]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent-tree.c
236a12f7d5f7377422e4748c76c2ba3865315c70
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 u64 extent_start, extent_end, size, total_added = 0;
344 int ret;
345
346 while (start < end) {
347 ret = find_first_extent_bit(info->pinned_extents, start,
348 &extent_start, &extent_end,
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
351 if (ret)
352 break;
353
354 if (extent_start <= start) {
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
358 total_added += size;
359 ret = btrfs_add_free_space(block_group, start,
360 size);
361 BUG_ON(ret); /* -ENOMEM or logic error */
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
370 total_added += size;
371 ret = btrfs_add_free_space(block_group, start, size);
372 BUG_ON(ret); /* -ENOMEM or logic error */
373 }
374
375 return total_added;
376 }
377
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret = -ENOMEM;
391
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
397 path = btrfs_alloc_path();
398 if (!path)
399 goto out;
400
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 /*
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
408 */
409 path->skip_locking = 1;
410 path->search_commit_root = 1;
411 path->reada = 1;
412
413 key.objectid = last;
414 key.offset = 0;
415 key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 mutex_lock(&caching_ctl->mutex);
418 /* need to make sure the commit_root doesn't disappear */
419 down_read(&fs_info->commit_root_sem);
420
421 next:
422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 if (ret < 0)
424 goto err;
425
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
429 while (1) {
430 if (btrfs_fs_closing(fs_info) > 1) {
431 last = (u64)-1;
432 break;
433 }
434
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
440 break;
441
442 if (need_resched() ||
443 rwsem_is_contended(&fs_info->commit_root_sem)) {
444 caching_ctl->progress = last;
445 btrfs_release_path(path);
446 up_read(&fs_info->commit_root_sem);
447 mutex_unlock(&caching_ctl->mutex);
448 cond_resched();
449 goto again;
450 }
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
460 }
461
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
474 continue;
475 }
476
477 if (key.objectid >= block_group->key.objectid +
478 block_group->key.offset)
479 break;
480
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
488 fs_info->tree_root->nodesize;
489 else
490 last = key.objectid + key.offset;
491
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
496 }
497 path->slots[0]++;
498 }
499 ret = 0;
500
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
504 caching_ctl->progress = (u64)-1;
505
506 spin_lock(&block_group->lock);
507 block_group->caching_ctl = NULL;
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
510
511 err:
512 btrfs_free_path(path);
513 up_read(&fs_info->commit_root_sem);
514
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
518 out:
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
528 btrfs_put_block_group(block_group);
529 }
530
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 int load_cache_only)
533 {
534 DEFINE_WAIT(wait);
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
537 int ret = 0;
538
539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 if (!caching_ctl)
541 return -ENOMEM;
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 mutex_lock(&caching_ctl->mutex);
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 caching_ctl->progress = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 cache->has_caching_ctl = 1;
607 }
608 }
609 spin_unlock(&cache->lock);
610 mutex_unlock(&caching_ctl->mutex);
611
612 wake_up(&caching_ctl->wait);
613 if (ret == 1) {
614 put_caching_control(caching_ctl);
615 free_excluded_extents(fs_info->extent_root, cache);
616 return 0;
617 }
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
629 cache->has_caching_ctl = 1;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->nodesize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
795 key.offset == root->nodesize)
796 ret = 0;
797 }
798 }
799
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 BUG();
819 #endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
839 btrfs_release_path(path);
840
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
848 goto search_again;
849 }
850 spin_lock(&head->lock);
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
857 spin_unlock(&head->lock);
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861 out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867 out_free:
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 /*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
936 *
937 * The extent ref structure for the implicit back refs has fields for:
938 *
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
943 *
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
946 *
947 * The extent ref structure for the full back refs has field for:
948 *
949 * - number of pointers in the tree leaf
950 *
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
953 *
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
956 *
957 * (root_key.objectid, inode objectid, offset in file, 1)
958 *
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
961 *
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
963 *
964 * Btree extents can be referenced by:
965 *
966 * - Different subvolumes
967 *
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
972 *
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
976 */
977
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
983 {
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
989 struct btrfs_key key;
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
1009 BUG_ON(ret > 0); /* Corruption */
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
1025 btrfs_release_path(path);
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
1035 BUG_ON(ret); /* Corruption */
1036
1037 btrfs_extend_item(root, path, new_size);
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057 }
1058 #endif
1059
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 lenum = cpu_to_le64(owner);
1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(offset);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078 {
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093 }
1094
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101 {
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
1104 struct extent_buffer *leaf;
1105 u32 nritems;
1106 int ret;
1107 int recow;
1108 int err = -ENOENT;
1109
1110 key.objectid = bytenr;
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119 again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
1126
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 btrfs_release_path(path);
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140 #endif
1141 goto fail;
1142 }
1143
1144 leaf = path->nodes[0];
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
1170 btrfs_release_path(path);
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
1177 }
1178 fail:
1179 return err;
1180 }
1181
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
1188 {
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
1191 u32 size;
1192 u32 num_refs;
1193 int ret;
1194
1195 key.objectid = bytenr;
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
1214 ref = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 }
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
1231 btrfs_release_path(path);
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
1237
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 }
1253 }
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256 fail:
1257 btrfs_release_path(path);
1258 return ret;
1259 }
1260
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 int refs_to_drop, int *last_ref)
1265 {
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
1269 struct extent_buffer *leaf;
1270 u32 num_refs = 0;
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 } else {
1292 BUG();
1293 }
1294
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
1297
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
1300 *last_ref = 1;
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
1322 {
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359 }
1360
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1366 {
1367 struct btrfs_key key;
1368 int ret;
1369
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1377 }
1378
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
1384 btrfs_release_path(path);
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1390 #endif
1391 return ret;
1392 }
1393
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
1399 {
1400 struct btrfs_key key;
1401 int ret;
1402
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 btrfs_release_path(path);
1414 return ret;
1415 }
1416
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
1432 }
1433
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
1436
1437 {
1438 for (; level < BTRFS_MAX_LEVEL; level++) {
1439 if (!path->nodes[level])
1440 break;
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453 }
1454
1455 /*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476 {
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
1492
1493 key.objectid = bytenr;
1494 key.type = BTRFS_EXTENT_ITEM_KEY;
1495 key.offset = num_bytes;
1496
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
1500 path->keep_locks = 1;
1501 } else
1502 extra_size = -1;
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513 again:
1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 if (ret < 0) {
1516 err = ret;
1517 goto out;
1518 }
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
1536 key.objectid = bytenr;
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
1547 } else if (WARN_ON(ret)) {
1548 err = -EIO;
1549 goto out;
1550 }
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569 #endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 if (insert) {
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656 }
1657
1658 /*
1659 * helper to add new inline back ref
1660 */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
1685 btrfs_extend_item(root, path, size);
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
1720 }
1721
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
1735 return ret;
1736
1737 btrfs_release_path(path);
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
1746 }
1747 return ret;
1748 }
1749
1750 /*
1751 * helper to update/remove inline back ref
1752 */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
1760 {
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
1792 }
1793
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
1803 *last_ref = 1;
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
1812 btrfs_truncate_item(root, path, item_size, 1);
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
1815 }
1816
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 update_inline_extent_backref(root, path, iref,
1835 refs_to_add, extent_op, NULL);
1836 } else if (ret == -ENOENT) {
1837 setup_inline_extent_backref(root, path, iref, parent,
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
1841 }
1842 return ret;
1843 }
1844
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862 }
1863
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
1868 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 int ret = 0;
1871
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
1874 update_inline_extent_backref(root, path, iref,
1875 -refs_to_drop, NULL, last_ref);
1876 } else if (is_data) {
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
1879 } else {
1880 *last_ref = 1;
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884 }
1885
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 u64 start, u64 len)
1888 {
1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891
1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 int ret;
1896 u64 discarded_bytes = 0;
1897 struct btrfs_bio *bbio = NULL;
1898
1899
1900 /* Tell the block device(s) that the sectors can be discarded */
1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 bytenr, &num_bytes, &bbio, 0);
1903 /* Error condition is -ENOMEM */
1904 if (!ret) {
1905 struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 int i;
1907
1908
1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 if (!stripe->dev->can_discard)
1911 continue;
1912
1913 ret = btrfs_issue_discard(stripe->dev->bdev,
1914 stripe->physical,
1915 stripe->length);
1916 if (!ret)
1917 discarded_bytes += stripe->length;
1918 else if (ret != -EOPNOTSUPP)
1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920
1921 /*
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1925 */
1926 ret = 0;
1927 }
1928 btrfs_put_bbio(bbio);
1929 }
1930
1931 if (actual_bytes)
1932 *actual_bytes = discarded_bytes;
1933
1934
1935 if (ret == -EOPNOTSUPP)
1936 ret = 0;
1937 return ret;
1938 }
1939
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 u64 bytenr, u64 num_bytes, u64 parent,
1944 u64 root_objectid, u64 owner, u64 offset,
1945 int no_quota)
1946 {
1947 int ret;
1948 struct btrfs_fs_info *fs_info = root->fs_info;
1949
1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952
1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 num_bytes,
1956 parent, root_objectid, (int)owner,
1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 } else {
1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 num_bytes,
1961 parent, root_objectid, owner, offset,
1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 }
1964 return ret;
1965 }
1966
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
1969 struct btrfs_delayed_ref_node *node,
1970 u64 parent, u64 root_objectid,
1971 u64 owner, u64 offset, int refs_to_add,
1972 struct btrfs_delayed_extent_op *extent_op)
1973 {
1974 struct btrfs_fs_info *fs_info = root->fs_info;
1975 struct btrfs_path *path;
1976 struct extent_buffer *leaf;
1977 struct btrfs_extent_item *item;
1978 struct btrfs_key key;
1979 u64 bytenr = node->bytenr;
1980 u64 num_bytes = node->num_bytes;
1981 u64 refs;
1982 int ret;
1983 int no_quota = node->no_quota;
1984 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1985
1986 path = btrfs_alloc_path();
1987 if (!path)
1988 return -ENOMEM;
1989
1990 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1991 no_quota = 1;
1992
1993 path->reada = 1;
1994 path->leave_spinning = 1;
1995 /* this will setup the path even if it fails to insert the back ref */
1996 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1997 bytenr, num_bytes, parent,
1998 root_objectid, owner, offset,
1999 refs_to_add, extent_op);
2000 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2001 goto out;
2002 /*
2003 * Ok we were able to insert an inline extent and it appears to be a new
2004 * reference, deal with the qgroup accounting.
2005 */
2006 if (!ret && !no_quota) {
2007 ASSERT(root->fs_info->quota_enabled);
2008 leaf = path->nodes[0];
2009 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2010 item = btrfs_item_ptr(leaf, path->slots[0],
2011 struct btrfs_extent_item);
2012 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2013 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2014 btrfs_release_path(path);
2015
2016 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2017 bytenr, num_bytes, type, 0);
2018 goto out;
2019 }
2020
2021 /*
2022 * Ok we had -EAGAIN which means we didn't have space to insert and
2023 * inline extent ref, so just update the reference count and add a
2024 * normal backref.
2025 */
2026 leaf = path->nodes[0];
2027 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2028 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2029 refs = btrfs_extent_refs(leaf, item);
2030 if (refs)
2031 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2032 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2033 if (extent_op)
2034 __run_delayed_extent_op(extent_op, leaf, item);
2035
2036 btrfs_mark_buffer_dirty(leaf);
2037 btrfs_release_path(path);
2038
2039 if (!no_quota) {
2040 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2041 bytenr, num_bytes, type, 0);
2042 if (ret)
2043 goto out;
2044 }
2045
2046 path->reada = 1;
2047 path->leave_spinning = 1;
2048 /* now insert the actual backref */
2049 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2050 path, bytenr, parent, root_objectid,
2051 owner, offset, refs_to_add);
2052 if (ret)
2053 btrfs_abort_transaction(trans, root, ret);
2054 out:
2055 btrfs_free_path(path);
2056 return ret;
2057 }
2058
2059 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2060 struct btrfs_root *root,
2061 struct btrfs_delayed_ref_node *node,
2062 struct btrfs_delayed_extent_op *extent_op,
2063 int insert_reserved)
2064 {
2065 int ret = 0;
2066 struct btrfs_delayed_data_ref *ref;
2067 struct btrfs_key ins;
2068 u64 parent = 0;
2069 u64 ref_root = 0;
2070 u64 flags = 0;
2071
2072 ins.objectid = node->bytenr;
2073 ins.offset = node->num_bytes;
2074 ins.type = BTRFS_EXTENT_ITEM_KEY;
2075
2076 ref = btrfs_delayed_node_to_data_ref(node);
2077 trace_run_delayed_data_ref(node, ref, node->action);
2078
2079 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2080 parent = ref->parent;
2081 ref_root = ref->root;
2082
2083 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2084 if (extent_op)
2085 flags |= extent_op->flags_to_set;
2086 ret = alloc_reserved_file_extent(trans, root,
2087 parent, ref_root, flags,
2088 ref->objectid, ref->offset,
2089 &ins, node->ref_mod);
2090 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2091 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node, parent,
2097 ref_root, ref->objectid,
2098 ref->offset, node->ref_mod,
2099 extent_op);
2100 } else {
2101 BUG();
2102 }
2103 return ret;
2104 }
2105
2106 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2107 struct extent_buffer *leaf,
2108 struct btrfs_extent_item *ei)
2109 {
2110 u64 flags = btrfs_extent_flags(leaf, ei);
2111 if (extent_op->update_flags) {
2112 flags |= extent_op->flags_to_set;
2113 btrfs_set_extent_flags(leaf, ei, flags);
2114 }
2115
2116 if (extent_op->update_key) {
2117 struct btrfs_tree_block_info *bi;
2118 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2119 bi = (struct btrfs_tree_block_info *)(ei + 1);
2120 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2121 }
2122 }
2123
2124 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2125 struct btrfs_root *root,
2126 struct btrfs_delayed_ref_node *node,
2127 struct btrfs_delayed_extent_op *extent_op)
2128 {
2129 struct btrfs_key key;
2130 struct btrfs_path *path;
2131 struct btrfs_extent_item *ei;
2132 struct extent_buffer *leaf;
2133 u32 item_size;
2134 int ret;
2135 int err = 0;
2136 int metadata = !extent_op->is_data;
2137
2138 if (trans->aborted)
2139 return 0;
2140
2141 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2142 metadata = 0;
2143
2144 path = btrfs_alloc_path();
2145 if (!path)
2146 return -ENOMEM;
2147
2148 key.objectid = node->bytenr;
2149
2150 if (metadata) {
2151 key.type = BTRFS_METADATA_ITEM_KEY;
2152 key.offset = extent_op->level;
2153 } else {
2154 key.type = BTRFS_EXTENT_ITEM_KEY;
2155 key.offset = node->num_bytes;
2156 }
2157
2158 again:
2159 path->reada = 1;
2160 path->leave_spinning = 1;
2161 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2162 path, 0, 1);
2163 if (ret < 0) {
2164 err = ret;
2165 goto out;
2166 }
2167 if (ret > 0) {
2168 if (metadata) {
2169 if (path->slots[0] > 0) {
2170 path->slots[0]--;
2171 btrfs_item_key_to_cpu(path->nodes[0], &key,
2172 path->slots[0]);
2173 if (key.objectid == node->bytenr &&
2174 key.type == BTRFS_EXTENT_ITEM_KEY &&
2175 key.offset == node->num_bytes)
2176 ret = 0;
2177 }
2178 if (ret > 0) {
2179 btrfs_release_path(path);
2180 metadata = 0;
2181
2182 key.objectid = node->bytenr;
2183 key.offset = node->num_bytes;
2184 key.type = BTRFS_EXTENT_ITEM_KEY;
2185 goto again;
2186 }
2187 } else {
2188 err = -EIO;
2189 goto out;
2190 }
2191 }
2192
2193 leaf = path->nodes[0];
2194 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2196 if (item_size < sizeof(*ei)) {
2197 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2198 path, (u64)-1, 0);
2199 if (ret < 0) {
2200 err = ret;
2201 goto out;
2202 }
2203 leaf = path->nodes[0];
2204 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2205 }
2206 #endif
2207 BUG_ON(item_size < sizeof(*ei));
2208 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2209 __run_delayed_extent_op(extent_op, leaf, ei);
2210
2211 btrfs_mark_buffer_dirty(leaf);
2212 out:
2213 btrfs_free_path(path);
2214 return err;
2215 }
2216
2217 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2218 struct btrfs_root *root,
2219 struct btrfs_delayed_ref_node *node,
2220 struct btrfs_delayed_extent_op *extent_op,
2221 int insert_reserved)
2222 {
2223 int ret = 0;
2224 struct btrfs_delayed_tree_ref *ref;
2225 struct btrfs_key ins;
2226 u64 parent = 0;
2227 u64 ref_root = 0;
2228 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2229 SKINNY_METADATA);
2230
2231 ref = btrfs_delayed_node_to_tree_ref(node);
2232 trace_run_delayed_tree_ref(node, ref, node->action);
2233
2234 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2235 parent = ref->parent;
2236 ref_root = ref->root;
2237
2238 ins.objectid = node->bytenr;
2239 if (skinny_metadata) {
2240 ins.offset = ref->level;
2241 ins.type = BTRFS_METADATA_ITEM_KEY;
2242 } else {
2243 ins.offset = node->num_bytes;
2244 ins.type = BTRFS_EXTENT_ITEM_KEY;
2245 }
2246
2247 BUG_ON(node->ref_mod != 1);
2248 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2249 BUG_ON(!extent_op || !extent_op->update_flags);
2250 ret = alloc_reserved_tree_block(trans, root,
2251 parent, ref_root,
2252 extent_op->flags_to_set,
2253 &extent_op->key,
2254 ref->level, &ins,
2255 node->no_quota);
2256 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2257 ret = __btrfs_inc_extent_ref(trans, root, node,
2258 parent, ref_root,
2259 ref->level, 0, 1,
2260 extent_op);
2261 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2262 ret = __btrfs_free_extent(trans, root, node,
2263 parent, ref_root,
2264 ref->level, 0, 1, extent_op);
2265 } else {
2266 BUG();
2267 }
2268 return ret;
2269 }
2270
2271 /* helper function to actually process a single delayed ref entry */
2272 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *root,
2274 struct btrfs_delayed_ref_node *node,
2275 struct btrfs_delayed_extent_op *extent_op,
2276 int insert_reserved)
2277 {
2278 int ret = 0;
2279
2280 if (trans->aborted) {
2281 if (insert_reserved)
2282 btrfs_pin_extent(root, node->bytenr,
2283 node->num_bytes, 1);
2284 return 0;
2285 }
2286
2287 if (btrfs_delayed_ref_is_head(node)) {
2288 struct btrfs_delayed_ref_head *head;
2289 /*
2290 * we've hit the end of the chain and we were supposed
2291 * to insert this extent into the tree. But, it got
2292 * deleted before we ever needed to insert it, so all
2293 * we have to do is clean up the accounting
2294 */
2295 BUG_ON(extent_op);
2296 head = btrfs_delayed_node_to_head(node);
2297 trace_run_delayed_ref_head(node, head, node->action);
2298
2299 if (insert_reserved) {
2300 btrfs_pin_extent(root, node->bytenr,
2301 node->num_bytes, 1);
2302 if (head->is_data) {
2303 ret = btrfs_del_csums(trans, root,
2304 node->bytenr,
2305 node->num_bytes);
2306 }
2307 }
2308 return ret;
2309 }
2310
2311 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2312 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2313 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2314 insert_reserved);
2315 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2316 node->type == BTRFS_SHARED_DATA_REF_KEY)
2317 ret = run_delayed_data_ref(trans, root, node, extent_op,
2318 insert_reserved);
2319 else
2320 BUG();
2321 return ret;
2322 }
2323
2324 static inline struct btrfs_delayed_ref_node *
2325 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2326 {
2327 if (list_empty(&head->ref_list))
2328 return NULL;
2329
2330 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2331 list);
2332 }
2333
2334 /*
2335 * Returns 0 on success or if called with an already aborted transaction.
2336 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2337 */
2338 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2339 struct btrfs_root *root,
2340 unsigned long nr)
2341 {
2342 struct btrfs_delayed_ref_root *delayed_refs;
2343 struct btrfs_delayed_ref_node *ref;
2344 struct btrfs_delayed_ref_head *locked_ref = NULL;
2345 struct btrfs_delayed_extent_op *extent_op;
2346 struct btrfs_fs_info *fs_info = root->fs_info;
2347 ktime_t start = ktime_get();
2348 int ret;
2349 unsigned long count = 0;
2350 unsigned long actual_count = 0;
2351 int must_insert_reserved = 0;
2352
2353 delayed_refs = &trans->transaction->delayed_refs;
2354 while (1) {
2355 if (!locked_ref) {
2356 if (count >= nr)
2357 break;
2358
2359 spin_lock(&delayed_refs->lock);
2360 locked_ref = btrfs_select_ref_head(trans);
2361 if (!locked_ref) {
2362 spin_unlock(&delayed_refs->lock);
2363 break;
2364 }
2365
2366 /* grab the lock that says we are going to process
2367 * all the refs for this head */
2368 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2369 spin_unlock(&delayed_refs->lock);
2370 /*
2371 * we may have dropped the spin lock to get the head
2372 * mutex lock, and that might have given someone else
2373 * time to free the head. If that's true, it has been
2374 * removed from our list and we can move on.
2375 */
2376 if (ret == -EAGAIN) {
2377 locked_ref = NULL;
2378 count++;
2379 continue;
2380 }
2381 }
2382
2383 spin_lock(&locked_ref->lock);
2384
2385 /*
2386 * locked_ref is the head node, so we have to go one
2387 * node back for any delayed ref updates
2388 */
2389 ref = select_delayed_ref(locked_ref);
2390
2391 if (ref && ref->seq &&
2392 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2393 spin_unlock(&locked_ref->lock);
2394 btrfs_delayed_ref_unlock(locked_ref);
2395 spin_lock(&delayed_refs->lock);
2396 locked_ref->processing = 0;
2397 delayed_refs->num_heads_ready++;
2398 spin_unlock(&delayed_refs->lock);
2399 locked_ref = NULL;
2400 cond_resched();
2401 count++;
2402 continue;
2403 }
2404
2405 /*
2406 * record the must insert reserved flag before we
2407 * drop the spin lock.
2408 */
2409 must_insert_reserved = locked_ref->must_insert_reserved;
2410 locked_ref->must_insert_reserved = 0;
2411
2412 extent_op = locked_ref->extent_op;
2413 locked_ref->extent_op = NULL;
2414
2415 if (!ref) {
2416
2417
2418 /* All delayed refs have been processed, Go ahead
2419 * and send the head node to run_one_delayed_ref,
2420 * so that any accounting fixes can happen
2421 */
2422 ref = &locked_ref->node;
2423
2424 if (extent_op && must_insert_reserved) {
2425 btrfs_free_delayed_extent_op(extent_op);
2426 extent_op = NULL;
2427 }
2428
2429 if (extent_op) {
2430 spin_unlock(&locked_ref->lock);
2431 ret = run_delayed_extent_op(trans, root,
2432 ref, extent_op);
2433 btrfs_free_delayed_extent_op(extent_op);
2434
2435 if (ret) {
2436 /*
2437 * Need to reset must_insert_reserved if
2438 * there was an error so the abort stuff
2439 * can cleanup the reserved space
2440 * properly.
2441 */
2442 if (must_insert_reserved)
2443 locked_ref->must_insert_reserved = 1;
2444 locked_ref->processing = 0;
2445 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2446 btrfs_delayed_ref_unlock(locked_ref);
2447 return ret;
2448 }
2449 continue;
2450 }
2451
2452 /*
2453 * Need to drop our head ref lock and re-aqcuire the
2454 * delayed ref lock and then re-check to make sure
2455 * nobody got added.
2456 */
2457 spin_unlock(&locked_ref->lock);
2458 spin_lock(&delayed_refs->lock);
2459 spin_lock(&locked_ref->lock);
2460 if (!list_empty(&locked_ref->ref_list) ||
2461 locked_ref->extent_op) {
2462 spin_unlock(&locked_ref->lock);
2463 spin_unlock(&delayed_refs->lock);
2464 continue;
2465 }
2466 ref->in_tree = 0;
2467 delayed_refs->num_heads--;
2468 rb_erase(&locked_ref->href_node,
2469 &delayed_refs->href_root);
2470 spin_unlock(&delayed_refs->lock);
2471 } else {
2472 actual_count++;
2473 ref->in_tree = 0;
2474 list_del(&ref->list);
2475 }
2476 atomic_dec(&delayed_refs->num_entries);
2477
2478 if (!btrfs_delayed_ref_is_head(ref)) {
2479 /*
2480 * when we play the delayed ref, also correct the
2481 * ref_mod on head
2482 */
2483 switch (ref->action) {
2484 case BTRFS_ADD_DELAYED_REF:
2485 case BTRFS_ADD_DELAYED_EXTENT:
2486 locked_ref->node.ref_mod -= ref->ref_mod;
2487 break;
2488 case BTRFS_DROP_DELAYED_REF:
2489 locked_ref->node.ref_mod += ref->ref_mod;
2490 break;
2491 default:
2492 WARN_ON(1);
2493 }
2494 }
2495 spin_unlock(&locked_ref->lock);
2496
2497 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2498 must_insert_reserved);
2499
2500 btrfs_free_delayed_extent_op(extent_op);
2501 if (ret) {
2502 locked_ref->processing = 0;
2503 btrfs_delayed_ref_unlock(locked_ref);
2504 btrfs_put_delayed_ref(ref);
2505 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2506 return ret;
2507 }
2508
2509 /*
2510 * If this node is a head, that means all the refs in this head
2511 * have been dealt with, and we will pick the next head to deal
2512 * with, so we must unlock the head and drop it from the cluster
2513 * list before we release it.
2514 */
2515 if (btrfs_delayed_ref_is_head(ref)) {
2516 if (locked_ref->is_data &&
2517 locked_ref->total_ref_mod < 0) {
2518 spin_lock(&delayed_refs->lock);
2519 delayed_refs->pending_csums -= ref->num_bytes;
2520 spin_unlock(&delayed_refs->lock);
2521 }
2522 btrfs_delayed_ref_unlock(locked_ref);
2523 locked_ref = NULL;
2524 }
2525 btrfs_put_delayed_ref(ref);
2526 count++;
2527 cond_resched();
2528 }
2529
2530 /*
2531 * We don't want to include ref heads since we can have empty ref heads
2532 * and those will drastically skew our runtime down since we just do
2533 * accounting, no actual extent tree updates.
2534 */
2535 if (actual_count > 0) {
2536 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2537 u64 avg;
2538
2539 /*
2540 * We weigh the current average higher than our current runtime
2541 * to avoid large swings in the average.
2542 */
2543 spin_lock(&delayed_refs->lock);
2544 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2545 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2546 spin_unlock(&delayed_refs->lock);
2547 }
2548 return 0;
2549 }
2550
2551 #ifdef SCRAMBLE_DELAYED_REFS
2552 /*
2553 * Normally delayed refs get processed in ascending bytenr order. This
2554 * correlates in most cases to the order added. To expose dependencies on this
2555 * order, we start to process the tree in the middle instead of the beginning
2556 */
2557 static u64 find_middle(struct rb_root *root)
2558 {
2559 struct rb_node *n = root->rb_node;
2560 struct btrfs_delayed_ref_node *entry;
2561 int alt = 1;
2562 u64 middle;
2563 u64 first = 0, last = 0;
2564
2565 n = rb_first(root);
2566 if (n) {
2567 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2568 first = entry->bytenr;
2569 }
2570 n = rb_last(root);
2571 if (n) {
2572 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2573 last = entry->bytenr;
2574 }
2575 n = root->rb_node;
2576
2577 while (n) {
2578 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2579 WARN_ON(!entry->in_tree);
2580
2581 middle = entry->bytenr;
2582
2583 if (alt)
2584 n = n->rb_left;
2585 else
2586 n = n->rb_right;
2587
2588 alt = 1 - alt;
2589 }
2590 return middle;
2591 }
2592 #endif
2593
2594 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2595 {
2596 u64 num_bytes;
2597
2598 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2599 sizeof(struct btrfs_extent_inline_ref));
2600 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2601 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2602
2603 /*
2604 * We don't ever fill up leaves all the way so multiply by 2 just to be
2605 * closer to what we're really going to want to ouse.
2606 */
2607 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2608 }
2609
2610 /*
2611 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2612 * would require to store the csums for that many bytes.
2613 */
2614 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2615 {
2616 u64 csum_size;
2617 u64 num_csums_per_leaf;
2618 u64 num_csums;
2619
2620 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2621 num_csums_per_leaf = div64_u64(csum_size,
2622 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2623 num_csums = div64_u64(csum_bytes, root->sectorsize);
2624 num_csums += num_csums_per_leaf - 1;
2625 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2626 return num_csums;
2627 }
2628
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root)
2631 {
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2635 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2636 u64 num_bytes, num_dirty_bgs_bytes;
2637 int ret = 0;
2638
2639 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2640 num_heads = heads_to_leaves(root, num_heads);
2641 if (num_heads > 1)
2642 num_bytes += (num_heads - 1) * root->nodesize;
2643 num_bytes <<= 1;
2644 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2645 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2646 num_dirty_bgs);
2647 global_rsv = &root->fs_info->global_block_rsv;
2648
2649 /*
2650 * If we can't allocate any more chunks lets make sure we have _lots_ of
2651 * wiggle room since running delayed refs can create more delayed refs.
2652 */
2653 if (global_rsv->space_info->full) {
2654 num_dirty_bgs_bytes <<= 1;
2655 num_bytes <<= 1;
2656 }
2657
2658 spin_lock(&global_rsv->lock);
2659 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2660 ret = 1;
2661 spin_unlock(&global_rsv->lock);
2662 return ret;
2663 }
2664
2665 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2666 struct btrfs_root *root)
2667 {
2668 struct btrfs_fs_info *fs_info = root->fs_info;
2669 u64 num_entries =
2670 atomic_read(&trans->transaction->delayed_refs.num_entries);
2671 u64 avg_runtime;
2672 u64 val;
2673
2674 smp_mb();
2675 avg_runtime = fs_info->avg_delayed_ref_runtime;
2676 val = num_entries * avg_runtime;
2677 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2678 return 1;
2679 if (val >= NSEC_PER_SEC / 2)
2680 return 2;
2681
2682 return btrfs_check_space_for_delayed_refs(trans, root);
2683 }
2684
2685 struct async_delayed_refs {
2686 struct btrfs_root *root;
2687 int count;
2688 int error;
2689 int sync;
2690 struct completion wait;
2691 struct btrfs_work work;
2692 };
2693
2694 static void delayed_ref_async_start(struct btrfs_work *work)
2695 {
2696 struct async_delayed_refs *async;
2697 struct btrfs_trans_handle *trans;
2698 int ret;
2699
2700 async = container_of(work, struct async_delayed_refs, work);
2701
2702 trans = btrfs_join_transaction(async->root);
2703 if (IS_ERR(trans)) {
2704 async->error = PTR_ERR(trans);
2705 goto done;
2706 }
2707
2708 /*
2709 * trans->sync means that when we call end_transaciton, we won't
2710 * wait on delayed refs
2711 */
2712 trans->sync = true;
2713 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2714 if (ret)
2715 async->error = ret;
2716
2717 ret = btrfs_end_transaction(trans, async->root);
2718 if (ret && !async->error)
2719 async->error = ret;
2720 done:
2721 if (async->sync)
2722 complete(&async->wait);
2723 else
2724 kfree(async);
2725 }
2726
2727 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2728 unsigned long count, int wait)
2729 {
2730 struct async_delayed_refs *async;
2731 int ret;
2732
2733 async = kmalloc(sizeof(*async), GFP_NOFS);
2734 if (!async)
2735 return -ENOMEM;
2736
2737 async->root = root->fs_info->tree_root;
2738 async->count = count;
2739 async->error = 0;
2740 if (wait)
2741 async->sync = 1;
2742 else
2743 async->sync = 0;
2744 init_completion(&async->wait);
2745
2746 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2747 delayed_ref_async_start, NULL, NULL);
2748
2749 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2750
2751 if (wait) {
2752 wait_for_completion(&async->wait);
2753 ret = async->error;
2754 kfree(async);
2755 return ret;
2756 }
2757 return 0;
2758 }
2759
2760 /*
2761 * this starts processing the delayed reference count updates and
2762 * extent insertions we have queued up so far. count can be
2763 * 0, which means to process everything in the tree at the start
2764 * of the run (but not newly added entries), or it can be some target
2765 * number you'd like to process.
