]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
Merge branch 'cleanup/blocksize-diet-part2' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 kfree(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 locked_ref = NULL;
2543 }
2544 btrfs_put_delayed_ref(ref);
2545 count++;
2546 cond_resched();
2547 }
2548
2549 /*
2550 * We don't want to include ref heads since we can have empty ref heads
2551 * and those will drastically skew our runtime down since we just do
2552 * accounting, no actual extent tree updates.
2553 */
2554 if (actual_count > 0) {
2555 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 u64 avg;
2557
2558 /*
2559 * We weigh the current average higher than our current runtime
2560 * to avoid large swings in the average.
2561 */
2562 spin_lock(&delayed_refs->lock);
2563 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 avg = div64_u64(avg, 4);
2565 fs_info->avg_delayed_ref_runtime = avg;
2566 spin_unlock(&delayed_refs->lock);
2567 }
2568 return 0;
2569 }
2570
2571 #ifdef SCRAMBLE_DELAYED_REFS
2572 /*
2573 * Normally delayed refs get processed in ascending bytenr order. This
2574 * correlates in most cases to the order added. To expose dependencies on this
2575 * order, we start to process the tree in the middle instead of the beginning
2576 */
2577 static u64 find_middle(struct rb_root *root)
2578 {
2579 struct rb_node *n = root->rb_node;
2580 struct btrfs_delayed_ref_node *entry;
2581 int alt = 1;
2582 u64 middle;
2583 u64 first = 0, last = 0;
2584
2585 n = rb_first(root);
2586 if (n) {
2587 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2588 first = entry->bytenr;
2589 }
2590 n = rb_last(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 last = entry->bytenr;
2594 }
2595 n = root->rb_node;
2596
2597 while (n) {
2598 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 WARN_ON(!entry->in_tree);
2600
2601 middle = entry->bytenr;
2602
2603 if (alt)
2604 n = n->rb_left;
2605 else
2606 n = n->rb_right;
2607
2608 alt = 1 - alt;
2609 }
2610 return middle;
2611 }
2612 #endif
2613
2614 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 {
2616 u64 num_bytes;
2617
2618 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2619 sizeof(struct btrfs_extent_inline_ref));
2620 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2621 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2622
2623 /*
2624 * We don't ever fill up leaves all the way so multiply by 2 just to be
2625 * closer to what we're really going to want to ouse.
2626 */
2627 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2628 }
2629
2630 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2631 struct btrfs_root *root)
2632 {
2633 struct btrfs_block_rsv *global_rsv;
2634 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2635 u64 num_bytes;
2636 int ret = 0;
2637
2638 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2639 num_heads = heads_to_leaves(root, num_heads);
2640 if (num_heads > 1)
2641 num_bytes += (num_heads - 1) * root->nodesize;
2642 num_bytes <<= 1;
2643 global_rsv = &root->fs_info->global_block_rsv;
2644
2645 /*
2646 * If we can't allocate any more chunks lets make sure we have _lots_ of
2647 * wiggle room since running delayed refs can create more delayed refs.
2648 */
2649 if (global_rsv->space_info->full)
2650 num_bytes <<= 1;
2651
2652 spin_lock(&global_rsv->lock);
2653 if (global_rsv->reserved <= num_bytes)
2654 ret = 1;
2655 spin_unlock(&global_rsv->lock);
2656 return ret;
2657 }
2658
2659 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2660 struct btrfs_root *root)
2661 {
2662 struct btrfs_fs_info *fs_info = root->fs_info;
2663 u64 num_entries =
2664 atomic_read(&trans->transaction->delayed_refs.num_entries);
2665 u64 avg_runtime;
2666 u64 val;
2667
2668 smp_mb();
2669 avg_runtime = fs_info->avg_delayed_ref_runtime;
2670 val = num_entries * avg_runtime;
2671 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2672 return 1;
2673 if (val >= NSEC_PER_SEC / 2)
2674 return 2;
2675
2676 return btrfs_check_space_for_delayed_refs(trans, root);
2677 }
2678
2679 struct async_delayed_refs {
2680 struct btrfs_root *root;
2681 int count;
2682 int error;
2683 int sync;
2684 struct completion wait;
2685 struct btrfs_work work;
2686 };
2687
2688 static void delayed_ref_async_start(struct btrfs_work *work)
2689 {
2690 struct async_delayed_refs *async;
2691 struct btrfs_trans_handle *trans;
2692 int ret;
2693
2694 async = container_of(work, struct async_delayed_refs, work);
2695
2696 trans = btrfs_join_transaction(async->root);
2697 if (IS_ERR(trans)) {
2698 async->error = PTR_ERR(trans);
2699 goto done;
2700 }
2701
2702 /*
2703 * trans->sync means that when we call end_transaciton, we won't
2704 * wait on delayed refs
2705 */
2706 trans->sync = true;
2707 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2708 if (ret)
2709 async->error = ret;
2710
2711 ret = btrfs_end_transaction(trans, async->root);
2712 if (ret && !async->error)
2713 async->error = ret;
2714 done:
2715 if (async->sync)
2716 complete(&async->wait);
2717 else
2718 kfree(async);
2719 }
2720
2721 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2722 unsigned long count, int wait)
2723 {
2724 struct async_delayed_refs *async;
2725 int ret;
2726
2727 async = kmalloc(sizeof(*async), GFP_NOFS);
2728 if (!async)
2729 return -ENOMEM;
2730
2731 async->root = root->fs_info->tree_root;
2732 async->count = count;
2733 async->error = 0;
2734 if (wait)
2735 async->sync = 1;
2736 else
2737 async->sync = 0;
2738 init_completion(&async->wait);
2739
2740 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2741 delayed_ref_async_start, NULL, NULL);
2742
2743 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744
2745 if (wait) {
2746 wait_for_completion(&async->wait);
2747 ret = async->error;
2748 kfree(async);
2749 return ret;
2750 }
2751 return 0;
2752 }
2753
2754 /*
2755 * this starts processing the delayed reference count updates and
2756 * extent insertions we have queued up so far. count can be
2757 * 0, which means to process everything in the tree at the start
2758 * of the run (but not newly added entries), or it can be some target
2759 * number you'd like to process.
2760 *
2761 * Returns 0 on success or if called with an aborted transaction
2762 * Returns <0 on error and aborts the transaction
2763 */
2764 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root, unsigned long count)
2766 {
2767 struct rb_node *node;
2768 struct btrfs_delayed_ref_root *delayed_refs;
2769 struct btrfs_delayed_ref_head *head;
2770 int ret;
2771 int run_all = count == (unsigned long)-1;
2772 int run_most = 0;
2773
2774 /* We'll clean this up in btrfs_cleanup_transaction */
2775 if (trans->aborted)
2776 return 0;
2777
2778 if (root == root->fs_info->extent_root)
2779 root = root->fs_info->tree_root;
2780
2781 delayed_refs = &trans->transaction->delayed_refs;
2782 if (count == 0) {
2783 count = atomic_read(&delayed_refs->num_entries) * 2;
2784 run_most = 1;
2785 }
2786
2787 again:
2788 #ifdef SCRAMBLE_DELAYED_REFS
2789 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2790 #endif
2791 ret = __btrfs_run_delayed_refs(trans, root, count);
2792 if (ret < 0) {
2793 btrfs_abort_transaction(trans, root, ret);
2794 return ret;
2795 }
2796
2797 if (run_all) {
2798 if (!list_empty(&trans->new_bgs))
2799 btrfs_create_pending_block_groups(trans, root);
2800
2801 spin_lock(&delayed_refs->lock);
2802 node = rb_first(&delayed_refs->href_root);
2803 if (!node) {
2804 spin_unlock(&delayed_refs->lock);
2805 goto out;
2806 }
2807 count = (unsigned long)-1;
2808
2809 while (node) {
2810 head = rb_entry(node, struct btrfs_delayed_ref_head,
2811 href_node);
2812 if (btrfs_delayed_ref_is_head(&head->node)) {
2813 struct btrfs_delayed_ref_node *ref;
2814
2815 ref = &head->node;
2816 atomic_inc(&ref->refs);
2817
2818 spin_unlock(&delayed_refs->lock);
2819 /*
2820 * Mutex was contended, block until it's
2821 * released and try again
2822 */
2823 mutex_lock(&head->mutex);
2824 mutex_unlock(&head->mutex);
2825
2826 btrfs_put_delayed_ref(ref);
2827 cond_resched();
2828 goto again;
2829 } else {
2830 WARN_ON(1);
2831 }
2832 node = rb_next(node);
2833 }
2834 spin_unlock(&delayed_refs->lock);
2835 cond_resched();
2836 goto again;
2837 }
2838 out:
2839 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2840 if (ret)
2841 return ret;
2842 assert_qgroups_uptodate(trans);
2843 return 0;
2844 }
2845
2846 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2847 struct btrfs_root *root,
2848 u64 bytenr, u64 num_bytes, u64 flags,
2849 int level, int is_data)
2850 {
2851 struct btrfs_delayed_extent_op *extent_op;
2852 int ret;
2853
2854 extent_op = btrfs_alloc_delayed_extent_op();
2855 if (!extent_op)
2856 return -ENOMEM;
2857
2858 extent_op->flags_to_set = flags;
2859 extent_op->update_flags = 1;
2860 extent_op->update_key = 0;
2861 extent_op->is_data = is_data ? 1 : 0;
2862 extent_op->level = level;
2863
2864 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2865 num_bytes, extent_op);
2866 if (ret)
2867 btrfs_free_delayed_extent_op(extent_op);
2868 return ret;
2869 }
2870
2871 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *root,
2873 struct btrfs_path *path,
2874 u64 objectid, u64 offset, u64 bytenr)
2875 {
2876 struct btrfs_delayed_ref_head *head;
2877 struct btrfs_delayed_ref_node *ref;
2878 struct btrfs_delayed_data_ref *data_ref;
2879 struct btrfs_delayed_ref_root *delayed_refs;
2880 struct rb_node *node;
2881 int ret = 0;
2882
2883 delayed_refs = &trans->transaction->delayed_refs;
2884 spin_lock(&delayed_refs->lock);
2885 head = btrfs_find_delayed_ref_head(trans, bytenr);
2886 if (!head) {
2887 spin_unlock(&delayed_refs->lock);
2888 return 0;
2889 }
2890
2891 if (!mutex_trylock(&head->mutex)) {
2892 atomic_inc(&head->node.refs);
2893 spin_unlock(&delayed_refs->lock);
2894
2895 btrfs_release_path(path);
2896
2897 /*
2898 * Mutex was contended, block until it's released and let
2899 * caller try again
2900 */
2901 mutex_lock(&head->mutex);
2902 mutex_unlock(&head->mutex);
2903 btrfs_put_delayed_ref(&head->node);
2904 return -EAGAIN;
2905 }
2906 spin_unlock(&delayed_refs->lock);
2907
2908 spin_lock(&head->lock);
2909 node = rb_first(&head->ref_root);
2910 while (node) {
2911 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2912 node = rb_next(node);
2913
2914 /* If it's a shared ref we know a cross reference exists */
2915 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2916 ret = 1;
2917 break;
2918 }
2919
2920 data_ref = btrfs_delayed_node_to_data_ref(ref);
2921
2922 /*
2923 * If our ref doesn't match the one we're currently looking at
2924 * then we have a cross reference.
2925 */
2926 if (data_ref->root != root->root_key.objectid ||
2927 data_ref->objectid != objectid ||
2928 data_ref->offset != offset) {
2929 ret = 1;
2930 break;
2931 }
2932 }
2933 spin_unlock(&head->lock);
2934 mutex_unlock(&head->mutex);
2935 return ret;
2936 }
2937
2938 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2939 struct btrfs_root *root,
2940 struct btrfs_path *path,
2941 u64 objectid, u64 offset, u64 bytenr)
2942 {
2943 struct btrfs_root *extent_root = root->fs_info->extent_root;
2944 struct extent_buffer *leaf;
2945 struct btrfs_extent_data_ref *ref;
2946 struct btrfs_extent_inline_ref *iref;
2947 struct btrfs_extent_item *ei;
2948 struct btrfs_key key;
2949 u32 item_size;
2950 int ret;
2951
2952 key.objectid = bytenr;
2953 key.offset = (u64)-1;
2954 key.type = BTRFS_EXTENT_ITEM_KEY;
2955
2956 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2957 if (ret < 0)
2958 goto out;
2959 BUG_ON(ret == 0); /* Corruption */
2960
2961 ret = -ENOENT;
2962 if (path->slots[0] == 0)
2963 goto out;
2964
2965 path->slots[0]--;
2966 leaf = path->nodes[0];
2967 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2968
2969 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2970 goto out;
2971
2972 ret = 1;
2973 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2974 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2975 if (item_size < sizeof(*ei)) {
2976 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2977 goto out;
2978 }
2979 #endif
2980 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2981
2982 if (item_size != sizeof(*ei) +
2983 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2984 goto out;
2985
2986 if (btrfs_extent_generation(leaf, ei) <=
2987 btrfs_root_last_snapshot(&root->root_item))
2988 goto out;
2989
2990 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2991 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2992 BTRFS_EXTENT_DATA_REF_KEY)
2993 goto out;
2994
2995 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2996 if (btrfs_extent_refs(leaf, ei) !=
2997 btrfs_extent_data_ref_count(leaf, ref) ||
2998 btrfs_extent_data_ref_root(leaf, ref) !=
2999 root->root_key.objectid ||
3000 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3001 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3002 goto out;
3003
3004 ret = 0;
3005 out:
3006 return ret;
3007 }
3008
3009 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root,
3011 u64 objectid, u64 offset, u64 bytenr)
3012 {
3013 struct btrfs_path *path;
3014 int ret;
3015 int ret2;
3016
3017 path = btrfs_alloc_path();
3018 if (!path)
3019 return -ENOENT;
3020
3021 do {
3022 ret = check_committed_ref(trans, root, path, objectid,
3023 offset, bytenr);
3024 if (ret && ret != -ENOENT)
3025 goto out;
3026
3027 ret2 = check_delayed_ref(trans, root, path, objectid,
3028 offset, bytenr);
3029 } while (ret2 == -EAGAIN);
3030
3031 if (ret2 && ret2 != -ENOENT) {
3032 ret = ret2;
3033 goto out;
3034 }
3035
3036 if (ret != -ENOENT || ret2 != -ENOENT)
3037 ret = 0;
3038 out:
3039 btrfs_free_path(path);
3040 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3041 WARN_ON(ret > 0);
3042 return ret;
3043 }
3044
3045 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3046 struct btrfs_root *root,
3047 struct extent_buffer *buf,
3048 int full_backref, int inc)
3049 {
3050 u64 bytenr;
3051 u64 num_bytes;
3052 u64 parent;
3053 u64 ref_root;
3054 u32 nritems;
3055 struct btrfs_key key;
3056 struct btrfs_file_extent_item *fi;
3057 int i;
3058 int level;
3059 int ret = 0;
3060 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3061 u64, u64, u64, u64, u64, u64, int);
3062
3063
3064 if (btrfs_test_is_dummy_root(root))
3065 return 0;
3066
3067 ref_root = btrfs_header_owner(buf);
3068 nritems = btrfs_header_nritems(buf);
3069 level = btrfs_header_level(buf);
3070
3071 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3072 return 0;
3073
3074 if (inc)
3075 process_func = btrfs_inc_extent_ref;
3076 else
3077 process_func = btrfs_free_extent;
3078
3079 if (full_backref)
3080 parent = buf->start;
3081 else
3082 parent = 0;
3083
3084 for (i = 0; i < nritems; i++) {
3085 if (level == 0) {
3086 btrfs_item_key_to_cpu(buf, &key, i);
3087 if (key.type != BTRFS_EXTENT_DATA_KEY)
3088 continue;
3089 fi = btrfs_item_ptr(buf, i,
3090 struct btrfs_file_extent_item);
3091 if (btrfs_file_extent_type(buf, fi) ==
3092 BTRFS_FILE_EXTENT_INLINE)
3093 continue;
3094 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3095 if (bytenr == 0)
3096 continue;
3097
3098 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3099 key.offset -= btrfs_file_extent_offset(buf, fi);
3100 ret = process_func(trans, root, bytenr, num_bytes,
3101 parent, ref_root, key.objectid,
3102 key.offset, 1);
3103 if (ret)
3104 goto fail;
3105 } else {
3106 bytenr = btrfs_node_blockptr(buf, i);
3107 num_bytes = root->nodesize;
3108 ret = process_func(trans, root, bytenr, num_bytes,
3109 parent, ref_root, level - 1, 0,
3110 1);
3111 if (ret)
3112 goto fail;
3113 }
3114 }
3115 return 0;
3116 fail:
3117 return ret;
3118 }
3119
3120 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3121 struct extent_buffer *buf, int full_backref)
3122 {
3123 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3124 }
3125
3126 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3127 struct extent_buffer *buf, int full_backref)
3128 {
3129 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3130 }
3131
3132 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3133 struct btrfs_root *root,
3134 struct btrfs_path *path,
3135 struct btrfs_block_group_cache *cache)
3136 {
3137 int ret;
3138 struct btrfs_root *extent_root = root->fs_info->extent_root;
3139 unsigned long bi;
3140 struct extent_buffer *leaf;
3141
3142 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3143 if (ret) {
3144 if (ret > 0)
3145 ret = -ENOENT;
3146 goto fail;
3147 }
3148
3149 leaf = path->nodes[0];
3150 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3151 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3152 btrfs_mark_buffer_dirty(leaf);
3153 btrfs_release_path(path);
3154 fail:
3155 if (ret)
3156 btrfs_abort_transaction(trans, root, ret);
3157 return ret;
3158
3159 }
3160
3161 static struct btrfs_block_group_cache *
3162 next_block_group(struct btrfs_root *root,
3163 struct btrfs_block_group_cache *cache)
3164 {
3165 struct rb_node *node;
3166
3167 spin_lock(&root->fs_info->block_group_cache_lock);
3168
3169 /* If our block group was removed, we need a full search. */
3170 if (RB_EMPTY_NODE(&cache->cache_node)) {
3171 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3172
3173 spin_unlock(&root->fs_info->block_group_cache_lock);
3174 btrfs_put_block_group(cache);
3175 cache = btrfs_lookup_first_block_group(root->fs_info,
3176 next_bytenr);
3177 return cache;
3178 }
3179 node = rb_next(&cache->cache_node);
3180 btrfs_put_block_group(cache);
3181 if (node) {
3182 cache = rb_entry(node, struct btrfs_block_group_cache,
3183 cache_node);
3184 btrfs_get_block_group(cache);
3185 } else
3186 cache = NULL;
3187 spin_unlock(&root->fs_info->block_group_cache_lock);
3188 return cache;
3189 }
3190
3191 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3192 struct btrfs_trans_handle *trans,
3193 struct btrfs_path *path)
3194 {
3195 struct btrfs_root *root = block_group->fs_info->tree_root;
3196 struct inode *inode = NULL;
3197 u64 alloc_hint = 0;
3198 int dcs = BTRFS_DC_ERROR;
3199 int num_pages = 0;
3200 int retries = 0;
3201 int ret = 0;
3202
3203 /*
3204 * If this block group is smaller than 100 megs don't bother caching the
3205 * block group.
3206 */
3207 if (block_group->key.offset < (100 * 1024 * 1024)) {
3208 spin_lock(&block_group->lock);
3209 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3210 spin_unlock(&block_group->lock);
3211 return 0;
3212 }
3213
3214 again:
3215 inode = lookup_free_space_inode(root, block_group, path);
3216 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3217 ret = PTR_ERR(inode);
3218 btrfs_release_path(path);
3219 goto out;
3220 }
3221
3222 if (IS_ERR(inode)) {
3223 BUG_ON(retries);
3224 retries++;
3225
3226 if (block_group->ro)
3227 goto out_free;
3228
3229 ret = create_free_space_inode(root, trans, block_group, path);
3230 if (ret)
3231 goto out_free;
3232 goto again;
3233 }
3234
3235 /* We've already setup this transaction, go ahead and exit */
3236 if (block_group->cache_generation == trans->transid &&
3237 i_size_read(inode)) {
3238 dcs = BTRFS_DC_SETUP;
3239 goto out_put;
3240 }
3241
3242 /*
3243 * We want to set the generation to 0, that way if anything goes wrong
3244 * from here on out we know not to trust this cache when we load up next
3245 * time.
3246 */
3247 BTRFS_I(inode)->generation = 0;
3248 ret = btrfs_update_inode(trans, root, inode);
3249 WARN_ON(ret);
3250
3251 if (i_size_read(inode) > 0) {
3252 ret = btrfs_check_trunc_cache_free_space(root,
3253 &root->fs_info->global_block_rsv);
3254 if (ret)
3255 goto out_put;
3256
3257 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3258 if (ret)
3259 goto out_put;
3260 }
3261
3262 spin_lock(&block_group->lock);
3263 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3264 !btrfs_test_opt(root, SPACE_CACHE) ||
3265 block_group->delalloc_bytes) {
3266 /*
3267 * don't bother trying to write stuff out _if_
3268 * a) we're not cached,
3269 * b) we're with nospace_cache mount option.
3270 */
3271 dcs = BTRFS_DC_WRITTEN;
3272 spin_unlock(&block_group->lock);
3273 goto out_put;
3274 }
3275 spin_unlock(&block_group->lock);
3276
3277 /*
3278 * Try to preallocate enough space based on how big the block group is.
3279 * Keep in mind this has to include any pinned space which could end up
3280 * taking up quite a bit since it's not folded into the other space
3281 * cache.
3282 */
3283 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3284 if (!num_pages)
3285 num_pages = 1;
3286
3287 num_pages *= 16;
3288 num_pages *= PAGE_CACHE_SIZE;
3289
3290 ret = btrfs_check_data_free_space(inode, num_pages);
3291 if (ret)
3292 goto out_put;
3293
3294 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3295 num_pages, num_pages,
3296 &alloc_hint);
3297 if (!ret)
3298 dcs = BTRFS_DC_SETUP;
3299 btrfs_free_reserved_data_space(inode, num_pages);
3300
3301 out_put:
3302 iput(inode);
3303 out_free:
3304 btrfs_release_path(path);
3305 out:
3306 spin_lock(&block_group->lock);
3307 if (!ret && dcs == BTRFS_DC_SETUP)
3308 block_group->cache_generation = trans->transid;
3309 block_group->disk_cache_state = dcs;
3310 spin_unlock(&block_group->lock);
3311
3312 return ret;
3313 }
3314
3315 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3316 struct btrfs_root *root)
3317 {
3318 struct btrfs_block_group_cache *cache;
3319 struct btrfs_transaction *cur_trans = trans->transaction;
3320 int ret = 0;
3321 struct btrfs_path *path;
3322
3323 if (list_empty(&cur_trans->dirty_bgs))
3324 return 0;
3325
3326 path = btrfs_alloc_path();
3327 if (!path)
3328 return -ENOMEM;
3329
3330 /*
3331 * We don't need the lock here since we are protected by the transaction
3332 * commit. We want to do the cache_save_setup first and then run the
3333 * delayed refs to make sure we have the best chance at doing this all
3334 * in one shot.
3335 */
3336 while (!list_empty(&cur_trans->dirty_bgs)) {
3337 cache = list_first_entry(&cur_trans->dirty_bgs,
3338 struct btrfs_block_group_cache,
3339 dirty_list);
3340 list_del_init(&cache->dirty_list);
3341 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3342 cache_save_setup(cache, trans, path);
3343 if (!ret)
3344 ret = btrfs_run_delayed_refs(trans, root,
3345 (unsigned long) -1);
3346 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3347 btrfs_write_out_cache(root, trans, cache, path);
3348 if (!ret)
3349 ret = write_one_cache_group(trans, root, path, cache);
3350 btrfs_put_block_group(cache);
3351 }
3352
3353 btrfs_free_path(path);
3354 return ret;
3355 }
3356
3357 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3358 {
3359 struct btrfs_block_group_cache *block_group;
3360 int readonly = 0;
3361
3362 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3363 if (!block_group || block_group->ro)
3364 readonly = 1;
3365 if (block_group)
3366 btrfs_put_block_group(block_group);
3367 return readonly;
3368 }
3369
3370 static const char *alloc_name(u64 flags)
3371 {
3372 switch (flags) {
3373 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3374 return "mixed";
3375 case BTRFS_BLOCK_GROUP_METADATA:
3376 return "metadata";
3377 case BTRFS_BLOCK_GROUP_DATA:
3378 return "data";
3379 case BTRFS_BLOCK_GROUP_SYSTEM:
3380 return "system";
3381 default:
3382 WARN_ON(1);
3383 return "invalid-combination";
3384 };
3385 }
3386
3387 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3388 u64 total_bytes, u64 bytes_used,
3389 struct btrfs_space_info **space_info)
3390 {
3391 struct btrfs_space_info *found;
3392 int i;
3393 int factor;
3394 int ret;
3395
3396 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3397 BTRFS_BLOCK_GROUP_RAID10))
3398 factor = 2;
3399 else
3400 factor = 1;
3401
3402 found = __find_space_info(info, flags);
3403 if (found) {
3404 spin_lock(&found->lock);
3405 found->total_bytes += total_bytes;
3406 found->disk_total += total_bytes * factor;
3407 found->bytes_used += bytes_used;
3408 found->disk_used += bytes_used * factor;
3409 found->full = 0;
3410 spin_unlock(&found->lock);
3411 *space_info = found;
3412 return 0;
3413 }
3414 found = kzalloc(sizeof(*found), GFP_NOFS);
3415 if (!found)
3416 return -ENOMEM;
3417
3418 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3419 if (ret) {
3420 kfree(found);
3421 return ret;
3422 }
3423
3424 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3425 INIT_LIST_HEAD(&found->block_groups[i]);
3426 init_rwsem(&found->groups_sem);
3427 spin_lock_init(&found->lock);
3428 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3429 found->total_bytes = total_bytes;
3430 found->disk_total = total_bytes * factor;
3431 found->bytes_used = bytes_used;
3432 found->disk_used = bytes_used * factor;
3433 found->bytes_pinned = 0;
3434 found->bytes_reserved = 0;
3435 found->bytes_readonly = 0;
3436 found->bytes_may_use = 0;
3437 found->full = 0;
3438 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3439 found->chunk_alloc = 0;
3440 found->flush = 0;
3441 init_waitqueue_head(&found->wait);
3442 INIT_LIST_HEAD(&found->ro_bgs);
3443
3444 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3445 info->space_info_kobj, "%s",
3446 alloc_name(found->flags));
3447 if (ret) {
3448 kfree(found);
3449 return ret;
3450 }
3451
3452 *space_info = found;
3453 list_add_rcu(&found->list, &info->space_info);
3454 if (flags & BTRFS_BLOCK_GROUP_DATA)
3455 info->data_sinfo = found;
3456
3457 return ret;
3458 }
3459
3460 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3461 {
3462 u64 extra_flags = chunk_to_extended(flags) &
3463 BTRFS_EXTENDED_PROFILE_MASK;
3464
3465 write_seqlock(&fs_info->profiles_lock);
3466 if (flags & BTRFS_BLOCK_GROUP_DATA)
3467 fs_info->avail_data_alloc_bits |= extra_flags;
3468 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3469 fs_info->avail_metadata_alloc_bits |= extra_flags;
3470 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3471 fs_info->avail_system_alloc_bits |= extra_flags;
3472 write_sequnlock(&fs_info->profiles_lock);
3473 }
3474
3475 /*
3476 * returns target flags in extended format or 0 if restripe for this
3477 * chunk_type is not in progress
3478 *
3479 * should be called with either volume_mutex or balance_lock held
3480 */
3481 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3482 {
3483 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3484 u64 target = 0;
3485
3486 if (!bctl)
3487 return 0;
3488
3489 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3490 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3492 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3493 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3494 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3495 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3496 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3497 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3498 }
3499
3500 return target;
3501 }
3502
3503 /*
3504 * @flags: available profiles in extended format (see ctree.h)
3505 *
3506 * Returns reduced profile in chunk format. If profile changing is in
3507 * progress (either running or paused) picks the target profile (if it's
3508 * already available), otherwise falls back to plain reducing.
