block_group->io_list)) {
9657 list_del_init(&block_group->io_list);
9658
9659 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9660
9661 spin_unlock(&trans->transaction->dirty_bgs_lock);
9662 btrfs_wait_cache_io(root, trans, block_group,
9663 &block_group->io_ctl, path,
9664 block_group->key.objectid);
9665 btrfs_put_block_group(block_group);
9666 spin_lock(&trans->transaction->dirty_bgs_lock);
9667 }
9668
9669 if (!list_empty(&block_group->dirty_list)) {
9670 list_del_init(&block_group->dirty_list);
9671 btrfs_put_block_group(block_group);
9672 }
9673 spin_unlock(&trans->transaction->dirty_bgs_lock);
9674 mutex_unlock(&trans->transaction->cache_write_mutex);
9675
9676 if (!IS_ERR(inode)) {
9677 ret = btrfs_orphan_add(trans, inode);
9678 if (ret) {
9679 btrfs_add_delayed_iput(inode);
9680 goto out;
9681 }
9682 clear_nlink(inode);
9683 /* One for the block groups ref */
9684 spin_lock(&block_group->lock);
9685 if (block_group->iref) {
9686 block_group->iref = 0;
9687 block_group->inode = NULL;
9688 spin_unlock(&block_group->lock);
9689 iput(inode);
9690 } else {
9691 spin_unlock(&block_group->lock);
9692 }
9693 /* One for our lookup ref */
9694 btrfs_add_delayed_iput(inode);
9695 }
9696
9697 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9698 key.offset = block_group->key.objectid;
9699 key.type = 0;
9700
9701 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9702 if (ret < 0)
9703 goto out;
9704 if (ret > 0)
9705 btrfs_release_path(path);
9706 if (ret == 0) {
9707 ret = btrfs_del_item(trans, tree_root, path);
9708 if (ret)
9709 goto out;
9710 btrfs_release_path(path);
9711 }
9712
9713 spin_lock(&root->fs_info->block_group_cache_lock);
9714 rb_erase(&block_group->cache_node,
9715 &root->fs_info->block_group_cache_tree);
9716 RB_CLEAR_NODE(&block_group->cache_node);
9717
9718 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9719 root->fs_info->first_logical_byte = (u64)-1;
9720 spin_unlock(&root->fs_info->block_group_cache_lock);
9721
9722 down_write(&block_group->space_info->groups_sem);
9723 /*
9724 * we must use list_del_init so people can check to see if they
9725 * are still on the list after taking the semaphore
9726 */
9727 list_del_init(&block_group->list);
9728 if (list_empty(&block_group->space_info->block_groups[index])) {
9729 kobj = block_group->space_info->block_group_kobjs[index];
9730 block_group->space_info->block_group_kobjs[index] = NULL;
9731 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9732 }
9733 up_write(&block_group->space_info->groups_sem);
9734 if (kobj) {
9735 kobject_del(kobj);
9736 kobject_put(kobj);
9737 }
9738
9739 if (block_group->has_caching_ctl)
9740 caching_ctl = get_caching_control(block_group);
9741 if (block_group->cached == BTRFS_CACHE_STARTED)
9742 wait_block_group_cache_done(block_group);
9743 if (block_group->has_caching_ctl) {
9744 down_write(&root->fs_info->commit_root_sem);
9745 if (!caching_ctl) {
9746 struct btrfs_caching_control *ctl;
9747
9748 list_for_each_entry(ctl,
9749 &root->fs_info->caching_block_groups, list)
9750 if (ctl->block_group == block_group) {
9751 caching_ctl = ctl;
9752 atomic_inc(&caching_ctl->count);
9753 break;
9754 }
9755 }
9756 if (caching_ctl)
9757 list_del_init(&caching_ctl->list);
9758 up_write(&root->fs_info->commit_root_sem);
9759 if (caching_ctl) {
9760 /* Once for the caching bgs list and once for us. */
9761 put_caching_control(caching_ctl);
9762 put_caching_control(caching_ctl);
9763 }
9764 }
9765
9766 spin_lock(&trans->transaction->dirty_bgs_lock);
9767 if (!list_empty(&block_group->dirty_list)) {
9768 WARN_ON(1);
9769 }
9770 if (!list_empty(&block_group->io_list)) {
9771 WARN_ON(1);
9772 }
9773 spin_unlock(&trans->transaction->dirty_bgs_lock);
9774 btrfs_remove_free_space_cache(block_group);
9775
9776 spin_lock(&block_group->space_info->lock);