2766 *
2767 * Returns 0 on success or if called with an aborted transaction
2768 * Returns <0 on error and aborts the transaction
2769 */
2770 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2771 struct btrfs_root *root, unsigned long count)
2772 {
2773 struct rb_node *node;
2774 struct btrfs_delayed_ref_root *delayed_refs;
2775 struct btrfs_delayed_ref_head *head;
2776 int ret;
2777 int run_all = count == (unsigned long)-1;
2778
2779 /* We'll clean this up in btrfs_cleanup_transaction */
2780 if (trans->aborted)
2781 return 0;
2782
2783 if (root == root->fs_info->extent_root)
2784 root = root->fs_info->tree_root;
2785
2786 delayed_refs = &trans->transaction->delayed_refs;
2787 if (count == 0)
2788 count = atomic_read(&delayed_refs->num_entries) * 2;
2789
2790 again:
2791 #ifdef SCRAMBLE_DELAYED_REFS
2792 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2793 #endif
2794 ret = __btrfs_run_delayed_refs(trans, root, count);
2795 if (ret < 0) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 return ret;
2798 }
2799
2800 if (run_all) {
2801 if (!list_empty(&trans->new_bgs))
2802 btrfs_create_pending_block_groups(trans, root);
2803
2804 spin_lock(&delayed_refs->lock);
2805 node = rb_first(&delayed_refs->href_root);
2806 if (!node) {
2807 spin_unlock(&delayed_refs->lock);
2808 goto out;
2809 }
2810 count = (unsigned long)-1;
2811
2812 while (node) {
2813 head = rb_entry(node, struct btrfs_delayed_ref_head,
2814 href_node);
2815 if (btrfs_delayed_ref_is_head(&head->node)) {
2816 struct btrfs_delayed_ref_node *ref;
2817
2818 ref = &head->node;
2819 atomic_inc(&ref->refs);
2820
2821 spin_unlock(&delayed_refs->lock);
2822 /*
2823 * Mutex was contended, block until it's
2824 * released and try again
2825 */
2826 mutex_lock(&head->mutex);
2827 mutex_unlock(&head->mutex);
2828
2829 btrfs_put_delayed_ref(ref);
2830 cond_resched();
2831 goto again;
2832 } else {
2833 WARN_ON(1);
2834 }
2835 node = rb_next(node);
2836 }
2837 spin_unlock(&delayed_refs->lock);
2838 cond_resched();
2839 goto again;
2840 }
2841 out:
2842 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2843 if (ret)
2844 return ret;
2845 assert_qgroups_uptodate(trans);
2846 return 0;
2847 }
2848
2849 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2850 struct btrfs_root *root,
2851 u64 bytenr, u64 num_bytes, u64 flags,
2852 int level, int is_data)
2853 {
2854 struct btrfs_delayed_extent_op *extent_op;
2855 int ret;
2856
2857 extent_op = btrfs_alloc_delayed_extent_op();
2858 if (!extent_op)
2859 return -ENOMEM;
2860
2861 extent_op->flags_to_set = flags;
2862 extent_op->update_flags = 1;
2863 extent_op->update_key = 0;
2864 extent_op->is_data = is_data ? 1 : 0;
2865 extent_op->level = level;
2866
2867 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2868 num_bytes, extent_op);
2869 if (ret)
2870 btrfs_free_delayed_extent_op(extent_op);
2871 return ret;
2872 }
2873
2874 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 struct btrfs_path *path,
2877 u64 objectid, u64 offset, u64 bytenr)
2878 {
2879 struct btrfs_delayed_ref_head *head;
2880 struct btrfs_delayed_ref_node *ref;
2881 struct btrfs_delayed_data_ref *data_ref;
2882 struct btrfs_delayed_ref_root *delayed_refs;
2883 int ret = 0;
2884
2885 delayed_refs = &trans->transaction->delayed_refs;
2886 spin_lock(&delayed_refs->lock);
2887 head = btrfs_find_delayed_ref_head(trans, bytenr);
2888 if (!head) {
2889 spin_unlock(&delayed_refs->lock);
2890 return 0;
2891 }
2892
2893 if (!mutex_trylock(&head->mutex)) {
2894 atomic_inc(&head->node.refs);
2895 spin_unlock(&delayed_refs->lock);
2896
2897 btrfs_release_path(path);
2898
2899 /*
2900 * Mutex was contended, block until it's released and let
2901 * caller try again
2902 */
2903 mutex_lock(&head->mutex);
2904 mutex_unlock(&head->mutex);
2905 btrfs_put_delayed_ref(&head->node);
2906 return -EAGAIN;
2907 }
2908 spin_unlock(&delayed_refs->lock);
2909
2910 spin_lock(&head->lock);
2911 list_for_each_entry(ref, &head->ref_list, list) {
2912 /* If it's a shared ref we know a cross reference exists */
2913 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2914 ret = 1;
2915 break;
2916 }
2917
2918 data_ref = btrfs_delayed_node_to_data_ref(ref);
2919
2920 /*
2921 * If our ref doesn't match the one we're currently looking at
2922 * then we have a cross reference.
2923 */
2924 if (data_ref->root != root->root_key.objectid ||
2925 data_ref->objectid != objectid ||
2926 data_ref->offset != offset) {
2927 ret = 1;
2928 break;
2929 }
2930 }
2931 spin_unlock(&head->lock);
2932 mutex_unlock(&head->mutex);
2933 return ret;
2934 }
2935
2936 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root,
2938 struct btrfs_path *path,
2939 u64 objectid, u64 offset, u64 bytenr)
2940 {
2941 struct btrfs_root *extent_root = root->fs_info->extent_root;
2942 struct extent_buffer *leaf;
2943 struct btrfs_extent_data_ref *ref;
2944 struct btrfs_extent_inline_ref *iref;
2945 struct btrfs_extent_item *ei;
2946 struct btrfs_key key;
2947 u32 item_size;
2948 int ret;
2949
2950 key.objectid = bytenr;
2951 key.offset = (u64)-1;
2952 key.type = BTRFS_EXTENT_ITEM_KEY;
2953
2954 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2955 if (ret < 0)
2956 goto out;
2957 BUG_ON(ret == 0); /* Corruption */
2958
2959 ret = -ENOENT;
2960 if (path->slots[0] == 0)
2961 goto out;
2962
2963 path->slots[0]--;
2964 leaf = path->nodes[0];
2965 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2966
2967 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2968 goto out;
2969
2970 ret = 1;
2971 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2972 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2973 if (item_size < sizeof(*ei)) {
2974 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2975 goto out;
2976 }
2977 #endif
2978 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2979
2980 if (item_size != sizeof(*ei) +
2981 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2982 goto out;
2983
2984 if (btrfs_extent_generation(leaf, ei) <=
2985 btrfs_root_last_snapshot(&root->root_item))
2986 goto out;
2987
2988 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2989 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2990 BTRFS_EXTENT_DATA_REF_KEY)
2991 goto out;
2992
2993 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2994 if (btrfs_extent_refs(leaf, ei) !=
2995 btrfs_extent_data_ref_count(leaf, ref) ||
2996 btrfs_extent_data_ref_root(leaf, ref) !=
2997 root->root_key.objectid ||
2998 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2999 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3000 goto out;
3001
3002 ret = 0;
3003 out:
3004 return ret;
3005 }
3006
3007 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3008 struct btrfs_root *root,
3009 u64 objectid, u64 offset, u64 bytenr)
3010 {
3011 struct btrfs_path *path;
3012 int ret;
3013 int ret2;
3014
3015 path = btrfs_alloc_path();
3016 if (!path)
3017 return -ENOENT;
3018
3019 do {
3020 ret = check_committed_ref(trans, root, path, objectid,
3021 offset, bytenr);
3022 if (ret && ret != -ENOENT)
3023 goto out;
3024
3025 ret2 = check_delayed_ref(trans, root, path, objectid,
3026 offset, bytenr);
3027 } while (ret2 == -EAGAIN);
3028
3029 if (ret2 && ret2 != -ENOENT) {
3030 ret = ret2;
3031 goto out;
3032 }
3033
3034 if (ret != -ENOENT || ret2 != -ENOENT)
3035 ret = 0;
3036 out:
3037 btrfs_free_path(path);
3038 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3039 WARN_ON(ret > 0);
3040 return ret;
3041 }
3042
3043 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3044 struct btrfs_root *root,
3045 struct extent_buffer *buf,
3046 int full_backref, int inc)
3047 {
3048 u64 bytenr;
3049 u64 num_bytes;
3050 u64 parent;
3051 u64 ref_root;
3052 u32 nritems;
3053 struct btrfs_key key;
3054 struct btrfs_file_extent_item *fi;
3055 int i;
3056 int level;
3057 int ret = 0;
3058 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3059 u64, u64, u64, u64, u64, u64, int);
3060
3061
3062 if (btrfs_test_is_dummy_root(root))
3063 return 0;
3064
3065 ref_root = btrfs_header_owner(buf);
3066 nritems = btrfs_header_nritems(buf);
3067 level = btrfs_header_level(buf);
3068
3069 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3070 return 0;
3071
3072 if (inc)
3073 process_func = btrfs_inc_extent_ref;
3074 else
3075 process_func = btrfs_free_extent;
3076
3077 if (full_backref)
3078 parent = buf->start;
3079 else
3080 parent = 0;
3081
3082 for (i = 0; i < nritems; i++) {
3083 if (level == 0) {
3084 btrfs_item_key_to_cpu(buf, &key, i);
3085 if (key.type != BTRFS_EXTENT_DATA_KEY)
3086 continue;
3087 fi = btrfs_item_ptr(buf, i,
3088 struct btrfs_file_extent_item);
3089 if (btrfs_file_extent_type(buf, fi) ==
3090 BTRFS_FILE_EXTENT_INLINE)
3091 continue;
3092 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3093 if (bytenr == 0)
3094 continue;
3095
3096 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3097 key.offset -= btrfs_file_extent_offset(buf, fi);
3098 ret = process_func(trans, root, bytenr, num_bytes,
3099 parent, ref_root, key.objectid,
3100 key.offset, 1);
3101 if (ret)
3102 goto fail;
3103 } else {
3104 bytenr = btrfs_node_blockptr(buf, i);
3105 num_bytes = root->nodesize;
3106 ret = process_func(trans, root, bytenr, num_bytes,
3107 parent, ref_root, level - 1, 0,
3108 1);
3109 if (ret)
3110 goto fail;
3111 }
3112 }
3113 return 0;
3114 fail:
3115 return ret;
3116 }
3117
3118 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3119 struct extent_buffer *buf, int full_backref)
3120 {
3121 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3122 }
3123
3124 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3125 struct extent_buffer *buf, int full_backref)
3126 {
3127 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3128 }
3129
3130 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3131 struct btrfs_root *root,
3132 struct btrfs_path *path,
3133 struct btrfs_block_group_cache *cache)
3134 {
3135 int ret;
3136 struct btrfs_root *extent_root = root->fs_info->extent_root;
3137 unsigned long bi;
3138 struct extent_buffer *leaf;
3139
3140 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3141 if (ret) {
3142 if (ret > 0)
3143 ret = -ENOENT;
3144 goto fail;
3145 }
3146
3147 leaf = path->nodes[0];
3148 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3149 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3150 btrfs_mark_buffer_dirty(leaf);
3151 fail:
3152 btrfs_release_path(path);
3153 return ret;
3154
3155 }
3156
3157 static struct btrfs_block_group_cache *
3158 next_block_group(struct btrfs_root *root,
3159 struct btrfs_block_group_cache *cache)
3160 {
3161 struct rb_node *node;
3162
3163 spin_lock(&root->fs_info->block_group_cache_lock);
3164
3165 /* If our block group was removed, we need a full search. */
3166 if (RB_EMPTY_NODE(&cache->cache_node)) {
3167 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3168
3169 spin_unlock(&root->fs_info->block_group_cache_lock);
3170 btrfs_put_block_group(cache);
3171 cache = btrfs_lookup_first_block_group(root->fs_info,
3172 next_bytenr);
3173 return cache;
3174 }
3175 node = rb_next(&cache->cache_node);
3176 btrfs_put_block_group(cache);
3177 if (node) {
3178 cache = rb_entry(node, struct btrfs_block_group_cache,
3179 cache_node);
3180 btrfs_get_block_group(cache);
3181 } else
3182 cache = NULL;
3183 spin_unlock(&root->fs_info->block_group_cache_lock);
3184 return cache;
3185 }
3186
3187 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3188 struct btrfs_trans_handle *trans,
3189 struct btrfs_path *path)
3190 {
3191 struct btrfs_root *root = block_group->fs_info->tree_root;
3192 struct inode *inode = NULL;
3193 u64 alloc_hint = 0;
3194 int dcs = BTRFS_DC_ERROR;
3195 u64 num_pages = 0;
3196 int retries = 0;
3197 int ret = 0;
3198
3199 /*
3200 * If this block group is smaller than 100 megs don't bother caching the
3201 * block group.
3202 */
3203 if (block_group->key.offset < (100 * 1024 * 1024)) {
3204 spin_lock(&block_group->lock);
3205 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3206 spin_unlock(&block_group->lock);
3207 return 0;
3208 }
3209
3210 if (trans->aborted)
3211 return 0;
3212 again:
3213 inode = lookup_free_space_inode(root, block_group, path);
3214 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3215 ret = PTR_ERR(inode);
3216 btrfs_release_path(path);
3217 goto out;
3218 }
3219
3220 if (IS_ERR(inode)) {
3221 BUG_ON(retries);
3222 retries++;
3223
3224 if (block_group->ro)
3225 goto out_free;
3226
3227 ret = create_free_space_inode(root, trans, block_group, path);
3228 if (ret)
3229 goto out_free;
3230 goto again;
3231 }
3232
3233 /* We've already setup this transaction, go ahead and exit */
3234 if (block_group->cache_generation == trans->transid &&
3235 i_size_read(inode)) {
3236 dcs = BTRFS_DC_SETUP;
3237 goto out_put;
3238 }
3239
3240 /*
3241 * We want to set the generation to 0, that way if anything goes wrong
3242 * from here on out we know not to trust this cache when we load up next
3243 * time.
3244 */
3245 BTRFS_I(inode)->generation = 0;
3246 ret = btrfs_update_inode(trans, root, inode);
3247 if (ret) {
3248 /*
3249 * So theoretically we could recover from this, simply set the
3250 * super cache generation to 0 so we know to invalidate the
3251 * cache, but then we'd have to keep track of the block groups
3252 * that fail this way so we know we _have_ to reset this cache
3253 * before the next commit or risk reading stale cache. So to
3254 * limit our exposure to horrible edge cases lets just abort the
3255 * transaction, this only happens in really bad situations
3256 * anyway.
3257 */
3258 btrfs_abort_transaction(trans, root, ret);
3259 goto out_put;
3260 }
3261 WARN_ON(ret);
3262
3263 if (i_size_read(inode) > 0) {
3264 ret = btrfs_check_trunc_cache_free_space(root,
3265 &root->fs_info->global_block_rsv);
3266 if (ret)
3267 goto out_put;
3268
3269 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3270 if (ret)
3271 goto out_put;
3272 }
3273
3274 spin_lock(&block_group->lock);
3275 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3276 !btrfs_test_opt(root, SPACE_CACHE)) {
3277 /*
3278 * don't bother trying to write stuff out _if_
3279 * a) we're not cached,
3280 * b) we're with nospace_cache mount option.
3281 */
3282 dcs = BTRFS_DC_WRITTEN;
3283 spin_unlock(&block_group->lock);
3284 goto out_put;
3285 }
3286 spin_unlock(&block_group->lock);
3287
3288 /*
3289 * Try to preallocate enough space based on how big the block group is.
3290 * Keep in mind this has to include any pinned space which could end up
3291 * taking up quite a bit since it's not folded into the other space
3292 * cache.
3293 */
3294 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3295 if (!num_pages)
3296 num_pages = 1;
3297
3298 num_pages *= 16;
3299 num_pages *= PAGE_CACHE_SIZE;
3300
3301 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3302 if (ret)
3303 goto out_put;
3304
3305 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3306 num_pages, num_pages,
3307 &alloc_hint);
3308 if (!ret)
3309 dcs = BTRFS_DC_SETUP;
3310 btrfs_free_reserved_data_space(inode, num_pages);
3311
3312 out_put:
3313 iput(inode);
3314 out_free:
3315 btrfs_release_path(path);
3316 out:
3317 spin_lock(&block_group->lock);
3318 if (!ret && dcs == BTRFS_DC_SETUP)
3319 block_group->cache_generation = trans->transid;
3320 block_group->disk_cache_state = dcs;
3321 spin_unlock(&block_group->lock);
3322
3323 return ret;
3324 }
3325
3326 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3327 struct btrfs_root *root)
3328 {
3329 struct btrfs_block_group_cache *cache, *tmp;
3330 struct btrfs_transaction *cur_trans = trans->transaction;
3331 struct btrfs_path *path;
3332
3333 if (list_empty(&cur_trans->dirty_bgs) ||
3334 !btrfs_test_opt(root, SPACE_CACHE))
3335 return 0;
3336
3337 path = btrfs_alloc_path();
3338 if (!path)
3339 return -ENOMEM;
3340
3341 /* Could add new block groups, use _safe just in case */
3342 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3343 dirty_list) {
3344 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3345 cache_save_setup(cache, trans, path);
3346 }
3347
3348 btrfs_free_path(path);
3349 return 0;
3350 }
3351
3352 /*
3353 * transaction commit does final block group cache writeback during a
3354 * critical section where nothing is allowed to change the FS. This is
3355 * required in order for the cache to actually match the block group,
3356 * but can introduce a lot of latency into the commit.
3357 *
3358 * So, btrfs_start_dirty_block_groups is here to kick off block group
3359 * cache IO. There's a chance we'll have to redo some of it if the
3360 * block group changes again during the commit, but it greatly reduces
3361 * the commit latency by getting rid of the easy block groups while
3362 * we're still allowing others to join the commit.
3363 */
3364 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3365 struct btrfs_root *root)
3366 {
3367 struct btrfs_block_group_cache *cache;
3368 struct btrfs_transaction *cur_trans = trans->transaction;
3369 int ret = 0;
3370 int should_put;
3371 struct btrfs_path *path = NULL;
3372 LIST_HEAD(dirty);
3373 struct list_head *io = &cur_trans->io_bgs;
3374 int num_started = 0;
3375 int loops = 0;
3376
3377 spin_lock(&cur_trans->dirty_bgs_lock);
3378 if (list_empty(&cur_trans->dirty_bgs)) {
3379 spin_unlock(&cur_trans->dirty_bgs_lock);
3380 return 0;
3381 }
3382 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3383 spin_unlock(&cur_trans->dirty_bgs_lock);
3384
3385 again:
3386 /*
3387 * make sure all the block groups on our dirty list actually
3388 * exist
3389 */
3390 btrfs_create_pending_block_groups(trans, root);
3391
3392 if (!path) {
3393 path = btrfs_alloc_path();
3394 if (!path)
3395 return -ENOMEM;
3396 }
3397
3398 /*
3399 * cache_write_mutex is here only to save us from balance or automatic
3400 * removal of empty block groups deleting this block group while we are
3401 * writing out the cache
3402 */
3403 mutex_lock(&trans->transaction->cache_write_mutex);
3404 while (!list_empty(&dirty)) {
3405 cache = list_first_entry(&dirty,
3406 struct btrfs_block_group_cache,
3407 dirty_list);
3408 /*
3409 * this can happen if something re-dirties a block
3410 * group that is already under IO. Just wait for it to
3411 * finish and then do it all again
3412 */
3413 if (!list_empty(&cache->io_list)) {
3414 list_del_init(&cache->io_list);
3415 btrfs_wait_cache_io(root, trans, cache,
3416 &cache->io_ctl, path,
3417 cache->key.objectid);
3418 btrfs_put_block_group(cache);
3419 }
3420
3421
3422 /*
3423 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3424 * if it should update the cache_state. Don't delete
3425 * until after we wait.
3426 *
3427 * Since we're not running in the commit critical section
3428 * we need the dirty_bgs_lock to protect from update_block_group
3429 */
3430 spin_lock(&cur_trans->dirty_bgs_lock);
3431 list_del_init(&cache->dirty_list);
3432 spin_unlock(&cur_trans->dirty_bgs_lock);
3433
3434 should_put = 1;
3435
3436 cache_save_setup(cache, trans, path);
3437
3438 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3439 cache->io_ctl.inode = NULL;
3440 ret = btrfs_write_out_cache(root, trans, cache, path);
3441 if (ret == 0 && cache->io_ctl.inode) {
3442 num_started++;
3443 should_put = 0;
3444
3445 /*
3446 * the cache_write_mutex is protecting
3447 * the io_list
3448 */
3449 list_add_tail(&cache->io_list, io);
3450 } else {
3451 /*
3452 * if we failed to write the cache, the
3453 * generation will be bad and life goes on
3454 */
3455 ret = 0;
3456 }
3457 }
3458 if (!ret) {
3459 ret = write_one_cache_group(trans, root, path, cache);
3460 /*
3461 * Our block group might still be attached to the list
3462 * of new block groups in the transaction handle of some
3463 * other task (struct btrfs_trans_handle->new_bgs). This
3464 * means its block group item isn't yet in the extent
3465 * tree. If this happens ignore the error, as we will
3466 * try again later in the critical section of the
3467 * transaction commit.
3468 */
3469 if (ret == -ENOENT) {
3470 ret = 0;
3471 spin_lock(&cur_trans->dirty_bgs_lock);
3472 if (list_empty(&cache->dirty_list)) {
3473 list_add_tail(&cache->dirty_list,
3474 &cur_trans->dirty_bgs);
3475 btrfs_get_block_group(cache);
3476 }
3477 spin_unlock(&cur_trans->dirty_bgs_lock);
3478 } else if (ret) {
3479 btrfs_abort_transaction(trans, root, ret);
3480 }
3481 }
3482
3483 /* if its not on the io list, we need to put the block group */
3484 if (should_put)
3485 btrfs_put_block_group(cache);
3486
3487 if (ret)
3488 break;
3489
3490 /*
3491 * Avoid blocking other tasks for too long. It might even save
3492 * us from writing caches for block groups that are going to be
3493 * removed.
3494 */
3495 mutex_unlock(&trans->transaction->cache_write_mutex);
3496 mutex_lock(&trans->transaction->cache_write_mutex);
3497 }
3498 mutex_unlock(&trans->transaction->cache_write_mutex);
3499
3500 /*
3501 * go through delayed refs for all the stuff we've just kicked off
3502 * and then loop back (just once)
3503 */
3504 ret = btrfs_run_delayed_refs(trans, root, 0);
3505 if (!ret && loops == 0) {
3506 loops++;
3507 spin_lock(&cur_trans->dirty_bgs_lock);
3508 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3509 /*
3510 * dirty_bgs_lock protects us from concurrent block group
3511 * deletes too (not just cache_write_mutex).
3512 */
3513 if (!list_empty(&dirty)) {
3514 spin_unlock(&cur_trans->dirty_bgs_lock);
3515 goto again;
3516 }
3517 spin_unlock(&cur_trans->dirty_bgs_lock);
3518 }
3519
3520 btrfs_free_path(path);
3521 return ret;
3522 }
3523
3524 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3525 struct btrfs_root *root)
3526 {
3527 struct btrfs_block_group_cache *cache;
3528 struct btrfs_transaction *cur_trans = trans->transaction;
3529 int ret = 0;
3530 int should_put;
3531 struct btrfs_path *path;
3532 struct list_head *io = &cur_trans->io_bgs;
3533 int num_started = 0;
3534
3535 path = btrfs_alloc_path();
3536 if (!path)
3537 return -ENOMEM;
3538
3539 /*
3540 * We don't need the lock here since we are protected by the transaction
3541 * commit. We want to do the cache_save_setup first and then run the
3542 * delayed refs to make sure we have the best chance at doing this all
3543 * in one shot.
3544 */
3545 while (!list_empty(&cur_trans->dirty_bgs)) {
3546 cache = list_first_entry(&cur_trans->dirty_bgs,
3547 struct btrfs_block_group_cache,
3548 dirty_list);
3549
3550 /*
3551 * this can happen if cache_save_setup re-dirties a block
3552 * group that is already under IO. Just wait for it to
3553 * finish and then do it all again
3554 */
3555 if (!list_empty(&cache->io_list)) {
3556 list_del_init(&cache->io_list);
3557 btrfs_wait_cache_io(root, trans, cache,
3558 &cache->io_ctl, path,
3559 cache->key.objectid);
3560 btrfs_put_block_group(cache);
3561 }
3562
3563 /*
3564 * don't remove from the dirty list until after we've waited
3565 * on any pending IO
3566 */
3567 list_del_init(&cache->dirty_list);
3568 should_put = 1;
3569
3570 cache_save_setup(cache, trans, path);
3571
3572 if (!ret)
3573 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3574
3575 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3576 cache->io_ctl.inode = NULL;
3577 ret = btrfs_write_out_cache(root, trans, cache, path);
3578 if (ret == 0 && cache->io_ctl.inode) {
3579 num_started++;
3580 should_put = 0;
3581 list_add_tail(&cache->io_list, io);
3582 } else {
3583 /*
3584 * if we failed to write the cache, the
3585 * generation will be bad and life goes on
3586 */
3587 ret = 0;
3588 }
3589 }
3590 if (!ret) {
3591 ret = write_one_cache_group(trans, root, path, cache);
3592 if (ret)
3593 btrfs_abort_transaction(trans, root, ret);
3594 }
3595
3596 /* if its not on the io list, we need to put the block group */
3597 if (should_put)
3598 btrfs_put_block_group(cache);
3599 }
3600
3601 while (!list_empty(io)) {
3602 cache = list_first_entry(io, struct btrfs_block_group_cache,
3603 io_list);
3604 list_del_init(&cache->io_list);
3605 btrfs_wait_cache_io(root, trans, cache,
3606 &cache->io_ctl, path, cache->key.objectid);
3607 btrfs_put_block_group(cache);
3608 }
3609
3610 btrfs_free_path(path);
3611 return ret;
3612 }
3613
3614 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3615 {
3616 struct btrfs_block_group_cache *block_group;
3617 int readonly = 0;
3618
3619 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3620 if (!block_group || block_group->ro)
3621 readonly = 1;
3622 if (block_group)
3623 btrfs_put_block_group(block_group);
3624 return readonly;
3625 }
3626
3627 static const char *alloc_name(u64 flags)
3628 {
3629 switch (flags) {
3630 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3631 return "mixed";
3632 case BTRFS_BLOCK_GROUP_METADATA:
3633 return "metadata";
3634 case BTRFS_BLOCK_GROUP_DATA:
3635 return "data";
3636 case BTRFS_BLOCK_GROUP_SYSTEM:
3637 return "system";
3638 default:
3639 WARN_ON(1);
3640 return "invalid-combination";
3641 };
3642 }
3643
3644 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3645 u64 total_bytes, u64 bytes_used,
3646 struct btrfs_space_info **space_info)
3647 {
3648 struct btrfs_space_info *found;
3649 int i;
3650 int factor;
3651 int ret;
3652
3653 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3654 BTRFS_BLOCK_GROUP_RAID10))
3655 factor = 2;
3656 else
3657 factor = 1;
3658
3659 found = __find_space_info(info, flags);
3660 if (found) {
3661 spin_lock(&found->lock);
3662 found->total_bytes += total_bytes;
3663 found->disk_total += total_bytes * factor;
3664 found->bytes_used += bytes_used;
3665 found->disk_used += bytes_used * factor;
3666 if (total_bytes > 0)
3667 found->full = 0;
3668 spin_unlock(&found->lock);
3669 *space_info = found;
3670 return 0;
3671 }
3672 found = kzalloc(sizeof(*found), GFP_NOFS);
3673 if (!found)
3674 return -ENOMEM;
3675
3676 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3677 if (ret) {
3678 kfree(found);
3679 return ret;
3680 }
3681
3682 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3683 INIT_LIST_HEAD(&found->block_groups[i]);
3684 init_rwsem(&found->groups_sem);
3685 spin_lock_init(&found->lock);
3686 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3687 found->total_bytes = total_bytes;
3688 found->disk_total = total_bytes * factor;
3689 found->bytes_used = bytes_used;
3690 found->disk_used = bytes_used * factor;
3691 found->bytes_pinned = 0;
3692 found->bytes_reserved = 0;
3693 found->bytes_readonly = 0;
3694 found->bytes_may_use = 0;
3695 if (total_bytes > 0)
3696 found->full = 0;
3697 else
3698 found->full = 1;
3699 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3700 found->chunk_alloc = 0;
3701 found->flush = 0;
3702 init_waitqueue_head(&found->wait);
3703 INIT_LIST_HEAD(&found->ro_bgs);
3704
3705 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3706 info->space_info_kobj, "%s",
3707 alloc_name(found->flags));
3708 if (ret) {
3709 kfree(found);
3710 return ret;
3711 }
3712
3713 *space_info = found;
3714 list_add_rcu(&found->list, &info->space_info);
3715 if (flags & BTRFS_BLOCK_GROUP_DATA)
3716 info->data_sinfo = found;
3717
3718 return ret;
3719 }
3720
3721 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3722 {
3723 u64 extra_flags = chunk_to_extended(flags) &
3724 BTRFS_EXTENDED_PROFILE_MASK;
3725
3726 write_seqlock(&fs_info->profiles_lock);
3727 if (flags & BTRFS_BLOCK_GROUP_DATA)
3728 fs_info->avail_data_alloc_bits |= extra_flags;
3729 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3730 fs_info->avail_metadata_alloc_bits |= extra_flags;
3731 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3732 fs_info->avail_system_alloc_bits |= extra_flags;
3733 write_sequnlock(&fs_info->profiles_lock);
3734 }
3735
3736 /*
3737 * returns target flags in extended format or 0 if restripe for this
3738 * chunk_type is not in progress
3739 *
3740 * should be called with either volume_mutex or balance_lock held
3741 */
3742 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3743 {
3744 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3745 u64 target = 0;
3746
3747 if (!bctl)
3748 return 0;
3749
3750 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3751 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3752 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3753 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3754 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3755 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3756 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3757 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3758 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3759 }
3760
3761 return target;
3762 }
3763
3764 /*
3765 * @flags: available profiles in extended format (see ctree.h)
3766 *
3767 * Returns reduced profile in chunk format. If profile changing is in
3768 * progress (either running or paused) picks the target profile (if it's
3769 * already available), otherwise falls back to plain reducing.
3770 */
3771 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3772 {
3773 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3774 u64 target;
3775 u64 tmp;
3776
3777 /*
3778 * see if restripe for this chunk_type is in progress, if so
3779 * try to reduce to the target profile
3780 */
3781 spin_lock(&root->fs_info->balance_lock);
3782 target = get_restripe_target(root->fs_info, flags);
3783 if (target) {
3784 /* pick target profile only if it's already available */
3785 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3786 spin_unlock(&root->fs_info->balance_lock);
3787 return extended_to_chunk(target);
3788 }
3789 }
3790 spin_unlock(&root->fs_info->balance_lock);
3791
3792 /* First, mask out the RAID levels which aren't possible */
3793 if (num_devices == 1)
3794 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3795 BTRFS_BLOCK_GROUP_RAID5);
3796 if (num_devices < 3)
3797 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3798 if (num_devices < 4)
3799 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3800
3801 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3802 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3803 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3804 flags &= ~tmp;
3805
3806 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3807 tmp = BTRFS_BLOCK_GROUP_RAID6;
3808 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3809 tmp = BTRFS_BLOCK_GROUP_RAID5;
3810 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3811 tmp = BTRFS_BLOCK_GROUP_RAID10;
3812 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3813 tmp = BTRFS_BLOCK_GROUP_RAID1;
3814 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3815 tmp = BTRFS_BLOCK_GROUP_RAID0;
3816
3817 return extended_to_chunk(flags | tmp);
3818 }
3819
3820 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3821 {
3822 unsigned seq;
3823 u64 flags;
3824
3825 do {
3826 flags = orig_flags;
3827 seq = read_seqbegin(&root->fs_info->profiles_lock);
3828
3829 if (flags & BTRFS_BLOCK_GROUP_DATA)
3830 flags |= root->fs_info->avail_data_alloc_bits;
3831 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3832 flags |= root->fs_info->avail_system_alloc_bits;
3833 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3834 flags |= root->fs_info->avail_metadata_alloc_bits;
3835 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3836
3837 return btrfs_reduce_alloc_profile(root, flags);
3838 }
3839
3840 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3841 {
3842 u64 flags;
3843 u64 ret;
3844
3845 if (data)
3846 flags = BTRFS_BLOCK_GROUP_DATA;
3847 else if (root == root->fs_info->chunk_root)
3848 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3849 else
3850 flags = BTRFS_BLOCK_GROUP_METADATA;
3851
3852 ret = get_alloc_profile(root, flags);
3853 return ret;
3854 }
3855
3856 /*
3857 * This will check the space that the inode allocates from to make sure we have
3858 * enough space for bytes.