3509 */
3510 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3511 {
3512 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3513 u64 target;
3514 u64 tmp;
3515
3516 /*
3517 * see if restripe for this chunk_type is in progress, if so
3518 * try to reduce to the target profile
3519 */
3520 spin_lock(&root->fs_info->balance_lock);
3521 target = get_restripe_target(root->fs_info, flags);
3522 if (target) {
3523 /* pick target profile only if it's already available */
3524 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3525 spin_unlock(&root->fs_info->balance_lock);
3526 return extended_to_chunk(target);
3527 }
3528 }
3529 spin_unlock(&root->fs_info->balance_lock);
3530
3531 /* First, mask out the RAID levels which aren't possible */
3532 if (num_devices == 1)
3533 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3534 BTRFS_BLOCK_GROUP_RAID5);
3535 if (num_devices < 3)
3536 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3537 if (num_devices < 4)
3538 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3539
3540 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3541 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3542 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3543 flags &= ~tmp;
3544
3545 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3546 tmp = BTRFS_BLOCK_GROUP_RAID6;
3547 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3548 tmp = BTRFS_BLOCK_GROUP_RAID5;
3549 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3550 tmp = BTRFS_BLOCK_GROUP_RAID10;
3551 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3552 tmp = BTRFS_BLOCK_GROUP_RAID1;
3553 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3554 tmp = BTRFS_BLOCK_GROUP_RAID0;
3555
3556 return extended_to_chunk(flags | tmp);
3557 }
3558
3559 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3560 {
3561 unsigned seq;
3562 u64 flags;
3563
3564 do {
3565 flags = orig_flags;
3566 seq = read_seqbegin(&root->fs_info->profiles_lock);
3567
3568 if (flags & BTRFS_BLOCK_GROUP_DATA)
3569 flags |= root->fs_info->avail_data_alloc_bits;
3570 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3571 flags |= root->fs_info->avail_system_alloc_bits;
3572 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3573 flags |= root->fs_info->avail_metadata_alloc_bits;
3574 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3575
3576 return btrfs_reduce_alloc_profile(root, flags);
3577 }
3578
3579 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3580 {
3581 u64 flags;
3582 u64 ret;
3583
3584 if (data)
3585 flags = BTRFS_BLOCK_GROUP_DATA;
3586 else if (root == root->fs_info->chunk_root)
3587 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3588 else
3589 flags = BTRFS_BLOCK_GROUP_METADATA;
3590
3591 ret = get_alloc_profile(root, flags);
3592 return ret;
3593 }
3594
3595 /*
3596 * This will check the space that the inode allocates from to make sure we have
3597 * enough space for bytes.
3598 */
3599 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3600 {
3601 struct btrfs_space_info *data_sinfo;
3602 struct btrfs_root *root = BTRFS_I(inode)->root;
3603 struct btrfs_fs_info *fs_info = root->fs_info;
3604 u64 used;
3605 int ret = 0, committed = 0, alloc_chunk = 1;
3606
3607 /* make sure bytes are sectorsize aligned */
3608 bytes = ALIGN(bytes, root->sectorsize);
3609
3610 if (btrfs_is_free_space_inode(inode)) {
3611 committed = 1;
3612 ASSERT(current->journal_info);
3613 }
3614
3615 data_sinfo = fs_info->data_sinfo;
3616 if (!data_sinfo)
3617 goto alloc;
3618
3619 again:
3620 /* make sure we have enough space to handle the data first */
3621 spin_lock(&data_sinfo->lock);
3622 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3623 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3624 data_sinfo->bytes_may_use;
3625
3626 if (used + bytes > data_sinfo->total_bytes) {
3627 struct btrfs_trans_handle *trans;
3628
3629 /*
3630 * if we don't have enough free bytes in this space then we need
3631 * to alloc a new chunk.
3632 */
3633 if (!data_sinfo->full && alloc_chunk) {
3634 u64 alloc_target;
3635
3636 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3637 spin_unlock(&data_sinfo->lock);
3638 alloc:
3639 alloc_target = btrfs_get_alloc_profile(root, 1);
3640 /*
3641 * It is ugly that we don't call nolock join
3642 * transaction for the free space inode case here.
3643 * But it is safe because we only do the data space
3644 * reservation for the free space cache in the
3645 * transaction context, the common join transaction
3646 * just increase the counter of the current transaction
3647 * handler, doesn't try to acquire the trans_lock of
3648 * the fs.
3649 */
3650 trans = btrfs_join_transaction(root);
3651 if (IS_ERR(trans))
3652 return PTR_ERR(trans);
3653
3654 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3655 alloc_target,
3656 CHUNK_ALLOC_NO_FORCE);
3657 btrfs_end_transaction(trans, root);
3658 if (ret < 0) {
3659 if (ret != -ENOSPC)
3660 return ret;
3661 else
3662 goto commit_trans;
3663 }
3664
3665 if (!data_sinfo)
3666 data_sinfo = fs_info->data_sinfo;
3667
3668 goto again;
3669 }
3670
3671 /*
3672 * If we don't have enough pinned space to deal with this
3673 * allocation don't bother committing the transaction.
3674 */
3675 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3676 bytes) < 0)
3677 committed = 1;
3678 spin_unlock(&data_sinfo->lock);
3679
3680 /* commit the current transaction and try again */
3681 commit_trans:
3682 if (!committed &&
3683 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3684 committed = 1;
3685
3686 trans = btrfs_join_transaction(root);
3687 if (IS_ERR(trans))
3688 return PTR_ERR(trans);
3689 ret = btrfs_commit_transaction(trans, root);
3690 if (ret)
3691 return ret;
3692 goto again;
3693 }
3694
3695 trace_btrfs_space_reservation(root->fs_info,
3696 "space_info:enospc",
3697 data_sinfo->flags, bytes, 1);
3698 return -ENOSPC;
3699 }
3700 data_sinfo->bytes_may_use += bytes;
3701 trace_btrfs_space_reservation(root->fs_info, "space_info",
3702 data_sinfo->flags, bytes, 1);
3703 spin_unlock(&data_sinfo->lock);
3704
3705 return 0;
3706 }
3707
3708 /*
3709 * Called if we need to clear a data reservation for this inode.
3710 */
3711 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3712 {
3713 struct btrfs_root *root = BTRFS_I(inode)->root;
3714 struct btrfs_space_info *data_sinfo;
3715
3716 /* make sure bytes are sectorsize aligned */
3717 bytes = ALIGN(bytes, root->sectorsize);
3718
3719 data_sinfo = root->fs_info->data_sinfo;
3720 spin_lock(&data_sinfo->lock);
3721 WARN_ON(data_sinfo->bytes_may_use < bytes);
3722 data_sinfo->bytes_may_use -= bytes;
3723 trace_btrfs_space_reservation(root->fs_info, "space_info",
3724 data_sinfo->flags, bytes, 0);
3725 spin_unlock(&data_sinfo->lock);
3726 }
3727
3728 static void force_metadata_allocation(struct btrfs_fs_info *info)
3729 {
3730 struct list_head *head = &info->space_info;
3731 struct btrfs_space_info *found;
3732
3733 rcu_read_lock();
3734 list_for_each_entry_rcu(found, head, list) {
3735 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3736 found->force_alloc = CHUNK_ALLOC_FORCE;
3737 }
3738 rcu_read_unlock();
3739 }
3740
3741 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3742 {
3743 return (global->size << 1);
3744 }
3745
3746 static int should_alloc_chunk(struct btrfs_root *root,
3747 struct btrfs_space_info *sinfo, int force)
3748 {
3749 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3750 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3751 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3752 u64 thresh;
3753
3754 if (force == CHUNK_ALLOC_FORCE)
3755 return 1;
3756
3757 /*
3758 * We need to take into account the global rsv because for all intents
3759 * and purposes it's used space. Don't worry about locking the
3760 * global_rsv, it doesn't change except when the transaction commits.
3761 */
3762 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3763 num_allocated += calc_global_rsv_need_space(global_rsv);
3764
3765 /*
3766 * in limited mode, we want to have some free space up to
3767 * about 1% of the FS size.
3768 */
3769 if (force == CHUNK_ALLOC_LIMITED) {
3770 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3771 thresh = max_t(u64, 64 * 1024 * 1024,
3772 div_factor_fine(thresh, 1));
3773
3774 if (num_bytes - num_allocated < thresh)
3775 return 1;
3776 }
3777
3778 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3779 return 0;
3780 return 1;
3781 }
3782
3783 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3784 {
3785 u64 num_dev;
3786
3787 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3788 BTRFS_BLOCK_GROUP_RAID0 |
3789 BTRFS_BLOCK_GROUP_RAID5 |
3790 BTRFS_BLOCK_GROUP_RAID6))
3791 num_dev = root->fs_info->fs_devices->rw_devices;
3792 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3793 num_dev = 2;
3794 else
3795 num_dev = 1; /* DUP or single */
3796
3797 /* metadata for updaing devices and chunk tree */
3798 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3799 }
3800
3801 static void check_system_chunk(struct btrfs_trans_handle *trans,
3802 struct btrfs_root *root, u64 type)
3803 {
3804 struct btrfs_space_info *info;
3805 u64 left;
3806 u64 thresh;
3807
3808 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3809 spin_lock(&info->lock);
3810 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3811 info->bytes_reserved - info->bytes_readonly;
3812 spin_unlock(&info->lock);
3813
3814 thresh = get_system_chunk_thresh(root, type);
3815 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3816 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3817 left, thresh, type);
3818 dump_space_info(info, 0, 0);
3819 }
3820
3821 if (left < thresh) {
3822 u64 flags;
3823
3824 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3825 btrfs_alloc_chunk(trans, root, flags);
3826 }
3827 }
3828
3829 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3830 struct btrfs_root *extent_root, u64 flags, int force)
3831 {
3832 struct btrfs_space_info *space_info;
3833 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3834 int wait_for_alloc = 0;
3835 int ret = 0;
3836
3837 /* Don't re-enter if we're already allocating a chunk */
3838 if (trans->allocating_chunk)
3839 return -ENOSPC;
3840
3841 space_info = __find_space_info(extent_root->fs_info, flags);
3842 if (!space_info) {
3843 ret = update_space_info(extent_root->fs_info, flags,
3844 0, 0, &space_info);
3845 BUG_ON(ret); /* -ENOMEM */
3846 }
3847 BUG_ON(!space_info); /* Logic error */
3848
3849 again:
3850 spin_lock(&space_info->lock);
3851 if (force < space_info->force_alloc)
3852 force = space_info->force_alloc;
3853 if (space_info->full) {
3854 if (should_alloc_chunk(extent_root, space_info, force))
3855 ret = -ENOSPC;
3856 else
3857 ret = 0;
3858 spin_unlock(&space_info->lock);
3859 return ret;
3860 }
3861
3862 if (!should_alloc_chunk(extent_root, space_info, force)) {
3863 spin_unlock(&space_info->lock);
3864 return 0;
3865 } else if (space_info->chunk_alloc) {
3866 wait_for_alloc = 1;
3867 } else {
3868 space_info->chunk_alloc = 1;
3869 }
3870
3871 spin_unlock(&space_info->lock);
3872
3873 mutex_lock(&fs_info->chunk_mutex);
3874
3875 /*
3876 * The chunk_mutex is held throughout the entirety of a chunk
3877 * allocation, so once we've acquired the chunk_mutex we know that the
3878 * other guy is done and we need to recheck and see if we should
3879 * allocate.
3880 */
3881 if (wait_for_alloc) {
3882 mutex_unlock(&fs_info->chunk_mutex);
3883 wait_for_alloc = 0;
3884 goto again;
3885 }
3886
3887 trans->allocating_chunk = true;
3888
3889 /*
3890 * If we have mixed data/metadata chunks we want to make sure we keep
3891 * allocating mixed chunks instead of individual chunks.
3892 */
3893 if (btrfs_mixed_space_info(space_info))
3894 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3895
3896 /*
3897 * if we're doing a data chunk, go ahead and make sure that
3898 * we keep a reasonable number of metadata chunks allocated in the
3899 * FS as well.
3900 */
3901 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3902 fs_info->data_chunk_allocations++;
3903 if (!(fs_info->data_chunk_allocations %
3904 fs_info->metadata_ratio))
3905 force_metadata_allocation(fs_info);
3906 }
3907
3908 /*
3909 * Check if we have enough space in SYSTEM chunk because we may need
3910 * to update devices.
3911 */
3912 check_system_chunk(trans, extent_root, flags);
3913
3914 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3915 trans->allocating_chunk = false;
3916
3917 spin_lock(&space_info->lock);
3918 if (ret < 0 && ret != -ENOSPC)
3919 goto out;
3920 if (ret)
3921 space_info->full = 1;
3922 else
3923 ret = 1;
3924
3925 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3926 out:
3927 space_info->chunk_alloc = 0;
3928 spin_unlock(&space_info->lock);
3929 mutex_unlock(&fs_info->chunk_mutex);
3930 return ret;
3931 }
3932
3933 static int can_overcommit(struct btrfs_root *root,
3934 struct btrfs_space_info *space_info, u64 bytes,
3935 enum btrfs_reserve_flush_enum flush)
3936 {
3937 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3938 u64 profile = btrfs_get_alloc_profile(root, 0);
3939 u64 space_size;
3940 u64 avail;
3941 u64 used;
3942
3943 used = space_info->bytes_used + space_info->bytes_reserved +
3944 space_info->bytes_pinned + space_info->bytes_readonly;
3945
3946 /*
3947 * We only want to allow over committing if we have lots of actual space
3948 * free, but if we don't have enough space to handle the global reserve
3949 * space then we could end up having a real enospc problem when trying
3950 * to allocate a chunk or some other such important allocation.
3951 */
3952 spin_lock(&global_rsv->lock);
3953 space_size = calc_global_rsv_need_space(global_rsv);
3954 spin_unlock(&global_rsv->lock);
3955 if (used + space_size >= space_info->total_bytes)
3956 return 0;
3957
3958 used += space_info->bytes_may_use;
3959
3960 spin_lock(&root->fs_info->free_chunk_lock);
3961 avail = root->fs_info->free_chunk_space;
3962 spin_unlock(&root->fs_info->free_chunk_lock);
3963
3964 /*
3965 * If we have dup, raid1 or raid10 then only half of the free
3966 * space is actually useable. For raid56, the space info used
3967 * doesn't include the parity drive, so we don't have to
3968 * change the math
3969 */
3970 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3971 BTRFS_BLOCK_GROUP_RAID1 |
3972 BTRFS_BLOCK_GROUP_RAID10))
3973 avail >>= 1;
3974
3975 /*
3976 * If we aren't flushing all things, let us overcommit up to
3977 * 1/2th of the space. If we can flush, don't let us overcommit
3978 * too much, let it overcommit up to 1/8 of the space.
3979 */
3980 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3981 avail >>= 3;
3982 else
3983 avail >>= 1;
3984
3985 if (used + bytes < space_info->total_bytes + avail)
3986 return 1;
3987 return 0;
3988 }
3989
3990 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3991 unsigned long nr_pages, int nr_items)
3992 {
3993 struct super_block *sb = root->fs_info->sb;
3994
3995 if (down_read_trylock(&sb->s_umount)) {
3996 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3997 up_read(&sb->s_umount);
3998 } else {
3999 /*
4000 * We needn't worry the filesystem going from r/w to r/o though
4001 * we don't acquire ->s_umount mutex, because the filesystem
4002 * should guarantee the delalloc inodes list be empty after
4003 * the filesystem is readonly(all dirty pages are written to
4004 * the disk).
4005 */
4006 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4007 if (!current->journal_info)
4008 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4009 }
4010 }
4011
4012 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4013 {
4014 u64 bytes;
4015 int nr;
4016
4017 bytes = btrfs_calc_trans_metadata_size(root, 1);
4018 nr = (int)div64_u64(to_reclaim, bytes);
4019 if (!nr)
4020 nr = 1;
4021 return nr;
4022 }
4023
4024 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4025
4026 /*
4027 * shrink metadata reservation for delalloc
4028 */
4029 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4030 bool wait_ordered)
4031 {
4032 struct btrfs_block_rsv *block_rsv;
4033 struct btrfs_space_info *space_info;
4034 struct btrfs_trans_handle *trans;
4035 u64 delalloc_bytes;
4036 u64 max_reclaim;
4037 long time_left;
4038 unsigned long nr_pages;
4039 int loops;
4040 int items;
4041 enum btrfs_reserve_flush_enum flush;
4042
4043 /* Calc the number of the pages we need flush for space reservation */
4044 items = calc_reclaim_items_nr(root, to_reclaim);
4045 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4046
4047 trans = (struct btrfs_trans_handle *)current->journal_info;
4048 block_rsv = &root->fs_info->delalloc_block_rsv;
4049 space_info = block_rsv->space_info;
4050
4051 delalloc_bytes = percpu_counter_sum_positive(
4052 &root->fs_info->delalloc_bytes);
4053 if (delalloc_bytes == 0) {
4054 if (trans)
4055 return;
4056 if (wait_ordered)
4057 btrfs_wait_ordered_roots(root->fs_info, items);
4058 return;
4059 }
4060
4061 loops = 0;
4062 while (delalloc_bytes && loops < 3) {
4063 max_reclaim = min(delalloc_bytes, to_reclaim);
4064 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4065 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4066 /*
4067 * We need to wait for the async pages to actually start before
4068 * we do anything.
4069 */
4070 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4071 if (!max_reclaim)
4072 goto skip_async;
4073
4074 if (max_reclaim <= nr_pages)
4075 max_reclaim = 0;
4076 else
4077 max_reclaim -= nr_pages;
4078
4079 wait_event(root->fs_info->async_submit_wait,
4080 atomic_read(&root->fs_info->async_delalloc_pages) <=
4081 (int)max_reclaim);
4082 skip_async:
4083 if (!trans)
4084 flush = BTRFS_RESERVE_FLUSH_ALL;
4085 else
4086 flush = BTRFS_RESERVE_NO_FLUSH;
4087 spin_lock(&space_info->lock);
4088 if (can_overcommit(root, space_info, orig, flush)) {
4089 spin_unlock(&space_info->lock);
4090 break;
4091 }
4092 spin_unlock(&space_info->lock);
4093
4094 loops++;
4095 if (wait_ordered && !trans) {
4096 btrfs_wait_ordered_roots(root->fs_info, items);
4097 } else {
4098 time_left = schedule_timeout_killable(1);
4099 if (time_left)
4100 break;
4101 }
4102 delalloc_bytes = percpu_counter_sum_positive(
4103 &root->fs_info->delalloc_bytes);
4104 }
4105 }
4106
4107 /**
4108 * maybe_commit_transaction - possibly commit the transaction if its ok to
4109 * @root - the root we're allocating for
4110 * @bytes - the number of bytes we want to reserve
4111 * @force - force the commit
4112 *
4113 * This will check to make sure that committing the transaction will actually
4114 * get us somewhere and then commit the transaction if it does. Otherwise it
4115 * will return -ENOSPC.
4116 */
4117 static int may_commit_transaction(struct btrfs_root *root,
4118 struct btrfs_space_info *space_info,
4119 u64 bytes, int force)
4120 {
4121 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4122 struct btrfs_trans_handle *trans;
4123
4124 trans = (struct btrfs_trans_handle *)current->journal_info;
4125 if (trans)
4126 return -EAGAIN;
4127
4128 if (force)
4129 goto commit;
4130
4131 /* See if there is enough pinned space to make this reservation */
4132 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4133 bytes) >= 0)
4134 goto commit;
4135
4136 /*
4137 * See if there is some space in the delayed insertion reservation for
4138 * this reservation.
4139 */
4140 if (space_info != delayed_rsv->space_info)
4141 return -ENOSPC;
4142
4143 spin_lock(&delayed_rsv->lock);
4144 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4145 bytes - delayed_rsv->size) >= 0) {
4146 spin_unlock(&delayed_rsv->lock);
4147 return -ENOSPC;
4148 }
4149 spin_unlock(&delayed_rsv->lock);
4150
4151 commit:
4152 trans = btrfs_join_transaction(root);
4153 if (IS_ERR(trans))
4154 return -ENOSPC;
4155
4156 return btrfs_commit_transaction(trans, root);
4157 }
4158
4159 enum flush_state {
4160 FLUSH_DELAYED_ITEMS_NR = 1,
4161 FLUSH_DELAYED_ITEMS = 2,
4162 FLUSH_DELALLOC = 3,
4163 FLUSH_DELALLOC_WAIT = 4,
4164 ALLOC_CHUNK = 5,
4165 COMMIT_TRANS = 6,
4166 };
4167
4168 static int flush_space(struct btrfs_root *root,
4169 struct btrfs_space_info *space_info, u64 num_bytes,
4170 u64 orig_bytes, int state)
4171 {
4172 struct btrfs_trans_handle *trans;
4173 int nr;
4174 int ret = 0;
4175
4176 switch (state) {
4177 case FLUSH_DELAYED_ITEMS_NR:
4178 case FLUSH_DELAYED_ITEMS:
4179 if (state == FLUSH_DELAYED_ITEMS_NR)
4180 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4181 else
4182 nr = -1;
4183
4184 trans = btrfs_join_transaction(root);
4185 if (IS_ERR(trans)) {
4186 ret = PTR_ERR(trans);
4187 break;
4188 }
4189 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4190 btrfs_end_transaction(trans, root);
4191 break;
4192 case FLUSH_DELALLOC:
4193 case FLUSH_DELALLOC_WAIT:
4194 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4195 state == FLUSH_DELALLOC_WAIT);
4196 break;
4197 case ALLOC_CHUNK:
4198 trans = btrfs_join_transaction(root);
4199 if (IS_ERR(trans)) {
4200 ret = PTR_ERR(trans);
4201 break;
4202 }
4203 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4204 btrfs_get_alloc_profile(root, 0),
4205 CHUNK_ALLOC_NO_FORCE);
4206 btrfs_end_transaction(trans, root);
4207 if (ret == -ENOSPC)
4208 ret = 0;
4209 break;
4210 case COMMIT_TRANS:
4211 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4212 break;
4213 default:
4214 ret = -ENOSPC;
4215 break;
4216 }
4217
4218 return ret;
4219 }
4220
4221 static inline u64
4222 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4223 struct btrfs_space_info *space_info)
4224 {
4225 u64 used;
4226 u64 expected;
4227 u64 to_reclaim;
4228
4229 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4230 16 * 1024 * 1024);
4231 spin_lock(&space_info->lock);
4232 if (can_overcommit(root, space_info, to_reclaim,
4233 BTRFS_RESERVE_FLUSH_ALL)) {
4234 to_reclaim = 0;
4235 goto out;
4236 }
4237
4238 used = space_info->bytes_used + space_info->bytes_reserved +
4239 space_info->bytes_pinned + space_info->bytes_readonly +
4240 space_info->bytes_may_use;
4241 if (can_overcommit(root, space_info, 1024 * 1024,
4242 BTRFS_RESERVE_FLUSH_ALL))
4243 expected = div_factor_fine(space_info->total_bytes, 95);
4244 else
4245 expected = div_factor_fine(space_info->total_bytes, 90);
4246
4247 if (used > expected)
4248 to_reclaim = used - expected;
4249 else
4250 to_reclaim = 0;
4251 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4252 space_info->bytes_reserved);
4253 out:
4254 spin_unlock(&space_info->lock);
4255
4256 return to_reclaim;
4257 }
4258
4259 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4260 struct btrfs_fs_info *fs_info, u64 used)
4261 {
4262 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4263 !btrfs_fs_closing(fs_info) &&
4264 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4265 }
4266
4267 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4268 struct btrfs_fs_info *fs_info,
4269 int flush_state)
4270 {
4271 u64 used;
4272
4273 spin_lock(&space_info->lock);
4274 /*
4275 * We run out of space and have not got any free space via flush_space,
4276 * so don't bother doing async reclaim.
4277 */
4278 if (flush_state > COMMIT_TRANS && space_info->full) {
4279 spin_unlock(&space_info->lock);
4280 return 0;
4281 }
4282
4283 used = space_info->bytes_used + space_info->bytes_reserved +
4284 space_info->bytes_pinned + space_info->bytes_readonly +
4285 space_info->bytes_may_use;
4286 if (need_do_async_reclaim(space_info, fs_info, used)) {
4287 spin_unlock(&space_info->lock);
4288 return 1;
4289 }
4290 spin_unlock(&space_info->lock);
4291
4292 return 0;
4293 }
4294
4295 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4296 {
4297 struct btrfs_fs_info *fs_info;
4298 struct btrfs_space_info *space_info;
4299 u64 to_reclaim;
4300 int flush_state;
4301
4302 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4303 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4304
4305 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4306 space_info);
4307 if (!to_reclaim)
4308 return;
4309
4310 flush_state = FLUSH_DELAYED_ITEMS_NR;
4311 do {
4312 flush_space(fs_info->fs_root, space_info, to_reclaim,
4313 to_reclaim, flush_state);
4314 flush_state++;
4315 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4316 flush_state))
4317 return;
4318 } while (flush_state <= COMMIT_TRANS);
4319
4320 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4321 queue_work(system_unbound_wq, work);
4322 }
4323
4324 void btrfs_init_async_reclaim_work(struct work_struct *work)
4325 {
4326 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4327 }
4328
4329 /**
4330 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4331 * @root - the root we're allocating for
4332 * @block_rsv - the block_rsv we're allocating for
4333 * @orig_bytes - the number of bytes we want
4334 * @flush - whether or not we can flush to make our reservation
4335 *
4336 * This will reserve orgi_bytes number of bytes from the space info associated
4337 * with the block_rsv. If there is not enough space it will make an attempt to
4338 * flush out space to make room. It will do this by flushing delalloc if
4339 * possible or committing the transaction. If flush is 0 then no attempts to
4340 * regain reservations will be made and this will fail if there is not enough
4341 * space already.
4342 */
4343 static int reserve_metadata_bytes(struct btrfs_root *root,
4344 struct btrfs_block_rsv *block_rsv,
4345 u64 orig_bytes,
4346 enum btrfs_reserve_flush_enum flush)
4347 {
4348 struct btrfs_space_info *space_info = block_rsv->space_info;
4349 u64 used;
4350 u64 num_bytes = orig_bytes;
4351 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4352 int ret = 0;
4353 bool flushing = false;
4354
4355 again:
4356 ret = 0;
4357 spin_lock(&space_info->lock);
4358 /*
4359 * We only want to wait if somebody other than us is flushing and we
4360 * are actually allowed to flush all things.
4361 */
4362 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4363 space_info->flush) {
4364 spin_unlock(&space_info->lock);
4365 /*
4366 * If we have a trans handle we can't wait because the flusher
4367 * may have to commit the transaction, which would mean we would
4368 * deadlock since we are waiting for the flusher to finish, but
4369 * hold the current transaction open.
4370 */
4371 if (current->journal_info)
4372 return -EAGAIN;
4373 ret = wait_event_killable(space_info->wait, !space_info->flush);
4374 /* Must have been killed, return */
4375 if (ret)
4376 return -EINTR;
4377
4378 spin_lock(&space_info->lock);
4379 }
4380
4381 ret = -ENOSPC;
4382 used = space_info->bytes_used + space_info->bytes_reserved +
4383 space_info->bytes_pinned + space_info->bytes_readonly +
4384 space_info->bytes_may_use;
4385
4386 /*
4387 * The idea here is that we've not already over-reserved the block group
4388 * then we can go ahead and save our reservation first and then start
4389 * flushing if we need to. Otherwise if we've already overcommitted
4390 * lets start flushing stuff first and then come back and try to make
4391 * our reservation.