9777 list_del_init(&block_group->ro_list);
9778
9779 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9780 WARN_ON(block_group->space_info->total_bytes
9781 < block_group->key.offset);
9782 WARN_ON(block_group->space_info->bytes_readonly
9783 < block_group->key.offset);
9784 WARN_ON(block_group->space_info->disk_total
9785 < block_group->key.offset * factor);
9786 }
9787 block_group->space_info->total_bytes -= block_group->key.offset;
9788 block_group->space_info->bytes_readonly -= block_group->key.offset;
9789 block_group->space_info->disk_total -= block_group->key.offset * factor;
9790
9791 spin_unlock(&block_group->space_info->lock);
9792
9793 memcpy(&key, &block_group->key, sizeof(key));
9794
9795 lock_chunks(root);
9796 if (!list_empty(&em->list)) {
9797 /* We're in the transaction->pending_chunks list. */
9798 free_extent_map(em);
9799 }
9800 spin_lock(&block_group->lock);
9801 block_group->removed = 1;
9802 /*
9803 * At this point trimming can't start on this block group, because we
9804 * removed the block group from the tree fs_info->block_group_cache_tree
9805 * so no one can't find it anymore and even if someone already got this
9806 * block group before we removed it from the rbtree, they have already
9807 * incremented block_group->trimming - if they didn't, they won't find
9808 * any free space entries because we already removed them all when we
9809 * called btrfs_remove_free_space_cache().
9810 *
9811 * And we must not remove the extent map from the fs_info->mapping_tree
9812 * to prevent the same logical address range and physical device space
9813 * ranges from being reused for a new block group. This is because our
9814 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9815 * completely transactionless, so while it is trimming a range the
9816 * currently running transaction might finish and a new one start,
9817 * allowing for new block groups to be created that can reuse the same
9818 * physical device locations unless we take this special care.
9819 */
9820 remove_em = (atomic_read(&block_group->trimming) == 0);
9821 /*
9822 * Make sure a trimmer task always sees the em in the pinned_chunks list
9823 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9824 * before checking block_group->removed).
9825 */
9826 if (!remove_em) {
9827 /*
9828 * Our em might be in trans->transaction->pending_chunks which
9829 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9830 * and so is the fs_info->pinned_chunks list.
9831 *
9832 * So at this point we must be holding the chunk_mutex to avoid
9833 * any races with chunk allocation (more specifically at
9834 * volumes.c:contains_pending_extent()), to ensure it always
9835 * sees the em, either in the pending_chunks list or in the
9836 * pinned_chunks list.
9837 */
9838 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9839 }
9840 spin_unlock(&block_group->lock);
9841
9842 if (remove_em) {
9843 struct extent_map_tree *em_tree;
9844
9845 em_tree = &root->fs_info->mapping_tree.map_tree;
9846 write_lock(&em_tree->lock);
9847 /*
9848 * The em might be in the pending_chunks list, so make sure the
9849 * chunk mutex is locked, since remove_extent_mapping() will
9850 * delete us from that list.
9851 */
9852 remove_extent_mapping(em_tree, em);
9853 write_unlock(&em_tree->lock);
9854 /* once for the tree */
9855 free_extent_map(em);
9856 }
9857
9858 unlock_chunks(root);
9859
9860 btrfs_put_block_group(block_group);
9861 btrfs_put_block_group(block_group);
9862
9863 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9864 if (ret > 0)
9865 ret = -EIO;
9866 if (ret < 0)
9867 goto out;
9868
9869 ret = btrfs_del_item(trans, root, path);
9870 out:
9871 btrfs_free_path(path);
9872 return ret;
9873 }
9874
9875 /*
9876 * Process the unused_bgs list and remove any that don't have any allocated
9877 * space inside of them.