3859 */
3860 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3861 {
3862 struct btrfs_space_info *data_sinfo;
3863 struct btrfs_root *root = BTRFS_I(inode)->root;
3864 struct btrfs_fs_info *fs_info = root->fs_info;
3865 u64 used;
3866 int ret = 0;
3867 int need_commit = 2;
3868 int have_pinned_space;
3869
3870 /* make sure bytes are sectorsize aligned */
3871 bytes = ALIGN(bytes, root->sectorsize);
3872
3873 if (btrfs_is_free_space_inode(inode)) {
3874 need_commit = 0;
3875 ASSERT(current->journal_info);
3876 }
3877
3878 data_sinfo = fs_info->data_sinfo;
3879 if (!data_sinfo)
3880 goto alloc;
3881
3882 again:
3883 /* make sure we have enough space to handle the data first */
3884 spin_lock(&data_sinfo->lock);
3885 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3886 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3887 data_sinfo->bytes_may_use;
3888
3889 if (used + bytes > data_sinfo->total_bytes) {
3890 struct btrfs_trans_handle *trans;
3891
3892 /*
3893 * if we don't have enough free bytes in this space then we need
3894 * to alloc a new chunk.
3895 */
3896 if (!data_sinfo->full) {
3897 u64 alloc_target;
3898
3899 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3900 spin_unlock(&data_sinfo->lock);
3901 alloc:
3902 alloc_target = btrfs_get_alloc_profile(root, 1);
3903 /*
3904 * It is ugly that we don't call nolock join
3905 * transaction for the free space inode case here.
3906 * But it is safe because we only do the data space
3907 * reservation for the free space cache in the
3908 * transaction context, the common join transaction
3909 * just increase the counter of the current transaction
3910 * handler, doesn't try to acquire the trans_lock of
3911 * the fs.
3912 */
3913 trans = btrfs_join_transaction(root);
3914 if (IS_ERR(trans))
3915 return PTR_ERR(trans);
3916
3917 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3918 alloc_target,
3919 CHUNK_ALLOC_NO_FORCE);
3920 btrfs_end_transaction(trans, root);
3921 if (ret < 0) {
3922 if (ret != -ENOSPC)
3923 return ret;
3924 else {
3925 have_pinned_space = 1;
3926 goto commit_trans;
3927 }
3928 }
3929
3930 if (!data_sinfo)
3931 data_sinfo = fs_info->data_sinfo;
3932
3933 goto again;
3934 }
3935
3936 /*
3937 * If we don't have enough pinned space to deal with this
3938 * allocation, and no removed chunk in current transaction,
3939 * don't bother committing the transaction.
3940 */
3941 have_pinned_space = percpu_counter_compare(
3942 &data_sinfo->total_bytes_pinned,
3943 used + bytes - data_sinfo->total_bytes);
3944 spin_unlock(&data_sinfo->lock);
3945
3946 /* commit the current transaction and try again */
3947 commit_trans:
3948 if (need_commit &&
3949 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3950 need_commit--;
3951
3952 trans = btrfs_join_transaction(root);
3953 if (IS_ERR(trans))
3954 return PTR_ERR(trans);
3955 if (have_pinned_space >= 0 ||
3956 trans->transaction->have_free_bgs ||
3957 need_commit > 0) {
3958 ret = btrfs_commit_transaction(trans, root);
3959 if (ret)
3960 return ret;
3961 /*
3962 * make sure that all running delayed iput are
3963 * done
3964 */
3965 down_write(&root->fs_info->delayed_iput_sem);
3966 up_write(&root->fs_info->delayed_iput_sem);
3967 goto again;
3968 } else {
3969 btrfs_end_transaction(trans, root);
3970 }
3971 }
3972
3973 trace_btrfs_space_reservation(root->fs_info,
3974 "space_info:enospc",
3975 data_sinfo->flags, bytes, 1);
3976 return -ENOSPC;
3977 }
3978 ret = btrfs_qgroup_reserve(root, write_bytes);
3979 if (ret)
3980 goto out;
3981 data_sinfo->bytes_may_use += bytes;
3982 trace_btrfs_space_reservation(root->fs_info, "space_info",
3983 data_sinfo->flags, bytes, 1);
3984 out:
3985 spin_unlock(&data_sinfo->lock);
3986
3987 return ret;
3988 }
3989
3990 /*
3991 * Called if we need to clear a data reservation for this inode.
3992 */
3993 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3994 {
3995 struct btrfs_root *root = BTRFS_I(inode)->root;
3996 struct btrfs_space_info *data_sinfo;
3997
3998 /* make sure bytes are sectorsize aligned */
3999 bytes = ALIGN(bytes, root->sectorsize);
4000
4001 data_sinfo = root->fs_info->data_sinfo;
4002 spin_lock(&data_sinfo->lock);
4003 WARN_ON(data_sinfo->bytes_may_use < bytes);
4004 data_sinfo->bytes_may_use -= bytes;
4005 trace_btrfs_space_reservation(root->fs_info, "space_info",
4006 data_sinfo->flags, bytes, 0);
4007 spin_unlock(&data_sinfo->lock);
4008 }
4009
4010 static void force_metadata_allocation(struct btrfs_fs_info *info)
4011 {
4012 struct list_head *head = &info->space_info;
4013 struct btrfs_space_info *found;
4014
4015 rcu_read_lock();
4016 list_for_each_entry_rcu(found, head, list) {
4017 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4018 found->force_alloc = CHUNK_ALLOC_FORCE;
4019 }
4020 rcu_read_unlock();
4021 }
4022
4023 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4024 {
4025 return (global->size << 1);
4026 }
4027
4028 static int should_alloc_chunk(struct btrfs_root *root,
4029 struct btrfs_space_info *sinfo, int force)
4030 {
4031 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4032 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4033 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4034 u64 thresh;
4035
4036 if (force == CHUNK_ALLOC_FORCE)
4037 return 1;
4038
4039 /*
4040 * We need to take into account the global rsv because for all intents
4041 * and purposes it's used space. Don't worry about locking the
4042 * global_rsv, it doesn't change except when the transaction commits.
4043 */
4044 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4045 num_allocated += calc_global_rsv_need_space(global_rsv);
4046
4047 /*
4048 * in limited mode, we want to have some free space up to
4049 * about 1% of the FS size.
4050 */
4051 if (force == CHUNK_ALLOC_LIMITED) {
4052 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4053 thresh = max_t(u64, 64 * 1024 * 1024,
4054 div_factor_fine(thresh, 1));
4055
4056 if (num_bytes - num_allocated < thresh)
4057 return 1;
4058 }
4059
4060 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4061 return 0;
4062 return 1;
4063 }
4064
4065 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4066 {
4067 u64 num_dev;
4068
4069 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4070 BTRFS_BLOCK_GROUP_RAID0 |
4071 BTRFS_BLOCK_GROUP_RAID5 |
4072 BTRFS_BLOCK_GROUP_RAID6))
4073 num_dev = root->fs_info->fs_devices->rw_devices;
4074 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4075 num_dev = 2;
4076 else
4077 num_dev = 1; /* DUP or single */
4078
4079 return num_dev;
4080 }
4081
4082 /*
4083 * If @is_allocation is true, reserve space in the system space info necessary
4084 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4085 * removing a chunk.
4086 */
4087 void check_system_chunk(struct btrfs_trans_handle *trans,
4088 struct btrfs_root *root,
4089 u64 type)
4090 {
4091 struct btrfs_space_info *info;
4092 u64 left;
4093 u64 thresh;
4094 int ret = 0;
4095 u64 num_devs;
4096
4097 /*
4098 * Needed because we can end up allocating a system chunk and for an
4099 * atomic and race free space reservation in the chunk block reserve.
4100 */
4101 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4102
4103 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4104 spin_lock(&info->lock);
4105 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4106 info->bytes_reserved - info->bytes_readonly -
4107 info->bytes_may_use;
4108 spin_unlock(&info->lock);
4109
4110 num_devs = get_profile_num_devs(root, type);
4111
4112 /* num_devs device items to update and 1 chunk item to add or remove */
4113 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4114 btrfs_calc_trans_metadata_size(root, 1);
4115
4116 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4117 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4118 left, thresh, type);
4119 dump_space_info(info, 0, 0);
4120 }
4121
4122 if (left < thresh) {
4123 u64 flags;
4124
4125 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4126 /*
4127 * Ignore failure to create system chunk. We might end up not
4128 * needing it, as we might not need to COW all nodes/leafs from
4129 * the paths we visit in the chunk tree (they were already COWed
4130 * or created in the current transaction for example).
4131 */
4132 ret = btrfs_alloc_chunk(trans, root, flags);
4133 }
4134
4135 if (!ret) {
4136 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4137 &root->fs_info->chunk_block_rsv,
4138 thresh, BTRFS_RESERVE_NO_FLUSH);
4139 if (!ret)
4140 trans->chunk_bytes_reserved += thresh;
4141 }
4142 }
4143
4144 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4145 struct btrfs_root *extent_root, u64 flags, int force)
4146 {
4147 struct btrfs_space_info *space_info;
4148 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4149 int wait_for_alloc = 0;
4150 int ret = 0;
4151
4152 /* Don't re-enter if we're already allocating a chunk */
4153 if (trans->allocating_chunk)
4154 return -ENOSPC;
4155
4156 space_info = __find_space_info(extent_root->fs_info, flags);
4157 if (!space_info) {
4158 ret = update_space_info(extent_root->fs_info, flags,
4159 0, 0, &space_info);
4160 BUG_ON(ret); /* -ENOMEM */
4161 }
4162 BUG_ON(!space_info); /* Logic error */
4163
4164 again:
4165 spin_lock(&space_info->lock);
4166 if (force < space_info->force_alloc)
4167 force = space_info->force_alloc;
4168 if (space_info->full) {
4169 if (should_alloc_chunk(extent_root, space_info, force))
4170 ret = -ENOSPC;
4171 else
4172 ret = 0;
4173 spin_unlock(&space_info->lock);
4174 return ret;
4175 }
4176
4177 if (!should_alloc_chunk(extent_root, space_info, force)) {
4178 spin_unlock(&space_info->lock);
4179 return 0;
4180 } else if (space_info->chunk_alloc) {
4181 wait_for_alloc = 1;
4182 } else {
4183 space_info->chunk_alloc = 1;
4184 }
4185
4186 spin_unlock(&space_info->lock);
4187
4188 mutex_lock(&fs_info->chunk_mutex);
4189
4190 /*
4191 * The chunk_mutex is held throughout the entirety of a chunk
4192 * allocation, so once we've acquired the chunk_mutex we know that the
4193 * other guy is done and we need to recheck and see if we should
4194 * allocate.
4195 */
4196 if (wait_for_alloc) {
4197 mutex_unlock(&fs_info->chunk_mutex);
4198 wait_for_alloc = 0;
4199 goto again;
4200 }
4201
4202 trans->allocating_chunk = true;
4203
4204 /*
4205 * If we have mixed data/metadata chunks we want to make sure we keep
4206 * allocating mixed chunks instead of individual chunks.
4207 */
4208 if (btrfs_mixed_space_info(space_info))
4209 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4210
4211 /*
4212 * if we're doing a data chunk, go ahead and make sure that
4213 * we keep a reasonable number of metadata chunks allocated in the
4214 * FS as well.
4215 */
4216 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4217 fs_info->data_chunk_allocations++;
4218 if (!(fs_info->data_chunk_allocations %
4219 fs_info->metadata_ratio))
4220 force_metadata_allocation(fs_info);
4221 }
4222
4223 /*
4224 * Check if we have enough space in SYSTEM chunk because we may need
4225 * to update devices.
4226 */
4227 check_system_chunk(trans, extent_root, flags);
4228
4229 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4230 trans->allocating_chunk = false;
4231
4232 spin_lock(&space_info->lock);
4233 if (ret < 0 && ret != -ENOSPC)
4234 goto out;
4235 if (ret)
4236 space_info->full = 1;
4237 else
4238 ret = 1;
4239
4240 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4241 out:
4242 space_info->chunk_alloc = 0;
4243 spin_unlock(&space_info->lock);
4244 mutex_unlock(&fs_info->chunk_mutex);
4245 return ret;
4246 }
4247
4248 static int can_overcommit(struct btrfs_root *root,
4249 struct btrfs_space_info *space_info, u64 bytes,
4250 enum btrfs_reserve_flush_enum flush)
4251 {
4252 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4253 u64 profile = btrfs_get_alloc_profile(root, 0);
4254 u64 space_size;
4255 u64 avail;
4256 u64 used;
4257
4258 used = space_info->bytes_used + space_info->bytes_reserved +
4259 space_info->bytes_pinned + space_info->bytes_readonly;
4260
4261 /*
4262 * We only want to allow over committing if we have lots of actual space
4263 * free, but if we don't have enough space to handle the global reserve
4264 * space then we could end up having a real enospc problem when trying
4265 * to allocate a chunk or some other such important allocation.
4266 */
4267 spin_lock(&global_rsv->lock);
4268 space_size = calc_global_rsv_need_space(global_rsv);
4269 spin_unlock(&global_rsv->lock);
4270 if (used + space_size >= space_info->total_bytes)
4271 return 0;
4272
4273 used += space_info->bytes_may_use;
4274
4275 spin_lock(&root->fs_info->free_chunk_lock);
4276 avail = root->fs_info->free_chunk_space;
4277 spin_unlock(&root->fs_info->free_chunk_lock);
4278
4279 /*
4280 * If we have dup, raid1 or raid10 then only half of the free
4281 * space is actually useable. For raid56, the space info used
4282 * doesn't include the parity drive, so we don't have to
4283 * change the math
4284 */
4285 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4286 BTRFS_BLOCK_GROUP_RAID1 |
4287 BTRFS_BLOCK_GROUP_RAID10))
4288 avail >>= 1;
4289
4290 /*
4291 * If we aren't flushing all things, let us overcommit up to
4292 * 1/2th of the space. If we can flush, don't let us overcommit
4293 * too much, let it overcommit up to 1/8 of the space.
4294 */
4295 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4296 avail >>= 3;
4297 else
4298 avail >>= 1;
4299
4300 if (used + bytes < space_info->total_bytes + avail)
4301 return 1;
4302 return 0;
4303 }
4304
4305 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4306 unsigned long nr_pages, int nr_items)
4307 {
4308 struct super_block *sb = root->fs_info->sb;
4309
4310 if (down_read_trylock(&sb->s_umount)) {
4311 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4312 up_read(&sb->s_umount);
4313 } else {
4314 /*
4315 * We needn't worry the filesystem going from r/w to r/o though
4316 * we don't acquire ->s_umount mutex, because the filesystem
4317 * should guarantee the delalloc inodes list be empty after
4318 * the filesystem is readonly(all dirty pages are written to
4319 * the disk).
4320 */
4321 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4322 if (!current->journal_info)
4323 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4324 }
4325 }
4326
4327 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4328 {
4329 u64 bytes;
4330 int nr;
4331
4332 bytes = btrfs_calc_trans_metadata_size(root, 1);
4333 nr = (int)div64_u64(to_reclaim, bytes);
4334 if (!nr)
4335 nr = 1;
4336 return nr;
4337 }
4338
4339 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4340
4341 /*
4342 * shrink metadata reservation for delalloc
4343 */
4344 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4345 bool wait_ordered)
4346 {
4347 struct btrfs_block_rsv *block_rsv;
4348 struct btrfs_space_info *space_info;
4349 struct btrfs_trans_handle *trans;
4350 u64 delalloc_bytes;
4351 u64 max_reclaim;
4352 long time_left;
4353 unsigned long nr_pages;
4354 int loops;
4355 int items;
4356 enum btrfs_reserve_flush_enum flush;
4357
4358 /* Calc the number of the pages we need flush for space reservation */
4359 items = calc_reclaim_items_nr(root, to_reclaim);
4360 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4361
4362 trans = (struct btrfs_trans_handle *)current->journal_info;
4363 block_rsv = &root->fs_info->delalloc_block_rsv;
4364 space_info = block_rsv->space_info;
4365
4366 delalloc_bytes = percpu_counter_sum_positive(
4367 &root->fs_info->delalloc_bytes);
4368 if (delalloc_bytes == 0) {
4369 if (trans)
4370 return;
4371 if (wait_ordered)
4372 btrfs_wait_ordered_roots(root->fs_info, items);
4373 return;
4374 }
4375
4376 loops = 0;
4377 while (delalloc_bytes && loops < 3) {
4378 max_reclaim = min(delalloc_bytes, to_reclaim);
4379 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4380 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4381 /*
4382 * We need to wait for the async pages to actually start before
4383 * we do anything.
4384 */
4385 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4386 if (!max_reclaim)
4387 goto skip_async;
4388
4389 if (max_reclaim <= nr_pages)
4390 max_reclaim = 0;
4391 else
4392 max_reclaim -= nr_pages;
4393
4394 wait_event(root->fs_info->async_submit_wait,
4395 atomic_read(&root->fs_info->async_delalloc_pages) <=
4396 (int)max_reclaim);
4397 skip_async:
4398 if (!trans)
4399 flush = BTRFS_RESERVE_FLUSH_ALL;
4400 else
4401 flush = BTRFS_RESERVE_NO_FLUSH;
4402 spin_lock(&space_info->lock);
4403 if (can_overcommit(root, space_info, orig, flush)) {
4404 spin_unlock(&space_info->lock);
4405 break;
4406 }
4407 spin_unlock(&space_info->lock);
4408
4409 loops++;
4410 if (wait_ordered && !trans) {
4411 btrfs_wait_ordered_roots(root->fs_info, items);
4412 } else {
4413 time_left = schedule_timeout_killable(1);
4414 if (time_left)
4415 break;
4416 }
4417 delalloc_bytes = percpu_counter_sum_positive(
4418 &root->fs_info->delalloc_bytes);
4419 }
4420 }
4421
4422 /**
4423 * maybe_commit_transaction - possibly commit the transaction if its ok to
4424 * @root - the root we're allocating for
4425 * @bytes - the number of bytes we want to reserve
4426 * @force - force the commit
4427 *
4428 * This will check to make sure that committing the transaction will actually
4429 * get us somewhere and then commit the transaction if it does. Otherwise it
4430 * will return -ENOSPC.
4431 */
4432 static int may_commit_transaction(struct btrfs_root *root,
4433 struct btrfs_space_info *space_info,
4434 u64 bytes, int force)
4435 {
4436 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4437 struct btrfs_trans_handle *trans;
4438
4439 trans = (struct btrfs_trans_handle *)current->journal_info;
4440 if (trans)
4441 return -EAGAIN;
4442
4443 if (force)
4444 goto commit;
4445
4446 /* See if there is enough pinned space to make this reservation */
4447 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4448 bytes) >= 0)
4449 goto commit;
4450
4451 /*
4452 * See if there is some space in the delayed insertion reservation for
4453 * this reservation.
4454 */
4455 if (space_info != delayed_rsv->space_info)
4456 return -ENOSPC;
4457
4458 spin_lock(&delayed_rsv->lock);
4459 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4460 bytes - delayed_rsv->size) >= 0) {
4461 spin_unlock(&delayed_rsv->lock);
4462 return -ENOSPC;
4463 }
4464 spin_unlock(&delayed_rsv->lock);
4465
4466 commit:
4467 trans = btrfs_join_transaction(root);
4468 if (IS_ERR(trans))
4469 return -ENOSPC;
4470
4471 return btrfs_commit_transaction(trans, root);
4472 }
4473
4474 enum flush_state {
4475 FLUSH_DELAYED_ITEMS_NR = 1,
4476 FLUSH_DELAYED_ITEMS = 2,
4477 FLUSH_DELALLOC = 3,
4478 FLUSH_DELALLOC_WAIT = 4,
4479 ALLOC_CHUNK = 5,
4480 COMMIT_TRANS = 6,
4481 };
4482
4483 static int flush_space(struct btrfs_root *root,
4484 struct btrfs_space_info *space_info, u64 num_bytes,
4485 u64 orig_bytes, int state)
4486 {
4487 struct btrfs_trans_handle *trans;
4488 int nr;
4489 int ret = 0;
4490
4491 switch (state) {
4492 case FLUSH_DELAYED_ITEMS_NR:
4493 case FLUSH_DELAYED_ITEMS:
4494 if (state == FLUSH_DELAYED_ITEMS_NR)
4495 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4496 else
4497 nr = -1;
4498
4499 trans = btrfs_join_transaction(root);
4500 if (IS_ERR(trans)) {
4501 ret = PTR_ERR(trans);
4502 break;
4503 }
4504 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4505 btrfs_end_transaction(trans, root);
4506 break;
4507 case FLUSH_DELALLOC:
4508 case FLUSH_DELALLOC_WAIT:
4509 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4510 state == FLUSH_DELALLOC_WAIT);
4511 break;
4512 case ALLOC_CHUNK:
4513 trans = btrfs_join_transaction(root);
4514 if (IS_ERR(trans)) {
4515 ret = PTR_ERR(trans);
4516 break;
4517 }
4518 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4519 btrfs_get_alloc_profile(root, 0),
4520 CHUNK_ALLOC_NO_FORCE);
4521 btrfs_end_transaction(trans, root);
4522 if (ret == -ENOSPC)
4523 ret = 0;
4524 break;
4525 case COMMIT_TRANS:
4526 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4527 break;
4528 default:
4529 ret = -ENOSPC;
4530 break;
4531 }
4532
4533 return ret;
4534 }
4535
4536 static inline u64
4537 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4538 struct btrfs_space_info *space_info)
4539 {
4540 u64 used;
4541 u64 expected;
4542 u64 to_reclaim;
4543
4544 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4545 16 * 1024 * 1024);
4546 spin_lock(&space_info->lock);
4547 if (can_overcommit(root, space_info, to_reclaim,
4548 BTRFS_RESERVE_FLUSH_ALL)) {
4549 to_reclaim = 0;
4550 goto out;
4551 }
4552
4553 used = space_info->bytes_used + space_info->bytes_reserved +
4554 space_info->bytes_pinned + space_info->bytes_readonly +
4555 space_info->bytes_may_use;
4556 if (can_overcommit(root, space_info, 1024 * 1024,
4557 BTRFS_RESERVE_FLUSH_ALL))
4558 expected = div_factor_fine(space_info->total_bytes, 95);
4559 else
4560 expected = div_factor_fine(space_info->total_bytes, 90);
4561
4562 if (used > expected)
4563 to_reclaim = used - expected;
4564 else
4565 to_reclaim = 0;
4566 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4567 space_info->bytes_reserved);
4568 out:
4569 spin_unlock(&space_info->lock);
4570
4571 return to_reclaim;
4572 }
4573
4574 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4575 struct btrfs_fs_info *fs_info, u64 used)
4576 {
4577 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4578
4579 /* If we're just plain full then async reclaim just slows us down. */
4580 if (space_info->bytes_used >= thresh)
4581 return 0;
4582
4583 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4584 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4585 }
4586
4587 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4588 struct btrfs_fs_info *fs_info,
4589 int flush_state)
4590 {
4591 u64 used;
4592
4593 spin_lock(&space_info->lock);
4594 /*
4595 * We run out of space and have not got any free space via flush_space,
4596 * so don't bother doing async reclaim.
4597 */
4598 if (flush_state > COMMIT_TRANS && space_info->full) {
4599 spin_unlock(&space_info->lock);
4600 return 0;
4601 }
4602
4603 used = space_info->bytes_used + space_info->bytes_reserved +
4604 space_info->bytes_pinned + space_info->bytes_readonly +
4605 space_info->bytes_may_use;
4606 if (need_do_async_reclaim(space_info, fs_info, used)) {
4607 spin_unlock(&space_info->lock);
4608 return 1;
4609 }
4610 spin_unlock(&space_info->lock);
4611
4612 return 0;
4613 }
4614
4615 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4616 {
4617 struct btrfs_fs_info *fs_info;
4618 struct btrfs_space_info *space_info;
4619 u64 to_reclaim;
4620 int flush_state;
4621
4622 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4623 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4624
4625 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4626 space_info);
4627 if (!to_reclaim)
4628 return;
4629
4630 flush_state = FLUSH_DELAYED_ITEMS_NR;
4631 do {
4632 flush_space(fs_info->fs_root, space_info, to_reclaim,
4633 to_reclaim, flush_state);
4634 flush_state++;
4635 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4636 flush_state))
4637 return;
4638 } while (flush_state < COMMIT_TRANS);
4639 }
4640
4641 void btrfs_init_async_reclaim_work(struct work_struct *work)
4642 {
4643 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4644 }
4645
4646 /**
4647 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4648 * @root - the root we're allocating for
4649 * @block_rsv - the block_rsv we're allocating for
4650 * @orig_bytes - the number of bytes we want
4651 * @flush - whether or not we can flush to make our reservation
4652 *
4653 * This will reserve orgi_bytes number of bytes from the space info associated
4654 * with the block_rsv. If there is not enough space it will make an attempt to
4655 * flush out space to make room. It will do this by flushing delalloc if
4656 * possible or committing the transaction. If flush is 0 then no attempts to
4657 * regain reservations will be made and this will fail if there is not enough
4658 * space already.
4659 */
4660 static int reserve_metadata_bytes(struct btrfs_root *root,
4661 struct btrfs_block_rsv *block_rsv,
4662 u64 orig_bytes,
4663 enum btrfs_reserve_flush_enum flush)
4664 {
4665 struct btrfs_space_info *space_info = block_rsv->space_info;
4666 u64 used;
4667 u64 num_bytes = orig_bytes;
4668 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4669 int ret = 0;
4670 bool flushing = false;
4671
4672 again:
4673 ret = 0;
4674 spin_lock(&space_info->lock);
4675 /*
4676 * We only want to wait if somebody other than us is flushing and we
4677 * are actually allowed to flush all things.
4678 */
4679 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4680 space_info->flush) {
4681 spin_unlock(&space_info->lock);
4682 /*
4683 * If we have a trans handle we can't wait because the flusher
4684 * may have to commit the transaction, which would mean we would
4685 * deadlock since we are waiting for the flusher to finish, but
4686 * hold the current transaction open.
4687 */
4688 if (current->journal_info)
4689 return -EAGAIN;
4690 ret = wait_event_killable(space_info->wait, !space_info->flush);
4691 /* Must have been killed, return */
4692 if (ret)
4693 return -EINTR;
4694
4695 spin_lock(&space_info->lock);
4696 }
4697
4698 ret = -ENOSPC;
4699 used = space_info->bytes_used + space_info->bytes_reserved +
4700 space_info->bytes_pinned + space_info->bytes_readonly +
4701 space_info->bytes_may_use;
4702
4703 /*
4704 * The idea here is that we've not already over-reserved the block group
4705 * then we can go ahead and save our reservation first and then start
4706 * flushing if we need to. Otherwise if we've already overcommitted
4707 * lets start flushing stuff first and then come back and try to make
4708 * our reservation.
4709 */
4710 if (used <= space_info->total_bytes) {
4711 if (used + orig_bytes <= space_info->total_bytes) {
4712 space_info->bytes_may_use += orig_bytes;
4713 trace_btrfs_space_reservation(root->fs_info,
4714 "space_info", space_info->flags, orig_bytes, 1);
4715 ret = 0;
4716 } else {
4717 /*
4718 * Ok set num_bytes to orig_bytes since we aren't
4719 * overocmmitted, this way we only try and reclaim what
4720 * we need.
4721 */
4722 num_bytes = orig_bytes;
4723 }
4724 } else {
4725 /*
4726 * Ok we're over committed, set num_bytes to the overcommitted
4727 * amount plus the amount of bytes that we need for this
4728 * reservation.
4729 */
4730 num_bytes = used - space_info->total_bytes +
4731 (orig_bytes * 2);
4732 }
4733
4734 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4735 space_info->bytes_may_use += orig_bytes;
4736 trace_btrfs_space_reservation(root->fs_info, "space_info",
4737 space_info->flags, orig_bytes,
4738 1);
4739 ret = 0;
4740 }
4741
4742 /*
4743 * Couldn't make our reservation, save our place so while we're trying
4744 * to reclaim space we can actually use it instead of somebody else
4745 * stealing it from us.
4746 *
4747 * We make the other tasks wait for the flush only when we can flush
4748 * all things.
4749 */
4750 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4751 flushing = true;
4752 space_info->flush = 1;
4753 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4754 used += orig_bytes;
4755 /*
4756 * We will do the space reservation dance during log replay,
4757 * which means we won't have fs_info->fs_root set, so don't do
4758 * the async reclaim as we will panic.
4759 */
4760 if (!root->fs_info->log_root_recovering &&
4761 need_do_async_reclaim(space_info, root->fs_info, used) &&
4762 !work_busy(&root->fs_info->async_reclaim_work))
4763 queue_work(system_unbound_wq,
4764 &root->fs_info->async_reclaim_work);
4765 }
4766 spin_unlock(&space_info->lock);
4767
4768 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4769 goto out;
4770
4771 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4772 flush_state);
4773 flush_state++;
4774
4775 /*
4776 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4777 * would happen. So skip delalloc flush.