4392 */
4393 if (used <= space_info->total_bytes) {
4394 if (used + orig_bytes <= space_info->total_bytes) {
4395 space_info->bytes_may_use += orig_bytes;
4396 trace_btrfs_space_reservation(root->fs_info,
4397 "space_info", space_info->flags, orig_bytes, 1);
4398 ret = 0;
4399 } else {
4400 /*
4401 * Ok set num_bytes to orig_bytes since we aren't
4402 * overocmmitted, this way we only try and reclaim what
4403 * we need.
4404 */
4405 num_bytes = orig_bytes;
4406 }
4407 } else {
4408 /*
4409 * Ok we're over committed, set num_bytes to the overcommitted
4410 * amount plus the amount of bytes that we need for this
4411 * reservation.
4412 */
4413 num_bytes = used - space_info->total_bytes +
4414 (orig_bytes * 2);
4415 }
4416
4417 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4418 space_info->bytes_may_use += orig_bytes;
4419 trace_btrfs_space_reservation(root->fs_info, "space_info",
4420 space_info->flags, orig_bytes,
4421 1);
4422 ret = 0;
4423 }
4424
4425 /*
4426 * Couldn't make our reservation, save our place so while we're trying
4427 * to reclaim space we can actually use it instead of somebody else
4428 * stealing it from us.
4429 *
4430 * We make the other tasks wait for the flush only when we can flush
4431 * all things.
4432 */
4433 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4434 flushing = true;
4435 space_info->flush = 1;
4436 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4437 used += orig_bytes;
4438 /*
4439 * We will do the space reservation dance during log replay,
4440 * which means we won't have fs_info->fs_root set, so don't do
4441 * the async reclaim as we will panic.
4442 */
4443 if (!root->fs_info->log_root_recovering &&
4444 need_do_async_reclaim(space_info, root->fs_info, used) &&
4445 !work_busy(&root->fs_info->async_reclaim_work))
4446 queue_work(system_unbound_wq,
4447 &root->fs_info->async_reclaim_work);
4448 }
4449 spin_unlock(&space_info->lock);
4450
4451 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4452 goto out;
4453
4454 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4455 flush_state);
4456 flush_state++;
4457
4458 /*
4459 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4460 * would happen. So skip delalloc flush.
4461 */
4462 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4463 (flush_state == FLUSH_DELALLOC ||
4464 flush_state == FLUSH_DELALLOC_WAIT))
4465 flush_state = ALLOC_CHUNK;
4466
4467 if (!ret)
4468 goto again;
4469 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4470 flush_state < COMMIT_TRANS)
4471 goto again;
4472 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4473 flush_state <= COMMIT_TRANS)
4474 goto again;
4475
4476 out:
4477 if (ret == -ENOSPC &&
4478 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4479 struct btrfs_block_rsv *global_rsv =
4480 &root->fs_info->global_block_rsv;
4481
4482 if (block_rsv != global_rsv &&
4483 !block_rsv_use_bytes(global_rsv, orig_bytes))
4484 ret = 0;
4485 }
4486 if (ret == -ENOSPC)
4487 trace_btrfs_space_reservation(root->fs_info,
4488 "space_info:enospc",
4489 space_info->flags, orig_bytes, 1);
4490 if (flushing) {
4491 spin_lock(&space_info->lock);
4492 space_info->flush = 0;
4493 wake_up_all(&space_info->wait);
4494 spin_unlock(&space_info->lock);
4495 }
4496 return ret;
4497 }
4498
4499 static struct btrfs_block_rsv *get_block_rsv(
4500 const struct btrfs_trans_handle *trans,
4501 const struct btrfs_root *root)
4502 {
4503 struct btrfs_block_rsv *block_rsv = NULL;
4504
4505 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4506 block_rsv = trans->block_rsv;
4507
4508 if (root == root->fs_info->csum_root && trans->adding_csums)
4509 block_rsv = trans->block_rsv;
4510
4511 if (root == root->fs_info->uuid_root)
4512 block_rsv = trans->block_rsv;
4513
4514 if (!block_rsv)
4515 block_rsv = root->block_rsv;
4516
4517 if (!block_rsv)
4518 block_rsv = &root->fs_info->empty_block_rsv;
4519
4520 return block_rsv;
4521 }
4522
4523 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4524 u64 num_bytes)
4525 {
4526 int ret = -ENOSPC;
4527 spin_lock(&block_rsv->lock);
4528 if (block_rsv->reserved >= num_bytes) {
4529 block_rsv->reserved -= num_bytes;
4530 if (block_rsv->reserved < block_rsv->size)
4531 block_rsv->full = 0;
4532 ret = 0;
4533 }
4534 spin_unlock(&block_rsv->lock);
4535 return ret;
4536 }
4537
4538 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4539 u64 num_bytes, int update_size)
4540 {
4541 spin_lock(&block_rsv->lock);
4542 block_rsv->reserved += num_bytes;
4543 if (update_size)
4544 block_rsv->size += num_bytes;
4545 else if (block_rsv->reserved >= block_rsv->size)
4546 block_rsv->full = 1;
4547 spin_unlock(&block_rsv->lock);
4548 }
4549
4550 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4551 struct btrfs_block_rsv *dest, u64 num_bytes,
4552 int min_factor)
4553 {
4554 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4555 u64 min_bytes;
4556
4557 if (global_rsv->space_info != dest->space_info)
4558 return -ENOSPC;
4559
4560 spin_lock(&global_rsv->lock);
4561 min_bytes = div_factor(global_rsv->size, min_factor);
4562 if (global_rsv->reserved < min_bytes + num_bytes) {
4563 spin_unlock(&global_rsv->lock);
4564 return -ENOSPC;
4565 }
4566 global_rsv->reserved -= num_bytes;
4567 if (global_rsv->reserved < global_rsv->size)
4568 global_rsv->full = 0;
4569 spin_unlock(&global_rsv->lock);
4570
4571 block_rsv_add_bytes(dest, num_bytes, 1);
4572 return 0;
4573 }
4574
4575 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4576 struct btrfs_block_rsv *block_rsv,
4577 struct btrfs_block_rsv *dest, u64 num_bytes)
4578 {
4579 struct btrfs_space_info *space_info = block_rsv->space_info;
4580
4581 spin_lock(&block_rsv->lock);
4582 if (num_bytes == (u64)-1)
4583 num_bytes = block_rsv->size;
4584 block_rsv->size -= num_bytes;
4585 if (block_rsv->reserved >= block_rsv->size) {
4586 num_bytes = block_rsv->reserved - block_rsv->size;
4587 block_rsv->reserved = block_rsv->size;
4588 block_rsv->full = 1;
4589 } else {
4590 num_bytes = 0;
4591 }
4592 spin_unlock(&block_rsv->lock);
4593
4594 if (num_bytes > 0) {
4595 if (dest) {
4596 spin_lock(&dest->lock);
4597 if (!dest->full) {
4598 u64 bytes_to_add;
4599
4600 bytes_to_add = dest->size - dest->reserved;
4601 bytes_to_add = min(num_bytes, bytes_to_add);
4602 dest->reserved += bytes_to_add;
4603 if (dest->reserved >= dest->size)
4604 dest->full = 1;
4605 num_bytes -= bytes_to_add;
4606 }
4607 spin_unlock(&dest->lock);
4608 }
4609 if (num_bytes) {
4610 spin_lock(&space_info->lock);
4611 space_info->bytes_may_use -= num_bytes;
4612 trace_btrfs_space_reservation(fs_info, "space_info",
4613 space_info->flags, num_bytes, 0);
4614 spin_unlock(&space_info->lock);
4615 }
4616 }
4617 }
4618
4619 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4620 struct btrfs_block_rsv *dst, u64 num_bytes)
4621 {
4622 int ret;
4623
4624 ret = block_rsv_use_bytes(src, num_bytes);
4625 if (ret)
4626 return ret;
4627
4628 block_rsv_add_bytes(dst, num_bytes, 1);
4629 return 0;
4630 }
4631
4632 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4633 {
4634 memset(rsv, 0, sizeof(*rsv));
4635 spin_lock_init(&rsv->lock);
4636 rsv->type = type;
4637 }
4638
4639 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4640 unsigned short type)
4641 {
4642 struct btrfs_block_rsv *block_rsv;
4643 struct btrfs_fs_info *fs_info = root->fs_info;
4644
4645 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4646 if (!block_rsv)
4647 return NULL;
4648
4649 btrfs_init_block_rsv(block_rsv, type);
4650 block_rsv->space_info = __find_space_info(fs_info,
4651 BTRFS_BLOCK_GROUP_METADATA);
4652 return block_rsv;
4653 }
4654
4655 void btrfs_free_block_rsv(struct btrfs_root *root,
4656 struct btrfs_block_rsv *rsv)
4657 {
4658 if (!rsv)
4659 return;
4660 btrfs_block_rsv_release(root, rsv, (u64)-1);
4661 kfree(rsv);
4662 }
4663
4664 int btrfs_block_rsv_add(struct btrfs_root *root,
4665 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4666 enum btrfs_reserve_flush_enum flush)
4667 {
4668 int ret;
4669
4670 if (num_bytes == 0)
4671 return 0;
4672
4673 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4674 if (!ret) {
4675 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4676 return 0;
4677 }
4678
4679 return ret;
4680 }
4681
4682 int btrfs_block_rsv_check(struct btrfs_root *root,
4683 struct btrfs_block_rsv *block_rsv, int min_factor)
4684 {
4685 u64 num_bytes = 0;
4686 int ret = -ENOSPC;
4687
4688 if (!block_rsv)
4689 return 0;
4690
4691 spin_lock(&block_rsv->lock);
4692 num_bytes = div_factor(block_rsv->size, min_factor);
4693 if (block_rsv->reserved >= num_bytes)
4694 ret = 0;
4695 spin_unlock(&block_rsv->lock);
4696
4697 return ret;
4698 }
4699
4700 int btrfs_block_rsv_refill(struct btrfs_root *root,
4701 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4702 enum btrfs_reserve_flush_enum flush)
4703 {
4704 u64 num_bytes = 0;
4705 int ret = -ENOSPC;
4706
4707 if (!block_rsv)
4708 return 0;
4709
4710 spin_lock(&block_rsv->lock);
4711 num_bytes = min_reserved;
4712 if (block_rsv->reserved >= num_bytes)
4713 ret = 0;
4714 else
4715 num_bytes -= block_rsv->reserved;
4716 spin_unlock(&block_rsv->lock);
4717
4718 if (!ret)
4719 return 0;
4720
4721 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4722 if (!ret) {
4723 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4724 return 0;
4725 }
4726
4727 return ret;
4728 }
4729
4730 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4731 struct btrfs_block_rsv *dst_rsv,
4732 u64 num_bytes)
4733 {
4734 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4735 }
4736
4737 void btrfs_block_rsv_release(struct btrfs_root *root,
4738 struct btrfs_block_rsv *block_rsv,
4739 u64 num_bytes)
4740 {
4741 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4742 if (global_rsv == block_rsv ||
4743 block_rsv->space_info != global_rsv->space_info)
4744 global_rsv = NULL;
4745 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4746 num_bytes);
4747 }
4748
4749 /*
4750 * helper to calculate size of global block reservation.
4751 * the desired value is sum of space used by extent tree,
4752 * checksum tree and root tree
4753 */
4754 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4755 {
4756 struct btrfs_space_info *sinfo;
4757 u64 num_bytes;
4758 u64 meta_used;
4759 u64 data_used;
4760 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4761
4762 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4763 spin_lock(&sinfo->lock);
4764 data_used = sinfo->bytes_used;
4765 spin_unlock(&sinfo->lock);
4766
4767 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4768 spin_lock(&sinfo->lock);
4769 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4770 data_used = 0;
4771 meta_used = sinfo->bytes_used;
4772 spin_unlock(&sinfo->lock);
4773
4774 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4775 csum_size * 2;
4776 num_bytes += div64_u64(data_used + meta_used, 50);
4777
4778 if (num_bytes * 3 > meta_used)
4779 num_bytes = div64_u64(meta_used, 3);
4780
4781 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4782 }
4783
4784 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4785 {
4786 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4787 struct btrfs_space_info *sinfo = block_rsv->space_info;
4788 u64 num_bytes;
4789
4790 num_bytes = calc_global_metadata_size(fs_info);
4791
4792 spin_lock(&sinfo->lock);
4793 spin_lock(&block_rsv->lock);
4794
4795 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4796
4797 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4798 sinfo->bytes_reserved + sinfo->bytes_readonly +
4799 sinfo->bytes_may_use;
4800
4801 if (sinfo->total_bytes > num_bytes) {
4802 num_bytes = sinfo->total_bytes - num_bytes;
4803 block_rsv->reserved += num_bytes;
4804 sinfo->bytes_may_use += num_bytes;
4805 trace_btrfs_space_reservation(fs_info, "space_info",
4806 sinfo->flags, num_bytes, 1);
4807 }
4808
4809 if (block_rsv->reserved >= block_rsv->size) {
4810 num_bytes = block_rsv->reserved - block_rsv->size;
4811 sinfo->bytes_may_use -= num_bytes;
4812 trace_btrfs_space_reservation(fs_info, "space_info",
4813 sinfo->flags, num_bytes, 0);
4814 block_rsv->reserved = block_rsv->size;
4815 block_rsv->full = 1;
4816 }
4817
4818 spin_unlock(&block_rsv->lock);
4819 spin_unlock(&sinfo->lock);
4820 }
4821
4822 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4823 {
4824 struct btrfs_space_info *space_info;
4825
4826 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4827 fs_info->chunk_block_rsv.space_info = space_info;
4828
4829 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4830 fs_info->global_block_rsv.space_info = space_info;
4831 fs_info->delalloc_block_rsv.space_info = space_info;
4832 fs_info->trans_block_rsv.space_info = space_info;
4833 fs_info->empty_block_rsv.space_info = space_info;
4834 fs_info->delayed_block_rsv.space_info = space_info;
4835
4836 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4837 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4838 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4839 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4840 if (fs_info->quota_root)
4841 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4842 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4843
4844 update_global_block_rsv(fs_info);
4845 }
4846
4847 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4848 {
4849 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4850 (u64)-1);
4851 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4852 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4853 WARN_ON(fs_info->trans_block_rsv.size > 0);
4854 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4855 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4856 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4857 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4858 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4859 }
4860
4861 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4862 struct btrfs_root *root)
4863 {
4864 if (!trans->block_rsv)
4865 return;
4866
4867 if (!trans->bytes_reserved)
4868 return;
4869
4870 trace_btrfs_space_reservation(root->fs_info, "transaction",
4871 trans->transid, trans->bytes_reserved, 0);
4872 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4873 trans->bytes_reserved = 0;
4874 }
4875
4876 /* Can only return 0 or -ENOSPC */
4877 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4878 struct inode *inode)
4879 {
4880 struct btrfs_root *root = BTRFS_I(inode)->root;
4881 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4882 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4883
4884 /*
4885 * We need to hold space in order to delete our orphan item once we've
4886 * added it, so this takes the reservation so we can release it later
4887 * when we are truly done with the orphan item.
4888 */
4889 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4890 trace_btrfs_space_reservation(root->fs_info, "orphan",
4891 btrfs_ino(inode), num_bytes, 1);
4892 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4893 }
4894
4895 void btrfs_orphan_release_metadata(struct inode *inode)
4896 {
4897 struct btrfs_root *root = BTRFS_I(inode)->root;
4898 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4899 trace_btrfs_space_reservation(root->fs_info, "orphan",
4900 btrfs_ino(inode), num_bytes, 0);
4901 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4902 }
4903
4904 /*
4905 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4906 * root: the root of the parent directory
4907 * rsv: block reservation
4908 * items: the number of items that we need do reservation
4909 * qgroup_reserved: used to return the reserved size in qgroup
4910 *
4911 * This function is used to reserve the space for snapshot/subvolume
4912 * creation and deletion. Those operations are different with the
4913 * common file/directory operations, they change two fs/file trees
4914 * and root tree, the number of items that the qgroup reserves is
4915 * different with the free space reservation. So we can not use
4916 * the space reseravtion mechanism in start_transaction().
4917 */
4918 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4919 struct btrfs_block_rsv *rsv,
4920 int items,
4921 u64 *qgroup_reserved,
4922 bool use_global_rsv)
4923 {
4924 u64 num_bytes;
4925 int ret;
4926 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4927
4928 if (root->fs_info->quota_enabled) {
4929 /* One for parent inode, two for dir entries */
4930 num_bytes = 3 * root->nodesize;
4931 ret = btrfs_qgroup_reserve(root, num_bytes);
4932 if (ret)
4933 return ret;
4934 } else {
4935 num_bytes = 0;
4936 }
4937
4938 *qgroup_reserved = num_bytes;
4939
4940 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4941 rsv->space_info = __find_space_info(root->fs_info,
4942 BTRFS_BLOCK_GROUP_METADATA);
4943 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4944 BTRFS_RESERVE_FLUSH_ALL);
4945
4946 if (ret == -ENOSPC && use_global_rsv)
4947 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4948
4949 if (ret) {
4950 if (*qgroup_reserved)
4951 btrfs_qgroup_free(root, *qgroup_reserved);
4952 }
4953
4954 return ret;
4955 }
4956
4957 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4958 struct btrfs_block_rsv *rsv,
4959 u64 qgroup_reserved)
4960 {
4961 btrfs_block_rsv_release(root, rsv, (u64)-1);
4962 if (qgroup_reserved)
4963 btrfs_qgroup_free(root, qgroup_reserved);
4964 }
4965
4966 /**
4967 * drop_outstanding_extent - drop an outstanding extent
4968 * @inode: the inode we're dropping the extent for
4969 *
4970 * This is called when we are freeing up an outstanding extent, either called
4971 * after an error or after an extent is written. This will return the number of
4972 * reserved extents that need to be freed. This must be called with
4973 * BTRFS_I(inode)->lock held.
4974 */
4975 static unsigned drop_outstanding_extent(struct inode *inode)
4976 {
4977 unsigned drop_inode_space = 0;
4978 unsigned dropped_extents = 0;
4979
4980 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4981 BTRFS_I(inode)->outstanding_extents--;
4982
4983 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4984 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4985 &BTRFS_I(inode)->runtime_flags))
4986 drop_inode_space = 1;
4987
4988 /*
4989 * If we have more or the same amount of outsanding extents than we have
4990 * reserved then we need to leave the reserved extents count alone.
4991 */
4992 if (BTRFS_I(inode)->outstanding_extents >=
4993 BTRFS_I(inode)->reserved_extents)
4994 return drop_inode_space;
4995
4996 dropped_extents = BTRFS_I(inode)->reserved_extents -
4997 BTRFS_I(inode)->outstanding_extents;
4998 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4999 return dropped_extents + drop_inode_space;
5000 }
5001
5002 /**
5003 * calc_csum_metadata_size - return the amount of metada space that must be
5004 * reserved/free'd for the given bytes.
5005 * @inode: the inode we're manipulating
5006 * @num_bytes: the number of bytes in question
5007 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5008 *
5009 * This adjusts the number of csum_bytes in the inode and then returns the
5010 * correct amount of metadata that must either be reserved or freed. We
5011 * calculate how many checksums we can fit into one leaf and then divide the
5012 * number of bytes that will need to be checksumed by this value to figure out
5013 * how many checksums will be required. If we are adding bytes then the number
5014 * may go up and we will return the number of additional bytes that must be
5015 * reserved. If it is going down we will return the number of bytes that must
5016 * be freed.
5017 *
5018 * This must be called with BTRFS_I(inode)->lock held.
5019 */
5020 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5021 int reserve)
5022 {
5023 struct btrfs_root *root = BTRFS_I(inode)->root;
5024 u64 csum_size;
5025 int num_csums_per_leaf;
5026 int num_csums;
5027 int old_csums;
5028
5029 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5030 BTRFS_I(inode)->csum_bytes == 0)
5031 return 0;
5032
5033 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5034 if (reserve)
5035 BTRFS_I(inode)->csum_bytes += num_bytes;
5036 else
5037 BTRFS_I(inode)->csum_bytes -= num_bytes;
5038 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5039 num_csums_per_leaf = (int)div64_u64(csum_size,
5040 sizeof(struct btrfs_csum_item) +
5041 sizeof(struct btrfs_disk_key));
5042 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5043 num_csums = num_csums + num_csums_per_leaf - 1;
5044 num_csums = num_csums / num_csums_per_leaf;
5045
5046 old_csums = old_csums + num_csums_per_leaf - 1;
5047 old_csums = old_csums / num_csums_per_leaf;
5048
5049 /* No change, no need to reserve more */
5050 if (old_csums == num_csums)
5051 return 0;
5052
5053 if (reserve)
5054 return btrfs_calc_trans_metadata_size(root,
5055 num_csums - old_csums);
5056
5057 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5058 }
5059
5060 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5061 {
5062 struct btrfs_root *root = BTRFS_I(inode)->root;
5063 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5064 u64 to_reserve = 0;
5065 u64 csum_bytes;
5066 unsigned nr_extents = 0;
5067 int extra_reserve = 0;
5068 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5069 int ret = 0;
5070 bool delalloc_lock = true;
5071 u64 to_free = 0;
5072 unsigned dropped;
5073
5074 /* If we are a free space inode we need to not flush since we will be in
5075 * the middle of a transaction commit. We also don't need the delalloc
5076 * mutex since we won't race with anybody. We need this mostly to make
5077 * lockdep shut its filthy mouth.
5078 */
5079 if (btrfs_is_free_space_inode(inode)) {
5080 flush = BTRFS_RESERVE_NO_FLUSH;
5081 delalloc_lock = false;
5082 }
5083
5084 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5085 btrfs_transaction_in_commit(root->fs_info))
5086 schedule_timeout(1);
5087
5088 if (delalloc_lock)
5089 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5090
5091 num_bytes = ALIGN(num_bytes, root->sectorsize);
5092
5093 spin_lock(&BTRFS_I(inode)->lock);
5094 BTRFS_I(inode)->outstanding_extents++;
5095
5096 if (BTRFS_I(inode)->outstanding_extents >
5097 BTRFS_I(inode)->reserved_extents)
5098 nr_extents = BTRFS_I(inode)->outstanding_extents -
5099 BTRFS_I(inode)->reserved_extents;
5100
5101 /*
5102 * Add an item to reserve for updating the inode when we complete the
5103 * delalloc io.
5104 */
5105 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5106 &BTRFS_I(inode)->runtime_flags)) {
5107 nr_extents++;
5108 extra_reserve = 1;
5109 }
5110
5111 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5112 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5113 csum_bytes = BTRFS_I(inode)->csum_bytes;
5114 spin_unlock(&BTRFS_I(inode)->lock);
5115
5116 if (root->fs_info->quota_enabled) {
5117 ret = btrfs_qgroup_reserve(root, num_bytes +
5118 nr_extents * root->nodesize);
5119 if (ret)
5120 goto out_fail;
5121 }
5122
5123 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5124 if (unlikely(ret)) {
5125 if (root->fs_info->quota_enabled)
5126 btrfs_qgroup_free(root, num_bytes +
5127 nr_extents * root->nodesize);
5128 goto out_fail;
5129 }
5130
5131 spin_lock(&BTRFS_I(inode)->lock);
5132 if (extra_reserve) {
5133 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5134 &BTRFS_I(inode)->runtime_flags);
5135 nr_extents--;
5136 }
5137 BTRFS_I(inode)->reserved_extents += nr_extents;
5138 spin_unlock(&BTRFS_I(inode)->lock);
5139
5140 if (delalloc_lock)
5141 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5142
5143 if (to_reserve)
5144 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5145 btrfs_ino(inode), to_reserve, 1);
5146 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5147
5148 return 0;
5149
5150 out_fail:
5151 spin_lock(&BTRFS_I(inode)->lock);
5152 dropped = drop_outstanding_extent(inode);
5153 /*
5154 * If the inodes csum_bytes is the same as the original
5155 * csum_bytes then we know we haven't raced with any free()ers
5156 * so we can just reduce our inodes csum bytes and carry on.
5157 */
5158 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5159 calc_csum_metadata_size(inode, num_bytes, 0);
5160 } else {
5161 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5162 u64 bytes;
5163
5164 /*
5165 * This is tricky, but first we need to figure out how much we
5166 * free'd from any free-ers that occured during this
5167 * reservation, so we reset ->csum_bytes to the csum_bytes
5168 * before we dropped our lock, and then call the free for the
5169 * number of bytes that were freed while we were trying our
5170 * reservation.
5171 */
5172 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5173 BTRFS_I(inode)->csum_bytes = csum_bytes;
5174 to_free = calc_csum_metadata_size(inode, bytes, 0);
5175
5176
5177 /*
5178 * Now we need to see how much we would have freed had we not
5179 * been making this reservation and our ->csum_bytes were not
5180 * artificially inflated.
5181 */
5182 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5183 bytes = csum_bytes - orig_csum_bytes;
5184 bytes = calc_csum_metadata_size(inode, bytes, 0);
5185
5186 /*
5187 * Now reset ->csum_bytes to what it should be. If bytes is
5188 * more than to_free then we would have free'd more space had we
5189 * not had an artificially high ->csum_bytes, so we need to free
5190 * the remainder. If bytes is the same or less then we don't
5191 * need to do anything, the other free-ers did the correct
5192 * thing.
5193 */
5194 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5195 if (bytes > to_free)
5196 to_free = bytes - to_free;
5197 else
5198 to_free = 0;
5199 }
5200 spin_unlock(&BTRFS_I(inode)->lock);
5201 if (dropped)
5202 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5203
5204 if (to_free) {
5205 btrfs_block_rsv_release(root, block_rsv, to_free);
5206 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5207 btrfs_ino(inode), to_free, 0);
5208 }
5209 if (delalloc_lock)
5210 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5211 return ret;
5212 }
5213
5214 /**
5215 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5216 * @inode: the inode to release the reservation for
5217 * @num_bytes: the number of bytes we're releasing
5218 *
5219 * This will release the metadata reservation for an inode. This can be called
5220 * once we complete IO for a given set of bytes to release their metadata
5221 * reservations.
5222 */
5223 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5224 {
5225 struct btrfs_root *root = BTRFS_I(inode)->root;
5226 u64 to_free = 0;
5227 unsigned dropped;
5228
5229 num_bytes = ALIGN(num_bytes, root->sectorsize);
5230 spin_lock(&BTRFS_I(inode)->lock);
5231 dropped = drop_outstanding_extent(inode);
5232
5233 if (num_bytes)
5234 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5235 spin_unlock(&BTRFS_I(inode)->lock);
5236 if (dropped > 0)
5237 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5238
5239 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5240 btrfs_ino(inode), to_free, 0);
5241 if (root->fs_info->quota_enabled) {
5242 btrfs_qgroup_free(root, num_bytes +
5243 dropped * root->nodesize);
5244 }
5245
5246 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5247 to_free);
5248 }
5249
5250 /**
5251 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5252 * @inode: inode we're writing to
5253 * @num_bytes: the number of bytes we want to allocate
5254 *
5255 * This will do the following things
5256 *
5257 * o reserve space in the data space info for num_bytes
5258 * o reserve space in the metadata space info based on number of outstanding
5259 * extents and how much csums will be needed
5260 * o add to the inodes ->delalloc_bytes
5261 * o add it to the fs_info's delalloc inodes list.
5262 *
5263 * This will return 0 for success and -ENOSPC if there is no space left.