9878 */
9879 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9880 {
9881 struct btrfs_block_group_cache *block_group;
9882 struct btrfs_space_info *space_info;
9883 struct btrfs_root *root = fs_info->extent_root;
9884 struct btrfs_trans_handle *trans;
9885 int ret = 0;
9886
9887 if (!fs_info->open)
9888 return;
9889
9890 spin_lock(&fs_info->unused_bgs_lock);
9891 while (!list_empty(&fs_info->unused_bgs)) {
9892 u64 start, end;
9893
9894 block_group = list_first_entry(&fs_info->unused_bgs,
9895 struct btrfs_block_group_cache,
9896 bg_list);
9897 space_info = block_group->space_info;
9898 list_del_init(&block_group->bg_list);
9899 if (ret || btrfs_mixed_space_info(space_info)) {
9900 btrfs_put_block_group(block_group);
9901 continue;
9902 }
9903 spin_unlock(&fs_info->unused_bgs_lock);
9904
9905 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
9906
9907 /* Don't want to race with allocators so take the groups_sem */
9908 down_write(&space_info->groups_sem);
9909 spin_lock(&block_group->lock);
9910 if (block_group->reserved ||
9911 btrfs_block_group_used(&block_group->item) ||
9912 block_group->ro) {
9913 /*
9914 * We want to bail if we made new allocations or have
9915 * outstanding allocations in this block group. We do
9916 * the ro check in case balance is currently acting on
9917 * this block group.
9918 */
9919 spin_unlock(&block_group->lock);
9920 up_write(&space_info->groups_sem);
9921 goto next;
9922 }
9923 spin_unlock(&block_group->lock);
9924
9925 /* We don't want to force the issue, only flip if it's ok. */
9926 ret = set_block_group_ro(block_group, 0);
9927 up_write(&space_info->groups_sem);
9928 if (ret < 0) {
9929 ret = 0;
9930 goto next;
9931 }
9932
9933 /*
9934 * Want to do this before we do anything else so we can recover
9935 * properly if we fail to join the transaction.
9936 */
9937 /* 1 for btrfs_orphan_reserve_metadata() */
9938 trans = btrfs_start_transaction(root, 1);
9939 if (IS_ERR(trans)) {
9940 btrfs_set_block_group_rw(root, block_group);
9941 ret = PTR_ERR(trans);
9942 goto next;
9943 }
9944
9945 /*
9946 * We could have pending pinned extents for this block group,
9947 * just delete them, we don't care about them anymore.
9948 */
9949 start = block_group->key.objectid;
9950 end = start + block_group->key.offset - 1;
9951 /*
9952 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9953 * btrfs_finish_extent_commit(). If we are at transaction N,
9954 * another task might be running finish_extent_commit() for the
9955 * previous transaction N - 1, and have seen a range belonging
9956 * to the block group in freed_extents[] before we were able to
9957 * clear the whole block group range from freed_extents[]. This
9958 * means that task can lookup for the block group after we
9959 * unpinned it from freed_extents[] and removed it, leading to
9960 * a BUG_ON() at btrfs_unpin_extent_range().
9961 */
9962 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9963 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9964 EXTENT_DIRTY, GFP_NOFS);
9965 if (ret) {
9966 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9967 btrfs_set_block_group_rw(root, block_group);
9968 goto end_trans;
9969 }
9970 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9971 EXTENT_DIRTY, GFP_NOFS);
9972 if (ret) {
9973 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9974 btrfs_set_block_group_rw(root, block_group);
9975 goto end_trans;
9976 }
9977 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9978
9979 /* Reset pinned so btrfs_put_block_group doesn't complain */
9980 spin_lock(&space_info->lock);
9981 spin_lock(&block_group->lock);
9982
9983 space_info->bytes_pinned -= block_group->pinned;
9984 space_info->bytes_readonly += block_group->pinned;
9985 percpu_counter_add(&space_info->total_bytes_pinned,
9986 -block_group->pinned);
9987 block_group->pinned = 0;
9988
9989 spin_unlock(&block_group->lock);
9990 spin_unlock(&space_info->lock);
9991
9992 /*
9993 * Btrfs_remove_chunk will abort the transaction if things go
9994 * horribly wrong.