4778 */
4779 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4780 (flush_state == FLUSH_DELALLOC ||
4781 flush_state == FLUSH_DELALLOC_WAIT))
4782 flush_state = ALLOC_CHUNK;
4783
4784 if (!ret)
4785 goto again;
4786 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4787 flush_state < COMMIT_TRANS)
4788 goto again;
4789 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4790 flush_state <= COMMIT_TRANS)
4791 goto again;
4792
4793 out:
4794 if (ret == -ENOSPC &&
4795 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4796 struct btrfs_block_rsv *global_rsv =
4797 &root->fs_info->global_block_rsv;
4798
4799 if (block_rsv != global_rsv &&
4800 !block_rsv_use_bytes(global_rsv, orig_bytes))
4801 ret = 0;
4802 }
4803 if (ret == -ENOSPC)
4804 trace_btrfs_space_reservation(root->fs_info,
4805 "space_info:enospc",
4806 space_info->flags, orig_bytes, 1);
4807 if (flushing) {
4808 spin_lock(&space_info->lock);
4809 space_info->flush = 0;
4810 wake_up_all(&space_info->wait);
4811 spin_unlock(&space_info->lock);
4812 }
4813 return ret;
4814 }
4815
4816 static struct btrfs_block_rsv *get_block_rsv(
4817 const struct btrfs_trans_handle *trans,
4818 const struct btrfs_root *root)
4819 {
4820 struct btrfs_block_rsv *block_rsv = NULL;
4821
4822 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4823 block_rsv = trans->block_rsv;
4824
4825 if (root == root->fs_info->csum_root && trans->adding_csums)
4826 block_rsv = trans->block_rsv;
4827
4828 if (root == root->fs_info->uuid_root)
4829 block_rsv = trans->block_rsv;
4830
4831 if (!block_rsv)
4832 block_rsv = root->block_rsv;
4833
4834 if (!block_rsv)
4835 block_rsv = &root->fs_info->empty_block_rsv;
4836
4837 return block_rsv;
4838 }
4839
4840 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4841 u64 num_bytes)
4842 {
4843 int ret = -ENOSPC;
4844 spin_lock(&block_rsv->lock);
4845 if (block_rsv->reserved >= num_bytes) {
4846 block_rsv->reserved -= num_bytes;
4847 if (block_rsv->reserved < block_rsv->size)
4848 block_rsv->full = 0;
4849 ret = 0;
4850 }
4851 spin_unlock(&block_rsv->lock);
4852 return ret;
4853 }
4854
4855 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4856 u64 num_bytes, int update_size)
4857 {
4858 spin_lock(&block_rsv->lock);
4859 block_rsv->reserved += num_bytes;
4860 if (update_size)
4861 block_rsv->size += num_bytes;
4862 else if (block_rsv->reserved >= block_rsv->size)
4863 block_rsv->full = 1;
4864 spin_unlock(&block_rsv->lock);
4865 }
4866
4867 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4868 struct btrfs_block_rsv *dest, u64 num_bytes,
4869 int min_factor)
4870 {
4871 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4872 u64 min_bytes;
4873
4874 if (global_rsv->space_info != dest->space_info)
4875 return -ENOSPC;
4876
4877 spin_lock(&global_rsv->lock);
4878 min_bytes = div_factor(global_rsv->size, min_factor);
4879 if (global_rsv->reserved < min_bytes + num_bytes) {
4880 spin_unlock(&global_rsv->lock);
4881 return -ENOSPC;
4882 }
4883 global_rsv->reserved -= num_bytes;
4884 if (global_rsv->reserved < global_rsv->size)
4885 global_rsv->full = 0;
4886 spin_unlock(&global_rsv->lock);
4887
4888 block_rsv_add_bytes(dest, num_bytes, 1);
4889 return 0;
4890 }
4891
4892 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4893 struct btrfs_block_rsv *block_rsv,
4894 struct btrfs_block_rsv *dest, u64 num_bytes)
4895 {
4896 struct btrfs_space_info *space_info = block_rsv->space_info;
4897
4898 spin_lock(&block_rsv->lock);
4899 if (num_bytes == (u64)-1)
4900 num_bytes = block_rsv->size;
4901 block_rsv->size -= num_bytes;
4902 if (block_rsv->reserved >= block_rsv->size) {
4903 num_bytes = block_rsv->reserved - block_rsv->size;
4904 block_rsv->reserved = block_rsv->size;
4905 block_rsv->full = 1;
4906 } else {
4907 num_bytes = 0;
4908 }
4909 spin_unlock(&block_rsv->lock);
4910
4911 if (num_bytes > 0) {
4912 if (dest) {
4913 spin_lock(&dest->lock);
4914 if (!dest->full) {
4915 u64 bytes_to_add;
4916
4917 bytes_to_add = dest->size - dest->reserved;
4918 bytes_to_add = min(num_bytes, bytes_to_add);
4919 dest->reserved += bytes_to_add;
4920 if (dest->reserved >= dest->size)
4921 dest->full = 1;
4922 num_bytes -= bytes_to_add;
4923 }
4924 spin_unlock(&dest->lock);
4925 }
4926 if (num_bytes) {
4927 spin_lock(&space_info->lock);
4928 space_info->bytes_may_use -= num_bytes;
4929 trace_btrfs_space_reservation(fs_info, "space_info",
4930 space_info->flags, num_bytes, 0);
4931 spin_unlock(&space_info->lock);
4932 }
4933 }
4934 }
4935
4936 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4937 struct btrfs_block_rsv *dst, u64 num_bytes)
4938 {
4939 int ret;
4940
4941 ret = block_rsv_use_bytes(src, num_bytes);
4942 if (ret)
4943 return ret;
4944
4945 block_rsv_add_bytes(dst, num_bytes, 1);
4946 return 0;
4947 }
4948
4949 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4950 {
4951 memset(rsv, 0, sizeof(*rsv));
4952 spin_lock_init(&rsv->lock);
4953 rsv->type = type;
4954 }
4955
4956 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4957 unsigned short type)
4958 {
4959 struct btrfs_block_rsv *block_rsv;
4960 struct btrfs_fs_info *fs_info = root->fs_info;
4961
4962 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4963 if (!block_rsv)
4964 return NULL;
4965
4966 btrfs_init_block_rsv(block_rsv, type);
4967 block_rsv->space_info = __find_space_info(fs_info,
4968 BTRFS_BLOCK_GROUP_METADATA);
4969 return block_rsv;
4970 }
4971
4972 void btrfs_free_block_rsv(struct btrfs_root *root,
4973 struct btrfs_block_rsv *rsv)
4974 {
4975 if (!rsv)
4976 return;
4977 btrfs_block_rsv_release(root, rsv, (u64)-1);
4978 kfree(rsv);
4979 }
4980
4981 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4982 {
4983 kfree(rsv);
4984 }
4985
4986 int btrfs_block_rsv_add(struct btrfs_root *root,
4987 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4988 enum btrfs_reserve_flush_enum flush)
4989 {
4990 int ret;
4991
4992 if (num_bytes == 0)
4993 return 0;
4994
4995 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4996 if (!ret) {
4997 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4998 return 0;
4999 }
5000
5001 return ret;
5002 }
5003
5004 int btrfs_block_rsv_check(struct btrfs_root *root,
5005 struct btrfs_block_rsv *block_rsv, int min_factor)
5006 {
5007 u64 num_bytes = 0;
5008 int ret = -ENOSPC;
5009
5010 if (!block_rsv)
5011 return 0;
5012
5013 spin_lock(&block_rsv->lock);
5014 num_bytes = div_factor(block_rsv->size, min_factor);
5015 if (block_rsv->reserved >= num_bytes)
5016 ret = 0;
5017 spin_unlock(&block_rsv->lock);
5018
5019 return ret;
5020 }
5021
5022 int btrfs_block_rsv_refill(struct btrfs_root *root,
5023 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5024 enum btrfs_reserve_flush_enum flush)
5025 {
5026 u64 num_bytes = 0;
5027 int ret = -ENOSPC;
5028
5029 if (!block_rsv)
5030 return 0;
5031
5032 spin_lock(&block_rsv->lock);
5033 num_bytes = min_reserved;
5034 if (block_rsv->reserved >= num_bytes)
5035 ret = 0;
5036 else
5037 num_bytes -= block_rsv->reserved;
5038 spin_unlock(&block_rsv->lock);
5039
5040 if (!ret)
5041 return 0;
5042
5043 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5044 if (!ret) {
5045 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5046 return 0;
5047 }
5048
5049 return ret;
5050 }
5051
5052 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5053 struct btrfs_block_rsv *dst_rsv,
5054 u64 num_bytes)
5055 {
5056 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5057 }
5058
5059 void btrfs_block_rsv_release(struct btrfs_root *root,
5060 struct btrfs_block_rsv *block_rsv,
5061 u64 num_bytes)
5062 {
5063 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5064 if (global_rsv == block_rsv ||
5065 block_rsv->space_info != global_rsv->space_info)
5066 global_rsv = NULL;
5067 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5068 num_bytes);
5069 }
5070
5071 /*
5072 * helper to calculate size of global block reservation.
5073 * the desired value is sum of space used by extent tree,
5074 * checksum tree and root tree
5075 */
5076 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5077 {
5078 struct btrfs_space_info *sinfo;
5079 u64 num_bytes;
5080 u64 meta_used;
5081 u64 data_used;
5082 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5083
5084 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5085 spin_lock(&sinfo->lock);
5086 data_used = sinfo->bytes_used;
5087 spin_unlock(&sinfo->lock);
5088
5089 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5090 spin_lock(&sinfo->lock);
5091 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5092 data_used = 0;
5093 meta_used = sinfo->bytes_used;
5094 spin_unlock(&sinfo->lock);
5095
5096 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5097 csum_size * 2;
5098 num_bytes += div_u64(data_used + meta_used, 50);
5099
5100 if (num_bytes * 3 > meta_used)
5101 num_bytes = div_u64(meta_used, 3);
5102
5103 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5104 }
5105
5106 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5107 {
5108 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5109 struct btrfs_space_info *sinfo = block_rsv->space_info;
5110 u64 num_bytes;
5111
5112 num_bytes = calc_global_metadata_size(fs_info);
5113
5114 spin_lock(&sinfo->lock);
5115 spin_lock(&block_rsv->lock);
5116
5117 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5118
5119 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5120 sinfo->bytes_reserved + sinfo->bytes_readonly +
5121 sinfo->bytes_may_use;
5122
5123 if (sinfo->total_bytes > num_bytes) {
5124 num_bytes = sinfo->total_bytes - num_bytes;
5125 block_rsv->reserved += num_bytes;
5126 sinfo->bytes_may_use += num_bytes;
5127 trace_btrfs_space_reservation(fs_info, "space_info",
5128 sinfo->flags, num_bytes, 1);
5129 }
5130
5131 if (block_rsv->reserved >= block_rsv->size) {
5132 num_bytes = block_rsv->reserved - block_rsv->size;
5133 sinfo->bytes_may_use -= num_bytes;
5134 trace_btrfs_space_reservation(fs_info, "space_info",
5135 sinfo->flags, num_bytes, 0);
5136 block_rsv->reserved = block_rsv->size;
5137 block_rsv->full = 1;
5138 }
5139
5140 spin_unlock(&block_rsv->lock);
5141 spin_unlock(&sinfo->lock);
5142 }
5143
5144 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5145 {
5146 struct btrfs_space_info *space_info;
5147
5148 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5149 fs_info->chunk_block_rsv.space_info = space_info;
5150
5151 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5152 fs_info->global_block_rsv.space_info = space_info;
5153 fs_info->delalloc_block_rsv.space_info = space_info;
5154 fs_info->trans_block_rsv.space_info = space_info;
5155 fs_info->empty_block_rsv.space_info = space_info;
5156 fs_info->delayed_block_rsv.space_info = space_info;
5157
5158 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5159 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5160 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5161 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5162 if (fs_info->quota_root)
5163 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5164 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5165
5166 update_global_block_rsv(fs_info);
5167 }
5168
5169 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5170 {
5171 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5172 (u64)-1);
5173 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5174 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5175 WARN_ON(fs_info->trans_block_rsv.size > 0);
5176 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5177 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5178 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5179 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5180 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5181 }
5182
5183 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5184 struct btrfs_root *root)
5185 {
5186 if (!trans->block_rsv)
5187 return;
5188
5189 if (!trans->bytes_reserved)
5190 return;
5191
5192 trace_btrfs_space_reservation(root->fs_info, "transaction",
5193 trans->transid, trans->bytes_reserved, 0);
5194 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5195 trans->bytes_reserved = 0;
5196 }
5197
5198 /*
5199 * To be called after all the new block groups attached to the transaction
5200 * handle have been created (btrfs_create_pending_block_groups()).
5201 */
5202 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5203 {
5204 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5205
5206 if (!trans->chunk_bytes_reserved)
5207 return;
5208
5209 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5210
5211 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5212 trans->chunk_bytes_reserved);
5213 trans->chunk_bytes_reserved = 0;
5214 }
5215
5216 /* Can only return 0 or -ENOSPC */
5217 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5218 struct inode *inode)
5219 {
5220 struct btrfs_root *root = BTRFS_I(inode)->root;
5221 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5222 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5223
5224 /*
5225 * We need to hold space in order to delete our orphan item once we've
5226 * added it, so this takes the reservation so we can release it later
5227 * when we are truly done with the orphan item.
5228 */
5229 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5230 trace_btrfs_space_reservation(root->fs_info, "orphan",
5231 btrfs_ino(inode), num_bytes, 1);
5232 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5233 }
5234
5235 void btrfs_orphan_release_metadata(struct inode *inode)
5236 {
5237 struct btrfs_root *root = BTRFS_I(inode)->root;
5238 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5239 trace_btrfs_space_reservation(root->fs_info, "orphan",
5240 btrfs_ino(inode), num_bytes, 0);
5241 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5242 }
5243
5244 /*
5245 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5246 * root: the root of the parent directory
5247 * rsv: block reservation
5248 * items: the number of items that we need do reservation
5249 * qgroup_reserved: used to return the reserved size in qgroup
5250 *
5251 * This function is used to reserve the space for snapshot/subvolume
5252 * creation and deletion. Those operations are different with the
5253 * common file/directory operations, they change two fs/file trees
5254 * and root tree, the number of items that the qgroup reserves is
5255 * different with the free space reservation. So we can not use
5256 * the space reseravtion mechanism in start_transaction().
5257 */
5258 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5259 struct btrfs_block_rsv *rsv,
5260 int items,
5261 u64 *qgroup_reserved,
5262 bool use_global_rsv)
5263 {
5264 u64 num_bytes;
5265 int ret;
5266 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5267
5268 if (root->fs_info->quota_enabled) {
5269 /* One for parent inode, two for dir entries */
5270 num_bytes = 3 * root->nodesize;
5271 ret = btrfs_qgroup_reserve(root, num_bytes);
5272 if (ret)
5273 return ret;
5274 } else {
5275 num_bytes = 0;
5276 }
5277
5278 *qgroup_reserved = num_bytes;
5279
5280 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5281 rsv->space_info = __find_space_info(root->fs_info,
5282 BTRFS_BLOCK_GROUP_METADATA);
5283 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5284 BTRFS_RESERVE_FLUSH_ALL);
5285
5286 if (ret == -ENOSPC && use_global_rsv)
5287 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5288
5289 if (ret) {
5290 if (*qgroup_reserved)
5291 btrfs_qgroup_free(root, *qgroup_reserved);
5292 }
5293
5294 return ret;
5295 }
5296
5297 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5298 struct btrfs_block_rsv *rsv,
5299 u64 qgroup_reserved)
5300 {
5301 btrfs_block_rsv_release(root, rsv, (u64)-1);
5302 }
5303
5304 /**
5305 * drop_outstanding_extent - drop an outstanding extent
5306 * @inode: the inode we're dropping the extent for
5307 * @num_bytes: the number of bytes we're relaseing.
5308 *
5309 * This is called when we are freeing up an outstanding extent, either called
5310 * after an error or after an extent is written. This will return the number of
5311 * reserved extents that need to be freed. This must be called with
5312 * BTRFS_I(inode)->lock held.
5313 */
5314 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5315 {
5316 unsigned drop_inode_space = 0;
5317 unsigned dropped_extents = 0;
5318 unsigned num_extents = 0;
5319
5320 num_extents = (unsigned)div64_u64(num_bytes +
5321 BTRFS_MAX_EXTENT_SIZE - 1,
5322 BTRFS_MAX_EXTENT_SIZE);
5323 ASSERT(num_extents);
5324 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5325 BTRFS_I(inode)->outstanding_extents -= num_extents;
5326
5327 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5328 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5329 &BTRFS_I(inode)->runtime_flags))
5330 drop_inode_space = 1;
5331
5332 /*
5333 * If we have more or the same amount of outsanding extents than we have
5334 * reserved then we need to leave the reserved extents count alone.
5335 */
5336 if (BTRFS_I(inode)->outstanding_extents >=
5337 BTRFS_I(inode)->reserved_extents)
5338 return drop_inode_space;
5339
5340 dropped_extents = BTRFS_I(inode)->reserved_extents -
5341 BTRFS_I(inode)->outstanding_extents;
5342 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5343 return dropped_extents + drop_inode_space;
5344 }
5345
5346 /**
5347 * calc_csum_metadata_size - return the amount of metada space that must be
5348 * reserved/free'd for the given bytes.
5349 * @inode: the inode we're manipulating
5350 * @num_bytes: the number of bytes in question
5351 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5352 *
5353 * This adjusts the number of csum_bytes in the inode and then returns the
5354 * correct amount of metadata that must either be reserved or freed. We
5355 * calculate how many checksums we can fit into one leaf and then divide the
5356 * number of bytes that will need to be checksumed by this value to figure out
5357 * how many checksums will be required. If we are adding bytes then the number
5358 * may go up and we will return the number of additional bytes that must be
5359 * reserved. If it is going down we will return the number of bytes that must
5360 * be freed.
5361 *
5362 * This must be called with BTRFS_I(inode)->lock held.
5363 */
5364 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5365 int reserve)
5366 {
5367 struct btrfs_root *root = BTRFS_I(inode)->root;
5368 u64 old_csums, num_csums;
5369
5370 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5371 BTRFS_I(inode)->csum_bytes == 0)
5372 return 0;
5373
5374 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5375 if (reserve)
5376 BTRFS_I(inode)->csum_bytes += num_bytes;
5377 else
5378 BTRFS_I(inode)->csum_bytes -= num_bytes;
5379 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5380
5381 /* No change, no need to reserve more */
5382 if (old_csums == num_csums)
5383 return 0;
5384
5385 if (reserve)
5386 return btrfs_calc_trans_metadata_size(root,
5387 num_csums - old_csums);
5388
5389 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5390 }
5391
5392 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5393 {
5394 struct btrfs_root *root = BTRFS_I(inode)->root;
5395 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5396 u64 to_reserve = 0;
5397 u64 csum_bytes;
5398 unsigned nr_extents = 0;
5399 int extra_reserve = 0;
5400 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5401 int ret = 0;
5402 bool delalloc_lock = true;
5403 u64 to_free = 0;
5404 unsigned dropped;
5405
5406 /* If we are a free space inode we need to not flush since we will be in
5407 * the middle of a transaction commit. We also don't need the delalloc
5408 * mutex since we won't race with anybody. We need this mostly to make
5409 * lockdep shut its filthy mouth.
5410 */
5411 if (btrfs_is_free_space_inode(inode)) {
5412 flush = BTRFS_RESERVE_NO_FLUSH;
5413 delalloc_lock = false;
5414 }
5415
5416 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5417 btrfs_transaction_in_commit(root->fs_info))
5418 schedule_timeout(1);
5419
5420 if (delalloc_lock)
5421 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5422
5423 num_bytes = ALIGN(num_bytes, root->sectorsize);
5424
5425 spin_lock(&BTRFS_I(inode)->lock);
5426 nr_extents = (unsigned)div64_u64(num_bytes +
5427 BTRFS_MAX_EXTENT_SIZE - 1,
5428 BTRFS_MAX_EXTENT_SIZE);
5429 BTRFS_I(inode)->outstanding_extents += nr_extents;
5430 nr_extents = 0;
5431
5432 if (BTRFS_I(inode)->outstanding_extents >
5433 BTRFS_I(inode)->reserved_extents)
5434 nr_extents = BTRFS_I(inode)->outstanding_extents -
5435 BTRFS_I(inode)->reserved_extents;
5436
5437 /*
5438 * Add an item to reserve for updating the inode when we complete the
5439 * delalloc io.
5440 */
5441 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5442 &BTRFS_I(inode)->runtime_flags)) {
5443 nr_extents++;
5444 extra_reserve = 1;
5445 }
5446
5447 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5448 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5449 csum_bytes = BTRFS_I(inode)->csum_bytes;
5450 spin_unlock(&BTRFS_I(inode)->lock);
5451
5452 if (root->fs_info->quota_enabled) {
5453 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5454 if (ret)
5455 goto out_fail;
5456 }
5457
5458 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5459 if (unlikely(ret)) {
5460 if (root->fs_info->quota_enabled)
5461 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5462 goto out_fail;
5463 }
5464
5465 spin_lock(&BTRFS_I(inode)->lock);
5466 if (extra_reserve) {
5467 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5468 &BTRFS_I(inode)->runtime_flags);
5469 nr_extents--;
5470 }
5471 BTRFS_I(inode)->reserved_extents += nr_extents;
5472 spin_unlock(&BTRFS_I(inode)->lock);
5473
5474 if (delalloc_lock)
5475 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5476
5477 if (to_reserve)
5478 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5479 btrfs_ino(inode), to_reserve, 1);
5480 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5481
5482 return 0;
5483
5484 out_fail:
5485 spin_lock(&BTRFS_I(inode)->lock);
5486 dropped = drop_outstanding_extent(inode, num_bytes);
5487 /*
5488 * If the inodes csum_bytes is the same as the original
5489 * csum_bytes then we know we haven't raced with any free()ers
5490 * so we can just reduce our inodes csum bytes and carry on.
5491 */
5492 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5493 calc_csum_metadata_size(inode, num_bytes, 0);
5494 } else {
5495 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5496 u64 bytes;
5497
5498 /*
5499 * This is tricky, but first we need to figure out how much we
5500 * free'd from any free-ers that occured during this
5501 * reservation, so we reset ->csum_bytes to the csum_bytes
5502 * before we dropped our lock, and then call the free for the
5503 * number of bytes that were freed while we were trying our
5504 * reservation.
5505 */
5506 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5507 BTRFS_I(inode)->csum_bytes = csum_bytes;
5508 to_free = calc_csum_metadata_size(inode, bytes, 0);
5509
5510
5511 /*
5512 * Now we need to see how much we would have freed had we not
5513 * been making this reservation and our ->csum_bytes were not
5514 * artificially inflated.
5515 */
5516 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5517 bytes = csum_bytes - orig_csum_bytes;
5518 bytes = calc_csum_metadata_size(inode, bytes, 0);
5519
5520 /*
5521 * Now reset ->csum_bytes to what it should be. If bytes is
5522 * more than to_free then we would have free'd more space had we
5523 * not had an artificially high ->csum_bytes, so we need to free
5524 * the remainder. If bytes is the same or less then we don't
5525 * need to do anything, the other free-ers did the correct
5526 * thing.
5527 */
5528 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5529 if (bytes > to_free)
5530 to_free = bytes - to_free;
5531 else
5532 to_free = 0;
5533 }
5534 spin_unlock(&BTRFS_I(inode)->lock);
5535 if (dropped)
5536 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5537
5538 if (to_free) {
5539 btrfs_block_rsv_release(root, block_rsv, to_free);
5540 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5541 btrfs_ino(inode), to_free, 0);
5542 }
5543 if (delalloc_lock)
5544 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5545 return ret;
5546 }
5547
5548 /**
5549 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5550 * @inode: the inode to release the reservation for
5551 * @num_bytes: the number of bytes we're releasing
5552 *
5553 * This will release the metadata reservation for an inode. This can be called
5554 * once we complete IO for a given set of bytes to release their metadata
5555 * reservations.
5556 */
5557 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5558 {
5559 struct btrfs_root *root = BTRFS_I(inode)->root;
5560 u64 to_free = 0;
5561 unsigned dropped;
5562
5563 num_bytes = ALIGN(num_bytes, root->sectorsize);
5564 spin_lock(&BTRFS_I(inode)->lock);
5565 dropped = drop_outstanding_extent(inode, num_bytes);
5566
5567 if (num_bytes)
5568 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5569 spin_unlock(&BTRFS_I(inode)->lock);
5570 if (dropped > 0)
5571 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5572
5573 if (btrfs_test_is_dummy_root(root))
5574 return;
5575
5576 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5577 btrfs_ino(inode), to_free, 0);
5578
5579 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5580 to_free);
5581 }
5582
5583 /**
5584 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5585 * @inode: inode we're writing to
5586 * @num_bytes: the number of bytes we want to allocate
5587 *
5588 * This will do the following things
5589 *
5590 * o reserve space in the data space info for num_bytes
5591 * o reserve space in the metadata space info based on number of outstanding
5592 * extents and how much csums will be needed
5593 * o add to the inodes ->delalloc_bytes
5594 * o add it to the fs_info's delalloc inodes list.
5595 *
5596 * This will return 0 for success and -ENOSPC if there is no space left.
5597 */
5598 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5599 {
5600 int ret;
5601
5602 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5603 if (ret)
5604 return ret;
5605
5606 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5607 if (ret) {
5608 btrfs_free_reserved_data_space(inode, num_bytes);
5609 return ret;
5610 }
5611
5612 return 0;
5613 }
5614
5615 /**
5616 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5617 * @inode: inode we're releasing space for
5618 * @num_bytes: the number of bytes we want to free up
5619 *
5620 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5621 * called in the case that we don't need the metadata AND data reservations
5622 * anymore. So if there is an error or we insert an inline extent.
5623 *
5624 * This function will release the metadata space that was not used and will
5625 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5626 * list if there are no delalloc bytes left.
5627 */
5628 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5629 {
5630 btrfs_delalloc_release_metadata(inode, num_bytes);
5631 btrfs_free_reserved_data_space(inode, num_bytes);
5632 }
5633
5634 static int update_block_group(struct btrfs_trans_handle *trans,
5635 struct btrfs_root *root, u64 bytenr,
5636 u64 num_bytes, int alloc)
5637 {
5638 struct btrfs_block_group_cache *cache = NULL;
5639 struct btrfs_fs_info *info = root->fs_info;
5640 u64 total = num_bytes;
5641 u64 old_val;
5642 u64 byte_in_group;
5643 int factor;
5644
5645 /* block accounting for super block */
5646 spin_lock(&info->delalloc_root_lock);
5647 old_val = btrfs_super_bytes_used(info->super_copy);
5648 if (alloc)
5649 old_val += num_bytes;
5650 else
5651 old_val -= num_bytes;
5652 btrfs_set_super_bytes_used(info->super_copy, old_val);
5653 spin_unlock(&info->delalloc_root_lock);
5654
5655 while (total) {
5656 cache = btrfs_lookup_block_group(info, bytenr);
5657 if (!cache)
5658 return -ENOENT;
5659 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5660 BTRFS_BLOCK_GROUP_RAID1 |
5661 BTRFS_BLOCK_GROUP_RAID10))
5662 factor = 2;
5663 else
5664 factor = 1;
5665 /*
5666 * If this block group has free space cache written out, we
5667 * need to make sure to load it if we are removing space. This
5668 * is because we need the unpinning stage to actually add the
5669 * space back to the block group, otherwise we will leak space.
5670 */
5671 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5672 cache_block_group(cache, 1);
5673
5674 byte_in_group = bytenr - cache->key.objectid;
5675 WARN_ON(byte_in_group > cache->key.offset);
5676
5677 spin_lock(&cache->space_info->lock);
5678 spin_lock(&cache->lock);
5679
5680 if (btrfs_test_opt(root, SPACE_CACHE) &&
5681 cache->disk_cache_state < BTRFS_DC_CLEAR)
5682 cache->disk_cache_state = BTRFS_DC_CLEAR;
5683
5684 old_val = btrfs_block_group_used(&cache->item);
5685 num_bytes = min(total, cache->key.offset - byte_in_group);
5686 if (alloc) {
5687 old_val += num_bytes;
5688 btrfs_set_block_group_used(&cache->item, old_val);
5689 cache->reserved -= num_bytes;
5690 cache->space_info->bytes_reserved -= num_bytes;
5691 cache->space_info->bytes_used += num_bytes;
5692 cache->space_info->disk_used += num_bytes * factor;
5693 spin_unlock(&cache->lock);
5694 spin_unlock(&cache->space_info->lock);
5695 } else {
5696 old_val -= num_bytes;
5697 btrfs_set_block_group_used(&cache->item, old_val);
5698 cache->pinned += num_bytes;
5699 cache->space_info->bytes_pinned += num_bytes;
5700 cache->space_info->bytes_used -= num_bytes;
5701 cache->space_info->disk_used -= num_bytes * factor;
5702 spin_unlock(&cache->lock);
5703 spin_unlock(&cache->space_info->lock);
5704
5705 set_extent_dirty(info->pinned_extents,
5706 bytenr, bytenr + num_bytes - 1,
5707 GFP_NOFS | __GFP_NOFAIL);
5708 /*
5709 * No longer have used bytes in this block group, queue
5710 * it for deletion.
5711 */
5712 if (old_val == 0) {
5713 spin_lock(&info->unused_bgs_lock);
5714 if (list_empty(&cache->bg_list)) {
5715 btrfs_get_block_group(cache);
5716 list_add_tail(&cache->bg_list,
5717 &info->unused_bgs);
5718 }
5719 spin_unlock(&info->unused_bgs_lock);
5720 }
5721 }
5722
5723 spin_lock(&trans->transaction->dirty_bgs_lock);
5724 if (list_empty(&cache->dirty_list)) {
5725 list_add_tail(&cache->dirty_list,
5726 &trans->transaction->dirty_bgs);
5727 trans->transaction->num_dirty_bgs++;
5728 btrfs_get_block_group(cache);
5729 }
5730 spin_unlock(&trans->transaction->dirty_bgs_lock);
5731
5732 btrfs_put_block_group(cache);
5733 total -= num_bytes;
5734 bytenr += num_bytes;
5735 }
5736 return 0;
5737 }
5738
5739 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5740 {
5741 struct btrfs_block_group_cache *cache;
5742 u64 bytenr;
5743
5744 spin_lock(&root->fs_info->block_group_cache_lock);
5745 bytenr = root->fs_info->first_logical_byte;
5746 spin_unlock(&root->fs_info->block_group_cache_lock);
5747
5748 if (bytenr < (u64)-1)
5749 return bytenr;
5750
5751 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5752 if (!cache)
5753 return 0;
5754
5755 bytenr = cache->key.objectid;
5756 btrfs_put_block_group(cache);
5757
5758 return bytenr;
5759 }
5760
5761 static int pin_down_extent(struct btrfs_root *root,
5762 struct btrfs_block_group_cache *cache,
5763 u64 bytenr, u64 num_bytes, int reserved)
5764 {
5765 spin_lock(&cache->space_info->lock);
5766 spin_lock(&cache->lock);
5767 cache->pinned += num_bytes;
5768 cache->space_info->bytes_pinned += num_bytes;
5769 if (reserved) {
5770 cache->reserved -= num_bytes;
5771 cache->space_info->bytes_reserved -= num_bytes;
5772 }
5773 spin_unlock(&cache->lock);
5774 spin_unlock(&cache->space_info->lock);
5775
5776 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5777 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5778 if (reserved)
5779 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5780 return 0;
5781 }
5782
5783 /*
5784 * this function must be called within transaction
5785 */
5786 int btrfs_pin_extent(struct btrfs_root *root,
5787 u64 bytenr, u64 num_bytes, int reserved)
5788 {
5789 struct btrfs_block_group_cache *cache;
5790
5791 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5792 BUG_ON(!cache); /* Logic error */
5793
5794 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5795
5796 btrfs_put_block_group(cache);
5797 return 0;
5798 }
5799
5800 /*
5801 * this function must be called within transaction
5802 */
5803 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5804 u64 bytenr, u64 num_bytes)
5805 {
5806 struct btrfs_block_group_cache *cache;
5807 int ret;
5808
5809 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5810 if (!cache)
5811 return -EINVAL;
5812
5813 /*
5814 * pull in the free space cache (if any) so that our pin
5815 * removes the free space from the cache. We have load_only set
5816 * to one because the slow code to read in the free extents does check
5817 * the pinned extents.
5818 */
5819 cache_block_group(cache, 1);
5820
5821 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5822
5823 /* remove us from the free space cache (if we're there at all) */
5824 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5825 btrfs_put_block_group(cache);
5826 return ret;
5827 }
5828
5829 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5830 {
5831 int ret;
5832 struct btrfs_block_group_cache *block_group;
5833 struct btrfs_caching_control *caching_ctl;
5834
5835 block_group = btrfs_lookup_block_group(root->fs_info, start);
5836 if (!block_group)
5837 return -EINVAL;
5838
5839 cache_block_group(block_group, 0);
5840 caching_ctl = get_caching_control(block_group);
5841
5842 if (!caching_ctl) {
5843 /* Logic error */
5844 BUG_ON(!block_group_cache_done(block_group));
5845 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5846 } else {
5847 mutex_lock(&caching_ctl->mutex);
5848
5849 if (start >= caching_ctl->progress) {
5850 ret = add_excluded_extent(root, start, num_bytes);
5851 } else if (start + num_bytes <= caching_ctl->progress) {
5852 ret = btrfs_remove_free_space(block_group,
5853 start, num_bytes);
5854 } else {
5855 num_bytes = caching_ctl->progress - start;
5856 ret = btrfs_remove_free_space(block_group,
5857 start, num_bytes);
5858 if (ret)
5859 goto out_lock;
5860
5861 num_bytes = (start + num_bytes) -
5862 caching_ctl->progress;
5863 start = caching_ctl->progress;
5864 ret = add_excluded_extent(root, start, num_bytes);
5865 }
5866 out_lock:
5867 mutex_unlock(&caching_ctl->mutex);
5868 put_caching_control(caching_ctl);
5869 }
5870 btrfs_put_block_group(block_group);
5871 return ret;
5872 }
5873
5874 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5875 struct extent_buffer *eb)
5876 {
5877 struct btrfs_file_extent_item *item;
5878 struct btrfs_key key;
5879 int found_type;
5880 int i;
5881
5882 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5883 return 0;
5884
5885 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5886 btrfs_item_key_to_cpu(eb, &key, i);
5887 if (key.type != BTRFS_EXTENT_DATA_KEY)
5888 continue;
5889 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5890 found_type = btrfs_file_extent_type(eb, item);
5891 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5892 continue;
5893 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5894 continue;
5895 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5896 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5897 __exclude_logged_extent(log, key.objectid, key.offset);
5898 }
5899
5900 return 0;
5901 }
5902
5903 /**
5904 * btrfs_update_reserved_bytes - update the block_group and space info counters
5905 * @cache: The cache we are manipulating
5906 * @num_bytes: The number of bytes in question
5907 * @reserve: One of the reservation enums
5908 * @delalloc: The blocks are allocated for the delalloc write
5909 *
5910 * This is called by the allocator when it reserves space, or by somebody who is
5911 * freeing space that was never actually used on disk. For example if you
5912 * reserve some space for a new leaf in transaction A and before transaction A
5913 * commits you free that leaf, you call this with reserve set to 0 in order to
5914 * clear the reservation.
5915 *
5916 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5917 * ENOSPC accounting. For data we handle the reservation through clearing the
5918 * delalloc bits in the io_tree. We have to do this since we could end up
5919 * allocating less disk space for the amount of data we have reserved in the
5920 * case of compression.
5921 *
5922 * If this is a reservation and the block group has become read only we cannot
5923 * make the reservation and return -EAGAIN, otherwise this function always
5924 * succeeds.