5264 */
5265 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5266 {
5267 int ret;
5268
5269 ret = btrfs_check_data_free_space(inode, num_bytes);
5270 if (ret)
5271 return ret;
5272
5273 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5274 if (ret) {
5275 btrfs_free_reserved_data_space(inode, num_bytes);
5276 return ret;
5277 }
5278
5279 return 0;
5280 }
5281
5282 /**
5283 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5284 * @inode: inode we're releasing space for
5285 * @num_bytes: the number of bytes we want to free up
5286 *
5287 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5288 * called in the case that we don't need the metadata AND data reservations
5289 * anymore. So if there is an error or we insert an inline extent.
5290 *
5291 * This function will release the metadata space that was not used and will
5292 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5293 * list if there are no delalloc bytes left.
5294 */
5295 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5296 {
5297 btrfs_delalloc_release_metadata(inode, num_bytes);
5298 btrfs_free_reserved_data_space(inode, num_bytes);
5299 }
5300
5301 static int update_block_group(struct btrfs_trans_handle *trans,
5302 struct btrfs_root *root, u64 bytenr,
5303 u64 num_bytes, int alloc)
5304 {
5305 struct btrfs_block_group_cache *cache = NULL;
5306 struct btrfs_fs_info *info = root->fs_info;
5307 u64 total = num_bytes;
5308 u64 old_val;
5309 u64 byte_in_group;
5310 int factor;
5311
5312 /* block accounting for super block */
5313 spin_lock(&info->delalloc_root_lock);
5314 old_val = btrfs_super_bytes_used(info->super_copy);
5315 if (alloc)
5316 old_val += num_bytes;
5317 else
5318 old_val -= num_bytes;
5319 btrfs_set_super_bytes_used(info->super_copy, old_val);
5320 spin_unlock(&info->delalloc_root_lock);
5321
5322 while (total) {
5323 cache = btrfs_lookup_block_group(info, bytenr);
5324 if (!cache)
5325 return -ENOENT;
5326 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5327 BTRFS_BLOCK_GROUP_RAID1 |
5328 BTRFS_BLOCK_GROUP_RAID10))
5329 factor = 2;
5330 else
5331 factor = 1;
5332 /*
5333 * If this block group has free space cache written out, we
5334 * need to make sure to load it if we are removing space. This
5335 * is because we need the unpinning stage to actually add the
5336 * space back to the block group, otherwise we will leak space.
5337 */
5338 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5339 cache_block_group(cache, 1);
5340
5341 spin_lock(&trans->transaction->dirty_bgs_lock);
5342 if (list_empty(&cache->dirty_list)) {
5343 list_add_tail(&cache->dirty_list,
5344 &trans->transaction->dirty_bgs);
5345 btrfs_get_block_group(cache);
5346 }
5347 spin_unlock(&trans->transaction->dirty_bgs_lock);
5348
5349 byte_in_group = bytenr - cache->key.objectid;
5350 WARN_ON(byte_in_group > cache->key.offset);
5351
5352 spin_lock(&cache->space_info->lock);
5353 spin_lock(&cache->lock);
5354
5355 if (btrfs_test_opt(root, SPACE_CACHE) &&
5356 cache->disk_cache_state < BTRFS_DC_CLEAR)
5357 cache->disk_cache_state = BTRFS_DC_CLEAR;
5358
5359 old_val = btrfs_block_group_used(&cache->item);
5360 num_bytes = min(total, cache->key.offset - byte_in_group);
5361 if (alloc) {
5362 old_val += num_bytes;
5363 btrfs_set_block_group_used(&cache->item, old_val);
5364 cache->reserved -= num_bytes;
5365 cache->space_info->bytes_reserved -= num_bytes;
5366 cache->space_info->bytes_used += num_bytes;
5367 cache->space_info->disk_used += num_bytes * factor;
5368 spin_unlock(&cache->lock);
5369 spin_unlock(&cache->space_info->lock);
5370 } else {
5371 old_val -= num_bytes;
5372 btrfs_set_block_group_used(&cache->item, old_val);
5373 cache->pinned += num_bytes;
5374 cache->space_info->bytes_pinned += num_bytes;
5375 cache->space_info->bytes_used -= num_bytes;
5376 cache->space_info->disk_used -= num_bytes * factor;
5377 spin_unlock(&cache->lock);
5378 spin_unlock(&cache->space_info->lock);
5379
5380 set_extent_dirty(info->pinned_extents,
5381 bytenr, bytenr + num_bytes - 1,
5382 GFP_NOFS | __GFP_NOFAIL);
5383 /*
5384 * No longer have used bytes in this block group, queue
5385 * it for deletion.
5386 */
5387 if (old_val == 0) {
5388 spin_lock(&info->unused_bgs_lock);
5389 if (list_empty(&cache->bg_list)) {
5390 btrfs_get_block_group(cache);
5391 list_add_tail(&cache->bg_list,
5392 &info->unused_bgs);
5393 }
5394 spin_unlock(&info->unused_bgs_lock);
5395 }
5396 }
5397 btrfs_put_block_group(cache);
5398 total -= num_bytes;
5399 bytenr += num_bytes;
5400 }
5401 return 0;
5402 }
5403
5404 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5405 {
5406 struct btrfs_block_group_cache *cache;
5407 u64 bytenr;
5408
5409 spin_lock(&root->fs_info->block_group_cache_lock);
5410 bytenr = root->fs_info->first_logical_byte;
5411 spin_unlock(&root->fs_info->block_group_cache_lock);
5412
5413 if (bytenr < (u64)-1)
5414 return bytenr;
5415
5416 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5417 if (!cache)
5418 return 0;
5419
5420 bytenr = cache->key.objectid;
5421 btrfs_put_block_group(cache);
5422
5423 return bytenr;
5424 }
5425
5426 static int pin_down_extent(struct btrfs_root *root,
5427 struct btrfs_block_group_cache *cache,
5428 u64 bytenr, u64 num_bytes, int reserved)
5429 {
5430 spin_lock(&cache->space_info->lock);
5431 spin_lock(&cache->lock);
5432 cache->pinned += num_bytes;
5433 cache->space_info->bytes_pinned += num_bytes;
5434 if (reserved) {
5435 cache->reserved -= num_bytes;
5436 cache->space_info->bytes_reserved -= num_bytes;
5437 }
5438 spin_unlock(&cache->lock);
5439 spin_unlock(&cache->space_info->lock);
5440
5441 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5442 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5443 if (reserved)
5444 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5445 return 0;
5446 }
5447
5448 /*
5449 * this function must be called within transaction
5450 */
5451 int btrfs_pin_extent(struct btrfs_root *root,
5452 u64 bytenr, u64 num_bytes, int reserved)
5453 {
5454 struct btrfs_block_group_cache *cache;
5455
5456 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5457 BUG_ON(!cache); /* Logic error */
5458
5459 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5460
5461 btrfs_put_block_group(cache);
5462 return 0;
5463 }
5464
5465 /*
5466 * this function must be called within transaction
5467 */
5468 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5469 u64 bytenr, u64 num_bytes)
5470 {
5471 struct btrfs_block_group_cache *cache;
5472 int ret;
5473
5474 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5475 if (!cache)
5476 return -EINVAL;
5477
5478 /*
5479 * pull in the free space cache (if any) so that our pin
5480 * removes the free space from the cache. We have load_only set
5481 * to one because the slow code to read in the free extents does check
5482 * the pinned extents.
5483 */
5484 cache_block_group(cache, 1);
5485
5486 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5487
5488 /* remove us from the free space cache (if we're there at all) */
5489 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5490 btrfs_put_block_group(cache);
5491 return ret;
5492 }
5493
5494 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5495 {
5496 int ret;
5497 struct btrfs_block_group_cache *block_group;
5498 struct btrfs_caching_control *caching_ctl;
5499
5500 block_group = btrfs_lookup_block_group(root->fs_info, start);
5501 if (!block_group)
5502 return -EINVAL;
5503
5504 cache_block_group(block_group, 0);
5505 caching_ctl = get_caching_control(block_group);
5506
5507 if (!caching_ctl) {
5508 /* Logic error */
5509 BUG_ON(!block_group_cache_done(block_group));
5510 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5511 } else {
5512 mutex_lock(&caching_ctl->mutex);
5513
5514 if (start >= caching_ctl->progress) {
5515 ret = add_excluded_extent(root, start, num_bytes);
5516 } else if (start + num_bytes <= caching_ctl->progress) {
5517 ret = btrfs_remove_free_space(block_group,
5518 start, num_bytes);
5519 } else {
5520 num_bytes = caching_ctl->progress - start;
5521 ret = btrfs_remove_free_space(block_group,
5522 start, num_bytes);
5523 if (ret)
5524 goto out_lock;
5525
5526 num_bytes = (start + num_bytes) -
5527 caching_ctl->progress;
5528 start = caching_ctl->progress;
5529 ret = add_excluded_extent(root, start, num_bytes);
5530 }
5531 out_lock:
5532 mutex_unlock(&caching_ctl->mutex);
5533 put_caching_control(caching_ctl);
5534 }
5535 btrfs_put_block_group(block_group);
5536 return ret;
5537 }
5538
5539 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5540 struct extent_buffer *eb)
5541 {
5542 struct btrfs_file_extent_item *item;
5543 struct btrfs_key key;
5544 int found_type;
5545 int i;
5546
5547 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5548 return 0;
5549
5550 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5551 btrfs_item_key_to_cpu(eb, &key, i);
5552 if (key.type != BTRFS_EXTENT_DATA_KEY)
5553 continue;
5554 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5555 found_type = btrfs_file_extent_type(eb, item);
5556 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5557 continue;
5558 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5559 continue;
5560 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5561 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5562 __exclude_logged_extent(log, key.objectid, key.offset);
5563 }
5564
5565 return 0;
5566 }
5567
5568 /**
5569 * btrfs_update_reserved_bytes - update the block_group and space info counters
5570 * @cache: The cache we are manipulating
5571 * @num_bytes: The number of bytes in question
5572 * @reserve: One of the reservation enums
5573 * @delalloc: The blocks are allocated for the delalloc write
5574 *
5575 * This is called by the allocator when it reserves space, or by somebody who is
5576 * freeing space that was never actually used on disk. For example if you
5577 * reserve some space for a new leaf in transaction A and before transaction A
5578 * commits you free that leaf, you call this with reserve set to 0 in order to
5579 * clear the reservation.
5580 *
5581 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5582 * ENOSPC accounting. For data we handle the reservation through clearing the
5583 * delalloc bits in the io_tree. We have to do this since we could end up
5584 * allocating less disk space for the amount of data we have reserved in the
5585 * case of compression.
5586 *
5587 * If this is a reservation and the block group has become read only we cannot
5588 * make the reservation and return -EAGAIN, otherwise this function always
5589 * succeeds.
5590 */
5591 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5592 u64 num_bytes, int reserve, int delalloc)
5593 {
5594 struct btrfs_space_info *space_info = cache->space_info;
5595 int ret = 0;
5596
5597 spin_lock(&space_info->lock);
5598 spin_lock(&cache->lock);
5599 if (reserve != RESERVE_FREE) {
5600 if (cache->ro) {
5601 ret = -EAGAIN;
5602 } else {
5603 cache->reserved += num_bytes;
5604 space_info->bytes_reserved += num_bytes;
5605 if (reserve == RESERVE_ALLOC) {
5606 trace_btrfs_space_reservation(cache->fs_info,
5607 "space_info", space_info->flags,
5608 num_bytes, 0);
5609 space_info->bytes_may_use -= num_bytes;
5610 }
5611
5612 if (delalloc)
5613 cache->delalloc_bytes += num_bytes;
5614 }
5615 } else {
5616 if (cache->ro)
5617 space_info->bytes_readonly += num_bytes;
5618 cache->reserved -= num_bytes;
5619 space_info->bytes_reserved -= num_bytes;
5620
5621 if (delalloc)
5622 cache->delalloc_bytes -= num_bytes;
5623 }
5624 spin_unlock(&cache->lock);
5625 spin_unlock(&space_info->lock);
5626 return ret;
5627 }
5628
5629 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5630 struct btrfs_root *root)
5631 {
5632 struct btrfs_fs_info *fs_info = root->fs_info;
5633 struct btrfs_caching_control *next;
5634 struct btrfs_caching_control *caching_ctl;
5635 struct btrfs_block_group_cache *cache;
5636
5637 down_write(&fs_info->commit_root_sem);
5638
5639 list_for_each_entry_safe(caching_ctl, next,
5640 &fs_info->caching_block_groups, list) {
5641 cache = caching_ctl->block_group;
5642 if (block_group_cache_done(cache)) {
5643 cache->last_byte_to_unpin = (u64)-1;
5644 list_del_init(&caching_ctl->list);
5645 put_caching_control(caching_ctl);
5646 } else {
5647 cache->last_byte_to_unpin = caching_ctl->progress;
5648 }
5649 }
5650
5651 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5652 fs_info->pinned_extents = &fs_info->freed_extents[1];
5653 else
5654 fs_info->pinned_extents = &fs_info->freed_extents[0];
5655
5656 up_write(&fs_info->commit_root_sem);
5657
5658 update_global_block_rsv(fs_info);
5659 }
5660
5661 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5662 const bool return_free_space)
5663 {
5664 struct btrfs_fs_info *fs_info = root->fs_info;
5665 struct btrfs_block_group_cache *cache = NULL;
5666 struct btrfs_space_info *space_info;
5667 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5668 u64 len;
5669 bool readonly;
5670
5671 while (start <= end) {
5672 readonly = false;
5673 if (!cache ||
5674 start >= cache->key.objectid + cache->key.offset) {
5675 if (cache)
5676 btrfs_put_block_group(cache);
5677 cache = btrfs_lookup_block_group(fs_info, start);
5678 BUG_ON(!cache); /* Logic error */
5679 }
5680
5681 len = cache->key.objectid + cache->key.offset - start;
5682 len = min(len, end + 1 - start);
5683
5684 if (start < cache->last_byte_to_unpin) {
5685 len = min(len, cache->last_byte_to_unpin - start);
5686 if (return_free_space)
5687 btrfs_add_free_space(cache, start, len);
5688 }
5689
5690 start += len;
5691 space_info = cache->space_info;
5692
5693 spin_lock(&space_info->lock);
5694 spin_lock(&cache->lock);
5695 cache->pinned -= len;
5696 space_info->bytes_pinned -= len;
5697 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5698 if (cache->ro) {
5699 space_info->bytes_readonly += len;
5700 readonly = true;
5701 }
5702 spin_unlock(&cache->lock);
5703 if (!readonly && global_rsv->space_info == space_info) {
5704 spin_lock(&global_rsv->lock);
5705 if (!global_rsv->full) {
5706 len = min(len, global_rsv->size -
5707 global_rsv->reserved);
5708 global_rsv->reserved += len;
5709 space_info->bytes_may_use += len;
5710 if (global_rsv->reserved >= global_rsv->size)
5711 global_rsv->full = 1;
5712 }
5713 spin_unlock(&global_rsv->lock);
5714 }
5715 spin_unlock(&space_info->lock);
5716 }
5717
5718 if (cache)
5719 btrfs_put_block_group(cache);
5720 return 0;
5721 }
5722
5723 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5724 struct btrfs_root *root)
5725 {
5726 struct btrfs_fs_info *fs_info = root->fs_info;
5727 struct extent_io_tree *unpin;
5728 u64 start;
5729 u64 end;
5730 int ret;
5731
5732 if (trans->aborted)
5733 return 0;
5734
5735 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5736 unpin = &fs_info->freed_extents[1];
5737 else
5738 unpin = &fs_info->freed_extents[0];
5739
5740 while (1) {
5741 ret = find_first_extent_bit(unpin, 0, &start, &end,
5742 EXTENT_DIRTY, NULL);
5743 if (ret)
5744 break;
5745
5746 if (btrfs_test_opt(root, DISCARD))
5747 ret = btrfs_discard_extent(root, start,
5748 end + 1 - start, NULL);
5749
5750 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5751 unpin_extent_range(root, start, end, true);
5752 cond_resched();
5753 }
5754
5755 return 0;
5756 }
5757
5758 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5759 u64 owner, u64 root_objectid)
5760 {
5761 struct btrfs_space_info *space_info;
5762 u64 flags;
5763
5764 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5765 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5766 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5767 else
5768 flags = BTRFS_BLOCK_GROUP_METADATA;
5769 } else {
5770 flags = BTRFS_BLOCK_GROUP_DATA;
5771 }
5772
5773 space_info = __find_space_info(fs_info, flags);
5774 BUG_ON(!space_info); /* Logic bug */
5775 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5776 }
5777
5778
5779 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5780 struct btrfs_root *root,
5781 u64 bytenr, u64 num_bytes, u64 parent,
5782 u64 root_objectid, u64 owner_objectid,
5783 u64 owner_offset, int refs_to_drop,
5784 struct btrfs_delayed_extent_op *extent_op,
5785 int no_quota)
5786 {
5787 struct btrfs_key key;
5788 struct btrfs_path *path;
5789 struct btrfs_fs_info *info = root->fs_info;
5790 struct btrfs_root *extent_root = info->extent_root;
5791 struct extent_buffer *leaf;
5792 struct btrfs_extent_item *ei;
5793 struct btrfs_extent_inline_ref *iref;
5794 int ret;
5795 int is_data;
5796 int extent_slot = 0;
5797 int found_extent = 0;
5798 int num_to_del = 1;
5799 u32 item_size;
5800 u64 refs;
5801 int last_ref = 0;
5802 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5803 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5804 SKINNY_METADATA);
5805
5806 if (!info->quota_enabled || !is_fstree(root_objectid))
5807 no_quota = 1;
5808
5809 path = btrfs_alloc_path();
5810 if (!path)
5811 return -ENOMEM;
5812
5813 path->reada = 1;
5814 path->leave_spinning = 1;
5815
5816 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5817 BUG_ON(!is_data && refs_to_drop != 1);
5818
5819 if (is_data)
5820 skinny_metadata = 0;
5821
5822 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5823 bytenr, num_bytes, parent,
5824 root_objectid, owner_objectid,
5825 owner_offset);
5826 if (ret == 0) {
5827 extent_slot = path->slots[0];
5828 while (extent_slot >= 0) {
5829 btrfs_item_key_to_cpu(path->nodes[0], &key,
5830 extent_slot);
5831 if (key.objectid != bytenr)
5832 break;
5833 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5834 key.offset == num_bytes) {
5835 found_extent = 1;
5836 break;
5837 }
5838 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5839 key.offset == owner_objectid) {
5840 found_extent = 1;
5841 break;
5842 }
5843 if (path->slots[0] - extent_slot > 5)
5844 break;
5845 extent_slot--;
5846 }
5847 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5848 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5849 if (found_extent && item_size < sizeof(*ei))
5850 found_extent = 0;
5851 #endif
5852 if (!found_extent) {
5853 BUG_ON(iref);
5854 ret = remove_extent_backref(trans, extent_root, path,
5855 NULL, refs_to_drop,
5856 is_data, &last_ref);
5857 if (ret) {
5858 btrfs_abort_transaction(trans, extent_root, ret);
5859 goto out;
5860 }
5861 btrfs_release_path(path);
5862 path->leave_spinning = 1;
5863
5864 key.objectid = bytenr;
5865 key.type = BTRFS_EXTENT_ITEM_KEY;
5866 key.offset = num_bytes;
5867
5868 if (!is_data && skinny_metadata) {
5869 key.type = BTRFS_METADATA_ITEM_KEY;
5870 key.offset = owner_objectid;
5871 }
5872
5873 ret = btrfs_search_slot(trans, extent_root,
5874 &key, path, -1, 1);
5875 if (ret > 0 && skinny_metadata && path->slots[0]) {
5876 /*
5877 * Couldn't find our skinny metadata item,
5878 * see if we have ye olde extent item.
5879 */
5880 path->slots[0]--;
5881 btrfs_item_key_to_cpu(path->nodes[0], &key,
5882 path->slots[0]);
5883 if (key.objectid == bytenr &&
5884 key.type == BTRFS_EXTENT_ITEM_KEY &&
5885 key.offset == num_bytes)
5886 ret = 0;
5887 }
5888
5889 if (ret > 0 && skinny_metadata) {
5890 skinny_metadata = false;
5891 key.objectid = bytenr;
5892 key.type = BTRFS_EXTENT_ITEM_KEY;
5893 key.offset = num_bytes;
5894 btrfs_release_path(path);
5895 ret = btrfs_search_slot(trans, extent_root,
5896 &key, path, -1, 1);
5897 }
5898
5899 if (ret) {
5900 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5901 ret, bytenr);
5902 if (ret > 0)
5903 btrfs_print_leaf(extent_root,
5904 path->nodes[0]);
5905 }
5906 if (ret < 0) {
5907 btrfs_abort_transaction(trans, extent_root, ret);
5908 goto out;
5909 }
5910 extent_slot = path->slots[0];
5911 }
5912 } else if (WARN_ON(ret == -ENOENT)) {
5913 btrfs_print_leaf(extent_root, path->nodes[0]);
5914 btrfs_err(info,
5915 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5916 bytenr, parent, root_objectid, owner_objectid,
5917 owner_offset);
5918 btrfs_abort_transaction(trans, extent_root, ret);
5919 goto out;
5920 } else {
5921 btrfs_abort_transaction(trans, extent_root, ret);
5922 goto out;
5923 }
5924
5925 leaf = path->nodes[0];
5926 item_size = btrfs_item_size_nr(leaf, extent_slot);
5927 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5928 if (item_size < sizeof(*ei)) {
5929 BUG_ON(found_extent || extent_slot != path->slots[0]);
5930 ret = convert_extent_item_v0(trans, extent_root, path,
5931 owner_objectid, 0);
5932 if (ret < 0) {
5933 btrfs_abort_transaction(trans, extent_root, ret);
5934 goto out;
5935 }
5936
5937 btrfs_release_path(path);
5938 path->leave_spinning = 1;
5939
5940 key.objectid = bytenr;
5941 key.type = BTRFS_EXTENT_ITEM_KEY;
5942 key.offset = num_bytes;
5943
5944 ret = btrfs_search_slot(trans, extent_root, &key, path,
5945 -1, 1);
5946 if (ret) {
5947 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5948 ret, bytenr);
5949 btrfs_print_leaf(extent_root, path->nodes[0]);
5950 }
5951 if (ret < 0) {
5952 btrfs_abort_transaction(trans, extent_root, ret);
5953 goto out;
5954 }
5955
5956 extent_slot = path->slots[0];
5957 leaf = path->nodes[0];
5958 item_size = btrfs_item_size_nr(leaf, extent_slot);
5959 }
5960 #endif
5961 BUG_ON(item_size < sizeof(*ei));
5962 ei = btrfs_item_ptr(leaf, extent_slot,
5963 struct btrfs_extent_item);
5964 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5965 key.type == BTRFS_EXTENT_ITEM_KEY) {
5966 struct btrfs_tree_block_info *bi;
5967 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5968 bi = (struct btrfs_tree_block_info *)(ei + 1);
5969 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5970 }
5971
5972 refs = btrfs_extent_refs(leaf, ei);
5973 if (refs < refs_to_drop) {
5974 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5975 "for bytenr %Lu", refs_to_drop, refs, bytenr);
5976 ret = -EINVAL;
5977 btrfs_abort_transaction(trans, extent_root, ret);
5978 goto out;
5979 }
5980 refs -= refs_to_drop;
5981
5982 if (refs > 0) {
5983 type = BTRFS_QGROUP_OPER_SUB_SHARED;
5984 if (extent_op)
5985 __run_delayed_extent_op(extent_op, leaf, ei);
5986 /*
5987 * In the case of inline back ref, reference count will
5988 * be updated by remove_extent_backref
5989 */
5990 if (iref) {
5991 BUG_ON(!found_extent);
5992 } else {
5993 btrfs_set_extent_refs(leaf, ei, refs);
5994 btrfs_mark_buffer_dirty(leaf);
5995 }
5996 if (found_extent) {
5997 ret = remove_extent_backref(trans, extent_root, path,
5998 iref, refs_to_drop,
5999 is_data, &last_ref);
6000 if (ret) {
6001 btrfs_abort_transaction(trans, extent_root, ret);
6002 goto out;
6003 }
6004 }
6005 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6006 root_objectid);
6007 } else {
6008 if (found_extent) {
6009 BUG_ON(is_data && refs_to_drop !=
6010 extent_data_ref_count(root, path, iref));
6011 if (iref) {
6012 BUG_ON(path->slots[0] != extent_slot);
6013 } else {
6014 BUG_ON(path->slots[0] != extent_slot + 1);
6015 path->slots[0] = extent_slot;
6016 num_to_del = 2;
6017 }
6018 }
6019
6020 last_ref = 1;
6021 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6022 num_to_del);
6023 if (ret) {
6024 btrfs_abort_transaction(trans, extent_root, ret);
6025 goto out;
6026 }
6027 btrfs_release_path(path);
6028
6029 if (is_data) {
6030 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6031 if (ret) {
6032 btrfs_abort_transaction(trans, extent_root, ret);
6033 goto out;
6034 }
6035 }
6036
6037 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6038 if (ret) {
6039 btrfs_abort_transaction(trans, extent_root, ret);
6040 goto out;
6041 }
6042 }
6043 btrfs_release_path(path);
6044
6045 /* Deal with the quota accounting */
6046 if (!ret && last_ref && !no_quota) {
6047 int mod_seq = 0;
6048
6049 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6050 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6051 mod_seq = 1;
6052
6053 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6054 bytenr, num_bytes, type,
6055 mod_seq);
6056 }
6057 out:
6058 btrfs_free_path(path);
6059 return ret;
6060 }
6061
6062 /*
6063 * when we free an block, it is possible (and likely) that we free the last
6064 * delayed ref for that extent as well. This searches the delayed ref tree for
6065 * a given extent, and if there are no other delayed refs to be processed, it
6066 * removes it from the tree.
6067 */
6068 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6069 struct btrfs_root *root, u64 bytenr)
6070 {
6071 struct btrfs_delayed_ref_head *head;
6072 struct btrfs_delayed_ref_root *delayed_refs;
6073 int ret = 0;
6074
6075 delayed_refs = &trans->transaction->delayed_refs;
6076 spin_lock(&delayed_refs->lock);
6077 head = btrfs_find_delayed_ref_head(trans, bytenr);
6078 if (!head)
6079 goto out_delayed_unlock;
6080
6081 spin_lock(&head->lock);
6082 if (rb_first(&head->ref_root))
6083 goto out;
6084
6085 if (head->extent_op) {
6086 if (!head->must_insert_reserved)
6087 goto out;
6088 btrfs_free_delayed_extent_op(head->extent_op);
6089 head->extent_op = NULL;
6090 }
6091
6092 /*
6093 * waiting for the lock here would deadlock. If someone else has it
6094 * locked they are already in the process of dropping it anyway
6095 */
6096 if (!mutex_trylock(&head->mutex))
6097 goto out;
6098
6099 /*
6100 * at this point we have a head with no other entries. Go
6101 * ahead and process it.
6102 */
6103 head->node.in_tree = 0;
6104 rb_erase(&head->href_node, &delayed_refs->href_root);
6105
6106 atomic_dec(&delayed_refs->num_entries);
6107
6108 /*
6109 * we don't take a ref on the node because we're removing it from the
6110 * tree, so we just steal the ref the tree was holding.