9995 */
9996 ret = btrfs_remove_chunk(trans, root,
9997 block_group->key.objectid);
9998 end_trans:
9999 btrfs_end_transaction(trans, root);
10000 next:
10001 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10002 btrfs_put_block_group(block_group);
10003 spin_lock(&fs_info->unused_bgs_lock);
10004 }
10005 spin_unlock(&fs_info->unused_bgs_lock);
10006 }
10007
10008 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10009 {
10010 struct btrfs_space_info *space_info;
10011 struct btrfs_super_block *disk_super;
10012 u64 features;
10013 u64 flags;
10014 int mixed = 0;
10015 int ret;
10016
10017 disk_super = fs_info->super_copy;
10018 if (!btrfs_super_root(disk_super))
10019 return 1;
10020
10021 features = btrfs_super_incompat_flags(disk_super);
10022 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10023 mixed = 1;
10024
10025 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10026 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10027 if (ret)
10028 goto out;
10029
10030 if (mixed) {
10031 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10032 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10033 } else {
10034 flags = BTRFS_BLOCK_GROUP_METADATA;
10035 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10036 if (ret)
10037 goto out;
10038
10039 flags = BTRFS_BLOCK_GROUP_DATA;
10040 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10041 }
10042 out:
10043 return ret;
10044 }
10045
10046 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10047 {
10048 return unpin_extent_range(root, start, end, false);
10049 }
10050
10051 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10052 {
10053 struct btrfs_fs_info *fs_info = root->fs_info;
10054 struct btrfs_block_group_cache *cache = NULL;
10055 u64 group_trimmed;
10056 u64 start;
10057 u64 end;
10058 u64 trimmed = 0;
10059 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10060 int ret = 0;
10061
10062 /*
10063 * try to trim all FS space, our block group may start from non-zero.
10064 */
10065 if (range->len == total_bytes)
10066 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10067 else
10068 cache = btrfs_lookup_block_group(fs_info, range->start);
10069
10070 while (cache) {
10071 if (cache->key.objectid >= (range->start + range->len)) {
10072 btrfs_put_block_group(cache);
10073 break;
10074 }
10075
10076 start = max(range->start, cache->key.objectid);
10077 end = min(range->start + range->len,
10078 cache->key.objectid + cache->key.offset);
10079
10080 if (end - start >= range->minlen) {
10081 if (!block_group_cache_done(cache)) {
10082 ret = cache_block_group(cache, 0);
10083 if (ret) {
10084 btrfs_put_block_group(cache);
10085 break;
10086 }
10087 ret = wait_block_group_cache_done(cache);
10088 if (ret) {
10089 btrfs_put_block_group(cache);
10090 break;
10091 }
10092 }
10093 ret = btrfs_trim_block_group(cache,
10094 &group_trimmed,
10095 start,
10096 end,
10097 range->minlen);
10098
10099 trimmed += group_trimmed;
10100 if (ret) {
10101 btrfs_put_block_group(cache);
10102 break;
10103 }
10104 }
10105
10106 cache = next_block_group(fs_info->tree_root, cache);
10107 }
10108
10109 range->len = trimmed;
10110 return ret;
10111 }
10112
10113 /*
10114 * btrfs_{start,end}_write_no_snapshoting() are similar to
10115 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10116 * data into the page cache through nocow before the subvolume is snapshoted,
10117 * but flush the data into disk after the snapshot creation, or to prevent
10118 * operations while snapshoting is ongoing and that cause the snapshot to be
10119 * inconsistent (writes followed by expanding truncates for example).
10120 */
10121 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10122 {
10123 percpu_counter_dec(&root->subv_writers->counter);
10124 /*
10125 * Make sure counter is updated before we wake up
10126 * waiters.
10127 */
10128 smp_mb();
10129 if (waitqueue_active(&root->subv_writers->wait))
10130 wake_up(&root->subv_writers->wait);
10131 }
10132
10133 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10134 {
10135 if (atomic_read(&root->will_be_snapshoted))
10136 return 0;
10137
10138 percpu_counter_inc(&root->subv_writers->counter);
10139 /*
10140 * Make sure counter is updated before we check for snapshot creation.
10141 */
10142 smp_mb();
10143 if (atomic_read(&root->will_be_snapshoted)) {
10144 btrfs_end_write_no_snapshoting(root);
10145 return 0;
10146 }
10147 return 1;
10148 }