5925 */
5926 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5927 u64 num_bytes, int reserve, int delalloc)
5928 {
5929 struct btrfs_space_info *space_info = cache->space_info;
5930 int ret = 0;
5931
5932 spin_lock(&space_info->lock);
5933 spin_lock(&cache->lock);
5934 if (reserve != RESERVE_FREE) {
5935 if (cache->ro) {
5936 ret = -EAGAIN;
5937 } else {
5938 cache->reserved += num_bytes;
5939 space_info->bytes_reserved += num_bytes;
5940 if (reserve == RESERVE_ALLOC) {
5941 trace_btrfs_space_reservation(cache->fs_info,
5942 "space_info", space_info->flags,
5943 num_bytes, 0);
5944 space_info->bytes_may_use -= num_bytes;
5945 }
5946
5947 if (delalloc)
5948 cache->delalloc_bytes += num_bytes;
5949 }
5950 } else {
5951 if (cache->ro)
5952 space_info->bytes_readonly += num_bytes;
5953 cache->reserved -= num_bytes;
5954 space_info->bytes_reserved -= num_bytes;
5955
5956 if (delalloc)
5957 cache->delalloc_bytes -= num_bytes;
5958 }
5959 spin_unlock(&cache->lock);
5960 spin_unlock(&space_info->lock);
5961 return ret;
5962 }
5963
5964 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5965 struct btrfs_root *root)
5966 {
5967 struct btrfs_fs_info *fs_info = root->fs_info;
5968 struct btrfs_caching_control *next;
5969 struct btrfs_caching_control *caching_ctl;
5970 struct btrfs_block_group_cache *cache;
5971
5972 down_write(&fs_info->commit_root_sem);
5973
5974 list_for_each_entry_safe(caching_ctl, next,
5975 &fs_info->caching_block_groups, list) {
5976 cache = caching_ctl->block_group;
5977 if (block_group_cache_done(cache)) {
5978 cache->last_byte_to_unpin = (u64)-1;
5979 list_del_init(&caching_ctl->list);
5980 put_caching_control(caching_ctl);
5981 } else {
5982 cache->last_byte_to_unpin = caching_ctl->progress;
5983 }
5984 }
5985
5986 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5987 fs_info->pinned_extents = &fs_info->freed_extents[1];
5988 else
5989 fs_info->pinned_extents = &fs_info->freed_extents[0];
5990
5991 up_write(&fs_info->commit_root_sem);
5992
5993 update_global_block_rsv(fs_info);
5994 }
5995
5996 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5997 const bool return_free_space)
5998 {
5999 struct btrfs_fs_info *fs_info = root->fs_info;
6000 struct btrfs_block_group_cache *cache = NULL;
6001 struct btrfs_space_info *space_info;
6002 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6003 u64 len;
6004 bool readonly;
6005
6006 while (start <= end) {
6007 readonly = false;
6008 if (!cache ||
6009 start >= cache->key.objectid + cache->key.offset) {
6010 if (cache)
6011 btrfs_put_block_group(cache);
6012 cache = btrfs_lookup_block_group(fs_info, start);
6013 BUG_ON(!cache); /* Logic error */
6014 }
6015
6016 len = cache->key.objectid + cache->key.offset - start;
6017 len = min(len, end + 1 - start);
6018
6019 if (start < cache->last_byte_to_unpin) {
6020 len = min(len, cache->last_byte_to_unpin - start);
6021 if (return_free_space)
6022 btrfs_add_free_space(cache, start, len);
6023 }
6024
6025 start += len;
6026 space_info = cache->space_info;
6027
6028 spin_lock(&space_info->lock);
6029 spin_lock(&cache->lock);
6030 cache->pinned -= len;
6031 space_info->bytes_pinned -= len;
6032 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6033 if (cache->ro) {
6034 space_info->bytes_readonly += len;
6035 readonly = true;
6036 }
6037 spin_unlock(&cache->lock);
6038 if (!readonly && global_rsv->space_info == space_info) {
6039 spin_lock(&global_rsv->lock);
6040 if (!global_rsv->full) {
6041 len = min(len, global_rsv->size -
6042 global_rsv->reserved);
6043 global_rsv->reserved += len;
6044 space_info->bytes_may_use += len;
6045 if (global_rsv->reserved >= global_rsv->size)
6046 global_rsv->full = 1;
6047 }
6048 spin_unlock(&global_rsv->lock);
6049 }
6050 spin_unlock(&space_info->lock);
6051 }
6052
6053 if (cache)
6054 btrfs_put_block_group(cache);
6055 return 0;
6056 }
6057
6058 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6059 struct btrfs_root *root)
6060 {
6061 struct btrfs_fs_info *fs_info = root->fs_info;
6062 struct extent_io_tree *unpin;
6063 u64 start;
6064 u64 end;
6065 int ret;
6066
6067 if (trans->aborted)
6068 return 0;
6069
6070 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6071 unpin = &fs_info->freed_extents[1];
6072 else
6073 unpin = &fs_info->freed_extents[0];
6074
6075 while (1) {
6076 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6077 ret = find_first_extent_bit(unpin, 0, &start, &end,
6078 EXTENT_DIRTY, NULL);
6079 if (ret) {
6080 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6081 break;
6082 }
6083
6084 if (btrfs_test_opt(root, DISCARD))
6085 ret = btrfs_discard_extent(root, start,
6086 end + 1 - start, NULL);
6087
6088 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6089 unpin_extent_range(root, start, end, true);
6090 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6091 cond_resched();
6092 }
6093
6094 return 0;
6095 }
6096
6097 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6098 u64 owner, u64 root_objectid)
6099 {
6100 struct btrfs_space_info *space_info;
6101 u64 flags;
6102
6103 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6104 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6105 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6106 else
6107 flags = BTRFS_BLOCK_GROUP_METADATA;
6108 } else {
6109 flags = BTRFS_BLOCK_GROUP_DATA;
6110 }
6111
6112 space_info = __find_space_info(fs_info, flags);
6113 BUG_ON(!space_info); /* Logic bug */
6114 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6115 }
6116
6117
6118 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6119 struct btrfs_root *root,
6120 struct btrfs_delayed_ref_node *node, u64 parent,
6121 u64 root_objectid, u64 owner_objectid,
6122 u64 owner_offset, int refs_to_drop,
6123 struct btrfs_delayed_extent_op *extent_op)
6124 {
6125 struct btrfs_key key;
6126 struct btrfs_path *path;
6127 struct btrfs_fs_info *info = root->fs_info;
6128 struct btrfs_root *extent_root = info->extent_root;
6129 struct extent_buffer *leaf;
6130 struct btrfs_extent_item *ei;
6131 struct btrfs_extent_inline_ref *iref;
6132 int ret;
6133 int is_data;
6134 int extent_slot = 0;
6135 int found_extent = 0;
6136 int num_to_del = 1;
6137 int no_quota = node->no_quota;
6138 u32 item_size;
6139 u64 refs;
6140 u64 bytenr = node->bytenr;
6141 u64 num_bytes = node->num_bytes;
6142 int last_ref = 0;
6143 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6144 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6145 SKINNY_METADATA);
6146
6147 if (!info->quota_enabled || !is_fstree(root_objectid))
6148 no_quota = 1;
6149
6150 path = btrfs_alloc_path();
6151 if (!path)
6152 return -ENOMEM;
6153
6154 path->reada = 1;
6155 path->leave_spinning = 1;
6156
6157 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6158 BUG_ON(!is_data && refs_to_drop != 1);
6159
6160 if (is_data)
6161 skinny_metadata = 0;
6162
6163 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6164 bytenr, num_bytes, parent,
6165 root_objectid, owner_objectid,
6166 owner_offset);
6167 if (ret == 0) {
6168 extent_slot = path->slots[0];
6169 while (extent_slot >= 0) {
6170 btrfs_item_key_to_cpu(path->nodes[0], &key,
6171 extent_slot);
6172 if (key.objectid != bytenr)
6173 break;
6174 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6175 key.offset == num_bytes) {
6176 found_extent = 1;
6177 break;
6178 }
6179 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6180 key.offset == owner_objectid) {
6181 found_extent = 1;
6182 break;
6183 }
6184 if (path->slots[0] - extent_slot > 5)
6185 break;
6186 extent_slot--;
6187 }
6188 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6189 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6190 if (found_extent && item_size < sizeof(*ei))
6191 found_extent = 0;
6192 #endif
6193 if (!found_extent) {
6194 BUG_ON(iref);
6195 ret = remove_extent_backref(trans, extent_root, path,
6196 NULL, refs_to_drop,
6197 is_data, &last_ref);
6198 if (ret) {
6199 btrfs_abort_transaction(trans, extent_root, ret);
6200 goto out;
6201 }
6202 btrfs_release_path(path);
6203 path->leave_spinning = 1;
6204
6205 key.objectid = bytenr;
6206 key.type = BTRFS_EXTENT_ITEM_KEY;
6207 key.offset = num_bytes;
6208
6209 if (!is_data && skinny_metadata) {
6210 key.type = BTRFS_METADATA_ITEM_KEY;
6211 key.offset = owner_objectid;
6212 }
6213
6214 ret = btrfs_search_slot(trans, extent_root,
6215 &key, path, -1, 1);
6216 if (ret > 0 && skinny_metadata && path->slots[0]) {
6217 /*
6218 * Couldn't find our skinny metadata item,
6219 * see if we have ye olde extent item.
6220 */
6221 path->slots[0]--;
6222 btrfs_item_key_to_cpu(path->nodes[0], &key,
6223 path->slots[0]);
6224 if (key.objectid == bytenr &&
6225 key.type == BTRFS_EXTENT_ITEM_KEY &&
6226 key.offset == num_bytes)
6227 ret = 0;
6228 }
6229
6230 if (ret > 0 && skinny_metadata) {
6231 skinny_metadata = false;
6232 key.objectid = bytenr;
6233 key.type = BTRFS_EXTENT_ITEM_KEY;
6234 key.offset = num_bytes;
6235 btrfs_release_path(path);
6236 ret = btrfs_search_slot(trans, extent_root,
6237 &key, path, -1, 1);
6238 }
6239
6240 if (ret) {
6241 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6242 ret, bytenr);
6243 if (ret > 0)
6244 btrfs_print_leaf(extent_root,
6245 path->nodes[0]);
6246 }
6247 if (ret < 0) {
6248 btrfs_abort_transaction(trans, extent_root, ret);
6249 goto out;
6250 }
6251 extent_slot = path->slots[0];
6252 }
6253 } else if (WARN_ON(ret == -ENOENT)) {
6254 btrfs_print_leaf(extent_root, path->nodes[0]);
6255 btrfs_err(info,
6256 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6257 bytenr, parent, root_objectid, owner_objectid,
6258 owner_offset);
6259 btrfs_abort_transaction(trans, extent_root, ret);
6260 goto out;
6261 } else {
6262 btrfs_abort_transaction(trans, extent_root, ret);
6263 goto out;
6264 }
6265
6266 leaf = path->nodes[0];
6267 item_size = btrfs_item_size_nr(leaf, extent_slot);
6268 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6269 if (item_size < sizeof(*ei)) {
6270 BUG_ON(found_extent || extent_slot != path->slots[0]);
6271 ret = convert_extent_item_v0(trans, extent_root, path,
6272 owner_objectid, 0);
6273 if (ret < 0) {
6274 btrfs_abort_transaction(trans, extent_root, ret);
6275 goto out;
6276 }
6277
6278 btrfs_release_path(path);
6279 path->leave_spinning = 1;
6280
6281 key.objectid = bytenr;
6282 key.type = BTRFS_EXTENT_ITEM_KEY;
6283 key.offset = num_bytes;
6284
6285 ret = btrfs_search_slot(trans, extent_root, &key, path,
6286 -1, 1);
6287 if (ret) {
6288 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6289 ret, bytenr);
6290 btrfs_print_leaf(extent_root, path->nodes[0]);
6291 }
6292 if (ret < 0) {
6293 btrfs_abort_transaction(trans, extent_root, ret);
6294 goto out;
6295 }
6296
6297 extent_slot = path->slots[0];
6298 leaf = path->nodes[0];
6299 item_size = btrfs_item_size_nr(leaf, extent_slot);
6300 }
6301 #endif
6302 BUG_ON(item_size < sizeof(*ei));
6303 ei = btrfs_item_ptr(leaf, extent_slot,
6304 struct btrfs_extent_item);
6305 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6306 key.type == BTRFS_EXTENT_ITEM_KEY) {
6307 struct btrfs_tree_block_info *bi;
6308 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6309 bi = (struct btrfs_tree_block_info *)(ei + 1);
6310 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6311 }
6312
6313 refs = btrfs_extent_refs(leaf, ei);
6314 if (refs < refs_to_drop) {
6315 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6316 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6317 ret = -EINVAL;
6318 btrfs_abort_transaction(trans, extent_root, ret);
6319 goto out;
6320 }
6321 refs -= refs_to_drop;
6322
6323 if (refs > 0) {
6324 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6325 if (extent_op)
6326 __run_delayed_extent_op(extent_op, leaf, ei);
6327 /*
6328 * In the case of inline back ref, reference count will
6329 * be updated by remove_extent_backref
6330 */
6331 if (iref) {
6332 BUG_ON(!found_extent);
6333 } else {
6334 btrfs_set_extent_refs(leaf, ei, refs);
6335 btrfs_mark_buffer_dirty(leaf);
6336 }
6337 if (found_extent) {
6338 ret = remove_extent_backref(trans, extent_root, path,
6339 iref, refs_to_drop,
6340 is_data, &last_ref);
6341 if (ret) {
6342 btrfs_abort_transaction(trans, extent_root, ret);
6343 goto out;
6344 }
6345 }
6346 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6347 root_objectid);
6348 } else {
6349 if (found_extent) {
6350 BUG_ON(is_data && refs_to_drop !=
6351 extent_data_ref_count(root, path, iref));
6352 if (iref) {
6353 BUG_ON(path->slots[0] != extent_slot);
6354 } else {
6355 BUG_ON(path->slots[0] != extent_slot + 1);
6356 path->slots[0] = extent_slot;
6357 num_to_del = 2;
6358 }
6359 }
6360
6361 last_ref = 1;
6362 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6363 num_to_del);
6364 if (ret) {
6365 btrfs_abort_transaction(trans, extent_root, ret);
6366 goto out;
6367 }
6368 btrfs_release_path(path);
6369
6370 if (is_data) {
6371 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6372 if (ret) {
6373 btrfs_abort_transaction(trans, extent_root, ret);
6374 goto out;
6375 }
6376 }
6377
6378 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6379 if (ret) {
6380 btrfs_abort_transaction(trans, extent_root, ret);
6381 goto out;
6382 }
6383 }
6384 btrfs_release_path(path);
6385
6386 /* Deal with the quota accounting */
6387 if (!ret && last_ref && !no_quota) {
6388 int mod_seq = 0;
6389
6390 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6391 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6392 mod_seq = 1;
6393
6394 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6395 bytenr, num_bytes, type,
6396 mod_seq);
6397 }
6398 out:
6399 btrfs_free_path(path);
6400 return ret;
6401 }
6402
6403 /*
6404 * when we free an block, it is possible (and likely) that we free the last
6405 * delayed ref for that extent as well. This searches the delayed ref tree for
6406 * a given extent, and if there are no other delayed refs to be processed, it
6407 * removes it from the tree.
6408 */
6409 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6410 struct btrfs_root *root, u64 bytenr)
6411 {
6412 struct btrfs_delayed_ref_head *head;
6413 struct btrfs_delayed_ref_root *delayed_refs;
6414 int ret = 0;
6415
6416 delayed_refs = &trans->transaction->delayed_refs;
6417 spin_lock(&delayed_refs->lock);
6418 head = btrfs_find_delayed_ref_head(trans, bytenr);
6419 if (!head)
6420 goto out_delayed_unlock;
6421
6422 spin_lock(&head->lock);
6423 if (!list_empty(&head->ref_list))
6424 goto out;
6425
6426 if (head->extent_op) {
6427 if (!head->must_insert_reserved)
6428 goto out;
6429 btrfs_free_delayed_extent_op(head->extent_op);
6430 head->extent_op = NULL;
6431 }
6432
6433 /*
6434 * waiting for the lock here would deadlock. If someone else has it
6435 * locked they are already in the process of dropping it anyway
6436 */
6437 if (!mutex_trylock(&head->mutex))
6438 goto out;
6439
6440 /*
6441 * at this point we have a head with no other entries. Go
6442 * ahead and process it.
6443 */
6444 head->node.in_tree = 0;
6445 rb_erase(&head->href_node, &delayed_refs->href_root);
6446
6447 atomic_dec(&delayed_refs->num_entries);
6448
6449 /*
6450 * we don't take a ref on the node because we're removing it from the
6451 * tree, so we just steal the ref the tree was holding.
6452 */
6453 delayed_refs->num_heads--;
6454 if (head->processing == 0)
6455 delayed_refs->num_heads_ready--;
6456 head->processing = 0;
6457 spin_unlock(&head->lock);
6458 spin_unlock(&delayed_refs->lock);
6459
6460 BUG_ON(head->extent_op);
6461 if (head->must_insert_reserved)
6462 ret = 1;
6463
6464 mutex_unlock(&head->mutex);
6465 btrfs_put_delayed_ref(&head->node);
6466 return ret;
6467 out:
6468 spin_unlock(&head->lock);
6469
6470 out_delayed_unlock:
6471 spin_unlock(&delayed_refs->lock);
6472 return 0;
6473 }
6474
6475 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6476 struct btrfs_root *root,
6477 struct extent_buffer *buf,
6478 u64 parent, int last_ref)
6479 {
6480 int pin = 1;
6481 int ret;
6482
6483 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6484 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6485 buf->start, buf->len,
6486 parent, root->root_key.objectid,
6487 btrfs_header_level(buf),
6488 BTRFS_DROP_DELAYED_REF, NULL, 0);
6489 BUG_ON(ret); /* -ENOMEM */
6490 }
6491
6492 if (!last_ref)
6493 return;
6494
6495 if (btrfs_header_generation(buf) == trans->transid) {
6496 struct btrfs_block_group_cache *cache;
6497
6498 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6499 ret = check_ref_cleanup(trans, root, buf->start);
6500 if (!ret)
6501 goto out;
6502 }
6503
6504 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6505
6506 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6507 pin_down_extent(root, cache, buf->start, buf->len, 1);
6508 btrfs_put_block_group(cache);
6509 goto out;
6510 }
6511
6512 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6513
6514 btrfs_add_free_space(cache, buf->start, buf->len);
6515 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6516 btrfs_put_block_group(cache);
6517 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6518 pin = 0;
6519 }
6520 out:
6521 if (pin)
6522 add_pinned_bytes(root->fs_info, buf->len,
6523 btrfs_header_level(buf),
6524 root->root_key.objectid);
6525
6526 /*
6527 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6528 * anymore.
6529 */
6530 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6531 }
6532
6533 /* Can return -ENOMEM */
6534 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6535 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6536 u64 owner, u64 offset, int no_quota)
6537 {
6538 int ret;
6539 struct btrfs_fs_info *fs_info = root->fs_info;
6540
6541 if (btrfs_test_is_dummy_root(root))
6542 return 0;
6543
6544 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6545
6546 /*
6547 * tree log blocks never actually go into the extent allocation
6548 * tree, just update pinning info and exit early.
6549 */
6550 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6551 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6552 /* unlocks the pinned mutex */
6553 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6554 ret = 0;
6555 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6556 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6557 num_bytes,
6558 parent, root_objectid, (int)owner,
6559 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6560 } else {
6561 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6562 num_bytes,
6563 parent, root_objectid, owner,
6564 offset, BTRFS_DROP_DELAYED_REF,
6565 NULL, no_quota);
6566 }
6567 return ret;
6568 }
6569
6570 /*
6571 * when we wait for progress in the block group caching, its because
6572 * our allocation attempt failed at least once. So, we must sleep
6573 * and let some progress happen before we try again.
6574 *
6575 * This function will sleep at least once waiting for new free space to
6576 * show up, and then it will check the block group free space numbers
6577 * for our min num_bytes. Another option is to have it go ahead
6578 * and look in the rbtree for a free extent of a given size, but this
6579 * is a good start.
6580 *
6581 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6582 * any of the information in this block group.
6583 */
6584 static noinline void
6585 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6586 u64 num_bytes)
6587 {
6588 struct btrfs_caching_control *caching_ctl;
6589
6590 caching_ctl = get_caching_control(cache);
6591 if (!caching_ctl)
6592 return;
6593
6594 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6595 (cache->free_space_ctl->free_space >= num_bytes));
6596
6597 put_caching_control(caching_ctl);
6598 }
6599
6600 static noinline int
6601 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6602 {
6603 struct btrfs_caching_control *caching_ctl;
6604 int ret = 0;
6605
6606 caching_ctl = get_caching_control(cache);
6607 if (!caching_ctl)
6608 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6609
6610 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6611 if (cache->cached == BTRFS_CACHE_ERROR)
6612 ret = -EIO;
6613 put_caching_control(caching_ctl);
6614 return ret;
6615 }
6616
6617 int __get_raid_index(u64 flags)
6618 {
6619 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6620 return BTRFS_RAID_RAID10;
6621 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6622 return BTRFS_RAID_RAID1;
6623 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6624 return BTRFS_RAID_DUP;
6625 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6626 return BTRFS_RAID_RAID0;
6627 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6628 return BTRFS_RAID_RAID5;
6629 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6630 return BTRFS_RAID_RAID6;
6631
6632 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6633 }
6634
6635 int get_block_group_index(struct btrfs_block_group_cache *cache)
6636 {
6637 return __get_raid_index(cache->flags);
6638 }
6639
6640 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6641 [BTRFS_RAID_RAID10] = "raid10",
6642 [BTRFS_RAID_RAID1] = "raid1",
6643 [BTRFS_RAID_DUP] = "dup",
6644 [BTRFS_RAID_RAID0] = "raid0",
6645 [BTRFS_RAID_SINGLE] = "single",
6646 [BTRFS_RAID_RAID5] = "raid5",
6647 [BTRFS_RAID_RAID6] = "raid6",
6648 };
6649
6650 static const char *get_raid_name(enum btrfs_raid_types type)
6651 {
6652 if (type >= BTRFS_NR_RAID_TYPES)
6653 return NULL;
6654
6655 return btrfs_raid_type_names[type];
6656 }
6657
6658 enum btrfs_loop_type {
6659 LOOP_CACHING_NOWAIT = 0,
6660 LOOP_CACHING_WAIT = 1,
6661 LOOP_ALLOC_CHUNK = 2,
6662 LOOP_NO_EMPTY_SIZE = 3,
6663 };
6664
6665 static inline void
6666 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6667 int delalloc)
6668 {
6669 if (delalloc)
6670 down_read(&cache->data_rwsem);
6671 }
6672
6673 static inline void
6674 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6675 int delalloc)
6676 {
6677 btrfs_get_block_group(cache);
6678 if (delalloc)
6679 down_read(&cache->data_rwsem);
6680 }
6681
6682 static struct btrfs_block_group_cache *
6683 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6684 struct btrfs_free_cluster *cluster,
6685 int delalloc)
6686 {
6687 struct btrfs_block_group_cache *used_bg;
6688 bool locked = false;
6689 again:
6690 spin_lock(&cluster->refill_lock);
6691 if (locked) {
6692 if (used_bg == cluster->block_group)
6693 return used_bg;
6694
6695 up_read(&used_bg->data_rwsem);
6696 btrfs_put_block_group(used_bg);
6697 }
6698
6699 used_bg = cluster->block_group;
6700 if (!used_bg)
6701 return NULL;
6702
6703 if (used_bg == block_group)
6704 return used_bg;
6705
6706 btrfs_get_block_group(used_bg);
6707
6708 if (!delalloc)
6709 return used_bg;
6710
6711 if (down_read_trylock(&used_bg->data_rwsem))
6712 return used_bg;
6713
6714 spin_unlock(&cluster->refill_lock);
6715 down_read(&used_bg->data_rwsem);
6716 locked = true;
6717 goto again;
6718 }
6719
6720 static inline void
6721 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6722 int delalloc)
6723 {
6724 if (delalloc)
6725 up_read(&cache->data_rwsem);
6726 btrfs_put_block_group(cache);
6727 }
6728
6729 /*
6730 * walks the btree of allocated extents and find a hole of a given size.
6731 * The key ins is changed to record the hole:
6732 * ins->objectid == start position
6733 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6734 * ins->offset == the size of the hole.
6735 * Any available blocks before search_start are skipped.
6736 *
6737 * If there is no suitable free space, we will record the max size of
6738 * the free space extent currently.
6739 */
6740 static noinline int find_free_extent(struct btrfs_root *orig_root,
6741 u64 num_bytes, u64 empty_size,
6742 u64 hint_byte, struct btrfs_key *ins,
6743 u64 flags, int delalloc)
6744 {
6745 int ret = 0;
6746 struct btrfs_root *root = orig_root->fs_info->extent_root;
6747 struct btrfs_free_cluster *last_ptr = NULL;
6748 struct btrfs_block_group_cache *block_group = NULL;
6749 u64 search_start = 0;
6750 u64 max_extent_size = 0;
6751 int empty_cluster = 2 * 1024 * 1024;
6752 struct btrfs_space_info *space_info;
6753 int loop = 0;
6754 int index = __get_raid_index(flags);
6755 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6756 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6757 bool failed_cluster_refill = false;
6758 bool failed_alloc = false;
6759 bool use_cluster = true;
6760 bool have_caching_bg = false;
6761
6762 WARN_ON(num_bytes < root->sectorsize);
6763 ins->type = BTRFS_EXTENT_ITEM_KEY;
6764 ins->objectid = 0;
6765 ins->offset = 0;
6766
6767 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6768
6769 space_info = __find_space_info(root->fs_info, flags);
6770 if (!space_info) {
6771 btrfs_err(root->fs_info, "No space info for %llu", flags);
6772 return -ENOSPC;
6773 }
6774
6775 /*
6776 * If the space info is for both data and metadata it means we have a
6777 * small filesystem and we can't use the clustering stuff.
6778 */
6779 if (btrfs_mixed_space_info(space_info))
6780 use_cluster = false;
6781
6782 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6783 last_ptr = &root->fs_info->meta_alloc_cluster;
6784 if (!btrfs_test_opt(root, SSD))
6785 empty_cluster = 64 * 1024;
6786 }
6787
6788 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6789 btrfs_test_opt(root, SSD)) {
6790 last_ptr = &root->fs_info->data_alloc_cluster;
6791 }
6792
6793 if (last_ptr) {
6794 spin_lock(&last_ptr->lock);
6795 if (last_ptr->block_group)
6796 hint_byte = last_ptr->window_start;
6797 spin_unlock(&last_ptr->lock);
6798 }
6799
6800 search_start = max(search_start, first_logical_byte(root, 0));
6801 search_start = max(search_start, hint_byte);
6802
6803 if (!last_ptr)
6804 empty_cluster = 0;
6805
6806 if (search_start == hint_byte) {
6807 block_group = btrfs_lookup_block_group(root->fs_info,
6808 search_start);
6809 /*
6810 * we don't want to use the block group if it doesn't match our
6811 * allocation bits, or if its not cached.
6812 *
6813 * However if we are re-searching with an ideal block group
6814 * picked out then we don't care that the block group is cached.
6815 */
6816 if (block_group && block_group_bits(block_group, flags) &&
6817 block_group->cached != BTRFS_CACHE_NO) {
6818 down_read(&space_info->groups_sem);
6819 if (list_empty(&block_group->list) ||
6820 block_group->ro) {
6821 /*
6822 * someone is removing this block group,
6823 * we can't jump into the have_block_group
6824 * target because our list pointers are not
6825 * valid
6826 */
6827 btrfs_put_block_group(block_group);
6828 up_read(&space_info->groups_sem);
6829 } else {
6830 index = get_block_group_index(block_group);
6831 btrfs_lock_block_group(block_group, delalloc);
6832 goto have_block_group;
6833 }
6834 } else if (block_group) {
6835 btrfs_put_block_group(block_group);
6836 }
6837 }
6838 search:
6839 have_caching_bg = false;
6840 down_read(&space_info->groups_sem);
6841 list_for_each_entry(block_group, &space_info->block_groups[index],
6842 list) {
6843 u64 offset;
6844 int cached;
6845
6846 btrfs_grab_block_group(block_group, delalloc);
6847 search_start = block_group->key.objectid;
6848
6849 /*
6850 * this can happen if we end up cycling through all the
6851 * raid types, but we want to make sure we only allocate
6852 * for the proper type.
6853 */
6854 if (!block_group_bits(block_group, flags)) {
6855 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6856 BTRFS_BLOCK_GROUP_RAID1 |
6857 BTRFS_BLOCK_GROUP_RAID5 |
6858 BTRFS_BLOCK_GROUP_RAID6 |
6859 BTRFS_BLOCK_GROUP_RAID10;
6860
6861 /*
6862 * if they asked for extra copies and this block group
6863 * doesn't provide them, bail. This does allow us to
6864 * fill raid0 from raid1.
6865 */
6866 if ((flags & extra) && !(block_group->flags & extra))
6867 goto loop;
6868 }
6869
6870 have_block_group:
6871 cached = block_group_cache_done(block_group);
6872 if (unlikely(!cached)) {
6873 ret = cache_block_group(block_group, 0);
6874 BUG_ON(ret < 0);
6875 ret = 0;
6876 }
6877
6878 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6879 goto loop;
6880 if (unlikely(block_group->ro))
6881 goto loop;
6882
6883 /*
6884 * Ok we want to try and use the cluster allocator, so
6885 * lets look there
6886 */
6887 if (last_ptr) {
6888 struct btrfs_block_group_cache *used_block_group;
6889 unsigned long aligned_cluster;
6890 /*
6891 * the refill lock keeps out other
6892 * people trying to start a new cluster
6893 */
6894 used_block_group = btrfs_lock_cluster(block_group,
6895 last_ptr,
6896 delalloc);
6897 if (!used_block_group)
6898 goto refill_cluster;
6899
6900 if (used_block_group != block_group &&
6901 (used_block_group->ro ||
6902 !block_group_bits(used_block_group, flags)))
6903 goto release_cluster;
6904
6905 offset = btrfs_alloc_from_cluster(used_block_group,
6906 last_ptr,
6907 num_bytes,
6908 used_block_group->key.objectid,
6909 &max_extent_size);
6910 if (offset) {
6911 /* we have a block, we're done */
6912 spin_unlock(&last_ptr->refill_lock);
6913 trace_btrfs_reserve_extent_cluster(root,
6914 used_block_group,
6915 search_start, num_bytes);
6916 if (used_block_group != block_group) {
6917 btrfs_release_block_group(block_group,
6918 delalloc);
6919 block_group = used_block_group;
6920 }
6921 goto checks;
6922 }
6923
6924 WARN_ON(last_ptr->block_group != used_block_group);
6925 release_cluster:
6926 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6927 * set up a new clusters, so lets just skip it
6928 * and let the allocator find whatever block
6929 * it can find. If we reach this point, we
6930 * will have tried the cluster allocator
6931 * plenty of times and not have found
6932 * anything, so we are likely way too
6933 * fragmented for the clustering stuff to find
6934 * anything.
6935 *
6936 * However, if the cluster is taken from the
6937 * current block group, release the cluster
6938 * first, so that we stand a better chance of
6939 * succeeding in the unclustered
6940 * allocation. */
6941 if (loop >= LOOP_NO_EMPTY_SIZE &&
6942 used_block_group != block_group) {
6943 spin_unlock(&last_ptr->refill_lock);
6944 btrfs_release_block_group(used_block_group,
6945 delalloc);
6946 goto unclustered_alloc;
6947 }
6948
6949 /*
6950 * this cluster didn't work out, free it and
6951 * start over
6952 */
6953 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6954
6955 if (used_block_group != block_group)
6956 btrfs_release_block_group(used_block_group,
6957 delalloc);
6958 refill_cluster:
6959 if (loop >= LOOP_NO_EMPTY_SIZE) {
6960 spin_unlock(&last_ptr->refill_lock);
6961 goto unclustered_alloc;
6962 }
6963
6964 aligned_cluster = max_t(unsigned long,
6965 empty_cluster + empty_size,
6966 block_group->full_stripe_len);
6967
6968 /* allocate a cluster in this block group */
6969 ret = btrfs_find_space_cluster(root, block_group,
6970 last_ptr, search_start,
6971 num_bytes,
6972 aligned_cluster);
6973 if (ret == 0) {
6974 /*
6975 * now pull our allocation out of this
6976 * cluster
6977 */
6978 offset = btrfs_alloc_from_cluster(block_group,
6979 last_ptr,
6980 num_bytes,
6981 search_start,
6982 &max_extent_size);
6983 if (offset) {
6984 /* we found one, proceed */
6985 spin_unlock(&last_ptr->refill_lock);
6986 trace_btrfs_reserve_extent_cluster(root,
6987 block_group, search_start,
6988 num_bytes);
6989 goto checks;
6990 }
6991 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6992 && !failed_cluster_refill) {
6993 spin_unlock(&last_ptr->refill_lock);
6994
6995 failed_cluster_refill = true;
6996 wait_block_group_cache_progress(block_group,
6997 num_bytes + empty_cluster + empty_size);
6998 goto have_block_group;
6999 }
7000
7001 /*
7002 * at this point we either didn't find a cluster
7003 * or we weren't able to allocate a block from our
7004 * cluster. Free the cluster we've been trying
7005 * to use, and go to the next block group
7006 */
7007 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7008 spin_unlock(&last_ptr->refill_lock);
7009 goto loop;
7010 }
7011
7012 unclustered_alloc:
7013 spin_lock(&block_group->free_space_ctl->tree_lock);
7014 if (cached &&
7015 block_group->free_space_ctl->free_space <
7016 num_bytes + empty_cluster + empty_size) {
7017 if (block_group->free_space_ctl->free_space >
7018 max_extent_size)
7019 max_extent_size =
7020 block_group->free_space_ctl->free_space;
7021 spin_unlock(&block_group->free_space_ctl->tree_lock);
7022 goto loop;
7023 }
7024 spin_unlock(&block_group->free_space_ctl->tree_lock);
7025
7026 offset = btrfs_find_space_for_alloc(block_group, search_start,
7027 num_bytes, empty_size,
7028 &max_extent_size);
7029 /*
7030 * If we didn't find a chunk, and we haven't failed on this
7031 * block group before, and this block group is in the middle of
7032 * caching and we are ok with waiting, then go ahead and wait
7033 * for progress to be made, and set failed_alloc to true.