6111 */
6112 delayed_refs->num_heads--;
6113 if (head->processing == 0)
6114 delayed_refs->num_heads_ready--;
6115 head->processing = 0;
6116 spin_unlock(&head->lock);
6117 spin_unlock(&delayed_refs->lock);
6118
6119 BUG_ON(head->extent_op);
6120 if (head->must_insert_reserved)
6121 ret = 1;
6122
6123 mutex_unlock(&head->mutex);
6124 btrfs_put_delayed_ref(&head->node);
6125 return ret;
6126 out:
6127 spin_unlock(&head->lock);
6128
6129 out_delayed_unlock:
6130 spin_unlock(&delayed_refs->lock);
6131 return 0;
6132 }
6133
6134 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6135 struct btrfs_root *root,
6136 struct extent_buffer *buf,
6137 u64 parent, int last_ref)
6138 {
6139 struct btrfs_block_group_cache *cache = NULL;
6140 int pin = 1;
6141 int ret;
6142
6143 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6144 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6145 buf->start, buf->len,
6146 parent, root->root_key.objectid,
6147 btrfs_header_level(buf),
6148 BTRFS_DROP_DELAYED_REF, NULL, 0);
6149 BUG_ON(ret); /* -ENOMEM */
6150 }
6151
6152 if (!last_ref)
6153 return;
6154
6155 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6156
6157 if (btrfs_header_generation(buf) == trans->transid) {
6158 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6159 ret = check_ref_cleanup(trans, root, buf->start);
6160 if (!ret)
6161 goto out;
6162 }
6163
6164 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6165 pin_down_extent(root, cache, buf->start, buf->len, 1);
6166 goto out;
6167 }
6168
6169 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6170
6171 btrfs_add_free_space(cache, buf->start, buf->len);
6172 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6173 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6174 pin = 0;
6175 }
6176 out:
6177 if (pin)
6178 add_pinned_bytes(root->fs_info, buf->len,
6179 btrfs_header_level(buf),
6180 root->root_key.objectid);
6181
6182 /*
6183 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6184 * anymore.
6185 */
6186 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6187 btrfs_put_block_group(cache);
6188 }
6189
6190 /* Can return -ENOMEM */
6191 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6192 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6193 u64 owner, u64 offset, int no_quota)
6194 {
6195 int ret;
6196 struct btrfs_fs_info *fs_info = root->fs_info;
6197
6198 if (btrfs_test_is_dummy_root(root))
6199 return 0;
6200
6201 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6202
6203 /*
6204 * tree log blocks never actually go into the extent allocation
6205 * tree, just update pinning info and exit early.
6206 */
6207 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6208 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6209 /* unlocks the pinned mutex */
6210 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6211 ret = 0;
6212 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6213 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6214 num_bytes,
6215 parent, root_objectid, (int)owner,
6216 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6217 } else {
6218 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6219 num_bytes,
6220 parent, root_objectid, owner,
6221 offset, BTRFS_DROP_DELAYED_REF,
6222 NULL, no_quota);
6223 }
6224 return ret;
6225 }
6226
6227 /*
6228 * when we wait for progress in the block group caching, its because
6229 * our allocation attempt failed at least once. So, we must sleep
6230 * and let some progress happen before we try again.
6231 *
6232 * This function will sleep at least once waiting for new free space to
6233 * show up, and then it will check the block group free space numbers
6234 * for our min num_bytes. Another option is to have it go ahead
6235 * and look in the rbtree for a free extent of a given size, but this
6236 * is a good start.
6237 *
6238 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6239 * any of the information in this block group.
6240 */
6241 static noinline void
6242 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6243 u64 num_bytes)
6244 {
6245 struct btrfs_caching_control *caching_ctl;
6246
6247 caching_ctl = get_caching_control(cache);
6248 if (!caching_ctl)
6249 return;
6250
6251 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6252 (cache->free_space_ctl->free_space >= num_bytes));
6253
6254 put_caching_control(caching_ctl);
6255 }
6256
6257 static noinline int
6258 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6259 {
6260 struct btrfs_caching_control *caching_ctl;
6261 int ret = 0;
6262
6263 caching_ctl = get_caching_control(cache);
6264 if (!caching_ctl)
6265 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6266
6267 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6268 if (cache->cached == BTRFS_CACHE_ERROR)
6269 ret = -EIO;
6270 put_caching_control(caching_ctl);
6271 return ret;
6272 }
6273
6274 int __get_raid_index(u64 flags)
6275 {
6276 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6277 return BTRFS_RAID_RAID10;
6278 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6279 return BTRFS_RAID_RAID1;
6280 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6281 return BTRFS_RAID_DUP;
6282 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6283 return BTRFS_RAID_RAID0;
6284 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6285 return BTRFS_RAID_RAID5;
6286 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6287 return BTRFS_RAID_RAID6;
6288
6289 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6290 }
6291
6292 int get_block_group_index(struct btrfs_block_group_cache *cache)
6293 {
6294 return __get_raid_index(cache->flags);
6295 }
6296
6297 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6298 [BTRFS_RAID_RAID10] = "raid10",
6299 [BTRFS_RAID_RAID1] = "raid1",
6300 [BTRFS_RAID_DUP] = "dup",
6301 [BTRFS_RAID_RAID0] = "raid0",
6302 [BTRFS_RAID_SINGLE] = "single",
6303 [BTRFS_RAID_RAID5] = "raid5",
6304 [BTRFS_RAID_RAID6] = "raid6",
6305 };
6306
6307 static const char *get_raid_name(enum btrfs_raid_types type)
6308 {
6309 if (type >= BTRFS_NR_RAID_TYPES)
6310 return NULL;
6311
6312 return btrfs_raid_type_names[type];
6313 }
6314
6315 enum btrfs_loop_type {
6316 LOOP_CACHING_NOWAIT = 0,
6317 LOOP_CACHING_WAIT = 1,
6318 LOOP_ALLOC_CHUNK = 2,
6319 LOOP_NO_EMPTY_SIZE = 3,
6320 };
6321
6322 static inline void
6323 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6324 int delalloc)
6325 {
6326 if (delalloc)
6327 down_read(&cache->data_rwsem);
6328 }
6329
6330 static inline void
6331 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6332 int delalloc)
6333 {
6334 btrfs_get_block_group(cache);
6335 if (delalloc)
6336 down_read(&cache->data_rwsem);
6337 }
6338
6339 static struct btrfs_block_group_cache *
6340 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6341 struct btrfs_free_cluster *cluster,
6342 int delalloc)
6343 {
6344 struct btrfs_block_group_cache *used_bg;
6345 bool locked = false;
6346 again:
6347 spin_lock(&cluster->refill_lock);
6348 if (locked) {
6349 if (used_bg == cluster->block_group)
6350 return used_bg;
6351
6352 up_read(&used_bg->data_rwsem);
6353 btrfs_put_block_group(used_bg);
6354 }
6355
6356 used_bg = cluster->block_group;
6357 if (!used_bg)
6358 return NULL;
6359
6360 if (used_bg == block_group)
6361 return used_bg;
6362
6363 btrfs_get_block_group(used_bg);
6364
6365 if (!delalloc)
6366 return used_bg;
6367
6368 if (down_read_trylock(&used_bg->data_rwsem))
6369 return used_bg;
6370
6371 spin_unlock(&cluster->refill_lock);
6372 down_read(&used_bg->data_rwsem);
6373 locked = true;
6374 goto again;
6375 }
6376
6377 static inline void
6378 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6379 int delalloc)
6380 {
6381 if (delalloc)
6382 up_read(&cache->data_rwsem);
6383 btrfs_put_block_group(cache);
6384 }
6385
6386 /*
6387 * walks the btree of allocated extents and find a hole of a given size.
6388 * The key ins is changed to record the hole:
6389 * ins->objectid == start position
6390 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6391 * ins->offset == the size of the hole.
6392 * Any available blocks before search_start are skipped.
6393 *
6394 * If there is no suitable free space, we will record the max size of
6395 * the free space extent currently.
6396 */
6397 static noinline int find_free_extent(struct btrfs_root *orig_root,
6398 u64 num_bytes, u64 empty_size,
6399 u64 hint_byte, struct btrfs_key *ins,
6400 u64 flags, int delalloc)
6401 {
6402 int ret = 0;
6403 struct btrfs_root *root = orig_root->fs_info->extent_root;
6404 struct btrfs_free_cluster *last_ptr = NULL;
6405 struct btrfs_block_group_cache *block_group = NULL;
6406 u64 search_start = 0;
6407 u64 max_extent_size = 0;
6408 int empty_cluster = 2 * 1024 * 1024;
6409 struct btrfs_space_info *space_info;
6410 int loop = 0;
6411 int index = __get_raid_index(flags);
6412 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6413 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6414 bool failed_cluster_refill = false;
6415 bool failed_alloc = false;
6416 bool use_cluster = true;
6417 bool have_caching_bg = false;
6418
6419 WARN_ON(num_bytes < root->sectorsize);
6420 ins->type = BTRFS_EXTENT_ITEM_KEY;
6421 ins->objectid = 0;
6422 ins->offset = 0;
6423
6424 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6425
6426 space_info = __find_space_info(root->fs_info, flags);
6427 if (!space_info) {
6428 btrfs_err(root->fs_info, "No space info for %llu", flags);
6429 return -ENOSPC;
6430 }
6431
6432 /*
6433 * If the space info is for both data and metadata it means we have a
6434 * small filesystem and we can't use the clustering stuff.
6435 */
6436 if (btrfs_mixed_space_info(space_info))
6437 use_cluster = false;
6438
6439 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6440 last_ptr = &root->fs_info->meta_alloc_cluster;
6441 if (!btrfs_test_opt(root, SSD))
6442 empty_cluster = 64 * 1024;
6443 }
6444
6445 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6446 btrfs_test_opt(root, SSD)) {
6447 last_ptr = &root->fs_info->data_alloc_cluster;
6448 }
6449
6450 if (last_ptr) {
6451 spin_lock(&last_ptr->lock);
6452 if (last_ptr->block_group)
6453 hint_byte = last_ptr->window_start;
6454 spin_unlock(&last_ptr->lock);
6455 }
6456
6457 search_start = max(search_start, first_logical_byte(root, 0));
6458 search_start = max(search_start, hint_byte);
6459
6460 if (!last_ptr)
6461 empty_cluster = 0;
6462
6463 if (search_start == hint_byte) {
6464 block_group = btrfs_lookup_block_group(root->fs_info,
6465 search_start);
6466 /*
6467 * we don't want to use the block group if it doesn't match our
6468 * allocation bits, or if its not cached.
6469 *
6470 * However if we are re-searching with an ideal block group
6471 * picked out then we don't care that the block group is cached.
6472 */
6473 if (block_group && block_group_bits(block_group, flags) &&
6474 block_group->cached != BTRFS_CACHE_NO) {
6475 down_read(&space_info->groups_sem);
6476 if (list_empty(&block_group->list) ||
6477 block_group->ro) {
6478 /*
6479 * someone is removing this block group,
6480 * we can't jump into the have_block_group
6481 * target because our list pointers are not
6482 * valid
6483 */
6484 btrfs_put_block_group(block_group);
6485 up_read(&space_info->groups_sem);
6486 } else {
6487 index = get_block_group_index(block_group);
6488 btrfs_lock_block_group(block_group, delalloc);
6489 goto have_block_group;
6490 }
6491 } else if (block_group) {
6492 btrfs_put_block_group(block_group);
6493 }
6494 }
6495 search:
6496 have_caching_bg = false;
6497 down_read(&space_info->groups_sem);
6498 list_for_each_entry(block_group, &space_info->block_groups[index],
6499 list) {
6500 u64 offset;
6501 int cached;
6502
6503 btrfs_grab_block_group(block_group, delalloc);
6504 search_start = block_group->key.objectid;
6505
6506 /*
6507 * this can happen if we end up cycling through all the
6508 * raid types, but we want to make sure we only allocate
6509 * for the proper type.
6510 */
6511 if (!block_group_bits(block_group, flags)) {
6512 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6513 BTRFS_BLOCK_GROUP_RAID1 |
6514 BTRFS_BLOCK_GROUP_RAID5 |
6515 BTRFS_BLOCK_GROUP_RAID6 |
6516 BTRFS_BLOCK_GROUP_RAID10;
6517
6518 /*
6519 * if they asked for extra copies and this block group
6520 * doesn't provide them, bail. This does allow us to
6521 * fill raid0 from raid1.
6522 */
6523 if ((flags & extra) && !(block_group->flags & extra))
6524 goto loop;
6525 }
6526
6527 have_block_group:
6528 cached = block_group_cache_done(block_group);
6529 if (unlikely(!cached)) {
6530 ret = cache_block_group(block_group, 0);
6531 BUG_ON(ret < 0);
6532 ret = 0;
6533 }
6534
6535 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6536 goto loop;
6537 if (unlikely(block_group->ro))
6538 goto loop;
6539
6540 /*
6541 * Ok we want to try and use the cluster allocator, so
6542 * lets look there
6543 */
6544 if (last_ptr) {
6545 struct btrfs_block_group_cache *used_block_group;
6546 unsigned long aligned_cluster;
6547 /*
6548 * the refill lock keeps out other
6549 * people trying to start a new cluster
6550 */
6551 used_block_group = btrfs_lock_cluster(block_group,
6552 last_ptr,
6553 delalloc);
6554 if (!used_block_group)
6555 goto refill_cluster;
6556
6557 if (used_block_group != block_group &&
6558 (used_block_group->ro ||
6559 !block_group_bits(used_block_group, flags)))
6560 goto release_cluster;
6561
6562 offset = btrfs_alloc_from_cluster(used_block_group,
6563 last_ptr,
6564 num_bytes,
6565 used_block_group->key.objectid,
6566 &max_extent_size);
6567 if (offset) {
6568 /* we have a block, we're done */
6569 spin_unlock(&last_ptr->refill_lock);
6570 trace_btrfs_reserve_extent_cluster(root,
6571 used_block_group,
6572 search_start, num_bytes);
6573 if (used_block_group != block_group) {
6574 btrfs_release_block_group(block_group,
6575 delalloc);
6576 block_group = used_block_group;
6577 }
6578 goto checks;
6579 }
6580
6581 WARN_ON(last_ptr->block_group != used_block_group);
6582 release_cluster:
6583 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6584 * set up a new clusters, so lets just skip it
6585 * and let the allocator find whatever block
6586 * it can find. If we reach this point, we
6587 * will have tried the cluster allocator
6588 * plenty of times and not have found
6589 * anything, so we are likely way too
6590 * fragmented for the clustering stuff to find
6591 * anything.
6592 *
6593 * However, if the cluster is taken from the
6594 * current block group, release the cluster
6595 * first, so that we stand a better chance of
6596 * succeeding in the unclustered
6597 * allocation. */
6598 if (loop >= LOOP_NO_EMPTY_SIZE &&
6599 used_block_group != block_group) {
6600 spin_unlock(&last_ptr->refill_lock);
6601 btrfs_release_block_group(used_block_group,
6602 delalloc);
6603 goto unclustered_alloc;
6604 }
6605
6606 /*
6607 * this cluster didn't work out, free it and
6608 * start over
6609 */
6610 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6611
6612 if (used_block_group != block_group)
6613 btrfs_release_block_group(used_block_group,
6614 delalloc);
6615 refill_cluster:
6616 if (loop >= LOOP_NO_EMPTY_SIZE) {
6617 spin_unlock(&last_ptr->refill_lock);
6618 goto unclustered_alloc;
6619 }
6620
6621 aligned_cluster = max_t(unsigned long,
6622 empty_cluster + empty_size,
6623 block_group->full_stripe_len);
6624
6625 /* allocate a cluster in this block group */
6626 ret = btrfs_find_space_cluster(root, block_group,
6627 last_ptr, search_start,
6628 num_bytes,
6629 aligned_cluster);
6630 if (ret == 0) {
6631 /*
6632 * now pull our allocation out of this
6633 * cluster
6634 */
6635 offset = btrfs_alloc_from_cluster(block_group,
6636 last_ptr,
6637 num_bytes,
6638 search_start,
6639 &max_extent_size);
6640 if (offset) {
6641 /* we found one, proceed */
6642 spin_unlock(&last_ptr->refill_lock);
6643 trace_btrfs_reserve_extent_cluster(root,
6644 block_group, search_start,
6645 num_bytes);
6646 goto checks;
6647 }
6648 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6649 && !failed_cluster_refill) {
6650 spin_unlock(&last_ptr->refill_lock);
6651
6652 failed_cluster_refill = true;
6653 wait_block_group_cache_progress(block_group,
6654 num_bytes + empty_cluster + empty_size);
6655 goto have_block_group;
6656 }
6657
6658 /*
6659 * at this point we either didn't find a cluster
6660 * or we weren't able to allocate a block from our
6661 * cluster. Free the cluster we've been trying
6662 * to use, and go to the next block group
6663 */
6664 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6665 spin_unlock(&last_ptr->refill_lock);
6666 goto loop;
6667 }
6668
6669 unclustered_alloc:
6670 spin_lock(&block_group->free_space_ctl->tree_lock);
6671 if (cached &&
6672 block_group->free_space_ctl->free_space <
6673 num_bytes + empty_cluster + empty_size) {
6674 if (block_group->free_space_ctl->free_space >
6675 max_extent_size)
6676 max_extent_size =
6677 block_group->free_space_ctl->free_space;
6678 spin_unlock(&block_group->free_space_ctl->tree_lock);
6679 goto loop;
6680 }
6681 spin_unlock(&block_group->free_space_ctl->tree_lock);
6682
6683 offset = btrfs_find_space_for_alloc(block_group, search_start,
6684 num_bytes, empty_size,
6685 &max_extent_size);
6686 /*
6687 * If we didn't find a chunk, and we haven't failed on this
6688 * block group before, and this block group is in the middle of
6689 * caching and we are ok with waiting, then go ahead and wait
6690 * for progress to be made, and set failed_alloc to true.
6691 *
6692 * If failed_alloc is true then we've already waited on this
6693 * block group once and should move on to the next block group.
6694 */
6695 if (!offset && !failed_alloc && !cached &&
6696 loop > LOOP_CACHING_NOWAIT) {
6697 wait_block_group_cache_progress(block_group,
6698 num_bytes + empty_size);
6699 failed_alloc = true;
6700 goto have_block_group;
6701 } else if (!offset) {
6702 if (!cached)
6703 have_caching_bg = true;
6704 goto loop;
6705 }
6706 checks:
6707 search_start = ALIGN(offset, root->stripesize);
6708
6709 /* move on to the next group */
6710 if (search_start + num_bytes >
6711 block_group->key.objectid + block_group->key.offset) {
6712 btrfs_add_free_space(block_group, offset, num_bytes);
6713 goto loop;
6714 }
6715
6716 if (offset < search_start)
6717 btrfs_add_free_space(block_group, offset,
6718 search_start - offset);
6719 BUG_ON(offset > search_start);
6720
6721 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6722 alloc_type, delalloc);
6723 if (ret == -EAGAIN) {
6724 btrfs_add_free_space(block_group, offset, num_bytes);
6725 goto loop;
6726 }
6727
6728 /* we are all good, lets return */
6729 ins->objectid = search_start;
6730 ins->offset = num_bytes;
6731
6732 trace_btrfs_reserve_extent(orig_root, block_group,
6733 search_start, num_bytes);
6734 btrfs_release_block_group(block_group, delalloc);
6735 break;
6736 loop:
6737 failed_cluster_refill = false;
6738 failed_alloc = false;
6739 BUG_ON(index != get_block_group_index(block_group));
6740 btrfs_release_block_group(block_group, delalloc);
6741 }
6742 up_read(&space_info->groups_sem);
6743
6744 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6745 goto search;
6746
6747 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6748 goto search;
6749
6750 /*
6751 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6752 * caching kthreads as we move along
6753 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6754 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6755 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6756 * again
6757 */
6758 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6759 index = 0;
6760 loop++;
6761 if (loop == LOOP_ALLOC_CHUNK) {
6762 struct btrfs_trans_handle *trans;
6763 int exist = 0;
6764
6765 trans = current->journal_info;
6766 if (trans)
6767 exist = 1;
6768 else
6769 trans = btrfs_join_transaction(root);
6770
6771 if (IS_ERR(trans)) {
6772 ret = PTR_ERR(trans);
6773 goto out;
6774 }
6775
6776 ret = do_chunk_alloc(trans, root, flags,
6777 CHUNK_ALLOC_FORCE);
6778 /*
6779 * Do not bail out on ENOSPC since we
6780 * can do more things.
6781 */
6782 if (ret < 0 && ret != -ENOSPC)
6783 btrfs_abort_transaction(trans,
6784 root, ret);
6785 else
6786 ret = 0;
6787 if (!exist)
6788 btrfs_end_transaction(trans, root);
6789 if (ret)
6790 goto out;
6791 }
6792
6793 if (loop == LOOP_NO_EMPTY_SIZE) {
6794 empty_size = 0;
6795 empty_cluster = 0;
6796 }
6797
6798 goto search;
6799 } else if (!ins->objectid) {
6800 ret = -ENOSPC;
6801 } else if (ins->objectid) {
6802 ret = 0;
6803 }
6804 out:
6805 if (ret == -ENOSPC)
6806 ins->offset = max_extent_size;
6807 return ret;
6808 }
6809
6810 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6811 int dump_block_groups)
6812 {
6813 struct btrfs_block_group_cache *cache;
6814 int index = 0;
6815
6816 spin_lock(&info->lock);
6817 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6818 info->flags,
6819 info->total_bytes - info->bytes_used - info->bytes_pinned -
6820 info->bytes_reserved - info->bytes_readonly,
6821 (info->full) ? "" : "not ");
6822 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6823 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6824 info->total_bytes, info->bytes_used, info->bytes_pinned,
6825 info->bytes_reserved, info->bytes_may_use,
6826 info->bytes_readonly);
6827 spin_unlock(&info->lock);
6828
6829 if (!dump_block_groups)
6830 return;
6831
6832 down_read(&info->groups_sem);
6833 again:
6834 list_for_each_entry(cache, &info->block_groups[index], list) {
6835 spin_lock(&cache->lock);
6836 printk(KERN_INFO "BTRFS: "
6837 "block group %llu has %llu bytes, "
6838 "%llu used %llu pinned %llu reserved %s\n",
6839 cache->key.objectid, cache->key.offset,
6840 btrfs_block_group_used(&cache->item), cache->pinned,
6841 cache->reserved, cache->ro ? "[readonly]" : "");
6842 btrfs_dump_free_space(cache, bytes);
6843 spin_unlock(&cache->lock);
6844 }
6845 if (++index < BTRFS_NR_RAID_TYPES)
6846 goto again;
6847 up_read(&info->groups_sem);
6848 }
6849
6850 int btrfs_reserve_extent(struct btrfs_root *root,
6851 u64 num_bytes, u64 min_alloc_size,
6852 u64 empty_size, u64 hint_byte,
6853 struct btrfs_key *ins, int is_data, int delalloc)
6854 {
6855 bool final_tried = false;
6856 u64 flags;
6857 int ret;
6858
6859 flags = btrfs_get_alloc_profile(root, is_data);
6860 again:
6861 WARN_ON(num_bytes < root->sectorsize);
6862 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6863 flags, delalloc);
6864
6865 if (ret == -ENOSPC) {
6866 if (!final_tried && ins->offset) {
6867 num_bytes = min(num_bytes >> 1, ins->offset);
6868 num_bytes = round_down(num_bytes, root->sectorsize);
6869 num_bytes = max(num_bytes, min_alloc_size);
6870 if (num_bytes == min_alloc_size)
6871 final_tried = true;
6872 goto again;
6873 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6874 struct btrfs_space_info *sinfo;
6875
6876 sinfo = __find_space_info(root->fs_info, flags);
6877 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6878 flags, num_bytes);
6879 if (sinfo)
6880 dump_space_info(sinfo, num_bytes, 1);
6881 }
6882 }
6883
6884 return ret;
6885 }
6886
6887 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6888 u64 start, u64 len,
6889 int pin, int delalloc)
6890 {
6891 struct btrfs_block_group_cache *cache;
6892 int ret = 0;
6893
6894 cache = btrfs_lookup_block_group(root->fs_info, start);
6895 if (!cache) {
6896 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6897 start);
6898 return -ENOSPC;
6899 }
6900
6901 if (btrfs_test_opt(root, DISCARD))
6902 ret = btrfs_discard_extent(root, start, len, NULL);
6903
6904 if (pin)
6905 pin_down_extent(root, cache, start, len, 1);
6906 else {
6907 btrfs_add_free_space(cache, start, len);
6908 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6909 }
6910 btrfs_put_block_group(cache);
6911
6912 trace_btrfs_reserved_extent_free(root, start, len);
6913
6914 return ret;
6915 }
6916
6917 int btrfs_free_reserved_extent(struct btrfs_root *root,
6918 u64 start, u64 len, int delalloc)
6919 {
6920 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6921 }
6922
6923 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6924 u64 start, u64 len)
6925 {
6926 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6927 }
6928
6929 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6930 struct btrfs_root *root,
6931 u64 parent, u64 root_objectid,
6932 u64 flags, u64 owner, u64 offset,
6933 struct btrfs_key *ins, int ref_mod)
6934 {
6935 int ret;
6936 struct btrfs_fs_info *fs_info = root->fs_info;
6937 struct btrfs_extent_item *extent_item;
6938 struct btrfs_extent_inline_ref *iref;
6939 struct btrfs_path *path;
6940 struct extent_buffer *leaf;
6941 int type;
6942 u32 size;
6943
6944 if (parent > 0)
6945 type = BTRFS_SHARED_DATA_REF_KEY;
6946 else
6947 type = BTRFS_EXTENT_DATA_REF_KEY;
6948
6949 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6950
6951 path = btrfs_alloc_path();
6952 if (!path)
6953 return -ENOMEM;
6954
6955 path->leave_spinning = 1;
6956 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6957 ins, size);
6958 if (ret) {
6959 btrfs_free_path(path);
6960 return ret;
6961 }
6962
6963 leaf = path->nodes[0];
6964 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6965 struct btrfs_extent_item);
6966 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6967 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6968 btrfs_set_extent_flags(leaf, extent_item,
6969 flags | BTRFS_EXTENT_FLAG_DATA);
6970
6971 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6972 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6973 if (parent > 0) {
6974 struct btrfs_shared_data_ref *ref;
6975 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6976 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6977 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6978 } else {
6979 struct btrfs_extent_data_ref *ref;
6980 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6981 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6982 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6983 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6984 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6985 }
6986
6987 btrfs_mark_buffer_dirty(path->nodes[0]);
6988 btrfs_free_path(path);
6989
6990 /* Always set parent to 0 here since its exclusive anyway. */
6991 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
6992 ins->objectid, ins->offset,
6993 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
6994 if (ret)
6995 return ret;
6996
6997 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6998 if (ret) { /* -ENOENT, logic error */
6999 btrfs_err(fs_info, "update block group failed for %llu %llu",
7000 ins->objectid, ins->offset);
7001 BUG();
7002 }
7003 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7004 return ret;
7005 }
7006
7007 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7008 struct btrfs_root *root,
7009 u64 parent, u64 root_objectid,
7010 u64 flags, struct btrfs_disk_key *key,
7011 int level, struct btrfs_key *ins,
7012 int no_quota)
7013 {
7014 int ret;
7015 struct btrfs_fs_info *fs_info = root->fs_info;
7016 struct btrfs_extent_item *extent_item;
7017 struct btrfs_tree_block_info *block_info;
7018 struct btrfs_extent_inline_ref *iref;
7019 struct btrfs_path *path;
7020 struct extent_buffer *leaf;
7021 u32 size = sizeof(*extent_item) + sizeof(*iref);
7022 u64 num_bytes = ins->offset;
7023 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7024 SKINNY_METADATA);
7025
7026 if (!skinny_metadata)
7027 size += sizeof(*block_info);
7028
7029 path = btrfs_alloc_path();
7030 if (!path) {
7031 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7032 root->nodesize);
7033 return -ENOMEM;
7034 }
7035
7036 path->leave_spinning = 1;
7037 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7038 ins, size);
7039 if (ret) {
7040 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7041 root->nodesize);
7042 btrfs_free_path(path);
7043 return ret;
7044 }
7045
7046 leaf = path->nodes[0];
7047 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7048 struct btrfs_extent_item);
7049 btrfs_set_extent_refs(leaf, extent_item, 1);
7050 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7051 btrfs_set_extent_flags(leaf, extent_item,
7052 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7053
7054 if (skinny_metadata) {
7055 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7056 num_bytes = root->nodesize;
7057 } else {
7058 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7059 btrfs_set_tree_block_key(leaf, block_info, key);
7060 btrfs_set_tree_block_level(leaf, block_info, level);
7061 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7062 }
7063
7064 if (parent > 0) {
7065 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7066 btrfs_set_extent_inline_ref_type(leaf, iref,
7067 BTRFS_SHARED_BLOCK_REF_KEY);
7068 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7069 } else {
7070 btrfs_set_extent_inline_ref_type(leaf, iref,
7071 BTRFS_TREE_BLOCK_REF_KEY);
7072 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7073 }
7074
7075 btrfs_mark_buffer_dirty(leaf);
7076 btrfs_free_path(path);
7077
7078 if (!no_quota) {
7079 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7080 ins->objectid, num_bytes,
7081 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7082 if (ret)
7083 return ret;
7084 }
7085
7086 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7087 1);
7088 if (ret) { /* -ENOENT, logic error */
7089 btrfs_err(fs_info, "update block group failed for %llu %llu",
7090 ins->objectid, ins->offset);
7091 BUG();
7092 }
7093
7094 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7095 return ret;
7096 }
7097
7098 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7099 struct btrfs_root *root,
7100 u64 root_objectid, u64 owner,
7101 u64 offset, struct btrfs_key *ins)
7102 {
7103 int ret;
7104
7105 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7106
7107 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7108 ins->offset, 0,
7109 root_objectid, owner, offset,
7110 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7111 return ret;
7112 }
7113
7114 /*
7115 * this is used by the tree logging recovery code. It records that
7116 * an extent has been allocated and makes sure to clear the free
7117 * space cache bits as well
7118 */
7119 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7120 struct btrfs_root *root,
7121 u64 root_objectid, u64 owner, u64 offset,
7122 struct btrfs_key *ins)
7123 {
7124 int ret;
7125 struct btrfs_block_group_cache *block_group;
7126
7127 /*
7128 * Mixed block groups will exclude before processing the log so we only
7129 * need to do the exlude dance if this fs isn't mixed.