7034 *
7035 * If failed_alloc is true then we've already waited on this
7036 * block group once and should move on to the next block group.
7037 */
7038 if (!offset && !failed_alloc && !cached &&
7039 loop > LOOP_CACHING_NOWAIT) {
7040 wait_block_group_cache_progress(block_group,
7041 num_bytes + empty_size);
7042 failed_alloc = true;
7043 goto have_block_group;
7044 } else if (!offset) {
7045 if (!cached)
7046 have_caching_bg = true;
7047 goto loop;
7048 }
7049 checks:
7050 search_start = ALIGN(offset, root->stripesize);
7051
7052 /* move on to the next group */
7053 if (search_start + num_bytes >
7054 block_group->key.objectid + block_group->key.offset) {
7055 btrfs_add_free_space(block_group, offset, num_bytes);
7056 goto loop;
7057 }
7058
7059 if (offset < search_start)
7060 btrfs_add_free_space(block_group, offset,
7061 search_start - offset);
7062 BUG_ON(offset > search_start);
7063
7064 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7065 alloc_type, delalloc);
7066 if (ret == -EAGAIN) {
7067 btrfs_add_free_space(block_group, offset, num_bytes);
7068 goto loop;
7069 }
7070
7071 /* we are all good, lets return */
7072 ins->objectid = search_start;
7073 ins->offset = num_bytes;
7074
7075 trace_btrfs_reserve_extent(orig_root, block_group,
7076 search_start, num_bytes);
7077 btrfs_release_block_group(block_group, delalloc);
7078 break;
7079 loop:
7080 failed_cluster_refill = false;
7081 failed_alloc = false;
7082 BUG_ON(index != get_block_group_index(block_group));
7083 btrfs_release_block_group(block_group, delalloc);
7084 }
7085 up_read(&space_info->groups_sem);
7086
7087 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7088 goto search;
7089
7090 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7091 goto search;
7092
7093 /*
7094 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7095 * caching kthreads as we move along
7096 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7097 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7098 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7099 * again
7100 */
7101 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7102 index = 0;
7103 loop++;
7104 if (loop == LOOP_ALLOC_CHUNK) {
7105 struct btrfs_trans_handle *trans;
7106 int exist = 0;
7107
7108 trans = current->journal_info;
7109 if (trans)
7110 exist = 1;
7111 else
7112 trans = btrfs_join_transaction(root);
7113
7114 if (IS_ERR(trans)) {
7115 ret = PTR_ERR(trans);
7116 goto out;
7117 }
7118
7119 ret = do_chunk_alloc(trans, root, flags,
7120 CHUNK_ALLOC_FORCE);
7121 /*
7122 * Do not bail out on ENOSPC since we
7123 * can do more things.
7124 */
7125 if (ret < 0 && ret != -ENOSPC)
7126 btrfs_abort_transaction(trans,
7127 root, ret);
7128 else
7129 ret = 0;
7130 if (!exist)
7131 btrfs_end_transaction(trans, root);
7132 if (ret)
7133 goto out;
7134 }
7135
7136 if (loop == LOOP_NO_EMPTY_SIZE) {
7137 empty_size = 0;
7138 empty_cluster = 0;
7139 }
7140
7141 goto search;
7142 } else if (!ins->objectid) {
7143 ret = -ENOSPC;
7144 } else if (ins->objectid) {
7145 ret = 0;
7146 }
7147 out:
7148 if (ret == -ENOSPC)
7149 ins->offset = max_extent_size;
7150 return ret;
7151 }
7152
7153 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7154 int dump_block_groups)
7155 {
7156 struct btrfs_block_group_cache *cache;
7157 int index = 0;
7158
7159 spin_lock(&info->lock);
7160 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7161 info->flags,
7162 info->total_bytes - info->bytes_used - info->bytes_pinned -
7163 info->bytes_reserved - info->bytes_readonly,
7164 (info->full) ? "" : "not ");
7165 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7166 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7167 info->total_bytes, info->bytes_used, info->bytes_pinned,
7168 info->bytes_reserved, info->bytes_may_use,
7169 info->bytes_readonly);
7170 spin_unlock(&info->lock);
7171
7172 if (!dump_block_groups)
7173 return;
7174
7175 down_read(&info->groups_sem);
7176 again:
7177 list_for_each_entry(cache, &info->block_groups[index], list) {
7178 spin_lock(&cache->lock);
7179 printk(KERN_INFO "BTRFS: "
7180 "block group %llu has %llu bytes, "
7181 "%llu used %llu pinned %llu reserved %s\n",
7182 cache->key.objectid, cache->key.offset,
7183 btrfs_block_group_used(&cache->item), cache->pinned,
7184 cache->reserved, cache->ro ? "[readonly]" : "");
7185 btrfs_dump_free_space(cache, bytes);
7186 spin_unlock(&cache->lock);
7187 }
7188 if (++index < BTRFS_NR_RAID_TYPES)
7189 goto again;
7190 up_read(&info->groups_sem);
7191 }
7192
7193 int btrfs_reserve_extent(struct btrfs_root *root,
7194 u64 num_bytes, u64 min_alloc_size,
7195 u64 empty_size, u64 hint_byte,
7196 struct btrfs_key *ins, int is_data, int delalloc)
7197 {
7198 bool final_tried = false;
7199 u64 flags;
7200 int ret;
7201
7202 flags = btrfs_get_alloc_profile(root, is_data);
7203 again:
7204 WARN_ON(num_bytes < root->sectorsize);
7205 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7206 flags, delalloc);
7207
7208 if (ret == -ENOSPC) {
7209 if (!final_tried && ins->offset) {
7210 num_bytes = min(num_bytes >> 1, ins->offset);
7211 num_bytes = round_down(num_bytes, root->sectorsize);
7212 num_bytes = max(num_bytes, min_alloc_size);
7213 if (num_bytes == min_alloc_size)
7214 final_tried = true;
7215 goto again;
7216 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7217 struct btrfs_space_info *sinfo;
7218
7219 sinfo = __find_space_info(root->fs_info, flags);
7220 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7221 flags, num_bytes);
7222 if (sinfo)
7223 dump_space_info(sinfo, num_bytes, 1);
7224 }
7225 }
7226
7227 return ret;
7228 }
7229
7230 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7231 u64 start, u64 len,
7232 int pin, int delalloc)
7233 {
7234 struct btrfs_block_group_cache *cache;
7235 int ret = 0;
7236
7237 cache = btrfs_lookup_block_group(root->fs_info, start);
7238 if (!cache) {
7239 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7240 start);
7241 return -ENOSPC;
7242 }
7243
7244 if (pin)
7245 pin_down_extent(root, cache, start, len, 1);
7246 else {
7247 if (btrfs_test_opt(root, DISCARD))
7248 ret = btrfs_discard_extent(root, start, len, NULL);
7249 btrfs_add_free_space(cache, start, len);
7250 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7251 }
7252
7253 btrfs_put_block_group(cache);
7254
7255 trace_btrfs_reserved_extent_free(root, start, len);
7256
7257 return ret;
7258 }
7259
7260 int btrfs_free_reserved_extent(struct btrfs_root *root,
7261 u64 start, u64 len, int delalloc)
7262 {
7263 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7264 }
7265
7266 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7267 u64 start, u64 len)
7268 {
7269 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7270 }
7271
7272 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7273 struct btrfs_root *root,
7274 u64 parent, u64 root_objectid,
7275 u64 flags, u64 owner, u64 offset,
7276 struct btrfs_key *ins, int ref_mod)
7277 {
7278 int ret;
7279 struct btrfs_fs_info *fs_info = root->fs_info;
7280 struct btrfs_extent_item *extent_item;
7281 struct btrfs_extent_inline_ref *iref;
7282 struct btrfs_path *path;
7283 struct extent_buffer *leaf;
7284 int type;
7285 u32 size;
7286
7287 if (parent > 0)
7288 type = BTRFS_SHARED_DATA_REF_KEY;
7289 else
7290 type = BTRFS_EXTENT_DATA_REF_KEY;
7291
7292 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7293
7294 path = btrfs_alloc_path();
7295 if (!path)
7296 return -ENOMEM;
7297
7298 path->leave_spinning = 1;
7299 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7300 ins, size);
7301 if (ret) {
7302 btrfs_free_path(path);
7303 return ret;
7304 }
7305
7306 leaf = path->nodes[0];
7307 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7308 struct btrfs_extent_item);
7309 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7310 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7311 btrfs_set_extent_flags(leaf, extent_item,
7312 flags | BTRFS_EXTENT_FLAG_DATA);
7313
7314 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7315 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7316 if (parent > 0) {
7317 struct btrfs_shared_data_ref *ref;
7318 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7319 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7320 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7321 } else {
7322 struct btrfs_extent_data_ref *ref;
7323 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7324 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7325 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7326 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7327 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7328 }
7329
7330 btrfs_mark_buffer_dirty(path->nodes[0]);
7331 btrfs_free_path(path);
7332
7333 /* Always set parent to 0 here since its exclusive anyway. */
7334 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7335 ins->objectid, ins->offset,
7336 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7337 if (ret)
7338 return ret;
7339
7340 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7341 if (ret) { /* -ENOENT, logic error */
7342 btrfs_err(fs_info, "update block group failed for %llu %llu",
7343 ins->objectid, ins->offset);
7344 BUG();
7345 }
7346 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7347 return ret;
7348 }
7349
7350 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7351 struct btrfs_root *root,
7352 u64 parent, u64 root_objectid,
7353 u64 flags, struct btrfs_disk_key *key,
7354 int level, struct btrfs_key *ins,
7355 int no_quota)
7356 {
7357 int ret;
7358 struct btrfs_fs_info *fs_info = root->fs_info;
7359 struct btrfs_extent_item *extent_item;
7360 struct btrfs_tree_block_info *block_info;
7361 struct btrfs_extent_inline_ref *iref;
7362 struct btrfs_path *path;
7363 struct extent_buffer *leaf;
7364 u32 size = sizeof(*extent_item) + sizeof(*iref);
7365 u64 num_bytes = ins->offset;
7366 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7367 SKINNY_METADATA);
7368
7369 if (!skinny_metadata)
7370 size += sizeof(*block_info);
7371
7372 path = btrfs_alloc_path();
7373 if (!path) {
7374 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7375 root->nodesize);
7376 return -ENOMEM;
7377 }
7378
7379 path->leave_spinning = 1;
7380 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7381 ins, size);
7382 if (ret) {
7383 btrfs_free_path(path);
7384 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7385 root->nodesize);
7386 return ret;
7387 }
7388
7389 leaf = path->nodes[0];
7390 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7391 struct btrfs_extent_item);
7392 btrfs_set_extent_refs(leaf, extent_item, 1);
7393 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7394 btrfs_set_extent_flags(leaf, extent_item,
7395 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7396
7397 if (skinny_metadata) {
7398 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7399 num_bytes = root->nodesize;
7400 } else {
7401 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7402 btrfs_set_tree_block_key(leaf, block_info, key);
7403 btrfs_set_tree_block_level(leaf, block_info, level);
7404 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7405 }
7406
7407 if (parent > 0) {
7408 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7409 btrfs_set_extent_inline_ref_type(leaf, iref,
7410 BTRFS_SHARED_BLOCK_REF_KEY);
7411 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7412 } else {
7413 btrfs_set_extent_inline_ref_type(leaf, iref,
7414 BTRFS_TREE_BLOCK_REF_KEY);
7415 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7416 }
7417
7418 btrfs_mark_buffer_dirty(leaf);
7419 btrfs_free_path(path);
7420
7421 if (!no_quota) {
7422 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7423 ins->objectid, num_bytes,
7424 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7425 if (ret)
7426 return ret;
7427 }
7428
7429 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7430 1);
7431 if (ret) { /* -ENOENT, logic error */
7432 btrfs_err(fs_info, "update block group failed for %llu %llu",
7433 ins->objectid, ins->offset);
7434 BUG();
7435 }
7436
7437 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7438 return ret;
7439 }
7440
7441 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7442 struct btrfs_root *root,
7443 u64 root_objectid, u64 owner,
7444 u64 offset, struct btrfs_key *ins)
7445 {
7446 int ret;
7447
7448 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7449
7450 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7451 ins->offset, 0,
7452 root_objectid, owner, offset,
7453 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7454 return ret;
7455 }
7456
7457 /*
7458 * this is used by the tree logging recovery code. It records that
7459 * an extent has been allocated and makes sure to clear the free
7460 * space cache bits as well
7461 */
7462 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7463 struct btrfs_root *root,
7464 u64 root_objectid, u64 owner, u64 offset,
7465 struct btrfs_key *ins)
7466 {
7467 int ret;
7468 struct btrfs_block_group_cache *block_group;
7469
7470 /*
7471 * Mixed block groups will exclude before processing the log so we only
7472 * need to do the exlude dance if this fs isn't mixed.
7473 */
7474 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7475 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7476 if (ret)
7477 return ret;
7478 }
7479
7480 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7481 if (!block_group)
7482 return -EINVAL;
7483
7484 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7485 RESERVE_ALLOC_NO_ACCOUNT, 0);
7486 BUG_ON(ret); /* logic error */
7487 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7488 0, owner, offset, ins, 1);
7489 btrfs_put_block_group(block_group);
7490 return ret;
7491 }
7492
7493 static struct extent_buffer *
7494 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7495 u64 bytenr, int level)
7496 {
7497 struct extent_buffer *buf;
7498
7499 buf = btrfs_find_create_tree_block(root, bytenr);
7500 if (!buf)
7501 return ERR_PTR(-ENOMEM);
7502 btrfs_set_header_generation(buf, trans->transid);
7503 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7504 btrfs_tree_lock(buf);
7505 clean_tree_block(trans, root->fs_info, buf);
7506 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7507
7508 btrfs_set_lock_blocking(buf);
7509 btrfs_set_buffer_uptodate(buf);
7510
7511 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7512 buf->log_index = root->log_transid % 2;
7513 /*
7514 * we allow two log transactions at a time, use different
7515 * EXENT bit to differentiate dirty pages.
7516 */
7517 if (buf->log_index == 0)
7518 set_extent_dirty(&root->dirty_log_pages, buf->start,
7519 buf->start + buf->len - 1, GFP_NOFS);
7520 else
7521 set_extent_new(&root->dirty_log_pages, buf->start,
7522 buf->start + buf->len - 1, GFP_NOFS);
7523 } else {
7524 buf->log_index = -1;
7525 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7526 buf->start + buf->len - 1, GFP_NOFS);
7527 }
7528 trans->blocks_used++;
7529 /* this returns a buffer locked for blocking */
7530 return buf;
7531 }
7532
7533 static struct btrfs_block_rsv *
7534 use_block_rsv(struct btrfs_trans_handle *trans,
7535 struct btrfs_root *root, u32 blocksize)
7536 {
7537 struct btrfs_block_rsv *block_rsv;
7538 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7539 int ret;
7540 bool global_updated = false;
7541
7542 block_rsv = get_block_rsv(trans, root);
7543
7544 if (unlikely(block_rsv->size == 0))
7545 goto try_reserve;
7546 again:
7547 ret = block_rsv_use_bytes(block_rsv, blocksize);
7548 if (!ret)
7549 return block_rsv;
7550
7551 if (block_rsv->failfast)
7552 return ERR_PTR(ret);
7553
7554 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7555 global_updated = true;
7556 update_global_block_rsv(root->fs_info);
7557 goto again;
7558 }
7559
7560 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7561 static DEFINE_RATELIMIT_STATE(_rs,
7562 DEFAULT_RATELIMIT_INTERVAL * 10,
7563 /*DEFAULT_RATELIMIT_BURST*/ 1);
7564 if (__ratelimit(&_rs))
7565 WARN(1, KERN_DEBUG
7566 "BTRFS: block rsv returned %d\n", ret);
7567 }
7568 try_reserve:
7569 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7570 BTRFS_RESERVE_NO_FLUSH);
7571 if (!ret)
7572 return block_rsv;
7573 /*
7574 * If we couldn't reserve metadata bytes try and use some from
7575 * the global reserve if its space type is the same as the global
7576 * reservation.
7577 */
7578 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7579 block_rsv->space_info == global_rsv->space_info) {
7580 ret = block_rsv_use_bytes(global_rsv, blocksize);
7581 if (!ret)
7582 return global_rsv;
7583 }
7584 return ERR_PTR(ret);
7585 }
7586
7587 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7588 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7589 {
7590 block_rsv_add_bytes(block_rsv, blocksize, 0);
7591 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7592 }
7593
7594 /*
7595 * finds a free extent and does all the dirty work required for allocation
7596 * returns the key for the extent through ins, and a tree buffer for
7597 * the first block of the extent through buf.
7598 *
7599 * returns the tree buffer or an ERR_PTR on error.
7600 */
7601 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7602 struct btrfs_root *root,
7603 u64 parent, u64 root_objectid,
7604 struct btrfs_disk_key *key, int level,
7605 u64 hint, u64 empty_size)
7606 {
7607 struct btrfs_key ins;
7608 struct btrfs_block_rsv *block_rsv;
7609 struct extent_buffer *buf;
7610 struct btrfs_delayed_extent_op *extent_op;
7611 u64 flags = 0;
7612 int ret;
7613 u32 blocksize = root->nodesize;
7614 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7615 SKINNY_METADATA);
7616
7617 if (btrfs_test_is_dummy_root(root)) {
7618 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7619 level);
7620 if (!IS_ERR(buf))
7621 root->alloc_bytenr += blocksize;
7622 return buf;
7623 }
7624
7625 block_rsv = use_block_rsv(trans, root, blocksize);
7626 if (IS_ERR(block_rsv))
7627 return ERR_CAST(block_rsv);
7628
7629 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7630 empty_size, hint, &ins, 0, 0);
7631 if (ret)
7632 goto out_unuse;
7633
7634 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7635 if (IS_ERR(buf)) {
7636 ret = PTR_ERR(buf);
7637 goto out_free_reserved;
7638 }
7639
7640 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7641 if (parent == 0)
7642 parent = ins.objectid;
7643 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7644 } else
7645 BUG_ON(parent > 0);
7646
7647 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7648 extent_op = btrfs_alloc_delayed_extent_op();
7649 if (!extent_op) {
7650 ret = -ENOMEM;
7651 goto out_free_buf;
7652 }
7653 if (key)
7654 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7655 else
7656 memset(&extent_op->key, 0, sizeof(extent_op->key));
7657 extent_op->flags_to_set = flags;
7658 if (skinny_metadata)
7659 extent_op->update_key = 0;
7660 else
7661 extent_op->update_key = 1;
7662 extent_op->update_flags = 1;
7663 extent_op->is_data = 0;
7664 extent_op->level = level;
7665
7666 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7667 ins.objectid, ins.offset,
7668 parent, root_objectid, level,
7669 BTRFS_ADD_DELAYED_EXTENT,
7670 extent_op, 0);
7671 if (ret)
7672 goto out_free_delayed;
7673 }
7674 return buf;
7675
7676 out_free_delayed:
7677 btrfs_free_delayed_extent_op(extent_op);
7678 out_free_buf:
7679 free_extent_buffer(buf);
7680 out_free_reserved:
7681 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7682 out_unuse:
7683 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7684 return ERR_PTR(ret);
7685 }
7686
7687 struct walk_control {
7688 u64 refs[BTRFS_MAX_LEVEL];
7689 u64 flags[BTRFS_MAX_LEVEL];
7690 struct btrfs_key update_progress;
7691 int stage;
7692 int level;
7693 int shared_level;
7694 int update_ref;
7695 int keep_locks;
7696 int reada_slot;
7697 int reada_count;
7698 int for_reloc;
7699 };
7700
7701 #define DROP_REFERENCE 1
7702 #define UPDATE_BACKREF 2
7703
7704 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7705 struct btrfs_root *root,
7706 struct walk_control *wc,
7707 struct btrfs_path *path)
7708 {
7709 u64 bytenr;
7710 u64 generation;
7711 u64 refs;
7712 u64 flags;
7713 u32 nritems;
7714 u32 blocksize;
7715 struct btrfs_key key;
7716 struct extent_buffer *eb;
7717 int ret;
7718 int slot;
7719 int nread = 0;
7720
7721 if (path->slots[wc->level] < wc->reada_slot) {
7722 wc->reada_count = wc->reada_count * 2 / 3;
7723 wc->reada_count = max(wc->reada_count, 2);
7724 } else {
7725 wc->reada_count = wc->reada_count * 3 / 2;
7726 wc->reada_count = min_t(int, wc->reada_count,
7727 BTRFS_NODEPTRS_PER_BLOCK(root));
7728 }
7729
7730 eb = path->nodes[wc->level];
7731 nritems = btrfs_header_nritems(eb);
7732 blocksize = root->nodesize;
7733
7734 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7735 if (nread >= wc->reada_count)
7736 break;
7737
7738 cond_resched();
7739 bytenr = btrfs_node_blockptr(eb, slot);
7740 generation = btrfs_node_ptr_generation(eb, slot);
7741
7742 if (slot == path->slots[wc->level])
7743 goto reada;
7744
7745 if (wc->stage == UPDATE_BACKREF &&
7746 generation <= root->root_key.offset)
7747 continue;
7748
7749 /* We don't lock the tree block, it's OK to be racy here */
7750 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7751 wc->level - 1, 1, &refs,
7752 &flags);
7753 /* We don't care about errors in readahead. */
7754 if (ret < 0)
7755 continue;
7756 BUG_ON(refs == 0);
7757
7758 if (wc->stage == DROP_REFERENCE) {
7759 if (refs == 1)
7760 goto reada;
7761
7762 if (wc->level == 1 &&
7763 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7764 continue;
7765 if (!wc->update_ref ||
7766 generation <= root->root_key.offset)
7767 continue;
7768 btrfs_node_key_to_cpu(eb, &key, slot);
7769 ret = btrfs_comp_cpu_keys(&key,
7770 &wc->update_progress);
7771 if (ret < 0)
7772 continue;
7773 } else {
7774 if (wc->level == 1 &&
7775 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7776 continue;
7777 }
7778 reada:
7779 readahead_tree_block(root, bytenr);
7780 nread++;
7781 }
7782 wc->reada_slot = slot;
7783 }
7784
7785 static int account_leaf_items(struct btrfs_trans_handle *trans,
7786 struct btrfs_root *root,
7787 struct extent_buffer *eb)
7788 {
7789 int nr = btrfs_header_nritems(eb);
7790 int i, extent_type, ret;
7791 struct btrfs_key key;
7792 struct btrfs_file_extent_item *fi;
7793 u64 bytenr, num_bytes;
7794
7795 for (i = 0; i < nr; i++) {
7796 btrfs_item_key_to_cpu(eb, &key, i);
7797
7798 if (key.type != BTRFS_EXTENT_DATA_KEY)
7799 continue;
7800
7801 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7802 /* filter out non qgroup-accountable extents */
7803 extent_type = btrfs_file_extent_type(eb, fi);
7804
7805 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7806 continue;
7807
7808 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7809 if (!bytenr)
7810 continue;
7811
7812 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7813
7814 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7815 root->objectid,
7816 bytenr, num_bytes,
7817 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7818 if (ret)
7819 return ret;
7820 }
7821 return 0;
7822 }
7823
7824 /*
7825 * Walk up the tree from the bottom, freeing leaves and any interior
7826 * nodes which have had all slots visited. If a node (leaf or
7827 * interior) is freed, the node above it will have it's slot
7828 * incremented. The root node will never be freed.
7829 *
7830 * At the end of this function, we should have a path which has all
7831 * slots incremented to the next position for a search. If we need to
7832 * read a new node it will be NULL and the node above it will have the
7833 * correct slot selected for a later read.
7834 *
7835 * If we increment the root nodes slot counter past the number of
7836 * elements, 1 is returned to signal completion of the search.
7837 */
7838 static int adjust_slots_upwards(struct btrfs_root *root,
7839 struct btrfs_path *path, int root_level)
7840 {
7841 int level = 0;
7842 int nr, slot;
7843 struct extent_buffer *eb;
7844
7845 if (root_level == 0)
7846 return 1;
7847
7848 while (level <= root_level) {
7849 eb = path->nodes[level];
7850 nr = btrfs_header_nritems(eb);
7851 path->slots[level]++;
7852 slot = path->slots[level];
7853 if (slot >= nr || level == 0) {
7854 /*
7855 * Don't free the root - we will detect this
7856 * condition after our loop and return a
7857 * positive value for caller to stop walking the tree.
7858 */
7859 if (level != root_level) {
7860 btrfs_tree_unlock_rw(eb, path->locks[level]);
7861 path->locks[level] = 0;
7862
7863 free_extent_buffer(eb);
7864 path->nodes[level] = NULL;
7865 path->slots[level] = 0;
7866 }
7867 } else {
7868 /*
7869 * We have a valid slot to walk back down
7870 * from. Stop here so caller can process these
7871 * new nodes.
7872 */
7873 break;
7874 }
7875
7876 level++;
7877 }
7878
7879 eb = path->nodes[root_level];
7880 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7881 return 1;
7882
7883 return 0;
7884 }
7885
7886 /*
7887 * root_eb is the subtree root and is locked before this function is called.
7888 */
7889 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7890 struct btrfs_root *root,
7891 struct extent_buffer *root_eb,
7892 u64 root_gen,
7893 int root_level)
7894 {
7895 int ret = 0;
7896 int level;
7897 struct extent_buffer *eb = root_eb;
7898 struct btrfs_path *path = NULL;
7899
7900 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7901 BUG_ON(root_eb == NULL);
7902
7903 if (!root->fs_info->quota_enabled)
7904 return 0;
7905
7906 if (!extent_buffer_uptodate(root_eb)) {
7907 ret = btrfs_read_buffer(root_eb, root_gen);
7908 if (ret)
7909 goto out;
7910 }
7911
7912 if (root_level == 0) {
7913 ret = account_leaf_items(trans, root, root_eb);
7914 goto out;
7915 }
7916
7917 path = btrfs_alloc_path();
7918 if (!path)
7919 return -ENOMEM;
7920
7921 /*
7922 * Walk down the tree. Missing extent blocks are filled in as
7923 * we go. Metadata is accounted every time we read a new
7924 * extent block.
7925 *
7926 * When we reach a leaf, we account for file extent items in it,
7927 * walk back up the tree (adjusting slot pointers as we go)
7928 * and restart the search process.
7929 */
7930 extent_buffer_get(root_eb); /* For path */
7931 path->nodes[root_level] = root_eb;
7932 path->slots[root_level] = 0;
7933 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7934 walk_down:
7935 level = root_level;
7936 while (level >= 0) {
7937 if (path->nodes[level] == NULL) {
7938 int parent_slot;
7939 u64 child_gen;
7940 u64 child_bytenr;
7941
7942 /* We need to get child blockptr/gen from
7943 * parent before we can read it. */
7944 eb = path->nodes[level + 1];
7945 parent_slot = path->slots[level + 1];
7946 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7947 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7948
7949 eb = read_tree_block(root, child_bytenr, child_gen);
7950 if (IS_ERR(eb)) {
7951 ret = PTR_ERR(eb);
7952 goto out;
7953 } else if (!extent_buffer_uptodate(eb)) {
7954 free_extent_buffer(eb);
7955 ret = -EIO;
7956 goto out;
7957 }
7958
7959 path->nodes[level] = eb;
7960 path->slots[level] = 0;
7961
7962 btrfs_tree_read_lock(eb);
7963 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7964 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7965
7966 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7967 root->objectid,
7968 child_bytenr,
7969 root->nodesize,
7970 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7971 0);
7972 if (ret)
7973 goto out;
7974
7975 }
7976
7977 if (level == 0) {
7978 ret = account_leaf_items(trans, root, path->nodes[level]);
7979 if (ret)
7980 goto out;
7981
7982 /* Nonzero return here means we completed our search */
7983 ret = adjust_slots_upwards(root, path, root_level);
7984 if (ret)
7985 break;
7986
7987 /* Restart search with new slots */
7988 goto walk_down;
7989 }
7990
7991 level--;
7992 }
7993
7994 ret = 0;
7995 out:
7996 btrfs_free_path(path);
7997
7998 return ret;
7999 }
8000
8001 /*
8002 * helper to process tree block while walking down the tree.
8003 *
8004 * when wc->stage == UPDATE_BACKREF, this function updates
8005 * back refs for pointers in the block.
8006 *
8007 * NOTE: return value 1 means we should stop walking down.
8008 */
8009 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8010 struct btrfs_root *root,
8011 struct btrfs_path *path,
8012 struct walk_control *wc, int lookup_info)
8013 {
8014 int level = wc->level;
8015 struct extent_buffer *eb = path->nodes[level];
8016 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8017 int ret;
8018
8019 if (wc->stage == UPDATE_BACKREF &&
8020 btrfs_header_owner(eb) != root->root_key.objectid)
8021 return 1;
8022
8023 /*
8024 * when reference count of tree block is 1, it won't increase
8025 * again. once full backref flag is set, we never clear it.
8026 */
8027 if (lookup_info &&
8028 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8029 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8030 BUG_ON(!path->locks[level]);
8031 ret = btrfs_lookup_extent_info(trans, root,
8032 eb->start, level, 1,
8033 &wc->refs[level],
8034 &wc->flags[level]);
8035 BUG_ON(ret == -ENOMEM);
8036 if (ret)
8037 return ret;
8038 BUG_ON(wc->refs[level] == 0);
8039 }
8040
8041 if (wc->stage == DROP_REFERENCE) {
8042 if (wc->refs[level] > 1)
8043 return 1;
8044
8045 if (path->locks[level] && !wc->keep_locks) {
8046 btrfs_tree_unlock_rw(eb, path->locks[level]);
8047 path->locks[level] = 0;
8048 }
8049 return 0;
8050 }
8051
8052 /* wc->stage == UPDATE_BACKREF */
8053 if (!(wc->flags[level] & flag)) {
8054 BUG_ON(!path->locks[level]);
8055 ret = btrfs_inc_ref(trans, root, eb, 1);
8056 BUG_ON(ret); /* -ENOMEM */
8057 ret = btrfs_dec_ref(trans, root, eb, 0);
8058 BUG_ON(ret); /* -ENOMEM */
8059 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8060 eb->len, flag,
8061 btrfs_header_level(eb), 0);
8062 BUG_ON(ret); /* -ENOMEM */
8063 wc->flags[level] |= flag;
8064 }
8065
8066 /*
8067 * the block is shared by multiple trees, so it's not good to
8068 * keep the tree lock
8069 */
8070 if (path->locks[level] && level > 0) {
8071 btrfs_tree_unlock_rw(eb, path->locks[level]);
8072 path->locks[level] = 0;
8073 }
8074 return 0;
8075 }
8076
8077 /*
8078 * helper to process tree block pointer.
8079 *
8080 * when wc->stage == DROP_REFERENCE, this function checks
8081 * reference count of the block pointed to. if the block
8082 * is shared and we need update back refs for the subtree
8083 * rooted at the block, this function changes wc->stage to
8084 * UPDATE_BACKREF. if the block is shared and there is no
8085 * need to update back, this function drops the reference
8086 * to the block.
8087 *
8088 * NOTE: return value 1 means we should stop walking down.