7130 */
7131 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7132 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7133 if (ret)
7134 return ret;
7135 }
7136
7137 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7138 if (!block_group)
7139 return -EINVAL;
7140
7141 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7142 RESERVE_ALLOC_NO_ACCOUNT, 0);
7143 BUG_ON(ret); /* logic error */
7144 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7145 0, owner, offset, ins, 1);
7146 btrfs_put_block_group(block_group);
7147 return ret;
7148 }
7149
7150 static struct extent_buffer *
7151 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7152 u64 bytenr, int level)
7153 {
7154 struct extent_buffer *buf;
7155
7156 buf = btrfs_find_create_tree_block(root, bytenr);
7157 if (!buf)
7158 return ERR_PTR(-ENOMEM);
7159 btrfs_set_header_generation(buf, trans->transid);
7160 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7161 btrfs_tree_lock(buf);
7162 clean_tree_block(trans, root, buf);
7163 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7164
7165 btrfs_set_lock_blocking(buf);
7166 btrfs_set_buffer_uptodate(buf);
7167
7168 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7169 buf->log_index = root->log_transid % 2;
7170 /*
7171 * we allow two log transactions at a time, use different
7172 * EXENT bit to differentiate dirty pages.
7173 */
7174 if (buf->log_index == 0)
7175 set_extent_dirty(&root->dirty_log_pages, buf->start,
7176 buf->start + buf->len - 1, GFP_NOFS);
7177 else
7178 set_extent_new(&root->dirty_log_pages, buf->start,
7179 buf->start + buf->len - 1, GFP_NOFS);
7180 } else {
7181 buf->log_index = -1;
7182 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7183 buf->start + buf->len - 1, GFP_NOFS);
7184 }
7185 trans->blocks_used++;
7186 /* this returns a buffer locked for blocking */
7187 return buf;
7188 }
7189
7190 static struct btrfs_block_rsv *
7191 use_block_rsv(struct btrfs_trans_handle *trans,
7192 struct btrfs_root *root, u32 blocksize)
7193 {
7194 struct btrfs_block_rsv *block_rsv;
7195 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7196 int ret;
7197 bool global_updated = false;
7198
7199 block_rsv = get_block_rsv(trans, root);
7200
7201 if (unlikely(block_rsv->size == 0))
7202 goto try_reserve;
7203 again:
7204 ret = block_rsv_use_bytes(block_rsv, blocksize);
7205 if (!ret)
7206 return block_rsv;
7207
7208 if (block_rsv->failfast)
7209 return ERR_PTR(ret);
7210
7211 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7212 global_updated = true;
7213 update_global_block_rsv(root->fs_info);
7214 goto again;
7215 }
7216
7217 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7218 static DEFINE_RATELIMIT_STATE(_rs,
7219 DEFAULT_RATELIMIT_INTERVAL * 10,
7220 /*DEFAULT_RATELIMIT_BURST*/ 1);
7221 if (__ratelimit(&_rs))
7222 WARN(1, KERN_DEBUG
7223 "BTRFS: block rsv returned %d\n", ret);
7224 }
7225 try_reserve:
7226 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7227 BTRFS_RESERVE_NO_FLUSH);
7228 if (!ret)
7229 return block_rsv;
7230 /*
7231 * If we couldn't reserve metadata bytes try and use some from
7232 * the global reserve if its space type is the same as the global
7233 * reservation.
7234 */
7235 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7236 block_rsv->space_info == global_rsv->space_info) {
7237 ret = block_rsv_use_bytes(global_rsv, blocksize);
7238 if (!ret)
7239 return global_rsv;
7240 }
7241 return ERR_PTR(ret);
7242 }
7243
7244 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7245 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7246 {
7247 block_rsv_add_bytes(block_rsv, blocksize, 0);
7248 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7249 }
7250
7251 /*
7252 * finds a free extent and does all the dirty work required for allocation
7253 * returns the key for the extent through ins, and a tree buffer for
7254 * the first block of the extent through buf.
7255 *
7256 * returns the tree buffer or NULL.
7257 */
7258 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7259 struct btrfs_root *root,
7260 u64 parent, u64 root_objectid,
7261 struct btrfs_disk_key *key, int level,
7262 u64 hint, u64 empty_size)
7263 {
7264 struct btrfs_key ins;
7265 struct btrfs_block_rsv *block_rsv;
7266 struct extent_buffer *buf;
7267 u64 flags = 0;
7268 int ret;
7269 u32 blocksize = root->nodesize;
7270 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7271 SKINNY_METADATA);
7272
7273 if (btrfs_test_is_dummy_root(root)) {
7274 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7275 level);
7276 if (!IS_ERR(buf))
7277 root->alloc_bytenr += blocksize;
7278 return buf;
7279 }
7280
7281 block_rsv = use_block_rsv(trans, root, blocksize);
7282 if (IS_ERR(block_rsv))
7283 return ERR_CAST(block_rsv);
7284
7285 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7286 empty_size, hint, &ins, 0, 0);
7287 if (ret) {
7288 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7289 return ERR_PTR(ret);
7290 }
7291
7292 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7293 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7294
7295 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7296 if (parent == 0)
7297 parent = ins.objectid;
7298 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7299 } else
7300 BUG_ON(parent > 0);
7301
7302 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7303 struct btrfs_delayed_extent_op *extent_op;
7304 extent_op = btrfs_alloc_delayed_extent_op();
7305 BUG_ON(!extent_op); /* -ENOMEM */
7306 if (key)
7307 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7308 else
7309 memset(&extent_op->key, 0, sizeof(extent_op->key));
7310 extent_op->flags_to_set = flags;
7311 if (skinny_metadata)
7312 extent_op->update_key = 0;
7313 else
7314 extent_op->update_key = 1;
7315 extent_op->update_flags = 1;
7316 extent_op->is_data = 0;
7317 extent_op->level = level;
7318
7319 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7320 ins.objectid,
7321 ins.offset, parent, root_objectid,
7322 level, BTRFS_ADD_DELAYED_EXTENT,
7323 extent_op, 0);
7324 BUG_ON(ret); /* -ENOMEM */
7325 }
7326 return buf;
7327 }
7328
7329 struct walk_control {
7330 u64 refs[BTRFS_MAX_LEVEL];
7331 u64 flags[BTRFS_MAX_LEVEL];
7332 struct btrfs_key update_progress;
7333 int stage;
7334 int level;
7335 int shared_level;
7336 int update_ref;
7337 int keep_locks;
7338 int reada_slot;
7339 int reada_count;
7340 int for_reloc;
7341 };
7342
7343 #define DROP_REFERENCE 1
7344 #define UPDATE_BACKREF 2
7345
7346 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7347 struct btrfs_root *root,
7348 struct walk_control *wc,
7349 struct btrfs_path *path)
7350 {
7351 u64 bytenr;
7352 u64 generation;
7353 u64 refs;
7354 u64 flags;
7355 u32 nritems;
7356 u32 blocksize;
7357 struct btrfs_key key;
7358 struct extent_buffer *eb;
7359 int ret;
7360 int slot;
7361 int nread = 0;
7362
7363 if (path->slots[wc->level] < wc->reada_slot) {
7364 wc->reada_count = wc->reada_count * 2 / 3;
7365 wc->reada_count = max(wc->reada_count, 2);
7366 } else {
7367 wc->reada_count = wc->reada_count * 3 / 2;
7368 wc->reada_count = min_t(int, wc->reada_count,
7369 BTRFS_NODEPTRS_PER_BLOCK(root));
7370 }
7371
7372 eb = path->nodes[wc->level];
7373 nritems = btrfs_header_nritems(eb);
7374 blocksize = root->nodesize;
7375
7376 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7377 if (nread >= wc->reada_count)
7378 break;
7379
7380 cond_resched();
7381 bytenr = btrfs_node_blockptr(eb, slot);
7382 generation = btrfs_node_ptr_generation(eb, slot);
7383
7384 if (slot == path->slots[wc->level])
7385 goto reada;
7386
7387 if (wc->stage == UPDATE_BACKREF &&
7388 generation <= root->root_key.offset)
7389 continue;
7390
7391 /* We don't lock the tree block, it's OK to be racy here */
7392 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7393 wc->level - 1, 1, &refs,
7394 &flags);
7395 /* We don't care about errors in readahead. */
7396 if (ret < 0)
7397 continue;
7398 BUG_ON(refs == 0);
7399
7400 if (wc->stage == DROP_REFERENCE) {
7401 if (refs == 1)
7402 goto reada;
7403
7404 if (wc->level == 1 &&
7405 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7406 continue;
7407 if (!wc->update_ref ||
7408 generation <= root->root_key.offset)
7409 continue;
7410 btrfs_node_key_to_cpu(eb, &key, slot);
7411 ret = btrfs_comp_cpu_keys(&key,
7412 &wc->update_progress);
7413 if (ret < 0)
7414 continue;
7415 } else {
7416 if (wc->level == 1 &&
7417 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7418 continue;
7419 }
7420 reada:
7421 readahead_tree_block(root, bytenr);
7422 nread++;
7423 }
7424 wc->reada_slot = slot;
7425 }
7426
7427 static int account_leaf_items(struct btrfs_trans_handle *trans,
7428 struct btrfs_root *root,
7429 struct extent_buffer *eb)
7430 {
7431 int nr = btrfs_header_nritems(eb);
7432 int i, extent_type, ret;
7433 struct btrfs_key key;
7434 struct btrfs_file_extent_item *fi;
7435 u64 bytenr, num_bytes;
7436
7437 for (i = 0; i < nr; i++) {
7438 btrfs_item_key_to_cpu(eb, &key, i);
7439
7440 if (key.type != BTRFS_EXTENT_DATA_KEY)
7441 continue;
7442
7443 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7444 /* filter out non qgroup-accountable extents */
7445 extent_type = btrfs_file_extent_type(eb, fi);
7446
7447 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7448 continue;
7449
7450 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7451 if (!bytenr)
7452 continue;
7453
7454 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7455
7456 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7457 root->objectid,
7458 bytenr, num_bytes,
7459 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7460 if (ret)
7461 return ret;
7462 }
7463 return 0;
7464 }
7465
7466 /*
7467 * Walk up the tree from the bottom, freeing leaves and any interior
7468 * nodes which have had all slots visited. If a node (leaf or
7469 * interior) is freed, the node above it will have it's slot
7470 * incremented. The root node will never be freed.
7471 *
7472 * At the end of this function, we should have a path which has all
7473 * slots incremented to the next position for a search. If we need to
7474 * read a new node it will be NULL and the node above it will have the
7475 * correct slot selected for a later read.
7476 *
7477 * If we increment the root nodes slot counter past the number of
7478 * elements, 1 is returned to signal completion of the search.
7479 */
7480 static int adjust_slots_upwards(struct btrfs_root *root,
7481 struct btrfs_path *path, int root_level)
7482 {
7483 int level = 0;
7484 int nr, slot;
7485 struct extent_buffer *eb;
7486
7487 if (root_level == 0)
7488 return 1;
7489
7490 while (level <= root_level) {
7491 eb = path->nodes[level];
7492 nr = btrfs_header_nritems(eb);
7493 path->slots[level]++;
7494 slot = path->slots[level];
7495 if (slot >= nr || level == 0) {
7496 /*
7497 * Don't free the root - we will detect this
7498 * condition after our loop and return a
7499 * positive value for caller to stop walking the tree.
7500 */
7501 if (level != root_level) {
7502 btrfs_tree_unlock_rw(eb, path->locks[level]);
7503 path->locks[level] = 0;
7504
7505 free_extent_buffer(eb);
7506 path->nodes[level] = NULL;
7507 path->slots[level] = 0;
7508 }
7509 } else {
7510 /*
7511 * We have a valid slot to walk back down
7512 * from. Stop here so caller can process these
7513 * new nodes.
7514 */
7515 break;
7516 }
7517
7518 level++;
7519 }
7520
7521 eb = path->nodes[root_level];
7522 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7523 return 1;
7524
7525 return 0;
7526 }
7527
7528 /*
7529 * root_eb is the subtree root and is locked before this function is called.
7530 */
7531 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7532 struct btrfs_root *root,
7533 struct extent_buffer *root_eb,
7534 u64 root_gen,
7535 int root_level)
7536 {
7537 int ret = 0;
7538 int level;
7539 struct extent_buffer *eb = root_eb;
7540 struct btrfs_path *path = NULL;
7541
7542 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7543 BUG_ON(root_eb == NULL);
7544
7545 if (!root->fs_info->quota_enabled)
7546 return 0;
7547
7548 if (!extent_buffer_uptodate(root_eb)) {
7549 ret = btrfs_read_buffer(root_eb, root_gen);
7550 if (ret)
7551 goto out;
7552 }
7553
7554 if (root_level == 0) {
7555 ret = account_leaf_items(trans, root, root_eb);
7556 goto out;
7557 }
7558
7559 path = btrfs_alloc_path();
7560 if (!path)
7561 return -ENOMEM;
7562
7563 /*
7564 * Walk down the tree. Missing extent blocks are filled in as
7565 * we go. Metadata is accounted every time we read a new
7566 * extent block.
7567 *
7568 * When we reach a leaf, we account for file extent items in it,
7569 * walk back up the tree (adjusting slot pointers as we go)
7570 * and restart the search process.
7571 */
7572 extent_buffer_get(root_eb); /* For path */
7573 path->nodes[root_level] = root_eb;
7574 path->slots[root_level] = 0;
7575 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7576 walk_down:
7577 level = root_level;
7578 while (level >= 0) {
7579 if (path->nodes[level] == NULL) {
7580 int parent_slot;
7581 u64 child_gen;
7582 u64 child_bytenr;
7583
7584 /* We need to get child blockptr/gen from
7585 * parent before we can read it. */
7586 eb = path->nodes[level + 1];
7587 parent_slot = path->slots[level + 1];
7588 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7589 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7590
7591 eb = read_tree_block(root, child_bytenr, child_gen);
7592 if (!eb || !extent_buffer_uptodate(eb)) {
7593 ret = -EIO;
7594 goto out;
7595 }
7596
7597 path->nodes[level] = eb;
7598 path->slots[level] = 0;
7599
7600 btrfs_tree_read_lock(eb);
7601 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7602 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7603
7604 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7605 root->objectid,
7606 child_bytenr,
7607 root->nodesize,
7608 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7609 0);
7610 if (ret)
7611 goto out;
7612
7613 }
7614
7615 if (level == 0) {
7616 ret = account_leaf_items(trans, root, path->nodes[level]);
7617 if (ret)
7618 goto out;
7619
7620 /* Nonzero return here means we completed our search */
7621 ret = adjust_slots_upwards(root, path, root_level);
7622 if (ret)
7623 break;
7624
7625 /* Restart search with new slots */
7626 goto walk_down;
7627 }
7628
7629 level--;
7630 }
7631
7632 ret = 0;
7633 out:
7634 btrfs_free_path(path);
7635
7636 return ret;
7637 }
7638
7639 /*
7640 * helper to process tree block while walking down the tree.
7641 *
7642 * when wc->stage == UPDATE_BACKREF, this function updates
7643 * back refs for pointers in the block.
7644 *
7645 * NOTE: return value 1 means we should stop walking down.
7646 */
7647 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7648 struct btrfs_root *root,
7649 struct btrfs_path *path,
7650 struct walk_control *wc, int lookup_info)
7651 {
7652 int level = wc->level;
7653 struct extent_buffer *eb = path->nodes[level];
7654 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7655 int ret;
7656
7657 if (wc->stage == UPDATE_BACKREF &&
7658 btrfs_header_owner(eb) != root->root_key.objectid)
7659 return 1;
7660
7661 /*
7662 * when reference count of tree block is 1, it won't increase
7663 * again. once full backref flag is set, we never clear it.
7664 */
7665 if (lookup_info &&
7666 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7667 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7668 BUG_ON(!path->locks[level]);
7669 ret = btrfs_lookup_extent_info(trans, root,
7670 eb->start, level, 1,
7671 &wc->refs[level],
7672 &wc->flags[level]);
7673 BUG_ON(ret == -ENOMEM);
7674 if (ret)
7675 return ret;
7676 BUG_ON(wc->refs[level] == 0);
7677 }
7678
7679 if (wc->stage == DROP_REFERENCE) {
7680 if (wc->refs[level] > 1)
7681 return 1;
7682
7683 if (path->locks[level] && !wc->keep_locks) {
7684 btrfs_tree_unlock_rw(eb, path->locks[level]);
7685 path->locks[level] = 0;
7686 }
7687 return 0;
7688 }
7689
7690 /* wc->stage == UPDATE_BACKREF */
7691 if (!(wc->flags[level] & flag)) {
7692 BUG_ON(!path->locks[level]);
7693 ret = btrfs_inc_ref(trans, root, eb, 1);
7694 BUG_ON(ret); /* -ENOMEM */
7695 ret = btrfs_dec_ref(trans, root, eb, 0);
7696 BUG_ON(ret); /* -ENOMEM */
7697 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7698 eb->len, flag,
7699 btrfs_header_level(eb), 0);
7700 BUG_ON(ret); /* -ENOMEM */
7701 wc->flags[level] |= flag;
7702 }
7703
7704 /*
7705 * the block is shared by multiple trees, so it's not good to
7706 * keep the tree lock
7707 */
7708 if (path->locks[level] && level > 0) {
7709 btrfs_tree_unlock_rw(eb, path->locks[level]);
7710 path->locks[level] = 0;
7711 }
7712 return 0;
7713 }
7714
7715 /*
7716 * helper to process tree block pointer.
7717 *
7718 * when wc->stage == DROP_REFERENCE, this function checks
7719 * reference count of the block pointed to. if the block
7720 * is shared and we need update back refs for the subtree
7721 * rooted at the block, this function changes wc->stage to
7722 * UPDATE_BACKREF. if the block is shared and there is no
7723 * need to update back, this function drops the reference
7724 * to the block.
7725 *
7726 * NOTE: return value 1 means we should stop walking down.
7727 */
7728 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7729 struct btrfs_root *root,
7730 struct btrfs_path *path,
7731 struct walk_control *wc, int *lookup_info)
7732 {
7733 u64 bytenr;
7734 u64 generation;
7735 u64 parent;
7736 u32 blocksize;
7737 struct btrfs_key key;
7738 struct extent_buffer *next;
7739 int level = wc->level;
7740 int reada = 0;
7741 int ret = 0;
7742 bool need_account = false;
7743
7744 generation = btrfs_node_ptr_generation(path->nodes[level],
7745 path->slots[level]);
7746 /*
7747 * if the lower level block was created before the snapshot
7748 * was created, we know there is no need to update back refs
7749 * for the subtree
7750 */
7751 if (wc->stage == UPDATE_BACKREF &&
7752 generation <= root->root_key.offset) {
7753 *lookup_info = 1;
7754 return 1;
7755 }
7756
7757 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7758 blocksize = root->nodesize;
7759
7760 next = btrfs_find_tree_block(root, bytenr);
7761 if (!next) {
7762 next = btrfs_find_create_tree_block(root, bytenr);
7763 if (!next)
7764 return -ENOMEM;
7765 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7766 level - 1);
7767 reada = 1;
7768 }
7769 btrfs_tree_lock(next);
7770 btrfs_set_lock_blocking(next);
7771
7772 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7773 &wc->refs[level - 1],
7774 &wc->flags[level - 1]);
7775 if (ret < 0) {
7776 btrfs_tree_unlock(next);
7777 return ret;
7778 }
7779
7780 if (unlikely(wc->refs[level - 1] == 0)) {
7781 btrfs_err(root->fs_info, "Missing references.");
7782 BUG();
7783 }
7784 *lookup_info = 0;
7785
7786 if (wc->stage == DROP_REFERENCE) {
7787 if (wc->refs[level - 1] > 1) {
7788 need_account = true;
7789 if (level == 1 &&
7790 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7791 goto skip;
7792
7793 if (!wc->update_ref ||
7794 generation <= root->root_key.offset)
7795 goto skip;
7796
7797 btrfs_node_key_to_cpu(path->nodes[level], &key,
7798 path->slots[level]);
7799 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7800 if (ret < 0)
7801 goto skip;
7802
7803 wc->stage = UPDATE_BACKREF;
7804 wc->shared_level = level - 1;
7805 }
7806 } else {
7807 if (level == 1 &&
7808 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7809 goto skip;
7810 }
7811
7812 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7813 btrfs_tree_unlock(next);
7814 free_extent_buffer(next);
7815 next = NULL;
7816 *lookup_info = 1;
7817 }
7818
7819 if (!next) {
7820 if (reada && level == 1)
7821 reada_walk_down(trans, root, wc, path);
7822 next = read_tree_block(root, bytenr, generation);
7823 if (!next || !extent_buffer_uptodate(next)) {
7824 free_extent_buffer(next);
7825 return -EIO;
7826 }
7827 btrfs_tree_lock(next);
7828 btrfs_set_lock_blocking(next);
7829 }
7830
7831 level--;
7832 BUG_ON(level != btrfs_header_level(next));
7833 path->nodes[level] = next;
7834 path->slots[level] = 0;
7835 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7836 wc->level = level;
7837 if (wc->level == 1)
7838 wc->reada_slot = 0;
7839 return 0;
7840 skip:
7841 wc->refs[level - 1] = 0;
7842 wc->flags[level - 1] = 0;
7843 if (wc->stage == DROP_REFERENCE) {
7844 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7845 parent = path->nodes[level]->start;
7846 } else {
7847 BUG_ON(root->root_key.objectid !=
7848 btrfs_header_owner(path->nodes[level]));
7849 parent = 0;
7850 }
7851
7852 if (need_account) {
7853 ret = account_shared_subtree(trans, root, next,
7854 generation, level - 1);
7855 if (ret) {
7856 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7857 "%d accounting shared subtree. Quota "
7858 "is out of sync, rescan required.\n",
7859 root->fs_info->sb->s_id, ret);
7860 }
7861 }
7862 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7863 root->root_key.objectid, level - 1, 0, 0);
7864 BUG_ON(ret); /* -ENOMEM */
7865 }
7866 btrfs_tree_unlock(next);
7867 free_extent_buffer(next);
7868 *lookup_info = 1;
7869 return 1;
7870 }
7871
7872 /*
7873 * helper to process tree block while walking up the tree.
7874 *
7875 * when wc->stage == DROP_REFERENCE, this function drops
7876 * reference count on the block.
7877 *
7878 * when wc->stage == UPDATE_BACKREF, this function changes
7879 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7880 * to UPDATE_BACKREF previously while processing the block.
7881 *
7882 * NOTE: return value 1 means we should stop walking up.
7883 */
7884 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7885 struct btrfs_root *root,
7886 struct btrfs_path *path,
7887 struct walk_control *wc)
7888 {
7889 int ret;
7890 int level = wc->level;
7891 struct extent_buffer *eb = path->nodes[level];
7892 u64 parent = 0;
7893
7894 if (wc->stage == UPDATE_BACKREF) {
7895 BUG_ON(wc->shared_level < level);
7896 if (level < wc->shared_level)
7897 goto out;
7898
7899 ret = find_next_key(path, level + 1, &wc->update_progress);
7900 if (ret > 0)
7901 wc->update_ref = 0;
7902
7903 wc->stage = DROP_REFERENCE;
7904 wc->shared_level = -1;
7905 path->slots[level] = 0;
7906
7907 /*
7908 * check reference count again if the block isn't locked.
7909 * we should start walking down the tree again if reference
7910 * count is one.