8089 */
8090 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8091 struct btrfs_root *root,
8092 struct btrfs_path *path,
8093 struct walk_control *wc, int *lookup_info)
8094 {
8095 u64 bytenr;
8096 u64 generation;
8097 u64 parent;
8098 u32 blocksize;
8099 struct btrfs_key key;
8100 struct extent_buffer *next;
8101 int level = wc->level;
8102 int reada = 0;
8103 int ret = 0;
8104 bool need_account = false;
8105
8106 generation = btrfs_node_ptr_generation(path->nodes[level],
8107 path->slots[level]);
8108 /*
8109 * if the lower level block was created before the snapshot
8110 * was created, we know there is no need to update back refs
8111 * for the subtree
8112 */
8113 if (wc->stage == UPDATE_BACKREF &&
8114 generation <= root->root_key.offset) {
8115 *lookup_info = 1;
8116 return 1;
8117 }
8118
8119 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8120 blocksize = root->nodesize;
8121
8122 next = btrfs_find_tree_block(root->fs_info, bytenr);
8123 if (!next) {
8124 next = btrfs_find_create_tree_block(root, bytenr);
8125 if (!next)
8126 return -ENOMEM;
8127 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8128 level - 1);
8129 reada = 1;
8130 }
8131 btrfs_tree_lock(next);
8132 btrfs_set_lock_blocking(next);
8133
8134 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8135 &wc->refs[level - 1],
8136 &wc->flags[level - 1]);
8137 if (ret < 0) {
8138 btrfs_tree_unlock(next);
8139 return ret;
8140 }
8141
8142 if (unlikely(wc->refs[level - 1] == 0)) {
8143 btrfs_err(root->fs_info, "Missing references.");
8144 BUG();
8145 }
8146 *lookup_info = 0;
8147
8148 if (wc->stage == DROP_REFERENCE) {
8149 if (wc->refs[level - 1] > 1) {
8150 need_account = true;
8151 if (level == 1 &&
8152 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8153 goto skip;
8154
8155 if (!wc->update_ref ||
8156 generation <= root->root_key.offset)
8157 goto skip;
8158
8159 btrfs_node_key_to_cpu(path->nodes[level], &key,
8160 path->slots[level]);
8161 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8162 if (ret < 0)
8163 goto skip;
8164
8165 wc->stage = UPDATE_BACKREF;
8166 wc->shared_level = level - 1;
8167 }
8168 } else {
8169 if (level == 1 &&
8170 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8171 goto skip;
8172 }
8173
8174 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8175 btrfs_tree_unlock(next);
8176 free_extent_buffer(next);
8177 next = NULL;
8178 *lookup_info = 1;
8179 }
8180
8181 if (!next) {
8182 if (reada && level == 1)
8183 reada_walk_down(trans, root, wc, path);
8184 next = read_tree_block(root, bytenr, generation);
8185 if (IS_ERR(next)) {
8186 return PTR_ERR(next);
8187 } else if (!extent_buffer_uptodate(next)) {
8188 free_extent_buffer(next);
8189 return -EIO;
8190 }
8191 btrfs_tree_lock(next);
8192 btrfs_set_lock_blocking(next);
8193 }
8194
8195 level--;
8196 BUG_ON(level != btrfs_header_level(next));
8197 path->nodes[level] = next;
8198 path->slots[level] = 0;
8199 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8200 wc->level = level;
8201 if (wc->level == 1)
8202 wc->reada_slot = 0;
8203 return 0;
8204 skip:
8205 wc->refs[level - 1] = 0;
8206 wc->flags[level - 1] = 0;
8207 if (wc->stage == DROP_REFERENCE) {
8208 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8209 parent = path->nodes[level]->start;
8210 } else {
8211 BUG_ON(root->root_key.objectid !=
8212 btrfs_header_owner(path->nodes[level]));
8213 parent = 0;
8214 }
8215
8216 if (need_account) {
8217 ret = account_shared_subtree(trans, root, next,
8218 generation, level - 1);
8219 if (ret) {
8220 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8221 "%d accounting shared subtree. Quota "
8222 "is out of sync, rescan required.\n",
8223 root->fs_info->sb->s_id, ret);
8224 }
8225 }
8226 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8227 root->root_key.objectid, level - 1, 0, 0);
8228 BUG_ON(ret); /* -ENOMEM */
8229 }
8230 btrfs_tree_unlock(next);
8231 free_extent_buffer(next);
8232 *lookup_info = 1;
8233 return 1;
8234 }
8235
8236 /*
8237 * helper to process tree block while walking up the tree.
8238 *
8239 * when wc->stage == DROP_REFERENCE, this function drops
8240 * reference count on the block.
8241 *
8242 * when wc->stage == UPDATE_BACKREF, this function changes
8243 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8244 * to UPDATE_BACKREF previously while processing the block.
8245 *
8246 * NOTE: return value 1 means we should stop walking up.
8247 */
8248 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8249 struct btrfs_root *root,
8250 struct btrfs_path *path,
8251 struct walk_control *wc)
8252 {
8253 int ret;
8254 int level = wc->level;
8255 struct extent_buffer *eb = path->nodes[level];
8256 u64 parent = 0;
8257
8258 if (wc->stage == UPDATE_BACKREF) {
8259 BUG_ON(wc->shared_level < level);
8260 if (level < wc->shared_level)
8261 goto out;
8262
8263 ret = find_next_key(path, level + 1, &wc->update_progress);
8264 if (ret > 0)
8265 wc->update_ref = 0;
8266
8267 wc->stage = DROP_REFERENCE;
8268 wc->shared_level = -1;
8269 path->slots[level] = 0;
8270
8271 /*
8272 * check reference count again if the block isn't locked.
8273 * we should start walking down the tree again if reference
8274 * count is one.
8275 */
8276 if (!path->locks[level]) {
8277 BUG_ON(level == 0);
8278 btrfs_tree_lock(eb);
8279 btrfs_set_lock_blocking(eb);
8280 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8281
8282 ret = btrfs_lookup_extent_info(trans, root,
8283 eb->start, level, 1,
8284 &wc->refs[level],
8285 &wc->flags[level]);
8286 if (ret < 0) {
8287 btrfs_tree_unlock_rw(eb, path->locks[level]);
8288 path->locks[level] = 0;
8289 return ret;
8290 }
8291 BUG_ON(wc->refs[level] == 0);
8292 if (wc->refs[level] == 1) {
8293 btrfs_tree_unlock_rw(eb, path->locks[level]);
8294 path->locks[level] = 0;
8295 return 1;
8296 }
8297 }
8298 }
8299
8300 /* wc->stage == DROP_REFERENCE */
8301 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8302
8303 if (wc->refs[level] == 1) {
8304 if (level == 0) {
8305 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8306 ret = btrfs_dec_ref(trans, root, eb, 1);
8307 else
8308 ret = btrfs_dec_ref(trans, root, eb, 0);
8309 BUG_ON(ret); /* -ENOMEM */
8310 ret = account_leaf_items(trans, root, eb);
8311 if (ret) {
8312 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8313 "%d accounting leaf items. Quota "
8314 "is out of sync, rescan required.\n",
8315 root->fs_info->sb->s_id, ret);
8316 }
8317 }
8318 /* make block locked assertion in clean_tree_block happy */
8319 if (!path->locks[level] &&
8320 btrfs_header_generation(eb) == trans->transid) {
8321 btrfs_tree_lock(eb);
8322 btrfs_set_lock_blocking(eb);
8323 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8324 }
8325 clean_tree_block(trans, root->fs_info, eb);
8326 }
8327
8328 if (eb == root->node) {
8329 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8330 parent = eb->start;
8331 else
8332 BUG_ON(root->root_key.objectid !=
8333 btrfs_header_owner(eb));
8334 } else {
8335 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8336 parent = path->nodes[level + 1]->start;
8337 else
8338 BUG_ON(root->root_key.objectid !=
8339 btrfs_header_owner(path->nodes[level + 1]));
8340 }
8341
8342 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8343 out:
8344 wc->refs[level] = 0;
8345 wc->flags[level] = 0;
8346 return 0;
8347 }
8348
8349 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8350 struct btrfs_root *root,
8351 struct btrfs_path *path,
8352 struct walk_control *wc)
8353 {
8354 int level = wc->level;
8355 int lookup_info = 1;
8356 int ret;
8357
8358 while (level >= 0) {
8359 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8360 if (ret > 0)
8361 break;
8362
8363 if (level == 0)
8364 break;
8365
8366 if (path->slots[level] >=
8367 btrfs_header_nritems(path->nodes[level]))
8368 break;
8369
8370 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8371 if (ret > 0) {
8372 path->slots[level]++;
8373 continue;
8374 } else if (ret < 0)
8375 return ret;
8376 level = wc->level;
8377 }
8378 return 0;
8379 }
8380
8381 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8382 struct btrfs_root *root,
8383 struct btrfs_path *path,
8384 struct walk_control *wc, int max_level)
8385 {
8386 int level = wc->level;
8387 int ret;
8388
8389 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8390 while (level < max_level && path->nodes[level]) {
8391 wc->level = level;
8392 if (path->slots[level] + 1 <
8393 btrfs_header_nritems(path->nodes[level])) {
8394 path->slots[level]++;
8395 return 0;
8396 } else {
8397 ret = walk_up_proc(trans, root, path, wc);
8398 if (ret > 0)
8399 return 0;
8400
8401 if (path->locks[level]) {
8402 btrfs_tree_unlock_rw(path->nodes[level],
8403 path->locks[level]);
8404 path->locks[level] = 0;
8405 }
8406 free_extent_buffer(path->nodes[level]);
8407 path->nodes[level] = NULL;
8408 level++;
8409 }
8410 }
8411 return 1;
8412 }
8413
8414 /*
8415 * drop a subvolume tree.
8416 *
8417 * this function traverses the tree freeing any blocks that only
8418 * referenced by the tree.
8419 *
8420 * when a shared tree block is found. this function decreases its
8421 * reference count by one. if update_ref is true, this function
8422 * also make sure backrefs for the shared block and all lower level
8423 * blocks are properly updated.
8424 *
8425 * If called with for_reloc == 0, may exit early with -EAGAIN
8426 */
8427 int btrfs_drop_snapshot(struct btrfs_root *root,
8428 struct btrfs_block_rsv *block_rsv, int update_ref,
8429 int for_reloc)
8430 {
8431 struct btrfs_path *path;
8432 struct btrfs_trans_handle *trans;
8433 struct btrfs_root *tree_root = root->fs_info->tree_root;
8434 struct btrfs_root_item *root_item = &root->root_item;
8435 struct walk_control *wc;
8436 struct btrfs_key key;
8437 int err = 0;
8438 int ret;
8439 int level;
8440 bool root_dropped = false;
8441
8442 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8443
8444 path = btrfs_alloc_path();
8445 if (!path) {
8446 err = -ENOMEM;
8447 goto out;
8448 }
8449
8450 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8451 if (!wc) {
8452 btrfs_free_path(path);
8453 err = -ENOMEM;
8454 goto out;
8455 }
8456
8457 trans = btrfs_start_transaction(tree_root, 0);
8458 if (IS_ERR(trans)) {
8459 err = PTR_ERR(trans);
8460 goto out_free;
8461 }
8462
8463 if (block_rsv)
8464 trans->block_rsv = block_rsv;
8465
8466 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8467 level = btrfs_header_level(root->node);
8468 path->nodes[level] = btrfs_lock_root_node(root);
8469 btrfs_set_lock_blocking(path->nodes[level]);
8470 path->slots[level] = 0;
8471 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8472 memset(&wc->update_progress, 0,
8473 sizeof(wc->update_progress));
8474 } else {
8475 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8476 memcpy(&wc->update_progress, &key,
8477 sizeof(wc->update_progress));
8478
8479 level = root_item->drop_level;
8480 BUG_ON(level == 0);
8481 path->lowest_level = level;
8482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8483 path->lowest_level = 0;
8484 if (ret < 0) {
8485 err = ret;
8486 goto out_end_trans;
8487 }
8488 WARN_ON(ret > 0);
8489
8490 /*
8491 * unlock our path, this is safe because only this
8492 * function is allowed to delete this snapshot
8493 */
8494 btrfs_unlock_up_safe(path, 0);
8495
8496 level = btrfs_header_level(root->node);
8497 while (1) {
8498 btrfs_tree_lock(path->nodes[level]);
8499 btrfs_set_lock_blocking(path->nodes[level]);
8500 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8501
8502 ret = btrfs_lookup_extent_info(trans, root,
8503 path->nodes[level]->start,
8504 level, 1, &wc->refs[level],
8505 &wc->flags[level]);
8506 if (ret < 0) {
8507 err = ret;
8508 goto out_end_trans;
8509 }
8510 BUG_ON(wc->refs[level] == 0);
8511
8512 if (level == root_item->drop_level)
8513 break;
8514
8515 btrfs_tree_unlock(path->nodes[level]);
8516 path->locks[level] = 0;
8517 WARN_ON(wc->refs[level] != 1);
8518 level--;
8519 }
8520 }
8521
8522 wc->level = level;
8523 wc->shared_level = -1;
8524 wc->stage = DROP_REFERENCE;
8525 wc->update_ref = update_ref;
8526 wc->keep_locks = 0;
8527 wc->for_reloc = for_reloc;
8528 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8529
8530 while (1) {
8531
8532 ret = walk_down_tree(trans, root, path, wc);
8533 if (ret < 0) {
8534 err = ret;
8535 break;
8536 }
8537
8538 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8539 if (ret < 0) {
8540 err = ret;
8541 break;
8542 }
8543
8544 if (ret > 0) {
8545 BUG_ON(wc->stage != DROP_REFERENCE);
8546 break;
8547 }
8548
8549 if (wc->stage == DROP_REFERENCE) {
8550 level = wc->level;
8551 btrfs_node_key(path->nodes[level],
8552 &root_item->drop_progress,
8553 path->slots[level]);
8554 root_item->drop_level = level;
8555 }
8556
8557 BUG_ON(wc->level == 0);
8558 if (btrfs_should_end_transaction(trans, tree_root) ||
8559 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8560 ret = btrfs_update_root(trans, tree_root,
8561 &root->root_key,
8562 root_item);
8563 if (ret) {
8564 btrfs_abort_transaction(trans, tree_root, ret);
8565 err = ret;
8566 goto out_end_trans;
8567 }
8568
8569 /*
8570 * Qgroup update accounting is run from
8571 * delayed ref handling. This usually works
8572 * out because delayed refs are normally the
8573 * only way qgroup updates are added. However,
8574 * we may have added updates during our tree
8575 * walk so run qgroups here to make sure we
8576 * don't lose any updates.
8577 */
8578 ret = btrfs_delayed_qgroup_accounting(trans,
8579 root->fs_info);
8580 if (ret)
8581 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8582 "running qgroup updates "
8583 "during snapshot delete. "
8584 "Quota is out of sync, "
8585 "rescan required.\n", ret);
8586
8587 btrfs_end_transaction_throttle(trans, tree_root);
8588 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8589 pr_debug("BTRFS: drop snapshot early exit\n");
8590 err = -EAGAIN;
8591 goto out_free;
8592 }
8593
8594 trans = btrfs_start_transaction(tree_root, 0);
8595 if (IS_ERR(trans)) {
8596 err = PTR_ERR(trans);
8597 goto out_free;
8598 }
8599 if (block_rsv)
8600 trans->block_rsv = block_rsv;
8601 }
8602 }
8603 btrfs_release_path(path);
8604 if (err)
8605 goto out_end_trans;
8606
8607 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8608 if (ret) {
8609 btrfs_abort_transaction(trans, tree_root, ret);
8610 goto out_end_trans;
8611 }
8612
8613 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8614 ret = btrfs_find_root(tree_root, &root->root_key, path,
8615 NULL, NULL);
8616 if (ret < 0) {
8617 btrfs_abort_transaction(trans, tree_root, ret);
8618 err = ret;
8619 goto out_end_trans;
8620 } else if (ret > 0) {
8621 /* if we fail to delete the orphan item this time
8622 * around, it'll get picked up the next time.
8623 *
8624 * The most common failure here is just -ENOENT.
8625 */
8626 btrfs_del_orphan_item(trans, tree_root,
8627 root->root_key.objectid);
8628 }
8629 }
8630
8631 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8632 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8633 } else {
8634 free_extent_buffer(root->node);
8635 free_extent_buffer(root->commit_root);
8636 btrfs_put_fs_root(root);
8637 }
8638 root_dropped = true;
8639 out_end_trans:
8640 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8641 if (ret)
8642 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8643 "running qgroup updates "
8644 "during snapshot delete. "
8645 "Quota is out of sync, "
8646 "rescan required.\n", ret);
8647
8648 btrfs_end_transaction_throttle(trans, tree_root);
8649 out_free:
8650 kfree(wc);
8651 btrfs_free_path(path);
8652 out:
8653 /*
8654 * So if we need to stop dropping the snapshot for whatever reason we
8655 * need to make sure to add it back to the dead root list so that we
8656 * keep trying to do the work later. This also cleans up roots if we
8657 * don't have it in the radix (like when we recover after a power fail
8658 * or unmount) so we don't leak memory.
8659 */
8660 if (!for_reloc && root_dropped == false)
8661 btrfs_add_dead_root(root);
8662 if (err && err != -EAGAIN)
8663 btrfs_std_error(root->fs_info, err);
8664 return err;
8665 }
8666
8667 /*
8668 * drop subtree rooted at tree block 'node'.
8669 *
8670 * NOTE: this function will unlock and release tree block 'node'
8671 * only used by relocation code
8672 */
8673 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8674 struct btrfs_root *root,
8675 struct extent_buffer *node,
8676 struct extent_buffer *parent)
8677 {
8678 struct btrfs_path *path;
8679 struct walk_control *wc;
8680 int level;
8681 int parent_level;
8682 int ret = 0;
8683 int wret;
8684
8685 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8686
8687 path = btrfs_alloc_path();
8688 if (!path)
8689 return -ENOMEM;
8690
8691 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8692 if (!wc) {
8693 btrfs_free_path(path);
8694 return -ENOMEM;
8695 }
8696
8697 btrfs_assert_tree_locked(parent);
8698 parent_level = btrfs_header_level(parent);
8699 extent_buffer_get(parent);
8700 path->nodes[parent_level] = parent;
8701 path->slots[parent_level] = btrfs_header_nritems(parent);
8702
8703 btrfs_assert_tree_locked(node);
8704 level = btrfs_header_level(node);
8705 path->nodes[level] = node;
8706 path->slots[level] = 0;
8707 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8708
8709 wc->refs[parent_level] = 1;
8710 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8711 wc->level = level;
8712 wc->shared_level = -1;
8713 wc->stage = DROP_REFERENCE;
8714 wc->update_ref = 0;
8715 wc->keep_locks = 1;
8716 wc->for_reloc = 1;
8717 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8718
8719 while (1) {
8720 wret = walk_down_tree(trans, root, path, wc);
8721 if (wret < 0) {
8722 ret = wret;
8723 break;
8724 }
8725
8726 wret = walk_up_tree(trans, root, path, wc, parent_level);
8727 if (wret < 0)
8728 ret = wret;
8729 if (wret != 0)
8730 break;
8731 }
8732
8733 kfree(wc);
8734 btrfs_free_path(path);
8735 return ret;
8736 }
8737
8738 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8739 {
8740 u64 num_devices;
8741 u64 stripped;
8742
8743 /*
8744 * if restripe for this chunk_type is on pick target profile and
8745 * return, otherwise do the usual balance
8746 */
8747 stripped = get_restripe_target(root->fs_info, flags);
8748 if (stripped)
8749 return extended_to_chunk(stripped);
8750
8751 num_devices = root->fs_info->fs_devices->rw_devices;
8752
8753 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8754 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8755 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8756
8757 if (num_devices == 1) {
8758 stripped |= BTRFS_BLOCK_GROUP_DUP;
8759 stripped = flags & ~stripped;
8760
8761 /* turn raid0 into single device chunks */
8762 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8763 return stripped;
8764
8765 /* turn mirroring into duplication */
8766 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8767 BTRFS_BLOCK_GROUP_RAID10))
8768 return stripped | BTRFS_BLOCK_GROUP_DUP;
8769 } else {
8770 /* they already had raid on here, just return */
8771 if (flags & stripped)
8772 return flags;
8773
8774 stripped |= BTRFS_BLOCK_GROUP_DUP;
8775 stripped = flags & ~stripped;
8776
8777 /* switch duplicated blocks with raid1 */
8778 if (flags & BTRFS_BLOCK_GROUP_DUP)
8779 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8780
8781 /* this is drive concat, leave it alone */
8782 }
8783
8784 return flags;
8785 }
8786
8787 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8788 {
8789 struct btrfs_space_info *sinfo = cache->space_info;
8790 u64 num_bytes;
8791 u64 min_allocable_bytes;
8792 int ret = -ENOSPC;
8793
8794
8795 /*
8796 * We need some metadata space and system metadata space for
8797 * allocating chunks in some corner cases until we force to set
8798 * it to be readonly.
8799 */
8800 if ((sinfo->flags &
8801 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8802 !force)
8803 min_allocable_bytes = 1 * 1024 * 1024;
8804 else
8805 min_allocable_bytes = 0;
8806
8807 spin_lock(&sinfo->lock);
8808 spin_lock(&cache->lock);
8809
8810 if (cache->ro) {
8811 ret = 0;
8812 goto out;
8813 }
8814
8815 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8816 cache->bytes_super - btrfs_block_group_used(&cache->item);
8817
8818 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8819 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8820 min_allocable_bytes <= sinfo->total_bytes) {
8821 sinfo->bytes_readonly += num_bytes;
8822 cache->ro = 1;
8823 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8824 ret = 0;
8825 }
8826 out:
8827 spin_unlock(&cache->lock);
8828 spin_unlock(&sinfo->lock);
8829 return ret;
8830 }
8831
8832 int btrfs_set_block_group_ro(struct btrfs_root *root,
8833 struct btrfs_block_group_cache *cache)
8834
8835 {
8836 struct btrfs_trans_handle *trans;
8837 u64 alloc_flags;
8838 int ret;
8839
8840 BUG_ON(cache->ro);
8841
8842 again:
8843 trans = btrfs_join_transaction(root);
8844 if (IS_ERR(trans))
8845 return PTR_ERR(trans);
8846
8847 /*
8848 * we're not allowed to set block groups readonly after the dirty
8849 * block groups cache has started writing. If it already started,
8850 * back off and let this transaction commit
8851 */
8852 mutex_lock(&root->fs_info->ro_block_group_mutex);
8853 if (trans->transaction->dirty_bg_run) {
8854 u64 transid = trans->transid;
8855
8856 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8857 btrfs_end_transaction(trans, root);
8858
8859 ret = btrfs_wait_for_commit(root, transid);
8860 if (ret)
8861 return ret;
8862 goto again;
8863 }
8864
8865 /*
8866 * if we are changing raid levels, try to allocate a corresponding
8867 * block group with the new raid level.
8868 */
8869 alloc_flags = update_block_group_flags(root, cache->flags);
8870 if (alloc_flags != cache->flags) {
8871 ret = do_chunk_alloc(trans, root, alloc_flags,
8872 CHUNK_ALLOC_FORCE);
8873 /*
8874 * ENOSPC is allowed here, we may have enough space
8875 * already allocated at the new raid level to
8876 * carry on
8877 */
8878 if (ret == -ENOSPC)
8879 ret = 0;
8880 if (ret < 0)
8881 goto out;
8882 }
8883
8884 ret = set_block_group_ro(cache, 0);
8885 if (!ret)
8886 goto out;
8887 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8888 ret = do_chunk_alloc(trans, root, alloc_flags,
8889 CHUNK_ALLOC_FORCE);
8890 if (ret < 0)
8891 goto out;
8892 ret = set_block_group_ro(cache, 0);
8893 out:
8894 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8895 alloc_flags = update_block_group_flags(root, cache->flags);
8896 lock_chunks(root->fs_info->chunk_root);
8897 check_system_chunk(trans, root, alloc_flags);
8898 unlock_chunks(root->fs_info->chunk_root);
8899 }
8900 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8901
8902 btrfs_end_transaction(trans, root);
8903 return ret;
8904 }
8905
8906 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8907 struct btrfs_root *root, u64 type)
8908 {
8909 u64 alloc_flags = get_alloc_profile(root, type);
8910 return do_chunk_alloc(trans, root, alloc_flags,
8911 CHUNK_ALLOC_FORCE);
8912 }
8913
8914 /*
8915 * helper to account the unused space of all the readonly block group in the
8916 * space_info. takes mirrors into account.
8917 */
8918 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8919 {
8920 struct btrfs_block_group_cache *block_group;
8921 u64 free_bytes = 0;
8922 int factor;
8923
8924 /* It's df, we don't care if it's racey */
8925 if (list_empty(&sinfo->ro_bgs))
8926 return 0;
8927
8928 spin_lock(&sinfo->lock);
8929 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8930 spin_lock(&block_group->lock);
8931
8932 if (!block_group->ro) {
8933 spin_unlock(&block_group->lock);
8934 continue;
8935 }
8936
8937 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8938 BTRFS_BLOCK_GROUP_RAID10 |
8939 BTRFS_BLOCK_GROUP_DUP))
8940 factor = 2;
8941 else
8942 factor = 1;
8943
8944 free_bytes += (block_group->key.offset -
8945 btrfs_block_group_used(&block_group->item)) *
8946 factor;
8947
8948 spin_unlock(&block_group->lock);
8949 }
8950 spin_unlock(&sinfo->lock);
8951
8952 return free_bytes;
8953 }
8954
8955 void btrfs_set_block_group_rw(struct btrfs_root *root,
8956 struct btrfs_block_group_cache *cache)
8957 {
8958 struct btrfs_space_info *sinfo = cache->space_info;
8959 u64 num_bytes;
8960
8961 BUG_ON(!cache->ro);
8962
8963 spin_lock(&sinfo->lock);
8964 spin_lock(&cache->lock);
8965 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8966 cache->bytes_super - btrfs_block_group_used(&cache->item);
8967 sinfo->bytes_readonly -= num_bytes;
8968 cache->ro = 0;
8969 list_del_init(&cache->ro_list);
8970 spin_unlock(&cache->lock);
8971 spin_unlock(&sinfo->lock);
8972 }
8973
8974 /*
8975 * checks to see if its even possible to relocate this block group.
8976 *
8977 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8978 * ok to go ahead and try.
8979 */
8980 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8981 {
8982 struct btrfs_block_group_cache *block_group;
8983 struct btrfs_space_info *space_info;
8984 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8985 struct btrfs_device *device;
8986 struct btrfs_trans_handle *trans;
8987 u64 min_free;
8988 u64 dev_min = 1;
8989 u64 dev_nr = 0;
8990 u64 target;
8991 int index;
8992 int full = 0;
8993 int ret = 0;
8994
8995 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8996
8997 /* odd, couldn't find the block group, leave it alone */
8998 if (!block_group)
8999 return -1;
9000
9001 min_free = btrfs_block_group_used(&block_group->item);
9002
9003 /* no bytes used, we're good */
9004 if (!min_free)
9005 goto out;
9006
9007 space_info = block_group->space_info;
9008 spin_lock(&space_info->lock);
9009
9010 full = space_info->full;
9011
9012 /*
9013 * if this is the last block group we have in this space, we can't
9014 * relocate it unless we're able to allocate a new chunk below.
9015 *
9016 * Otherwise, we need to make sure we have room in the space to handle
9017 * all of the extents from this block group. If we can, we're good
9018 */
9019 if ((space_info->total_bytes != block_group->key.offset) &&
9020 (space_info->bytes_used + space_info->bytes_reserved +
9021 space_info->bytes_pinned + space_info->bytes_readonly +
9022 min_free < space_info->total_bytes)) {
9023 spin_unlock(&space_info->lock);
9024 goto out;
9025 }
9026 spin_unlock(&space_info->lock);
9027
9028 /*
9029 * ok we don't have enough space, but maybe we have free space on our
9030 * devices to allocate new chunks for relocation, so loop through our
9031 * alloc devices and guess if we have enough space. if this block
9032 * group is going to be restriped, run checks against the target
9033 * profile instead of the current one.
9034 */
9035 ret = -1;
9036
9037 /*
9038 * index:
9039 * 0: raid10
9040 * 1: raid1
9041 * 2: dup
9042 * 3: raid0
9043 * 4: single
9044 */
9045 target = get_restripe_target(root->fs_info, block_group->flags);
9046 if (target) {
9047 index = __get_raid_index(extended_to_chunk(target));
9048 } else {
9049 /*
9050 * this is just a balance, so if we were marked as full
9051 * we know there is no space for a new chunk
9052 */
9053 if (full)
9054 goto out;
9055
9056 index = get_block_group_index(block_group);
9057 }
9058
9059 if (index == BTRFS_RAID_RAID10) {
9060 dev_min = 4;
9061 /* Divide by 2 */
9062 min_free >>= 1;
9063 } else if (index == BTRFS_RAID_RAID1) {
9064 dev_min = 2;
9065 } else if (index == BTRFS_RAID_DUP) {
9066 /* Multiply by 2 */
9067 min_free <<= 1;
9068 } else if (index == BTRFS_RAID_RAID0) {
9069 dev_min = fs_devices->rw_devices;
9070 min_free = div64_u64(min_free, dev_min);
9071 }
9072
9073 /* We need to do this so that we can look at pending chunks */
9074 trans = btrfs_join_transaction(root);
9075 if (IS_ERR(trans)) {
9076 ret = PTR_ERR(trans);
9077 goto out;
9078 }
9079
9080 mutex_lock(&root->fs_info->chunk_mutex);
9081 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9082 u64 dev_offset;
9083
9084 /*
9085 * check to make sure we can actually find a chunk with enough
9086 * space to fit our block group in.
9087 */
9088 if (device->total_bytes > device->bytes_used + min_free &&
9089 !device->is_tgtdev_for_dev_replace) {
9090 ret = find_free_dev_extent(trans, device, min_free,
9091 &dev_offset, NULL);
9092 if (!ret)
9093 dev_nr++;
9094
9095 if (dev_nr >= dev_min)
9096 break;
9097
9098 ret = -1;
9099 }
9100 }
9101 mutex_unlock(&root->fs_info->chunk_mutex);
9102 btrfs_end_transaction(trans, root);
9103 out:
9104 btrfs_put_block_group(block_group);
9105 return ret;
9106 }
9107
9108 static int find_first_block_group(struct btrfs_root *root,
9109 struct btrfs_path *path, struct btrfs_key *key)
9110 {
9111 int ret = 0;
9112 struct btrfs_key found_key;
9113 struct extent_buffer *leaf;
9114 int slot;
9115
9116 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9117 if (ret < 0)
9118 goto out;
9119
9120 while (1) {
9121 slot = path->slots[0];
9122 leaf = path->nodes[0];
9123 if (slot >= btrfs_header_nritems(leaf)) {
9124 ret = btrfs_next_leaf(root, path);
9125 if (ret == 0)
9126 continue;
9127 if (ret < 0)
9128 goto out;
9129 break;
9130 }
9131 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9132
9133 if (found_key.objectid >= key->objectid &&
9134 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9135 ret = 0;
9136 goto out;
9137 }
9138 path->slots[0]++;
9139 }
9140 out:
9141 return ret;
9142 }
9143
9144 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9145 {
9146 struct btrfs_block_group_cache *block_group;
9147 u64 last = 0;
9148
9149 while (1) {
9150 struct inode *inode;
9151
9152 block_group = btrfs_lookup_first_block_group(info, last);
9153 while (block_group) {
9154 spin_lock(&block_group->lock);
9155 if (block_group->iref)
9156 break;
9157 spin_unlock(&block_group->lock);
9158 block_group = next_block_group(info->tree_root,
9159 block_group);
9160 }
9161 if (!block_group) {
9162 if (last == 0)
9163 break;
9164 last = 0;
9165 continue;
9166 }
9167
9168 inode = block_group->inode;
9169 block_group->iref = 0;
9170 block_group->inode = NULL;
9171 spin_unlock(&block_group->lock);
9172 iput(inode);
9173 last = block_group->key.objectid + block_group->key.offset;
9174 btrfs_put_block_group(block_group);
9175 }
9176 }
9177
9178 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9179 {
9180 struct btrfs_block_group_cache *block_group;
9181 struct btrfs_space_info *space_info;
9182 struct btrfs_caching_control *caching_ctl;
9183 struct rb_node *n;
9184
9185 down_write(&info->commit_root_sem);
9186 while (!list_empty(&info->caching_block_groups)) {
9187 caching_ctl = list_entry(info->caching_block_groups.next,
9188 struct btrfs_caching_control, list);
9189 list_del(&caching_ctl->list);
9190 put_caching_control(caching_ctl);
9191 }
9192 up_write(&info->commit_root_sem);
9193
9194 spin_lock(&info->unused_bgs_lock);
9195 while (!list_empty(&info->unused_bgs)) {
9196 block_group = list_first_entry(&info->unused_bgs,
9197 struct btrfs_block_group_cache,
9198 bg_list);
9199 list_del_init(&block_group->bg_list);
9200 btrfs_put_block_group(block_group);
9201 }
9202 spin_unlock(&info->unused_bgs_lock);
9203
9204 spin_lock(&info->block_group_cache_lock);
9205 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9206 block_group = rb_entry(n, struct btrfs_block_group_cache,
9207 cache_node);
9208 rb_erase(&block_group->cache_node,
9209 &info->block_group_cache_tree);
9210 RB_CLEAR_NODE(&block_group->cache_node);
9211 spin_unlock(&info->block_group_cache_lock);
9212
9213 down_write(&block_group->space_info->groups_sem);
9214 list_del(&block_group->list);
9215 up_write(&block_group->space_info->groups_sem);
9216
9217 if (block_group->cached == BTRFS_CACHE_STARTED)
9218 wait_block_group_cache_done(block_group);
9219
9220 /*
9221 * We haven't cached this block group, which means we could
9222 * possibly have excluded extents on this block group.