7911 */
7912 if (!path->locks[level]) {
7913 BUG_ON(level == 0);
7914 btrfs_tree_lock(eb);
7915 btrfs_set_lock_blocking(eb);
7916 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7917
7918 ret = btrfs_lookup_extent_info(trans, root,
7919 eb->start, level, 1,
7920 &wc->refs[level],
7921 &wc->flags[level]);
7922 if (ret < 0) {
7923 btrfs_tree_unlock_rw(eb, path->locks[level]);
7924 path->locks[level] = 0;
7925 return ret;
7926 }
7927 BUG_ON(wc->refs[level] == 0);
7928 if (wc->refs[level] == 1) {
7929 btrfs_tree_unlock_rw(eb, path->locks[level]);
7930 path->locks[level] = 0;
7931 return 1;
7932 }
7933 }
7934 }
7935
7936 /* wc->stage == DROP_REFERENCE */
7937 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7938
7939 if (wc->refs[level] == 1) {
7940 if (level == 0) {
7941 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7942 ret = btrfs_dec_ref(trans, root, eb, 1);
7943 else
7944 ret = btrfs_dec_ref(trans, root, eb, 0);
7945 BUG_ON(ret); /* -ENOMEM */
7946 ret = account_leaf_items(trans, root, eb);
7947 if (ret) {
7948 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7949 "%d accounting leaf items. Quota "
7950 "is out of sync, rescan required.\n",
7951 root->fs_info->sb->s_id, ret);
7952 }
7953 }
7954 /* make block locked assertion in clean_tree_block happy */
7955 if (!path->locks[level] &&
7956 btrfs_header_generation(eb) == trans->transid) {
7957 btrfs_tree_lock(eb);
7958 btrfs_set_lock_blocking(eb);
7959 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7960 }
7961 clean_tree_block(trans, root, eb);
7962 }
7963
7964 if (eb == root->node) {
7965 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7966 parent = eb->start;
7967 else
7968 BUG_ON(root->root_key.objectid !=
7969 btrfs_header_owner(eb));
7970 } else {
7971 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7972 parent = path->nodes[level + 1]->start;
7973 else
7974 BUG_ON(root->root_key.objectid !=
7975 btrfs_header_owner(path->nodes[level + 1]));
7976 }
7977
7978 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7979 out:
7980 wc->refs[level] = 0;
7981 wc->flags[level] = 0;
7982 return 0;
7983 }
7984
7985 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7986 struct btrfs_root *root,
7987 struct btrfs_path *path,
7988 struct walk_control *wc)
7989 {
7990 int level = wc->level;
7991 int lookup_info = 1;
7992 int ret;
7993
7994 while (level >= 0) {
7995 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7996 if (ret > 0)
7997 break;
7998
7999 if (level == 0)
8000 break;
8001
8002 if (path->slots[level] >=
8003 btrfs_header_nritems(path->nodes[level]))
8004 break;
8005
8006 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8007 if (ret > 0) {
8008 path->slots[level]++;
8009 continue;
8010 } else if (ret < 0)
8011 return ret;
8012 level = wc->level;
8013 }
8014 return 0;
8015 }
8016
8017 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8018 struct btrfs_root *root,
8019 struct btrfs_path *path,
8020 struct walk_control *wc, int max_level)
8021 {
8022 int level = wc->level;
8023 int ret;
8024
8025 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8026 while (level < max_level && path->nodes[level]) {
8027 wc->level = level;
8028 if (path->slots[level] + 1 <
8029 btrfs_header_nritems(path->nodes[level])) {
8030 path->slots[level]++;
8031 return 0;
8032 } else {
8033 ret = walk_up_proc(trans, root, path, wc);
8034 if (ret > 0)
8035 return 0;
8036
8037 if (path->locks[level]) {
8038 btrfs_tree_unlock_rw(path->nodes[level],
8039 path->locks[level]);
8040 path->locks[level] = 0;
8041 }
8042 free_extent_buffer(path->nodes[level]);
8043 path->nodes[level] = NULL;
8044 level++;
8045 }
8046 }
8047 return 1;
8048 }
8049
8050 /*
8051 * drop a subvolume tree.
8052 *
8053 * this function traverses the tree freeing any blocks that only
8054 * referenced by the tree.
8055 *
8056 * when a shared tree block is found. this function decreases its
8057 * reference count by one. if update_ref is true, this function
8058 * also make sure backrefs for the shared block and all lower level
8059 * blocks are properly updated.
8060 *
8061 * If called with for_reloc == 0, may exit early with -EAGAIN
8062 */
8063 int btrfs_drop_snapshot(struct btrfs_root *root,
8064 struct btrfs_block_rsv *block_rsv, int update_ref,
8065 int for_reloc)
8066 {
8067 struct btrfs_path *path;
8068 struct btrfs_trans_handle *trans;
8069 struct btrfs_root *tree_root = root->fs_info->tree_root;
8070 struct btrfs_root_item *root_item = &root->root_item;
8071 struct walk_control *wc;
8072 struct btrfs_key key;
8073 int err = 0;
8074 int ret;
8075 int level;
8076 bool root_dropped = false;
8077
8078 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8079
8080 path = btrfs_alloc_path();
8081 if (!path) {
8082 err = -ENOMEM;
8083 goto out;
8084 }
8085
8086 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8087 if (!wc) {
8088 btrfs_free_path(path);
8089 err = -ENOMEM;
8090 goto out;
8091 }
8092
8093 trans = btrfs_start_transaction(tree_root, 0);
8094 if (IS_ERR(trans)) {
8095 err = PTR_ERR(trans);
8096 goto out_free;
8097 }
8098
8099 if (block_rsv)
8100 trans->block_rsv = block_rsv;
8101
8102 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8103 level = btrfs_header_level(root->node);
8104 path->nodes[level] = btrfs_lock_root_node(root);
8105 btrfs_set_lock_blocking(path->nodes[level]);
8106 path->slots[level] = 0;
8107 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8108 memset(&wc->update_progress, 0,
8109 sizeof(wc->update_progress));
8110 } else {
8111 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8112 memcpy(&wc->update_progress, &key,
8113 sizeof(wc->update_progress));
8114
8115 level = root_item->drop_level;
8116 BUG_ON(level == 0);
8117 path->lowest_level = level;
8118 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8119 path->lowest_level = 0;
8120 if (ret < 0) {
8121 err = ret;
8122 goto out_end_trans;
8123 }
8124 WARN_ON(ret > 0);
8125
8126 /*
8127 * unlock our path, this is safe because only this
8128 * function is allowed to delete this snapshot
8129 */
8130 btrfs_unlock_up_safe(path, 0);
8131
8132 level = btrfs_header_level(root->node);
8133 while (1) {
8134 btrfs_tree_lock(path->nodes[level]);
8135 btrfs_set_lock_blocking(path->nodes[level]);
8136 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8137
8138 ret = btrfs_lookup_extent_info(trans, root,
8139 path->nodes[level]->start,
8140 level, 1, &wc->refs[level],
8141 &wc->flags[level]);
8142 if (ret < 0) {
8143 err = ret;
8144 goto out_end_trans;
8145 }
8146 BUG_ON(wc->refs[level] == 0);
8147
8148 if (level == root_item->drop_level)
8149 break;
8150
8151 btrfs_tree_unlock(path->nodes[level]);
8152 path->locks[level] = 0;
8153 WARN_ON(wc->refs[level] != 1);
8154 level--;
8155 }
8156 }
8157
8158 wc->level = level;
8159 wc->shared_level = -1;
8160 wc->stage = DROP_REFERENCE;
8161 wc->update_ref = update_ref;
8162 wc->keep_locks = 0;
8163 wc->for_reloc = for_reloc;
8164 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8165
8166 while (1) {
8167
8168 ret = walk_down_tree(trans, root, path, wc);
8169 if (ret < 0) {
8170 err = ret;
8171 break;
8172 }
8173
8174 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8175 if (ret < 0) {
8176 err = ret;
8177 break;
8178 }
8179
8180 if (ret > 0) {
8181 BUG_ON(wc->stage != DROP_REFERENCE);
8182 break;
8183 }
8184
8185 if (wc->stage == DROP_REFERENCE) {
8186 level = wc->level;
8187 btrfs_node_key(path->nodes[level],
8188 &root_item->drop_progress,
8189 path->slots[level]);
8190 root_item->drop_level = level;
8191 }
8192
8193 BUG_ON(wc->level == 0);
8194 if (btrfs_should_end_transaction(trans, tree_root) ||
8195 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8196 ret = btrfs_update_root(trans, tree_root,
8197 &root->root_key,
8198 root_item);
8199 if (ret) {
8200 btrfs_abort_transaction(trans, tree_root, ret);
8201 err = ret;
8202 goto out_end_trans;
8203 }
8204
8205 /*
8206 * Qgroup update accounting is run from
8207 * delayed ref handling. This usually works
8208 * out because delayed refs are normally the
8209 * only way qgroup updates are added. However,
8210 * we may have added updates during our tree
8211 * walk so run qgroups here to make sure we
8212 * don't lose any updates.
8213 */
8214 ret = btrfs_delayed_qgroup_accounting(trans,
8215 root->fs_info);
8216 if (ret)
8217 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8218 "running qgroup updates "
8219 "during snapshot delete. "
8220 "Quota is out of sync, "
8221 "rescan required.\n", ret);
8222
8223 btrfs_end_transaction_throttle(trans, tree_root);
8224 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8225 pr_debug("BTRFS: drop snapshot early exit\n");
8226 err = -EAGAIN;
8227 goto out_free;
8228 }
8229
8230 trans = btrfs_start_transaction(tree_root, 0);
8231 if (IS_ERR(trans)) {
8232 err = PTR_ERR(trans);
8233 goto out_free;
8234 }
8235 if (block_rsv)
8236 trans->block_rsv = block_rsv;
8237 }
8238 }
8239 btrfs_release_path(path);
8240 if (err)
8241 goto out_end_trans;
8242
8243 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8244 if (ret) {
8245 btrfs_abort_transaction(trans, tree_root, ret);
8246 goto out_end_trans;
8247 }
8248
8249 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8250 ret = btrfs_find_root(tree_root, &root->root_key, path,
8251 NULL, NULL);
8252 if (ret < 0) {
8253 btrfs_abort_transaction(trans, tree_root, ret);
8254 err = ret;
8255 goto out_end_trans;
8256 } else if (ret > 0) {
8257 /* if we fail to delete the orphan item this time
8258 * around, it'll get picked up the next time.
8259 *
8260 * The most common failure here is just -ENOENT.
8261 */
8262 btrfs_del_orphan_item(trans, tree_root,
8263 root->root_key.objectid);
8264 }
8265 }
8266
8267 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8268 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8269 } else {
8270 free_extent_buffer(root->node);
8271 free_extent_buffer(root->commit_root);
8272 btrfs_put_fs_root(root);
8273 }
8274 root_dropped = true;
8275 out_end_trans:
8276 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8277 if (ret)
8278 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8279 "running qgroup updates "
8280 "during snapshot delete. "
8281 "Quota is out of sync, "
8282 "rescan required.\n", ret);
8283
8284 btrfs_end_transaction_throttle(trans, tree_root);
8285 out_free:
8286 kfree(wc);
8287 btrfs_free_path(path);
8288 out:
8289 /*
8290 * So if we need to stop dropping the snapshot for whatever reason we
8291 * need to make sure to add it back to the dead root list so that we
8292 * keep trying to do the work later. This also cleans up roots if we
8293 * don't have it in the radix (like when we recover after a power fail
8294 * or unmount) so we don't leak memory.
8295 */
8296 if (!for_reloc && root_dropped == false)
8297 btrfs_add_dead_root(root);
8298 if (err && err != -EAGAIN)
8299 btrfs_std_error(root->fs_info, err);
8300 return err;
8301 }
8302
8303 /*
8304 * drop subtree rooted at tree block 'node'.
8305 *
8306 * NOTE: this function will unlock and release tree block 'node'
8307 * only used by relocation code
8308 */
8309 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8310 struct btrfs_root *root,
8311 struct extent_buffer *node,
8312 struct extent_buffer *parent)
8313 {
8314 struct btrfs_path *path;
8315 struct walk_control *wc;
8316 int level;
8317 int parent_level;
8318 int ret = 0;
8319 int wret;
8320
8321 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8322
8323 path = btrfs_alloc_path();
8324 if (!path)
8325 return -ENOMEM;
8326
8327 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8328 if (!wc) {
8329 btrfs_free_path(path);
8330 return -ENOMEM;
8331 }
8332
8333 btrfs_assert_tree_locked(parent);
8334 parent_level = btrfs_header_level(parent);
8335 extent_buffer_get(parent);
8336 path->nodes[parent_level] = parent;
8337 path->slots[parent_level] = btrfs_header_nritems(parent);
8338
8339 btrfs_assert_tree_locked(node);
8340 level = btrfs_header_level(node);
8341 path->nodes[level] = node;
8342 path->slots[level] = 0;
8343 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8344
8345 wc->refs[parent_level] = 1;
8346 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8347 wc->level = level;
8348 wc->shared_level = -1;
8349 wc->stage = DROP_REFERENCE;
8350 wc->update_ref = 0;
8351 wc->keep_locks = 1;
8352 wc->for_reloc = 1;
8353 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8354
8355 while (1) {
8356 wret = walk_down_tree(trans, root, path, wc);
8357 if (wret < 0) {
8358 ret = wret;
8359 break;
8360 }
8361
8362 wret = walk_up_tree(trans, root, path, wc, parent_level);
8363 if (wret < 0)
8364 ret = wret;
8365 if (wret != 0)
8366 break;
8367 }
8368
8369 kfree(wc);
8370 btrfs_free_path(path);
8371 return ret;
8372 }
8373
8374 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8375 {
8376 u64 num_devices;
8377 u64 stripped;
8378
8379 /*
8380 * if restripe for this chunk_type is on pick target profile and
8381 * return, otherwise do the usual balance
8382 */
8383 stripped = get_restripe_target(root->fs_info, flags);
8384 if (stripped)
8385 return extended_to_chunk(stripped);
8386
8387 num_devices = root->fs_info->fs_devices->rw_devices;
8388
8389 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8390 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8391 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8392
8393 if (num_devices == 1) {
8394 stripped |= BTRFS_BLOCK_GROUP_DUP;
8395 stripped = flags & ~stripped;
8396
8397 /* turn raid0 into single device chunks */
8398 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8399 return stripped;
8400
8401 /* turn mirroring into duplication */
8402 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8403 BTRFS_BLOCK_GROUP_RAID10))
8404 return stripped | BTRFS_BLOCK_GROUP_DUP;
8405 } else {
8406 /* they already had raid on here, just return */
8407 if (flags & stripped)
8408 return flags;
8409
8410 stripped |= BTRFS_BLOCK_GROUP_DUP;
8411 stripped = flags & ~stripped;
8412
8413 /* switch duplicated blocks with raid1 */
8414 if (flags & BTRFS_BLOCK_GROUP_DUP)
8415 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8416
8417 /* this is drive concat, leave it alone */
8418 }
8419
8420 return flags;
8421 }
8422
8423 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8424 {
8425 struct btrfs_space_info *sinfo = cache->space_info;
8426 u64 num_bytes;
8427 u64 min_allocable_bytes;
8428 int ret = -ENOSPC;
8429
8430
8431 /*
8432 * We need some metadata space and system metadata space for
8433 * allocating chunks in some corner cases until we force to set
8434 * it to be readonly.
8435 */
8436 if ((sinfo->flags &
8437 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8438 !force)
8439 min_allocable_bytes = 1 * 1024 * 1024;
8440 else
8441 min_allocable_bytes = 0;
8442
8443 spin_lock(&sinfo->lock);
8444 spin_lock(&cache->lock);
8445
8446 if (cache->ro) {
8447 ret = 0;
8448 goto out;
8449 }
8450
8451 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8452 cache->bytes_super - btrfs_block_group_used(&cache->item);
8453
8454 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8455 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8456 min_allocable_bytes <= sinfo->total_bytes) {
8457 sinfo->bytes_readonly += num_bytes;
8458 cache->ro = 1;
8459 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8460 ret = 0;
8461 }
8462 out:
8463 spin_unlock(&cache->lock);
8464 spin_unlock(&sinfo->lock);
8465 return ret;
8466 }
8467
8468 int btrfs_set_block_group_ro(struct btrfs_root *root,
8469 struct btrfs_block_group_cache *cache)
8470
8471 {
8472 struct btrfs_trans_handle *trans;
8473 u64 alloc_flags;
8474 int ret;
8475
8476 BUG_ON(cache->ro);
8477
8478 trans = btrfs_join_transaction(root);
8479 if (IS_ERR(trans))
8480 return PTR_ERR(trans);
8481
8482 alloc_flags = update_block_group_flags(root, cache->flags);
8483 if (alloc_flags != cache->flags) {
8484 ret = do_chunk_alloc(trans, root, alloc_flags,
8485 CHUNK_ALLOC_FORCE);
8486 if (ret < 0)
8487 goto out;
8488 }
8489
8490 ret = set_block_group_ro(cache, 0);
8491 if (!ret)
8492 goto out;
8493 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8494 ret = do_chunk_alloc(trans, root, alloc_flags,
8495 CHUNK_ALLOC_FORCE);
8496 if (ret < 0)
8497 goto out;
8498 ret = set_block_group_ro(cache, 0);
8499 out:
8500 btrfs_end_transaction(trans, root);
8501 return ret;
8502 }
8503
8504 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8505 struct btrfs_root *root, u64 type)
8506 {
8507 u64 alloc_flags = get_alloc_profile(root, type);
8508 return do_chunk_alloc(trans, root, alloc_flags,
8509 CHUNK_ALLOC_FORCE);
8510 }
8511
8512 /*
8513 * helper to account the unused space of all the readonly block group in the
8514 * space_info. takes mirrors into account.
8515 */
8516 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8517 {
8518 struct btrfs_block_group_cache *block_group;
8519 u64 free_bytes = 0;
8520 int factor;
8521
8522 /* It's df, we don't care if it's racey */
8523 if (list_empty(&sinfo->ro_bgs))
8524 return 0;
8525
8526 spin_lock(&sinfo->lock);
8527 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8528 spin_lock(&block_group->lock);
8529
8530 if (!block_group->ro) {
8531 spin_unlock(&block_group->lock);
8532 continue;
8533 }
8534
8535 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8536 BTRFS_BLOCK_GROUP_RAID10 |
8537 BTRFS_BLOCK_GROUP_DUP))
8538 factor = 2;
8539 else
8540 factor = 1;
8541
8542 free_bytes += (block_group->key.offset -
8543 btrfs_block_group_used(&block_group->item)) *
8544 factor;
8545
8546 spin_unlock(&block_group->lock);
8547 }
8548 spin_unlock(&sinfo->lock);
8549
8550 return free_bytes;
8551 }
8552
8553 void btrfs_set_block_group_rw(struct btrfs_root *root,
8554 struct btrfs_block_group_cache *cache)
8555 {
8556 struct btrfs_space_info *sinfo = cache->space_info;
8557 u64 num_bytes;
8558
8559 BUG_ON(!cache->ro);
8560
8561 spin_lock(&sinfo->lock);
8562 spin_lock(&cache->lock);
8563 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8564 cache->bytes_super - btrfs_block_group_used(&cache->item);
8565 sinfo->bytes_readonly -= num_bytes;
8566 cache->ro = 0;
8567 list_del_init(&cache->ro_list);
8568 spin_unlock(&cache->lock);
8569 spin_unlock(&sinfo->lock);
8570 }
8571
8572 /*
8573 * checks to see if its even possible to relocate this block group.
8574 *
8575 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8576 * ok to go ahead and try.
8577 */
8578 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8579 {
8580 struct btrfs_block_group_cache *block_group;
8581 struct btrfs_space_info *space_info;
8582 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8583 struct btrfs_device *device;
8584 struct btrfs_trans_handle *trans;
8585 u64 min_free;
8586 u64 dev_min = 1;
8587 u64 dev_nr = 0;
8588 u64 target;
8589 int index;
8590 int full = 0;
8591 int ret = 0;
8592
8593 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8594
8595 /* odd, couldn't find the block group, leave it alone */
8596 if (!block_group)
8597 return -1;
8598
8599 min_free = btrfs_block_group_used(&block_group->item);
8600
8601 /* no bytes used, we're good */
8602 if (!min_free)
8603 goto out;
8604
8605 space_info = block_group->space_info;
8606 spin_lock(&space_info->lock);
8607
8608 full = space_info->full;
8609
8610 /*
8611 * if this is the last block group we have in this space, we can't
8612 * relocate it unless we're able to allocate a new chunk below.
8613 *
8614 * Otherwise, we need to make sure we have room in the space to handle
8615 * all of the extents from this block group. If we can, we're good
8616 */
8617 if ((space_info->total_bytes != block_group->key.offset) &&
8618 (space_info->bytes_used + space_info->bytes_reserved +
8619 space_info->bytes_pinned + space_info->bytes_readonly +
8620 min_free < space_info->total_bytes)) {
8621 spin_unlock(&space_info->lock);
8622 goto out;
8623 }
8624 spin_unlock(&space_info->lock);
8625
8626 /*
8627 * ok we don't have enough space, but maybe we have free space on our
8628 * devices to allocate new chunks for relocation, so loop through our
8629 * alloc devices and guess if we have enough space. if this block
8630 * group is going to be restriped, run checks against the target
8631 * profile instead of the current one.
8632 */
8633 ret = -1;
8634
8635 /*
8636 * index:
8637 * 0: raid10
8638 * 1: raid1
8639 * 2: dup
8640 * 3: raid0
8641 * 4: single
8642 */
8643 target = get_restripe_target(root->fs_info, block_group->flags);
8644 if (target) {
8645 index = __get_raid_index(extended_to_chunk(target));
8646 } else {
8647 /*
8648 * this is just a balance, so if we were marked as full
8649 * we know there is no space for a new chunk
8650 */
8651 if (full)
8652 goto out;
8653
8654 index = get_block_group_index(block_group);
8655 }
8656
8657 if (index == BTRFS_RAID_RAID10) {
8658 dev_min = 4;
8659 /* Divide by 2 */
8660 min_free >>= 1;
8661 } else if (index == BTRFS_RAID_RAID1) {
8662 dev_min = 2;
8663 } else if (index == BTRFS_RAID_DUP) {
8664 /* Multiply by 2 */
8665 min_free <<= 1;
8666 } else if (index == BTRFS_RAID_RAID0) {
8667 dev_min = fs_devices->rw_devices;
8668 do_div(min_free, dev_min);
8669 }
8670
8671 /* We need to do this so that we can look at pending chunks */
8672 trans = btrfs_join_transaction(root);
8673 if (IS_ERR(trans)) {
8674 ret = PTR_ERR(trans);
8675 goto out;
8676 }
8677
8678 mutex_lock(&root->fs_info->chunk_mutex);
8679 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8680 u64 dev_offset;
8681
8682 /*
8683 * check to make sure we can actually find a chunk with enough
8684 * space to fit our block group in.
8685 */
8686 if (device->total_bytes > device->bytes_used + min_free &&
8687 !device->is_tgtdev_for_dev_replace) {
8688 ret = find_free_dev_extent(trans, device, min_free,
8689 &dev_offset, NULL);
8690 if (!ret)
8691 dev_nr++;
8692
8693 if (dev_nr >= dev_min)
8694 break;
8695
8696 ret = -1;
8697 }
8698 }
8699 mutex_unlock(&root->fs_info->chunk_mutex);
8700 btrfs_end_transaction(trans, root);
8701 out:
8702 btrfs_put_block_group(block_group);
8703 return ret;
8704 }
8705
8706 static int find_first_block_group(struct btrfs_root *root,
8707 struct btrfs_path *path, struct btrfs_key *key)
8708 {
8709 int ret = 0;
8710 struct btrfs_key found_key;
8711 struct extent_buffer *leaf;
8712 int slot;
8713
8714 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8715 if (ret < 0)
8716 goto out;
8717
8718 while (1) {
8719 slot = path->slots[0];
8720 leaf = path->nodes[0];
8721 if (slot >= btrfs_header_nritems(leaf)) {
8722 ret = btrfs_next_leaf(root, path);
8723 if (ret == 0)
8724 continue;
8725 if (ret < 0)
8726 goto out;
8727 break;
8728 }
8729 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8730
8731 if (found_key.objectid >= key->objectid &&
8732 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8733 ret = 0;
8734 goto out;
8735 }
8736 path->slots[0]++;
8737 }
8738 out:
8739 return ret;
8740 }
8741
8742 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8743 {
8744 struct btrfs_block_group_cache *block_group;
8745 u64 last = 0;
8746
8747 while (1) {
8748 struct inode *inode;
8749
8750 block_group = btrfs_lookup_first_block_group(info, last);
8751 while (block_group) {
8752 spin_lock(&block_group->lock);
8753 if (block_group->iref)
8754 break;
8755 spin_unlock(&block_group->lock);
8756 block_group = next_block_group(info->tree_root,
8757 block_group);
8758 }
8759 if (!block_group) {
8760 if (last == 0)
8761 break;
8762 last = 0;
8763 continue;
8764 }
8765
8766 inode = block_group->inode;
8767 block_group->iref = 0;
8768 block_group->inode = NULL;
8769 spin_unlock(&block_group->lock);
8770 iput(inode);
8771 last = block_group->key.objectid + block_group->key.offset;
8772 btrfs_put_block_group(block_group);
8773 }
8774 }
8775
8776 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8777 {
8778 struct btrfs_block_group_cache *block_group;
8779 struct btrfs_space_info *space_info;
8780 struct btrfs_caching_control *caching_ctl;
8781 struct rb_node *n;
8782
8783 down_write(&info->commit_root_sem);
8784 while (!list_empty(&info->caching_block_groups)) {
8785 caching_ctl = list_entry(info->caching_block_groups.next,
8786 struct btrfs_caching_control, list);
8787 list_del(&caching_ctl->list);
8788 put_caching_control(caching_ctl);
8789 }
8790 up_write(&info->commit_root_sem);
8791
8792 spin_lock(&info->unused_bgs_lock);
8793 while (!list_empty(&info->unused_bgs)) {
8794 block_group = list_first_entry(&info->unused_bgs,
8795 struct btrfs_block_group_cache,
8796 bg_list);
8797 list_del_init(&block_group->bg_list);
8798 btrfs_put_block_group(block_group);
8799 }
8800 spin_unlock(&info->unused_bgs_lock);
8801
8802 spin_lock(&info->block_group_cache_lock);
8803 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8804 block_group = rb_entry(n, struct btrfs_block_group_cache,
8805 cache_node);
8806 rb_erase(&block_group->cache_node,
8807 &info->block_group_cache_tree);
8808 RB_CLEAR_NODE(&block_group->cache_node);
8809 spin_unlock(&info->block_group_cache_lock);
8810
8811 down_write(&block_group->space_info->groups_sem);
8812 list_del(&block_group->list);
8813 up_write(&block_group->space_info->groups_sem);
8814
8815 if (block_group->cached == BTRFS_CACHE_STARTED)
8816 wait_block_group_cache_done(block_group);
8817
8818 /*
8819 * We haven't cached this block group, which means we could
8820 * possibly have excluded extents on this block group.
8821 */
8822 if (block_group->cached == BTRFS_CACHE_NO ||
8823 block_group->cached == BTRFS_CACHE_ERROR)
8824 free_excluded_extents(info->extent_root, block_group);
8825
8826 btrfs_remove_free_space_cache(block_group);
8827 btrfs_put_block_group(block_group);
8828
8829 spin_lock(&info->block_group_cache_lock);
8830 }
8831 spin_unlock(&info->block_group_cache_lock);
8832
8833 /* now that all the block groups are freed, go through and
8834 * free all the space_info structs. This is only called during
8835 * the final stages of unmount, and so we know nobody is
8836 * using them. We call synchronize_rcu() once before we start,
8837 * just to be on the safe side.
8838 */
8839 synchronize_rcu();
8840
8841 release_global_block_rsv(info);
8842
8843 while (!list_empty(&info->space_info)) {
8844 int i;
8845
8846 space_info = list_entry(info->space_info.next,
8847 struct btrfs_space_info,
8848 list);
8849 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8850 if (WARN_ON(space_info->bytes_pinned > 0 ||
8851 space_info->bytes_reserved > 0 ||
8852 space_info->bytes_may_use > 0)) {
8853 dump_space_info(space_info, 0, 0);
8854 }
8855 }
8856 list_del(&space_info->list);
8857 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8858 struct kobject *kobj;
8859 kobj = space_info->block_group_kobjs[i];
8860 space_info->block_group_kobjs[i] = NULL;
8861 if (kobj) {
8862 kobject_del(kobj);
8863 kobject_put(kobj);
8864 }
8865 }
8866 kobject_del(&space_info->kobj);
8867 kobject_put(&space_info->kobj);
8868 }
8869 return 0;
8870 }
8871
8872 static void __link_block_group(struct btrfs_space_info *space_info,
8873 struct btrfs_block_group_cache *cache)
8874 {
8875 int index = get_block_group_index(cache);
8876 bool first = false;
8877
8878 down_write(&space_info->groups_sem);
8879 if (list_empty(&space_info->block_groups[index]))
8880 first = true;
8881 list_add_tail(&cache->list, &space_info->block_groups[index]);
8882 up_write(&space_info->groups_sem);
8883
8884 if (first) {
8885 struct raid_kobject *rkobj;
8886 int ret;
8887
8888 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8889 if (!rkobj)
8890 goto out_err;
8891 rkobj->raid_type = index;
8892 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8893 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8894 "%s", get_raid_name(index));
8895 if (ret) {
8896 kobject_put(&rkobj->kobj);
8897 goto out_err;
8898 }
8899 space_info->block_group_kobjs[index] = &rkobj->kobj;
8900 }
8901
8902 return;
8903 out_err:
8904 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8905 }
8906
8907 static struct btrfs_block_group_cache *
8908 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8909 {
8910 struct btrfs_block_group_cache *cache;
8911
8912 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8913 if (!cache)
8914 return NULL;
8915
8916 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8917 GFP_NOFS);
8918 if (!cache->free_space_ctl) {
8919 kfree(cache);
8920 return NULL;
8921 }
8922
8923 cache->key.objectid = start;
8924 cache->key.offset = size;
8925 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8926
8927 cache->sectorsize = root->sectorsize;
8928 cache->fs_info = root->fs_info;
8929 cache->full_stripe_len = btrfs_full_stripe_len(root,
8930 &root->fs_info->mapping_tree,
8931 start);
8932 atomic_set(&cache->count, 1);
8933 spin_lock_init(&cache->lock);
8934 init_rwsem(&cache->data_rwsem);
8935 INIT_LIST_HEAD(&cache->list);
8936 INIT_LIST_HEAD(&cache->cluster_list);
8937 INIT_LIST_HEAD(&cache->bg_list);
8938 INIT_LIST_HEAD(&cache->ro_list);
8939 INIT_LIST_HEAD(&cache->dirty_list);
8940 btrfs_init_free_space_ctl(cache);
8941 atomic_set(&cache->trimming, 0);
8942
8943 return cache;
8944 }
8945
8946 int btrfs_read_block_groups(struct btrfs_root *root)
8947 {
8948 struct btrfs_path *path;
8949 int ret;
8950 struct btrfs_block_group_cache *cache;
8951 struct btrfs_fs_info *info = root->fs_info;
8952 struct btrfs_space_info *space_info;
8953 struct btrfs_key key;
8954 struct btrfs_key found_key;
8955 struct extent_buffer *leaf;
8956 int need_clear = 0;
8957 u64 cache_gen;
8958
8959 root = info->extent_root;
8960 key.objectid = 0;
8961 key.offset = 0;
8962 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8963 path = btrfs_alloc_path();
8964 if (!path)
8965 return -ENOMEM;
8966 path->reada = 1;
8967
8968 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8969 if (btrfs_test_opt(root, SPACE_CACHE) &&
8970 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8971 need_clear = 1;
8972 if (btrfs_test_opt(root, CLEAR_CACHE))
8973 need_clear = 1;
8974
8975 while (1) {
8976 ret = find_first_block_group(root, path, &key);
8977 if (ret > 0)
8978 break;
8979 if (ret != 0)
8980 goto error;
8981
8982 leaf = path->nodes[0];
8983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8984
8985 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8986 found_key.offset);
8987 if (!cache) {
8988 ret = -ENOMEM;
8989 goto error;
8990 }
8991
8992 if (need_clear) {
8993 /*
8994 * When we mount with old space cache, we need to
8995 * set BTRFS_DC_CLEAR and set dirty flag.
8996 *
8997 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8998 * truncate the old free space cache inode and
8999 * setup a new one.
9000 * b) Setting 'dirty flag' makes sure that we flush
9001 * the new space cache info onto disk.
9002 */
9003 if (btrfs_test_opt(root, SPACE_CACHE))
9004 cache->disk_cache_state = BTRFS_DC_CLEAR;
9005 }
9006
9007 read_extent_buffer(leaf, &cache->item,
9008 btrfs_item_ptr_offset(leaf, path->slots[0]),
9009 sizeof(cache->item));
9010 cache->flags = btrfs_block_group_flags(&cache->item);
9011
9012 key.objectid = found_key.objectid + found_key.offset;
9013 btrfs_release_path(path);
9014
9015 /*
9016 * We need to exclude the super stripes now so that the space
9017 * info has super bytes accounted for, otherwise we'll think
9018 * we have more space than we actually do.
9019 */
9020 ret = exclude_super_stripes(root, cache);
9021 if (ret) {
9022 /*
9023 * We may have excluded something, so call this just in
9024 * case.
9025 */
9026 free_excluded_extents(root, cache);
9027 btrfs_put_block_group(cache);
9028 goto error;
9029 }
9030
9031 /*
9032 * check for two cases, either we are full, and therefore
9033 * don't need to bother with the caching work since we won't
9034 * find any space, or we are empty, and we can just add all
9035 * the space in and be done with it. This saves us _alot_ of
9036 * time, particularly in the full case.
9037 */
9038 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9039 cache->last_byte_to_unpin = (u64)-1;
9040 cache->cached = BTRFS_CACHE_FINISHED;
9041 free_excluded_extents(root, cache);
9042 } else if (btrfs_block_group_used(&cache->item) == 0) {
9043 cache->last_byte_to_unpin = (u64)-1;
9044 cache->cached = BTRFS_CACHE_FINISHED;
9045 add_new_free_space(cache, root->fs_info,
9046 found_key.objectid,
9047 found_key.objectid +
9048 found_key.offset);
9049 free_excluded_extents(root, cache);
9050 }
9051
9052 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9053 if (ret) {
9054 btrfs_remove_free_space_cache(cache);
9055 btrfs_put_block_group(cache);
9056 goto error;
9057 }
9058
9059 ret = update_space_info(info, cache->flags, found_key.offset,
9060 btrfs_block_group_used(&cache->item),
9061 &space_info);
9062 if (ret) {
9063 btrfs_remove_free_space_cache(cache);
9064 spin_lock(&info->block_group_cache_lock);
9065 rb_erase(&cache->cache_node,
9066 &info->block_group_cache_tree);
9067 RB_CLEAR_NODE(&cache->cache_node);
9068 spin_unlock(&info->block_group_cache_lock);
9069 btrfs_put_block_group(cache);
9070 goto error;
9071 }
9072
9073 cache->space_info = space_info;
9074 spin_lock(&cache->space_info->lock);
9075 cache->space_info->bytes_readonly += cache->bytes_super;
9076 spin_unlock(&cache->space_info->lock);
9077
9078 __link_block_group(space_info, cache);
9079
9080 set_avail_alloc_bits(root->fs_info, cache->flags);
9081 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9082 set_block_group_ro(cache, 1);
9083 } else if (btrfs_block_group_used(&cache->item) == 0) {
9084 spin_lock(&info->unused_bgs_lock);
9085 /* Should always be true but just in case. */
9086 if (list_empty(&cache->bg_list)) {
9087 btrfs_get_block_group(cache);
9088 list_add_tail(&cache->bg_list,
9089 &info->unused_bgs);
9090 }
9091 spin_unlock(&info->unused_bgs_lock);
9092 }
9093 }
9094
9095 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9096 if (!(get_alloc_profile(root, space_info->flags) &
9097 (BTRFS_BLOCK_GROUP_RAID10 |
9098 BTRFS_BLOCK_GROUP_RAID1 |
9099 BTRFS_BLOCK_GROUP_RAID5 |
9100 BTRFS_BLOCK_GROUP_RAID6 |
9101 BTRFS_BLOCK_GROUP_DUP)))
9102 continue;
9103 /*
9104 * avoid allocating from un-mirrored block group if there are
9105 * mirrored block groups.
9106 */
9107 list_for_each_entry(cache,
9108 &space_info->block_groups[BTRFS_RAID_RAID0],
9109 list)
9110 set_block_group_ro(cache, 1);
9111 list_for_each_entry(cache,
9112 &space_info->block_groups[BTRFS_RAID_SINGLE],
9113 list)
9114 set_block_group_ro(cache, 1);
9115 }
9116
9117 init_global_block_rsv(info);
9118 ret = 0;
9119 error:
9120 btrfs_free_path(path);
9121 return ret;
9122 }
9123
9124 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9125 struct btrfs_root *root)
9126 {
9127 struct btrfs_block_group_cache *block_group, *tmp;
9128 struct btrfs_root *extent_root = root->fs_info->extent_root;
9129 struct btrfs_block_group_item item;
9130 struct btrfs_key key;
9131 int ret = 0;
9132
9133 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9134 if (ret)
9135 goto next;
9136
9137 spin_lock(&block_group->lock);
9138 memcpy(&item, &block_group->item, sizeof(item));
9139 memcpy(&key, &block_group->key, sizeof(key));
9140 spin_unlock(&block_group->lock);
9141
9142 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9143 sizeof(item));
9144 if (ret)
9145 btrfs_abort_transaction(trans, extent_root, ret);
9146 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9147 key.objectid, key.offset);
9148 if (ret)
9149 btrfs_abort_transaction(trans, extent_root, ret);
9150 next:
9151 list_del_init(&block_group->bg_list);
9152 }
9153 }
9154
9155 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9156 struct btrfs_root *root, u64 bytes_used,
9157 u64 type, u64 chunk_objectid, u64 chunk_offset,
9158 u64 size)
9159 {
9160 int ret;
9161 struct btrfs_root *extent_root;
9162 struct btrfs_block_group_cache *cache;
9163
9164 extent_root = root->fs_info->extent_root;
9165
9166 btrfs_set_log_full_commit(root->fs_info, trans);
9167
9168 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9169 if (!cache)
9170 return -ENOMEM;
9171
9172 btrfs_set_block_group_used(&cache->item, bytes_used);
9173 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9174 btrfs_set_block_group_flags(&cache->item, type);
9175
9176 cache->flags = type;
9177 cache->last_byte_to_unpin = (u64)-1;
9178 cache->cached = BTRFS_CACHE_FINISHED;
9179 ret = exclude_super_stripes(root, cache);
9180 if (ret) {
9181 /*
9182 * We may have excluded something, so call this just in
9183 * case.
9184 */
9185 free_excluded_extents(root, cache);
9186 btrfs_put_block_group(cache);
9187 return ret;
9188 }
9189
9190 add_new_free_space(cache, root->fs_info, chunk_offset,
9191 chunk_offset + size);
9192
9193 free_excluded_extents(root, cache);
9194
9195 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9196 if (ret) {
9197 btrfs_remove_free_space_cache(cache);
9198 btrfs_put_block_group(cache);
9199 return ret;
9200 }
9201
9202 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9203 &cache->space_info);
9204 if (ret) {
9205 btrfs_remove_free_space_cache(cache);
9206 spin_lock(&root->fs_info->block_group_cache_lock);
9207 rb_erase(&cache->cache_node,
9208 &root->fs_info->block_group_cache_tree);
9209 RB_CLEAR_NODE(&cache->cache_node);
9210 spin_unlock(&root->fs_info->block_group_cache_lock);
9211 btrfs_put_block_group(cache);
9212 return ret;
9213 }
9214 update_global_block_rsv(root->fs_info);
9215
9216 spin_lock(&cache->space_info->lock);
9217 cache->space_info->bytes_readonly += cache->bytes_super;
9218 spin_unlock(&cache->space_info->lock);
9219
9220 __link_block_group(cache->space_info, cache);
9221
9222 list_add_tail(&cache->bg_list, &trans->new_bgs);
9223
9224 set_avail_alloc_bits(extent_root->fs_info, type);
9225
9226 return 0;
9227 }
9228
9229 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9230 {
9231 u64 extra_flags = chunk_to_extended(flags) &
9232 BTRFS_EXTENDED_PROFILE_MASK;
9233
9234 write_seqlock(&fs_info->profiles_lock);
9235 if (flags & BTRFS_BLOCK_GROUP_DATA)
9236 fs_info->avail_data_alloc_bits &= ~extra_flags;
9237 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9238 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9239 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9240 fs_info->avail_system_alloc_bits &= ~extra_flags;
9241 write_sequnlock(&fs_info->profiles_lock);
9242 }
9243
9244 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9245 struct btrfs_root *root, u64 group_start,
9246 struct extent_map *em)
9247 {
9248 struct btrfs_path *path;
9249 struct btrfs_block_group_cache *block_group;
9250 struct btrfs_free_cluster *cluster;
9251 struct btrfs_root *tree_root = root->fs_info->tree_root;
9252 struct btrfs_key key;
9253 struct inode *inode;
9254 struct kobject *kobj = NULL;
9255 int ret;
9256 int index;
9257 int factor;
9258 struct btrfs_caching_control *caching_ctl = NULL;
9259 bool remove_em;
9260
9261 root = root->fs_info->extent_root;
9262
9263 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9264 BUG_ON(!block_group);
9265 BUG_ON(!block_group->ro);
9266
9267 /*
9268 * Free the reserved super bytes from this block group before
9269 * remove it.
9270 */
9271 free_excluded_extents(root, block_group);
9272
9273 memcpy(&key, &block_group->key, sizeof(key));
9274 index = get_block_group_index(block_group);
9275 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9276 BTRFS_BLOCK_GROUP_RAID1 |
9277 BTRFS_BLOCK_GROUP_RAID10))
9278 factor = 2;
9279 else
9280 factor = 1;
9281
9282 /* make sure this block group isn't part of an allocation cluster */
9283 cluster = &root->fs_info->data_alloc_cluster;
9284 spin_lock(&cluster->refill_lock);
9285 btrfs_return_cluster_to_free_space(block_group, cluster);
9286 spin_unlock(&cluster->refill_lock);
9287
9288 /*
9289 * make sure this block group isn't part of a metadata
9290 * allocation cluster
9291 */
9292 cluster = &root->fs_info->meta_alloc_cluster;
9293 spin_lock(&cluster->refill_lock);
9294 btrfs_return_cluster_to_free_space(block_group, cluster);
9295 spin_unlock(&cluster->refill_lock);
9296
9297 path = btrfs_alloc_path();
9298 if (!path) {
9299 ret = -ENOMEM;
9300 goto out;
9301 }
9302
9303 inode = lookup_free_space_inode(tree_root, block_group, path);
9304 if (!IS_ERR(inode)) {
9305 ret = btrfs_orphan_add(trans, inode);
9306 if (ret) {
9307 btrfs_add_delayed_iput(inode);
9308 goto out;
9309 }
9310 clear_nlink(inode);
9311 /* One for the block groups ref */
9312 spin_lock(&block_group->lock);
9313 if (block_group->iref) {
9314 block_group->iref = 0;
9315 block_group->inode = NULL;
9316 spin_unlock(&block_group->lock);
9317 iput(inode);
9318 } else {
9319 spin_unlock(&block_group->lock);
9320 }
9321 /* One for our lookup ref */
9322 btrfs_add_delayed_iput(inode);
9323 }
9324
9325 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9326 key.offset = block_group->key.objectid;
9327 key.type = 0;
9328
9329 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9330 if (ret < 0)
9331 goto out;
9332 if (ret > 0)
9333 btrfs_release_path(path);
9334 if (ret == 0) {
9335 ret = btrfs_del_item(trans, tree_root, path);
9336 if (ret)
9337 goto out;
9338 btrfs_release_path(path);
9339 }
9340
9341 spin_lock(&root->fs_info->block_group_cache_lock);
9342 rb_erase(&block_group->cache_node,
9343 &root->fs_info->block_group_cache_tree);
9344 RB_CLEAR_NODE(&block_group->cache_node);
9345
9346 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9347 root->fs_info->first_logical_byte = (u64)-1;
9348 spin_unlock(&root->fs_info->block_group_cache_lock);
9349
9350 down_write(&block_group->space_info->groups_sem);
9351 /*
9352 * we must use list_del_init so people can check to see if they
9353 * are still on the list after taking the semaphore
9354 */
9355 list_del_init(&block_group->list);
9356 list_del_init(&block_group->ro_list);
9357 if (list_empty(&block_group->space_info->block_groups[index])) {
9358 kobj = block_group->space_info->block_group_kobjs[index];
9359 block_group->space_info->block_group_kobjs[index] = NULL;
9360 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9361 }
9362 up_write(&block_group->space_info->groups_sem);
9363 if (kobj) {
9364 kobject_del(kobj);
9365 kobject_put(kobj);
9366 }
9367
9368 if (block_group->has_caching_ctl)
9369 caching_ctl = get_caching_control(block_group);
9370 if (block_group->cached == BTRFS_CACHE_STARTED)
9371 wait_block_group_cache_done(block_group);
9372 if (block_group->has_caching_ctl) {
9373 down_write(&root->fs_info->commit_root_sem);
9374 if (!caching_ctl) {
9375 struct btrfs_caching_control *ctl;
9376
9377 list_for_each_entry(ctl,
9378 &root->fs_info->caching_block_groups, list)
9379 if (ctl->block_group == block_group) {
9380 caching_ctl = ctl;
9381 atomic_inc(&caching_ctl->count);
9382 break;
9383 }
9384 }
9385 if (caching_ctl)
9386 list_del_init(&caching_ctl->list);
9387 up_write(&root->fs_info->commit_root_sem);
9388 if (caching_ctl) {
9389 /* Once for the caching bgs list and once for us. */
9390 put_caching_control(caching_ctl);
9391 put_caching_control(caching_ctl);
9392 }
9393 }
9394
9395 spin_lock(&trans->transaction->dirty_bgs_lock);
9396 if (!list_empty(&block_group->dirty_list)) {
9397 list_del_init(&block_group->dirty_list);
9398 btrfs_put_block_group(block_group);
9399 }
9400 spin_unlock(&trans->transaction->dirty_bgs_lock);
9401
9402 btrfs_remove_free_space_cache(block_group);
9403
9404 spin_lock(&block_group->space_info->lock);
9405 block_group->space_info->total_bytes -= block_group->key.offset;
9406 block_group->space_info->bytes_readonly -= block_group->key.offset;
9407 block_group->space_info->disk_total -= block_group->key.offset * factor;
9408 spin_unlock(&block_group->space_info->lock);
9409
9410 memcpy(&key, &block_group->key, sizeof(key));
9411
9412 lock_chunks(root);
9413 if (!list_empty(&em->list)) {
9414 /* We're in the transaction->pending_chunks list. */
9415 free_extent_map(em);
9416 }
9417 spin_lock(&block_group->lock);
9418 block_group->removed = 1;
9419 /*
9420 * At this point trimming can't start on this block group, because we
9421 * removed the block group from the tree fs_info->block_group_cache_tree
9422 * so no one can't find it anymore and even if someone already got this
9423 * block group before we removed it from the rbtree, they have already
9424 * incremented block_group->trimming - if they didn't, they won't find
9425 * any free space entries because we already removed them all when we
9426 * called btrfs_remove_free_space_cache().
9427 *
9428 * And we must not remove the extent map from the fs_info->mapping_tree
9429 * to prevent the same logical address range and physical device space
9430 * ranges from being reused for a new block group. This is because our
9431 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9432 * completely transactionless, so while it is trimming a range the
9433 * currently running transaction might finish and a new one start,
9434 * allowing for new block groups to be created that can reuse the same
9435 * physical device locations unless we take this special care.
9436 */
9437 remove_em = (atomic_read(&block_group->trimming) == 0);
9438 /*
9439 * Make sure a trimmer task always sees the em in the pinned_chunks list
9440 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9441 * before checking block_group->removed).
9442 */
9443 if (!remove_em) {
9444 /*
9445 * Our em might be in trans->transaction->pending_chunks which
9446 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9447 * and so is the fs_info->pinned_chunks list.
9448 *
9449 * So at this point we must be holding the chunk_mutex to avoid
9450 * any races with chunk allocation (more specifically at
9451 * volumes.c:contains_pending_extent()), to ensure it always
9452 * sees the em, either in the pending_chunks list or in the
9453 * pinned_chunks list.
9454 */
9455 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9456 }
9457 spin_unlock(&block_group->lock);
9458
9459 if (remove_em) {
9460 struct extent_map_tree *em_tree;
9461
9462 em_tree = &root->fs_info->mapping_tree.map_tree;
9463 write_lock(&em_tree->lock);
9464 /*
9465 * The em might be in the pending_chunks list, so make sure the
9466 * chunk mutex is locked, since remove_extent_mapping() will
9467 * delete us from that list.
9468 */
9469 remove_extent_mapping(em_tree, em);
9470 write_unlock(&em_tree->lock);
9471 /* once for the tree */
9472 free_extent_map(em);
9473 }
9474
9475 unlock_chunks(root);
9476
9477 btrfs_put_block_group(block_group);
9478 btrfs_put_block_group(block_group);
9479
9480 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9481 if (ret > 0)
9482 ret = -EIO;
9483 if (ret < 0)
9484 goto out;
9485
9486 ret = btrfs_del_item(trans, root, path);
9487 out:
9488 btrfs_free_path(path);
9489 return ret;
9490 }
9491
9492 /*
9493 * Process the unused_bgs list and remove any that don't have any allocated
9494 * space inside of them.
9495 */
9496 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9497 {
9498 struct btrfs_block_group_cache *block_group;
9499 struct btrfs_space_info *space_info;
9500 struct btrfs_root *root = fs_info->extent_root;
9501 struct btrfs_trans_handle *trans;
9502 int ret = 0;
9503
9504 if (!fs_info->open)
9505 return;
9506
9507 spin_lock(&fs_info->unused_bgs_lock);
9508 while (!list_empty(&fs_info->unused_bgs)) {
9509 u64 start, end;
9510
9511 block_group = list_first_entry(&fs_info->unused_bgs,
9512 struct btrfs_block_group_cache,
9513 bg_list);
9514 space_info = block_group->space_info;
9515 list_del_init(&block_group->bg_list);
9516 if (ret || btrfs_mixed_space_info(space_info)) {
9517 btrfs_put_block_group(block_group);
9518 continue;
9519 }
9520 spin_unlock(&fs_info->unused_bgs_lock);
9521
9522 /* Don't want to race with allocators so take the groups_sem */
9523 down_write(&space_info->groups_sem);
9524 spin_lock(&block_group->lock);
9525 if (block_group->reserved ||
9526 btrfs_block_group_used(&block_group->item) ||
9527 block_group->ro) {
9528 /*
9529 * We want to bail if we made new allocations or have
9530 * outstanding allocations in this block group. We do
9531 * the ro check in case balance is currently acting on
9532 * this block group.
9533 */
9534 spin_unlock(&block_group->lock);
9535 up_write(&space_info->groups_sem);
9536 goto next;
9537 }
9538 spin_unlock(&block_group->lock);
9539
9540 /* We don't want to force the issue, only flip if it's ok. */
9541 ret = set_block_group_ro(block_group, 0);
9542 up_write(&space_info->groups_sem);
9543 if (ret < 0) {
9544 ret = 0;
9545 goto next;
9546 }
9547
9548 /*
9549 * Want to do this before we do anything else so we can recover
9550 * properly if we fail to join the transaction.
9551 */
9552 trans = btrfs_join_transaction(root);
9553 if (IS_ERR(trans)) {
9554 btrfs_set_block_group_rw(root, block_group);
9555 ret = PTR_ERR(trans);
9556 goto next;
9557 }
9558
9559 /*
9560 * We could have pending pinned extents for this block group,
9561 * just delete them, we don't care about them anymore.
9562 */
9563 start = block_group->key.objectid;
9564 end = start + block_group->key.offset - 1;
9565 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9566 EXTENT_DIRTY, GFP_NOFS);
9567 if (ret) {
9568 btrfs_set_block_group_rw(root, block_group);
9569 goto end_trans;
9570 }
9571 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9572 EXTENT_DIRTY, GFP_NOFS);
9573 if (ret) {
9574 btrfs_set_block_group_rw(root, block_group);
9575 goto end_trans;
9576 }
9577
9578 /* Reset pinned so btrfs_put_block_group doesn't complain */
9579 block_group->pinned = 0;
9580
9581 /*
9582 * Btrfs_remove_chunk will abort the transaction if things go
9583 * horribly wrong.
9584 */
9585 ret = btrfs_remove_chunk(trans, root,
9586 block_group->key.objectid);
9587 end_trans:
9588 btrfs_end_transaction(trans, root);
9589 next:
9590 btrfs_put_block_group(block_group);
9591 spin_lock(&fs_info->unused_bgs_lock);
9592 }
9593 spin_unlock(&fs_info->unused_bgs_lock);
9594 }
9595
9596 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9597 {
9598 struct btrfs_space_info *space_info;
9599 struct btrfs_super_block *disk_super;
9600 u64 features;
9601 u64 flags;
9602 int mixed = 0;
9603 int ret;
9604
9605 disk_super = fs_info->super_copy;
9606 if (!btrfs_super_root(disk_super))
9607 return 1;
9608
9609 features = btrfs_super_incompat_flags(disk_super);
9610 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9611 mixed = 1;
9612
9613 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9614 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9615 if (ret)
9616 goto out;
9617
9618 if (mixed) {
9619 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9620 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9621 } else {
9622 flags = BTRFS_BLOCK_GROUP_METADATA;
9623 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9624 if (ret)
9625 goto out;
9626
9627 flags = BTRFS_BLOCK_GROUP_DATA;
9628 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9629 }
9630 out:
9631 return ret;
9632 }
9633
9634 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9635 {
9636 return unpin_extent_range(root, start, end, false);
9637 }
9638
9639 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9640 {
9641 struct btrfs_fs_info *fs_info = root->fs_info;
9642 struct btrfs_block_group_cache *cache = NULL;
9643 u64 group_trimmed;
9644 u64 start;
9645 u64 end;
9646 u64 trimmed = 0;
9647 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9648 int ret = 0;
9649
9650 /*
9651 * try to trim all FS space, our block group may start from non-zero.
9652 */
9653 if (range->len == total_bytes)
9654 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9655 else
9656 cache = btrfs_lookup_block_group(fs_info, range->start);
9657
9658 while (cache) {
9659 if (cache->key.objectid >= (range->start + range->len)) {
9660 btrfs_put_block_group(cache);
9661 break;
9662 }
9663
9664 start = max(range->start, cache->key.objectid);
9665 end = min(range->start + range->len,
9666 cache->key.objectid + cache->key.offset);
9667
9668 if (end - start >= range->minlen) {
9669 if (!block_group_cache_done(cache)) {
9670 ret = cache_block_group(cache, 0);
9671 if (ret) {
9672 btrfs_put_block_group(cache);
9673 break;
9674 }
9675 ret = wait_block_group_cache_done(cache);
9676 if (ret) {
9677 btrfs_put_block_group(cache);
9678 break;
9679 }
9680 }
9681 ret = btrfs_trim_block_group(cache,
9682 &group_trimmed,
9683 start,
9684 end,
9685 range->minlen);
9686
9687 trimmed += group_trimmed;
9688 if (ret) {
9689 btrfs_put_block_group(cache);
9690 break;
9691 }
9692 }
9693
9694 cache = next_block_group(fs_info->tree_root, cache);
9695 }
9696
9697 range->len = trimmed;
9698 return ret;
9699 }
9700
9701 /*
9702 * btrfs_{start,end}_write_no_snapshoting() are similar to
9703 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9704 * data into the page cache through nocow before the subvolume is snapshoted,
9705 * but flush the data into disk after the snapshot creation, or to prevent
9706 * operations while snapshoting is ongoing and that cause the snapshot to be
9707 * inconsistent (writes followed by expanding truncates for example).
9708 */
9709 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9710 {
9711 percpu_counter_dec(&root->subv_writers->counter);
9712 /*
9713 * Make sure counter is updated before we wake up
9714 * waiters.
9715 */
9716 smp_mb();
9717 if (waitqueue_active(&root->subv_writers->wait))
9718 wake_up(&root->subv_writers->wait);
9719 }
9720
9721 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9722 {
9723 if (atomic_read(&root->will_be_snapshoted))
9724 return 0;
9725
9726 percpu_counter_inc(&root->subv_writers->counter);
9727 /*
9728 * Make sure counter is updated before we check for snapshot creation.
9729 */
9730 smp_mb();
9731 if (atomic_read(&root->will_be_snapshoted)) {
9732 btrfs_end_write_no_snapshoting(root);
9733 return 0;
9734 }
9735 return 1;
9736 }