9223 */
9224 if (block_group->cached == BTRFS_CACHE_NO ||
9225 block_group->cached == BTRFS_CACHE_ERROR)
9226 free_excluded_extents(info->extent_root, block_group);
9227
9228 btrfs_remove_free_space_cache(block_group);
9229 btrfs_put_block_group(block_group);
9230
9231 spin_lock(&info->block_group_cache_lock);
9232 }
9233 spin_unlock(&info->block_group_cache_lock);
9234
9235 /* now that all the block groups are freed, go through and
9236 * free all the space_info structs. This is only called during
9237 * the final stages of unmount, and so we know nobody is
9238 * using them. We call synchronize_rcu() once before we start,
9239 * just to be on the safe side.
9240 */
9241 synchronize_rcu();
9242
9243 release_global_block_rsv(info);
9244
9245 while (!list_empty(&info->space_info)) {
9246 int i;
9247
9248 space_info = list_entry(info->space_info.next,
9249 struct btrfs_space_info,
9250 list);
9251 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9252 if (WARN_ON(space_info->bytes_pinned > 0 ||
9253 space_info->bytes_reserved > 0 ||
9254 space_info->bytes_may_use > 0)) {
9255 dump_space_info(space_info, 0, 0);
9256 }
9257 }
9258 list_del(&space_info->list);
9259 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9260 struct kobject *kobj;
9261 kobj = space_info->block_group_kobjs[i];
9262 space_info->block_group_kobjs[i] = NULL;
9263 if (kobj) {
9264 kobject_del(kobj);
9265 kobject_put(kobj);
9266 }
9267 }
9268 kobject_del(&space_info->kobj);
9269 kobject_put(&space_info->kobj);
9270 }
9271 return 0;
9272 }
9273
9274 static void __link_block_group(struct btrfs_space_info *space_info,
9275 struct btrfs_block_group_cache *cache)
9276 {
9277 int index = get_block_group_index(cache);
9278 bool first = false;
9279
9280 down_write(&space_info->groups_sem);
9281 if (list_empty(&space_info->block_groups[index]))
9282 first = true;
9283 list_add_tail(&cache->list, &space_info->block_groups[index]);
9284 up_write(&space_info->groups_sem);
9285
9286 if (first) {
9287 struct raid_kobject *rkobj;
9288 int ret;
9289
9290 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9291 if (!rkobj)
9292 goto out_err;
9293 rkobj->raid_type = index;
9294 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9295 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9296 "%s", get_raid_name(index));
9297 if (ret) {
9298 kobject_put(&rkobj->kobj);
9299 goto out_err;
9300 }
9301 space_info->block_group_kobjs[index] = &rkobj->kobj;
9302 }
9303
9304 return;
9305 out_err:
9306 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9307 }
9308
9309 static struct btrfs_block_group_cache *
9310 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9311 {
9312 struct btrfs_block_group_cache *cache;
9313
9314 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9315 if (!cache)
9316 return NULL;
9317
9318 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9319 GFP_NOFS);
9320 if (!cache->free_space_ctl) {
9321 kfree(cache);
9322 return NULL;
9323 }
9324
9325 cache->key.objectid = start;
9326 cache->key.offset = size;
9327 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9328
9329 cache->sectorsize = root->sectorsize;
9330 cache->fs_info = root->fs_info;
9331 cache->full_stripe_len = btrfs_full_stripe_len(root,
9332 &root->fs_info->mapping_tree,
9333 start);
9334 atomic_set(&cache->count, 1);
9335 spin_lock_init(&cache->lock);
9336 init_rwsem(&cache->data_rwsem);
9337 INIT_LIST_HEAD(&cache->list);
9338 INIT_LIST_HEAD(&cache->cluster_list);
9339 INIT_LIST_HEAD(&cache->bg_list);
9340 INIT_LIST_HEAD(&cache->ro_list);
9341 INIT_LIST_HEAD(&cache->dirty_list);
9342 INIT_LIST_HEAD(&cache->io_list);
9343 btrfs_init_free_space_ctl(cache);
9344 atomic_set(&cache->trimming, 0);
9345
9346 return cache;
9347 }
9348
9349 int btrfs_read_block_groups(struct btrfs_root *root)
9350 {
9351 struct btrfs_path *path;
9352 int ret;
9353 struct btrfs_block_group_cache *cache;
9354 struct btrfs_fs_info *info = root->fs_info;
9355 struct btrfs_space_info *space_info;
9356 struct btrfs_key key;
9357 struct btrfs_key found_key;
9358 struct extent_buffer *leaf;
9359 int need_clear = 0;
9360 u64 cache_gen;
9361
9362 root = info->extent_root;
9363 key.objectid = 0;
9364 key.offset = 0;
9365 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9366 path = btrfs_alloc_path();
9367 if (!path)
9368 return -ENOMEM;
9369 path->reada = 1;
9370
9371 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9372 if (btrfs_test_opt(root, SPACE_CACHE) &&
9373 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9374 need_clear = 1;
9375 if (btrfs_test_opt(root, CLEAR_CACHE))
9376 need_clear = 1;
9377
9378 while (1) {
9379 ret = find_first_block_group(root, path, &key);
9380 if (ret > 0)
9381 break;
9382 if (ret != 0)
9383 goto error;
9384
9385 leaf = path->nodes[0];
9386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9387
9388 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9389 found_key.offset);
9390 if (!cache) {
9391 ret = -ENOMEM;
9392 goto error;
9393 }
9394
9395 if (need_clear) {
9396 /*
9397 * When we mount with old space cache, we need to
9398 * set BTRFS_DC_CLEAR and set dirty flag.
9399 *
9400 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9401 * truncate the old free space cache inode and
9402 * setup a new one.
9403 * b) Setting 'dirty flag' makes sure that we flush
9404 * the new space cache info onto disk.
9405 */
9406 if (btrfs_test_opt(root, SPACE_CACHE))
9407 cache->disk_cache_state = BTRFS_DC_CLEAR;
9408 }
9409
9410 read_extent_buffer(leaf, &cache->item,
9411 btrfs_item_ptr_offset(leaf, path->slots[0]),
9412 sizeof(cache->item));
9413 cache->flags = btrfs_block_group_flags(&cache->item);
9414
9415 key.objectid = found_key.objectid + found_key.offset;
9416 btrfs_release_path(path);
9417
9418 /*
9419 * We need to exclude the super stripes now so that the space
9420 * info has super bytes accounted for, otherwise we'll think
9421 * we have more space than we actually do.
9422 */
9423 ret = exclude_super_stripes(root, cache);
9424 if (ret) {
9425 /*
9426 * We may have excluded something, so call this just in
9427 * case.
9428 */
9429 free_excluded_extents(root, cache);
9430 btrfs_put_block_group(cache);
9431 goto error;
9432 }
9433
9434 /*
9435 * check for two cases, either we are full, and therefore
9436 * don't need to bother with the caching work since we won't
9437 * find any space, or we are empty, and we can just add all
9438 * the space in and be done with it. This saves us _alot_ of
9439 * time, particularly in the full case.
9440 */
9441 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9442 cache->last_byte_to_unpin = (u64)-1;
9443 cache->cached = BTRFS_CACHE_FINISHED;
9444 free_excluded_extents(root, cache);
9445 } else if (btrfs_block_group_used(&cache->item) == 0) {
9446 cache->last_byte_to_unpin = (u64)-1;
9447 cache->cached = BTRFS_CACHE_FINISHED;
9448 add_new_free_space(cache, root->fs_info,
9449 found_key.objectid,
9450 found_key.objectid +
9451 found_key.offset);
9452 free_excluded_extents(root, cache);
9453 }
9454
9455 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9456 if (ret) {
9457 btrfs_remove_free_space_cache(cache);
9458 btrfs_put_block_group(cache);
9459 goto error;
9460 }
9461
9462 ret = update_space_info(info, cache->flags, found_key.offset,
9463 btrfs_block_group_used(&cache->item),
9464 &space_info);
9465 if (ret) {
9466 btrfs_remove_free_space_cache(cache);
9467 spin_lock(&info->block_group_cache_lock);
9468 rb_erase(&cache->cache_node,
9469 &info->block_group_cache_tree);
9470 RB_CLEAR_NODE(&cache->cache_node);
9471 spin_unlock(&info->block_group_cache_lock);
9472 btrfs_put_block_group(cache);
9473 goto error;
9474 }
9475
9476 cache->space_info = space_info;
9477 spin_lock(&cache->space_info->lock);
9478 cache->space_info->bytes_readonly += cache->bytes_super;
9479 spin_unlock(&cache->space_info->lock);
9480
9481 __link_block_group(space_info, cache);
9482
9483 set_avail_alloc_bits(root->fs_info, cache->flags);
9484 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9485 set_block_group_ro(cache, 1);
9486 } else if (btrfs_block_group_used(&cache->item) == 0) {
9487 spin_lock(&info->unused_bgs_lock);
9488 /* Should always be true but just in case. */
9489 if (list_empty(&cache->bg_list)) {
9490 btrfs_get_block_group(cache);
9491 list_add_tail(&cache->bg_list,
9492 &info->unused_bgs);
9493 }
9494 spin_unlock(&info->unused_bgs_lock);
9495 }
9496 }
9497
9498 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9499 if (!(get_alloc_profile(root, space_info->flags) &
9500 (BTRFS_BLOCK_GROUP_RAID10 |
9501 BTRFS_BLOCK_GROUP_RAID1 |
9502 BTRFS_BLOCK_GROUP_RAID5 |
9503 BTRFS_BLOCK_GROUP_RAID6 |
9504 BTRFS_BLOCK_GROUP_DUP)))
9505 continue;
9506 /*
9507 * avoid allocating from un-mirrored block group if there are
9508 * mirrored block groups.
9509 */
9510 list_for_each_entry(cache,
9511 &space_info->block_groups[BTRFS_RAID_RAID0],
9512 list)
9513 set_block_group_ro(cache, 1);
9514 list_for_each_entry(cache,
9515 &space_info->block_groups[BTRFS_RAID_SINGLE],
9516 list)
9517 set_block_group_ro(cache, 1);
9518 }
9519
9520 init_global_block_rsv(info);
9521 ret = 0;
9522 error:
9523 btrfs_free_path(path);
9524 return ret;
9525 }
9526
9527 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9528 struct btrfs_root *root)
9529 {
9530 struct btrfs_block_group_cache *block_group, *tmp;
9531 struct btrfs_root *extent_root = root->fs_info->extent_root;
9532 struct btrfs_block_group_item item;
9533 struct btrfs_key key;
9534 int ret = 0;
9535
9536 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9537 if (ret)
9538 goto next;
9539
9540 spin_lock(&block_group->lock);
9541 memcpy(&item, &block_group->item, sizeof(item));
9542 memcpy(&key, &block_group->key, sizeof(key));
9543 spin_unlock(&block_group->lock);
9544
9545 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9546 sizeof(item));
9547 if (ret)
9548 btrfs_abort_transaction(trans, extent_root, ret);
9549 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9550 key.objectid, key.offset);
9551 if (ret)
9552 btrfs_abort_transaction(trans, extent_root, ret);
9553 next:
9554 list_del_init(&block_group->bg_list);
9555 }
9556 }
9557
9558 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9559 struct btrfs_root *root, u64 bytes_used,
9560 u64 type, u64 chunk_objectid, u64 chunk_offset,
9561 u64 size)
9562 {
9563 int ret;
9564 struct btrfs_root *extent_root;
9565 struct btrfs_block_group_cache *cache;
9566
9567 extent_root = root->fs_info->extent_root;
9568
9569 btrfs_set_log_full_commit(root->fs_info, trans);
9570
9571 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9572 if (!cache)
9573 return -ENOMEM;
9574
9575 btrfs_set_block_group_used(&cache->item, bytes_used);
9576 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9577 btrfs_set_block_group_flags(&cache->item, type);
9578
9579 cache->flags = type;
9580 cache->last_byte_to_unpin = (u64)-1;
9581 cache->cached = BTRFS_CACHE_FINISHED;
9582 ret = exclude_super_stripes(root, cache);
9583 if (ret) {
9584 /*
9585 * We may have excluded something, so call this just in
9586 * case.
9587 */
9588 free_excluded_extents(root, cache);
9589 btrfs_put_block_group(cache);
9590 return ret;
9591 }
9592
9593 add_new_free_space(cache, root->fs_info, chunk_offset,
9594 chunk_offset + size);
9595
9596 free_excluded_extents(root, cache);
9597
9598 /*
9599 * Call to ensure the corresponding space_info object is created and
9600 * assigned to our block group, but don't update its counters just yet.
9601 * We want our bg to be added to the rbtree with its ->space_info set.
9602 */
9603 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9604 &cache->space_info);
9605 if (ret) {
9606 btrfs_remove_free_space_cache(cache);
9607 btrfs_put_block_group(cache);
9608 return ret;
9609 }
9610
9611 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9612 if (ret) {
9613 btrfs_remove_free_space_cache(cache);
9614 btrfs_put_block_group(cache);
9615 return ret;
9616 }
9617
9618 /*
9619 * Now that our block group has its ->space_info set and is inserted in
9620 * the rbtree, update the space info's counters.
9621 */
9622 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9623 &cache->space_info);
9624 if (ret) {
9625 btrfs_remove_free_space_cache(cache);
9626 spin_lock(&root->fs_info->block_group_cache_lock);
9627 rb_erase(&cache->cache_node,
9628 &root->fs_info->block_group_cache_tree);
9629 RB_CLEAR_NODE(&cache->cache_node);
9630 spin_unlock(&root->fs_info->block_group_cache_lock);
9631 btrfs_put_block_group(cache);
9632 return ret;
9633 }
9634 update_global_block_rsv(root->fs_info);
9635
9636 spin_lock(&cache->space_info->lock);
9637 cache->space_info->bytes_readonly += cache->bytes_super;
9638 spin_unlock(&cache->space_info->lock);
9639
9640 __link_block_group(cache->space_info, cache);
9641
9642 list_add_tail(&cache->bg_list, &trans->new_bgs);
9643
9644 set_avail_alloc_bits(extent_root->fs_info, type);
9645
9646 return 0;
9647 }
9648
9649 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9650 {
9651 u64 extra_flags = chunk_to_extended(flags) &
9652 BTRFS_EXTENDED_PROFILE_MASK;
9653
9654 write_seqlock(&fs_info->profiles_lock);
9655 if (flags & BTRFS_BLOCK_GROUP_DATA)
9656 fs_info->avail_data_alloc_bits &= ~extra_flags;
9657 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9658 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9659 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9660 fs_info->avail_system_alloc_bits &= ~extra_flags;
9661 write_sequnlock(&fs_info->profiles_lock);
9662 }
9663
9664 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9665 struct btrfs_root *root, u64 group_start,
9666 struct extent_map *em)
9667 {
9668 struct btrfs_path *path;
9669 struct btrfs_block_group_cache *block_group;
9670 struct btrfs_free_cluster *cluster;
9671 struct btrfs_root *tree_root = root->fs_info->tree_root;
9672 struct btrfs_key key;
9673 struct inode *inode;
9674 struct kobject *kobj = NULL;
9675 int ret;
9676 int index;
9677 int factor;
9678 struct btrfs_caching_control *caching_ctl = NULL;
9679 bool remove_em;
9680
9681 root = root->fs_info->extent_root;
9682
9683 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9684 BUG_ON(!block_group);
9685 BUG_ON(!block_group->ro);
9686
9687 /*
9688 * Free the reserved super bytes from this block group before
9689 * remove it.
9690 */
9691 free_excluded_extents(root, block_group);
9692
9693 memcpy(&key, &block_group->key, sizeof(key));
9694 index = get_block_group_index(block_group);
9695 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9696 BTRFS_BLOCK_GROUP_RAID1 |
9697 BTRFS_BLOCK_GROUP_RAID10))
9698 factor = 2;
9699 else
9700 factor = 1;
9701
9702 /* make sure this block group isn't part of an allocation cluster */
9703 cluster = &root->fs_info->data_alloc_cluster;
9704 spin_lock(&cluster->refill_lock);
9705 btrfs_return_cluster_to_free_space(block_group, cluster);
9706 spin_unlock(&cluster->refill_lock);
9707
9708 /*
9709 * make sure this block group isn't part of a metadata
9710 * allocation cluster
9711 */
9712 cluster = &root->fs_info->meta_alloc_cluster;
9713 spin_lock(&cluster->refill_lock);
9714 btrfs_return_cluster_to_free_space(block_group, cluster);
9715 spin_unlock(&cluster->refill_lock);
9716
9717 path = btrfs_alloc_path();
9718 if (!path) {
9719 ret = -ENOMEM;
9720 goto out;
9721 }
9722
9723 /*
9724 * get the inode first so any iput calls done for the io_list
9725 * aren't the final iput (no unlinks allowed now)
9726 */
9727 inode = lookup_free_space_inode(tree_root, block_group, path);
9728
9729 mutex_lock(&trans->transaction->cache_write_mutex);
9730 /*
9731 * make sure our free spache cache IO is done before remove the
9732 * free space inode
9733 */
9734 spin_lock(&trans->transaction->dirty_bgs_lock);
9735 if (!list_empty(&block_group->io_list)) {
9736 list_del_init(&block_group->io_list);
9737
9738 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9739
9740 spin_unlock(&trans->transaction->dirty_bgs_lock);
9741 btrfs_wait_cache_io(root, trans, block_group,
9742 &block_group->io_ctl, path,
9743 block_group->key.objectid);
9744 btrfs_put_block_group(block_group);
9745 spin_lock(&trans->transaction->dirty_bgs_lock);
9746 }
9747
9748 if (!list_empty(&block_group->dirty_list)) {
9749 list_del_init(&block_group->dirty_list);
9750 btrfs_put_block_group(block_group);
9751 }
9752 spin_unlock(&trans->transaction->dirty_bgs_lock);
9753 mutex_unlock(&trans->transaction->cache_write_mutex);
9754
9755 if (!IS_ERR(inode)) {
9756 ret = btrfs_orphan_add(trans, inode);
9757 if (ret) {
9758 btrfs_add_delayed_iput(inode);
9759 goto out;
9760 }
9761 clear_nlink(inode);
9762 /* One for the block groups ref */
9763 spin_lock(&block_group->lock);
9764 if (block_group->iref) {
9765 block_group->iref = 0;
9766 block_group->inode = NULL;
9767 spin_unlock(&block_group->lock);
9768 iput(inode);
9769 } else {
9770 spin_unlock(&block_group->lock);
9771 }
9772 /* One for our lookup ref */
9773 btrfs_add_delayed_iput(inode);
9774 }
9775
9776 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9777 key.offset = block_group->key.objectid;
9778 key.type = 0;
9779
9780 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9781 if (ret < 0)
9782 goto out;
9783 if (ret > 0)
9784 btrfs_release_path(path);
9785 if (ret == 0) {
9786 ret = btrfs_del_item(trans, tree_root, path);
9787 if (ret)
9788 goto out;
9789 btrfs_release_path(path);
9790 }
9791
9792 spin_lock(&root->fs_info->block_group_cache_lock);
9793 rb_erase(&block_group->cache_node,
9794 &root->fs_info->block_group_cache_tree);
9795 RB_CLEAR_NODE(&block_group->cache_node);
9796
9797 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9798 root->fs_info->first_logical_byte = (u64)-1;
9799 spin_unlock(&root->fs_info->block_group_cache_lock);
9800
9801 down_write(&block_group->space_info->groups_sem);
9802 /*
9803 * we must use list_del_init so people can check to see if they
9804 * are still on the list after taking the semaphore
9805 */
9806 list_del_init(&block_group->list);
9807 if (list_empty(&block_group->space_info->block_groups[index])) {
9808 kobj = block_group->space_info->block_group_kobjs[index];
9809 block_group->space_info->block_group_kobjs[index] = NULL;
9810 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9811 }
9812 up_write(&block_group->space_info->groups_sem);
9813 if (kobj) {
9814 kobject_del(kobj);
9815 kobject_put(kobj);
9816 }
9817
9818 if (block_group->has_caching_ctl)
9819 caching_ctl = get_caching_control(block_group);
9820 if (block_group->cached == BTRFS_CACHE_STARTED)
9821 wait_block_group_cache_done(block_group);
9822 if (block_group->has_caching_ctl) {
9823 down_write(&root->fs_info->commit_root_sem);
9824 if (!caching_ctl) {
9825 struct btrfs_caching_control *ctl;
9826
9827 list_for_each_entry(ctl,
9828 &root->fs_info->caching_block_groups, list)
9829 if (ctl->block_group == block_group) {
9830 caching_ctl = ctl;
9831 atomic_inc(&caching_ctl->count);
9832 break;
9833 }
9834 }
9835 if (caching_ctl)
9836 list_del_init(&caching_ctl->list);
9837 up_write(&root->fs_info->commit_root_sem);
9838 if (caching_ctl) {
9839 /* Once for the caching bgs list and once for us. */
9840 put_caching_control(caching_ctl);
9841 put_caching_control(caching_ctl);
9842 }
9843 }
9844
9845 spin_lock(&trans->transaction->dirty_bgs_lock);
9846 if (!list_empty(&block_group->dirty_list)) {
9847 WARN_ON(1);
9848 }
9849 if (!list_empty(&block_group->io_list)) {
9850 WARN_ON(1);
9851 }
9852 spin_unlock(&trans->transaction->dirty_bgs_lock);
9853 btrfs_remove_free_space_cache(block_group);
9854
9855 spin_lock(&block_group->space_info->lock);
9856 list_del_init(&block_group->ro_list);
9857
9858 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9859 WARN_ON(block_group->space_info->total_bytes
9860 < block_group->key.offset);
9861 WARN_ON(block_group->space_info->bytes_readonly
9862 < block_group->key.offset);
9863 WARN_ON(block_group->space_info->disk_total
9864 < block_group->key.offset * factor);
9865 }
9866 block_group->space_info->total_bytes -= block_group->key.offset;
9867 block_group->space_info->bytes_readonly -= block_group->key.offset;
9868 block_group->space_info->disk_total -= block_group->key.offset * factor;
9869
9870 spin_unlock(&block_group->space_info->lock);
9871
9872 memcpy(&key, &block_group->key, sizeof(key));
9873
9874 lock_chunks(root);
9875 if (!list_empty(&em->list)) {
9876 /* We're in the transaction->pending_chunks list. */
9877 free_extent_map(em);
9878 }
9879 spin_lock(&block_group->lock);
9880 block_group->removed = 1;
9881 /*
9882 * At this point trimming can't start on this block group, because we
9883 * removed the block group from the tree fs_info->block_group_cache_tree
9884 * so no one can't find it anymore and even if someone already got this
9885 * block group before we removed it from the rbtree, they have already
9886 * incremented block_group->trimming - if they didn't, they won't find
9887 * any free space entries because we already removed them all when we
9888 * called btrfs_remove_free_space_cache().
9889 *
9890 * And we must not remove the extent map from the fs_info->mapping_tree
9891 * to prevent the same logical address range and physical device space
9892 * ranges from being reused for a new block group. This is because our
9893 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9894 * completely transactionless, so while it is trimming a range the
9895 * currently running transaction might finish and a new one start,
9896 * allowing for new block groups to be created that can reuse the same
9897 * physical device locations unless we take this special care.
9898 */
9899 remove_em = (atomic_read(&block_group->trimming) == 0);
9900 /*
9901 * Make sure a trimmer task always sees the em in the pinned_chunks list
9902 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9903 * before checking block_group->removed).
9904 */
9905 if (!remove_em) {
9906 /*
9907 * Our em might be in trans->transaction->pending_chunks which
9908 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9909 * and so is the fs_info->pinned_chunks list.
9910 *
9911 * So at this point we must be holding the chunk_mutex to avoid
9912 * any races with chunk allocation (more specifically at
9913 * volumes.c:contains_pending_extent()), to ensure it always
9914 * sees the em, either in the pending_chunks list or in the
9915 * pinned_chunks list.
9916 */
9917 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9918 }
9919 spin_unlock(&block_group->lock);
9920
9921 if (remove_em) {
9922 struct extent_map_tree *em_tree;
9923
9924 em_tree = &root->fs_info->mapping_tree.map_tree;
9925 write_lock(&em_tree->lock);
9926 /*
9927 * The em might be in the pending_chunks list, so make sure the
9928 * chunk mutex is locked, since remove_extent_mapping() will
9929 * delete us from that list.
9930 */
9931 remove_extent_mapping(em_tree, em);
9932 write_unlock(&em_tree->lock);
9933 /* once for the tree */
9934 free_extent_map(em);
9935 }
9936
9937 unlock_chunks(root);
9938
9939 btrfs_put_block_group(block_group);
9940 btrfs_put_block_group(block_group);
9941
9942 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9943 if (ret > 0)
9944 ret = -EIO;
9945 if (ret < 0)
9946 goto out;
9947
9948 ret = btrfs_del_item(trans, root, path);
9949 out:
9950 btrfs_free_path(path);
9951 return ret;
9952 }
9953
9954 /*
9955 * Process the unused_bgs list and remove any that don't have any allocated
9956 * space inside of them.
9957 */
9958 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9959 {
9960 struct btrfs_block_group_cache *block_group;
9961 struct btrfs_space_info *space_info;
9962 struct btrfs_root *root = fs_info->extent_root;
9963 struct btrfs_trans_handle *trans;
9964 int ret = 0;
9965
9966 if (!fs_info->open)
9967 return;
9968
9969 spin_lock(&fs_info->unused_bgs_lock);
9970 while (!list_empty(&fs_info->unused_bgs)) {
9971 u64 start, end;
9972
9973 block_group = list_first_entry(&fs_info->unused_bgs,
9974 struct btrfs_block_group_cache,
9975 bg_list);
9976 space_info = block_group->space_info;
9977 list_del_init(&block_group->bg_list);
9978 if (ret || btrfs_mixed_space_info(space_info)) {
9979 btrfs_put_block_group(block_group);
9980 continue;
9981 }
9982 spin_unlock(&fs_info->unused_bgs_lock);
9983
9984 /* Don't want to race with allocators so take the groups_sem */
9985 down_write(&space_info->groups_sem);
9986 spin_lock(&block_group->lock);
9987 if (block_group->reserved ||
9988 btrfs_block_group_used(&block_group->item) ||
9989 block_group->ro) {
9990 /*
9991 * We want to bail if we made new allocations or have
9992 * outstanding allocations in this block group. We do
9993 * the ro check in case balance is currently acting on
9994 * this block group.
9995 */
9996 spin_unlock(&block_group->lock);
9997 up_write(&space_info->groups_sem);
9998 goto next;
9999 }
10000 spin_unlock(&block_group->lock);
10001
10002 /* We don't want to force the issue, only flip if it's ok. */
10003 ret = set_block_group_ro(block_group, 0);
10004 up_write(&space_info->groups_sem);
10005 if (ret < 0) {
10006 ret = 0;
10007 goto next;
10008 }
10009
10010 /*
10011 * Want to do this before we do anything else so we can recover
10012 * properly if we fail to join the transaction.
10013 */
10014 /* 1 for btrfs_orphan_reserve_metadata() */
10015 trans = btrfs_start_transaction(root, 1);
10016 if (IS_ERR(trans)) {
10017 btrfs_set_block_group_rw(root, block_group);
10018 ret = PTR_ERR(trans);
10019 goto next;
10020 }
10021
10022 /*
10023 * We could have pending pinned extents for this block group,
10024 * just delete them, we don't care about them anymore.
10025 */
10026 start = block_group->key.objectid;
10027 end = start + block_group->key.offset - 1;
10028 /*
10029 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10030 * btrfs_finish_extent_commit(). If we are at transaction N,
10031 * another task might be running finish_extent_commit() for the
10032 * previous transaction N - 1, and have seen a range belonging
10033 * to the block group in freed_extents[] before we were able to
10034 * clear the whole block group range from freed_extents[]. This
10035 * means that task can lookup for the block group after we
10036 * unpinned it from freed_extents[] and removed it, leading to
10037 * a BUG_ON() at btrfs_unpin_extent_range().
10038 */
10039 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10040 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10041 EXTENT_DIRTY, GFP_NOFS);
10042 if (ret) {
10043 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10044 btrfs_set_block_group_rw(root, block_group);
10045 goto end_trans;
10046 }
10047 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10048 EXTENT_DIRTY, GFP_NOFS);
10049 if (ret) {
10050 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10051 btrfs_set_block_group_rw(root, block_group);
10052 goto end_trans;
10053 }
10054 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10055
10056 /* Reset pinned so btrfs_put_block_group doesn't complain */
10057 spin_lock(&space_info->lock);
10058 spin_lock(&block_group->lock);
10059
10060 space_info->bytes_pinned -= block_group->pinned;
10061 space_info->bytes_readonly += block_group->pinned;
10062 percpu_counter_add(&space_info->total_bytes_pinned,
10063 -block_group->pinned);
10064 block_group->pinned = 0;
10065
10066 spin_unlock(&block_group->lock);
10067 spin_unlock(&space_info->lock);
10068
10069 /*
10070 * Btrfs_remove_chunk will abort the transaction if things go
10071 * horribly wrong.
10072 */
10073 ret = btrfs_remove_chunk(trans, root,
10074 block_group->key.objectid);
10075 end_trans:
10076 btrfs_end_transaction(trans, root);
10077 next:
10078 btrfs_put_block_group(block_group);
10079 spin_lock(&fs_info->unused_bgs_lock);
10080 }
10081 spin_unlock(&fs_info->unused_bgs_lock);
10082 }
10083
10084 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10085 {
10086 struct btrfs_space_info *space_info;
10087 struct btrfs_super_block *disk_super;
10088 u64 features;
10089 u64 flags;
10090 int mixed = 0;
10091 int ret;
10092
10093 disk_super = fs_info->super_copy;
10094 if (!btrfs_super_root(disk_super))
10095 return 1;
10096
10097 features = btrfs_super_incompat_flags(disk_super);
10098 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10099 mixed = 1;
10100
10101 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10102 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10103 if (ret)
10104 goto out;
10105
10106 if (mixed) {
10107 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10108 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10109 } else {
10110 flags = BTRFS_BLOCK_GROUP_METADATA;
10111 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10112 if (ret)
10113 goto out;
10114
10115 flags = BTRFS_BLOCK_GROUP_DATA;
10116 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10117 }
10118 out:
10119 return ret;
10120 }
10121
10122 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10123 {
10124 return unpin_extent_range(root, start, end, false);
10125 }
10126
10127 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10128 {
10129 struct btrfs_fs_info *fs_info = root->fs_info;
10130 struct btrfs_block_group_cache *cache = NULL;
10131 u64 group_trimmed;
10132 u64 start;
10133 u64 end;
10134 u64 trimmed = 0;
10135 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10136 int ret = 0;
10137
10138 /*
10139 * try to trim all FS space, our block group may start from non-zero.
10140 */
10141 if (range->len == total_bytes)
10142 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10143 else
10144 cache = btrfs_lookup_block_group(fs_info, range->start);
10145
10146 while (cache) {
10147 if (cache->key.objectid >= (range->start + range->len)) {
10148 btrfs_put_block_group(cache);
10149 break;
10150 }
10151
10152 start = max(range->start, cache->key.objectid);
10153 end = min(range->start + range->len,
10154 cache->key.objectid + cache->key.offset);
10155
10156 if (end - start >= range->minlen) {
10157 if (!block_group_cache_done(cache)) {
10158 ret = cache_block_group(cache, 0);
10159 if (ret) {
10160 btrfs_put_block_group(cache);
10161 break;
10162 }
10163 ret = wait_block_group_cache_done(cache);
10164 if (ret) {
10165 btrfs_put_block_group(cache);
10166 break;
10167 }
10168 }
10169 ret = btrfs_trim_block_group(cache,
10170 &group_trimmed,
10171 start,
10172 end,
10173 range->minlen);
10174
10175 trimmed += group_trimmed;
10176 if (ret) {
10177 btrfs_put_block_group(cache);
10178 break;
10179 }
10180 }
10181
10182 cache = next_block_group(fs_info->tree_root, cache);
10183 }
10184
10185 range->len = trimmed;
10186 return ret;
10187 }
10188
10189 /*
10190 * btrfs_{start,end}_write_no_snapshoting() are similar to
10191 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10192 * data into the page cache through nocow before the subvolume is snapshoted,
10193 * but flush the data into disk after the snapshot creation, or to prevent
10194 * operations while snapshoting is ongoing and that cause the snapshot to be
10195 * inconsistent (writes followed by expanding truncates for example).
10196 */
10197 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10198 {
10199 percpu_counter_dec(&root->subv_writers->counter);
10200 /*
10201 * Make sure counter is updated before we wake up
10202 * waiters.
10203 */
10204 smp_mb();
10205 if (waitqueue_active(&root->subv_writers->wait))
10206 wake_up(&root->subv_writers->wait);
10207 }
10208
10209 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10210 {
10211 if (atomic_read(&root->will_be_snapshoted))
10212 return 0;
10213
10214 percpu_counter_inc(&root->subv_writers->counter);
10215 /*
10216 * Make sure counter is updated before we check for snapshot creation.
10217 */
10218 smp_mb();
10219 if (atomic_read(&root->will_be_snapshoted)) {
10220 btrfs_end_write_no_snapshoting(root);
10221 return 0;
10222 }
10223 return 1;
10224 }